

Faculty of Science and Technology Department of Electrical Engineering and Computer Science

Federated Learning for Dementia Classification in a European Multicentre Dementia Study

Master's Thesis in Robotics and Signal processing by

Ruben Hesseberg Petter Minne

Supervisors

Ketil Oppedal Álvaro Fernández Quílez

July 15, 2020

Abstract

Every year around 10 million people are diagnosed with dementia worldwide. Higher life expectancy and population growth could inflate this number even further in the near future. Currently the diagnostic process of dementia relies heavily on medical experts on an individual basis. As the prevalence of the disease grows, so does the need for reliable diagnosis systems. Medical institutions around the world hold massive amounts of medical patient data. Large portions of this data can not be shared between institutions due to patient privacy concerns.

This thesis explores some solutions to these obstacles. Computer-aided diagnosis systems based on various deep neural networks trained on magnetic resonance imaging is investigated. The use of generative adversarial networks to generate usable samples for deep neural networks without compromising patient privacy is explored. A federated structuring of deep neural networks where patient data is kept locally is tested. Data for all experiments are based on a class-balanced dataset of 690 brain scans from patients diagnosed with Alzheimer's disease, dementia with Lewy bodies and normal control subjects.

An accuracy of 78.65% was achieved for a three class differentiation of 171 test subjects. This is a formidable result, especially compared to related deep learning based approaches. The generative adversarial network approach of generating new data achieved fairly good results, but due to memory limitations this data is of lower resolution and could not be used in the final evaluation. The federated structuring of deep neural networks yielded in part promising results and could be an important way of accessing medical data while protecting privacy in the future.

Acknowledgements

This thesis marks the end of our Master's degree in Robotics and Signal processing at UiS. We would like to give a special thanks to our supervisors Ketil Oppedal and Álvaro Fernández Quílez, for their advice and feedback during this semester. In particular, we are grateful for Álvaro being available to help us in our time of need long into the summer vacation. We also have to thank Simen Larsen for a helping hand with getting started with his code, and Theodor Ivesdal for his technical support during the quarantine, and making us able to work from home.

In addition, we want to thank our cohabitants for the support at home during the pandemic. I (Petter) wish to express my gratitude to my partner Ragnhild Austbø Kjønsøy for spellchecking the thesis multiple times and making some delicious dinners while I was working. And many thanks to Nora for being such a good dogger and providing Ruben with countless happy borks.

Finally, we want to thank our fellow students for two fun and exciting years, and a special thanks to ISI ("Interesseorganisasjonen for Sivilingeniørstudentene I Informasjonsteknologi") for providing us with coffee, good times and many fun games with Super Smash during this period.

Contents

A	bstra	ct		ii
A	ckno	wledge	ments	v
A	bbre	viation	${f s}$	xi
1	Intr	oducti	ion	1
	1.1	Motiva	ation	. 1
	1.2	Proble	em Definition	. 1
	1.3	Thesis	division	. 2
	1.4	Thesis	Outline	. 4
2	Bac	kgrour	nd	5
	2.1	Demen		. 5
		2.1.1	Alzheimer's disease	. 5
		2.1.2	Dementia with Lewy bodies	. 7
	2.2	MRI .		. 8
		2.2.1	MRI Markers	. 8
	2.3	Prepro	ocessing	. 10
		2.3.1	Spatial Normalization	. 11
		2.3.2	Brain Extraction	
		2.3.3	Data Normalization	
	2.4	-	Learning	
		2.4.1	Artificial Neural Networks	
		2.4.2	Convolutional Nerural Networks	
		2.4.3	Pooling Layer	
		2.4.4	Fully Connected Layer	
		2.4.5	Loss Function	
		2.4.6	Batch Normalization	
		2.4.7	Optimizers	
		2.4.8	Activation Functions	
		2.4.9	Overfitting	
		2.4.10	Dropout	. 18

viii *CONTENTS*

		2.4.12 K-Fold Cross Validation
		2.4.13 hyperparameters
		2.4.14 Models
		2.4.15 Evaluation Metrics
		2.4.16 Generative Models
		2.4.17 Federated Learning
		2.4.18 Federated Averaging
	2.5	Software
		2.5.1 PyTorch
		2.5.2 PySyft
		2.5.3 SciPy
		2.5.4 Docker
		2.5.5 Nipype
	2.6	Previous work on detecting AD-DLB-NC with machine learning 30
3	Mat	erials and method 31
	3.1	Reproduce Larsen's results and Python Environment
	3.2	Data
		3.2.1 Preprocessing
		3.2.2 Dataset
		3.2.3 Federated learning Data Set
	3.3	Models
		3.3.1 Federated Learning Models
	3.4	Augmentation
		3.4.1 Simple Single Augmentation
		3.4.2 Simple Augmentation Combinations
		3.4.3 GAN
	3.5	Existing Approaches/Baselines
		3.5.1 Asynchronous federated learning on MNIST 40 $$
4	_	erimental Evaluation / Results 43
		Reproducing Simen Larsen's results
	4.2	Overview
	4.3	Prepossessing
	4.4	Generating MRI Images with GAN
	4.5	Experiment - ML Models
	4.6	Augmenting
	4 =	4.6.1 Augmenting with GAN
	4.7	Datasets
	4.8	Final Evaluation of Three Class Classification
	4.9	Two Classification
	4.10	Federated Learning Experimental Setup
		4.10.1 Federated learning Dataset Benchmarking
		4.10.2 Federated Learning experiment using Federated Averaging 62
		4.10.3 Asynchronous Federated Learning experiment using Federated
	4 1 1	Averaging
	4. 1	Federated Learning Experiment Results

CONTENTS ix

		4.11.1	Federated Average experiment result	63
			Asynchronous Federated Learning experiment results	
5	Disc	cussion	6	37
-	5.1			67
	0.1	5.1.1		67
	5.2			68
	5.3			68
	5.4			69
	0.1	5.4.1		69
		5.4.2		70
	5.5		•	. o 70
	0.0	5.5.1		. o 70
		5.5.2		72
	5.6			 73
	0.0	5.6.1		73
		5.6.2		74
		5.6.3	,	74
		5.6.4	· · · · · · · · · · · · · · · · · · ·	75
		5.6.5	· ·	75
		0.0.0	rederated Learning Experiment Results	10
6				77
	6.1	Conclu		77
		6.1.1	1 0	77
		6.1.2	Federated Learning	78
	6.2	Future	Directions	78
		6.2.1	GAN	78
		6.2.2	Visualizing the Model with Grad-CAM	78
		6.2.3	Federated Learning	79
Li	st of	Figure	es 7	79
Li	st of	Tables	8	35
\mathbf{A}	App	endix	A	91
				91
	A.2	fit.py		91
	A.3			91
	A.4		- 1	91
	A.5			92
	A.6			92
	A.7		10	92
	A.8			92
	A.9			9 2
	_	_	0 10	92
			ataset.py, DLB_dataset.py, NC_dataset.py	

	A.12 federatedAverage.py A.13 start websocket server.py																							
	A.14 run_websocket_server.py																						 93	;
	A.15 run_websocket_client.py	 •	•	•	٠	•	•	•	٠	•	•	•	•	•	 ٠	•	•	٠	•	•	•	•	 93)
\mathbf{B}	Appendix B																						95	,
D:	L12 L																						105	,
\mathbf{Bi}	bliography																						127	

AD Alzheimer's Disease

DLB Dementia with Lewy Bodies

NC Normal Control

MRI Magnetic Resonance Imaging

DL Deep Learning

CV Cross Validation

NN Neural Networks

DNN Deep Neural Network

ANN Artificial Neural Network

CNN Convolutional Neural Network

SD Standard Deviation

GPU Graphics Processing Unit

GD Gradient Decent

SGD Stochastic Gradient Decent

ReLU Rectified Linear Unit

BN Batch Normalization

FL Federated Learning

E-DLB European Dementia with Lewy Bodies consortium

VAE Variational Auto-Encoder

GAN Generative Adversarial Network

Chapter 1

Introduction

1.1 Motivation

An early accurate diagnosis for a patient can often mean the difference between life and death. In cases where diseases might not be fatal, an early diagnosis is often very important to improve quality of life for the patient. For serious medical conditions such as cancers and brain diseases, we rely on the use of medical imaging to aid in the diagnostic process. Some of the most commonly used types of medical imagery utilized for serious conditions is computed tomography(CT) and magnetic resonance imaging(MRI).[1]

The use of machine learning(ML) algorithms, specifically deep learning(DL) to aid in the diagnostic process based on medical imagery looks promising. There are however several challenges related to the access, quantity and privacy of the data needed to train a robust DL algorithm. In the world of machine learning and statistics, more data generally means a better model. In the field of medicine however, large sets of data can be very difficult to acquire. Medical centers possess large amounts of patient data, but a lot of this data cannot be shared across institutions due to privacy regulations. [2][3]

1.2 Problem Definition

The purpose of this thesis is to explore some of the proposed solutions to the problems surrounding data quantity and availability, mainly exploring a federated learning(FL) approach and the use of generative adversarial networks(GAN). This thesis will conduct experiments using a dataset of dementia patients, some of which are diagnosed with Alzheimer's disease(AD), some which are diagnosed with dementia with Lewy bodies(DLB) and some normal control(NC) samples.

1.3 Thesis division

This thesis is written in collaboration by two students: Ruben Hesseberg and Petter Minne. As a general focus, Ruben has worked mainly on a federated approach, and Petter has experimented extensively with GANs and various other augmentation techniques for improving the machine learning model. For clarification on which individual has worked on/written which part of this thesis a table is provided below.

Thesis division									
Section	Ruben Hesseberg	Petter Minne							
1. Introduction	Yes	-							
2.1 Dementia	Yes	_							
2.2 MRI	Yes	_							
2.2.1 MRI Markers	-	Yes							
2.3 Preprocessing	-	Yes							
2.4 Deep Learning	-	Yes							
2.4.7 Optimizers	Yes	_							
2.4.8 Activation Functions	Yes	_							
2.4.9 Overfitting	Yes	_							
2.4.17 Federated Learning	Yes	_							
2.4.18 Federated Averaging	Yes	_							
2.5 Software	Yes	_							
2.5.5 Nipype	-	Yes							
2.6 Previous work on detecting AD	-	Yes							
3.1 Reproduce Larsens results	-	Yes							
3.2 Data	-	Yes							
3.2.3 Federated Learning Dataset	Yes	Yes							
3.3 Models	-	Yes							
3.3.1 Federated Learning Models	Yes	_							
3.4 Augmentation	-	Yes							
3.5 Existing Approaches/Baselines	Yes	_							
4. Experimental Evaluation/Results	-	Yes							
4.10 Federated Learning Exp. Setup	Yes	-							
4.11 Federated Learning Exp. Results	Yes	-							
5. Discussion	-	Yes							
5.1.1 Federated Learning Dataset	Yes	-							
5.6 Federated Learning	Yes	-							
6.1.1 GAN and improve the existing	-	Yes							
6.1.2 Federated Learning	Yes	-							
6.2.1 GAN	-	Yes							
6.2.2 Visualizing the Model	-	Yes							
6.2.3 Federated Learning	Yes	-							

Table 1.1: Thesis division table. (The person credited with a chapter has also written all subchapters unless otherwise specified.)

1.4 Thesis Outline

Chapter 2 - Background

The contents of chapter two will give an understanding of the different subjects, method and tools used as background theory and in development of the project. The various types of dementia diagnoses will be explained, as well as the machine learning techniques and software utilized in this thesis.

Chapter 3 - Materials and Method

Chapter three will cover the data used in this project, including how it is prepared and processed.

Chapter 4 - Experiments and Results

Chapter four will contain the experiments and results conducted during this project. The experiments will be listed in the order they were performed, this is useful for understanding the process as the grounds for later experiments and models may be based on earlier results.

Chapter 5 - Discussion

Chapter five will include a discussion around the results from chapter four and how it compares to related work and research.

Chapter 6 - Conclusion and Future Directions

Chapter six is the final chapter of this thesis and will contain a conclusion based on the results of conducted experiments. The final section will propose directions for future research.

Chapter 2

Background

2.1 Dementia

Dementia is an overall term for medical conditions which causes abnormal changes in the brain. These changes causes various degrees of decline in the cognitive abilities of the patient. The vast majority of dementia victims are elderly people, and the risk of being diagnosed with the disease increases with age. However, it should not necessarily be regarded as a normal part of the aging process, as many people in their 90s live with no signs of dementia. It is estimated that 5-8% of the population over the age of 60 has some sort of dementia, and up to half the population over 85 might have the disease in some form.[4] The most common form of dementia is Alzheimer's disease (AD) witch accounts for 60 to 70 percent of all dementia cases [5]. Other common types are vascular dementia and dementia with Lewy bodies.[6][7] There is currently no way to cure dementia, but there are ways to improve the lives of those who have it by temporary suppressing symptoms.[8]

As of 2020 it is estimated that around 50 million people live with some form of dementia. There are close to 10 million new cases every year.[5] The number of people with dementia is estimated to reach 82 million by 2030 and 152 million by 2050.[5] Dementia has notable social and medical care costs. The total global cost in term of GDP is estimated to be around 1.1% with even higher proportions in high-income countries.[5]

2.1.1 Alzheimer's disease

Alzheimer's disease(AD) is a chronic brain disease and is the most common form of dementia. Typical symptoms for AD are reduced short term memory, then later reduced long term memory. The diagnosis often comes after a combination of mental tests, blood

tests and PET scans. Except for some rare inherited forms of AD there are no other known risk factors that statistical increases the chances for getting AD [9].

