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Abstract

Increasing the drilling speed in wells while maintaining the operational safety standards is a
challenge that many Petroleum Engineers have undertaken. In recent years, high complexity
wells (Horizontal, Extended Reach, HPHT, etc.) have been drilled increasingly, this forced
the industry to continue investigating which parameters involved in the Rate Of Penetration
(ROP) have the most influence on its behavior. This study integrates different concepts and
methodologies from Petroleum Engineering, Drill String Mechanics, Data Analysis, and Ma-
chine Learning (ML). It aims to identify the most important parameters involved in ROP, using
real well data to evaluate the influence of these parameters in different ML ROP predictive mod-
els.

The methodology includes the study of different physics-based ROP models, even though
some of them were developed decades ago but remain relevant to this date. Improvement of
these models accuracy came with the implementation of new technology and equipment on the
drill site, such as Wired Drill Pipe, Precise Sensors, Top Drive Technology, Measurement While
Drilling, Logging While Drilling, and many more. Those developments generated large quan-
tities of data that companies used to store and now are proven to be relevant to understand and
explain phenoms involved in drilling a well.

During the study, one parameter consistently appeared to be on top of all others Weight
on Bit (WOB). All physics-based models projections are based on the accuracy of it, but in
high complexity wells as the ones drilled nowadays, it is not easy to estimate, as Surface WOB
(SWOB) and Downhole WOB (DWOB) values usually do not match. For this purpose, a com-
plete well database was used to identify and extract relevant parameters and data that could
allow this study to be carried. A Python code that predicts the DWOB value from surface mea-
surements using a physics-based model, was successfully implemented.

Once the data was selected and prepared, different machine learning methods were imple-
mented to identify the best ROP predictive model. Among them, we can mention Random For-
est Regressor, K-Nearest Neighbors, Artificial Neural Networks, and Long Short Term Memory.
When the best model was identified (LSTM), a sensitivity analysis was held using surface and a
combination of surface - calculated parameters (DWOB) as input for the model, this was done
to verify that machine learning models performance can be raised by improving the quality of
input parameters using drilling engineering knowledge, instead of relying only on a data-science
approach.
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Chapter 1

Introduction

1.1 Background, Motivation and Challenge

During the drilling process of a well several operations are held, to mention a few: Drilling,

Tripping In/Out, Well Conditioning, Logging, Coring, Casing/Liner running, and many more.

When we speak of Deepwater Offshore projects, the total cost of a well that includes such oper-

ations can be in the order of a $ 100 million [6]. Therefore, the optimization of each operation

serves to reduce the overall cost of a project.

All operator companies expect to have a good performance during drilling operations, which

is measured among other benchmarks by the ROP. Hence, these are some points to consider:

• All companies expect to have high values of ROP while maintaining appropriate opera-

tional safety standards.

• ROP is a combination of different parameters (WOB, RPM, Flow rate, etc.).

• It can give us an idea of the type of formation that is being drilled (usually, soft formations

- High ROP and abrasive formations - low ROP).

• When it is lower than expected, even though different parameters have been applied, can

be a signal for wear on the drilling bit.

1



2 CHAPTER 1. INTRODUCTION

• Vibration, poor weight transfer, and poor torque could reduce drilling performance by

40-50% [7]

Determining which parameters are relevant for a good ROP prediction and optimization, is a

subject that has been theoretically and experimentally studied before. Even today is a complex

issue to address, as different models can take a distinct number of variables for this calculation.

One parameter that is consistently regarded as important in all models is the WOB, and since the

development of high angle wells, it has been noted that there is, in some cases, a considerable

difference between the SWOB and DWOB. Lately, as the interest in data science and machine

learning increases, different alternatives for data-driven ROP prediction and optimization have

been proposed by researchers [5] to find a suitable solution for this problem.

The motivation of this study is to implement a code to predict the DWOB value from surface

measurements and generate a data-driven model for ROP prediction. This model should be eas-

ily applied in any type of well and improve drilling operations with low cost for the companies.

1.2 Objectives and Scope

The present study focuses on identifying the most relevant parameters involved in the ROP

modeling process, as well as accurately predict its behavior. It, by no means, will develop an

industrial solution but more of a concept that could be further investigated and developed by

MHWirth, given the short time-frame for the thesis work. Therefore, the study will provide

the first steps to further understand this exciting topic with a new approach given by machine

learning. In order to accomplish the above stated, the following objectives are proposed:

• Understand all the components involved during the drilling phase of a well.

• Identify key parameters involved in ROP prediction.

• Choose an appropriate data set that contains relevant and consistent information.

• Effectively clean and prepare the data for further analysis.
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• Apply a comprehensive and clear method to predict DWOB from surface measurements.

• Implement a machine learning algorithm that accurately predicts the ROP value for the

chosen data.

The first objective is of utter relevance, understand how to measure and obtain the param-

eters involved in all ROP models, once this is accomplished, we can define the models and

confidently select key parameters that are relevant. Then, it is possible to search and select an

appropriate data set, that in the best scenario, will contain at least the necessary information.

In recent years, the use of Wired Drill Pipe (WDP) has shown that in some cases, especially

in high angle wells, a considerable difference exists between the measured SWOB and DWOB.

As all ROP models include the WOB parameter, assuming that this value is the real force ap-

plied to the bit at the bottom of the well, is important for the study to evaluate the possibility

of implementing a code that can achieve a good prediction of the DWOB parameter using only

surface measurements. As the last objective highlights, different machine learning techniques

will be implemented for ROP modeling, to define the best algorithm based on the available in-

formation.

1.3 Methodology

The base of this study is coding and for such purpose Jupyter Notebook [8] will be the applica-

tion of choice as it is user friendly, handles the selected programming language Python [9] and

allows to set an appropriate environment to develop the study. Python [9] has gained a lot of

adepts during these last years, as it is easy to learn and apply since previous programming expe-

rience is not required. Several packages were used to set the proper programming environment,

the list of them is located in the Appendix A.

The most important item to successfully develop the study is to have an appropriate data

set, the selected well or wells must contain among other things: sensor measurements of the
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selected variables, a sufficient quantity of observations and consistent data along the trajectory

of the well, to enable us to run Machine Learning models. Obtaining such data set is not an easy

task, this is where data analysis techniques come into play, to fill data gaps, remove noises, and

correct faulty measurements. These techniques will be explained in Chapter 3.

To solve one of the most important objectives of this study, a Python [9] code will be im-

plemented to determine DWOB from surface measurements, based on the method proposed by

Hareland et al. [10]. Once the well data is cleaned, the hook load measurement will be corrected

taking into consideration some effects that will be further discussed. The corrected hook load

represents the real weight of the string, based on T&D calculations (Johancsik et al. [11] model)

a WOB value will be calculated for the corresponding hook load. To validate the results of such

code, Halliburton’s WellPlan [12] program will be used. This process will be fully explained in

Chapters 4 and 5.

The final part of the study consists of the evaluation of different Machine Learning tech-

niques, to identify the model that provides the best ROP predictions, the evaluated models and

the inputs are presented in Chapter 6. The results should demonstrate the ability of the code to

successfully recreate the DWOB values, comparing them to the sensor measured ones. The ML

model that provides the best results will be evaluated separately, using different sets of data that

include the SWOB and the calculated DWOB, the complete information about this process is

located in Chapter 7.



Chapter 2

Literature Review

2.1 Drilling Operations (Equipment and Tools)

To properly understand the study, it is necessary to give a brief but clear explanation of the

elements involved in drilling a well, but most importantly, how these elements are related to

the calculations proposed in this work. For this purpose, this section will be divided into the

following sub-sections:

• Drilling Rig Elements - Surface.

• Downhole Elements.

This section will not explain the drilling process, extensive literature can be found on this

particular subject as the one presented by Mitchell et al. [13], but will focus on understanding

how each element (Surface and Downhole) is connected to give us a value that will be used in

calculations and also to make sense of the results of this study.

2.1.1 Drilling Rig Elements - Surface

The surface elements involved in drilling operations are, among others:

• Hoisting System.

• Rotating Equipment.

5



6 CHAPTER 2. LITERATURE REVIEW

• Sand Control and Mud-Gas Separators.

• Blowout Preventers.

• Circulating System.

• Power System.

From the elements listed above we will focus on the Hoisting, Rotating Equipment, and the

Circulating Systems; since the measurement of the parameters involved in them, will provide

us numerical values necessary to determine the ROP.

Hoisting System

The Hoisting System supports the weight of the pipe during the different drilling operations,

depending on the situation, it is necessary to lower or raise the pipe. The principal elements in

this system are:

• Derrick

• Crown Block

• Traveling Block.

• Drilling Line.

• Drawworks.

During the different drilling phase operations, the drill string will be hanging from the trav-

eling block, either by elevators or connected to the Top Drive. The weight of the drill string and

the traveling block is transmitted to the derrick by the drilling line through a series of sheaves.

To clarify this concept we refer to Figure 2.1, where the block and tackle scheme described by

Bourgoyne et al. [1].

In the previously mentioned Figure 2.1, an element that will play an important role in the

study is presented; the cell load. The cell’s function is to record the weight of the drill string,
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the position that is located (deadline anchor) is an industry-standard. As the wells drilled got

more complicated and uncertainties about the real weight of the string were faced, sensors

were placed closest to the source of the measurement; above the traveling block and below Top

Drive’s Saver Sub at the top of the drill string as the one present by Wu et al. [14]. A difference

in measurements exists depending on the position of the sensors is a topic that will be explained

in Chapter 4. The reason for such attempts to get better approximations of the drill string weight

is related to the fact that the WOB is determined indirectly from the measured weight of the drill

string.

Figure 2.1: Block and Tackle Schematic, taken from [1]

Rotating System

Nowadays, the industry standard for this system in the drilling rigs is the use of Top Drive,

which replaced the old Rotary Table technology. Major advantages came from the utilization

of this technology, such as fewer connections required (drilling complete 3 joints stands), back-

reaming, easier to connect to the drill string and resume circulation.

From the Rotating System, it is possible to obtain two measurements that are used in most of

ROP models. The rate of rotation of the string per minute (RPM) and torque, which is defined

by Johancsik et al. [11] as "the moment required to rotate the pipe".
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Circulating System

The mud circulating system is composed primarily by mud pumps, flow lines, standpipe, mud

hoses, drill string, bit nozzles, mud pits, surface mud processing and preparation equipment.

This system provides us two measurements commonly used in ROP models: the flow rate

and the standpipe pressure. The first measurement is determined indirectly by the number of

strokes of the mud pump, its efficiency and piston diameter, or directly by flowmeters located

before the standpipe. The second measurement is the total pressure loss inside surface installa-

tions, drill string (Drill Pipe, BHA, Bit), and the well annulus.

2.1.2 Downhole Elements

It is no secret the importance of the development of downhole measurement technology. Since

then, it has been a reliable source of information to make decisions on the well site. Due to

rate transmission limitations, mud pulse-based MWD systems decelerated the development of

downhole drilling real-time applications. This changed after the introduction of Wired Drill

Pipe (WDP), a technology that allowed an exponential increase of capability in data transmis-

sion rate.

According to Lesso et al. [15] "WDP allows data to flow at approximately 10,000 times the

rate of fast mud telemetry", this allowed much-needed improvements in real-time data analy-

sis to be implemented in areas as petrophysical properties, drill string positioning, directional

drilling control, and drilling mechanics and dynamics. For this study, we will turn our focus on

the drilling mechanics and dynamics area.

Drilling mechanics, in this context, refers primarily to the study of torque & drag, drilling

hydraulics and vibrations, and the ability of successfully transmitting downhole information

with high transmission rates allowed measurements of DWOB, downhole torque (DTQ) and

drill string vibrations measurements to be compared with models developed for such purpose,

and evaluate the reasons associated with any possible discrepancy.
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Pink et al. [16] developed a fully automated closed-loop drilling system that used WDP

technology. The aim during the drilling phase is to increase the ROP as safely as possible, the

use of WDP provides the possibility to retrieve information that could help to avoid damage to

the drilling tools caused by downhole vibrations, bit whirl, and stick-slip; well control infor-

mation (Equivalent Circulating Density - ECD) and drilling parameters DWOB and DTQ. As

part of the DWOB controller system proposed in this paper, it is stated that there is a difference

between the values of SWOB and DWOB and that a specific ROP is dependent on this DWOB,

for this purpose once DWOB is measured this information is processed and a SWOB value is

suggested to achieve the desired DWOB and therefore the aimed ROP.

2.2 ROP Traditional Models

The present section aims to introduce some of the most widely used ROP traditional models.

Some of the parameters mentioned in the previous section and the way they interact in ROP

estimation it is still partially unknown and has proven to be a complex problem [13]. Mathe-

matical models have been developed based on industry knowledge and regression techniques.

The principal objective of such work is to reduce the overall cost of drilling project by improv-

ing the drilling operations.

From this section, we will get an insight into the parameters that most of the ROP models

consider relevant for such purpose. First major studies were developed in the 1950s and part

of the 1960s, empirical relationships from ROP to WOB and RPM (R-W-N models) were de-

veloped [17]. It is important to mention that usually the models are designed to work either

for Roller-Cone Bits or Fixed-Cutter Bits. The first model to be analyzed is the Equation 2.1

proposed by Bingham (1964) found in [1].

R = K

(
W

db

)a5
∗N (2.1)

Where:

K = Constant of proportionality.
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W = Bit Weight or WOB.

db = Bit diameter.

a5 = Bit weight exponent.

N = Rotary speed or RPM.

In this equation, the results are highly dependent on the value of a5, but the determination

of such exponent is not an easy task, as it requires relatively constant values of N and W for a

certain lithology and a formation change could be experienced before the test is completed [1].

This model can work independently of the type of drilling bit chosen.

An ROP model widely accepted was presented by Bourgoyne et al. [18], it was an impor-

tant step forward from the previously mentioned R-W-N models. It proposed the use of eight

functions to model the effect of the most important phenomena during drilling, and it is defined

by Equation 2.2 [1].

R = (f1) (f2) (f3) ... (fn) (2.2)

Where:

f1 = e2.303∗a1 = Ks

f2 = e2.303∗a2∗(10,000−D)

f3 = e2.303∗a3∗D
0.69∗(gp−9.0)

f4 = e2.303∗a4∗D∗(gp−ρc)
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f5 =


(
W
db

)
−
(
W
db

)
t

4−
(
W
db

)
t

a5

f6 =

(
N

60

)a6

f7 = e−a7∗h

f8 =

(
Fj

1, 000

)a8

Each one of these functional variables is defined by specific values, such as: D true vertical

depth (ft), gp pore pressure gradient (lbm/gal), ρc equivalent circulating density(psi),
(
W
db

)
t

threshold bit weight per inch of bit diameter at which the bit begins to drill (1, 000lbf/in), h

fractional tooth dullness, Fj hydraulic impact force beneath the bit (lbf ) and eight constants a1-

a8 that are to be chosen depending on local drilling conditions. Even if this model was designed

for Roller-Cone Bits, in recent years it has been applied for wells drilled with PDC bits [19].

As observed this is a complete model, but for most cases, it is difficult to have available all the

parameters required as inputs to successfully applying it.

The end of this section will cover a more recent development presented by Motahhari et al.

[20], this ROP model is designed for PDC bits. The ROP for a PDC bit in perfect bit cleaning

conditions is defined by Equation 2.3:

R = Wf

(
G ∗RPMt

γ ∗WOBα

Db ∗ S

)
(2.3)

Where:

Wf = Wear function.

G = Coefficient defined by the bit geometry, cutter size and design.
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RPMt = Rotary speed or RPM.

WOB = Bit Weight or WOB.

Db = Bit diameter.

S = Confined rock strength.

α, γ = ROP model exponents.

Wf = kwf

(
WOB

Nc

)ρ
∗ 1

Sτ ∗ Aρ+1
W

(2.4)

Equation 2.4 presents the relation that estimates the wear function Wf . Where AW defines

PDC cutter characteristics which are a function of wear, it is important to note that wear of

bit can only be measured after the arrangement has been pulled out of the whole using IADC

(International Association of Drilling Contractors) dull grading, so for most cases, this value

needs to be estimated by a constant degradation factor as a function of depth. Nc is the number

of cutters on the bit face, kwf is the wear function constant, ρ and τ are wear function exponents.

The application of this model is highly dependent on the value of Wf , which is difficult to

implement as it has shown to introduce various fitting parameters [17].

2.3 ROP Data Driven Models

Data-driven modeling successful application in different industries have caused an increasing

interest in the subject from the Oil & Gas Industry and is regarded as the future of the segment

due to its potential for optimizing drilling operations [21].

Different Machine Learning models can be applied but it is important to understand that

there is no universal solution, each well and its data should be analyzed independently. As

observed in the previous section, optimizing ROP goes beyond determining the optimum com-

bination of WOB and RPM it includes a complex correlation with a multitude of different

attributes [22].

Barbosa et. al. [5] defined that after reviewing 53 papers related to ML for ROP prediction,
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five methods are applied consistently. Based on this information, the two most widely used

will be explained: Ensemble Methods and Artificial Neural Networks (ANN). Additionally, a

branch of neural networks that takes advantage of the sequential essence of the input, called

Recurrent Neural Networks (RNN) [4] will be analyzed as well, as per the literature review this

kind of models has not been studied broadly by the industry for ROP modeling.

2.3.1 Ensemble Methods

As defined by Géron et al. [3] "a group of predictors is called a ensemble... and an Ensemble

Learning Algorithm is called an Ensemble method". The principle behind Ensemble Learning

is that the aggregation of different low-performance predictors may end up with a better predic-

tion that a single "good" predictor.

The type of base learners used will define the classification of the ensemble model. When

all learners in the ensemble belong to the same type, it can be defined to be as homogeneous,

otherwise, if there are different learners it is called a heterogeneous ensemble. One type of

homogeneous ensemble can be based on Decision Trees (DT) used to get a single result from

the different possibilities provided by each tree. This ensemble is popularly known as Random

Forest (RF), which is a powerful Machine Learning algorithm, also in this category using the

same base of learners are the Gradient Boosting Machines (GBM).

One of the unwritten ML "best practices", is that there is no reason for using complex

models when simple models can do the work. As mentioned RF is regarded as one of the

most powerful ML algorithms and its implementation is not complicated. In this study, several

different ML algorithms were tested and in some scenarios, the best results were obtained by

RF and K-Nearest Neighbors (KNN, which falls out of the ensemble category).

