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a b s t r a c t

We study Wick-rotations of left-invariant metrics on Lie groups, using results from real
GIT (Helleland and Hervik, 2018; Helleland and Hervik, 2019). An invariant for Wick-
rotation of Lie groups is given, and we describe when a pseudo-Riemannian Lie group
(a Lie group with a left-invariant metric) can be Wick-rotated to a Riemannian Lie group.
We define a Cartan involution of a general Lie algebra, and prove a general version of
É. Cartan’s result, namely the existence and conjugacy of Cartan involutions.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is motivated first of all by the study of Wick-rotations of pseudo-Riemannian manifolds defined in [3].
Given a pseudo-Riemannian manifold (M, g) of signature (p, q), it is interesting know whether it can be Wick-rotated to
another space (M̃, g̃) (w.r.t. a fixed point p ∈ M ∩ M̃) of signature p̃ + q̃ = p + q. In [2–4] the isometry action of the
pseudo-orthogonal group O(p, q) acting on tensors restricted to p is explored. For instance it is proved that if p̃ = 0 (i.e. g̃
is Riemannian) then there is a Cartan involution of the metric θ ∈ O(p, q) (at p) which fixes the Riemann tensor R under
the isometry action, i.e. θ · R = R. Thus (M, g) is Riemann purely electric (RPE) at p. More generally it is proved that for
a space to be purely electric (respectively purely magnetic) or (RPE) (respectively Riemann purely magnetic) is preserved
under a Wick-rotation at a common fixed point p.

A particular subclass of Wick-rotations which is of interest in its own right and deserves to be explored, is the class
of Lie groups G equipped with left-invariant metrics, so called pseudo-Riemannian Lie groups. If we look at a semi-simple
complex Lie group GC equipped with the left-invariant Killing form: −κ , then there are natural examples of Wick-rotations
o find at the identity point, simply because there exist real forms. Moreover by the theory of semi-simple Lie groups, one
ay always Wick-rotate a real form (G,−κ) ⊂ (GC,−κ) to a Riemannian Lie group, simply because of the existence of a
artan involution of the Lie algebra g. Thus motivated by this example, then for a general pseudo-Riemannian Lie group
G, g), an interesting question one may ask:

Given a pseudo-Riemannian Lie group (G, g), when can it be Wick-rotated to a Riemannian Lie group (G̃, g̃)?
Suppose (G, g) is Wick-rotated to a Riemannian Lie group (G̃, g̃), then in view of the results given in [2–4], then the

so called Wick-rotatable tensors restricted to g must be fixed by the isometry action (induced from the metric) of some
(linear) Cartan involution θ ∈ O(p, q) of the metric. This could for instance be the Riemann tensor R (as mentioned above),
and is related to the fact that R can be embedded into the same complex orbit as R̃ (the Riemann tensor of (G̃, g̃) restricted
to g̃), i.e.

O(p + q,C) · R ∋ R̃.
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However some tensors for a left-invariant metric (for instance the Levi-Civita connection, the Riemann tensor and so
on) are very interlinked with the Lie bracket of the Lie algebra g. Moreover in the semi-simple case (equipped with the
eft-invariant Killing form) such tensors are naturally fixed by the Cartan involutions of the Lie algebra: θ ∈ Aut(g). For
xample the Levi-Civita connection is given by: ∇xy =

1
2 [x, y], thus naturally θ · ∇xy = ∇xy.

The author of this paper therefore pondered about the existence of a Cartan involution: θ ∈ Aut(g), for a general
eft-invariant metric (on a general Lie group G) which can be Wick-rotated to a Riemannian Lie group G̃.

We prove an invariant for Wick-rotations of Lie groups, and give a complete answer to the question above, where we
how that the answer is precisely related to the existence of a Cartan involution of the Lie algebra. Our main result of
his paper is Theorem 3.1:

heorem A. Suppose (G, g) is a pseudo-Riemannian Lie group that can be Wick-rotated to another Lie group (G̃, g̃). Then there
xists a Cartan involution of g if and only if there exists a Cartan involution of g̃.

We begin this paper by defining every notion we shall use throughout, and recall the definitions of Wick-rotations
n [3]. Some new definitions are also given, in particular we define a Wick-rotation of a Lie group, and a Cartan involution
f a general Lie algebra. We also state the results we use from [4], which makes the proofs easier to follow.

emark 1.1. In this paper a Riemannian space shall always denote the signature: (+,+, . . . ,+), and a Lorentzian
pace shall denote the signature: (+,+, . . . ,+,−) and so on. The anti-isometry map g ↦→ −g induces an isomorphism
(p, q) ∼= O(q, p). If we change signature via this anti-isometry map, then our results in this paper will be related precisely
ia this map as well. Moreover using a right-invariant metric instead of a left-invariant metric does not change the results
f this paper.

Conventions: Throughout this paper κ shall denote the Killing form of a Lie algebra. A product of vector spaces V × V
hall often be denoted by just V 2. A complex Lie group shall always be denoted by the symbol: GC.

. Preliminaries

.1. Real forms and left-invariant metrics

In this paper a real Lie group G shall be said to be an immersive real form of a complex Lie group GC, if there is a real
mmersion G → GC (of Lie groups) where GC is viewed as a real Lie group, such that g is embedded as a real form of
C (the Lie algebra of GC). If the immersion is also injective then we shall call G a virtual real form. A virtual real form G
hich is also an embedding (i.e. the image of G is closed in GC), we shall say that the real form is an embedded real form.
n embedded real form which also satisfies: GC

= G · GC
0 (abstract group product) shall be said to be a real form.

Note that a connected embedded real form is also a real form. All these specialised ‘‘complexifications’’ divide the Lie
roups into different classes. For instance if G is a connected semi-simple Lie group, then it is a fact that G is a virtual
eal form if and only if G is linear.

One shall note that given any 1-connected real Lie group G, then we can complexify the Lie algebra via an inclusion i:
↪→ gC. We can find a complex 1-connected Lie group: GC with Lie algebra gC. One can find a smooth map (of real Lie

groups): G → GC with differential i, thus G is an immersive real form of GC.
We shall abuse notation and write G ⊂ GC for an immersive real form.

Example 2.1. Consider the complex orthogonal group: O(4,C), then the map: g ↦→ I3,1gI3,1, is a conjugation map (i.e. the
differential is a conjugation map), where (I3,1)ii = +1 for 1 ≤ i ≤ 2, (I3,1)33 = −1 and zero otherwise. The fix points of
his map are just O(1, 3), which is an example of a real form of O(4,C). Consider the universal covering group G := S̃L2(R)
f SL2(R), then it is a fact that G is not a virtual real form of any complex Lie group. However G is an immersive real form
f SL2(C).

Let G be a real Lie group, then a left-invariant metric g on G is a pseudo-Riemannian metric satisfying:

ggh(Lgh∗ (xh), Lgh∗ (yh)) = gh(xh, yh),∀g, h ∈ G, ∀xh, yh ∈ ThG,

here Lg∗ is the push-forward of the translation map: G
Lg
−→ G: h ↦→ gh. Instead of writing ge(−,−) for the metric at the

dentity point, we simply write just g(−,−). A bi-invariant metric g on a real Lie group G is a left-invariant metric which
s also right-invariant i.e. Lg above is replaced with Rg : h ↦→ hg .

On a real vector space V a symmetric non-degenerate bilinear form g shall be referred to as a pseudo-inner product,
nd an inner product in the case of positive definite. A pair (V , g) shall be referred to as a pseudo-inner product space
respectively inner product space). If we have a Lie algebra g with a pseudo-inner product g which satisfies:

g([x, y], z) = g(x, [y, z]), x, y, z ∈ g,

hen g shall be called invariant. Such a pair: (g, g) is called a quadratic Lie algebra. For example the pair:
(
sl2(R),−κ

)
is

quadratic Lie algebra, however the 3-dimensional Heisenberg Lie algebra: h (R), is never a quadratic Lie algebra. We
3
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recall that an ideal I◁ g is called non-degenerate if g = I⊕ I⊥ w.r.t. the invariant form g . In the case that g is a reductive
Lie algebra, then all ideals are in fact non-degenerate.

A holomorphic inner product gC on a complex vector space VC shall be a symmetric non-degenerate complex bilinear
form. The definitions of left-invariance and so on above are analogous in the case of a complex Lie group equipped with
a holomorphic metric.

Definition 2.1. A real Lie group G equipped with a left-invariant metric g , denoted (G, g) shall be called a pseudo-
Riemannian Lie group. If g is also a Riemannian metric then the pair (G, g) shall be called a Riemannian Lie group. A complex
Lie group GC equipped with a left-invariant holomorphic metric, shall be called a holomorphic Riemannian Lie group (or a
complex Riemannian Lie group).

Definition 2.2. Let (G, g1) and (H, g2) be two pseudo-Riemannian Lie groups. Then G is said to be isometric to H if there
exists a Lie group isomorphism: G

F
−→ H , such that F∗ : g → h is an isomorphism of pseudo-inner product spaces:

(g, g1) ∼= (h, g2). The spaces are said to be locally isometric if there exists a local homomorphism G ⊃ U
F
−→ V ⊂ H such

that F∗ is an isomorphism of pseudo-inner product spaces: (g, g1) ∼= (h, g2).

The left-invariant metrics on a real Lie group G are in bijections with the pseudo-inner products on the Lie algebra g.
So we shall always work with a pseudo-inner product g on the Lie algebra and induce a left-invariant metric on the Lie
group by:

gh(xh, yh) := g
(
Lh−1

∗
(xh), Lh−1

∗
(yh)

)
, xh, yh ∈ ThG.

We note that for a compact Lie group G, we can always complexify it to a complex Lie group: GC, such that G ⊂ GC

is a real form, by using the universal complexification group. In particular starting from a compact Lie group with a
left-invariant metric we naturally have a candidate for a holomorphic Riemannian Lie group such that G ⊂ GC is a
real form. Recall that the universal complexification group of a real Lie group G, is a pair: (GC, η), where η is a real
Lie homomorphism: G → GC, satisfying the universal property (see for instance [5]). For example the pseudo-orthogonal
groups: O(p, q) has universal complexification group O(p + q,C).

2.2. Wick-rotations of pseudo-Riemannian manifolds

We recall some of the definitions of Wick-rotations given in [3], and define a Wick-rotation of a pseudo-Riemannian
Lie group.