Alzheimer's disease is named after the man who discovered it, the german medical doctor Alois Alzheimer. In 1906 he noticed something unusual when he was examining the brain tissue of a woman who had died of a mental illness. She had suffered from memory loss, language problems, and unpredictable behavior. During the post-mortem examination Alzheimer found abnormal clumps and tangled bundles of fibers, now known as plaques and tangles.[10]

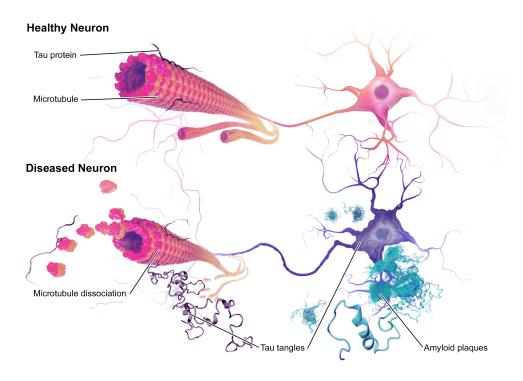


Figure 2.1: Illustration showing plaques and tangles interfering with the brain cells[11]

For patients with Alzheimer's disease, connections between nerve cells in the brain are lost. This occurs due to a buildup of proteins which causes abnormal structures referred to as plaques and tangles. Over time nerve cells die and brain tissue is lost. The brain contains chemicals to aid in the signaling between cells. Patients with AD produce less of some of these chemicals which reduces the communication between cells. Some drug treatments can help boost the production of some of these chemicals to reduce the severity of the symptoms. Alzheimer's is a progressive disease, and over time, more and more functionality of the brain will be lost.[12]

2.1.2 Dementia with Lewy bodies

Dementia with Lewy bodies(DLB) is estimated by most experts to be the third most common cause of dementia after Alzheimer's disease and vascular dementia, accounting for between 5 and 10 percent of all dementia cases.[7] Lewy bodies are found in 10 to 15 percent of post mortem examinations of dementia patients.[13] DLB is associated with a protein called alpha-synuclein being abnormally deposited in the brain. These deposits are called Lewy bodies and affects chemical processes in the brain, which in turn may lead to problems with thinking, movement, behavior and mood in patients.[14] Lewy body deposits are named after Fredereich H. Lewy, a neurologist who discovered them while working in Alois Alzheimer's laboratory during the early 1900s. Lewy bodies are not exclusively found in patients with DLB, but also in patients with AD and Parkinson's disease dementia.[7]

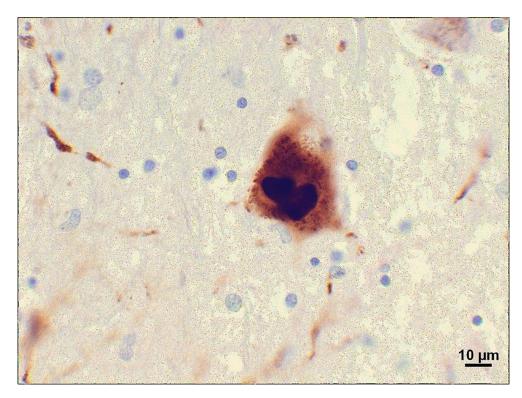


Figure 2.2: Biopsy showing lewy body deposits in the brain[15]

Overlapping symptoms with other brain diseases can make accurate diagnosis difficult, especially during early stages of the disease. DLB is also not mutually exclusive with other brain diseases, so comorbidity can occur in patients, further complicating the diagnosis and treatment process. The disease does not seem to run in families, although this might happen in very rare cases.[16]

2.2 MRI

To differentiate the different types of dementia or NC brains, Magnetic resonance imaging (MRI) is used. MRI is a nonintrusive way to inspect the subjects brain. In short the MRI produces a 3D image of the brain. It utilizes technology which excites and detects change in the direction of the rotational axis of protons in water molecules found in organic tissue. Powerful magnets are employed in MRIs to produce a magnetic field that forces the protons in the body to align with the magnetic field. Radiofrequency current is then pulsed through the subject, the protons are stimulated and spin out of equilibrium, staining against the magnetic field. When the radiofrequency current is turned off, MRI sensors detect the energy released as the protons realign with the magnetic field. The energy released and the time it takes for a proton to realign with the magnetic field changes depending on the chemical nature of the molecules and the surrounding environment. Physicians are able to distinguish between differing types of tissue based on these observed properties.[17]

2.2.1 MRI Markers

There are no known sets of biomarkers in the MRI images which are good enough to make a confident diagnosis of a patient with either AD[18] or DLB[19]. Both AD and DLB are in general characterized by atrophy throughout the brain, this can be seen by comparing the different diagnosis in figure 2.3.

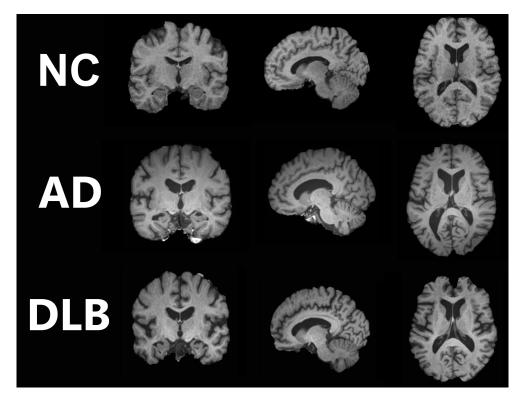


Figure 2.3: MRI scan of NC, AD and DLB brains

It has been shown that in parts of the brain in AD subjects, especially in the medial temporal lobe, there is more atrophy than the DLB subjects [20] [21].

As demonstrated in this paper[22], both AD and DLB showed significant atrophy in the hippocampus relative to NC. But the DLB group had significantly lower rates of atrophy in the CA1, and fimbria compaired to the AD subjects, see figure 2.4.

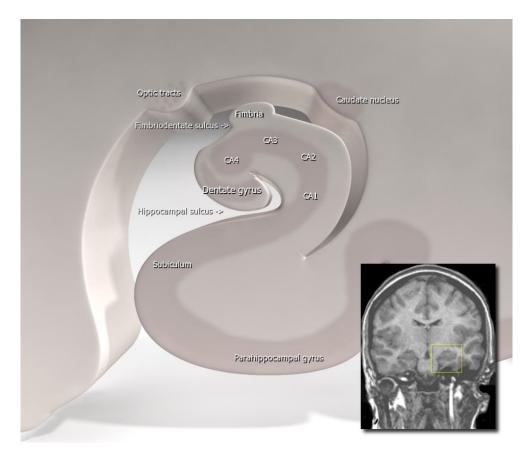


Figure 2.4: Highlighted Hippocampus with detailed anatomy. Case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 10770

2.3 Preprocessing

The main objective of preprocessing is to reduce the irrelevant information from the data and make the relevant information easier to analyze. In machine learning, this is a crucial step to ensure the data is "clean" so that when an algorithm learns to recognize patterns in the data, these patterns are relevant to the problem the algorithm is trying to solve. As an example, when training a machine-learning algorithm to differentiate between images of apples and oranges. If the apples are centered, and the oranges are shifted to the lower left side of the pictures. The algorithm would learn that if an object is centered it must be an apple, and if an object is positioned to the lower left it must be an orange. Where the object is positioned is not a desired pattern for the algorithm to use when differentiating apples and oranges, and that is why preprocessing is essential.

2.3.1 Spatial Normalization

Spatial normalization is a procedure that normalizes how the brains are presented in 3D space. The spatial normalization procedure does this by reshaping all the brains in the dataset to a standard template, and then centering them. This means that one location in one brain corresponds to the same location in all the other brains. The procedure makes all the brains the same size and has the same position in the coordinate system.

2.3.2 Brain Extraction

Brain extraction is the process of removing any part of the MRI scan that is not brain matter. This is a crucial step to minimizing the irrelevant data of the MRI images. The brain extraction is also referred to as skull stripping.

2.3.3 Data Normalization

When training a neural networks (NN) it is common to normalize the data before using it in training. The normalization process makes all the values of the data to have a mean of zero and a unit standard deviation. The process makes the data easier for a model to learn relevant patterns.

2.4 Deep Learning

2.4.1 Artificial Neural Networks

The Artificial Neural Network (ANN) is a popular computer framework inspired by the brain's biological nervous system. The nervous system in the brain consists of a network like structure of many interconnected neurons. The neurons receive signals from their neighboring neurons, which they process before they pass it on. These biological networks are capable of learning numerous different things and perform a variety of complicated tasks. The artificial neuron mimics the biological neuron as it takes numerous inputs(x), which are individually weighted (w_k) , sums them, and processes them through an activation function(ϕ), see figure 2.5. (The matematical function i shown in equation 2.1).

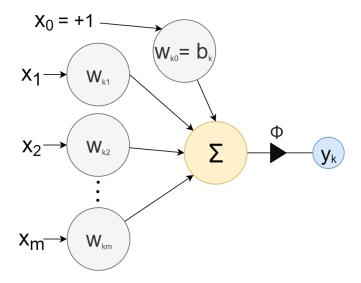


Figure 2.5: Ilustration of an artificial neuron. $x=inputs,\,w_k=weights,\,\phi=activation$ function, $x_0=+1$ which makes is a bias with $w_{k,0}=b_k$

$$y_k = \phi \sum_{j=0}^{M} (w_{kj} x_j)$$
 (2.1)

An ANN is composed of these neurons which are interconnected in a network structure called the "Hidden layers", illustrated in figure 2.6.

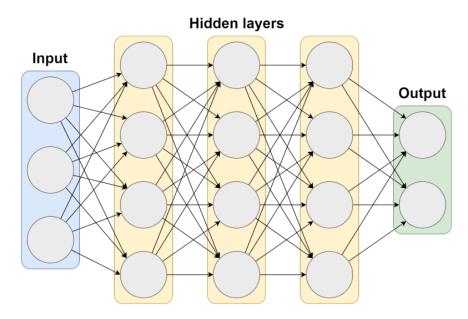


Figure 2.6: Illustration of an ANN structure.(*Picture is from [23] used with Larsens consent*).

When training an ANN, forward propagation is used to test the model, and backward propagation is used to learn from the test results. In the forward propagation, the

network maps the input data through the hidden layers out to the output layer, where the nodes conclude what the data should be classified as. The backward propagation then calculates the loss(chapter 2.4.5) of the network, and with the use of an optimizing function(chapter 2.4.7), the training goes backward through the network and calculates new/updated weights in all the neurons to make the next prediction better than the last.

2.4.2 Convolutional Nerural Networks

Convolutional neural networks (CNN) are ANNs that are popular to use when analyzing images. CNNs are good at finding patterns in the data and make sense of them. They does so by using convolutional layers in the hidden layers of an ANN.

convolutional layers

A convolutional layer consists of one or more filters used to convolve over the input to calculate a convolved feature, figure 2.7. The filters use a set size and stride that is defined when creating the CNN. Zero padding is often used to avoid size-reduction when convolving over the input, see figure 2.8. The convolutional layer's output is referred to as a "feature map", which is passed on to the next layer. The convolutions at the start of the hidden layer are usually simpler filters that detect basic shapes. The deeper layers go, the more complex features the filters learn to detect. When applying backpropagation to a CNN, the weights of the filters are updated.

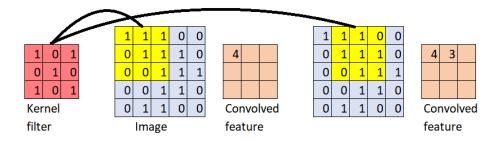


Figure 2.7: Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of one

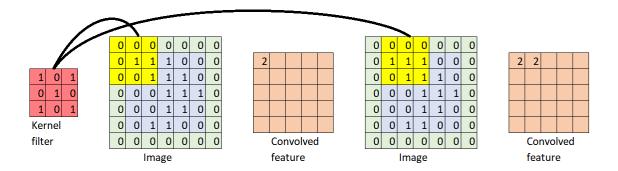


Figure 2.8: Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of one. The green zeroes in the "image" matrix are the padding that is applied

2.4.3 Pooling Layer

After a convolutional layer, it is common to apply a pooling layer. The pooling operation downsamples the input data by selecting a region given height and width and outputting a single desired value from it. The most common pooling functions are average pool (which takes the average of all the values in the region and outputs it) figure 2.9, and maxpool (which takes the highest value in the region and outputs it) figure 2.10. The purpose of the pooling layer is to reduce the dimensions of the feature maps, thus reducing the memory consumption and computational strain on the system.

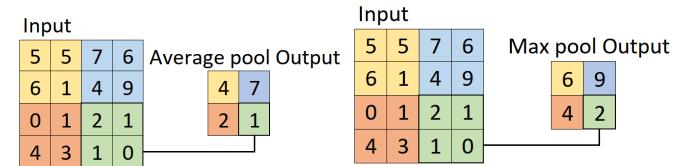


Figure 2.9: Average pooling with a 2x2 region and a stride of 2. The line from the green part of the input to the green part of the output is to illustrate that the output is calculated from this part of the input

Figure 2.10: Max pooling with a 2x2 region and a stride of 2. The line from the green part of the input to the green part of the output is to illustrate that the output is calculated from this part of the input

2.4.4 Fully Connected Layer

In CNNs the last layer is usually one or more Fully Connected (FC) layers. The feature maps from the convolutional layers are flattened into a vector and used as input in the

FC layer. The FC then maps the vector to the correct outputs. The number of FC layers added to the end of the CNN may vary from different architectures. Basha et. al [24] concluded that deeper CNN architectures need fewer FC layers with fewer nodes than shallower architectures.

2.4.5 Loss Function

When training an ANN a metric is needed to quantify how well the model performs when training. The loss function does this by comparing the output of the model with the desired output and then quantifies how successful/unsuccessful the model was in its prediction. There are many ways to calculate the loss, and the loss function that is the best depends on the application. For classification problems the most common loss function to use is cross-entropy.

Cross entropy

The cross-entropy (equation 2.2) loss function calculates the model's loss based on how confident the model was in its prediction.

$$CE(t,p) = -\sum_{c=1}^{M} t_{o,c} \log(p_{o,c})$$
 (2.2)

"t" is the target vector containing the desired output and "p" is the model's output probability for a given class.

2.4.6 Batch Normalization

The batch normalization (BN) uses the same principles as explained in data normalization (chapter 2.3.3), except it is added to the feature map of a convolutional layer. Unlike the normalization of the input, BN data does not necessarily have a mean of zero and a standard deviation of one, because this is not always desirable inside the network. The BN, therefore, has two parameters (one for the mean and one for the standard deviation) that are scaled with the training when doing backpropagation.

2.4.7 Optimizers

Optimizers update the weights of all the nodes in the network to minimize the loss of the model. The loss function guides the optimizer to where it needs to go. There are many

different optimizers in use, but in this thesis the stochastic gradient descent (SGD) was mainly used because of its better generalization [25]. If the model struggled to perform while training the Adam function was used instead of the SGD.

Stochastic Gradient Descent (SGD)

Stochastic gradient decent is an established optimizer which is based on the gradient decent algorithm. [26] Gradient decent based algorithms is by far the most common optimization method for neural networks. Gradient decent computes the gradient of the cost function with respect to the parameters of the entire dataset. In contrast, SGD performs a parameter update for each sample $x^{(i)}$ and label $y^{(i)}$.

$$heta = heta - \eta \cdot
abla_{ heta} J(heta; x^{(i)}; y^{(i)}).$$

SGD performs frequent updates with high variance which causes the function to fluctuate a lot. This rapid fluctuation enables jumping to new potential minima's quickly. However, it also complicates the convergence to the exact minimum due to overshooting. Decreasing learning rate can help counter this issue.