Random Forest

As mentioned earlier the aggregation of the results of a group of Decision Trees is called a Ran-

dom Forest, this method was introduced by Breiman [23]. Therefore, to understand a random
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forest is necessary to understand how a DT works. Decision trees use a step-wise process to

define to which category something belongs, in DT we start at the top of the tree and descend

selecting a path based on characteristics or features of what we are analyzing, the decision is

based between two options, as we get to the bottom of the DT we will have an outcome.

As interest in RF increased because they are easy to implement and have good performance,

Biau [24] presented a complete mathematical analysis of the RF scheme proposed by Breiman

[23], here the structure of such model is analyzed and explained. But, what does all of this

mathematical equations mean?, as explained by Sagi et al. [25] "randomness is injected into

the decision tree inducers using two randomization processes. . . training each tree on a dif-

ferent sample of instances and. . . the inducer randomly samples a subset of the attributes and

chooses the best split among them.".

Han et al. [26] evaluated the performance of this architecture compared to the other that

have been increasingly used such as ANNs and SVMs, he found that RF demonstrated excellent

results for classification accuracy, stability, and robustness to features when there is not enough

data available. To get the best results of this and all ML algorithms it is important to know which

hyperparameters contain such a model, more on how the RF regressor model was implemented

will be explained in Chapter 6 including hyperparameter tuning process.

2.3.2 Artificial Neural Networks (ANN)

As defined by Moolayil [2] "a neural network is a hierarchical organization of neurons (similar

to the neurons in the brain) with connections to other neurons", ANNs are the principal element

used in Deep Learning, mainly because they are powerful, and ductile which makes them ideal

to solve highly complex ML problems.

Contrary to what many believe, this is not a new concept, it was originated in the early 1940s

and was proposed by Warren McCulloch [27]. This idea was explored until the 1960s, but due

to lack of expected progress, it was abandoned. In the 1980s this concept was retaken, but due to
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slow improvements and the appearance of Support Vector Machines (SVM) this technique was

left behind. Even though it was abandoned before, nowadays, with large quantities of data and

improved computational power, it has proven to be a reliable tool for solving different problems

[3]. In Figure 2.2 we can observe a representation of a basic Neural Network proposed by

Moolayil [2]:

Figure 2.2: Basic Neural Network, taken from [2]

As observed in the previous image: the input data is fed to each neuron in the first hidden

layer, the output of these neurons generates input for the neurons in the second hidden layer,

and the result of each neuron goes to the output layer. When neurons in a layer have this type

of behavior is called a "fully connected" or "dense layer" [3]. To further understand this subject

Géron et al. [3] presents Equation 2.5 that calculates the output for an ANN layer:

hW,b (X) = φ (WX + b) (2.5)

Where:

X = Represent the matrix of input features.

W = The weight matrix, contains the connections weights.

b = The bias vector, contains connection weights between the bias and the artificial neurons.

φ = Activation function.
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Referring to the perceptrons training process; each one of them receives data for each data

point at a given time, once they make a prediction, assuming that this one is wrong, will cause

that the connection between this neuron and a previous one that would have had a better pre-

diction in terms of accuracy strengthens. Equation 2.6 [3] present the mathematical expression

behind this behavior.

w
(nextstep)
i,j = wi,j + η (yj − ŷj)xi (2.6)

Where:

wi,j = Connection between the input and output neurons.

xi = Input value of current training instance.

ŷj = Output of the output neuron for the current training instance.

yj = Target output of the output neuron for the current training instance.

η = Learning rate.

Nevertheless, with this architecture, perceptrons do not behave in a way that could allow

us to solve the complex problems that we need. It was observed that stacking up perceptrons

delivered better results and it is known as a Multi-Layer Perceptron (MLP). In this type of

architecture, all the layers (except the output) include a bias neuron (Figure 2.3).

Figure 2.3: Multi-Layer Perceptron, taken from [3]



2.3. ROP DATA DRIVEN MODELS 17

Such architecture is widely used for ROP prediction, Amer et al. [28] proposed the utiliza-

tion of an MLP architecture in combination with a back-propagation (BP) training algorithm,

this algorithm can identify how to change the weights and bias in each connection to reduce

the error. Another example of the application of this architecture was presented by Moran et

al. [29], in this case, the model was implemented to predict both ROP and Bit Wear, with good

results.

In both cases the architecture consisted of only one layer but implemented with a different

number of neurons (this depends on the number of inputs), meaning that we cannot say these

models fall into the category of "Deep Learning"(DL), an example of this kind of DL model

with BP applied for ROP prediction, was presented by Han et al. [30], in this case, the model

consisted of three hidden layers with 56, 47 and 32 neurons, respectively.

The natural question after viewing these examples is, Do more layers or neurons are trans-

lated to better results?, the short answer is, not necessarily. Each well data is different and

the implementation method depends highly on the person developing the model. For example,

Amer et al. [28] reported results for correlation coefficient (R2) between 0.78 and 0.99 for

different wells, Moran et al.[29] reportedR2 value of 0.9872, and Han et al. [30] reported a per-

centage error of 14%. In all cases, the results could be considered acceptable, but as mentioned

the architecture presented by the latter is considered to be more complex to design and apply.

This will be further explored in Chapter 6.

2.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN), are also known as "sequence models" because they use

sequential information, the deep neural network previously analyzed assumes that there is no

relationship between two training samples [2]. Another advantage of RNNs is that they can

work on sequences of arbitrary lengths [3], while ANNs works with predetermined input size.

Time series data (or for some drilling application, depth series data), have a dependence on past

data.
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As described by Gulli et al. [4] "RNN cells incorporate this dependence by having a hidden

state or memory, that holds the essence of what has been seen so far". The value of the hidden

state (Equation 2.7) presented by Gulli et al. [4], defines the value of it at any point and shows

that have a dependency on the value of the hidden state at a previous time, and also the input at

the current time.

ht = φ (ht−1, xt) (2.7)

Where, φ is the activation function of the cell, ht and ht−1 are the values of the hidden states

at present and previous time, xt is the value of the input at present time. This equation can be

modified depending on the size of the time-step desired for the model and is another advantage

of RNNs since this means that this model can handle long sequences.

Figure 2.4: Recurrent neural neuron unrolled through time, taken from [3].

An RNN can be defined as a neural network with memory [2], to further explain this con-

cept, if we look at the simplest RNN presented in Figure 2.4 which is a self-feeding neuron.

This Figure is the graphical representation of what was presented in Equation 2.7, at each time

step, the RNN receive an input for this specific time as well as the output of the previous time

step.

The output of an RNN at a time (t) depends on the inputs for a time (t-1) up to the time

(t-n), the part of a neural network that preserves the information from previous steps is called
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a memory cell [3]. Based on this, a simple recurrent neuron is capable of learning only short

patterns, there are more complex structures that will be analyzed further in this section.

Conventional RNNs have a problem of vanishing and exploding gradients, meaning that,

when working with a deep RNN network, a Gradient Descent weight update may generate an

increase in the outputs each time and therefore after some steps, it will increase considerably,

and possibly explode. Another issue for regular RNNs is that after data goes through them,

some information is lost and after some time the model may lose the sense of the original inputs

[3]. To solve this problem long-term memory models have been developed, the most popular

model is the Long Short Term Memory (LSTM), which is the one used in this study.

Long Short Term Memory Cells

LSTMs proposed by Hochreiter et al. [31] offer a solution for the previously discussed issues

of regular RNN, this variant of RNN is capable of learning long term dependencies in the data

[4]. Figure 2.5 presents the architecture of a LSTM cell. Regardless of looking like a regular

cell, two vectors at the output represent the essence of this model, c(t) (long-term state) and h(t)

(short-term state).

Figure 2.5: Long Short Term Memory cell, taken from [4].
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The lines crossing c(t) and h(t), represent the cell and hidden state respectively, the i, f, o and

g gates work with the mechanism that allows LSTM to solve the vanishing gradient problem.

The four connected layers use h(t−1) and x(t) as inputs, which are the short term state at a

previous time and input vector, respectively. The most important layer is the one that outputs

g(t), as its processes both x(t) and h(t−1), the output goes straight to the results of this cell. The

other three layers are gate controllers where; f is the forget gate, i the input gate and o the output

gate.

As defined by Géron et al. [3] "an LSTM cell can learn to recognize an important input...

store it in the long-term state, preserve it for as long as it is needed (that’s the role of the for-

get gate), and extract it whenever it is needed". Hence, the good performance of LSTM when

working with long-term patterns.

In the O&G industry, more specifically in drilling, this kind of approach has not been studied

in-depth, by the date of this publication only a handful of papers evaluating the use of this model

for ROP prediction have been written. For example, Han et al. [30] used the LSTM model to

increase the accuracy of an ROP predictive model that initially was developed using ANNs, the

error of the model was reduced from 14% to 7% using the LSTM model.

2.3.4 Regression Metrics

Up until now, different ML methods have been discussed. But, how to evaluate the performance

of the algorithms?, the regression models that we have mentioned learn to predict numeric val-

ues. In our context, they will predict the ROP value for a given combination of parameters based

on previously learned information.

There are several "metrics" available to measure regression performance, in this study two

metrics were used to evaluate the results: Coefficient of Determination (R2) and Mean Absolute

Error (MAE). Now we will provide a brief introduction about how these methods evaluate the

performance of our regressors.
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Coefficient of Determination (R2)

As described by Smith [32], (R2) Equation 2.8, compares the sum of squared prediction error

to the sum of squared deviations of Y about its mean:

R2 =

∑nsamples
i=1 (yi − ŷ)2∑nsamples
i=1 (yi − ȳ)2

(2.8)

Mean Absolute Error

The MAE is, as defined by Bonnin [33] "a risk metric corresponding to the expected value of

the absolute error loss, or l1-norm loss. If ŷi is the predicted value of the ith sample, and yi is

the corresponding true value". The MAE Equation 2.9, estimated over a n number of samples

is defined by:

MAE (y, ŷ) =
1

nsamples

nsamples−1∑
i=0

| yi − ŷi | (2.9)

2.4 The Importance of Selecting the Correct Inputs

Besides the Bingham ROP model (Equation 2.1) which requires only a few numbers of inputs,

other ROP physics-based models like Bourgoyne and Young (Equation 2.2) and Motahhari et.

al. (Equation 2.3) are dependent of a high number of inputs, much of them are hard to obtain

and need to be estimated; this causes in some cases problems to accurately predict ROP. As the

aim of this study is to successfully implement and ROP prediction ML algorithm, is important

to ask, how many inputs are necessary for an ML algorithm to work properly?. This section will

address this subject to get a good start-base for the selection of features for our ML algorithms.

Depending on the availability of sensors, the number of measurements, and the configura-

tion of the surface/downhole equipment, a large number of measurements can be stored. This

study will evaluate different ML algorithms and test their efficiency. To start this analysis, in the

study presented by Barbosa et al. [5] (Figure 2.6) shows that from 53 different works analyzed,

10 reported the use of three or four inputs, 12 works used five or six inputs, also 12 works used
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seven or eight inputs. Considering that 5 works did not report the number of input data for

their models, we get that almost 70% of the studies worked with less than nine inputs for their

respective models.

Figure 2.6: Amount of inputs employed to feed ROP data-driven models. Reprinted from Journal of Petroleum
Science and Engineering, Vol 183, [5], Page 9, Copyright (2019), with permission from Elsevier.

This provides an interesting statistic to select the number of inputs, and to understand why

even though a large number of possible inputs are available most researchers prefer to select

just a number of them. For example, in the case of ANN’s as described by Amer et al. [28]

"the performance of the neural network is negatively affected by increasing the number of input

parameters".

Figure 2.7: Frequency of inputs employed to feed ROP data-driven models, considering 43 from all 53 reviewed
works. Reprinted from Journal of Petroleum Science and Engineering, Vol 183, [5], Page 10, Copy-
right (2019), with permission from Elsevier.
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Now that an approximate number of the optimum inputs for an ML algorithm has been

defined, it is necessary to identify which parameters are to be considered. For this, the study

presented by Barbosa et al. [5], shows that, for the same 53 works analyzed, 43 were taken into

account for the results presented in Figure 2.7.

The results show, that like most of the physics-based models WOB or DWOB and RPM are

the most used parameters as they were inputs in 41 of the 43 reviewed works, we will further

investigate if the use of DWOB represent an improvement in the results since this is the real

value of the force applied by the bit at the bottom of the hole, or if that ML algorithms can

achieve a good prediction of ROP using SWOB. For this study, we had available most of the in-

formation presented in Figure 2.7, except the UCS and bit tooth wear. Therefore, this available

information will be used as inputs for our different ML models.



Chapter 3

Database Analysis

3.1 Volve Data set

In 2018 Equinor, together with the partners in the Volve field decided to make public all the

downhole and production data from the field [34]. The information can be located at the

Equinor’s web page and is available for access for research purposes, we will briefly describe

the Volve field and the work at the University of Stavanger (UiS) that pre-processed the infor-

mation for the student’s research works.

3.1.1 Volve Field

The Volve field is located in the central part of the North Sea, with water depths of around 80

meters. The field was discovered in 1993, but the development was approved in 2005. The

field started production in 2008 [35] from the Maersk Inspirer jack-up rig. The oil produced

from the field was stored and shipped to export from the Navion Saga FSO, the gas was piped

to the Sleipner A platform. According to Equinor [36] "Volve reached a recovery rate of 54%

and in March 2016 the license decided to shut down its production permanently". The plateau

production of Volve was around 56,000 barrels per day and the total recovered oil production

was 63 million barrels.

24
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3.1.2 UiS Work with Volve Data Set

The information used in this study is part of Equinors’ Volve data set, but it was pre-processed

by Andrzej Tunkiel from the University of Stavanger and can be located at Volve Field Data

Link this page contains real-time drilling data, either in a set of time-based or depth-based data.

The information was downloaded in a comma-separated value (csv) format archive, so the han-

dling and selection of the most appropriate well to execute this study was easier.

Complementary information about the well selected (15/9-F-5) like bottom hole assemblies,

fluid properties, well trajectory, and well geometry was also provided by the University and

is available in Volve Wells App Link this web page was developed by Nagy [37]. Besides

the possibility of extracting the information from the wells, there are interactive tools such as

depth-days curves, well trajectory, geothermal gradient, and many more.

3.2 Data Analysis

As mentioned the data used in this study was pre-processed, but only to make it organized and

accessible. The selected well contained raw data and different issues that will be assessed and

explained in this Chapter, for this purpose we will first run an exploratory analysis to evaluate

the quality and the quantity of the data, coding work was done using Python [9] and the Pandas

library [38]. Then, it is necessary to select an appropriate section of the information and apply

different data cleaning techniques to prepare it for normalization. The normalized data will be

fed to different ML algorithms, therefore it needs to be clean and consistent.

3.2.1 Importing and Visualizing the Data

The first step into the exploratory analysis of data is importing and visualizing the data. In the

data set for well 15/9-F-5, 201 different features were available, it is important to select the

most relevant features. Based on the principles shown in the previous chapter, twelve features

were selected, the next step is to verify if the selected parameters are stored in the correct data

type (integer, float, Python object, etc.). Table 3.1 presents the features selected to work on this

http://www.ux.uis.no/~atunkiel/file_list.html
http://www.ux.uis.no/~atunkiel/file_list.html
https://volve.herokuapp.com/
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study, the features have the appropriate units "float64" for the measurements and "object" for

the time. Only two downhole parameters are selected for its relevance in this work, Downhole

Weight on Bit (DWOB) and Downhole Torque (DTQ).

Number Feature Units Data Type
1 Time seconds object
2 Bit Depth (MD) meters float64

3 On Bottom Status
dimension-

less
float64

4 Weight on Bit tonnes float64
5 Average Hookload tonnes float64
6 Average Surface Torque kN-m float64
7 MWD Downhole WOB tonnes float64
8 MWD Downhole Torque kN-m float64
9 Average Rotary Speed rpm float64
10 Mud Flow In L/min float64

11
Average Standpipe

Pressure
kPa float64

12 Rate of Penetration m/h float64

Table 3.1: Features selected from well 15/9-F-5

After the selection of the features an exploratory analysis of the information is needed, there

are various techniques for this purpose; the first that we will analyze is the histogram plot pre-

sented in Figure 3.1, in the x axis is located the range of value of each feature and in the y axis

the number of data points that have such value. From evaluating the plots presented in the raw

data, the presence of outliers is evident and they need to be removed. For example, some neg-

ative value measurements in the Average Hookload, DWOB, DTQ, Standpipe Pressure (SPP),

and Surface Torque.

Another widely used tool for data visualization is the heat map, which shows the correlation

between variables. This is particularly useful in this case since it is necessary to analyze many

variables and determine how they relate to the ROP. Figure 3.2 presents the heat map for the

selected data, in this plot, the diagonal set of squares going from top left to bottom right are in

the darkest color, this represents the intersection between same variables. Numerically, this will

represent a Pearson correlation coefficient of one, which is the maximum value, the intensity of

the color will decay depending on the correlation level between variables.
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Figure 3.1: Histogram, raw data of features selected.

In this case, the complete data set of the well is analyzed, so it is required to identify appro-

priate sections of the well to work with. As observed in Figures 3.1 and 3.2, there is information

from the parameters that need to be investigated, but it is imperative to ensure that the data is

stored in an appropriate sequential manner with no missing values.

Figure 3.2: Heatmap, raw data of features selected.
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3.2.2 Data Selection

It was observed that the data set contained relevant information for the development of this

study. Now the job is to select parts from the data that contains (preferably) no missing values.

First, by reading the daily drilling reports, it was identified that from the different well sections,

the 12 1/4 inch section contained most of the relevant information for this study. After this

step, an investigation about the data contained per depth was run and the results are presented

in Figure 3.3.

Figure 3.3: Comparative plot of DWOB, SWOB and Hookload data.

It is evident that there is a lot of information contained in this particular well section, the

reason behind this is that all different drilling operations (e.g., drilling, tripping, casing running,

etc.) are held within the same depths. Therefore, it is necessary to use other filtering techniques

(besides depth-based selection) to extract information that could be used in this study.

3.2.3 Time Based Selection

After reviewing the daily drilling reports it was determined that the 12 1/4 inch section was

drilled between the 14-07-2008 and 21-07-2018. As showed in Table 3.1 the first feature se-

lected for this work was "Time", this allowed to investigate the data contained in this period.