Definition 2.3. Given a holomorphic inner product space (E, gC). Then if V ⊂ E is a real linear subspace for which
g := gC

⏐⏐
V is non-degenerate and real valued, i.e., g(X, Y ) ∈ R, ∀X, Y ∈ V , we will call V a real slice.

Remark 2.1. In this paper we always assume V ⊂ (E, gC) has the same real dimension as the complex dimension of
E. Thus V is also a real form of E, i.e. there is a conjugation map E

σ
−→ E with fix points V . We shall simply refer to

V ⊂ (E, gC) as a real form in such a case, to mean both a real slice and a real form.

Thus in the definition (V , g := gC
⏐⏐
V ) is a pseudo-inner product space, and if (p, q) denotes the signature of g , then the

isometry group O(p, q) of (V , g) is a real Lie group and is a real form of O(p + q,C) (the isometries of (E, gC)). Indeed if
σ is the conjugation map of V in E then note the involution F of real Lie groups:

g ↦→ σgσ , g ∈ O(p + q,C).

The differential of this map is a conjugation map, and O(p, q) is the fix points of F , i.e. is a real form. Such a map F is often
called a real structure.

Definition 2.4. Given a complex (holomorphic) manifold MC with complex (holomorphic) Riemannian metric gC. If a
submanifold M ⊂ MC for any point p ∈ M we have that TpM is a real slice of (TpMC, gC) (in the sense of Definition 2.3),
we will call M a real slice of (MC, gC).

This definition implies that the induced metric from MC is real valued on M . M is therefore a pseudo-Riemannian
manifold.

Definition 2.5 (Wick-related Spaces). Two pseudo-Riemannian manifolds M and M̃ are said to be Wick-related if there
exists a holomorphic Riemannian manifold (MC, gC) such that M and M̃ are embedded as real slices of MC.

Definition 2.6 (Wick-rotation). If two Wick-related spaces (of the same real dimension) intersect at a point p in MC, then
˜
we will use the term Wick-rotation: the manifold M can be Wick-rotated to the manifold M (with respect to the point p).
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We now define a Wick-rotation of a pseudo-Riemannian Lie group:

Definition 2.7 (Wick-rotation of a Pseudo-Riemannian Lie Group). Let G ⊂ GC
⊃ G̃ be two immersive real forms which are

Wick-related in (GC, gC) for gC a left-invariant holomorphic metric. Then we shall say that the pseudo-Riemannian Lie
group (G, g) is Wick-rotated to (G̃, g̃).

Thus from the definition: (G, g) ⊂ (GC, gC) is a real slice of Lie groups, and shall write (p, q) for the signature of g .
If there is another real slice (G̃, g̃) ⊂ (GC, gC) of Lie groups, then we shall refer to the signature of g̃ as (p̃, q̃). We shall
often just say a Wick-rotations of Lie groups. Note that two Lie groups which are Wick-related are also Wick-rotated at
the identity point p := 1.

The definition implies that two Wick-rotatable metrics on real Lie groups are left-invariant themselves, and also note
that a Wick-rotation of Lie groups induces in the obvious way a Wick-rotation of the identity components. Moreover the
property of bi-invariance for connected groups is an invariant:

Proposition 2.1. Suppose (G, g) is Wick-rotatable to (G̃, g̃) and they are both connected. Then g(−,−) is bi-invariant if and
only if g̃(−,−) is bi-invariant.

Proof. The proofs given in ([9], Lemma 7.1 and 7.2) also hold for pseudo-Riemannian left-invariant metrics, with o(n)
replaced with o(p, q). Moreover if the metric g(−,−) is bi-invariant, then because ad(g) ⊂ o(p, q) ⊂ o(n,C), and
ad(g)C = ad(gC) it follows that the holomorphic metric must also be bi-invariant, thus also g̃(−,−). The converse is
identical. □

Note that the property of being connected or simply connected are not necessarily preserved under a Wick-rotation.
However under a Wick-rotation of real forms, then being connected is conserved.

Example 2.2. Let SL2(R) ⊂ SL2(C) ⊃ SU(2) be the natural inclusions. Then they are real forms, and Wick-rotated w.r.t.
to the holomorphic Killing form κ on sl2(C). Note that (SL2(R), κ) is Lorentzian and (SU(2), κ) has signature: (−,−,−).

We also define:

Definition 2.8. Let V ⊂ (E, gC) be a real slice. We say an involution V
θ
−→ V ∈ O(p, q), is a Cartan involution of g := gC

⏐⏐
V ,

if gθ (·, ·) := gC
⏐⏐
V (·, θ (·)), is an inner product on V . If θ = 1 then V is said to be a compact real slice, or in the case that V

is also a real form, then V shall be said to be a compact real form.

Note the resemblance (in the definition) with a compact real form of a complex semi-simple Lie algebra and its Killing
form. In the case of Lie algebras: (g, g) ⊂ (gC, gC), then a Cartan involution θ of g is not necessarily a homomorphism of
Lie algebras, since we do not know it they exist. We do not even know if there exists a compact real form which is also a
Lie subalgebra of (gC, gC). But we know if g is semi-simple, and gC

= −κ , then there exists a Cartan involution θ which
is also homomorphism of the Lie algebra.

But more generally we shall define:

Definition 2.9. Let g ⊂ (gC, gC) be a real form. A Cartan involution θ of g is a Cartan involution of g := gC
|g
(−,−) which

is also a homomorphism of Lie algebras.

Thus a Cartan involution of g is only a linear Cartan involution of the pseudo-inner product g , but a Cartan involution
of g is a Cartan involution of g which is also a homomorphism of Lie algebras. Currently at this point we only know that
Cartan involutions of g exist when g is abelian or g is semi-simple equipped with the Killing form: −κ . One shall note
that there are examples where they do not exist, indeed by changing the sign to: κ , then it is straighforward to show that
there are no Cartan involutions of g.

Definition 2.10. Two real forms V and Ṽ of E are said to be compatible if their conjugation maps commute, i.e. [σ , σ̃ ] = 0.

Often we shall refer to a pair (V , Ṽ ) as a compatible pair, to mean that the spaces are compatible.
We recall from [3], that if (E, gC) is a holomorphic inner product space, and V , Ṽ and W are real forms such that W

is a compact real form (i.e. of Euclidean signature), then if they are pairwise compatible, the triple:
(
V , Ṽ ,W

)
, is said to

be a compatible triple. Note that Example 2.2 is an example of a compatible triple:(
V := sl2(R), Ṽ := su(2),W := su(2)

)
.

We shall call the eigenspace decomposition of a Cartan involution: θ , for the Cartan decomposition.

Remark 2.2. By the uniqueness of a signature associated to a pseudo-inner product g then all Cartan involutions of g
are conjugate in O(p, q). In fact given two Cartan involutions: θj (j = 1, 2) then g ↦→ θjgθj is a global Cartan involution of
O(p, q). Thus if gθ1g−1

= θ2 for some g ∈ O(p, q), then writing g = k2ex, where k2 commutes with θ2 and x ∈ o(p, q), we
x −x
obtain θ1 = e θ2e , and therefore θ1, θ2 are conjugate by an element g ∈ O(p, q)0.
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Suppose now we have a Wick-rotation of two real Lie groups: (G, g) ⊂ (GC, gC) ⊃ (G̃, g̃). Let θ ∈ O(p, q) be a
Cartan involution of the metric g , and let W denote the corresponding unique compact real form associated with θ , i.e.
W := V+ ⊕ iV−, where g = V+ ⊕ V− is the Cartan decomposition. Then by [4] it is possible to find a real form Ṽ ⊂ gC (as
vector spaces) and a linear isomorphism: Ṽ

φ
−→ g̃ such that φC

∈ O(n,C), and (g, Ṽ ,W ) is a compatible triple. So consider
the triple:

(
o(p, q), o(p̃, q̃), o(n)

)
, of Lie algebras of the isometry groups associated with the compatible triple (g, Ṽ ,W ).

Then the following straightforward result is important to note:

Lemma 2.1 ([3], Lemma 3.6). The triple of real forms:
(
o(p, q), o(p̃, q̃), o(n)

)
, embedded into o(n,C) is a compatible triple of

Lie algebras.

Thus we note that up to an isometry g ∈ O(n,C) we may assume our two Lie algebras g and g̃ (viewed as a vector
space) form a compatible triple with a compact real form W ⊂ (gC, gC).

2.3. Real GIT on compatible representations

In this section we recall some definitions and results of [4] that we shall use. We consider certain type of groups
here. When considering a real form: G ⊂ GC, then GC shall be of type linearly complex reductive, and G should either be
linearly real reductive, or in the case where GC

⊂ GL(VC) is defined over R, the real points: G := GL(V ) ∩ GC. This is the
assumptions in the paper [4]. Thus we may for instance use the pseudo-orthogonal group O(p, q) ⊂ O(n,C) defined as
the isometry group of some pseudo-inner product space: (V , g) ⊂ (VC, gC). A compact real form of GC shall always be
denoted by U .

Let G ⊂ GL(V ) be such a group. A Cartan involution θ of g is now a Cartan involution in the sense of a reductive Lie
algebra. Recall that this means that θ is the restriction of a Cartan involution of gl(V ). In view of Definition 2.9, θ is a
Cartan involution of (g, g), with g = λκ ⊕ B (λ < 0), where κ is the Killing form on [g, g] and B a pseudo-inner product
on z(g). We refer to for example [4] or [11] where such Cartan involutions are considered in more detail. A global Cartan
involution Θ with dΘ = θ of G always exists for such groups. For example the class of linear semisimple Lie groups of
finitely many connected components (fcc) are one such class.

Definition 2.11. Let G ⊂ GC
⊃ G̃ be two real Lie subgroups of a complex Lie group such that the real Lie algebras are

real forms of gC. Then we say G and G̃ are compatible if the Lie algebras are compatible.

Definition 2.12. Let G ⊂ GC
⊃ G̃ and U ⊂ GC be real Lie subgroups of a complex Lie group such that the real Lie algebras

are real forms of gC. Moreover assume U is compact. Then we say
(
G, G̃,U

)
is a compatible triple if the Lie algebras are

pairwise compatible.

If we use Lemma 2.1, in the context of Wick-rotations (see the previous section), then the triple of isometry groups:(
O(p, q),O(p̃, q̃),O(n)

)
form a compatible triple when the pseudo-inner product spaces they are isometries of, form a

compatible triple.