Adam

Adam is a gradient based optimizer specifically designed for DNNs. It uses squared gradients to scale the learning rate and takes advantage of momentum by using moving average of the gradient. [27] Compared to SGD with momentum, inclusion of squared gradients makes the algorithm more robust to large relative differences between derivatives of system parameters. The adam optimizer can achieve significant performance gains compared to the SGD optimizer, however, this will not always be the case and it can indeed perform worse in certain instances.

2.4.8 Activation Functions

The activation functions add non-linearity in the neurons, this is what makes the network able to learn complex non-linear functions.

ReLU

The Rectified Linear Unit(ReLU) is a widely used activation function in deep learning models. The function returns 0 for negative input values, but positive input values are returned unchanged. [28] The ReLU function can be expressed like this: f(x) = max(0,x). The ReLU6 activation function, shown (2.11), is identical to ReLU, except that it limits the maximum output value to 6.



Figure 2.11: ReLU6 activation function

2.4.9 Overfitting

The term overfitting in machine learning is used to describe scenarios where the overall cost becomes small, but the generalization of the model is unreliable. [29] In other words, the model becomes extremely good at guessing correctly on the validation set, but will lose accuracy in a test set, because it is so specialized. An example of overfitting can be seen in (2.12). The validation error should be the global minimum in a balanced model, this is not the case here as seen from the figure.

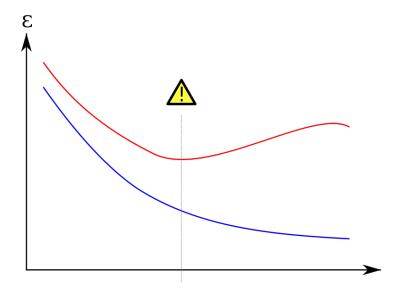


Figure 2.12: Overfitting example.[30] Training error in blue, validation error in red.

2.4.10 Dropout

Dropout is a method that introduces randomness to the DL model by randomly discarding nodes in the network. The amount of nodes the dropout function discards is manually set in as when designing the model. Too much dropout will lead to bad performance because the model fails to learn due to losing to many vital nodes. When tuned correctly, dropout has proven to lower overfitting and improve generalization in many applications??.

2.4.11 Augmentation

Data augmentation is the process of altering the available data in ways that do not change its ground truth. This is useful when there is a limited dataset, and new data is hard to gather. Augmenting the data will often lead to improved generalization because the model will learn to detect the data in more scenarios than before. Some simple augmentation techniques are rotating, mirroring, and translating.

2.4.12 K-Fold Cross Validation

Normally when training a model a part of the training data will be used for validation. K-Fold Cross Validation (CV) is a method to ensure that all the training data, even the part that is used in the validation process, is used to train the model. It does so by splitting the training data into K folds, then train the model on all the folds except one which is used for validation. It then trains the model again for each combination of the

K folds. This makes the reported results more robust because the results can report the average of the K models from the CV.

Figure 2.13: 4-Fold Cross Validation example.

2.4.13 hyperparameters

Before training a DL model, some hyperparameters needs to be set, like the learning rate, the number of different layers in the model, the amount of dropout, the parameters in the optimizer, etc. These parameters do not change while training, so it is vital for the DL model that these parameters are well chosen. The difference in training a DL model with bad and good hyperparameters are substantial. There is no correct way of finding the best hyperparameters for a model, but there are different methods that help to search for them methodically.

Manual Search

Manual search is the method of manually inputting the hyperparameters, testing them on the DL model, and trying new values. This is a very time-consuming method as it depends on manually plotting inn new parameters restarting the DL model.

Grid Search

Grid search is a traditional way of searching for the right hyperparameters. It works by making grids/list of all the different parameters to test, and then it iterates through all possible combinations of these while reporting the results.

Random Search

It is a method that randomly chooses the hyperparameters, then trains the model, and logs the result before doing the same again in a loop. This method can outperform grid search, especially if there are a low number of hyperparameters used [31].

Bayesian Optimization

Takes advantage of the information the model learns during the optimization process. The idea is that the Bayesian optimization has some prior beliefs about how the different hyperparameters affect the training outcome. The optimization uses these prior beliefs to make an educated guess when choosing new hyperparameters to test. Based on the latest test results, it updates its prior beliefs and makes a new educated guess, and does this until it converges. In short, the Bayesian optimization remembers all the previous hyperparameters and then chooses to test new hyperparameters close to where it previously has shown to increase the performance.

2.4.14 Models

SimenNet

SimenNet is a model designed by Simen Larsen [23]. The model is designed with six convolution blocks and three linear blocks, see figure 2.14 for details. Each of the convolution blocks uses the 3D convolution layers followed by max pool, ReLU, batch normalization, and dropout. When moving through the layers, more filters were used in the convolutions as the feature map decreased in size from the max pooling. The model ends with three fully connected blocks that interpret the output from the last convolution block and determine the diagnosis.

ResNet

The ResNet model was proposed by Kaiming He et. al in 2015 [32]. The model won first place on the ILSVRC 2015 classification task and won several other first places in the COCO 2015 competitions. Usually, deep neural networks will get better by stacking more layers on top of each other, but at a certain point the model accuracy will drop. The reason why this is happening is not clear, but Kaiming He et. al assume that the deep plain nets may have exponentially low convergence rates, which impacts the reduction of the training error. The ResNet model avoids this problem by using a reference from the

Input Convolution block: Conv(32) 3D Conv(32) Conv(64) MaxPool(3, 2) Conv(64) ReLU6 Conv(128) BN Conv(256) Dropout Conv(256) Fully connected block: FC(2048) FC(2048) ReLU6 FC(1024) BN FC(3) Dropout

Output

ResNet18

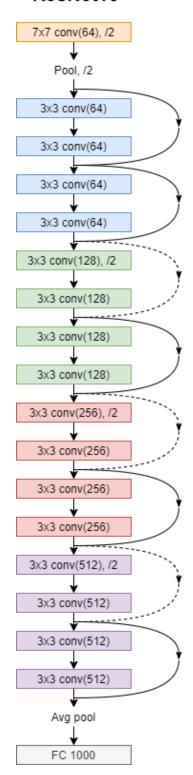


Figure 2.15: ResNet18 network structure. The dashed lines represent a skip connection with dimension matching.

previous layer and adds it to the current layer. This makes the model stack many more layers on top of each other without the descending accuracy problem.

The reference in the ResNet layer is shown in figure 2.17, as the single line that goes from X to the summation. The output of that block is calculated as Y = f(x) + X, where Y is the output, X the input, and f(x) the mapping of the layers. In a plain net the output is Y = f(x) see 2.16. The intuition behind this is that instead of expecting a few stacked layers to fit a desired underlying mapping X directly, these layers explicitly fit a residual mapping by adding X in the output.

In the ResNet18 model, the reference called "skip connection" skips over blocks of two layers at a time. When the dimensions of the blocks change, the skip connection needs to match the new dimensions so by performing a linear projection to the shortcut connection to match the dimensions. Figure 2.15 visualises the ResNet18 model.

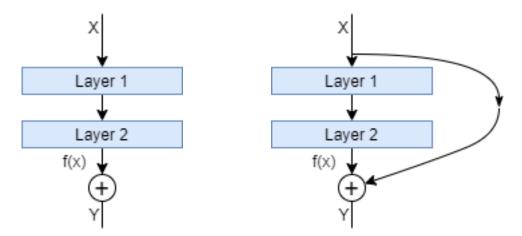


Figure 2.16: PlainNet calculation.

Figure 2.17: ResNet calculation.

2.4.15 Evaluation Metrics

Loss is used when training a model. The final value the loss has after training is not very interesting, but, the graph of the loss values during training is useful to get an overview of how the model performed while training and to spot overfitting.

Accuracy is used for measuring the accuracy of the model. It takes all the correct predictions and sum them together and divides by the total amount of guesses 2.4.

$$Accuracy = \frac{Number\ of\ Correct\ Prediction}{Total\ Number\ of\ Prediction} \tag{2.4}$$

Accuracy is not always the best evaluation and often miss details. This is especially the matter if there is a class-imbalanced dataset, or if misclassifications on one class have more severe consequences than misclassifications on another class.

Precision is used to measure how precise the model is at predicting one of the classes correctly. This is useful to see if the model is overpredicting it 2.5.

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive} \tag{2.5}$$

Recall is used to measure how accurate the model is to classify one of the classes correctly 2.6.

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$
 (2.6)

F1 is the harmonic mean of precision and recall. This is useful when the precision and recall is equally important 2.7.

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$
 (2.7)

Confusion matrix is a matrix that is used to show the performance of a model by showing all the predictions the model made on known test data. An example of a three classed confusion matrix is shown in figure 2.18. This is useful to see precisely how the model makes its predictions, and it gives a good overview of where the model excels and where it struggles. All the metrics explained above (F1, accuracy, precision, and recall) can be derived from the confusion matrix.

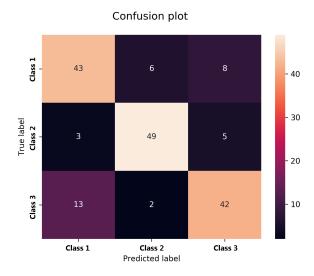


Figure 2.18: Example of a confusion matrix.

2.4.16 Generative Models

Generative Adversarial Network

Generative Adversarial Network (GAN) is a ML framework invented by Ian Goodfellow et. al [33]. GAN trains two neural networks simultaneously by plotting the two neural networks against each other, where one of the networks is called the generator and the other the discriminator. The generator generates fake data from a random input, while the discriminator distinguishes the real data from the generated fake data. The generators objective is to generate fake data that is good enough to deceive the discriminator. For each round of training, both the discriminator and generator learn by updating their weights through backpropagation. When the discriminators error rate is at 50%, the training should be done because the generator is then outputting data that is indistinguishable from the real data.

Generative adversarial network

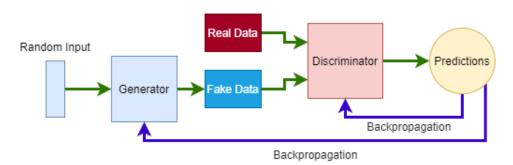


Figure 2.19: GAN flowchart.

GANs have proven to be useful in generating numerous kinds of data [34] [35], and it has been used a lot in upscaling/improving images with lower quality [36] [37]. However many GAN models suffer from non-convergence (when the model parameters oscillate and never converges), mode collapse (when a generator collapses and can only produce a limited number of new unique data samples before it repeats itself), and diminished gradient (when the discriminator is too good, and the generators gradient becomes too small). Unbalance between the training speed of the generator and discriminator can also cause the GAN model to overfit [38].

Variational Auto Encoder

An autoencoder consists of two networks, one encoding network, and one decoding network. The encoder network takes input data through its convolutional layers and converts it to a much more compact representation in the bottleneck (also called the latent vector). The decoder network uses the compact representation of the data as input and tries to recreate the original data. The autoencoder then compares the output result with the original input to calculate the reconstruction loss and updates the two models according to how good the recreation was. This makes autoencoders very good at reconstructing data, and have shown good results in compression and denoising applications. See figure 2.20 for a visual representation of an autoencoder.

Autoencoder:

Input image Bottleneck Output Image

Figure 2.20: Illustration of an auto-encoder.

Variational Auto Encoder (VAE) has an encoding network that produces two vectors. One that represents the input data mean and one for the input data standard deviation, see figure 2.21. From these two, a sampled latent vector is made by taking a random sample from the standard deviation vector and adding the mean vector. This creates a new latent vector that closely resembles the latent vector of the original input, but it is a little different because the mean it is summed with the random sample from the standard deviation vector. The decoding network then decodes the sampled latent vector and outputs the new data [39].

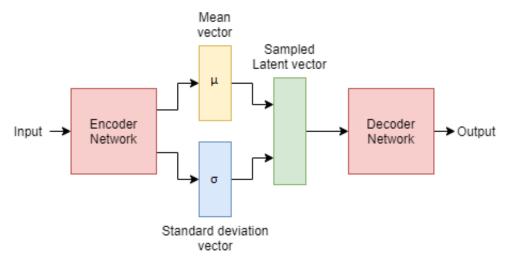


Figure 2.21: Illustration of a VAE.

α-GAN

When generating 3D images with a GAN, the complexity becomes much higher than with 2D images. This makes the 3D generation struggle with the mode collapse problem. The VAE, on the other hand, is free from the mode collapse, but it struggles with the output being blurry. To overcome the issues GAN and VAE have, α -GAN [40] is used. The α -GAN combines GAN and VAE by replacing the variational inference in the VAE with a discriminator network and then using both "random noise" and the encoder's output as input to train the generator. Because the generator now both reconstructs data from the encoder and generates data from the "random noise", it can be optimized using both the reconstruction loss and the discriminator loss hence avoiding the mode collapse problem. The α -GAN consists of four networks: a generator, an encoder, and two discriminators, see figure 2.22. One of the discriminators discriminates between the output of the encoder network and the "random noise" vector, and the other one discriminates between the data generated by the generator and the real data. The networks alternate between updating the parameters of the four network weights by minimizing the different loss functions.

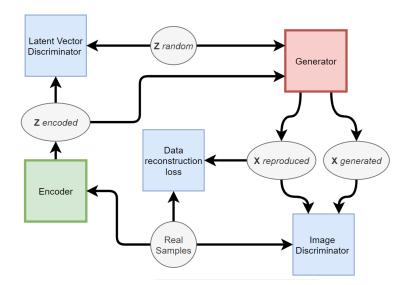


Figure 2.22: α -GAN structure. X reproduced: samples reproduced by the generator from encodings produced by the encoder. X generated: samples produced by the generator given a "random" vector. \mathbf{Z} random: samples from the latent-generating distribution (random noise). \mathbf{Z} encoded: vectors produced by the encoder given a real sample.

2.4.17 Federated Learning

Federated Learning (FL) is a machine learning technique that aims to resolve some of the concerns and restrictions about data and user privacy when accessing data for training machine learning algorithms. Federated learning trains an algorithm across multiple decentralized devices or servers that holds local data samples, without directly accessing the data. A centralized server maintains the global neural network and each device or server connected to this central server is given a copy to train on their own dataset. When the model has been trained locally for a number of iterations, the participating servers or devices will send their updated model back to the centralized server. The central server will then aggregate contributions from from all participating nodes, thus creating a new updated global neural network which can be shared with the participating nodes again. [41][42][43][44][45]

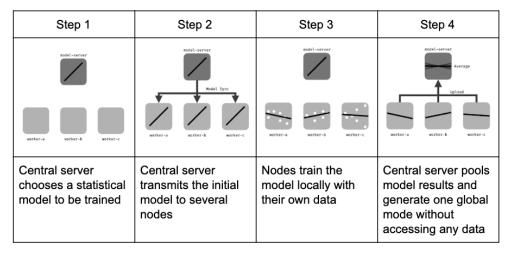


Figure 2.23: General Federated Learning Process[46]

2.4.18 Federated Averaging

Federated Averaging is a function commonly used in federated learning implementations. The function is responsible for calculating new weights for the global model. Other approaches for generating the federated model exist, however these are not utilized in this thesis, but will be mentioned in the discussion chapter. The right side of the equation is estimating the weight parameters for clients based on loss values. On the left side of the equation each parameter is scaled and summed up component wise. [47]

$$f(w) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(w) \quad \text{where} \quad F_k(w) = \frac{1}{n_k} \sum_{i \in \mathcal{P}_k} f_i(w). \tag{2.8}$$

w is the model parameters. K: is the total number of clients. k: is the index of the clients. nk: is the number of data samples available for client k. n: is the total number of data samples. Pk: is the set if indexes of data on client k.[47]

2.5 Software

This section will introduce and briefly explain the software, mainly the python libraries utilized in this thesis.