Figure 3.4 shows the distribution of data points for the DWOB measurement stored during the

mentioned time, and also the corresponding depth. Why this is important?, it is important be-
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cause this allowed to see that the selected data that was generated during the drilling operations

and removes most of the additional data points that correspond to complementary operations.

Figure 3.4: Time selected drilling data, Bith Depth and DWOB.

Besides the use of a time-based selection of information, that reduced the number of data

points not related to drilling operations, another feature that serves this purpose was selected.

The "On Bottom Status" feature that has two pre-set dimensionless values, ’0’ when the bit is

on-bottom and ’1’ when the bit is off-bottom, as the aim of the study is to analyze only drilling-

related data, an additional filtering process using this feature was applied. The results of this

filtering process can be observed in Figure 3.5.

3.3 Data Cleaning

After the process of "downsampling" the information, it is necessary to improve the quality of

the data to make it ready for the two analyses to be made, DWOB estimation from surface mea-

surements and ML ROP prediction algorithm. In the following subsections, the three principal

problems faced while working with this data set will be presented.
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Figure 3.5: Comparative plot of DWOB, SWOB and Hookload data after "Time" and "On Bottom Status" filtering.

3.3.1 Missing Values Handling

The data did not contain duplicated values, but as a good practice, the eliminate duplicates

command was executed before entering the missing value handling. Missing measurements in

any cell are presented in the data set as a NaN (Not a Number) value. There are two ways

of handling such cases: eliminate the whole row or fill the missing information. Depending

on the size of the data set, one could argue whether to follow either option. For the data set

used in this study, eliminating the whole row was not an option since it could potentially delete

relevant information from other measurements. Therefore, it was necessary to fill the missing

data; for this purpose, two common techniques can be used: interpolation or filling the missing

value with the last known value. Both techniques were evaluated, and the interpolation method

provided the best results due to the ever-changing behavior of the features studied.

Different interpolation techniques can be used for estimating missing values, for example,

linear, quadratic, and cubic interpolation [39]. The linear interpolation is the simplest technique

since it connects two data points with a straight line, the interpolation function is defined by

Equation 3.1. Where b0 is the intercept and b1 is the slope of the line.

f1 (x) = b0 + b1 (x− x0) (3.1)



3.3. DATA CLEANING 31

Figure 3.6: Comparative plot of DWOB, SWOB and Hookload data after interpolation.

It is also possible to use a quadratic or cubic interpolation, this depends on the distribution of

the data to which it will be applied. In this case, after evaluating the three different possibilities,

linear interpolation was selected as the best option, the results of this work are presented in

Figure 3.6. It is also worth mentioning that the section of the well to be used for this study was

reduced from 1400-2900m to 1900-2400m for various reasons, for example, gaps between data

points in the neglected sections of the well were considerable; and as observed in the figure

above for the hook load measurement after 2200m, inconsistent data was seen not only in this

sensor but also in others less relevant for this work.

3.3.2 Faulty Measurements Handling

To visualize the "faulty" behavior of the hook load measurement previously described, Figure

3.7 presents a single plot of this sensor recordings. As mentioned, the hook load measurement

after 2200m has an inconsistent behavior. "Why is inconsistent?", because as the well goes

deeper more pipe is introduced to it, and the weight of the drill string should increase, but in

this particular case, there is a sudden drop in the weight of the string.

There are several possible reasons behind this behavior, e.g., change in density of the mud,

change in flow rate, pack-off, sensor failure, etc. These possibilities were investigated, in the

case of the mud density and flowrate, as found in the well reports, were constant throughout this
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500 meters drilled section. The pack-off scenario was quickly discarded as it was not reported,

and also the depth of the well increases as the operation continued seamlessly. This leaves us

with the faulty sensor explanation for such behavior.

Figure 3.7: Hookload vs Depth plot before correction.

"How can we fix this error in the data?", for this kind of problem and in situations where two

or more sensors are measuring one parameter, or whether this parameter can be both measured

and calculated, data assimilation is a useful tool that could provide us a good estimation of the

real value. The least-squares method assumes that if each data set shows the same distribution,

it can be defined by its mean and standard deviation σ1 and σ2. If there is proven independence

between the measurements that we will call x1 and x2 and estimator x̂ [40], based on these

measurements Equation 3.2 can be written as:

x̂ = a1x1 + a2x2 (3.2)

Where,

a1 + a2 = 1
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In this case, as the precision of the other measurements is added, higher precision than any

single measurement is expected. But, how can we apply this in our context?, as shown in Figure

3.7 the behavior of the hook load is far from being constant, now we need to understand how

this value is decomposed. In drilling operations the hook load value is equal to the weight of the

drill string minus the WOB, therefore, to determine the weight of the drill string is necessary

to add the value of the hook load plus the WOB, only after this a constant weight increment is

visible. In this case, the available value is the WOB, and for calculating the missing hook load

values, two independent signals were used. Halliburton’s Wellplan [12] and an implemented

Torque & Drag code based on Johancsik model [11].

Figure 3.8: Hookload vs Depth comparison plot before-after correction.
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The results of this process are presented in Figure 3.8 (green line), is evident that these

outputs diverge from the original hook load values (blue line) starting at approximately 2120

meters. The corrected hook load values will replace the original values in the data set.

3.3.3 Outlier Removal

Before feeding any ML model, pre-processing and cleaning of the data is necessary. There is

a direct correlation between the results of any model and the quality of the data. The final step

for this process is to remove the outliers, initially, when they are easily identifiable it can be

done manually after this step is necessary to use more advanced techniques. In this study, two

different methods were evaluated: Interquartile Range (IQR) and Moving Average Filter.

Interquartile Range (IQR)

This method is particularly good to remove outliers that are located far away from the observa-

tion point, one issue to consider when working with IQR (Equation 3.3) is that is very aggressive

when removing outliers, for this cause sometimes relevant information could be eliminated. As

described by Deep [41], the way to calculate and therefore remove outliers is given by:

IQR = P75 − P25 (3.3)

Where,

LowerRange = P25 − 1.5 ∗ IQR (3.4)

UpperRange = P75 + 1.5 ∗ IQR (3.5)

Any data value that lies outside the range defined by Equations 3.4 and 3.5, which are a

function of P25 and P75 (that represent the 25th and 75th percentile of data points, respectively)

is identified as an outlier. The results of IQR outlier removal from the data set are presented in

Figure 3.9, where is visible that some data points have been eliminated and sharp "interpolation"

lines connected the data. This data still needs further treatment, as it contains visible noise.
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Figure 3.9: Plot of parameters after IQR.

Moving Average Filter

The moving average filter is a low-pass filter that is commonly used for smoothing data signals.

It is highly dependent on the number of samples that will be fed at a given time since it takes

the average of the number of samples and produces a single output point. As defined by Sui

[42], the model is given by

y (t) =
1

n

(
x(t−n+1) + x(t−n+2) + ....+ x(t)

)
(3.6)

Where, x(t) is the sample at the t time and n the number of samples. With the Fourier transform:

x (t− k) F
←→
X (jω) e−jkω (3.7)
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the previous equation is converted to the one in frequency domain as:

Y (jω) =
1

n
X (jω)

(
e−jω(n−1) + ...+ e−jω + 1

)
(3.8)

Finally the transfer function becomes:

H (jω) =
1− e−jωn

n (1− e−jω)
(3.9)

An important concept to understand is that with a higher value of n, more noises with high

frequencies will be stopped, but also, the delay effect becomes larger. The data cleaned with the

IQR was used as an input for this filter, different values of n were used evaluating the effects of

delay and also smoothing the curves, as with the IQR the objective is to eliminate the outliers

but at the same time avoid missing relevant data. The results of the use of this filter in the data

are presented in Figure 3.10.

Figure 3.10: Plot of parameters after moving average filter.
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3.4 Feature Scaling

Feature scaling is regarded as one of the most important steps, as it is known that some ML

algorithms do not perform properly when the inputs have different scales. To better describe

this issue with relation to the drilling operations, we work with different scales and units when

measuring parameters, e.g., hook load measurements vary from 126 to 137 Tonnes while WOB

measurements from 0 to 8 Tonnes, depth is measured in meters with values varying in the an-

alyzed section from 1900 to 2400 and torque measurements recorded in Kn-m with values of

15-25.

Based on the ML algorithms used in this study, the min-max scaling (often called normaliza-

tion) methodology was used. This method scales the values in a range [0,1]. To normalize a data

point, first, is necessary to subtract the minimum value in the data set and then divide this value

by the difference between the maximum and minimum value (Equation 3.10) [43]. For this

purpose Scikit-Learn’s [44] transformer MinMaxScaler was used, this method is particularly

useful in ANN and LSTM algorithms [3].

x(i)norm =
x(i) − xmin
xmax − xmin

(3.10)



Chapter 4

Well Effects on Hook Load

4.1 Friction in Drilling Operations

To model drilling operations, first, it is necessary to fully understand all the phenomena involved

in the drilling scenario to be analyzed. One of the most important analysis is torque and drag, as

these models aim to predict the weight of the drill string in different scenarios during operation.

Most of the models predict the weight of the string, but when compared to field measurements

often a discrepancy in results is visible, the reason behind this is in one part due to friction on

the well and the other due to load measurement issues that can be referred as Surface Friction.

As it was stated at the start of this study, one of the objectives is to evaluate the feasibility

of predicting downhole measurements, in this case, the DWOB from surface measurements, to

further use this calculated parameter in the different ML models. For this purpose, an extensive

literature review was held, and from various possibilities, considering our dataset limitations,

the model proposed by Hareland et al. [10] was identified as the best alternative. The imple-

mentation of this model will be explained in the next chapter, as we will discuss the effects that

are mentioned in such study and use different points of view from other authors as well.

38
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4.1.1 Friction in the Well

Friction in the well is caused by the interaction between the drill string and the wellbore. As

described by Samuel [45] "friction is an important source of wear and energy loss in the tubular

system, is a resistive force that retards the motion of an object.", this resistive force is seen in

the well as drag. The configuration and quality of the well play an important role in the drag

force which is also dependent on the kind of operation held if the pipe is rotating, the direction

of movement and many other factors.

When trying to predict the behavior of a drill string in the well, the accuracy of the model

relies on the use of an appropriate coefficient of friction. There are uncertainties regarding well-

bore quality and the possibility of not considering all the contributing parameters involved when

determining the coefficient of friction, this could potentially result in over or underestimation

of the calculated values. Some of these contributing factors are tight hole conditions, keyseats,

aggressive doglegs, cavings, poor hole cleaning, among others, that are associated with problem

conditions in the wellbore [11].

4.1.2 Surface Friction - Sheave Effect

As observed in Figure 2.1 (the block and tackle system), the drilling line goes from the reel to

the anchor, continues through the crown block and traveling block, and eventually ends up in

the drawworks. The weight of the drill string in this image is measured in the cell load located

on the anchor. Consequently, the weight must be transmitted through all the sheaves before

reaching this point. This system grants an easier operation of heavy loads, as it relies on the

principle of mechanical advantage [1], but it is necessary to know that there is always some

friction present in each sheave. In the past it was assumed that the whole friction loss was

caused by the fast line sheave (the sheave closest to the drawworks) [46], further developments

on the analysis of this phenomena have been presented over the years, from those, the most

relevant will be covered.
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The first approximation was presented by Bourgoyne et al. [1], which considers the use

of the principle of ideal mechanical advantage, that neglects the effect of friction present in

the sheaves. In this scenario, the tension in the drilling line is constant throughout the system,

Equation 4.1 presents this relation.

W = nFdl (4.1)

Where n is the number of lines that pass through the traveling block, Fdl is the measured

tension in the sensor and W the hook load. This approximation does not consider the effects

caused by sheave efficiency or block-movement direction.

Luke et al. [46] used another approach for this subject, as it considers different scenarios, for

example, when the hook load is lowered, the maximum tension is experienced by the deadline,

and the lowest at the fast line, this phenomenon is inversely proportional when the hook load is

hoisted. This paper presents the effects of the sheave efficiency effect on hook load and also the

possibility of either considering the deadline sheave as active or inactive, this meaning that the

friction in this last sheave is considered to be present or not. Finally, the analysis showed that

the inactive dead-line sheave model (Equation 4.2) performed the best result in predicting the

hook and derrick loads.

W = Fdl
(1− en)

(1− e)
(4.2)

Where n is the number of lines that pass through the traveling block, Fdl is the measured

tension in the sensor, e is the individual sheave efficiency, and W the hook load.

4.2 Pressure Effects

The Top Drive contains all the necessary machinery for the rotation of the drill string. Therefore,

there are several elements connected to it, starting from hydraulic, electrical lines, and the mud

hose that connects the surface circulation circuit to the well. All these elements result in an

additional force on the Top Drive, that will be recorded by the hook load sensor.
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Cayeux et al. [47] presented a complete analysis of how to calculate the effect generated

by these lines, but to apply it is necessary to know the dimensions of the drilling mast, the

longitude of the mud hose and much more information, not available in this study. Nevertheless,

a reference value of how much the impact of this load generates on the recorded hook load is

presented, the approach was to analyze the necessary WOB to drill a certain formation when

the Top Drive is at its highest position against the lowest. The results presented that, when the

Top Drive finished drilling one stand and therefore it was at its lowest position, an additional 2

tonnes, were necessary to drill the formation, compared to, when the drilling was resumed, and

the Top Drive was at its highest position.

4.2.1 Stand Pipe Pressure Effect

Hareland et al. [10] presented Equation 4.3 that estimates the additional hook load generated

due to the standpipe pressure. The result of this equation will theoretically include the pre-

viously mentioned effects (weight of electric and hydraulic lines and mud hose), due to data

availability this equation was selected to estimate these effects.

HLa3 = 5.095 ∗ 10−5 ∗ SPP ∗ ID2 (4.3)

Where HLa3 is the load effect due to stan pipe pressure in kdaN, SPP is the standpipe

pressure in psi and ID the inner diameter of the mud hose in inches. To be consistent with the

units used in this study, is necessary to convert the result from kdaN to tonnes.

4.3 Combined Effect

Generally, the hook load is measured indirectly as tension in the deadline or close to the travel-

ing equipment. The position of this sensor is relevant as it will include, or not, additional loads

in the system. According to Cayeux [47] et al. some of the forces included are "weight of the

mud hose and umbilicals attached to the top drive, imperfect tension transmission... and static

friction in sheave ball-bearings and gravitational and inertia forces".
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The true weight of the drill string can be recorded with the use of special subs like the one

presented by Wu et al. [14], which was connected directly to the top of the drill string, in a Top

Drive that was able to host such tool. Most of the drilling rigs do not have with such capability,

hence, the hook load measurement comes from indirect measurements in the deadline or by a

load cell placed at the hanging point of the Top Drive, in those cases, the measurement is subject

to loads that are not related to the weight of the drill string [47].

The platform used to drill the well analyzed in this study, measured the hook load indirectly,

with a tension sensor placed in the deadline. This means that based on the available data it is

necessary to consider some of the loads that could distort the real from the recorded weight

of the drill string, in this case, the sheave friction effect, weight of the traveling block, and

standpipe pressure effect. For the first two effects, the Luke et al. [46] inactive deadline sheave

equation will be used as presented by Hareland et al. [10] as well as the standpipe pressure

effect. Finally, the corrected hook load can be described by Equation 4.4.

HLcorrected = HLa1 −HLa2 −HLa3 (4.4)

Where HLcorrected is the corrected hookload (tonnes), HLa1 total deadline measurement

corrected for a e sheave efficiency (tonnes), HLa2 is the weight of the traveling block corrected

for the same e sheave efficiency and finally (tonnes), HLa3 is the standpipe pressure effect

(tonnes).



Chapter 5

Downhole Weight On Bit Calculation

5.1 Measured Hook Load Correction

This chapter will cover the implementation of the hook load correction methodology proposed

by Hareland et al. [10] and explained in the previous Chapter. For such purpose, the coding was

written in Python [9], and the following calculations were implemented using Jupyter notebook

[8]. The input parameters for this calculus were the cleaned data presented in Chapter 3. Due

to data unavailability concerning the drilling rig characteristics, specially sheave efficiency, a

sensibility analysis was effectuated. According to literature, the individual sheave efficiency

ranges from 96% to 99% [46]. The necessary information to run this analysis is:

• Hook load measurement (tension sensor at the dead line).

• Traveling Block Weight.

• Stand Pipe Pressure.

5.1.1 Sheave Effect- Inactive Dead Line Sheave

As mentioned in Section 4.1.2 sheaves generate a difference between the real hook load and

the one measured after them, from the different models analyzed in such section the inactive

dead line model was the most precise and the one that we will use for this calculation. Figure

5.1 present the result of the application of Equation 4.2 (the y axis presents the hook load and

43
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the x axis the number of data points) for different sheave efficiencies, this plot shows that if the

sheave efficiency increases the weight of the drill string increases as well.

Figure 5.1: Hook load corrected for different sheave efficiencies.

5.1.2 Static Hook Load

To subtract the weight of the traveling block or the static hook load, information about the rig

is needed, which was not available in this case. Therefore, it was necessary to estimate this

parameter with the information contained on the data set.

To determine the weight of the traveling block, without knowing the characteristics of the

rig, relying solely on data, requires an understanding of how the drilling processes are held.

Once one stand is drilled, it is a good practice to reciprocate the drill string allowing the cut-

tings generated to circulate above the BHA, depending on the operator policies this step might

be skipped, but regardless of this, to add a new stand to drill, the top drive is lowered, pumps

shut down and the top drive disconnects from the drill pipe. After this, the "hook load" regis-

tered by the sensor is only the weight of the traveling block.

Figure 5.2 shows that the lowest values registered for the hook load are between 50 and

60 tonnes, to identify which is the value that is most repeated between this two values, data

analysis techniques were used and the result is that the traveling block weight is approximately

55 tonnes.
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Figure 5.2: Traveling block weight determination.

This value is included in the hook load recorded by the tension sensor present in the dead-

line. Therefore, it is necessary to apply the same procedure as in the previous case and take

into consideration different sheave efficiencies ( Figure 5.3). As seen in Equation 4.4 the value

calculated will be subtracted from the one defined previously in Section 5.1.1.