Definition 2.13 ([11]). Let G
ρGV
−→ GL(V ) be a real representation, then ρG

V is said to be a balanced representation if there
exist an involution V

θ
−→ V , and a global Cartan involution: G

Θ
−→ G such that:(

∀g ∈ G
)(
ρG
V (Θ(g)) = θ ◦ ρG

V (g) ◦ θ

)
.

Thus if we have an involution θ of V balancing our action, then w.r.t. the global Cartan involution Θ of G with Cartan
decomposition: G = Kep, there exists a pseudo-inner product g(−,−) on V such that θ is a Cartan involution of g(−,−),
and the inner product gθ (−,−) := g(−, θ (−)) is K -invariant. Let M(G, V ) denote the minimal vectors of our action, i.e.
those v ∈ V satisfying: ∥g ·v∥ ≥ ∥v∥ for all g ∈ G, where ∥v∥2

:= gθ (v, v). Then if V = V+⊕V− is the Cartan decomposition,
we naturally have V+ ∪ V− ⊂ M(G, V ). The Cartan involutions of g(−,−) which are conjugate by the action of G to θ are
defined as the inner Cartan involutions of g(−,−).

A complex action: ρC of GC acting on VC is said to be a complexified action of a real action ρG
V if ρC(g)(v) = ρ(g)(v)

for all g ∈ G and v ∈ V .

Definition 2.14. Let G ⊂ GC
⊃ G̃ be real forms, and G

ρGV
−→ GL(V ) and G̃

ρG̃
Ṽ

−→ GL(Ṽ ) be real representations of Lie groups.

Suppose GC ρC
−→ GL(VC) is a complexified action of both ρG

V and ρG̃
Ṽ
. Then we say that ρG

V is compatible with ρG̃
Ṽ
, if the

following two criteria are fulfilled:

(1) G and G̃ are compatible real forms of GC.
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(2) V and Ṽ are compatible real forms of VC.

Definition 2.15. Let ρG
V , ρ

G̃
Ṽ
and ρU

W be pairwise compatible representations, where U ⊂ GC, is a compact real form. Then

the triple:
(
ρG
V , ρ

G̃
Ṽ
, ρU

W

)
is said to be a compatible triple.

If we have such a compatible triple, then all the real actions in the triple are balanced, and we can choose pseudo-inner
products g(−,−) and g̃(−,−) on V and Ṽ respectively, in such a way that they restrict from the same Hermitian form
on VC. Moreover if τ denotes the conjugation map of W in VC then it restricts to Cartan involutions: θ (of g) and θ̃ (of g̃).
The Cartan involutions also balance the real actions respectively. In particular the inner products gθ and g̃θ̃ both restrict
from the U-invariant Hermitian inner product H(−, τ (−)). The minimal vectors satisfy:

M(G, V ) ⊂ M(GC, VC) ⊃ M(G̃, Ṽ ), W ⊂ M(GC, VC).

Denote the Cartan decompositions by V = V+ ⊕ V− and Ṽ = Ṽ+ ⊕ Ṽ− respectively.

Definition 2.16. Let
(
ρG
V , ρ

G̃
Ṽ

)
be a compatible pair. Suppose v ∈ V and ṽ ∈ Ṽ are such that ṽ ∈ GCv, then we shall say

that Gv is compatible with G̃ṽ. We write Gv ∼ G̃ṽ.

It is important to note the following result:

Theorem 2.1 ([4]). Let
(
ρG
V , ρ

G̃
Ṽ
, ρU

W

)
be a compatible triple. Suppose v ∈ V and ṽ ∈ Ṽ are such that: G̃ṽ ∼ Gv. Then

Gv ∩ V+ ̸= ∅ (respectively Gv ∩ V− ̸= ∅) if and only if G̃ṽ ∩ Ṽ+ ̸= ∅ (respectively G̃ṽ ∩ Ṽ− ̸= ∅).

Observe that if there exists v+ ∈ Gv, then θ (v+) = v+, i.e. if g ∈ G is such that g ·v = v+, then there is an inner Cartan
involution θ ′ of g(−,−) such that θ ′(v) = v using g .

We shall also state the following important result:

Theorem 2.2 ([4]). Let (ρG
V , ρ

U
W ) be a compatible pair. Let v ∈ V , then the following statements are equivalent:

A There exists w ∈ W such that Uw ∼ Gv.
B There exists an inner Cartan involution V

θ
−→ V such that θ (v) = v.

C There exists w ∈ W such that Uw ∩ Gv ̸= ∅.

In fact if there is a w ∈ W and v ∈ V such that Uw ∼ Gv then:

∅ ̸= Uw ∩ Gv = Gv ∩ M(G, V ) = Kv,

where K = U ∩ G.
A worked out example of compatible representations is given in the next section in the context of Wick-rotations of

Lie groups.

2.4. The isometry action on bilinear maps into the Lie algebra

In this section we shall consider the action that we are going to use to prove our main result of this paper. We shall
explain in detail that under a Wick-rotation, the isometry groups of the pseudo-inner product spaces induces compatible
representations (see Defn. Section 2.3).

Suppose we have a Wick-rotation of pseudo-Riemannian Lie groups:
(G, g) ⊂ (GC, gC) ⊃ (G̃, g̃). As we have seen we can choose a map g ∈ O(n,C) such that we obtain a compatible triple:

(g, Ṽ ,W ), with Ṽ := g(g̃). We shall denote g̃ also for the pseudo-inner product on Ṽ restricted from gC. We can choose
a pseudo-orthonormal basis: {e1, . . . , ep, . . . , en} (of g) and similarly {ẽ1, . . . , ẽp̃, . . . , ẽn} (of g̃), such that W is the real
span of both the sets: Y := {e1, . . . , ep, iep+1 . . . ien} and Ỹ := {ẽ1, . . . , ẽp̃, iẽp̃+1, . . . , iẽn}. Denote the corresponding Cartan
involutions by θ (of g) and θ̃ (of g̃). Note that Y and Ỹ are both an orthonormal basis of gC.

Consider the complex isometry action of O(n,C) on gC by g · x := g(x). This action restricts to the real isometry
actions of O(p, q) on g and O(p̃, q̃) on V respectively. Let V and Ṽ denote the real vector spaces of bilinear maps: g2 → g
(respectively Ṽ 2

→ Ṽ ). Thus V ⊂ VC
⊃ Ṽ are real forms, where VC is the complex vector space of complex bilinear maps:

(gC)2 → gC. The complex isometry action naturally extends to a complex action of O(n,C) on b ∈ VC, by

(g · b)(x, y) := g
(
b(g−1(x), g−1(y))

)
, x, y ∈ gC, g ∈ O(n,C).

Note that the action again restricts to action of the real isometry groups on V and Ṽ respectively. Denote the real actions
by ρ and ρ̃ respectively. The Cartan involution θ ∈ O(p, q) (respectively θ̃ ∈ O(p̃, q̃)) naturally extends to an involution
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of V (respectively Ṽ), by the action: ρ(θ ) (respectively ρ̃(θ̃ )). The holomorphic inner product gC extends naturally to a
holomorphic inner product: gC, by defining:

gC(b1, b2) :=

n∑
j

gC
(
b1(yj, yj), b2(yj, yj)

)
.

Observe that if we change basis w.r.t. to Ỹ instead then we obtain the same holomorphic inner product. Indeed this follows
since we can find g ∈ O(n,C) sending Y ↦→ Ỹ . It is easy to check that V ⊂ (VC, gC) ⊃ Ṽ are real slices. Similarly if we
define W to be all bilinear maps: W 2

→ W , then by construction W is a compact real form of (VC, gC). Observe that the
three real forms form a compatible triple in VC. Therefore the actions form a compatible triple (see Section 2.3). There is a
natural choice of O(n)-invariant Hermitian inner product on VC, namely: H := gC(·, T (·)), where T is the conjugation map
of W . This Hermitian inner product restricts to inner products on V, Ṽ and W . Observe that the inner Cartan involutions
of ρ (respectively ρ̃) are those conjugate to ρ(θ ) (respectively ρ̃(θ̃ )).

2.5. Wick-rotatable tensors of pseudo-Riemannian manifolds

For a Wick-rotation of Lie groups it is worth noting that the action in the previous section is just an example of a
tensor action of O(n,C) on a general tensor space of finite form:

VC
:=

⨁
k,m

(( k⨂
i=1

gC
)⨂( m⨂

i=1

(gC)∗
))
,

induced from the isometry action of the holomorphic metric gC. Analogously we define:

V :=

⨁
k,m

(( k⨂
i=1

g
)⨂( m⨂

i=1

g∗

))
, Ṽ :=

⨁
k,m

(( k⨂
i=1

g̃
)⨂( m⨂

i=1

g̃∗

))
.

The real isometry groups: O(p, q) (respectively O(p̃, q̃)) restrict to acting on V (respectively Ṽ).
More generally for a Wick-rotation of pseudo-Riemannian manifolds:

(M, g) ⊂ (MC, gC) ⊃ (M̃, g̃),

at a common point p ∈ M ∩ M̃ , then by replacing g with TpM (respectively g̃ with TpM̃), and gC with TpMC, we obtain the
induced tensor action on real forms: V ⊂ VC

⊃ Ṽ .
One shall note that the metrics, Cartan involutions all extend naturally to these spaces via the tangent spaces. Moreover

if g ∈ O(n,C) is such that TpM and g(TpM̃) form a compatible triple with a compact real form W ⊂ TpMC, then naturally
also V and g · Ṽ form a compatible triple with W :=

⨁
k,m

((⨂k
i=1 W

)⨂(⨂m
i=1 W

∗

))
.

For example the induced action of O(n,C) on End(TpMC) given by conjugation: g · f := gfg−1 is just the tensor action:
g · (v1 ⊗ v2) := g(v1) ⊗ g(v2), for an O(n,C)-module isomorphism: End(TpMC) ∼= TpMC

⊗ TpMC. For a more detailed
explanation of this example, and on the tensor action in general we refer to [4].

Consider the action in the previous section for instance, then one should observe that the complex Lie bracket
v := [−,−] of gC is a vector in V , but also there is a g ∈ O(n,C) such that ṽ := g · v ∈ g · Ṽ , i.e. v and ṽ lie in the
same complex orbit: O(n,C)v ∋ ṽ, in such a way that O(p, q)v ∼ O(p̃, q̃)ṽ are compatible real orbits.