2.5.1 PyTorch

PyTorch is a platform for deep learning which was utilized for this thesis. PyTorch is an open-source platform, written in the Python programming language and centers around the use of tensors. This platform was chosen for several reasons, but mainly because this thesis builds on results and software from Simen Larsen's master thesis which utilized the same platform. [48]

2.5.2 PySyft

PySyft is an open-source FL framework for building secure and scalable models. PySyft is a hooked extension of PyTorch, thus complementing the use of PyTorch for this thesis. [49]

2.5.3 SciPy

Is an open-source python library for mathematics, science, and engineering. This library is mainly used in the thesis to perform multidimensional image processing when augmenting.

2.5.4 Docker

Docker as referred to in this thesis is a product that offers OS-level virtualization to deliver software in packages. The software packages are referred to as docker images in this thesis. An image is an instance of a system set up, this is useful for ensuring compatibility across platforms. This is particularly helpful when using a combination of software packages that might require a specific version of other packages to function properly. These docker images are run by a single operating system kernel and uses fewer resources than virtual machines. [50]

2.5.5 Nipype

Nipype is an open-source python project that provides an interface to many existing neuroimaging software and provides interaction between these software within a single workflow[51]. Nipype provides a dockerimage[52] with all the different packages (e.g., ANTS, SPM, FSL, FreeSurfer, Camino, MRtrix, MNE, AFNI, Slicer, DIPY) already installed. This makes it much easier to use and for others to reproduce the processing one applies on the MRI images.

2.6 Previous work on detecting AD-DLB-NC with machine learning

Larsens paper[23] on classifying AD, DLB, and NC with deep learning(DL) is the baseline for this study. In Larsen's paper, he proposes a DL framework where a custom DL model can be trained on a custom dataset. He proceeds to test his framework with his own model, SimenNet, on a dataset he made with MRI images of AD, DLB, and NC subject. Much of the work Larsen did with preprocessing, dataset balancing, and programming has been utilized in this thesis. The programs he wrote has been further extended and edited to implement new methods.

Chapter 3

Materials and method

3.1 Reproduce Larsen's results and Python Environment

To improve the results that Larsen [23] got in his thesis, the first step was to reproduce his results. A python environment was made to run the code in. All the missing/wrong versions of the different packages were found by running Larsen's code until failure and installing the right python package. A lot of the packages needed to be installed with specific older versions to be compatible with each other. For the full list of the installed python packages, see the enclosed file "requirements.txt" in appendix A.

3.2 Data

The data used in this thesis is T1 weighted MRI scans from the European Dementia with Lewy bodies (E-DLB) consortium and the Alzheimer's Disease Neuroimaging Initiative (ADNI) databases [53]. The E-DLB consortium is the only source of DLB subjects, and it contains 288 DLB, 146 AD, and 146 NC subjects. The ADNI database contains a number of AD and NC subjects which has been used to balance the dataset.

3.2.1 Preprocessing

Spatial Normalization

Spatial normalization was performed with the SPM12 software [54] that was included in the Nipype docker image. In addition to spatially normalize all the images, the software also normalizes the image intensity variations that are common in MRI images due to varying strength in the magnetic field.

Brain Extraction

The BET2 software [55] [56] was used to extract the brains from the MRI images. This software reported to give good results and high performance. The skull stripping process can also be adjusted with the fractional intensity threshold (frac) parameter. Higher frac values make the skull stripping more "aggressive" and removes more of the MRI image. Multiple frac values (0.4, 0.3, 0.2, 0.15, 0.05, 0, 0.25, 0.275, 0.265, 0.24) were tested on two random MRI images from the data and were manually inspected to find the optimal frac value for the skull stripping process. Frac value 0.25 was chosen because it removed the least amount of brain matter while still managing to remove most of the unwanted parts of the MRI image. There were still some parts around the eyes that did not get removed, but with higher values, the skull stripping started to remove more of the brain matter. After skull stripping the data with frac=0.25, ten random brains were inspected, and one of the brains had inferior results around the eyes (see figure 3.1). This brain needed a frac value of 0.4 to get rid of the eyes in the skull stripping process correctly. Therefore a dataset with frac = 0.4 was also created.

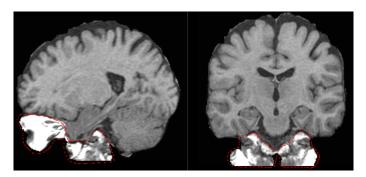


Figure 3.1: Poorly skullstripped brain with Frac=0.25.

The BET2 also has some mutually exclusive options when running the skull stripping. The option "reduce bias" and "remove eyes" were tested.

The "remove eyes" option was used with the frac value 0.25 to make another dataset. The skull stripping process crashed on ten of the MRI images. These were supplemented from the frac = 0.4 data.

According to Popescu V, Battaglini M, Hoogstrate WS, et al. [57] the optimal parameters would be BET option "reduce bias" with frac = 0.2. The "reduce bias" option crashed the skull stripping process on 17 of the MRI images in the dataset. These were supplemented from the "frac = 0.25 remove eyes" data.

3.2.2 Dataset

The datasets are built on the work Simen Larsen did in his thesis. All the datasets use Larsen's age and gender matching so that patterns in the data that are not "dementia" related are reduced. For example, if all the AD brains were men, and all the DLB brains were women, the DL algorithm might learn false patterns related to the gender of the brains and not the disease. That is why the dataset is balanced, see table 3.2 for the dataset characteristics. One of the DLB subjects was discarded because the age was three standard deviations from the mean age of the DLB data. In total there are 861 MRI images in the dataset, 287 from each class.

Dataset characteristics	Training (80.1%)			Test	ing(19,	9%)
Diagnosis	NC	DLB	AD	NC	DLB	AD
Mean age	74.48	74.49	74.50	69.51	68.88	74.34
age SD	6.72	6.72	6.72	11.24	11.05	9.51
Count	230	230	230	57	57	57
Males	131	131	131	45	45	45
Females	99	99	99	12	12	12

Figure 3.2: Larsen's Dataset Characteristics [23] picture form Larsen's thesis is used with his consent.

The dataset structure is kept in all the new datasets that are made with different skull stripping values. All the subjects that are put into "testing" and "training" are also identical in all the datasets to keep the results consistent.

Six datasets have been used in total, and the different datasets are Frac 0.5 (Larsen's dataset), with and without added upscaled GAN image Larsen's dataset was copied from his thesis and used to generate and test the GAN images. Frac 0.5 (Larsen's dataset), Resized to 64x64x64, with and without added GAN images. Frac 0.25 dataset, Frac 0.25 dataset Resized to 64x64x64, Frac 0.4 dataset, Frac 0.25 dataset with "remove eye" option, Frac 0.1 dataset with "reduce bias" option, Frac 0.2 dataset with "reduce bias" option.

3.2.3 Federated learning Data Set

For the FL approach, two datasets are being used, one for each FL model. There are 230 of each class in the original training data, which means there are 115 brains to train in each FL dataset. Since the test data only contains 57 brains for each class, one of the FL datasets gets 29 of each brain type and the other one gets 28 in the test folder.

The MRI images from Larsen's dataset were randomly selected and added to either the FL1 or FL2 dataset. Because the splitting of Larsen's dataset is random, the FL1 and FL2 dataset does not have the same balance of age and gender, which can impact the generalization if they are trained separately.

3.3 Models

The used models were all modified to use 3D convolutional layers instead of 2D, as the 3D has shown to produce better results with MRI images [58]. The models tested was SimenNet, ResNet, DenseNet, as well as the federated models.

The SimenNet model was copied from Larsen's code and tested as it is.

The **ResNet** model used is from Zuppichini [59] implementation in PyTorch because it was scalable and easy to modify. The model was modified to use 3D convolutional layers and 3D images as input, and then tested with sizes of 18, 34, 50, 101, and 152. Extra fully connected layers were also added to the end of the model to see if it would increase performance (see figure 3.3). Both the fully connected layers and convolutional layers were tested with and without dropout. Dropout were always added to the model after BN [60], see figure 3.3 to see how it is added in the FC layers.

FC1 FC block structure: FC layer FC layer FC layer FC layer ReLU BN Dropout FC3 3

Figure 3.3: Extra Fully Connected Layers added to end of ResNet models.

The **DenseNet** was implemented from Aspris github[61], and modified to use 3D instead of 2D layers.

3.3.1 Federated Learning Models

Two different neural nets are constructed for the FL models. Both of these FL nets are based in large part on the SimenNet, and altered only when necessary to fit the federated

setup. The nets include multiple convolutional and max-pooling layers, as well as some fully connected layers. The activation function used for both nets is the ReLU6 function.

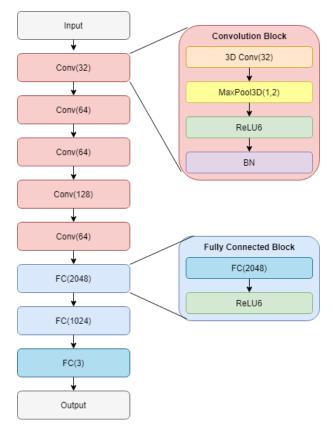


Figure 3.4: Federated Network Structure

This proposed network (3.4), is for testing the federated average function performance and effect. The first part of the network consists of five convolutional blocks, which includes convolution function, max-pooling function, ReLU6 function and batch normalization function. The latter part of the network consists of three fully connected blocks, which includes a fully connected layer and the ReLU6 activation function, except for the third block which only consists of the fully connected layer.

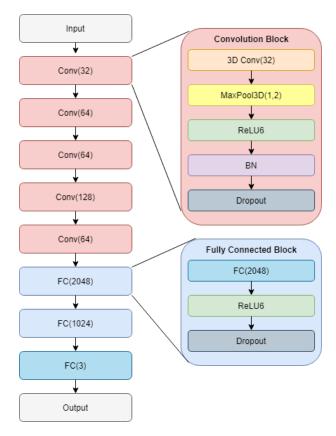


Figure 3.5: Asynchronous Federated Network Structure

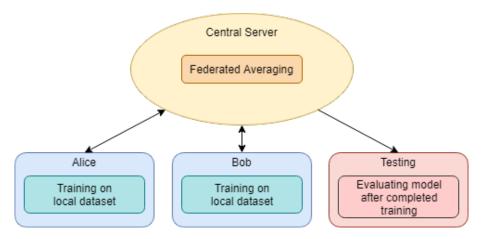


Figure 3.6: Asynchronous Federated system setup

The second proposed federated network (3.5), is for testing the federated setup in an asynchronous federated learning structure with a central server, worker and testing nodes (3.6). The reasoning behind the asynchronous setup is that it is based on the asynchronous MNIST websocket example detailed in chapter 3.5. An asynchronous structure will allow the nodes to contribute to the federated model more efficiently than a synchronous structure. This proposed network structure contains all the layers native to the first proposed network, however this network also includes some additional layers.

In both the convolutional and fully connected blocks, this network contains a dropout layer at the end. The dropout layers provide additional options to tweaking the model and can sometimes be useful as a conutermeasure to the overfitting problem.

3.4 Augmentation

Because the primary biomarker of dementia is atrophy throughout the brain, some augmentation techniques might make it harder to distinguish a healthy brain and one with dementia. Therefore multiple augmentation techniques were tested separately to single out any inferior ones. In the end, the best performing techniques are combined and tested.

When training a model, online augmentation is applied to the data. This is done to increase the variety of data when training and makes it harder for the model to overtrain. The augmentation was performed on all of the training data, which includes the data used in the validation. When verifying the model with the test images, no augmentations are applied. The probability of an MRI image getting augmented was manually set in the augmentation function. This is to limit the amount of augmentation applied to the dataset.

All the different augmentations were visually inspected to ensure that the code worked as expected, see figure 3.7

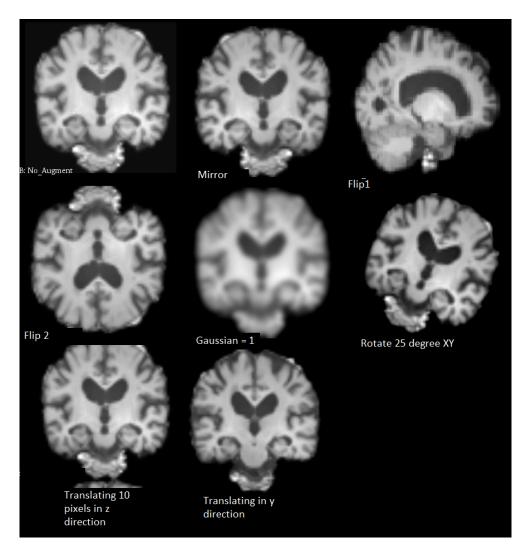


Figure 3.7: Illustration of the different augmentations.

3.4.1 Simple Single Augmentation

Flipping and mirroring using the "flip" function in the NumPy library. The flips are left to right, upside down, and mirroring. The flipping has a 50% chance of being applied to an MRI image during training. Because a flip can only be applied once for every picture, higher probabilities seem useless.

Random rotating because the MRI data is in 3D, there are three different planes to rotate the data: XY, XZ, and YZ. All the different planes are tested one at the time, with varying rotation angles and probability. The probability for an image being rotated and the range of how many degrees to rotate is manually set in the augmentation function before training. The varying amount of rotation is done with a random function that gives a random number between two set values, e.g. a rotation with +-2 degrees can give

these rotations: 1, 2 359 and 358 (negative values is 360 + the negative value). The images are rotated with the rotate function from the scipy.ndimage package.

Translation moves the brain around in the 3D space. The translations are done in all directions (right/left, up/down, in/out) between 1 to 4 pixels. With more than 4 pixels, the brain will start to "wrap" around to the other side. Each of the three directions has its own probability of being applied; this increases the total number of unique augmentations that can be done with the translations. The probability for an image being augmented and the probabilities for each direction are individually set in the augmentation function before training.