Figure 5.3: Traveling block weight corrected for different sheave efficiencies.
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5.1.3 Stand Pipe Pressure Effect

This is another effect taken into consideration when correcting the hook load measurement,

and as its name state is dependant on the standpipe pressure. All calculations were based on

Equation 4.2, Figure 5.4 presents the results of such calculations for the data points contained

in the analyzed section, already converted to Tonnes, this value is directly subtracted from the

previous ones as described by the methodology proposed by Hareland et al. [10].

Figure 5.4: Standpipe pressure effect.

5.1.4 Corrected Hook Load

Since all the effects on the hook load have been defined, based on Equation 4.4, it is possible to

determine the True Weight of the drill string. For this purpose, a sensitivity analysis of different

sheave efficiencies was held.

Figure 5.5 shows the result of such analysis (the y axis present the depth of the well and

the x axis the hook load measured in tonnes), with this plot is evident that as the efficiency of

the sheaves increases, the value of the hook load increases as well, meaning that, each sheave

transmits more efficiently the weight of the string. To identify which sheave efficiency describes

the real weight of the string, these values will be compared with the one estimated by a Torque

and Drag model (T&D) that will be explained in the next section.
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Figure 5.5: Corrected hook load (all effects), sensitivity analysis for different sheave efficiencies.

5.2 DWOB Calculation via T&D model

The determination of the DWOB from surface parameters is one of the most important ob-

jectives of this study, as it aims to refine current data-driven models by using improved input

parameters based on petroleum engineering knowledge. To achieve this, the main step in this

process is to implement a T&D model that can successfully calculate the parameters needed

for this purpose, to give further validation, the results of such model and the previous corrected

hook load will be compared with Halliburton’s WellPlan [12] software, one of the most used

industrial software for well design.

5.2.1 Torque and Drag Model

After reviewing different possibilities, the Johancsik et al. [11] T&D model was selected to be

implemented in this study. Because up to this date this model is still regarded as one of the most

precise ones, it relies on the principle that the torque and drag forces in directional wells are

primarily caused by sliding friction.
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To determine the normal force is necessary to estimate the weight increments for an element

of the drill string. As described by Johancsik et al. [11] "The net normal force, Fn, is the

negative vector sum of normal components from the weight, W , and the two tension forces, Ft

and Ft + ∆Ft". The magnitude of the normal force is defined by Equation 5.1:

Fn =
[(
Ft∆αsinθ̄

)2
+
(
Ft∆θ +Wsinθ̄

)2]1/2 (5.1)

Where:

Fn = Net normal force acting on the element (N).

Ft = Axial tension acting at lower end of the element (N).

∆α = Increase in azimuth over the length of the element (rad).

θ̄ = Average inclination angle of the element (rad).

∆θ = Increase in inclination angle over the length of the element (rad).

W = Buoyed weight of drillstring elemenet (N).

This equation leads us to the equation that describes the tension increment and is defined by

Equation 5.2:

∆Ft = Wcosθ̄ ± µFn (5.2)

Where µ is the sliding friction coefficient between the drill string and the wellbore (dimen-

sionless), in case of a rotating pipe, the second part of this equation becomes zero. Finally, for

the torsion increments can be defined by Equation 5.3:

∆M = µFnr (5.3)

Where ∆M is the increase in torsion over length of element (Nm), r is the characteristic

radius of drill string element (m).
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5.2.2 Obtaining DWOB Values

One principle stated by Johancsik et al. [11] is that in case the sliding friction factor parameter

is unknown, it is possible to back-calculate it, assuming a friction coefficient and iterating to

match the data, for this, the drill string characteristics and wellbore trajectory are required. For

the case analyzed in this study, it is aimed to determine the DWOB using the same approach,

which was also addressed by Hareland et al. [10]. To achieve this several steps are necessary

and will be further explained.

Split the Well in Sections

According to Johancsik et al. [11] the T&D calculations in the paper presented were elaborated

for a well divided into 30.5-meters elements, in some cases this could provide an acceptable

precision, but since the model aims to predict the DWOB with a small difference concerning

the real value, this approach may not be suitable for our case.

To further explain the reason behind this, is necessary to analyze the BHA case, for exam-

ple, if we have two drill collars weighing 238 kilograms per meter and one heavyweight drill

pipe weighing 78 kilograms per meter in a 30-meter section, which weight should we use?, an

average weight per meter would give us a lower weight (approx. 4740kg) than the real one

(approx. 5540 kg) and also if the weight of the drill collar is assumed for the whole 30-meter

section, the result would be higher than the real one. To solve this issue, it was decided to split

the BHA into 5-meter length sections, as this was accurate enough for the smallest element in

the BHA. The other sections of the well that contained only drill pipes with the same linear

weight were analyzed every 20 meters.

Define the Trajectory of the Well for Each Data Point

The well trajectory information had survey measurements separated every 40 meters, this is

bigger than the smallest section to be analyzed (5 meters), to solve this issue was necessary to

interpolate within the surveys to have the same separation (5 meters) between survey points.

The method selected to interpolate between survey points was taken from Mitchell et al. [13].
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Once the interpolation process was completed, another issue was faced. The data were

re-sampled to 0.1 meters, this means that it was necessary to calculate the DWOB every 0.1

meters to have the same number of data points in the T&D model as in the data set from the

well. To solve this issue, an algorithm that determines the position of the bit and defines the

inclination and azimuth for each cell, based on the nearest survey point, was implemented. As

it was observed that the inclination and azimuth did not change significantly every 5 meters.

Calculate DWOB for Each Data Point

As proposed by Hareland et al. [10] and Johancsik et al. [11] once the well has been divided

into sections, and the trajectory is known for each data point, the approach for determining the

DWOB is based on the iterative use of the "shooting method" [48] designed to solve boundary

value problems. An initial guess of the DWOB must be submitted to the implemented algorithm,

e.g., the first guess could be to assume that the DWOB and the SWOB are equal, with this lower

boundary condition, the algorithm back-calculates the tension across the well until the surface

is reached and returns the weight of the drill string. This hook load value is compared to the

corrected hook load previously defined (96-99% sheave efficiency) if the difference is higher

than a predefined tolerance error another DWOB guess is set as the lower boundary condition

(increased or decreased based on the difference of hook loads). This process is repeated until

the difference between the hook loads is within the predefined tolerance (0.25 Tonnes).

Figure 5.6: Calculated DWOB values.
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Figure 5.6 presents the results of the calculated DWOB, the procedure mentioned previously

must be repeated for each of the more than four thousand data points. To achieve this, the code

includes a series of loops and conditional statements to automate this process.



Chapter 6

Machine Learning

6.1 Machine Learning Implementation

This chapter will cover the implementation of different machine learning techniques using

Python [9], but more than this, evaluate with the available data set, which model provides

the best results in a simulated real drilling scenario. For this, the most widely used machine

learning algorithms will be used, and evaluated in two different scenarios provided by the kind

of data splitting selection.

Number Feature Units Data Type
1 Bit Depth (MD) meters float64
2 Downhole Weight on Bit tonnes float64
3 Average Hookload tonnes float64
4 Downhole Torque kN-m float64
5 Average Rotary Speed rpm float64

6
Average Standpipe

Pressure
kPa float64

Table 6.1: Parameters used in model comparison.

To implement the Random Forest (RF) and K-Nearest Neighbors (KNN) regressor mod-

els, Scikit Learn [44], a Python [9] module that contains these machine learning algorithms

was used. For the Artificial Neural Networks (ANN) and Long Short Term Memory (LSTM)

models, Keras [49] a deep learning API written in Python [9], that runs on top of TensorFlow

[50] was used. Relevant parts of the code for each algorithm are located in Appendix A. The

parameters used as inputs to compare the models’ performance are presented in Table 6.1.
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These parameters had the best correlation with the ROP, a more in-depth analysis that will

include the use of surface parameters (SWOB and surface torque) and calculated parameters

(calculated DWOB) will be held in Chapter 7, as this study aims to evaluate if the calculated

parameters improve the performance of ML models compared to only using the given surface

parameters.

6.1.1 Splitting Data

How to properly split the data?, is something that is not usually written when working with

drilling data, as per the literature review, most of the papers discussing this topic are not clear

about how they split their data. First, we need to mention that when working with machine

learning models, the data should be divided into three parts to avoid overfitting and model bias,

they are called:

• Training set (largest one).

• Validation set.

• Test set.

There are some cases when the data is split into two parts and the validation set is called a

test set, which is also acceptable. Depending on the quantity of data available the corresponding

percentages to each element can vary. The training set is the data used to fit the model, and as

its name state, is used to train the model, it must optimize the parameters while observes and

learns from this particular data. The test set is used to evaluate how a model will generalize to

new cases, it should be used only after the model has passed through the training and validation

set (if this one was created). A sign that the model is overfitting the training data, is given by a

high testing error but low training error [3].

Another topic to be considered is the ratio of splitting the data, usually, this depends on the

quantity of data available, for the data set used in this study more than 4000 data points were

available, a 60-40 percent split was used for the training and testing sets, respectively.
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Sampling Random or Sequential

Once the percentages of information to be assigned to the training and testing sets are defined,

how the data points will be selected for each of them is another important matter that will define

the performance of the model. Two options, among many, were identified as suitable for the

study:

• Random Sampling.

• Sequential Sampling.

The first option, Random Sampling consists of, randomly select 60% of the available data

points and assign them for the training set, leaving the residual 40% for testing. There are cer-

tainly advantages regarding this option, as the data will be trained with a bigger span of different

data, e.g., the last meters drilled could have had a higher ROP than the first meters, and such

values are only encountered at these depths. Therefore, the data would have been trained with

data that has in some way previously seen and increase the possibility of having a better perfor-

mance. The drawback of this approach is that, it is hard to determine if the model has learned to

find correlations, allowing it to make predictions or it has just memorized points. Meaning that,

when presented with new data, different than the one that has been trained on, the prediction

accuracy would decay.

The other option, Sequential Sampling, splits the data in the requested percentages but

avoids randomizing it. For example, when using sequential sampling the first 60% of the data

would be used for training and the rest for testing, this, in a way is similar to a real drilling

scenario and assures that when testing, the data is out of sample. This methodology ensures that

the model creates the necessary correlations to properly predict results, a comparison between

the two possibilities was executed with different machine learning algorithms.

6.1.2 Random Forest Regressor

The algorithm was implemented using Scikit Learn [44], to obtain the best performance for

any ML algorithm, hyperparameter tuning is one of the most important steps, for this purpose
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many possibilities are available starting by manual tuning that is a very time-consuming activity,

another possibility and the one chosen for this study is to use Scikit Learn’s based commands

such as GridSearchCV. To run such a search is necessary to input some base-line parameters that

will be evaluated and compared using a cross-validation procedure that is described more in-

depth by Hastie et al. [51]. In the case of the random forest regressor, the parameters evaluated

were:

• Number of estimators: 10, 30, 50 or 70.

• Maximum depth of the tree: 10, 20 or 30.

The search uses these suggested parameters, but also includes other hyperparameters of the

model, the result of this search was implemented in the model. After this important step, the

data is introduced into the model, and the two options presented in the previous section were

analyzed. First, using the random sampling, figure 6.1 shows the results of RF regressor when

randomly selecting the data, the coefficient of correlation obtained is of 0.986 which means that

this model has a high prediction accuracy.

Figure 6.1: Random Forest Regressor results using random sampling.

The high prediction accuracy provides confidence that the model would perform well in

any given circumstance. Therefore, sequential sampling was tested with the same percentages.
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Figure 6.2 presents the results for the RF regressor for this case, as it is noticeable, the accuracy

of the prediction is lowered to half compared to the one obtained using random sampling. This

behavior raised questions about the model applicability in the desired scenario.

Figure 6.2: Random Forest Regressor results using sequential sampling.

6.1.3 K-Nearest Neighbors

As with the RF, the KNN algorithm was implemented using Scikit-Learn [44], to obtain the best

performance the algorithms hyperparameters were tuned using GridSearchCV, in this case, the

parameters evaluated were:

• Number of neighbors: 3, 5 or 11.

• Weights: distance or uniform.

• Algorithm: auto, ball-tree, kd-tree or brute.

After this search concluded and the best parameters were found. The algorithm was tested

with random sampled and sequential sampled data as the RF model. Figure 6.3 shows the

results for random sampling, the coefficient of determination in this case (R2) is 0.99 meaning

that we have a perfect fit for our predicted points.
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Figure 6.3: K- Nearest Neighbors Regressor results using random sampling.

Figure 6.4 presents the results for the model using the sequential sampling methodology, in

this case, the R2 value is equal to 0, meaning that the predictions are not accurate at all.

Figure 6.4: K- Nearest Neighbors Regressor results using sequential sampling.
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6.1.4 Artificial Neural Networks

The ANN model was implemented using Keras [49]. As explained previously in Chapter 2, to

build an ANN is necessary to determine the number of layers and neurons in each layer. There

are no clear rules when building ANNs, according to Amer et al. [28] "defining the optimal

network that simulated the data sets is not an easy task. Although it is an iterative process, some

rules of thumb were followed as guides.". These rules of thumb include defining the number of

neurons and layers based on the number of inputs for the model, but other parameters need to

be considered:

• Activation function.

• Learning rate.

• Dropout layers.

• Callbacks.

• Optimizer.

• Loss function.

• Metrics to evaluate the performance of the model.

As with the RF and KNN models, to obtain the best possible performance of the ANN model

is necessary to optimize the hyperparameters, this task can be carried out manually but this is

a time-consuming task, especially if we consider that the model can have more than one layer.

There are some options to automate this process, the first option evaluated was Keras Tuner [52]

a library that helps to determine the optimum hyperparameters for an hypermodel defined, the

other option is to develop a functional model that we consider a good approximation and use

Scikit-Learn’s function RandomizedSearchCV to run a search for the best possible combination

of only selected hyperparameters.

Once the model is defined, it is necessary to ensure that the model does not overfit the data.

To prevent this issue, additional Dropout layers were added, the function of these layers is to
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randomly deactivate a predefined percentage of the neurons during the training phase of the

model. As an additional measure to prevent overfitting, an EarlyStopping callback was intro-

duced to the model. Which is the purpose of this clause?, when defining the number of epochs

(an epoch is completed when the data has passed both forward and backward through the model)

that the model will complete, a low number of epochs can potentially reduce the accuracy of

the model, whereas too many epochs can cause overfitting, this clause stops the training once

the improvement of the model on the validation set stops.

As with the RF and KNN, the model was executed first using random sampling. To improve

the visualization of how this approach is related to the data, Figure 6.5, contrary to the previ-

ously presented cross-plots, shows how the model predictions compare to the actual data. The

R2 value for this model is 0.85, which is lower than the one obtained with the RF and KNN

regressors.

Figure 6.5: Artificial Neural Network results using random sampling.

Now is turn to test the model with sequential sampling, Figure 6.6 presents the results for

this approach, it is visible that the first 300 meters of the data were used for training and the

rest for testing, in this case, the value of R2 is 0.198 which means that the model is not accurate

enough for this purpose.
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Figure 6.6: Artificial Neural Network results using sequential sampling.

6.1.5 Long Short Term Memory (LSTM)

The concept of LSTM [31] models is not recent, but its application in the oil and gas industry,

especially in drilling, is relatively new with few publications surrounding ROP modeling with

such structures available to this date. As was seen with the first three models evaluated, the

performance when using random sampling was better than for the sequential sampling with the

available data. To solve this type of sequence prediction problem Recurrent Neural Networks

(RNN) were developed and long short term memory (LSTM) models are perhaps the most suc-

cessful RNN. LSTMs can be used to work either as time or preferably for our application in a

depth base sequence. One of the main improvements from this approach concerning the previ-

ous models is that it considers time sequence effects [30], e.g., interactions between rock and

drill bit, changes in pressure, torque, rpm, etc.

The process of designing an LSTM model is similar to the ANN, for this case a manual

search was conducted to identify the best hyperparameters for the model, it is worth mentioning

that some of the features for this model were left as they came by default, activation (tanh)

and recurrent activation (sigmoid). To avoid overfitting as with the ANN model, droput layers

and earlystopping callback clauses were used in the model. The structure of this model is

not suitable for the use of random sampling, it works better when solving problems that use

sequential sampling, therefore, in this case, this is the only option analyzed.
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The difference between these two models (LSTM - ANN) relies on how it handles the fea-

tures used for predicting a value, one of the advantages of the LSTM (as mentioned in Chapter

2), is the ability of LSTM cells to remember some information, in other words, having "mem-

ory". "How can we use this in our context?", to predict the ROP value at a time (t), the input

parameters showed in table 6.1 can be stored for several time steps, e.g., for the WOB param-

eter we could have stored in memory WOB at a time (t-1), up to time (t-n), this depending on

how much information is considered relevant to be stored. Not only this, but the ROP value

from previous times can be used as an input parameter for predicting the following ROP values.

Therefore, besides the parameters shown in table 6.1, the ROP value from previous times was

included as an input parameter for the model, the logic behind this is that, in a normal drilling

operation, this parameter will be known at the same time as the other parameters and it can help

us to predict the future value of ROP.

The implemented LSTM model makes an ROP prediction based on three previous time

steps, starting at a time (t-1) up to time (t-3), this provides the model enough stability to make

predictions with a fairly good amount of precision. In other words, the model makes a prediction

based on 21 inputs, the shape of the input is a three-dimensional array, e.g., for one particular

point the input for the model have the shape (1,3,7), which means that is one row, three time-

steps, and 7 columns (one for each input parameter).

Figure 6.7: Long Short Term Memory results using sequential sampling.
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Figure 6.7 presents the results for the LSTM model, the first 300 meters of the data were

used for training, and the rest for testing, obtaining a value for R2 equal to 0.926 and an MAE

of 1.44 meaning that the model accurately predicts the behavior of ROP for this well. It is

important to mention that these results are based on the hypothesis that the input parameters are

known for the times (t-1) up to (t-3), a more in-depth evaluation of this model performance for

different scenarios will be presented in Chapter 7.



Chapter 7

Results and Discussion

7.1 DWOB Calculation Results

From Figure 5.5 all efficiencies were tested and compared with the implemented Johanscik et

al. [11] T&D model, but the 99% sheave efficiency provided the best results compared to the

calculated ones, this was validated using Halliburton’s WellPlan [12]. The maximum allowable

difference in hook load was set at 0.25 Tonnes. Figure 7.1 shows the results of the hook load

comparison between the implemented T&D, the corrected hook load at 99% sheave efficiency,

and WellPlan results.