Thus it useful to define for general tensors v ∈ V and ṽ ∈ Ṽ:

Definition 2.17 ([4]). Let (M, g) and (M̃, g̃) be two Wick-rotatable pseudo-Riemannian manifolds at a common point p.
Then two tensors v ∈ V and ṽ ∈ Ṽ are said to be Wick-rotatable at p, if they lie in the same O(n,C)-orbit, i.e.

O(n,C)v = O(n,C)ṽ.

One should note the subset of Wick-rotatable tensors consisting of those in the intersection: v ∈ V ∩ Ṽ . Then there
is a map g ∈ O(n,C), such that v and g · v ∈ g · Ṽ lie in the same complex orbit such that O(p, q)v ∼ O(p̃, q̃)ṽ are
compatible real orbits. More generally if v and ṽ are Wick-rotatable i.e. by definition O(n,C)v = O(n,C)ṽ, then also
O(n,C)v = O(n,C)g · ṽ. The main point is to be able to embed the vectors into the same complex orbit, such that we may
apply the results of Section 2.3.

Let (M, g) be a pseudo-Riemannian manifold of signature (p, q), and θ ∈ O(p, q) be a Cartan involution of g(−,−).
Consider the isometry tensor action of O(p, q) on V as above:

O(p, q)
ρ
O(p,q)
V

−−−→ GL(V).

Then θ naturally extends to an involution Θ := ρ
O(p,q)
V (θ ) on V , and the metric naturally induces a pseudo-inner product:

g(−,−) on V such that Θ is a Cartan involution. Let now R ∈ V be the Riemann tensor of M at p for V some tensor space.
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F
or example R may be considered as a multilinear form into TpM: TpM3
→ TpM , where the action is given by:

(g · R)(x, y, z) := g
(
R(g−1(x), g−1(y), g−1(z))

)
, x, y, z ∈ TpM, g ∈ O(p, q).

Another approach is to consider R as a map in End(o(p, q)) ⊂ End
(
End(TpM)

)
at the point p, where the action is given by:

(g · R)(X) := gR(g−1Xg)g−1, X ∈ o(p, q), g ∈ O(p, q).

The Riemann tensor at p is viewed in this way for instance in [2]. One may show that these two actions are equivalent
up to an O(p, q)-module isomorphism, by identifying the spaces with the tensor space: TpM ⊗ TpM ⊗ TpM ⊗ TpM .

We also recall the following definition:

Definition 2.18. If there exists a Cartan involution Θ such that Θ(R) = R (respectively Θ(R) = −R), then the space
(M, g) at p is called Riemann purely electric RPE (respectively Riemann purely magnetic (RPM)). If there is such a Θ for
the Weyl tensor at p, then (M, g) at p is called purely electric (PE) (respectively purely magnetic (PM)).

Any Riemannian space (M, g) is RPE at any point p ∈ M , since the identity map θ := 1TpM is a Cartan involution of the
metric g at any point, thus the Cartan involution extended to tensors: V is also the identity map, i.e. Θ(R) = R.

The Levi-Civita connection ∇ of a real slice of a holomorphic Riemannian manifold (M, g) ⊂ (MC, gC) at p ∈ M , restricts
from the complex Levi-Civita connection: ∇

C at p of the complex manifold MC. Thus the real Riemann curvature tensor
R (of M) at p restricts from the complex Riemann curvature tensor RC of MC (at p). Moreover if ricg denotes the real Ricci
curvature: TpM2

→ R, defined by:

ricg (x, y) := Tr
(
z ↦→ R(z, y)(x)

)
,

then using a real basis of TpM also for TpMC we see that restricting the complex Ricci curvature: ricgC on MC to TpM we
get ricg . Similarly the real Ricci operator:

Ricg ∈ End(TpM), gp(Ricg (x), y) = ricg (x, y),

restricts form the complex Ricci curvature operator of MC (at p).
This means that in terms of Wick-rotations of pseudo-Riemannian manifolds at a common point p: (M, g) ⊂ (MC, gC) ⊃

(M̃, g̃), we see that the pairs of tensors:

(∇, ∇̃), (R, R̃), (ricg , ricg̃ ), (Ricg , Ricg̃ ),

are examples of Wick-rotatable tensors (at p) in the intersection V ∩ Ṽ . The induced isometry action of O(n,C) on these
tensors (induced from the isometry action of the metric) can be naturally seen as the actions:

(g · ∇)(x, y) := g(∇g−1xg
−1y), (g · R)(x, y, z) := g

(
R(g−1x, g−1y, g−1z)

)
and

(g · ricg )(x, y) := ricg (gx, gy), (g · Ricg )(x) := (g ◦ Ricg ◦ g−1)(x).

An immediate new result is the following:

Theorem 2.3. Let (M, g) ⊂ (MC, gC) ⊃ (M̃, g̃) be a Wick-rotation at a common point p ∈ M ∩ M̃. Assume (M̃, g̃) is a
Riemannian space. Then the following statements hold:

(1) There exists a Cartan involution θ of g such that ∇θ (x)θ (y) = θ (∇xy) for all x, y ∈ TpM.
(2) There exists a Cartan involution θ of g such that ricg

(
θ (x), θ (y)

)
= ricg (x, y) for all x, y ∈ TpM.

(3) There exists a Cartan involution θ of g such that [θ, Ricg ] = 0.
(4) There exists a Cartan involution θ of g such that R

(
θ (x), θ (y)

)(
θ (z)

)
= θ

(
R(x, y)(z)

)
for all x, y, z ∈ TpM. Thus (M, g)

is (RPE) at p.

Proof. It is enough to spell out the proof for the first case, as the other cases are identical. Let v := ∇ ∈ V and ṽ := ∇̃ ∈ Ṽ ,
and consider the isometry tensor action as above. The vectors v and ṽ are Wick-rotatable, thus up to a map g ∈ O(n,C)
we can assume the real actions are compatible, and that v and ṽ lie in the same complex orbit, such that the real orbits:
O(p, q)v ∼ O(p̃, q̃) are compatible. The result now follows from Theorem 2.2, since O(p̃, q̃) = O(n) is a compact real form
of O(n,C). □

One shall note that Case (4) of the theorem is proved in [2]. We shall strengthen Theorem 2.3 for Wick-rotations of
pseudo-Riemannian Lie groups in the last section of the paper, by proving that a Cartan involution of g may be chosen
to be a homomorphism of Lie algebras.
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3. An invariant of Wick-rotation of Lie groups

In this section we shall prove the main theorem of the paper, which is an invariance result based on the existence of
a Cartan involution of the Lie algebras (Definition 2.9).

Let (G, g) ⊂ (GC, gC) ⊃ (G̃, g̃) be a Wick-rotation of Lie groups. Consider the action in Section 2.4 and following the
otation there, then by our preparations, the main result is now easily deducible:

heorem 3.1. Suppose (G, g) is a pseudo-Riemannian Lie group that can be Wick-rotated to another Lie group (G̃, g̃). Then
here exists a Cartan involution of g if and only if there exists a Cartan involution of g̃.

roof. Consider the group action and the notation as in Section 2.4. Thus if v := [−,−] is the Lie bracket of gC then
∈ V and restricts to the Lie bracket of g̃. We can choose g ∈ O(n,C) such that g · v ∈ Ṽ , i.e. v and ṽ := g · v lie in

he same complex orbit, thus O(p, q)v ∼ O(p̃, q̃)ṽ are compatible real orbits. Suppose θ is a Cartan involution of g, and
enote V = V+ ⊕ V− (respectively Ṽ = Ṽ+ ⊕ Ṽ−) for the Cartan decomposition w.r.t. to ρ(θ ) (respectively ρ̃(θ̃ )). Then
he action of θ on v fixes v, i.e. ρ(θ )(v) := θ · v = v, thus v ∈ V+. Hence the real orbit: O(p, q)v intersects V+. But then
y Theorem 2.1, it follows that there exists also ṽ′

∈ Ṽ+ ∩ O(p̃, q̃)ṽ. Therefore choose h ∈ O(p̃, q̃) such that h · ṽ = ṽ′.
By conjugating ρ̃(θ̃ ) by h we obtain a Cartan involution θ̃ ′ of g̃ such that θ̃ ′

· ṽ = ṽ. Finally since Ṽ := g(g̃) for some
g ∈ O(n,C) then the Cartan involution g−1θ̃ ′g fixes v, i.e. is a Cartan involution of g̃ and a homomorphism of Lie algebras.
The converse is symmetric. The theorem is proved. □

We find it useful to define for future exploration:

Definition 3.1. A property of a pseudo-Riemannian Lie group (G, g) is said to be Wick-rotatable if it is an invariant under
a Wick rotation of Lie groups.

Corollary 3.1. The existence of a Cartan involution of g is Wick-rotatable.

Other Wick-rotatable properties include (see for example [1] on complexification of real Lie algebras): being semi-
simple, abelian, nilpotent, solvable, reductive. Note that being simple, is not Wick-rotatable, indeed as an example consider
the Lie group O(1, 3) with the left-invariant metric being the Killing form. Then o(1, 3) is simple, but we may Wick-rotate
O(1, 3) to O(2, 2) which is semi-simple but not simple, as o(2, 2) ∼= sl2(R)2 (two copies).

We can now answer the question for when an arbitrary left-invariant metric can be Wick-rotated to a Riemannian
left-invariant metric. One should compare the result with semi-simple Lie groups equipped with the left-invariant Killing
form: g := −κ .

Corollary 3.2. Suppose (G, g) ⊂ (GC, gC) is a real slice of Lie groups. Then (G, g) can be Wick-rotated to a Riemannian Lie
group (G̃, g̃) if and only if there exists a Cartan involution of g.

Proof. (⇒). The identity map g̃
1

−→ g̃ is a Cartan involution of g̃. Thus by Theorem 3.1 the direction follows. Conversely
suppose θ is a Cartan involution of g, and write g = k⊕ p, for the Cartan decomposition. Then is not difficult to show that
g̃ := k ⊕ ip is a Lie algebra and is a real form of gC. Moreover the complex metric gC(−,−) restricts to an inner product
on g̃ by construction. Thus if we let G̃ be the unique connected Lie subgroup of GC (the real Lie group) with Lie algebra g̃,
then the corollary follows. □

In view of Remark 1.1 with the signature change g ↦→ −g , if (G, g) can be Wick-rotated to a signature (−,−, . . . ,−),
then (G,−g) can be Wick-rotated to a Riemannian space, thus there would exist a Cartan involution of g w.r.t. −g . We
note in the Corollary that w.r.t. the existing Cartan involution, then the Wick-rotated Riemannian Lie group may be chosen
to be a virtual real form. Moreover note that since a Wick-rotation is a local condition then on Lie algebra level we have
proved:

Corollary 3.3. Let (gC, gC) be a holomorphic inner product space, where gC is a complex Lie algebra. Let g ⊂ gC be a real
form which is a real slice. Assume there exists a compact real form u ⊂ gC which is also a real Lie subalgebra. Let σ be the
conjugation map of g. Then there exists an automorphism φ ∈ Aut(gC) ∩ O(n,C) such that: σ (φ(u)) ⊂ φ(u).