Gaussian Blur was applied to the data using the gaussian_filter method from SciPy. The probability for an image being applied with the Gaussian blur is manually set in the augmentation function before training. The Gaussian blur can also be applied with varying intensity levels by specifying the range in the augmentation function before training.

3.4.2 Simple Augmentation Combinations

When combining the different augmentation techniques, two different methods were used. The first method randomly applies multiple augmentation techniques on one image. The chance for each type of augmentation technique being applied is set individually in the augmentation function before training. This is to regulate which techniques are most likely to be applied. The techniques that performed better than others in the previous experiments have generally gotten higher probabilities of being applied than those who performed worse.

While the second method, called "exclusive augmentation", randomly applies only one augmentation technique to the image. In the exclusive augmentation, a random number is generated, and the different augmentations are given a number each. If the random number matches the number assigned to an augmentation technique, the image gets this augmentation applied. More numbers are assigned to the more desirable augmentation techniques to increase the likelihood of these augmentations being applied.

3.4.3 GAN

The model used is from the paper "Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks" [62]. This model uses the α -GAN network structure to generate 3D MRI images. Results from the paper show that it outperforms other methods, see figure 3.8. All the code used to train the 3D- α -GAN model is in their

GitHub repository [63]. The data used to train the 3D-α-GAN models are from Larsen's dataset (Frac = 0.5) resized to 64x64x64. The Frac = 0.5 dataset was used because of none of the other datasets were made at the time of training the 3D-α-GAN. The resized data was used because of memory limitations on the GPUs when training. Because there were three different classes in Larsen's dataset, three different generators were trained. Transfer learning was not utilized because the pre-trained model, which was enclosed in the GitHub repository, used different preprocessing then the data in Larsen's dataset. Each class had 287 MRI images to train on, which should be enough. The hyperparametes used are the same as in the thesis [62] as they were shown to produce good results.

Generation of 3D Brain MRI Using Auto-Encoding GAN

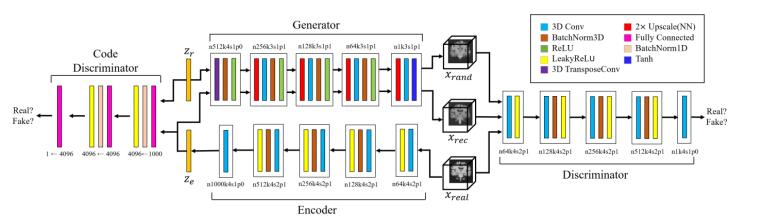


Figure 3.8: Detailed architecture of the model from [62]. n = number of the channels, k = kernel size, s = stride size, and p = padding size. xrand is the generator output from random vectors zr and xrec is the output from encoded vectors ze.

3.5 Existing Approaches/Baselines

3.5.1 Asynchronous federated learning on MNIST

This example is run with code from the PySyft MNIST Websocket example [64]. The MNIST dataset is a set of handwritten numbers from 0-9, widely used for testing ML algorithms. This is done to get a baseline of what accuracy is achievable when training on a robust, large sample dataset using the PySyft FL-framwork. For this test setup we have three workers; Alice, Bob and Charlie, each holding a piece of the dataset. The evaluator holds testing data and tracks model performance. The structure of the setup is identical to (3.6), except there is an additional worker node; Charlie.

Worker	Digits in local dataset	Number of samples
Alice	0-3	24754
Bob	4-6	17181
Charlie	7-9	18065

Evaluator	Digits in local dataset	Number of samples
Testing	0-9	10000

 Table 3.1:
 MNIST dataset Asynchronous FL table

Number of epochs:	10 epochs	20 epochs	30 epochs	40 epochs
Accuracy:	88.06%	92.80%	95.59%	96.21%

Table 3.2: MNIST dataset Asynchronous FL results table

Chapter 4

Experimental Evaluation / Results

This chapter contains the experiments and results presented in this thesis. Subchapter 4.1 - 4.9 lays out the experiments and results from the general approach of improving Simen Larsen's results, as well as general information about the dataset and augmentation methods. Subchapter 4.10 - 4.11 lays out the experiments and results from the federated learning approach.

4.1 Reproducing Simen Larsen's results

The algorithm ran with Larsen's start arguments for two days before the Bayesian optimization found the best hyperparameters to train the model. The best performing model had an accuracy of 72.5% which is more than expected, see figure 4.1 and 4.2 bellow for more details.

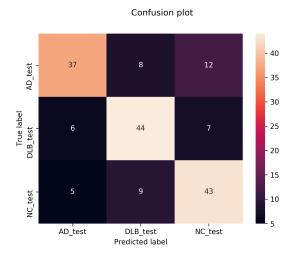


Figure 4.1: Confusion plot of reproduced model.

Best Fold	AD	DLB	NC	Average
Precision	0,7708	0,7213	0,6935	0,7134
Recall	0,6491	0,7719	0,7544	0,7135
F1	0,7048	0,7458	0,7227	0,7133
Loss	0,8995			
Acc	72,51			

Figure 4.2: Performance of reproduced model.

4.2 Overview

An overview of the structure for when the different experiments were conducted is present in figure 4.3.

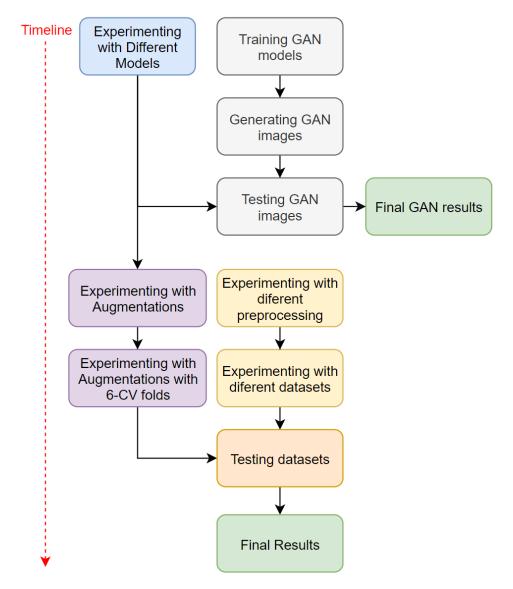


Figure 4.3: Structure with timeline when carrying out the different experiments.

4.3 Prepossessing

To visualize the preprocessing results, two different brains have been chosen. BrainA, which is a good MRI picture and reflects the preprocessing results for the majority of MRI images in the dataset, figure 4.5. BrainB, which is the problematic MRI image from figure 3.1. This MRI image shows where the prepossessing falls short. Unfortunately, the

MRI image does not work with the "reduce bias" option, see figure 4.6. The prepossessing process for a whole dataset took five days to complete when running on CPU.

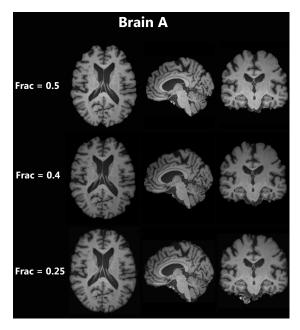


Figure 4.4: BrainA different frac preprocessing result.

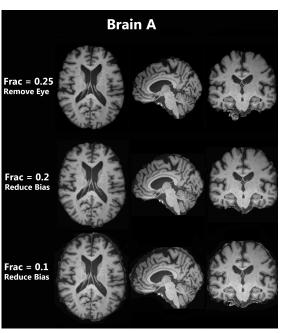


Figure 4.5: BrainA with extra options preprocessing result.

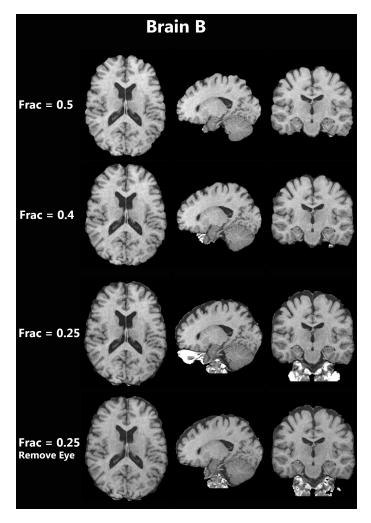


Figure 4.6: BrainB preprocessing result.

4.4 Generating MRI Images with GAN

The algorithm ran for 200000 epochs and it took approximately 84 hours to make a generative model for one type of brain on a nvidia tesla v100 PCIE 32gb GPU. See samples of the real and fake NC, AD and DLB MRI brains in figure 4.7 - 4.12.

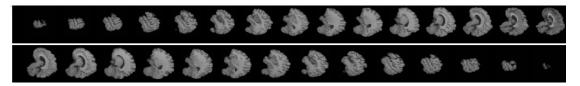


Figure 4.7: Sample of a real. NC brain

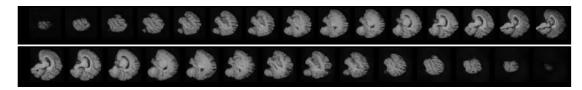


Figure 4.8: Sample of a generated NC brain.

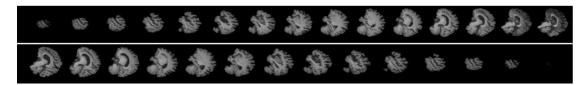


Figure 4.9: Sample of a real AD brain.

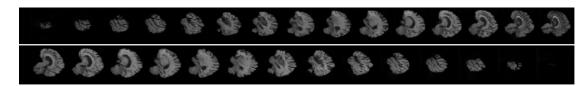


Figure 4.10: Sample of a generated AD brain.

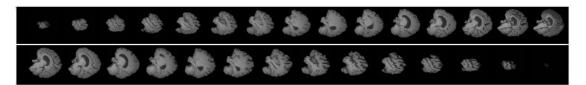


Figure 4.11: Sample of a real DLB brain.

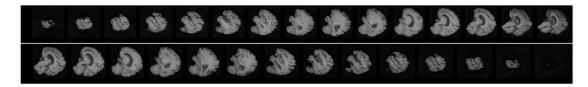


Figure 4.12: Sample of generated DLB brain.

The generated MRI images were visually inspected to make sure they look like brains with no obvious anomalies. To verify that the generated MRI images were different brains with DLB, AC, and NC diagnosis, the generated images were put in the test set of a dataset. Then a model that was trained with only real brains was used to classify the generated MRI images. If the results from this are similar to the results with the real MRI images, then it is a clear indicator that the generated brains reproduce their intended diagnosis well.

4.5 Experiment - ML Models

All the models were tested with the "frac = 0,25 resized 64x64x64 dataset" because the smaller resolution reduces the training time significantly. ResNet and DenseNet used the SGD optimizer with parameters: learning rate = 0.000995, momentum = 0.537, L2 weight decay=0.0549, nesterov=True. SimenNet used the Adam optimizer with parameters: learning rate =0.0000297, smoothing = 0.67, L2 weight decay=0.1552 and dropout = 0.2. These parameters were found by doing a quick Bayesian Optimisation with the ResNet18 model with a 2-fold CV.

Model Tested	Best Acc from 6 fold CV	Average Acc from 6 fold CV
DenseNet	67,83625793	NA
SimenNet	68,42105103	57,50487328
ResNet152	68,42105103	63,35282644
ResNet101	68,42105103	64,81481489
ResNet50	66,66666412	59,25926018
ResNet34	66,08187103	60,6237812
ResNet18	67,25146484	64,61988513
ResNet152 with 3 FC layers with dropout	68,42105103	61,40350978
ResNet101 with 3 FC layers with dropout	66,08187103	61,30604362
ResNet50 with 3 FC layers with dropout	66,08187103	61,11111132
ResNet34 with 3 FC layers with dropout	68,42105103	64,61988322
ResNet18 with 3 FC layers with dropout	72,51461792	66,8615996
ResNet152 with dropout in Conv layers	63,74269104	59,35672569
ResNet50 with dropout in Conv layers	65,49707794	60,03898621
ResNet18 with dropout in Conv layers	64,32748413	61,30604299
ResNet152 with 3 FC layers with dropout in both	64,32748413	54,19103305
ResNet101 with 3 FC layers with dropout in both	66,66666412	62,86549695
ResNet50 with 3 FC layers with dropout in both	67,83625793	62,7680308
ResNet34 with 3 FC layers with dropout in both	70,76023102	67,25146103
ResNet18 with 3 FC layers with dropout in both	71,92982483	67,83625793

Table 4.1: Results from testing different models.

For more detailed results, see appendix B.1 - B.2 were the results are reported with confusion plots, precision, recall and F1 scores.

4.6 Augmenting

The augmentation experiments were conducted in two phases. In the first phase, the augmentation techniques were tested by training the ResNet18 model once with hyper-parameters that were slightly adjusted from those used in the chapter 4.5 Experiment

- ML Models :learning rate=0.0004633, momentum=0.62, dampening=0, L2 weight decay=0.06, nesterov=True.

The different augmentations techniques were individually tested with varying parameters of probability and varying input range for the techniques that supported this (rotation and gaussian blur). Then the different augmentations techniques were combined and tested again with varying parameters of probability and varying input range. The result was reported with confusion plot, accuracy, loss, precision, recall, and F1 score. This method of testing was fast and gave reasonable indications of what worked and what did not, see appendix B.4 - B.14 for the results.

The best and most consistent augmentation from the first phase was the translation combined with a small rotation.

In phase two of the augmentation experiment, new hyperparameters were found with the Bayesian Optimization technique, using the ResNet18 model and the best and most consistent augmentation from the first phase while training, see table 4.2 and 4.3.

Iteration	Learning Rate	L2	Momentum	Average test Acc
1	0,0009807	0,1872	0,4756	69,88
2	0,0009934	0,0549	0,6340	73,20
3	1,46E-05	0,1373	0,9520	69,10
4	0,0003459	0,0695	0,7095	70,86
5	2,14E-05	0,0536	0,7153	65,79
6	0,0005519	0,0969	0,6541	70,86
7	0,0006567	0,1579	0,8224	69,49

Table 4.2: Bayesian optimization with augmenting.

Iterartinon 2	Acc Validation	Acc Test
Average Acc:	71,3 (0,7)	73,2 (3,57)

Table 4.3: Best iteration from the Bayesian optimization with augmenting. Values in brackets are the standard deviation.

The different augmentations were then tested again with the new hyperparameters with the ResNet18 model. This time the results were reported with a six-fold CV to get more reliable results to determine which of the augmentations performed best.

The different augmentations techniques were again individually tested, and then combined and tested, with varying parameters of probability and varying input range for the techniques that supported this (rotation and gaussian blur), see appendix B.15 - B.26.

The best result from the experiment was the combination of translating(Roll) and a small rotation in the XZ plane. The augmentation with the probability and range parameters was: "Roll 1-4 pixels in each direction, 95% chance of translation and 66% change for each direction, Rotate +-6 degree XZ 80%". For detailed result see table highlighted in green in appendix B.24.