Figure 7.1: Comparison between measured, calculated and WellPlan hook load.
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Figure 7.2 presents a comparison between the measured and the calculated DWOB, it is

worth mentioning that to obtain such a parameter, usually, it is necessary to use wired drill pipe

[16], this translates into higher expenses for a drilling project. But, the objective of such calcula-

tion, in this study, is to verify if this parameter can lead to improved accuracy in ROP prediction.

Figure 7.2: Comparison between measured and calculated DWOB.

The implemented model was able to predict the DWOB from surface parameters with only a

10% Mean Absolute Percentage Error (MAPE). But why it is important to determine the value

of the DWOB, as mentioned, the WOB parameter is used in all of ROP models, physics-based

or ML. Usually, as with the data for this well, there is a difference between the surface and

downhole WOB, some of the reasons behind it have been explained in this work, but, to visual-

ize this difference Figure 7.3 shows the values for the SWOB in the data set.
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Figure 7.3: Comparison between measured SWOB vs DWOB values.

If we compare the values of SWOB and DWOB, it is evident that there is a difference

throughout the whole analyzed section, in some cases, the SWOB is twice the value of the

DWOB. If for some reason these values (SWOB) were set as an input for a physics-based

model, the accuracy of the prediction would have reduced considerably, as all models assume

that the value of SWOB is the measured value of the weight applied to the bit at the bottom of

the well. How this affects a ML model will be explained in the next section, as all parameters:

surface, downhole and calculated will be fed to the ML models.

7.2 Machine Learning Results

As mentioned in Chapter 6, the models were evaluated using the parameters that would ensure

the best performance of each one of them, to determine the model that performs better and that

could be used in a wider scope than the one presented in this work.



66 CHAPTER 7. RESULTS AND DISCUSSION

Table 7.1 presents the summary of such work, the results show that for the data used in this

study (using downhole measurements as input parameters for the model), the first three models

evaluated, RF, KNN, and ANN performed well when using random sampling but not performed

properly when the data was sampled sequentially.

Num-
ber Model

Random
Sampling

R2

Sequential
Sampling

R2

Random
Sampling

MAE

Sequential
Sampling

MAE

1
Random Forest

Regressor
0.986 0.428 0.415 4.514

2
K-Nearest
Neighbors
Regressor

0.99 0 0.136 5.904

3
Artificial Neural

Networks
0.85 0.198 2.234 5.589

4
Long Short Term

Memory
N/A 0.926 N/A 1.44

Table 7.1: Machine learning models evaluation summary.

Which of these models should we select as the best model for the study?, to answer this is

necessary to make sense of the results presented in Table 7.1. What could be understood from

the models that performed well using random sampling?, these models (RF, KNN, and ANN),

could have memorized points instead of created correlations. As described by Gulli et al. [4]

"traditional multilayer perceptron neural networks make the assumption that all inputs are in-

dependent of each other. This assumption breaks down in the case of sequence data".

It is important to consider that if this methodology is used as a base for a real-time drilling

application, the data is fed to the model sequentially, and not all of the information is available

for the model as the data is generated while drilling. Hence, the LSTM model that had the best

performance when sequential sampling was used, and is the one chosen to be the best model

for predicting ROP on a real drilling scenario.
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7.2.1 Surface Measurements as Input Parameters

First, the model was evaluated using only surface measurements, this data is available in most of

the drilling rigs. The input parameters are presented in Table 7.2. It is important to mention that

to work with LSTM models the data must be scaled in a range between 0 and 1 (See Chapter 3

Section 4).

Number Feature Units Data Type
1 Bit Depth (MD) meters float64
2 Weight on Bit tonnes float64
3 Average Hookload tonnes float64
4 Average Surface Torque kN-m float64
5 Average Rotary Speed rpm float64

6
Average Standpipe

Pressure
kPa float64

7 Rate of Penetration mph float64

Table 7.2: Surface measurements used in LSTM model.

Figure 7.4 presents the results obtained when using the surface measurements as inputs for

the model, the coefficient of determination (R2) value is equal to 0.894 and the MAE is equal

to 2.14. These values may not be considered accurate enough for an ROP predictive model.

Figure 7.4: LSTM model results using surface measurements as input parameters.
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7.2.2 Surface Measurements with Calculated DWOB as Input Pa-

rameters

For this evaluation, the inputs for the model consist of surface measurements, but the value of

SWOB was replaced by the calculated DWOB. Table 7.3 presents all the parameters that were

used as input for the LSTM model.

Number Feature Units Data Type
1 Bit Depth (MD) meters float64

2
Downhole Weight on Bit

(calculated)
tonnes float64

3 Average Hookload tonnes float64
4 Average Surface Torque kN-m float64
5 Average Rotary Speed rpm float64

6
Average Standpipe

Pressure
kPa float64

7 Rate of Penetration mph float64

Table 7.3: Surface measurements with calculated DWOB used in LSTM model.

Figure 7.5 presents the results of the model when using the previously shown parameters.

In this case, the model performed better than when using only surface measurements as input

for the model. The value of R2 is equal to 0.95 and the MAE is equal to 1.41.

Figure 7.5: LSTM model results using surface measurements with calculated DWOB as input parameters.
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7.3 Discussion

Once the algorithm that calculates the DWOB from surface measurements was successfully im-

plemented and also identified the best ML model for ROP prediction. The model was evaluated

with three sets of data, using: downhole measurements, surface measurements, and a combina-

tion of surface measurements with the calculated DWOB as input parameters. To visualize the

values obtained during this search Table 7.4 presents the results for the different cases.

Number Data used as Input
for LSTM model R2 MAE Figure

1
Downhole

Measurements
0.926 1.44 Figure 6.7

2
Surface

Measurements
0.894 2.14 Figure 7.4

3
Surface

Measurements w/
Calculated DWOB

0.95 1.41 Figure 7.5

Table 7.4: LSTM model evaluation summary.

The best result for this model was obtained by the last option evaluated based on the MAE

metrics, the expected average error in the prediction is of 1.41 mph, which is the lowest value of

all the options evaluated, corresponding to the surface measurements with calculated DWOB.

Also, if we compare directly the difference of the MAE values obtained using option 2 or 3, it

is hard to imagine that the reason behind this is only that the SWOB value was replaced by the

calculated DWOB.

As seen in Figure 7.3, the values of SWOB in most parts of the section are not near the true

values of DWOB, and it was mentioned that if used in a physics-based ROP model this would

have produced wrong predictions of ROP, this behavior was also replicated by the ML models.

Therefore, the question, Does improved data translates into better modeling results?, was an-

swered. As the results showed, replacing a parameter (SWOB) that was not providing relevant

information to the model, with another parameter (DWOB), that did, the model successfully

found the correlations needed to predict the aimed value (ROP) with good accuracy.
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7.3.1 LSTM Performance Analysis

As mentioned in Chapter 6, the model was built as a "rolling" LSTM architecture able of keep-

ing in the memory many previous time steps, for the results presented in Table 7.4 the model

predicted the ROP for the next time step (t), fed with information from all of the previous time

steps (t-1) up to (t-3). The performance of the model was evaluated in different scenarios using

the input parameters from Table 7.3, with the predicted ROP replacing the value of known ROP

value from previous time steps (the other parameters are known at all times), the results are

presented in Table 7.5.

Test Predicted
Value

Known ROP value
used as Input

Predicted ROP value
used as Input R2 MAE

1 ROP (t) (t− 2) (t− 3) (t− 1) 0.92 1.78
2 ROP (t) (t− 3) (t− 1) (t− 2) 0.77 3.07
3 ROP (t) None (t− 1) (t− 2) (t− 3) -3.17 13.83

Table 7.5: LSTM performance analysis.

First, the model was evaluated using the predicted ROP value at the time (t) to continuously

replace the value of (t-1) for the next time steps, but keeping the information for the times (t-2)

and (t-3) as provided in the data set. The results show that the R2 value decayed from 0.95 to

0.92 and the MAE increased from 1.41 to 1.78. Because the model is self-feeding itself with

generated predictions for the previous time step (t-1), the result is more than acceptable.

For the second case, the model was evaluated using the predicted ROP value at the time

(t), replacing the value for the time (t-1) in the next time step, but keeping the information for

the times (t-2) and (t-3) as provided in the data set. The prediction generated at this point was

used to replace the ROP value at the time (t-1), and the previous prediction will replace the

value at the time (t-2). Therefore, the only value that remained as in the original data set for all

evaluations is ROP at the time (t-3). This process is repeated continuously for the rest of the

data. In this case, the model R2 dropped to 0.77 and the MAE increased to 3.07. This result,

while far from ideal, still shows a relatively good performance, as it delivers better predictions

than the RF, KNN and ANN models.
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For the final test, the same logic used in the second case was applied, but this time all known

ROP values were replaced progressively by predicted ROP values. Therefore, the model is pre-

dicting ROP and feeding itself with generated values continuously. The R2 value for this case

is equal to -3.17 which means that the predicted values are nowhere near the real values, the

MAE result is 13.83, hence, on average a prediction can give a plus or minus 13.83 mph error,

this is not acceptable for any ROP predictive model. The plotted results for all cases are located

in Appendix B and they show how the model accumulates the errors of each prediction making

the last predictions of the ROP model the least accurate ones.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

During the planning and execution stages of this study, many hypotheses regarding the possi-

bility of using a different approach to improve the performance of ML models were analyzed,

and objectives set to achieve this result, the conclusions of such work are:

• The most important parameters for the ML predictive models were identified: depth,

WOB (surface-downhole), hook load, torque (surface-downhole), rpm, and standpipe

pressure.

• A complete well data set was used, the parameters used in this study were selected from

over 200 available features, the data was cleaned and prepared for further use.

• An algorithm that calculates the DWOB using surface measurements was successfully

implemented with an acceptable mean absolute percentage error.

• Different ML algorithms were tested, but the LSTM model provided the best results pre-

dicting ROP in a scenario closer to the real drilling operations.

• The algorithm was tested with three different combinations of the available data, using,

surface and downhole measurements, but also surface measurements with the calculated

DWOB replacing the SWOB. It was observed that the model provided the best perfor-

mance with the combination of inputs that used the calculated DWOB.
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• It was proved that the performance of a model can be improved by using petroleum engi-

neering knowledge to enhance the quality of the model inputs, instead of treating this just

as a purely data-science task.

8.2 Future Work

This study can be used as a stepping stone to develop drilling optimization solutions, but before

this, it is advisable to follow the next steps:

• Extensive testing, more wells with different configurations.

• Evaluate and add more effects to corrected the hook load, such as mud hose weight effect,

sheave angle, and others not evaluated in this study due to lack of data. This can help to

reduce the MAPE for the predicted DWOB.

• Evaluate using the Principal Component Analysis (PCA)[53], against traditional input

selection based on petroleum engineering knowledge, and evaluate to determine the best

methodology.

With a good and reliable ROP predictive algorithm, it is possible to develop an ROP opti-

mization model. The ROP can be optimized based on different parameters or variables, e.g.,

consider just WOB, different combinations of WOB-RPM, analyze mechanical specific energy

(MSE) [54] which include both parameters, and many other possibilities.

The idea is to let the model predict ROP using different combinations of parameters, and

select the combination that provides the best ROP, for this, different boundaries need to be

defined, e.g., maximum WOB, maximum RPM, etc. To improve the decision making and addi-

tional benchmark could be introduced to determine the best ROP, e.g., via minimizing the MSE.

Analyzing a case in which it is desired to optimize ROP using only WOB; after the model is

trained for the data at a time (t-1), a range of different WOB values to be introduced into the

data set the model will generate different ROP predictions, that can be evaluated using the MSE

equation. To illustrate this idea, Figure 8.1 present a "draft" of the aimed result.
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Figure 8.1: Future work, ROP optimization.

This figure locates the DWOB in the x axis, the ROP in the y axis and MSE in the z axis.

Theoretically, the model should aim to identify a DWOB value that maximizes ROP and pro-

duce the lowest MSE (e.g., the "x" mark on the plot).
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Appendix A

Python Code

A.1 Installed Packages

Name Version Name Version
_tflow_select 2.1.0 oauthlib 3.1.0
absl-py 0.9.0 openpyxl 3.0.4
alabaster 0.7.12 openssl 1.1.1g
astor 0.8.0 opt-einsum 3.1.0
attrs 19.3.0 opt_einsum 3.1.0
babel 2.8.0 packaging 20.4
backcall 0.2.0 pandas 1.0.3
blas 1.0 pandoc 2.9.2.1
bleach 2.1.3 pandocfilters 1.4.2
blinker 1.4.0 parso 0.7.0
brotlipy 0.7.0 pickleshare 0.7.5
ca-certificates 2020.6.24 pip 20.0.2
cachetools 4.1.0 prometheus-client 0.8.0
certifi 2020.6.20 prompt-toolkit 3.0.5
cffi 1.14.0 prompt-toolkit 3.0.5
chardet 3.0.4 protobuf 3.12.3
click 7.1.2 pyasn1 0.4.8
colorama 0.4.3 pyasn1-modules 0.2.7
cryptography 2.9.2 pycparser 2.20
cudatoolkit 10.1.243 pygments 2.6.1
cycler 0.10.0 pyjwt 1.7.1
decorator 4.4.2 pyopenssl 19.1.0
defusedxml 0.6.0 pyparsing 2.4.6
docutils 0.16 pyqt 5.9.2
entrypoints 0.3 pyreadline 2.1
et-xmlfile 1.0.1 pyrsistent 0.16.0
et_xmlfile 1.0.1 pysocks 1.7.1
freetype 2.9.1 python 3.7.7
gast 0.2.2 python-dateutil 2.8.1
google-auth 1.17.2 pytz 2019.3
google-auth-oauthlib 0.4.1 pywin32 227
google-pasta 0.2.0 pywinpty 0.5.7
grpcio 1.27.2 pyyaml 5.3.1
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h5py 2.10.0 pyzmq 19.0.1
hdf5 1.10.4 qt 5.9.7
icc_rt 2019.0.0 requests 2.24.0
icu 58.2 requests-oauthlib 1.3.0
idna 2.10 rsa 4.0
imagesize 1.2.0 scikit-learn 0.23.1
importlib-metadata 1.7.0 scipy 1.5.0
intel-openmp 2020.0 seaborn 0.10.1
ipykernel 5.3.0 send2trash 1.5.0
ipython 7.16.1 setuptools 46.1.3
ipython-genutils 0.2.0 sip 4.19.8
jdcal 1.4.1 six 1.14.0
jedi 0.17.1 snowballstemmer 2.0.0
jinja2 2.11.2 sphinx 3.1.2
joblib 0.16.0 sphinxcontrib-applehelp 1.0.2
jpeg 9b sphinxcontrib-devhelp 1.0.2
jsonschema 3.2.0 sphinxcontrib-htmlhelp 1.0.3
jupyter-client 6.1.5 sphinxcontrib-jsmath 1.0.1
jupyter-core 4.6.3 sphinxcontrib-qthelp 1.0.3
jupyter_client 6.1.5 sphinxcontrib-serializinghtml 1.1.4
jupyter_core 4.6.3 sqlite 3.31.1
keras 2.3.1 tensorboard 2.2.1
keras-applications 1.0.8 tensorboard-plugin-wit 1.6.0
keras-base 2.3.1 tensorflow 2.1.0
keras-gpu 2.3.1 tensorflow-base 2.1.0
keras-preprocessing 1.1.0 tensorflow-estimator 2.1.0
kiwisolver 1.1.0 terminado 0.8.3
libpng 1.6.37 testpath 0.4.4
libsodium 1.0.18 threadpoolctl 2.1.0
m2w64-gcc-libgfortran 5.3.0 tornado 6.0.4
m2w64-gcc-libs 5.3.0 traitlets 4.3.3
m2w64-gcc-libs-core 5.3.0 urllib3 1.25.9
m2w64-gmp 6.1.0 vc 14.1
m2w64-libwinpthread-git 5.0.0.4634.697f757 vs2015_runtime 14.16.27012
markdown 3.1.1 wcwidth 0.2.5
markupsafe 1.1.1 webencodings 0.5.1
matplotlib 3.1.3 werkzeug 0.16.1
matplotlib-base 3.1.3 wheel 0.34.2
mistune 0.8.4 win-inet-pton 1.1.0
mkl 2020.0 wincertstore 0.2
mkl-fft 1.0.15 winpty 0.4.3
mkl-random 1.1.0 wrapt 1.12.1
mkl-service 2.3.0 xlrd 1.2.0
mkl_fft 1.0.15 yaml 0.2.5
mkl_random 1.1.0 zeromq 4.3.2
msgpack 1.0.0 zipp 3.1.0
msgpack-numpy 0.4.4.3 zlib 1.2.11
msgpack-python 1.0.0
msys2-conda-epoch 20160418
nbconvert 5.6.1
nbformat 5.0.7
notebook 6.0.3
numpy 1.18.5
numpy-base 1.18.5
numpy-devel 1.18.5
numpydoc 1.1.0
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A.2 Data Cleaning Code

1

2 # I mp or t p a r a m e t e r s t o be used i n t h e p r o j e c t
3

4 d f _ t i m e = df [ [ ’ Time s ’ , ’ B i t Depth (MD) m’ , ’On Bottom S t a t u s ’ , ’
B i t on Bottom ’ , ’ Weight on B i t kkgf ’ , ’ Average Hookload kkgf ’ , ’
Average S u r f a c e Torque kN .m’ , ’MWD Downhole WOB ’ , ’MWD Downhole
Torque ’ , ’ Average Ro ta ry Speed rpm ’ , ’Mud Flow In L / min ’ , ’ Average
S t a n d p i p e P r e s s u r e kPa ’ , ’ Ra te o f P e n e t r a t i o n m/ h ’ ] ]

5

6 d f _ t i m e . d e s c r i b e ( ) # E v a l u a t e q u a n t i t y and q u a l i t y o f d a t a
7

8 d f _ t i m e . d t y p e s # check i f t h e d a t a t y p e i s c o r r e c t f o r each
f e a t u r e

9

10 d f _ t i m e . c o r r ( ) # check c o r r e l a t i o n between p a r a m e t e r s
11

Listing A.1: Selecting Parameters (only the relevant part of the code is presented)