Note in the corollary that if τ denotes the conjugation map of the compact real form φ(u) ⊂ (gC, gC), then the map
θC := στ restricts to a Cartan involution θ of g.

Thus we have proved a general version of É. Cartan’s result: ([1], Thm 7.1). Note also that the proof given there for the
semi-simple case w.r.t. to the Killing form is not valid for a general pair: (g, g) as above, indeed following the notation of
the proof, it is not obvious that N := στ ∈ O(n,C) ∩ Aut(gC).

One shall note that it may be the case that a pseudo-Riemannian Lie group (G, g) can be Wick-rotated to more than
one Riemannian Lie group, in such a case we have the following (again one should compare this to semi-simple compact
real forms w.r.t. −κ):
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roposition 3.1. Suppose there exist two Riemannian Wick-rotatable Lie groups: (G, g) and (G̃, g̃). Then (G, g) and (G̃, g̃) are
ocally isometric Lie groups. In particular if moreover G and G̃ are both simply connected then G and G̃ are isometric Lie groups.

roof. Choose a map g ∈ O(n,C) mapping g ↦→ g̃. Consider the action and notation of Section 2.4. Using the map g the
ie bracket v := [−,−] of gC lies in V , and also ṽ := g−1

· v ∈ V . Thus O(n,C)v ∋ ṽ. But since O(n) (the isometries of
g, g)) is compact, then we may choose h ∈ O(n) such that the vectors v and ṽ lie in the same O(n)-orbit, i.e. h · v = ṽ. Or
n other words:

gh · v = v.

ow since h maps g to g by definition and gh fixes v, i.e. fixes the complex Lie bracket. Then gh ∈ O(n,C) is an
utomorphism of complex Lie algebras, and it maps g ↦→ g̃. Therefore since the metrics are left-invariant we can conclude
hat (G, g) and (G̃, g̃) are locally isometric Lie groups as required. Finally if G and G̃ are both simply connected then since
ny local isometry is also an isometry, it follows that (G, g) ∼= (G̃, g̃) are isometric Lie groups. The proposition is proved. □

Thus as a corollary for compact real forms:

orollary 3.4. Let (gC, gC) be a holomorphic inner product space, where gC is a complex Lie algebra. Let u1 ⊂ gC ⊃ u2

e two real Lie subalgebras which are compact real forms. Then there exists a linear isomorphism: u1
φ
−→ u2, such that

∈ O(n,C) ∩ Aut(gC).

In the case of a complex semi-simple Lie group: (GC,−κ), equipped with the left-invariant Killing form, then any
ompact real form: u ⊂ g, gives rise to a real form: U ⊂ GC (thus is by definition a Riemannian real slice of Lie groups).
t follows by the theory of semi-simple Lie groups that any two compact real forms of GC are isomorphic Lie groups, and
hus also isometric Lie groups.

Let (G, g) ⊂ (GC, gC) be a real slice of Lie groups. Recall again the action of Section 2.4, and consider the Lie bracket
−,−] of gC. Thus [−,−] ∈ V (the bilinear forms g2 → g.) Suppose as usual that the signature of g is (p, q). Then from
eal GIT there are a finite number of real O(p, q)-orbits in the complex orbit: O(n,C) · [−,−], i.e.

O(n,C) · [−,−] ∩ V = ∪
m
i=1O(p, q)vi,

or some m ≥ 1. We shall put an equivalence relation on the real slices of Lie groups of (GC, gC) by the relation of local
sometry of their identity components. Let [(G, g)] denote an equivalence class, thus [(G, g)] = [(G̃, g̃)] ⇔ (G, g) ∼= (G̃, g̃)
locally).

We can thus generalise Proposition 3.1 in the following sense:

heorem 3.2. Let (G, g) ⊂ (GC, gC) be a real slice of Lie groups, and (p, q) be the signature of g. Let O(n,C) · [−,−] ∩ V =
m
i=1O(p, q)vi. Then there are exactly m equivalence classes (up to a local isometry) of real slices of Lie groups in (GC, gC) with
ignature (p, q). In particular a Wick-rotation of two Lie groups (of the same signature) are locally isometric if and only if

= 1.

roof. Suppose (G̃, g̃) is Wick-rotated to (G, g) of the same signature. Let h ∈ O(n,C) be such that h(g) = g̃, then
˜ := h−1

· [−,−] ∈ V is in the same complex orbit as [−,−]. Thus we have a mapping of an equivalence class:

[(G̃, g̃)] ↦→ O(p, q)ṽ.

he map does not depend on the choice of h, since if h1 ∈ O(n,C) also maps h1(g) = g̃, then h−1h1 ∈ O(p, q), and
−1h1 · ṽ = h−1

· [−,−]. The map is well-defined. Indeed let (G1, g1) map to O(p, q)v1 := O(p, q) · (h−1
1 · [−,−]) for some

1 ∈ O(n,C) with h1(g) = g1. Assume (G1, g1) is locally isometric to (G̃, g̃). Then there exists g ∈ O(n,C) ∩ Aut(gC) such
hat g(g1) = g̃, therefore:

g1 := h−1gh1 ∈ O(p, q), g1 · v1 = h−1g · [−,−] = h−1
· [−,−] = ṽ,

sing that g fixes the Lie bracket.
To see that the map is injective, then suppose [(Gj, gj)] maps to the same orbit for j = 1, 2. Then by definition:

(Gj, gj)] ↦→ O(p, q) · (h−1
j · [−,−]) for maps hj ∈ O(n,C) with hj(g) = gj. Thus since the orbits are the same, then choose

∈ O(p, q) such that g · (h−1
1 · [−,−]) = h−1

2 · [−,−], i.e. h2gh−1
1 · [−,−] = [−,−] so that h2gh−1

1 ∈ O(n,C) ∩ Aut(gC).
ote that h2gh−1

1 maps g1 ↦→ g2. It follows that [(G1, g1)] = [(G2, g2)] as required.
It remains to show that the map is surjective. Indeed if vj ∈ V is among the v1, . . . , vm, then there exists h ∈ O(n,C)

uch that h · vj = [−,−]. If V1 ⊂ gC denotes the real form (of vector spaces) h(g), then:

[V1, V1] = h
(
v(h−1(V1), h−1(V1))

)
⊂ h(v(g, g)) ⊂ h(g) := V1.

herefore V1 is a real form of Lie algebras, thus redefine V1 := g1. Let G1 be the virtual Lie subgroup of GC with Lie
lgebra g1, then G1 is a real slice of Lie groups of signature (p, q). Thus [(G1, g1)] ↦→ O(p, q)vj, which proves that the map

s surjective. The theorem is proved. □
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There are classes of Lie algebras with m = 1, for instance the trivial case of abelian Lie algebras. However in general
̸= 1. Indeed even a semi-simple Lie algebra is not determined by the signature of its Killing form: −κ . As an example

onsider the semi-simple real forms o(1, 4) ⊂ (o(5,C),−κ) ⊃ o(2, 3). Then the signatures are (6, 4) and (4, 6) respectively.
Thus o(1, 4)⊕ o(2, 3) is a real form of (o(5,C)2,−κ) of signature (10, 10). But also if o(5,C)R denotes the real Lie algebra
of o(5,C), then it is also a real form of o(5,C)2 which is simple, also of signature (10, 10), thus

o(5,C)R ≇ o(1, 4) ⊕ o(2, 3),

nd so m ≥ 2 in this example.
We now give two examples, one where a Lie group is Wick-rotatable to a Riemannian Lie group, and the other where

Lie group is not Wick-rotatable to a Riemannian Lie group.

xample 3.1. Let H3(R) ⊂ H3(C) be the 3-dimensional real and complex Heisenberg groups. The Lie algebra of H3(R)
denoted: h3(R), is the set of strictly upper triangular 3 × 3 matrices. A basis of the Lie algebra is given by {e1, e2, e3} with,

[e1, e2] = e3, [e1, e3] = [e2, e3] = 0.

We may identify {ej}j with the standard basis of R3. Let g(−,−) be the standard Lorentzian pseudo-inner product on
R3, i.e. of signature (+,+,−). Thus (H3(R),−g) is a real slice (of Lie groups) of (H3(C),−gC). Note that g(−,−) is not
bi-invariant, since g([e1, e2], e3) = −1 ̸= g(e1, [e2, e3]) = 0. Define the linear map: θ ∈ End(h3(R)) by:

λ1e1 + λ2e2 + λ3e3 ↦→ −λ1e1 − λ2e2 + λ3e3.

Then it is easy to show that this is an involution of Lie algebras, and moreover θ is a Cartan involution of h3(R) w.r.t.
g(−,−), thus by Corollary 3.2 it follows that H3(R) can be Wick-rotated to a Riemannian Lie group G̃. Note that G̃ is the

eal form of H3(C) consisting of matrices of the form:

[1 ix iy
0 1 z
0 0 1

]
for x, y, z ∈ R.

Example 3.2. Consider the real form: G := SL2(R)2 ⊂ GC
:= SL2(C)2. Then we can equip G with a left-invariant metric

g(−,−) of signature (3, 3), by equipping one copy with −κ and the other copy with κ . The real forms up to isomorphism
of sl2(C)2 are:

sl2(R)2, sl2(R) ⊕ su(2), su(2)2, o(1, 3).

Let g̃ be one of these real forms (except the last one), then we may Wick-rotate G to the corresponding real forms G̃ of
SL2(C)2 of signature either: (3, 3) or (1, 5). In the case of Wick-rotating to (SU(2)2, g̃) we get a signature of (3, 3). Now
note that if G can be Wick-rotated to a signature: (0, 6) or Riemannian: (6, 0), then we can find (by Corollary 3.2) a Cartan
involution of su(2)2 w.r.t. −g̃ or +g̃ respectively:

su(2)2
θ
−→ su(2)2.