Baseline result with no Augmentations

See appendix B.3 for tables with the first results and appendix B.15 for the 6-CV results.

Rotation in XZ plane

See appendix B.4 for tables with the first results and appendix B.16 for the 6-CV results. Some of the augmentations were tested multiple times to see if the results were consistent like the "Rotate +-30 degree XZ axis, 90% augmented". The % augmented is to indicate the probability that an MRI image have to be augmented.

Rotation in XY plane

See appendix B.5 for tables with the first results and appendix B.18 for the 6-CV results.

Rotation in YZ plane

See appendix B.6 for tables with the first results and, appendix B.19 for the 6-CV results.

Translations

See appendix B.7 for tables with the first results and, appendix B.20 for the 6-CV results. "Roll" is used to indicate translations, because it is the name of the function in python and shorter to write than "Translation". The first "%" probability when translating is the probability for the MRI image to translated at all, and the second "%" probability is for each direction (left/right, up/down, and back/forth).

Mirroring/Flip(0)

See appendix B.8 for tables with the first results and, appendix B.21 for the 6-CV results.

Flip Left Right/Flip(1)

See appendix B.9 for tables with results. This augmentation was not tested with 6-CV because it performed poorly in the first test.

Flip Upside Down/Flip(2)

See appendix B.10 for tables with results. This augmentation was not tested with 6-CV because it performed poorly in the first test.

Gaussian Filter

See appendix B.11 for tables with the first results and, appendix B.22 for the 6-CV results.

Combinations of Different Augmentations

See appendix B.12 - B.14 for tables with the first experiment results. See appendix B.23 - B.26 for tables with the 6-CV results.

4.6.1 Augmenting with GAN

The augmentations with GAN used the Frac0.5 dataset because the GAN model was trained with this dataset. When comparing the GAN results, the comparisons are done with the Frac = 0.5 dataset and not the Frac = 0.25 dataset that the rest of the augmentations use. This is because the GAN was trained before the frac = 0.25 dataset was created.

GAN with the Frac = 0.5 Dataset Resized to 64x64x64

230 GAN images were generated for each of the classes and added to the dataset training data. None of the generated data was added to the test folder in the dataset to keep this folder "clean".

The first experiments were done by training a ResNet18 model once on the dataset and report the results (tables in appendix B.27). The second experiment, combined the GAN supplemented dataset with augmentations, see tables in appendix B.28.

The GAN supplemented dataset was also trained with six-fold CV to get more reliable results, see figure in appendix B.44 for experiments with no augmentation, and figure in appendix B.46 for experiments with augmentation.

The resized frac = 0.5 dataset without the supplemented GAN images was trained with six-fold CV both with and without augmentations to be compared with the GAN supplemented experiments (see figures in appendix B.45 B.47).

6-fold CV Average results, with Standard Deviation(SD)						
	Validation Acc	SD	Test Acc	SD		
GAN 25%	78,06	1,66	67,06	3,23		
GAN 50%	82,32	3,11	67,15	4,21		
GAN 50% w/Augmentation	82,32	1,58	67,15	3,19		
Standard Dataset	66,71	4,21	63,55	2,02		
Standard Dataset w/Augmentation	67,71	3,05	60,04	2,36		

Table 4.4: 6-CV Augmentation Results with Frac=0.5 with and without GAN Images. GAN 25% had 115 added generated MRI images in each class in the training data, GAN 50% had 230. w/augmention = Roll 1-4 pixels in each direction, 95% chance of translation and 66% change for each direction, Rotate +-6 degree XY 90%.

To get a better intuition of how the GAN images impacts the ResNet model, the best result from appendix B.44, which is fold 5, is displayed here with extra evaluation metrics, see figure 4.13.

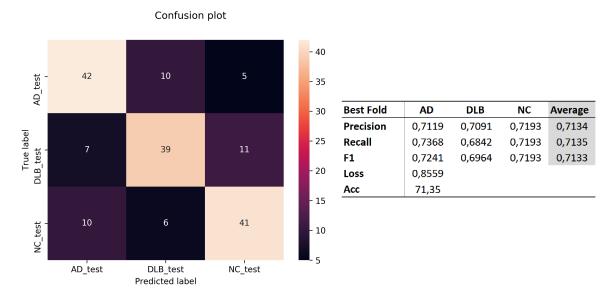


Figure 4.13: Best Result from appendix B.44 with extra evaluation metrics.

GAN Upscaled to 157x189x156 with Frac0.5 Dataset

Because the datasets with the original size (157x189x156) provided better results than the smaller resized (64x64x64) dataset, an experiment was conducted to upscale the GAN generated images and supply them to the original dataset. To upscale the GAN images, the "numpy resize" function was used. This was used because it was fast and easy and needed no additional software, and there was no need to make extra slides as the GAN images contained the same amount of slides that the original sized pictures. See figure 4.14 for a comparison of the upscaled generated brain, original-sized generated brain, and a real brain.

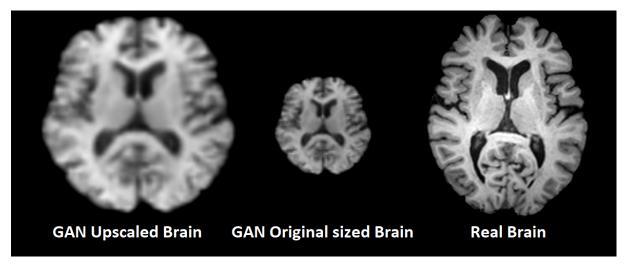


Figure 4.14: Comparison of Upscaled generated brain, original sized brain and a real brain.

The experiments with the Upscaled GAN images were trained with ResNet34 with 3 fully connected layers with dropout. The first experiment used multiple augmentations: translation with 95% chance of being augmented and a 66% chance for each direction, and rotating +-30 degrees in XY and XZ plane with 50% chance of being augmented. For Loss and accuracy plots see figures in appendix B.48 and B.49

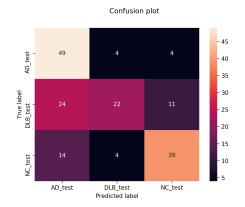


Figure 4.15: Confusion plot for upscaled GAN test.

	AD	DLB	NC
Precision	0,563	0,733	0,722
Recall	0,860	0,386	0,684
F1	0,681	0,506	0,703
Loss	0,979		
Acc	64,327		

Figure 4.16: Performance of upscaled GAN test.

The second experiment used only one augmentation: translation with 95% chance of being augmented and a 66% chance for each direction and rotating in. For Loss and accuracy plots see figures 4.17 and 4.18

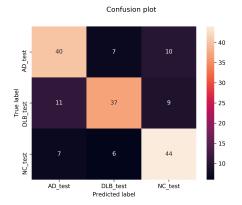
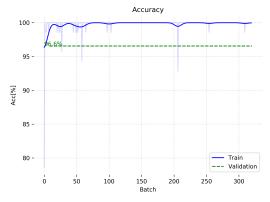


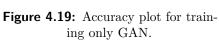
Figure 4.17: Confusion plot for upscaled GAN test.

	AD	DLB	NC
Precision	0,690	0,740	0,698
Recall	0,702	0,649	0,772
F1	0,696	0,692	0,733
Loss	0,771		
Acc	70,760		

Only GAN images used in training

To test how the GAN images would perform when training a model without any real brains in the dataset, a ResNet18 model was used. The model was then tested on a dataset of real brains to see how the model performed, see figure 4.19 - 4.22.





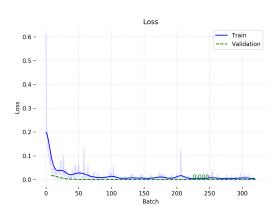


Figure 4.20: Loss plot for training only GAN.

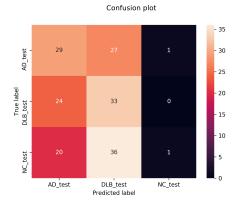


Figure 4.21: Confusion plot for only GAN test.

	AD	DLB	NC	Average
Precision	0,397	0,344	0,500	0,414
Recall	0,509	0,579	0,018	0,368
F1	0,446	0,431	0,034	0,304
Loss	2,362			
Acc	36.842			

Figure 4.22: Performance of only GAN test.

Verifying the GAN images

To verify that the GAN images are different brains with DLB, AC, and NC diagnosis, the best model from the six-fold CV from table in appendix B.45(which is Fold 6) which were trained on only real brains were used to classify all the generated images.

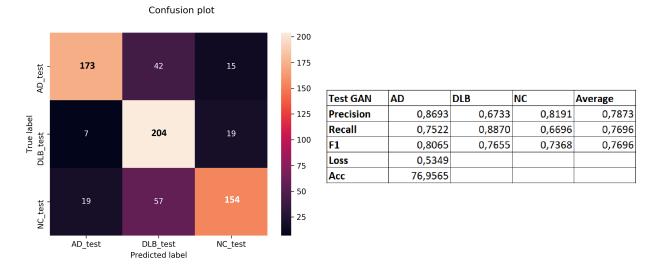


Figure 4.23: Model trained on real MRI images, classify the Generated GAN images.

For context the model metrics of Fold 6 from table in appendix B.45 is displayed here to show how the same model performed on the real data (see, figure 4.24).

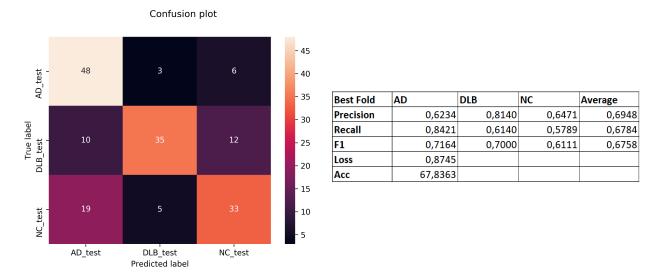


Figure 4.24: Detailed metrics of Fold 6 from table B.45 when tested on real data.

4.7 Datasets

Experiments to find the best dataset was conducted. The different datasets were tested with varying amounts of augmentations, and the ones showing promising results were tested further. The hyperparameters used was: learningrate=0.0009956, momentum=0.537948, L2 weight decay=0.0549, nesterov=True. For a quick overview of the best results of the different datasets, see table 4.5.

Dataset:	Best ACC
Frac 0.5	73,0994186
Frac 0.25	77,1929855
Frac 0.4	75,4385986
Frac 0.5 Remove Eyes	83,0409393
Frac 0.1 Reduce Bias	73,6842117
Frac 0.2 Reduce Bias	76,0233917

Table 4.5: Single Best ACC for every dataset

Frac0.5 Dataset (Simens Dataset)

See tables in appendix B.29 for the results. This dataset is the only with GAN as augmentation.

Frac0.25 Dataset

See tables in appendix B.30 for the results.

Frac0.4 Dataset

See tables in appendix B.31 for the results.

Frac0.25 Remove Eyes Dataset

See tables in appendix B.32, and B.33 for the results. Because this dataset had the best results, further experiments were conducted with different, hyperparameters, LeakyRelu, varying rotations and varying chances for different rotations, and with more significant translations see tables in appendix B.36 - B.43.

Frac0.1 Reduce Bias Dataset

See tables in appendix B.34 for the results.

Frac0.2 Reduce Bias Dataset

See tables in appendix B.35 for the results.

4.8 Final Evaluation of Three Class Classification

The final evaluation uses the results from the model, augmentation, and dataset experiments to train a model with the Bayesian optimization algorithm. The Bayesian optimization algorithm finds the best hyperparameters (learning rate, L2 regularisation, and momentum) for the model to use when training, thus finding the best performing model.

Iteration	Learning Rate	L2	Momentum	Average test Acc
1	0,0009807	0,1872	0,4756	74,85
2	0,0009934	0,0549	0,6340	76,61
3	1,46E-05	0,1373	0,9520	75,83
4	0,0003459	0,0695	0,7095	77,58
5	2,14E-05	0,0536	0,7153	74,37
6	0,0005519	0,0969	0,6541	77,49
7	0,0006567	0,1579	0,8224	71,44
8	0,0002560	0,0140	0,6622	77,39
9	0,0003936	0,1244	0,8799	70,57
10	6,59E-06	0,0090	0,7687	69,40
11	0,00016394	0,0001	0,6606	78,65
12	1,17E-06	0,0001	0,3000	45,42
13	0,0005424	0,0624	0,5890	76,61
14	0,0003027	0,0101	0,6300	77,68
15	4,00E-05	0,0515	0,6749	75,24

Table 4.6: Results from the Bayesian optimization algorithm with the ResNet34 with three FC blocks, augmentation(roll and rotate +-6 degree) and the "Frac=0.25 Remove Eye" dataset

6 CV results	Validation Acc	Test Acc
Average Acc	74,64 (5,4)	78,65 (3,1)

Table 4.7: Best six-fold CV result from the Bayesian optimization using the ResNet34 model with three FC blocks, augmentation(roll and rotate +-6 degree) and the "Frac=0.25 Remove Eye" dataset. Values in brackets are the standard deviation

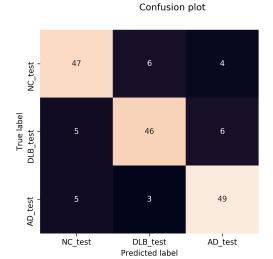


Figure	4.25:	Confusion	plot	of	Fold
	6 f	rom table 4	.7		

Best Fold	AD	DLB	NC	Average
Precision	0,8246	0,8364	0,8305	0,7134
Recall	0,8246	0,8070	0,8596	0,7135
F1	0,8246	0,8214	0,8448	0,7133
Loss	0,5283			
Acc	83,04			

Figure 4.26: Evaluation metrics from fold 6 from table 4.7. Loss and Accuracy graph see appendix B.52

4.9 Two Class Classification

Experiments with a two-class classification problem were conducted to see if the DL model would perform better with fewer classes. The classes tested was NC versus dementia(DLB and AD), and DLB versus AD. AD versus NC was also tested to compare this thesis to other state of the art methods. The experiments used hyperparameters, wich were manually found when conducting experiments to find the best dataset. (Learning rate=0.0009956, momentum=0.537948, L2 weight decay=0.0549, nesterov=True). The hyperparameters found in table 4.6 was tested once, but they provided worse results and was therefore discarded.