1

2 d f _ t i m e [ ’ Time s ’ ] = pd . t o _ d a t e t i m e ( d f _ t i m e [ ’ Time s ’ ] ) # Trans fo rm
t ime t y p e from " o b j e c t " t o " d a t e t i m e "

3

4 d f _ t i m e . s o r t _ v a l u e s ( by =[ ’ Time s ’ ] )
5

6 d f _ t i m e _ s = d f _ t i m e
7

8 d f _ t i m e _ s [ ’ Time s ’ ] = d f _ t i m e _ s [ ’ Time s ’ ] . d t . t z _ l o c a l i z e ( None )
9

10 d f _ t i m e _ s = d f _ t i m e _ s [ d f _ t i m e _ s [ ’ B i t Depth (MD) m’ ] . be tween
( 1 4 0 0 , 2 9 0 0 ) ]

11

12 s t a r t _ d a t e = ’2008−07−14 ’
13

14 e n d _ d a t e = ’2008−07−21 ’
15

16 mask = ( d f _ t i m e _ s [ ’ Time s ’ ] > s t a r t _ d a t e ) & ( d f _ t i m e _ s [ ’ Time s ’ ]
<= e n d _ d a t e )

17 d f _ t i m e _ s = d f _ t i m e _ s . l o c [ mask ]
18

Listing A.2: Selection of time-frame used for this study (only the relevant part of the code is presented)

1

2 d f _ t i m e _ 1 = d f _ t i m e _ s
3

4 d f _ t i m e _ 1 . d ropna ( s u b s e t =[ ’On Bottom S t a t u s ’ ] , i n p l a c e =True )
5

6 d f _ t i m e _ 1 = d f _ t i m e _ 1 [ d f _ t i m e _ 1 [ ’On Bottom S t a t u s ’ ] < 0 . 2 ]
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7

8 d f _ t i m e _ 1 = d f _ t i m e _ 1 [ d f _ t i m e _ 1 [ ’ B i t on Bottom ’ ] < 0 . 2 ]
9

10 d f _ t i m e _ 1 . d r o p _ d u p l i c a t e s ( i n p l a c e =True )
11

Listing A.3: Using ’On bottom status’ as flag for selecting drilling operations only.(only the relevant part of the
code is presented)

1

2 d f _ i n t = d f _ t i m e _ 1
3

4 d f _ i n t = d f _ i n t [ d f _ i n t [ ’ B i t Depth (MD) m’ ] . be tween ( 1 9 0 0 , 2 4 0 0 ) ]
5

6 d f _ i n t = d f _ i n t . i n t e r p o l a t e ( method= ’ l i n e a r ’ )
7

8 d f _ i n t . d r o p _ d u p l i c a t e s ( i n p l a c e =True )
9

10 d f _ i n t . d ropna ( i n p l a c e =True )
11

12 f i g , axs = p l t . s u b p l o t s ( n c o l s =3 , f i g s i z e = ( 1 7 , 8 ) ) # c h e c k i n g p l o t s
o f t h r e e p a r a m e t e r s t o s e e i n t e r p o l a t i o n r e s u l t s

13

14 s n s . s c a t t e r p l o t ( d f _ i n t [ ’ B i t Depth (MD) m’ ] , d f _ i n t [ ’MWD Downhole
WOB’ ] , l i n e w i d t h =0 , a l p h a = 0 . 3 , l a b e l ="DWOB" , ax= axs [ 0 ] , c o l o r = ’ r ’ )
. s e t ( x l im =(1900 ,2400) , y l im =(−2 , 10) )

15

16 s n s . s c a t t e r p l o t ( d f _ i n t [ ’ B i t Depth (MD) m’ ] , d f _ i n t [ ’ Weight on B i t
kkgf ’ ] , l i n e w i d t h =0 , a l p h a = 0 . 3 , l a b e l ="SWOB" , ax= axs [ 1 ] ) . s e t ( x l im
=(1900 ,2400) , y l im =(−2 , 10) )

17

18 s n s . s c a t t e r p l o t ( d f _ i n t [ ’ B i t Depth (MD) m’ ] , d f _ i n t [ ’ Average
Hookload kkgf ’ ] , l i n e w i d t h =0 , a l p h a = 0 . 3 , l a b e l ="HKLD" , ax= axs [ 2 ] ) .
s e t ( x l im =(1900 ,2400) , y l im =(120 , 140) )

19

20 p l t . show ( )
21 p l t . c l o s e ( )
22

Listing A.4: Interpolating missing values.(only the relevant part of the code is presented)

1

2 Q1_DWOB = d f _ t e s t [ ’MWD Downhole WOB’ ] . q u a n t i l e ( 0 . 2 5 )
3 Q3_DWOB = d f _ t e s t [ ’MWD Downhole WOB’ ] . q u a n t i l e ( 0 . 9 5 )
4 IQR_DWOB = Q3_DWOB − Q1_DWOB
5

6 Q1_SWOB = d f _ t e s t [ ’ Weight on B i t kkgf ’ ] . q u a n t i l e ( 0 . 2 5 )
7 Q3_SWOB = d f _ t e s t [ ’ Weight on B i t kkgf ’ ] . q u a n t i l e ( 0 . 9 5 )
8 IQR_SWOB = Q3_SWOB − Q1_SWOB
9

10 Q1_HKLD = d f _ t e s t [ ’ Average Hookload kkgf ’ ] . q u a n t i l e ( 0 . 2 5 )
11 Q3_HKLD = d f _ t e s t [ ’ Average Hookload kkgf ’ ] . q u a n t i l e ( 0 . 9 0 )
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12 IQR_HKLD = Q3_HKLD − Q1_HKLD
13

14 Q1_STQ = d f _ t e s t [ ’ Average S u r f a c e Torque kNm ’ ] . q u a n t i l e ( 0 . 2 5 )
15 Q3_STQ = d f _ t e s t [ ’ Average S u r f a c e Torque kNm ’ ] . q u a n t i l e ( 0 . 9 5 )
16 IQR_STQ = Q3_STQ − Q1_STQ
17

18 Q1_DTQ = d f _ t e s t [ ’MWD Downhole Torque ’ ] . q u a n t i l e ( 0 . 2 5 )
19 Q3_DTQ = d f _ t e s t [ ’MWD Downhole Torque ’ ] . q u a n t i l e ( 0 . 9 5 )
20 IQR_DTQ = Q3_DTQ − Q1_DTQ
21

22 Q1_ROP = d f _ t e s t [ ’ROP mph ’ ] . q u a n t i l e ( 0 . 2 5 )
23 Q3_ROP = d f _ t e s t [ ’ROP mph ’ ] . q u a n t i l e ( 0 . 9 5 )
24 IQR_ROP = Q3_ROP − Q1_ROP
25

26 Q1_RPM = d f _ t e s t [ ’ Average Ro ta ry Speed rpm ’ ] . q u a n t i l e ( 0 . 2 5 )
27 Q3_RPM = d f _ t e s t [ ’ Average Ro ta ry Speed rpm ’ ] . q u a n t i l e ( 0 . 9 5 )
28 IQR_RPM = Q3_RPM − Q1_RPM
29

30 Q1_LXM = d f _ t e s t [ ’Mud Flow In lpm ’ ] . q u a n t i l e ( 0 . 2 5 )
31 Q3_LXM = d f _ t e s t [ ’Mud Flow In lpm ’ ] . q u a n t i l e ( 0 . 9 5 )
32 IQR_LXM = Q3_LXM − Q1_LXM
33

34 Q1_PPR = d f _ t e s t [ ’ Average S t a n d p i p e P r e s s u r e kPa ’ ] . q u a n t i l e ( 0 . 2 5 )
35 Q3_PPR = d f _ t e s t [ ’ Average S t a n d p i p e P r e s s u r e kPa ’ ] . q u a n t i l e ( 0 . 9 5 )
36 IQR_PPR = Q3_PPR − Q1_PPR
37

38 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_DWOB − 1 . 5 ∗ @IQR_DWOB) <= ‘MWD
Downhole WOB‘ <= (@Q3_DWOB + 1 . 5 ∗ @IQR_DWOB) ’ )

39

40 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_SWOB − 1 . 5 ∗ @IQR_SWOB) <= ‘ Weight
on B i t kkgf ‘ <= (@Q3_SWOB + 1 . 5 ∗ @IQR_SWOB) ’ )

41

42 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_HKLD − 1 . 5 ∗ @IQR_HKLD) <= ‘ Average
Hookload kkgf ‘ <= (@Q3_HKLD + 1 . 5 ∗ @IQR_HKLD) ’ )

43

44 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_STQ − 1 . 5 ∗ @IQR_STQ) <= ‘ Average
S u r f a c e Torque kNm‘ <= (@Q3_STQ + 1 . 5 ∗ @IQR_STQ) ’ )

45

46 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_DTQ − 1 . 5 ∗ @IQR_DTQ) <= ‘MWD
Downhole Torque ‘ <= (@Q3_DTQ + 1 . 5 ∗ @IQR_DTQ) ’ )

47

48 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_ROP − 1 . 5 ∗ @IQR_ROP) <= ‘ROP mph ‘
<= (@Q3_ROP + 1 . 5 ∗ @IQR_ROP) ’ )

49

50 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_RPM − 1 . 5 ∗ @IQR_RPM) <= ‘ Average
Ro ta ry Speed rpm ‘ <= (@Q3_RPM + 1 . 5 ∗ @IQR_RPM) ’ )

51

52 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_LXM − 1 . 5 ∗ @IQR_LXM) <= ‘Mud Flow
In lpm ‘ <= (@Q3_LXM + 1 . 5 ∗ @IQR_LXM) ’ )

53

54 d f _ t e s t = d f _ t e s t . que ry ( ’ (@Q1_PPR − 1 . 5 ∗ @IQR_PPR) <= ‘ Average
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S t a n d p i p e P r e s s u r e kPa ‘ <= (@Q3_PPR + 1 . 5 ∗ @IQR_PPR) ’ )
55

Listing A.5: IQR outlier removal.(only the relevant part of the code is presented)

1

2 d f _ r o l l i n g [ ’ Depth ’ ] = d f _ r o l l i n g [ 0 ] . r o l l i n g ( window =30 , c e n t e r =True
) . mean ( )

3

4 d f _ r o l l i n g [ ’SWOB’ ] = d f _ r o l l i n g [ 1 ] . r o l l i n g ( window =30 , c e n t e r =True )
. mean ( )

5

6 d f _ r o l l i n g [ ’HKLD’ ] = d f _ r o l l i n g [ 2 ] . r o l l i n g ( window =30 , c e n t e r =True )
. mean ( )

7

8 d f _ r o l l i n g [ ’STQ ’ ] = d f _ r o l l i n g [ 3 ] . r o l l i n g ( window =30 , c e n t e r =True ) .
mean ( )

9

10 d f _ r o l l i n g [ ’DWOB’ ] = d f _ r o l l i n g [ 4 ] . r o l l i n g ( window =30 , c e n t e r =True )
. mean ( )

11

12 d f _ r o l l i n g [ ’DTQ’ ] = d f _ r o l l i n g [ 5 ] . r o l l i n g ( window =30 , c e n t e r =True ) .
mean ( )

13

14 d f _ r o l l i n g [ ’RPM’ ] = d f _ r o l l i n g [ 6 ] . r o l l i n g ( window =30 , c e n t e r =True ) .
mean ( )

15

16 d f _ r o l l i n g [ ’LPM’ ] = d f _ r o l l i n g [ 7 ] . r o l l i n g ( window =30 , c e n t e r =True ) .
mean ( )

17

18 d f _ r o l l i n g [ ’SPP ’ ] = d f _ r o l l i n g [ 8 ] . r o l l i n g ( window =30 , c e n t e r =True ) .
mean ( )

19

20 d f _ r o l l i n g [ ’ROP ’ ] = d f _ r o l l i n g [ 9 ] . r o l l i n g ( window =30 , c e n t e r =True ) .
mean ( )

21

22 d f _ r o l l i n g . d ropna ( i n p l a c e = True )
23

Listing A.6: Moving average noise reduction.(only the relevant part of the code is presented)

A.3 Corrected Field Hookload Calculation

1

2 df_hook = d f _ i n t [ [ ’ Depth ’ , ’HKLD’ , ’SWOB’ , ’DWOB’ , ’SPP ’ ] ]
3

4 df_hook . d ropna ( i n p l a c e = True )
5

6 df_hook . r e s e t _ i n d e x ( drop =True , i n p l a c e =True )
7
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8

9 def Wcorr ( Fdl , e ) :
10

11 n=16
12

13 re turn ( Fd l / n ) ∗(1−e∗∗n ) /(1− e )
14

15

16 W_corr_1 = Wcorr ( df_hook [ [ ’HKLD’ ] ] , 0 . 9 6 )
17

18 W_corr_2 = Wcorr ( df_hook [ [ ’HKLD’ ] ] , 0 . 9 7 )
19

20 W_corr_3 = Wcorr ( df_hook [ [ ’HKLD’ ] ] , 0 . 9 8 )
21

22 W_corr_4 = Wcorr ( df_hook [ [ ’HKLD’ ] ] , 0 . 9 9 )
23

24 HL_a_1 = pd . c o n c a t ( [ W_corr_1 , W_corr_2 , W_corr_3 , W_corr_4 ] , a x i s
=1)

25

Listing A.7: Sheave Effect - Inactive Dead-Line Sheave.(only the relevant part of the code is presented)

1

2 d f _ s l i p s = d f _ s l i p s [ [ ’ S l i p s s t a t (1= Out ,0= In ) ’ , ’ Average
Hookload kkgf ’ ] ]

3

4 d f _ s l i p s = d f _ s l i p s . rename ( columns = { ’ Average Hookload kkgf ’ : ’
T r a v e l i n g Block Weight kkgf ’ } )

5

6 d f _ s l i p s . d ropna ( i n p l a c e =True )
7

8 d f _ s l i p s = d f _ s l i p s [ d f _ s l i p s [ ’ S l i p s s t a t (1= Out ,0= In ) ’ ] <=0]
9

10 d f _ s l i p s = d f _ s l i p s [ d f _ s l i p s [ ’ T r a v e l i n g Block Weight kkgf ’ ] .
be tween ( 5 0 , 1 0 0 ) ]

11

12

13 def BLKW( hkld , e ) :
14

15 n=16
16

17 re turn ( hk ld / n ) ∗(1−e∗∗n ) /(1− e )
18

19

20 BLKW_corr_1 = BLKW( d f _ s l i p s [ [ ’ T r a v e l i n g Block Weight kkgf ’ ] ] . min
( ) , 0 . 9 6 )

21

22 BLKW_corr_2 = BLKW( d f _ s l i p s [ [ ’ T r a v e l i n g Block Weight kkgf ’ ] ] . min
( ) , 0 . 9 7 )

23

24 BLKW_corr_3 = BLKW( d f _ s l i p s [ [ ’ T r a v e l i n g Block Weight kkgf ’ ] ] . min
( ) , 0 . 9 8 )
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25

26 BLKW_corr_4 = BLKW( d f _ s l i p s [ [ ’ T r a v e l i n g Block Weight kkgf ’ ] ] . min
( ) , 0 . 9 9 )

27

28 HL_a2 = pd . c o n c a t ( [ BLKW_corr_1 , BLKW_corr_2 , BLKW_corr_3 ,
BLKW_corr_4 ] , a x i s =1)

29

Listing A.8: Static hook load weight.(only the relevant part of the code is presented)

1

2 df_pump = df_hook [ [ ’ Depth ’ , ’SPP ’ ] ] / 6 .89475 # Turn KPa t o p s i
3

4

5 def P r e s s ( P1 ) :
6 Id =4 .67
7 re turn (5 .095∗10∗∗ (−5) ) ∗P1 ∗ ( Id ∗∗2) ∗1 .019716 ## To c o n v e r t from

KdaN t o kkgf
8

9 HL_a_3 = P r e s s ( df_pump [ [ ’SPP ’ ] ] )
10

Listing A.9: Stand pipe pressure effect.(only the relevant part of the code is presented)

1

2 Real_HKLD = df_hook [ [ ’ Depth ’ , ’HKLD’ ] ] # df_hook = d f _ i n t [ [ ’ Depth ’ ,
’HKLD ’ , ’DWOB’ , ’ SPP ’ ] ]

3

4 Real_HKLD [ ’SWOB k i p s ’ ] = ( df_hook [ [ ’SWOB’ ] ] ) ∗2 .2046 # c o n v e r s i o n
from t o n s t o k i p

5

6 Real_HKLD [ ’DWOB k i p s ’ ] = ( df_hook [ [ ’DWOB’ ] ] ) ∗2 .2046 # c o n v e r s i o n
from t o n s t o k i p

7

8 Real_HKLD [ ’HKLD−96% ’ ] = ( HL_a_1 [ ’HKLD_A1 96% kkgf ’ ] − HL_a_2 [ ’TB
E f f e c t 96% ’ ] − HL_a_3 [ ’HKLD_A3 kkgf ’ ] ) ∗2 .2046

9

10 Real_HKLD [ ’HKLD−97% ’ ] = ( HL_a_1 [ ’HKLD_A1 97% kkgf ’ ] − HL_a_2 [ ’TB
E f f e c t 97% ’ ] − HL_a_3 [ ’HKLD_A3 kkgf ’ ] ) ∗2 .2046

11

12 Real_HKLD [ ’HKLD−98% ’ ] = ( HL_a_1 [ ’HKLD_A1 98% kkgf ’ ] − HL_a_2 [ ’TB
E f f e c t 98% ’ ] − HL_a_3 [ ’HKLD_A3 kkgf ’ ] ) ∗2 .2046

13

14 Real_HKLD [ ’HKLD−99% ’ ] = ( HL_a_1 [ ’HKLD_A1 99% kkgf ’ ] − HL_a_2 [ ’TB
E f f e c t 99% ’ ] − HL_a_3 [ ’HKLD_A3 kkgf ’ ] ) ∗2 .2046

15

Listing A.10: Real hook load sensitivity analysis.(only the relevant part of the code is presented)
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A.4 DWOB Calculation via T&D