Suppose the Cartan involution is w.r.t g̃ . Then if su(2)2 = k ⊕ p, is the Cartan decomposition w.r.t θ , we have g1 :=

k⊕ ip ∼= o(1, 3). Indeed θC is a Cartan involution of g1 (w.r.t −κ), thus −κ has signature (3, 3), hence it must be the case
that g1 ∼= o(1, 3). Now consider the copy o(1, 3) identified as the real form

{(x, τ (x))|x ∈ sl2(C)} ⊂ sl2(C)2.

We can extend the inner product gC
:= g0 on g1 to o(1, 3) by using an isomorphism φ (of Lie algebras) g1 ∼= o(1, 3), thus

by complexifying we get a holomorphic inner product b on sl2(C)2. On each copy of sl2(C) we get b = λκ where κ is
the Killing form on sl2(C), thus we may assume the holomorphic inner product is of the form b = λ1κ + λ2κ . Using that
gC

= −κ ⊕ κ , then necessarily λ1, λ2 are real. Now for X := (x, τ (x)) ∈ o(1, 3) we get

b(X, X) = λ1κ(x, x) + λ2κ(τ (x), τ (x))

= λ1κ(x, x) + λ2κ(x, x)
= (λ1 + λ2)Re(κ(x, x)) + i(λ1 − λ2)Im(κ(x, x)).

Thus since b(X, X) is real, then necessarily λ1 = λ2, so b is proportional to the Killing form on sl2(C)2, and so since φC is
an isomorphism:(

sl2(C)2, gC
)

∼=

(
sl2(C)2, b

)
,

then we deduce that gC
= −κ ⊕ κ is also proportional to the Killing form, this is a contradiction. The argument for

the signature case: (0, 6), is identical with the change: g ↦→ −g . We conclude that (G, g) can not be Wick-rotated to a
Riemannian Lie group nor to a Lie group of signature (0, 6).
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One shall note that Proposition 3.1 does not hold for a general non-Riemannian signature. Indeed consider the previous
example then SL2(R)2 has signature (3, 3) and can be Wick-rotated to SU(2)2 also of signature (3, 3), but they are not
ocally isometric (since their Lie algebras are non-isomorphic). Thus m ≥ 2 in the previous theorem.

We end this section by considering a result on semi-simple Lie groups.

roposition 3.2. Let (G, g) ⊂ (GC, gC) be a real slice, and G be semi-simple. Then (G, g) can be Wick-rotated to a Riemannian
compact Lie group if and only if there exists a Cartan involution θ of g (w.r.t. g) which is also a Cartan involution of g (w.r.t.
−κ).

Proof. (⇒). If (G, g) is Wick-rotated to a Riemannian Lie group, then by Corollary 3.2, we can choose a Cartan involution
θ of g. Denote g = k ⊕ p for the Cartan decomposition. Then following the proof of Corollary 3.2, then we can find
a Riemannian Lie group G̃ with Lie algebra: g̃ := k ⊕ ip, which is Wick-rotated to G in (GC, gC). By Proposition 3.1, g̃
is compact, since we can Wick-rotate G to a Riemannian compact Lie group (by assumption). But since θ is a Cartan
involution of g (w.r.t. −κ) if and only if g̃ is compact, then the direction is proved. (⇐). Suppose θ is a Cartan involution
of g w.r.t. g(−,−) and −κ simultaneously. Thus if u := k⊕ ip is the compact real form of gC associated with θ , then there
exists a compact real form U ⊂ GC with Lie algebra u. The proposition follows. □

Thus since we may lift a local Cartan involution: g
θ
−→ g, to a global Cartan involution: G

Θ
−→ G, then in view of the

previous proposition, there is a Θ which is an isometry of (G, g), i.e. Θ ∈ Isom(G). Observe also that if there exists a
real slice of Lie groups of GC which is compact Riemannian, then the possible signatures (p, q) w.r.t. gC is a subset of the
possible signatures of −κ (of gC).

It is tempting to think that if (G, g) can be Wick-rotated to a compact semi-simple Riemannian Lie group, then it would
be locally isometric to (G,−λκ) (λ > 0). However this is false, indeed consider G := SL2(R)2 equipped with the metric
g := −κ ⊕ −2κ . We can Wick-rotate to the compact Riemannian Lie group: SU(2)2. Consider the real form ∼= o(1, 3)
identified with the set:

{(x, τ (x))|x ∈ sl2(C)R} ⊂ sl2(C)2,

where τ is the conjugation map of sl2(C) with fix-points su(2). If (G, g) is locally isometric to λκ for some λ ∈ R, then
we can Wick-rotate to a G̃ ⊂ GC with Lie algebra o(1, 3). However o(1, 3) on gC is not a real slice. We thus conclude that
(G, g) is not locally isometric to (G, λκ) for any λ ∈ R.

Remark 3.1. One shall observe that if (G, g) and (G̃, g̃) are pseudo-Riemannian spaces, where G and G̃ are Lie groups,
but the metrics are not assumed to be left-invariant, then the proof of Theorem 3.1 is still valid. The direction (⇒) of
Corollary 3.2 is also valid, however the direction (⇐) does not necessarily hold.

4. Conjugacy of Cartan involutions

Given a pseudo-Riemannian Lie group (G, g), with two Cartan involutions θj (j = 1, 2) of g, one may wonder if they
are conjugate in Aut(g). This is in fact true as we will show here, and we note again the resemblance with semi-simple
Lie groups G and Cartan involutions of g (w.r.t. −κ).

Theorem 4.1. Suppose (G, g) ⊂ (GC, gC) is a pseudo-Riemannian Lie group. Assume there exist two Cartan involutions: θ1, θ2
of g. Then θ1 is conjugate to θ2 in Aut(g)0 ∩ O(p, q)0.

Proof. Write g = k1 ⊕ p1 = k2 ⊕ p2 for the Cartan decompositions w.r.t. θ1 and θ2 respectively. Denote also: kj ⊕ ipj := uj
(j = 1, 2) for the real forms of gC. There exist Wick-rotations of G to connected virtual real forms: Uj ⊂ GC with Lie algebras
uj which are Riemannian (by Corollary 3.2). If σ denotes the conjugation map w.r.t. g, and τj denotes the conjugation map
of uj, then we have θCj = στj. Now since θ1 is conjugate to θ2 in O(p, q)0 (see Remark 2.2), i.e. there is a φ ∈ O(p, q)0 such
that

φθ1φ
−1

= θ2,

as linear maps, then g := φC sends u1 ↦→ u2. Consider the action in Section 2.4 and the notation there. If v := [−,−] is
the complex Lie bracket of gC, then v ∈ V and w := g−1

· v ∈ W (i.e. is a bilinear map u21 → u1) lie in the same complex
orbit. Note that (g, u1) is a compatible pair. Now w is a minimal vector since it belongs to W , i.e.:

w ∈ O(n)0w ∩ O(p, q)0v = K0v,

where

K := {g ∈ O(p, q)|gθ = θ g} ⊂ O(p, q),
1 1
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is the maximal compact subgroup associated with the fixed global Cartan involution of O(p, q): g ↦→ θ1gθ1. Thus there
is an element k0 ∈ K0 ⊂ O(p, q)0 such that k0v = w, in other words: gk0 · v = v. Hence gk0 ∈ O(p, q)0 ∩ Aut(g), and it
follows that: [σ , gk0] = 0, i.e.

θ2 = gk0 ◦ θ1 ◦ k−1
0 g−1.

The corollary is proved. □

Thus on Lie algebras we get the following nice corollary:

Corollary 4.1. Let (gC, gC) be a holomorphic inner product space, where gC is a complex Lie algebra. Let g ⊂ gC be a real
form which is a real slice. Then any two Cartan involutions of g are conjugate in Aut(g)0 ∩ O(p, q)0.

Note that the corollary is a generalised version (for general pseudo-inner product spaces) of É. Cartan’s result: ([1], Thm
7.2). Let us give an example (of a non-compact real form) where there is a unique Cartan involution of the Lie algebra:

Example 4.1. If we consider again the real Heisenberg group: (H3(R),−g) and follow Example 3.1 with Cartan involution

θ , then calculating the derivation algebra of h3(R) w.r.t. to the basis {ej}, then the matrices have the form:

[a c 0
e b 0
f l a + b

]
,

for a, b, c, e, l, f ∈ R. Thus Dim
(
der(h3(R))

)
= 6. Now if such a derivation D belongs to o(1, 2), then an easy calculation

shows that D =

[ 0 c 0
−c 0 0
0 0 0

]
, i.e. the Lie algebra of Aut(h3(R))∩O(1, 2) has dimension 1. Now a global Cartan involution

Θ1 of O(1, 2) is given by

f ↦→ θ f θ, O(1, 2) = Kep,

and clearly since θ ∈ Aut(h3(R)), then it leaves H := Aut(h3(R))∩O(1, 2) invariant. But since the Lie algebra h of H is fixed
by the corresponding local Cartan involution of o(1, 2), then it follows that Θ1 fixes pointwise all elements of H . Indeed
this follows since H is algebraic (see for example [5]), so every h ∈ H can be written as h = kex for k ∈ K ∩ H, x ∈ h ∩ p.
Thus we conclude that:

[θ, f ] = 0,∀f ∈ H,

in other words by the previous theorem, there exists a unique Cartan involution of h3(R), namely θ .

Recall that for a real semi-simple Lie algebra g equipped with the Killing form: −κ . Then it is proved in Helgason [1]
that given any involution θ̃ of g there exists a Cartan involution of g commuting with θ̃ . We can also prove a generalised
version of this result for a general pseudo inner product space: (g, g), by mimicking the proof given for semi-simple Lie
algebras in [1] together with Corollary 3.3.

Corollary 4.2. Let (gC, gC) be a holomorphic inner product space, where gC is a complex Lie algebra. Let g ⊂ gC be a real form
which is a real slice. Suppose there exists a compact real form of gC which is also a real Lie subalgebra. Let θ̃ ∈ Aut(g)∩O(p, q)
be an involution of g. Then there exists a Cartan involution θ of g that commutes with θ̃ , i.e. [θ̃ , θ] = 0.