NC versus DLB and AD

6 fold CV results, 2 class NC versus AD and DLB				
	Validation Acc	Test Acc		
Best ACC	86,84	84,21		
Average ACC	83,49 (1,8)	81,87 (2,34)		
Standard deviatoion	1,80	2,34		

Figure 4.27: Six-fold CV result from experiment with 2 class classification NC versus DLB and AD

	AD	DLB	Average
Average recall	0,8655	0,7251	0,7953
Average precision	0,8648	0,7375	0,8012

Figure 4.28: Average recall and precision from the Six-fold CV result 4.27 from experiment with 2 class classification NC versus DLB and AD

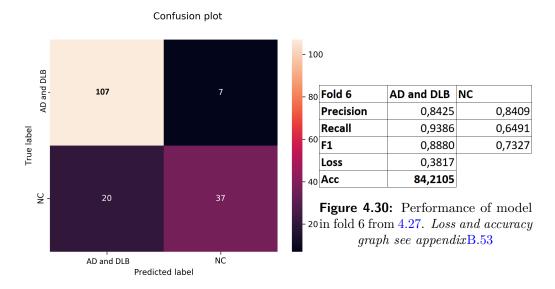


Figure 4.29: Confusion plot of fold 6 from 4.27

A model was also trained on a dateset with NC vs AD subjects so that the model easier can be compaired with other related works in chapter five, see appendix B.55 for results.

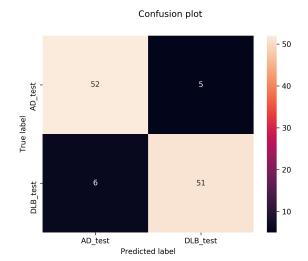
AD versus DLB

6 fold CV results, 2 cla		
	Validation Acc	Test Acc
Best ACC	81,58	90,35
Average ACC	77,4 (2,7)	87,28 (1,95)

Figure 4.31: Six-fold CV result from experiment with 2 class classification DLB versus AD

	AD	DLB	Average
Average recall	0,8684	0,8772	0,8728
Average precision	0,8765	0,8700	0,8732

Figure 4.32: Average recall and precision from the Six-fold CV result 4.31 from experiment with 2 class classification DLB versus AD



Fold 2	AD	DLB	}
Precision	0	,8966	0,9107
Recall	0	,9123	0,8947
F1	0	,9043	0,9027
Loss	0	,4187	
Acc		90,35	

Figure 4.34: Performance of model in fold 2 from 4.31. Loss and accuracy graph see appendix B.54

Figure 4.33: Confusion plot of fold 2 from 4.31

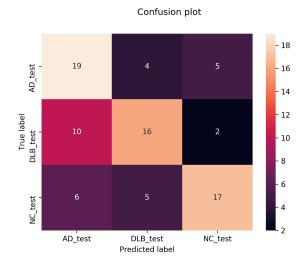
4.10 Federated Learning Experimental Setup

This section contains the FL experimental setup and specifies the datasets selected including benchmarking of these.

4.10.1 Federated learning Dataset Benchmarking

Benchmarking models were trained on the federated datasets; FL1 and FL2 on two different servers. The models were trained with the same parameters except for batch size. The model trained on the GPU with less memory has half the batch size for training and validation witch is 7 instead of 14.

Results for the FL1 dataset model trained on the Tesla-v100-32GB card is 61.9% accuracy. see confusion plot below:

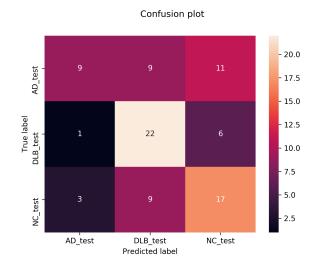


FL - model1	AD_test	DLB_test	NC_test
Precision	0,54	0,64	0,71
Recall	0,68	0,57	0,61
F_beta	0,60	0,60	0,65
Loss	1,16		
Acc	61,90		

Figure 4.36: Performance of model trained on FL1

Figure 4.35: Confusion plot of model trained on FL1

Results for the FL2 dataset model trained on the Tesla-P100-16GB card is 55.17% accuracy, see confusion plot below:



FL - model2	AD_test	DLB_test	NC_test
Precision	0,69	0,55	0,50
Recall	0,31	0,76	0,59
F_beta	0,43	0,64	0,54
Loss	2,02		
Acc	55.17		

Figure 4.38: Performance of model trained on FL2

Figure 4.37: Confusion plot of model trained on FL2

4.10.2 Federated Learning experiment using Federated Averaging

These experiments were conducted by training two sets of models using the FL datasets. Models are trained separately and later used to generate a federated average model. The models are tested for accuracy and loss for comparison between the best locally trained model and the federated version. Sets of models are trained with the same parameters and all use the Adam optimizer. The models are trained without the use of dropout

layers in the network as this will most likely reduce the accuracy of a federated average model due to increased randomness.

4.10.3 Asynchronous Federated Learning experiment using Federated Averaging

The asynchronous FL experiment is structured as shown in figure 3.6. This setup is an attempt to implement a closer to real-world scenario structure of the FL training. Two websocket clients; Alice and Bob, serve as the nodes in the network. There is also a third websocket client; Trainer, used for evaluation of the model when training is complete. The central server is a websocket server which receives model parameters from the workers and applies the federated average function to generate a new model which is distributed back to the workers or evaluated by the testing worker if training is complete. All models use the Adam optimizer.

4.11 Federated Learning Experiment Results

This section contains the results of the FL experiments.

4.11.1 Federated Average experiment result

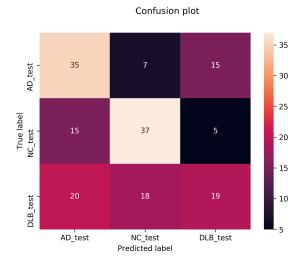


Figure 4.39: Confusion plot of best
local model, set 1, trained with the
Adam optimizer

	AD	DLB	NC	
Precision	0.500	0.487	0.597	
Recall	0.614	0.333	0.649	
F1	0.551	0.396	0.622	
Loss	1.156			
Acc	53.216			

Figure 4.40: Performance of best local model, set 1, trained with the Adam optimizer

Loss and accuracy plot for this model can be found here:(B.56)(B.57)

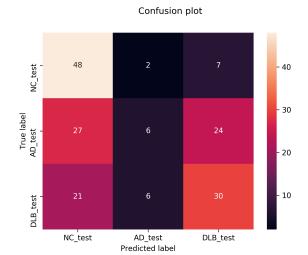


Figure 4.41: Confusion plot of the federated model, set 1, trained with the Adam optimizer

	AD	DLB	NC
Precision	0.429	0.492	0.500
Recall	0.105	0.526	0.842
F1	0.169	0.508	0.627
Loss	1.387		
Acc	49.123	·	

Figure 4.42: Performance of the federated model, set 1, trained with the Adam optimizer

Loss and accuracy plot for this model can be found here:(B.58)(B.59)

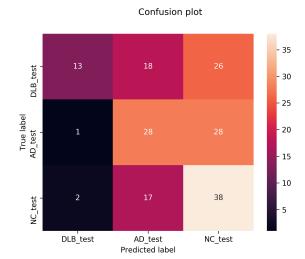
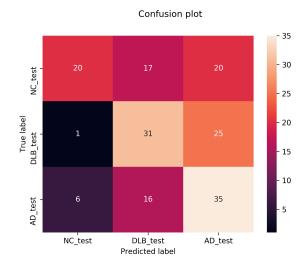


Figure 4.43: Confusion plot of best local model, set 2, trained with the Adam optimizer

	AD	DLB	NC
Precision	0.444	0.813	0.413
Recall	0.491	0.228	0.667
F1	0.467	0.356	0.510
Loss	1.042		
Acc	46.199		

Figure 4.44: Performance of best local model, set 2, trained with the Adam optimizer

Loss and accuracy plot for this model can be found here:(B.60)(B.61)



	AD	DLB	NC
Precision	0.438	0.484	0.741
Recall	0.614	0.544	0.351
F1	0.511	0.512	0.476
Loss	1.663		
Acc	50.292		

Figure 4.46: Performance of the federated model, set 2, trained with the Adam optimizer

Figure 4.45: Confusion plot of the federated model, set 2, trained with the Adam optimizer

Loss and accuracy plot for this model can be found here:(B.62)(B.63)

	Loss	Diff Loss (X)	Acc %	Diff Acc %
Best local model set 1	1.156	-	53.216	,
Federated model set 1	1.387	1.200	49.123	-8.332
Best local model set 2	1.042	-	46.199	-
Federated model set 2	1.663	1.596	50.292	8.138

Table 4.8: Results summary table from models set 1 and 2, normal and federated model.

4.11.2 Asynchronous Federated Learning experiment results

	Alice	Alice	Bob	Bob	Federated	Federated
	Accuracy	Average	Accuracy	Average	Accuracy	Average
Experiment	%	Loss	%	Loss	%	Loss
1	29.89	0.166	39.08	0.164	27.59	0.165
2	34.48	0.167	43.68	0.163	32.18	0.167
3	34.48	0.166	31.03	0.168	25.29	0.167
4	33.33	0.169	29.89	0.164	35.63	0.164
5	36.78	0.089	29.89	0.089	33.33	0.088
6	35.63	0.092	34.48	0.090	34.48	0.091
7	29.89	0.092	33.33	0.094	35.63	0.092
8	29.89	0.094	33.33	0.093	-	-

 Table 4.9: Results summary table from asynchronous federated learning experiment.

Chapter 5

Discussion

5.1 Preprocessing and Datasets

It is difficult to see which skull stripping results that are best by inspecting the brains from the figures 4.4 - 4.6, feedback from a radiologist on which brains looks the best would have been useful. The "Frac0.2 Reduce Bias" looks like the best option because it removes very little brain matter and removes most of the unwanted parts. The "Frac0.2 Reduce Bias" was also reported to be the best option to use with the BET2 software in this thesis [57]. However, this was not the case when training a ResNet model on different datasets. The "Frac0.25 Remove Eye" dataset outperformed the rest, see figure 4.1. The "Frac0.25 Remove Eye" is successful at removing unwanted parts, but it struggles with removing parts of the necks, which is very clear in figure 4.6. Nevertheless, the "Frac0.25 Remove Eye" performed the best and was used in the final evaluation.

One possible justification for why the "Frac0.25 Remove Eye" performs better than the "Frac0.2 Reduce Bias" is: because the "Frac0.25 Remove Eye" removes a bit more of the brain, it has more space to move when it is augmented without it causing the MRI image to wrap around itself. Alternatively, the extra bits of the neck in the MRI images help the model figure out that a brain is rotated or not when the rotation augmentation is applied. [57] also reported that with the use of extra "neck removing" software in addition to the BET2 with the "Frac = 0.1 and reduce bias" option, they were able to produce a little better results than with only the BET2.

5.1.1 Federated Learning Data Set

As mentioned in subchapter 3.2.3, the federated learning dataset is divided in a manner which might not be optimal. Since the splitting of Simen Larsen's dataset is random, the

FL1 and FL2 datasets does not have the same balance of age and gender as the original dataset, which may impact the generalization of the result. This might especially be noteworthy if the datasets are used to train separate models. The main justification for not balancing the federated datasets is that both FL1 and FL2 are utilized in the training process for all of the models in the FL experiments. In addition, it is not unreasonable to assume that unbalanced datasets occur in a real world setting where medical centers contribute in a federated learning process.

5.2 Models

The best model to use on the "Frac0.25 resized dataset" was the ResNet18, as it provided the best average result on all the tests except for the test without any extra fully connected layers or dropout, where it was second-best after ResNet101. However, the results of this test do not give the absolute correct answer, only a guideline, because there were many flaws with the testing of the different models. As an example, all the models used the same hyperparameters and this could mean some models got a huge advantage. With testing models in the future, every model should be run with the Bayesian Optimization algorithm to ensure all models use the best hyperparameters. The main lesson from the test was that the pattern from table 4.1 shows that the shallower models performed better with dropout than their deeper counterparts. This can be caused by the deeper models runing through the dropout function many more times than the shallower models, and the deeper models, therefore, lose too many vital nodes. It is not given that the best model on the resized dataset is the best model to use on the fullsized dataset, which was shown to be the case when comparing tables from appendix B.36 and appendix B.40. Where the ResNet34 model was shown to give the best results.

5.3 Augmentations

It can be argued that the way the augmentation experiments are setup is limiting the scope of the testing to "The best single augmentations used in combination" when the best combination might be a combination of two suboptimal single augmentation techniques. This is most likely not the case here because only two techniques were discarded for performing too bad during the single augmentation testing, which was the filp(1) and flip(2) option. Moreover, the ones that were left were extensively tested to make sure no good combinations were left out. However, with limited time, some assumptions were made when testing. For example, if the augmentation technique did not work well with rotation in the XY plane, it would probably not work much better with the

rotations in the XZ and YZ planes. Throughout the testing of the different augmentation techniques, see appendix B.4 - B.26, it was clear that most of the augmentations work well. The majority of the models trained with augmentations provide better test accuracy than the models without any augmentations. What seems to be the problem with the different augmentation techniques is to find how much of it to apply to the data when training. With too much augmentation, the accuracy starts to decrease; this is especially evident in the deeper models, see tables in appendix B.25. With too little augmentation, nothing drastic happens, the accuracy stays the same as without augmentation. When the amount of augmentation is just right, the accuracy increases, see tables in appendix B.24. In the first table, the test accuracy is even higher than the validation accuracy. This is most likely because the subjects in the validation results are augmented, while the test results are not.

5.4 GAN

5.4.1 GAN

The generated brains look very real, and it is very hard to differentiate between real and fake ones, see figures 4.7 - 4.12. It is impossible to say for sure with just visual inspection from these figures if the generated brain has the correct disease, as this is not even possible with real brains.

The tests with the generated images supplied with the real data show improvement in accuracy both in validation and testing, see table 4.13 (For detailed metrics, see appendix B.44 - B.47). The improvement in the validation is most likely due to the model finding something in the generated data that easily separates the different generated classes. This was further confirmed when training a model with only the generated data, see figures 4.19 - 4.22. The way the model loss drops to 0 after only a few batches signifies that the computer sees something in the data that is not clear to see for a human. Furthermore, when the model was tested on real MRI images, the model was barely better than random guessing, which means the model probably focuses on some small details specific to the classes in the generated brains. As an example, if the NC generated class had lighter black as the background color, and the other two classes had a darker black as the background, the model would learn to classify the NC class by only looking at the background and not the whole brain. The dataset with 50% added GAN images scored just 0.09% more than the dataset with 25% added, suggesting that adding more GAN images than 50% will probably not increase the test accuracy that much.

When doing the test the other way around to verify that the generated images actually replicated the different diseases with good precision, a model trained on only real MRI images was used to classify all the generated images. Results from this show that the generated images replicated the different diseases with good precision, see figure 4.23. The results might be somewhat biased because the generators used the same images for training as the model used in figure 4.23. The results might have differed if the model was trained on images that the generator had never seen before.