1

2 def r e a l _ h o o k l o a d ( Surveys , BHA, Buoyancy , WOB) :
3

4 T_D = np . z e r o s ( ( l e n ( Su rveys ) , 1 2 ) )
5

6 f o r i in r e v e r s e d ( range ( 1 , l e n (T_D) ) ) :
7

8 T_D [ i , 0 ] = Surveys [ i , 0 ] # Depth (m)
9

10 T_D [ i , 1 ] = Surveys [ i , 1 ] # I n c l i n a t i o n [ r a d ]
11

12 T_D [ i , 2 ] = Surveys [ i , 2 ] # Azimuth [ r a d ]
13

14 T_D [ i −1 ,3] = ( Surveys [ i , 1 ] + Surveys [ i −1 ,1] ) / 2 # Average
I n c l i n a t i o n ( ( I1 + I2 ) / 2 ) [ r a d ]

15

16 T_D [ i −1 ,4] = Surveys [ i , 1 ] − Surveys [ i −1 ,1] # I n c l i n a t i o n
D i f f ( I2−I1 ) [ r a d ]

17

18 T_D [ i −1 ,5]= Surveys [ i , 2 ] − Surveys [ i −1 ,2] # Azimuth D i f f (
A2−A1 ) [ r a d ]

19

20 T_D [ i −1 ,6]= Surveys [ i , 0 ] − Surveys [ i −1 ,0] # Depth
D i f f e r e n c e ( D2−D1 ) [m]

21

22 i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[ 0 , 0 ] ) : # De te rmine
t h e Weight o f t h e S t r i n g i n each c e l l [N/m]

23

24 T_D [ i −1 ,7]= BHA[ 0 , 3 ] #DD
25 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[ 1 , 0 ] ) :
26

27 T_D [ i −1 ,7]= BHA[ 1 , 3 ] #LWB
28

29 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[1 ,0]−BHA
[ 2 , 0 ] ) :

30

31 T_D [ i −1 ,7]= BHA[ 2 , 3 ] #NMDC
32

33 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[1 ,0]−BHA
[2 ,0]−BHA[ 3 , 0 ] ) :

34

35 T_D [ i −1 ,7]= BHA[ 3 , 3 ] #STB
36

37 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[1 ,0]−BHA
[2 ,0]−BHA[3 ,0]−BHA[ 4 , 0 ] ) :

38

39 T_D [ i −1 ,7]= BHA[ 4 , 3 ] #DC
40



A.4. DWOB CALCULATION VIA T&D 89

41 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[1 ,0]−BHA
[2 ,0]−BHA[3 ,0]−BHA[4 ,0]−BHA[ 5 , 0 ] ) :

42

43 T_D [ i −1 ,7]= BHA[ 5 , 3 ] #DC2
44

45 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[1 ,0]−BHA
[2 ,0]−BHA[3 ,0]−BHA[4 ,0]−BHA[5 ,0]−BHA[ 6 , 0 ] ) :

46

47 T_D [ i −1 ,7]= BHA[ 6 , 3 ] # J a r
48

49 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[1 ,0]−BHA
[2 ,0]−BHA[3 ,0]−BHA[4 ,0]−BHA[5 ,0]−BHA[6 ,0]−BHA[ 7 , 0 ] ) :

50

51 T_D [ i −1 ,7]= BHA[ 7 , 3 ] #DC3
52

53 e l i f Surveys [ i , 0 ] > ( Surveys [−1 ,0]−BHA[0 ,0]−BHA[1 ,0]−BHA
[2 ,0]−BHA[3 ,0]−BHA[4 ,0]−BHA[5 ,0]−BHA[6 ,0]−BHA[7 ,0]−BHA[ 8 , 0 ] ) :

54

55 T_D [ i −1 ,7]= BHA[ 8 , 3 ] #HWDP
56

57 e l s e :
58

59 T_D [ i −1 ,7]= BHA[ 9 , 3 ] #DP
60

61 i f Surveys [ i , 0 ] > 1405 :
62

63 T_D [ i −1 ,8]= F r i c t i o n _ f a c t o r [ 0 ] # OpenHole
64

65 e l s e :
66

67 T_D [ i −1 ,8]= F r i c t i o n _ f a c t o r [ 1 ] # CasedHole
68

69 Inc r emen ta l_down = −WOB # S e t lower boundary c o n d i t i o n [N]
70

71 I n c r e m e n t a l _ u p = −WOB # S e t lower boundary c o n d i t i o n [N]
72

73 R o t a t i n g = −WOB # S e t lower boundary c o n d i t i o n [N]
74

75 f o r i in r e v e r s e d ( range ( l e n (T_D) ) ) :
76

77 T_D [ i , 9 ] = Inc remen ta l_down # I n c r e m e n t a l f o r c e downwards [N]
78 Inc r emen ta l_down += Buoyancy ∗ T_D [ i −1 ,7] ∗ T_D[ i −1 ,6] ∗ cos (

T_D[ i −1 ,3] ) − T_D[ i −1 , 8 ]∗ ( ( ( Inc remen ta l_down ∗T_D [ i −1 ,5]∗ s i n (T_D[ i
−1 ,3] ) ) ∗∗2+( Inc remen ta l_down ∗T_D [ i −1 ,4]+ Buoyancy ∗ T_D [ i −1 ,7] ∗
T_D[ i −1 ,6]∗ s i n ( T_D[ i −1 ,3] ) ) ∗∗2) ∗ ∗ . 5 )

79

80 T_D [ i , 1 0 ] = I n c r e m e n t a l _ u p # I n c r e m e n t a l f o r c e upwards [N]
81 I n c r e m e n t a l _ u p += Buoyancy ∗ T_D [ i −1 ,7] ∗ T_D[ i −1 ,6] ∗ cos (

T_D[ i −1 ,3] ) + T_D[ i −1 , 8 ]∗ ( ( ( I n c r e m e n t a l _ u p ∗T_D [ i −1 ,5]∗ s i n (T_D[ i
−1 ,3] ) ) ∗∗2+( I n c r e m e n t a l _ u p ∗T_D [ i −1 ,4]+ Buoyancy ∗ T_D [ i −1 ,7] ∗ T_D[
i −1 ,6]∗ s i n ( T_D[ i −1 ,3] ) ) ∗∗2) ∗ ∗ . 5 )
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82

83 T_D [ i , 1 1 ] = R o t a t i n g # Hookload when R o t a t i n g [N]
84 R o t a t i n g += Buoyancy ∗ T_D[ i −1 ,7] ∗ T_D[ i −1 ,6] ∗ cos (T_D[ i

−1 ,3] )
85

86 re turn R o t a t i n g / 4 4 4 8 . 2 2 1 6 2 # s t o r e s r e s u l t i n [ k i p s ]
87

Listing A.11: TD Johancsik model for Hookload calculation.(only the relevant part of the code is presented)

1

2 def i n t _ s v y (Y, Z ) :
3

4 A = np . z e r o s ( ( l e n (Y) , 3 ) ) # c r e a t i n g a t a b l e wi th t h e d imens ion of
t h e s u r v e y s

5

6 f o r i in r e v e r s e d ( range ( l e n (Y) ) ) :
7

8 i f Y[ i −1 ,0] <= Z <= Y[ i , 0 ] : # f i n d s t h e p o s i t i o n o f t h e b i t
be tween t h e s u r v e y s

9

10 x = Y[ i , 0 ] − Z
11

12 y = Z − Y[ i −1 ,0]
13

14 i f x < y : # choose t h e c l o s e s t v a l u e ( upper−l ower ) and
e q u a t e s t h e i n c l i n a t i o n and az imu th [ r a d ]

15

16 A[ i , 0 ] = Z
17

18 A[ i , 1 ] = Y[ i , 1 ]
19

20 A[ i , 2 ] = Y[ i , 2 ]
21

22 e l s e :
23

24 A[ i , 0 ] = Z
25

26 A[ i , 1 ] = Y[ i −1 ,1]
27

28 A[ i , 2 ] = Y[ i −1 ,2]
29

30 e l i f Z <= Y[ i , 0 ] : # i f t h e s u r v e y d e p t h i s b i g g e r t h a n t h e b i t
p o s i t i o n , t h e row i s e l i m i n a t e d

31

32 A = np . d e l e t e (A, A[ i , 0 ] , a x i s =0)
33

34 e l s e : # i f t h e b i t d e p t h i s b i g g e r t h a n t h e o t h e r s u r v e y s
depth , copy t h e s u r v e y depth , i n c l i n a t i o n and az imu th

35

36 A[ i , 0 ] = Y[ i , 0 ]
37
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38 A[ i , 1 ] = Y[ i , 1 ]
39

40 A[ i , 2 ] = Y[ i , 2 ]
41

42 re turn A
43

Listing A.12: Trajectory of the well depending on the bit position.(only the relevant part of the code is presented)

1 D = np . z e r o s ( ( l e n (N) , 3 ) )
2

3 f o r i in r e v e r s e d ( range ( l e n (D) ) ) : # i t e r a t e s w i t h i n t h e t a b l e i n
r e v e r s e o r d e r

4

5 D[ i , 0 ] = N[ i , 0 ] # S e t t h e v a l u e o f t h e b i t d e p t h
6

7 D[ i , 1 ] = N[ i , 1 ] # I n i t i a l l y s e t t h e v a l u e o f t h e WOB wi th t h e
SWOB, which w i l l be changed , i f we don ’ t meet t h e e v a l u a t i o n
c r i t e r i a

8 T r a j e c t = i n t _ s v y (Y,D[ i , 0 ] ) #Run t h e t r a j e c t o r y f u n c t i o n f o r
each b i t d e p t h

9

10 Rot = r e a l _ h o o k l o a d ( T r a j e c t , BHA, Buoyancy , D[ i , 1 ] ) #Run t h e
T&D f u n c t i o n f o r each b i t depth , r e t u r n s a Hooklad

11

12 D[ i , 2 ] = Rot # S t o r e s t h e v a l u e o f t h e Hook l o a d f o r t h e
c o n d i t i o n s t a t e d above [ k i p s ]

13

14 whi le abs (D[ i ,2]−C[ i , 1 ] ) > . 5 : # While t h e d i f f e r e n c e between
t h e c a l c u l a t e d and c o r r e c t e d v a l u e i s b i g g e r t h a n . 5 [ k i p s ]

15

16 i f (D[ i ,2]−C[ i , 1 ] ) > 0 : # C a l c u l a t e d v a l u e by T&D i s
b i g g e r t h a n t h e c o r r e c t e d v a l u e

17

18 D[ i , 1 ] += 4 4 4 8 . 2 2 1 6 2 / 4 # I n c r e a s e WOB 0 . 2 5 [ k i p s ]
19 e l s e :
20

21 D[ i , 1 ] −= 4 4 4 8 . 2 2 1 6 2 / 4 # D e c r e a s e WOB 0 . 2 5 [ k i p s ]
22 Rot = r e a l _ h o o k l o a d ( T r a j e c t , BHA, Buoyancy , D[ i , 1 ] )
23

24 D[ i , 2 ] = Rot
25

Listing A.13: Iterate and obtain values for various depths and different DWOB’s.(only the relevant part of the
code is presented)
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A.5 Random Forest and K-Nearest Neighbors Methods

1

2 sample s = np . z e r o s ( ( l e n ( d f2 ) , 6 ) )
3

4 r e s u l t s = np . z e r o s ( ( l e n ( d f2 ) ) )
5

6 f o r i in range ( l e n ( samples1 ) ) :
7

8 samples1 [ i , 0 ] = df2 [ i , 0 ] # Depth
9

10 samples1 [ i , 1 ] = df2 [ i , 4 ] #DWOB
11

12 samples1 [ i , 2 ] = df2 [ i , 2 ] #HKLD
13

14 samples1 [ i , 3 ] = df2 [ i , 5 ] #DTQ
15

16 samples1 [ i , 4 ] = df2 [ i , 6 ] #RPM
17

18 samples1 [ i , 5 ] = df2 [ i , 8 ] #SPP
19

20 r e s u l t s 1 [ i ] = df2 [ i , 9 ] #ROP
21

Listing A.14: Parameters selected for ensemble model and KNN.(only the relevant part of the code is presented)

1

2 X1 = samples
3

4 y1 = r e s u l t s
5

6 p a r a m _ l i s t 1 = { " n _ e s t i m a t o r s " : [ 1 0 , 3 0 , 5 0 , 7 0 ] , " max_depth " :
[ 1 0 , 2 0 , 3 0 ] }

7

8 RFR_model = RandomFores tReg re s so r ( r a n d o m _ s t a t e = 0)
9

10 g r i d _ s e a r c h 1 = GridSearchCV ( RFR_model , p a r a m _ g r i d = p a r a m _ l i s t 1 ,
cv =10 , s c o r i n g = ’ r2 ’ , n _ j o b s =4) . f i t ( X1 , y1 )

11

12 p r i n t ( " Bes t p a r a m e t e r s RandomForest : " , g r i d _ s e a r c h 1 .
b e s t _ e s t i m a t o r _ )

13

14 p r i n t ( " Bes t s c o r e RFR : " , g r i d _ s e a r c h 1 . b e s t _ s c o r e _ )
15

Listing A.15: Hyperparameter tuning RF.(only the relevant part of the code is presented)

1

2 p a r a m _ l i s t 2 = { " n _ n e i g h b o r s " : [ 3 , 5 , 1 1 ] , " w e i g h t s " : [ ’ d i s t a n c e ’ , ’
un i fo rm ’ ] , " a l g o r i t h m " : [ ’ a u t o ’ , ’ b a l l _ t r e e ’ , ’ k d _ t r e e ’ , ’ b r u t e ’ ] }

3
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4 KNR_model = KN e ig h bo r sR e g r e s s o r ( )
5

6 g r i d _ s e a r c h 2 = GridSearchCV ( KNR_model , p a r a m _ g r i d = p a r a m _ l i s t 2 ,
cv =10 , s c o r i n g = ’ r2 ’ , n _ j o b s =4) . f i t ( X1 , y1 )

7

8 p r i n t ( " Bes t p a r a m e t e r s KNR: " , g r i d _ s e a r c h 2 . b e s t _ e s t i m a t o r _ )
9

10 p r i n t ( " Bes t s c o r e KNR: " , g r i d _ s e a r c h 2 . b e s t _ s c o r e _ )
11

Listing A.16: Hyperparameter tuning KNN.(only the relevant part of the code is presented)

1

2 # C r e a t e t r a i n and t e s t d a t a s e t w i th an 60 :40 s p l i t
3

4 x _ t r a i n , x _ t e s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t ( samples ,
r e s u l t s , t e s t _ s i z e = 0 . 4 , r a n d o m _ s t a t e = 0 , s h u f f l e = True )

5

6 # F u r t h e r d i v i d e t r a i n i n g d a t a s e t i n t o t r a i n and v a l i d a t i o n
d a t a s e t w i th an 80 :20 s p l i t

7 x _ t r a i n , x_va l , y _ t r a i n , y _ v a l = t r a i n _ t e s t _ s p l i t ( x _ t r a i n , y _ t r a i n
, t e s t _ s i z e = 0 . 2 , r a n d o m _ s t a t e = 0 , s h u f f l e = True )

8

Listing A.17: Data "random sampling".(only the relevant part of the code is presented)

1

2 # C r e a t e t r a i n and t e s t d a t a s e t w i th an 60 :40 s p l i t
3

4 x _ t r a i n , x _ t e s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t ( samples ,
r e s u l t s , t e s t _ s i z e = 0 . 4 , r a n d o m _ s t a t e = 0 , s h u f f l e = F a l s e )

5

6 # F u r t h e r d i v i d e t r a i n i n g d a t a s e t i n t o t r a i n and v a l i d a t i o n
d a t a s e t w i th an 80 :20 s p l i t

7 x _ t r a i n , x_va l , y _ t r a i n , y _ v a l = t r a i n _ t e s t _ s p l i t ( x _ t r a i n , y _ t r a i n
, t e s t _ s i z e = 0 . 2 , r a n d o m _ s t a t e = 0 , s h u f f l e = F a l s e )

8

Listing A.18: Data "sequential sampling".(only the relevant part of the code is presented)

1

2 def e v a l u a t e _ m o d e l ( r f , x _ t r a i n , x_va l , x _ t e s t , y _ t r a i n , y_va l ,
y _ t e s t ) :

3

4 r f . f i t ( x _ t r a i n , y _ t r a i n )
5

6 v a l i d a t i o n = r f . p r e d i c t ( x _ v a l )
7

8 p r e d i c t i o n s = r f . p r e d i c t ( x _ t e s t )
9

10 p l t . f i g u r e ( f i g s i z e = ( 6 , 6 ) )
11
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12 e _ v a l = np . abs ( v a l i d a t i o n − y _ v a l )
13

14 e r r o r s = np . abs ( p r e d i c t i o n s − y _ t e s t )
15

16 p r i n t ( ’Mean A b s o l u t e E r r o r _ v a l : ’ , round ( np . mean ( e _ v a l ) , 10) ,
’ u n i t s ’ )

17

18 p r i n t ( ’Mean A b s o l u t e E r r o r : ’ , round ( np . mean ( e r r o r s ) , 10) , ’
u n i t s ’ )

19

20 p r i n t ( f ’ MSE_val = { m e a n _ s q u a r e d _ e r r o r ( y_val , v a l i d a t i o n ) } ’ )
21

22 p r i n t ( f ’MSE = { m e a n _ s q u a r e d _ e r r o r ( y _ t e s t , p r e d i c t i o n s ) } ’ )
23

24 p r i n t ( f ’ R2_val = { r 2 _ s c o r e ( y_val , v a l i d a t i o n ) } ’ )
25

26 p r i n t ( f ’R2 = { r 2 _ s c o r e ( y _ t e s t , p r e d i c t i o n s ) } ’ )
27

28 p l t . s c a t t e r ( y _ t e s t , p r e d i c t i o n s , s =2 , c=" b l a c k " , l a b e l =" Data
sample " , a l p h a =1)

29

30 p l t . p l o t ( [ 0 , np . max ( [ y _ t e s t , p r e d i c t i o n s ] ) ] , [ 0 , np . max ( [ y _ t e s t ,
p r e d i c t i o n s ] ) ] , c=" r e d " , l i n e w i d t h =1 , l i n e s t y l e ="−. " , l a b e l ="
p e r f e c t p r e d i c t i o n " )

31

32

33 p l t . x l a b e l ( " T r u t h " )
34

35 p l t . y l a b e l ( " Model " )
36

37 p l t . l e g e n d ( )
38

39 p l t . g r i d ( )
40

41 p l t . t e x t ( 0 . 0 6 1 , 0 . 0 0 1 , f ’$R^2 $ = { np . round ( r 2 _ s c o r e ( y _ t e s t ,
p r e d i c t i o n s ) , 3 ) } ’ )