Proof. Let θ ′ be a Cartan involution of g by Corollary 3.3. By mimicking the proof of ([1], Thm 7.1) in view of Exercise
(4, Ch.3, [1]), we apply the proof given there to the inner product gθ ′ (−,−) := g(−, θ ′(−)), together with the symmetric
operator: N := θ̃ θ ′. Thus there exists a ψ ∈ O(p, q) ∩ Aut(g) such that [ψθ ′ψ−1, θ̃ ] = 0, therefore let θ := ψθ ′ψ−1. □

Suppose now that
(
gC, gC

)
is a holomorphic inner product space on a complex Lie algebra gC. Let O(n,C) be the

isometry group. If φ ∈ O(n,C) ∩ Aut(gC) is an involution such that when gC = V+ ⊕ V−, is the eigenspace decomposition
then g := V+ ⊕ iV− is a real slice (i.e. gC(g, g) ∈ R), then we shall write φ ∈ O for such a map. We can put an equivalence
relation on maps O by conjugacy in O(n,C) ∩ Aut(gC).

The following theorem should be compared with a similar result of semi-simple Lie algebras equipped with their Killing
form (see for example [10], Thm 1.3):

Theorem 4.2. If
(
gC, gC

)
have a compact real form, then there is a bijection between isomorphism classes of real forms

g ⊂

(
gC, gC

)
and conjugacy classes of O.

Proof. Let g ⊂

(
gC, gC

)
be a real form, then we can choose a Cartan involution of g say θ by (Corollary 3.3). Define the

map [g] ↦→ [θC]. The map is well-defined (Theorem 4.1) since any two Cartan involutions are conjugate in O(p, q)∩Aut(g),
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here (p, q) is the signature of the induced pseudo-inner product from gC. To see that the map is surjective, let φ ∈ O, and
set g := V+ ⊕ iV− for the real form g ⊂

(
gC, gC

)
. Then φ restricted to g is an involution, and if σ denotes its conjugation

map then [σ , φ] = 0. But we may choose a Cartan involution θ of g such that [θ, φ] = 0 by (Corollary 4.2). Thus θC = στ
for τ a conjugation map of a compact real form u ⊂ (gC, gC). Thus

στφ = φστ,

therefore

στφ = σφτ,

or in other words by cancelling σ we obtain [τ , φ] = 0 so that φ is in fact a Cartan involution of g, and hence [g] ↦→ [φ].
Suppose now that gj are two real forms for j = 1, 2 such that the images are the same: [θC1 ] = [θC2 ]. Then if σj denotes

the conjugation maps, and uj are the compact real forms compatible with gj, then θCj = σjτj. But since the maps are
conjugate in O(n,C) ∩ Aut(gC), say by φ, thus φθC1 φ

−1
= θC2 then it is easy to see that: φ(u1) = u2. Thus

θC2 = φθC1 φ
−1

= φσ1τ1φ
−1

= φσ1φ
−1φτ1φ

−1
= φσ1φ

−1τ2,

hus cancelling τ2 we obtain: φσ1φ−1
= σ2, which proves that [g1] = [g2], and hence the map is injective. The theorem

s proved. □

. Wick-rotating a Lorentzian signature

If we assume our left-invariant metric on our Lie group G is Lorentzian or of signature (+,−, . . . ,−), then being able
o Wick-rotate to a Riemannian space puts some constraints on the structure of the Lie algebra (in view of Corollary 3.2).
ow since a Wick-rotation is a local condition, it would be interesting to know what type of Lie algebra allows for a
ick-rotation to a Riemannian Lie group.
We recall by the fundamental Levi-Malcev theorem that our Lie algebra g can be written as a semi-direct sum g = s⋉h,

here h is the radical of g and s ⊂ g is either trivial or a semi-simple subalgebra of g called the Levi-factor.
It is clear that gC = sC ⋉ hC, and if g̃ is another real form of gC, then writing a Levi-decomposition: g̃ = s̃ ⋉ h̃, then h̃

s a real form of hC. To see that s̃ is a real form of sC, we note that there exists a k ≥ 1 such that

sC = [gC
(k)
, gC

(k)
] ⊃ [g̃(k), g̃(k)] = s̃.

In view of the existence of an involution of Lorentzian decomposition we can say the following:

roposition 5.1. Let (G, g) ⊂ (GC, gC) be a real slice of Lie groups. Then the following statements hold:

(1) Suppose g(−,−) has Lorentzian signature. If (G, g) can be Wick-rotated to a Riemannian Lie group (G̃, g̃) then s = 0 or
h ̸= 0. Moreover if s̃ is a Levi-factor of g̃, then s̃ ∼= s.

(2) Suppose g(−,−) has signature (+,−, . . . ,−). If (G, g) can be Wick-rotated to a Riemannian Lie group, then either
s = 0 or s ∼= sl2(R).

roof. For case (1), assume g = s ⋉ h for s ̸= 0, and choose a Cartan involution θ of g. Write g = k ⊕ p for the Cartan
ecomposition. Then θ leaves s invariant: θ (s) ⊂ s. Indeed note that since h is solvable, then there exists k ≥ 1 such that
he kth-derived algebra satisfies: [g(k), g(k)] = s, thus it follows that θ must leave s invariant, and hence we can write,

s = (s ∩ k) ⊕ (s ∩ p).

e claim that s∩p = 0, indeed suppose not, i.e. p ⊂ s thus [s, p] ⊂ p so p is an abelian non-trivial ideal of s, contradicting
he semi-simplicity of s. Thus θ fixes s point wise. Moreover p ◁ g is an abelian ideal, and so therefore p ⊂ h, i.e. h ̸= 0.
inally since g(−,−) restricted to s and g̃(−,−) restricted to s̃ is positive definite, then s and s̃ give rise to a Wick-rotation
f two Riemannian Lie groups, thus by Proposition 3.1 it follows that s ∼= s̃, and case (1) is proved. For case (2) suppose
is non-solvable (i.e. s ̸= 0), then again w.r.t. θ we see that

s = (s ∩ k) ⊕ (s ∩ p),

here s ∩ k ̸= 0, since if not then s ⊂ p, i.e. s = [s, s] ⊂ k, which is a contradiction. Now since θC is a Cartan involution
f a real form g̃ ⊂ sC, then −κ on g̃ must also have the signature (+,−, . . . ,−), this follows since kC is 1-dimensional.
ow finally if g̃ = k̃⊕ p̃ is a Cartan decomposition, then k̃ is abelian and 1-dimensional, thus it follows that g̃ ∼= sl2(R) see
or example (Prop. 13.1.10, [5]). We conclude that sC ∼= sl2(C), and hence also s ∼= sl2(R). The proposition is proved. □

Thus restricting to the class of semi-simple Lie algebras it is impossible to Wick-rotate a Lorentzian metric to a
iemannian metric. However even for a nilpotent Lie algebra the converse of (1) is not necessarily true, indeed consider
he nilpotent Lie algebra h3(R) of 3 × 3 strictly upper triangular matrices. Then if θ is an involution with Dim(p) = 1, we
ust be able to find a basis {x1, x2, x3} such that

1 2 3 3

[x1, x2] = C12x1 + C12x2, [x1, x3] = C13x3, [x2, x3] = C23x3.
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But since [h3(R), h3(R)] has dimension 1, then it follows that C1
12 = 0 = C2

12. Moreover since h3(R) is nilpotent of class
2, then we conclude also that C3

12 = 0 = C3
23, i.e. h3(R) would have to be abelian, thus it is not possible to Wick-rotate a

orentzian metric (i.e. of signature (+,+,−)) on H3(R) to a Riemannian metric. However Example 3.1, shows that H3(R)
ay possess a metric of signature (−,−,+) where this is possible.
In view of case (2), there are examples of metrics (of signature (+,−, . . . ,−)) that are Wick-rotatable to a Riemannian

etric within: g = sl2(R) or g = h3(R) and even g = sl2(R) ⊕ h3(R).
If we impose the condition that the metric is bi-invariant, i.e. (g, g) is a quadratic Lie algebra, then we have the following

quivalence result:

orollary 5.1. Let (G, g) ⊂ (GC, gC) be a real slice of Lie groups. Suppose g is bi-invariant. Then the following statements hold:

(1) Suppose g(−,−) has Lorentzian signature. Then (G, g) can be Wick-rotated to a Riemannian Lie group (G̃, g̃) if and only
if g is abelian or g is a direct sum of h ̸= 0 and s is compact semi-simple. Moreover g̃ ∼= g.

(2) Suppose g(−,−) has signature (+,−, . . . ,−). Then (G, g) can be Wick-rotated to a Riemannian Lie group, if and only
if either g is abelian or g is a direct sum of s ∼= sl2(R) and h abelian.

roof. Case (1). Since g is bi-invariant then g̃ must be reductive, because g̃ is bi-invariant and a Riemannian metric. Thus
he complexification is also reductive, i.e. so are the real forms, thus g is reductive. This means that either s = 0 or s is
semi-simple, and h is abelian. So if g is non-abelian then s is semi-simple. Now by the proof of the previous proposition
case (1), then given a Cartan involution of g we must have that θ fixes point wise s. This means that g restricted to s is
an inner product. If sC is simple, then g|s must be proportional to the Killing form: λκ (λ ∈ R). Now since g is positive
definite on s then λ > 0 i.e. s is compact. If sC is not simple then on each simple ideal, gC is proportional to the Killing
form. There are two cases to consider, either s is simple (in which case s has a complex structure) or each simple ideal
J of s has a simple complexification JC ◁ sC or has a complex structure. See for instance (Thm 6.94, [7]). Assume s is
simple, then sC ∼= s ⊕ s, where s is a complex Lie algebra. Thus gC restricted to s is proportional to the complex Killing
form on s, say λκ . Thus viewing s as a real Lie algebra, we get that gC restricts to something proportional to the real part:
λ 1

2Re(κ) = g , which is positive definite by assumption. Therefore λ ∈ R. But the real Killing form of s is precisely 2Re(κ),
so we conclude that either the Killing form is positive definite or negative definite, this is impossible. The argument for
the other case is a combination of the previous two arguments. We conclude that s is semi-simple compact. Now finally
it follows that g ∼= g̃ by the previous proposition and that h ∼= h̃ (since they are abelian of the same dimension).

Conversely if g is abelian then the statement is trivial, therefore assume s is compact semi-simple. Then s := [g, g]
and h = z(g) forms an orthogonal sum w.r.t. g . Thus g restricted to s must be positive definite, indeed restricting g on
a compact simple ideal (which is a non-degenerate ideal) I ◁ s we get something proportional to the Killing form on J:
λκ . Thus if λ > 0 then this would contradict g having Lorentzian signature. Therefore λ < 0. Hence g on h must have
Lorentzian signature, and so we can easily find a Cartan involution θh of h such that 1s ⊕ θh is a Cartan involution of g,
now use Corollary 3.2.