42

43 re turn
44

Listing A.19: Data evaluation code.(only the relevant part of the code is presented)

1

2 r f = RandomFores tRegre s so r ( n _ e s t i m a t o r s = 70 , r a n d o m _ s t a t e = 0 ,
max_depth =30)

3

4 e v a l u a t e _ m o d e l ( r f , x _ t r a i n , x_va l , x _ t e s t , y _ t r a i n , y_va l , y _ t e s t
)

5

Listing A.20: Random Forest Regressor.(only the relevant part of the code is presented)
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1

2 r f = KN e ig h bo r sR e g r e s s o r ( a l g o r i t h m = ’ b r u t e ’ , l e a f _ s i z e =30 , m e t r i c =
’ minkowski ’ , n _ n e i g h b o r s =3 , w e i g h t s = ’ d i s t a n c e ’ )

3

4 e v a l u a t e _ m o d e l ( r f , x _ t r a i n , x_va l , x _ t e s t , y _ t r a i n , y_va l , y _ t e s t
)

5

Listing A.21: K-Nearest Neighbors Regressor.(only the relevant part of the code is presented)

A.6 Artificial Neural Networks

1

2 s c a l e r =MinMaxScaler ( f e a t u r e _ r a n g e = ( 0 , 1 ) )
3

4 d f _ v a l u e s = d f _ i n t . v a l u e s #numpy a r r a y
5

6 d f _ v a l u e s _ s c a l e d = s c a l e r . f i t _ t r a n s f o r m ( d f _ v a l u e s )
7

8 d a t a s e t = pd . DataFrame ( d f _ v a l u e s _ s c a l e d )
9

Listing A.22: Feature Scaling.(only the relevant part of the code is presented)

1

2 X = d a t a s e t . i l o c [ : , : 7 ] . v a l u e s # F e a t u r e s : ’ Depth ’ , ’ Hookload kkgf ’ ,
’ Downhole Weight on B i t kkgf ’ , ’ Average Downhole Torque kNm ’ , ’

Average Ro ta ry Speed rpm ’ , ’ Average S t a n d p i p e P r e s s u r e kPa ’ .
3

4 y = d a t a s e t . i l o c [ : , 7 : 8 ] . v a l u e s # L a b e l s : ’ROP mph ’
5

6 # C r e a t e t r a i n and t e s t d a t a s e t w i th an 60 :40 s p l i t
7 x _ t r a i n , x _ t e s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e

= 0 . 4 , r a n d o m _ s t a t e = 0 , s h u f f l e = True )
8

9 # F u r t h e r d i v i d e t r a i n i n g d a t a s e t i n t o t r a i n and v a l i d a t i o n d a t a
s e t w i th an 80 :20 s p l i t

10 x _ t r a i n , x_va l , y _ t r a i n , y _ v a l = t r a i n _ t e s t _ s p l i t ( x _ t r a i n , y _ t r a i n
, t e s t _ s i z e = 0 . 2 , r a n d o m _ s t a t e = 0 , s h u f f l e = True )

11

Listing A.23: Data "random sampling".(only the relevant part of the code is presented)

1

2 X = d a t a s e t . i l o c [ : , : 7 ] . v a l u e s # F e a t u r e s : ’ Depth ’ , ’ Hookload kkgf ’ ,
’ Downhole Weight on B i t kkgf ’ , ’ Average Downhole Torque kNm ’ , ’

Average Ro ta ry Speed rpm ’ , ’ Average S t a n d p i p e P r e s s u r e kPa ’ .
3

4 y = d a t a s e t . i l o c [ : , 7 : 8 ] . v a l u e s # L a b e l s : ’ROP mph ’
5
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6 # C r e a t e t r a i n and t e s t d a t a s e t w i th an 60 :40 s p l i t
7 x _ t r a i n , x _ t e s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e

= 0 . 4 , r a n d o m _ s t a t e = 0 , s h u f f l e = F a l s e )
8

9 # F u r t h e r d i v i d e t r a i n i n g d a t a s e t i n t o t r a i n and v a l i d a t i o n d a t a
s e t w i th an 80 :20 s p l i t

10 x _ t r a i n , x_va l , y _ t r a i n , y _ v a l = t r a i n _ t e s t _ s p l i t ( x _ t r a i n , y _ t r a i n
, t e s t _ s i z e = 0 . 2 , r a n d o m _ s t a t e = 0 , s h u f f l e = F a l s e )

11

Listing A.24: Data "sequential sampling".(only the relevant part of the code is presented)

1

2 model = S e q u e n t i a l ( )
3

4 model . add ( Dense ( 3 0 , i n p u t _ d i m = x _ t r a i n . shape [ 1 ] , a c t i v a t i o n = ’ r e l u ’ ) )
5

6 model . add ( Dropout ( 0 . 2 ) )
7

8 model . add ( Dense ( 3 0 , a c t i v a t i o n = ’ r e l u ’ ) )
9

10 model . add ( Dropout ( 0 . 2 ) )
11

12 model . add ( Dense ( 1 , a c t i v a t i o n = ’ r e l u ’ ) )
13

14 model . compi le ( o p t i m i z e r = ’ adam ’ , l o s s =" mse " , m e t r i c s =[ "
m e a n _ s q u a r e d _ e r r o r " , rmse , r _ s q u a r e ] )

15

16 # c a l l b a c k s
17 s t o p = E a r l y S t o p p i n g ( m o n i t o r = ’ v a l _ l o s s ’ , p a t i e n c e =5)
18

19 r e s u l t = model . f i t ( x _ t r a i n , y _ t r a i n , v a l i d a t i o n _ d a t a =( x_val , y _ v a l )
, epochs =100 , b a t c h _ s i z e =32 , c a l l b a c k s =[ s t o p ] )

20

21 y_pred = model . p r e d i c t ( x _ t e s t )
22

Listing A.25: Artificial Neural Network Architecture.(only the relevant part of the code is presented)

1

2 p r i n t ( "Mean a b s o l u t e e r r o r (MAE) : %f " % s k l e a r n . m e t r i c s .
m e a n _ a b s o l u t e _ e r r o r ( y _ t e s t , y_pred ) )

3 p r i n t ( "R s q u a r e (R^2) : %f " % s k l e a r n . m e t r i c s . r 2 _ s c o r e ( y _ t e s t ,
y_pred ) )

4

Listing A.26: Model results.(only the relevant part of the code is presented)
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A.7 Long Short Term Memory

1

2 s c a l e r =MinMaxScaler ( f e a t u r e _ r a n g e = ( 0 , 1 ) )
3

4 d f _ v a l u e s = d f _ c a l c _ d o w n h o l e _ t e s t . v a l u e s # d a t a s e t used f o r model
5

6 d f _ v a l u e s _ s c a l e d = s c a l e r . f i t _ t r a n s f o r m ( d f _ v a l u e s )
7

8 d f _ s c a l e d = pd . DataFrame ( d f _ v a l u e s _ s c a l e d )
9

10 d f _ s c a l e d . head ( )
11

Listing A.27: Feature Scaling.(only the relevant part of the code is presented)

1

2 # s p l i t i n t o t r a i n i n g and t e s t i n g s e t s
3

4 v a l u e s = r e f r a m e d 1 . v a l u e s
5

6 t e s t _ p c t = 0 . 4∗ l e n ( r e f r a m e d 1 ) # p e r c e n t a g e o f d a t a a s s i g n e d f o r
t e s t i n g

7

8 t r a i n = v a l u e s [ : round ( l e n ( r e f r a m e d 1 )− t e s t _ p c t ) , : ]
9

10 t e s t = v a l u e s [ round ( l e n ( r e f r a m e d 1 )− t e s t _ p c t ) : , : ]
11

Listing A.28: Data selected for LSTM model.(only the relevant part of the code is presented)

1

2 # s p l i t i n t o i n p u t and o u t p u t s
3

4 samples_n = n _ s t e p s ∗ n _ f e a t u r e s
5

6 x _ t r a i n , y _ t r a i n = t r a i n [ : , : s amples_n ] , t r a i n [ : , −1]
7

8 x _ t e s t , y _ t e s t = t e s t [ : , : s amples_n ] , t e s t [ : , −1]
9

10 p r i n t ( x _ t r a i n . shape , l e n ( x _ t r a i n ) , y _ t r a i n . shape )
11

Listing A.29: Splitting the data.(only the relevant part of the code is presented)

1

2 # r e s h a p e i n p u t t o be 3D [ samples , t i m e s t e p s , f e a t u r e s ]
3

4 x _ t r a i n = x _ t r a i n . r e s h a p e ( ( x _ t r a i n . shape [ 0 ] , n _ s t e p s , n _ f e a t u r e s )
)
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5

6 x _ t e s t = x _ t e s t . r e s h a p e ( ( x _ t e s t . shape [ 0 ] , n _ s t e p s , n _ f e a t u r e s ) )
7

8 p r i n t ( x _ t r a i n . shape , y _ t r a i n . shape , x _ t e s t . shape , y _ t e s t . shape )
9

10

Listing A.30: Reshaping the data.(only the relevant part of the code is presented)

1

2 model = S e q u e n t i a l ( )
3

4 model . add (LSTM( 3 0 , i n p u t _ s h a p e =( x _ t r a i n . shape [ 1 ] , x _ t r a i n . shape
[ 2 ] ) ) )

5

6 model . add ( Dropout ( 0 . 2 ) )
7

8 model . add ( Dense ( 1 ) )
9

10 model . compi le ( l o s s = ’ m e a n _ s q u a r e d _ e r r o r ’ , o p t i m i z e r = ’ adam ’ )
11

12 # c a l l b a c k s
13

14 s t o p = E a r l y S t o p p i n g ( m o n i t o r = ’ v a l _ l o s s ’ , p a t i e n c e =5)
15

16 # f i t ne twork
17

18 h i s t o r y = model . f i t ( x _ t r a i n , y _ t r a i n , epochs =100 , b a t c h _ s i z e =32 ,
v a l i d a t i o n _ d a t a =( x _ t e s t , y _ t e s t ) , v e r b o s e =2 , s h u f f l e = F a l s e ,
c a l l b a c k s =[ s t o p ] )

19

Listing A.31: LSTM model.(only the relevant part of the code is presented)

1

2 # p r e d i c t i o n
3

4 ypred = model . p r e d i c t ( x _ t e s t )
5

6 x _ t e s t = x _ t e s t . r e s h a p e ( ( x _ t e s t . shape [ 0 ] , n _ s t e p s ∗ n _ f e a t u r e s ) )
7

8 # f o r e c a s t i n v e r s e _ t r a n s f o r m
9 y p r e d _ s c a l e d = np . c o n c a t e n a t e ( ( x _ t e s t [ : , −6:] , yp red ) , a x i s =1)

10

11 y p r e d _ s c a l e d = s c a l e r . i n v e r s e _ t r a n s f o r m ( y p r e d _ s c a l e d )
12

13 y p r e d _ s c a l e d = y p r e d _ s c a l e d [ : , 6 ]
14

15 y p r e d _ s c a l e d . shape
16

17 # t e s t i n v e r s e _ t r a n s f o r m
18



A.7. LONG SHORT TERM MEMORY 99

19 y _ t e s t = y _ t e s t . r e s h a p e ( ( l e n ( y _ t e s t ) , 1 ) )
20

21 y _ s c a l e d = np . c o n c a t e n a t e ( ( x _ t e s t [ : , −6:] , y _ t e s t ) , a x i s =1)
22

23 y _ s c a l e d = s c a l e r . i n v e r s e _ t r a n s f o r m ( y _ s c a l e d )
24

25 y _ s c a l e d = y _ s c a l e d [ : , 6 ]
26

27 y _ s c a l e d . shape
28

Listing A.32: Invert scaling information.(only the relevant part of the code is presented)

1

2 p r i n t ( "Mean a b s o l u t e e r r o r (MAE) : %.4 f " % s k l e a r n . m e t r i c s .
m e a n _ a b s o l u t e _ e r r o r ( y _ s c a l e d , y p r e d _ s c a l e d ) )

3

4 p r i n t ( "R s q u a r e (R^2) : %.4 f " % s k l e a r n . m e t r i c s . r 2 _ s c o r e ( y _ s c a l e d ,
y p r e d _ s c a l e d ) )

5

Listing A.33: Model results.(only the relevant part of the code is presented)

1

2 f , ax = p l t . s u b p l o t s ( f i g s i z e =(15 , 7 ) )
3

4 p l t . p l o t ( d f _ i n t [ ’ Depth ’ ] , d f _ i n t [ ’ROP ’ ] , c= ’ r ’ , l a b e l = ’ Measured ROP
’ )

5

6 p l t . p l o t ( inv_x [ : , 0 ] , y p r e d _ s c a l e d [ : ] , c= ’ b ’ , l a b e l = ’ P r e d i c t e d ROP ’
)

7

8 ax . t e x t ( 1 9 1 0 , 15 , f ’$R^2 $ = { np . round ( r 2 _ s c o r e ( y _ t e s t , yp red ) , 3 ) } ’
)

9

10 ax . s e t _ x l a b e l ( ’ Depth [m] ’ )
11

12 ax . s e t _ y l a b e l ( ’ROP [m/ h ] ’ )
13

14 ax . x a x i s . s e t _ t i c k s _ p o s i t i o n ( ’ t o p ’ )
15

16 ax . x a x i s . s e t _ l a b e l _ p o s i t i o n ( ’ t o p ’ )
17

18 p l t . l e g e n d ( )
19

20 p l t . g r i d ( )
21

22 p l t . show ( )
23

Listing A.34: Plotting the model results.(only the relevant part of the code is presented)
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1

2 def l s t m ( t e s t ) :
3

4 r e s h a p e = t e s t . r e s h a p e ( ( 1 , 3 , 7 ) ) # Reshape i n p u t a r r a y
5 h a t 1 = model . p r e d i c t ( r e s h a p e ) # P r e d i c t ROP
6

7 re turn h a t 1
8

Listing A.35: Model evaluation function.(only the relevant part of the code is presented)

1

2 # p r e d i c t i n g ROP f o r ( t ) u s i n g ( t −1) " p r e d i c t e d " v a l u e and
knowing ROP ( t −2) and ( t −3)

3

4 T e s t 1 = np . z e r o s ( ( l e n ( x _ t e s t ) , 2 1 ) )
5

6 h a t 1 = np . z e r o s ( ( l e n ( x _ t e s t ) , 1 ) )
7

8 f o r i in range ( l e n ( T e s t ) ) :
9

10 i f i < 1 :
11

12 T e s t 1 [ i ] = np . c o n c a t e n a t e ( ( x _ t e s t [ i , :−1] , y _ t r a i n [ [ −1 ] ] )
)

13

14 h a t 1 [ i ] = l s t m ( T e s t 1 [ i ] )
15

16 e l s e :
17

18 T e s t 1 [ i ] = np . c o n c a t e n a t e ( ( x _ t e s t [ i , :−1] , h a t [ i −1]) )
19

20 h a t 1 [ i ] = l s t m ( T e s t 1 [ i ] )
21

Listing A.36: LSTM performance test #1.(only the relevant part of the code is presented)

1

2 # p r e d i c t i n g ROP f o r ( t ) u s i n g ( t −1) and ( t −2) " p r e d i c t e d " v a l u e s
and knowing ROP ( t −3)

3

4 T e s t 2 = np . z e r o s ( ( l e n ( x _ t e s t ) , 2 1 ) )
5

6 I n p u t 2 = np . z e r o s ( ( l e n ( x _ t e s t ) , 2 1 ) )
7

8 h a t 2 = np . z e r o s ( ( l e n ( x _ t e s t ) , 1 ) )
9

10 f o r i in range ( l e n ( T e s t ) ) :
11

12 T e s t 2 [ i ] = x _ t e s t [ i , : ]
13

14 i f i < 1 :
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15 I n p u t 2 [ i ] = np . c o n c a t e n a t e ( ( T e s t 2 [ i , :−1] , y _ t r a i n [ [ −1 ] ] )
)

16

17 h a t 2 [ i ] = l s t m ( I n p u t 2 [ i ] )
18 e l s e :
19

20 I n p u t 2 [ i ] = np . c o n c a t e n a t e ( ( x _ t e s t [ i , : 7 ] , I n p u t 2 [ i −1,
1 4 : ] , x _ t e s t [ i , 14:−1] , h a t 2 [ i −1]) )

21

22 h a t 2 [ i ] = l s t m ( I n p u t 2 [ i ] )
23

Listing A.37: LSTM performance test #2.(only the relevant part of the code is presented)

1

2 # p r e d i c t i n g ROP f o r ( t ) u s i n g ( t −1) , ( t −2) and ( t −3) " p r e d i c t e d "
v a l u e s

3

4 T e s t 3 = np . z e r o s ( ( l e n ( x _ t e s t ) , 2 1 ) )
5

6 I n p u t 3 = np . z e r o s ( ( l e n ( x _ t e s t ) , 2 1 ) )
7

8 h a t 3 = np . z e r o s ( ( l e n ( x _ t e s t ) , 1 ) )
9

10 f o r i in range ( l e n ( T e s t ) ) :
11

12 T e s t 3 [ i ] = x _ t e s t [ i , : ]
13

14 i f i < 1 :
15 I n p u t 3 [ i ] = np . c o n c a t e n a t e ( ( T e s t 3 [ i , :−1] , y _ t r a i n [ [ −1 ] ] )

)
16

17 h a t 3 [ i ] = l s t m ( I n p u t 3 [ i ] )
18 e l s e :
19

20 I n p u t 3 [ i ] = np . c o n c a t e n a t e ( ( x _ t e s t [ i , : 7 ] , I n p u t 3 [ i −1,
1 4 : ] , x _ t e s t [ i , 14:−1] , h a t 3 [ i −1]) )

21

22 h a t 3 [ i ] = l s t m ( I n p u t 3 [ i ] )
23

Listing A.38: LSTM performance test #3.(only the relevant part of the code is presented)
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LSTM Performance Test Plots

B.1 LSTM Test #1

Figure B.1: LSTM model Test #1 results.
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B.2 LSTM Test #2

Figure B.2: LSTM model Test #2 results.

B.3 LSTM Test #3

Figure B.3: LSTM model Test #3 results.
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