Case (2). Again since g must be reductive, then by the previous proposition case (2), if g is not abelian then s ∼= sl2(R)
and h is abelian. Conversely let g = s⊕h. If s = 0, then the statements is obviously true. Suppose therefore that s ∼= sl2(R).
Note that s = [g, g] and h = z(g) is an orthogonal direct sum w.r.t. g , i.e. [g, g]⊥ = z(g). Thus g restricted to s ∼= sl2(R)
forms a quadratic Lie algebra, but since sl2(C) is simple, then g must be proportional to the Killing form: λκ (λ ∈ R). Note
that λ < 0 since other wise g would not be able to have signature: (+,−,− . . . ,−). Also note that g restricted to h must
be of signature: (−,−, . . . ,−). Thus choose any Cartan involution θs of s, and the Cartan involution θh of h of the form:
θh(x) := −x. Then θs ⊕ θh is a Cartan involution of g, and the statement follows by Corollary 3.2. □

Thus a solvable Lie group (G, g) with a bi-invariant (non-Riemannian) metric is not Wick-rotatable to a Riemannian
Lie group.

6. A remark on Wick-rotatable tensors of Lie groups

Let (G, g) ⊂ (GC, gC) ⊃ (G̃, g̃) be a Wick-rotation of Lie groups. Assume (G̃, g̃) is Riemannian. By Corollary 3.2 there
exists a Cartan involution θ of g. Recall the section on Wick-rotatable tensors. We prove in this section that if ṽ = v ∈ V∩Ṽ
are two tensors on the Lie algebras, then they are Wick-rotatable with respect to an embedding φ−1

∈ HC into the same
HC-orbit for

HC
:= Aut(gC) ∩ O(n,C) ⊂ O(n,C),

such that (g, φ−1(g̃)) is a compatible pair (i.e. also a compatible triple). Denote H := Aut(g)∩O(p, q). Note that H ⊂ HC is
a real form. Indeed the real structure of O(n,C) fixing O(p, q) given by A ↦→ σAσ where σ is the conjugation map w.r.t. g,
leaves HC invariant, and thus fixes H . Note also that a global Cartan involution Θ: A ↦→ θAθ of O(p, q) where θ is a Cartan
involution of g, also leave H invariant. Thus Θ is a global Cartan involution of H . The arguments above are analogous for
the real from: H̃ := O(p̃, q̃) ∩ Aut(g̃).
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emma 6.1. Let (G, g) ⊂ (GC, gC) ⊃ (G̃, g̃) be a Wick-rotation of Lie groups. Assume (G̃, g̃) is Riemannian. Then any two
tensors v = ṽ ∈ V ∩ Ṽ can be embedded into the same HC-orbit for some φ−1

∈ HC such that
(
g, φ−1(g̃)

)
is a compatible

pair.

Proof. By Corollary 3.2, we can choose a Cartan involution θ of g. Moreover by Proposition 3.1 there is an isomorphism of
Lie algebras: φ ∈ O(n,C)∩Aut(gC) sending u ↦→ g̃, where u := k⊕ ip w.r.t. the Cartan decomposition of θ . Thus φ−1(g̃) = u
and g are compatible. Let now ṽ = v ∈ V ∩ Ṽ be two Wick-rotatable tensors, using the isometry tensor action of φ−1 on
v, then φ−1

· v and v lie in the same HC-orbit as required. □

Theorem 6.1. Let (G, g) ⊂ (GC, gC) ⊃ (G̃, g̃) be a Wick-rotation of Lie groups. Assume (G̃, g̃) is Riemannian. Let ṽ = v ∈ V∩Ṽ
be two tensors (i.e. they are also Wick-rotatable). There exists a Cartan involution θ of g such that θ · v = v.

Proof. Consider the real forms: H ⊂ HC
⊃ H̃ as above. Then one simply note that HC is naturally algebraic, and moreover

is a linearly complex reductive Lie group, simply because H̃ is a compact real form. Now since O(n,C) and Aut(gC) are
naturally algebraic groups defined over R, then so is HC. Moreover H and H̃ are the real points of HC (respectively). Thus
the groups are naturally among the class of groups considered in Section 2.3. The theorem follows by Lemma 6.1 and
Theorem 2.2. □

Thus we can restate a stronger version of Theorem 2.3 for Lie groups, (see also paragraph after Definition 2.18 for the
tensors in question):

Theorem 6.2. Let (G, g) ⊂ (GC, gC) ⊃ (G̃, g̃) be a Wick-rotation of Lie groups. Assume (G̃, g̃) is a Riemannian Lie group. Then
the following statements hold:

(1) There exists a Cartan involution θ of g such that ∇θ (x)θ (y) = θ (∇xy) for all x, y ∈ g.
(2) There exists a Cartan involution θ of g such that ricg

(
θ (x), θ (y)

)
= ricg (x, y) for all x, y ∈ g.

(3) There exists a Cartan involution θ of g such that [θ, Ricg ] = 0.
(4) There exists a Cartan involution θ of g such that R

(
θ (x), θ (y)

)(
θ (z)

)
= θ

(
R(x, y)(z)

)
for all x, y, z ∈ g.

Any of the properties 1–4 of the previous theorem, are (using also Theorem 3.1) Wick-rotatable. Thus we state as a
stronger result for Lie groups (compare with [2]):

Corollary 6.1. Let (G, g) be a pseudo-Riemannian Lie group. Then the property of being Riemann purely electric (RPE) at 1
w.r.t. to a Cartan involution θ of g is Wick-rotatable.

Proof. Follows by Theorems 3.1 and 6.2. □

We end this section by also noting the following result:

Corollary 6.2. Let (G, g) ⊂ (GC, gC) ⊃ (G̃, g̃) be a Wick-rotation of Lie groups. Assume (G̃, g̃) is Riemannian. Then(
∀x ∈ g ∩ g̃

)(
∃θ ∈ Aut(g)

)(
θ (x) = x

)
,

where θ is a Cartan involution of g.

Proof. Consider the isometry action of O(n,C) (restricted to HC defined above) on the complex Lie algebra: gC, i.e.

g · x := g(x), g ∈ O(n,C), x ∈ gC.

Let x = x̃ ∈ g ∩ g̃. Then x = x̃ are two Wick-rotatable tensors, thus w.r.t. a choice of g ∈ HC we can assume that the
real actions (of H and H̃) are compatible. Moreover x and x̃ lie in the same complex orbit, such that O(p, q)x ∼ O(n)x̃ are
compatible real orbits. We can now finish the proof by applying Theorem 6.1. □

7. Wick-rotating an algebraic soliton

A pseudo-Riemannian Lie group (G, g), such that the Ricci operator Ricg ∈ gl(g) has the form:

Ricg = λ · 1g + D,

where λ ∈ R and D ∈ der(g) (a derivation) is called an algebraic soliton (defined in [6]). If D can be taken to be D = 0,
then (G, g) is said to be Einstein, and moreover if the Lie algebra is also nilpotent (resp. solvable), then an algebraic
soliton (G, g), is said to be a Ricci nilsoliton (resp. solsoliton). For a discussion of Riemannian Ricci nilsolitons we refer to
for example [8]. However we shall only be interested in Wick-rotating such a geometry.

We shall prove a result regarding the existence of a Wick-rotation of an algebraic soliton to a Riemannian Lie group,
by using the results of the previous section.
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Lemma 7.1. The property of being an algebraic soliton is Wick-rotatable.

Proof. Let (G, g) be Wick-rotatable to (G̃, g̃). Suppose (G, g) is an algebraic soliton. The Ricci operator: g
Ricg
−−→ g on G is

also a restriction of the Ricci operator on GC. So if Ricg = λ · 1g + D for some λ ∈ R and D ∈ der(g), then also

RicgC = (λ · 1g)C + DC
= λ1gC + DC.

Note that DC is a derivation of gC, thus when restricting to Ricg̃ we see that DC must leave g̃ invariant and is thus a
derivation D̃ of g̃ as required. The lemma follows. □

Note from the lemma that D ∈ End(g) and D̃ ∈ End(g̃) are Wick-rotatable tensors, under the isometry action:

g · f := gfg−1, g ∈ O(n,C), f ∈ End(gC).

Corollary 7.1. The property of being a Ricci nilsoliton (resp. solsoliton) is Wick-rotatable.

Corollary 7.2. The property of being Einstein is Wick-rotatable.

Applying the previous section, we get the following necessary condition for when an algebraic soliton can be
Wick-rotated to a Riemannian algebraic soliton:

Theorem 7.1. Suppose (G, g) is an algebraic soliton, with Ricg = λ · 1g + D, which can be Wick-rotated to a Riemannian
algebraic soliton: (G̃, g̃) with Ricg̃ = λ · 1g̃ + D̃. Then there exists a Cartan involution θ of g such that [θ,D] = 0.

Proof. The derivations: DC
= D̃C

∈ V ∩ Ṽ are Wick-rotatable (see the proof of Lemma 7.1). Thus w.r.t. a choice of map
g ∈ HC we can assume w.l.o.g that D and D̃ lie in the same complex orbit under the conjugation action: HC

· D ∋ D̃. By
Theorem 6.1 there is a Cartan involution θ of g such that θ · D := θDθ = D or in other words [θ,D] = 0. The theorem is
proved. □

Example 7.1. We follow Example 3.1. Thus consider the real 3-dimensional Heisenberg group (H3(R),−g), then this is a
Ricci nilsoliton of signature (+,−,−). Indeed one can calculate with respect to the basis {e1, e2, e3}, that the Ricci operator
can be written uniquely as:

Ric−g = −
3
2

· I3 + D,

where D(e1) = e1, D(e2) = e2, D(e3) = 2e3. Note that the Cartan involution θ commutes with D, i.e. [θ,D] = 0. Thus
hen restricting to the Wick-rotated Riemannian Ricci nilsoliton (G̃, g̃) with Lie algebra: g̃ := ⟨ie1, ie2, e3⟩ ⊂ h3(C), we

get the corresponding Ricci operator expressed as:

Ricg̃ = −
3
2

· I3 + D̃,

with D̃(ie1) = ie1, D̃(ie2) = ie2, D̃(e3) = 2e3.
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