The improvement in the testing accuracy is most likely caused by better generalization with the additional GAN images, which provides the model with more variety in the testing data. However, since the generator had access to all the data while training, it might introduce a data leakage. Because a GAN trained with all the data might have an advantage over a GAN trained with the same amount of data but had a separate test set. When training the GAN images in the future, only the training dataset should be used.

5.4.2 Upscaled GAN

Comparing the results from the tabels in appendix B.29, it is clear to see that without the upscaled GAN images, the model performs better. The upscaling seems only to pollute the real data when training. This is probably caused by the upscaled generated images being too blurry/low quality, see figure 4.14.

5.5 Final Evaluation

5.5.1 Clasification of AD-DLB-NC

There have been few studies using MRI-based differential diagnoses of AD, DLB, and NC. This might be because DLB MRI images are sparse and less accessible than the AD and NC MRI images. The results of the reports with the three-class classification problem can be seen in figure 5.1.

Three_C	Tlace Pro	hlem	NC versus	AD vers	ane DLR

	Accuracy[%]	Averag precision	Average recall	Size of dataset
[65]	73	0.78	0.73	48
[66]	87 (8)	0.88	0.87	109
[23]	67.2 (3.85)	0.73	0.72	861
This thesis	78.65 (3.14)	0.786	0.788	861

Table 5.1: Three-Class Problem: NC versus AD versus DLB. Values in brackets are the standard deviation. The [66] results are the average accuracy of a ten-fold CV, while ours and [23] is the average accuracy of a six-fold CV. The [65] are reporting the accuracy of a single model.

Both [66] [65] had significantly smaller datasets than ours and [23], comparisons between the first-mentioned should be made with reservation as the results might be biased due to unbalanced data. The result of this thesis classification improved last year's results [23] with more than 10 percent. While not being as accurate as [66] in the three classification problem, this thesis method got some redemption when comparing the two-class classification problems NC versus DLB and NC, and DLB versus AD(see table 5.2 and 5.3)

Two-Class Problem: NC versus AD and DLB

	Accuracy[%]	Average precision	Average recall	Size of dataset
[66]	98 (4)	0.985	0.986	109
This thesis	81.87 (2.34)	0.801	0.795	861

Table 5.2: Results of this thesis and related work. Two-Class Problem: NC versus AD and DLB. Values in brackets are the standard deviation. The [66] results is the average accuracy of a ten-fold CV, while ours is the average accuracy of a six-fold CV.

Two-Class Problem: AD versus DLB

	Accuracy[%]	Average precision	Average recall	Size of dataset
[66]	74 (16)	0.625	0.73	73 (57 AD and 16 DLB)
This thesis	87.28 (1.95)	0.87649	0.8728	574

Table 5.3: Two-Class Problem: AD versus DLB. Values in brackets are the standard deviation. The [66] is the average accuracy of a ten-fold CV, while ours is the average accuracy of a six-fold CV.

Opedals method scores almost perfect on NC vs DLB and AD while this thesis struggled which might be because the dataset was not balanced as before because of twice the amount of data in the DLB and AD class. In the AD versus DLB Opedals method falls

a little short. With this thesis having a 13% better accuracy. Which shows that the deep learning method is superior in differentiating between DLB and AD.

5.5.2 State of the art

Most other works involving the classification of dementia is mainly focused on AC, MCI and NC. This thesis focused mainly on the three-class problem, but some experiments were done with the 2 class classification to make it easier to compare this work with others.

A resent paper [67] discusses the many problems with reproducible evaluation of different methods related to the classification of AC, MCI and NC. In table 1 in [67] all the "state of the art methods" is analyzed, and data leakage problems are listed in those papers where it is found or suspected. In [67] data leakage is defined as when the test set has been "leaked" into the training set. The methods compared in table 5.4 are the papers with the best-reported results with no reported or suspected data leakages. Most of the results are two-class classification problems as most of the Multi-class classification results either were suspected of data leakage, or had a clear data leakage in them. All the approaches to the classification uses CNNs except for the support-vector machine (SVM).

Study	Performance					Approach
	AD vs NC	sMCI vs pMCI	MCI vs CN	AD vs MCI	Multi-class	
[68]	-	-	-	-	$ACC=0.93^{1,2}$	2D slice
[69]	ACC=0.91	$ACC = 0.78^{1}$	-	-	-	3D patches
[70]	ACC=0.90	-	-	-	-	3D subject
[71]	BA = 0.90	-	BA = 0.73	BA = 0.83	-	ROI-based
[72]	ACC=0.76	-	ACC=0.75	ACC=0.76	-	3D subject
[67]	BA=0.85 (0.04)	$BA=0.73\ (0.03)$	-	-	-	3D subject
[67]	BA=0.88 (0.03)	BA=0.78 (0.07)	-	-	-	3D ROI-based
[67]	BA=0.88 (0.02)	BA=0.70 (0.02)	-	-	-	SVM
Ours	$BA=0.83\ (0.02)$	-	-	-	$BA=0.79(0.03)^{3}$	3D subject

Table 5.4: State of the art comparison. ACC: accuracy; BA: balanced accuracy. Values in round brackets are the standard deviation. MCI: Mild Cognitive Impairment; sMCI: MCI subjects that will remain stable; pMCI: MCI subjects that will progress to AD;

¹ Use of accuracy on a severely imbalanced dataset where one ore more classes is less than half of the other, leading to an over-optimistic estimation of performance.

² The classes in the multi-class clasification is: Non-demented, Very mild, Mild, and

Moderate

The model used in this thesis might be at an disadvantage when compairing the twoclass clasification problems, as the model is deeper and optimized for the three-class clasification problem.

5.6 Federated Learning

There are several lessons to be learned and points worth discussing from the federated learning approach in this thesis. The federated learning branch of machine learning is very much in a pioneer stage when this report is being written. The field is developing rapidly and frameworks upon which federated systems are implemented are improving daily. The next subchapters will discuss some of the main takeaways, including the results from conducted experiments.

5.6.1 Federated Model Generation Method

The federated model generation method/function used in this thesis is the federated average function described in the background chapter. This function is not very complex and is almost certainly not the best choice for many applications. However, the FL field is very young and a limited number of methods have been properly established. The low complexity of the federated average function, and the lack of established options justified it for selection in this thesis. In an event where more time and resources were available, the optimal outcome would be to test several different federated methods and compare to find the option best suited for 3D imaging and MRI applications. Figure 5.1 is a comparison table of federated learning methods, some of which were published after work on this thesis started.

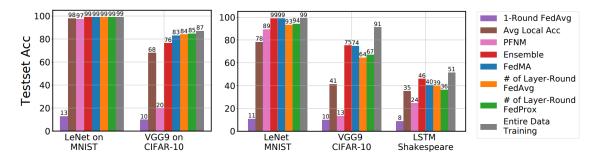


Figure 5.1: Federated Learning methods compared on various datasets. Graph from thesis in public domain with permission[73]

 $^{^3}$ The classes in the multi-class clasification is: NC vs AD vs DLB

5.6.2 Federated Learning Framework/Software Choice

Most of the code written for the federated learning part of this project is based on the open-source FL framework; PySyft[49], which is an extension of the PyTorch[48] framework. Simen Larsen's code is in large part written on the PyTorch framework, which is a big reason why PySyft was selected. The PySyft framework also seemed fairly well documented and included extensive tutorials, as well as being free to use and alter because of the open-source format.

As the project had been going for a while and more of the PySyft framework was explored, it became clear that the framework was less polished than advertised. Some of the promoted functionality was more a work in progress than working product, and thus complicated the work related to this thesis. Some workarounds had to be implemented and a few manual changes were made to the PySyft library files in order to complete the experiments. These changes are not desirable as replication of experiments will be very difficult. This is also something that is reflected in the results to some extent. Upon reflection, other alternatives such as the Tensorflow[74] framework might have been a better alternative.

5.6.3 Network Structure, Optimizer and Parameter Choices

The network structures of the federated models in this thesis are all based in large part on Simen Larsen's SimenNet. Changes have only been made from the SimenNet structure when necessary to adapt to the federated learning format. The federated model nets were kept similar to SimenNet in part to save time, as hopefully less experimentation would be needed. Another reason for building on the SimenNet structure was that this net already had achieved fairly good accuracy levels on dementia classification using the same dataset.

The batch normalization in the fully connected layers from SimenNet were removed in all of the federated nets. This was done because these layers interfered too much in the learning process and flattened learning progress. The dropout layers in the some of the nets were removed to simplify the models. In the asynchronous federated learning experiments the dropout layers were included and adjusted to various degrees to tweak the model.

The Adam optimizer was used in all of the FL experiments in this thesis (excluding the FL MNIST example which utilizes SGD). The SGD optimizer was experimented with in early iterations of some of the FL models, however this did not yield promising results

and was scraped early on. The Adam optimizer yielded better results in all instances and is also the optimizer used in Simen Larsen's model.

Parameters in the FL nets were experimented with extensively. Some of the notable parameter adjustments were various levels of dropout between layers, batch size adjustments, learning rate adjustments and changes in number of local training rounds before federating the model weights. All of these adjustments were made to improve the performance the the federated models.

5.6.4 Federated Learning and Privacy

The subject of privacy and protection of data was not directly included in the experimental part of this thesis. A fundamental part of the federated learning structure is protection of data and privacy through the local storage of datasets. Apart from the locally stored data principle, this thesis does not dive deep into the subject. The justification for not focusing more on for instance encryption techniques or similar methods to improve security and privacy, is the time constraint the project is under. Security and privacy should be researched and experimented with further given the opportunity. Suggested research paper [75] by Tien-Dung Cao, Tram Truong-Huu, Hien Tran and Khanh Tran for more details on privacy-preservation and federated learning.

5.6.5 Federated Learning Experiment Results

The results from the federated learning experiments conducted were in many ways a mixed bag, and did not necessarily live up to all expectations. However, there are probably some lessons to be learned and important takeaways from the final results.

The results from the federated average experiment (4.8), shows that training an FL model on 3d images is definitely achievable, although these results did not significantly improve the accuracy of the models. The federated model set 1 fell approximately 8 percent in accuracy from the best locally trained model. The federated model set 2 rose approximately 8 percent in accuracy from the best locally trained model. Seen together these results on average evens out to about the same accuracy as the best locally trained models. It has to be noted that the accuracy might have increased further if the setup had been run for several iterations. It is also notable that the federated models have higher loss values than the best locally trained models.

The results from the asynchronous federated learning experiments (4.9) did not achieve significant accuracy in any of the conducted tests. The average accuracy from the federated model tests came out to be approximately 1/3. This is essentially the same

accuracy one would get by rolling a dice in a three class classification problem. The suspected main reason for not being able to produce better models in this setup is related to problems in the PySyft[49] framework. Implementing the structure in an asynchronous manner might also have complicated the process somewhat unnecessarily. Although it is disappointing that better results were not achieved with this setup, it is important to remember that PySyft[49] is an open-source project in a rapidly developing field.

Chapter 6

Conclusion and Future Directions

6.1 Conclusion

6.1.1 GAN and improving the existing classifier

- The preprocessing of the data had a significant impact on how well the models performed. The best preprocessing to use while training was the proposed preprocessing method with the following brain extraction parameters "Frac = 0.25 and Remove Eye = True".
- The model architectures tested all provided decent results. The ResNet34 with three extra FC layers was chosen to be used in the final evaluation because of its good performance and faster training.
- The GAN experiment was somewhat a success. Memory limitations when training the GAN resulted in the generator only producing brains with limited resolution. When the dataset of real brains was resized to match the GAN brains and trained together, the model accuracy increased. This indicates that GAN can be used to supply 3D brains with different types of dementia. The end result did not include GAN images as the higher resolution in the original datasets provided better results than the lower ones.
- The final evaluation used the Bayesian optimization technique to search for the best hyperparameters (learning rate, L2 regularisation, and momentum) while training with the Resnet34 model, the "Frac = 0.25 and Remove Eye = True" dataset and with the best augmentation. The final result got a six-fold CV average accuracy of 78.65% with standard deviation of 3.14%, and a best singular model had an accuracy of 83.04%.

• The 2-class classification problem displayed poor results compared to other state of the art methods when classifying between NC and dementia, but when classifying between AD and DLB. This thesis model outperformed other methods significantly, having a average accuracy of 87.28% and a standard deviation of 1.95.

6.1.2 Federated Learning

- The federated average experiment (4.8) showed promising results which suggest large scale federated learning on 3d MRI images is achievable. Increased iterations might improve the accuracy of the models further.
- The asynchronous federated learning experiment (4.9) did not achieve significant results in terms of accuracy of the models. This is for the most part attributed to the utilized framework; PySyft[49], which had major shortcomings as of the writing of this thesis. The setup would be migrated to an alternative framework like for instance Tensorflow[74], had it not been for the time constraint.

6.2 Future Directions

6.2.1 GAN

Getting the current generated MRI images verified by a radiologist would be interesting to get a definite evaluation of the $3D-\alpha$ -GAN model.

Training the 3D-α-GAN model with the full-sized dataset and generate new full-sized images. As GANs, in general, have shown good results in producing high-resolution images[36] [37] it should be possible to do it with brains as well. And if a radiologist were to verify the generated images, the full-sized brains would give more reliable results as the lower resolution makes it much harder to spot differences.

6.2.2 Visualizing the Model with Grad-CAM

Because there has only been reported a few biomarkers that can be used in differentiating between AD and DLB, it would be exciting to see what parts of the brain the DL model looks at when discriminating these two diagnoses. The model could maybe give insight to new biomarkers that can be used in future research.

6.2.3 Federated Learning

There is a lot of potential for the future of federated learning in relation to distribution and sharing of medical data and protection of patient privacy. Further research and experimentation should be done in relation to federated learning methods as mentioned in the discussions chapter. The security and privacy protecting aspects of federated learning should definitely be investigated further. It is also probable that the asynchronous federated setup experiment in this thesis would yield better results if migrated to a different federated learning platform. The field of federated learning is very young and rapidly developing. Use cases and performance will undoubtedly improve in the foreseeable future.

List of Figures

2.1	Illustration showing plaques and tangles interfering with the brain cells[11]	6
2.2	Biopsy showing lewy body deposits in the brain[15]	7
2.3	MRI scan of NC, AD and DLB brains	9
2.4	Highlighted Hippocampus with detailed anatomy. Case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 10770	10
2.5	Illustration of an artificial neuron. $x = inputs$, $w_k = weights$, $\phi = activation$ function, $x_0 = +1$ which makes is a bias with $w_{k,0} = b_k \dots \dots$.	12
2.6	Illustration of an ANN structure.(Picture is from [23] used with Larsens consent)	12
2.7	Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of one	13
2.8	Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of one. The green zeroes in the "image" matrix are the padding that is applied	14
2.9	Average pooling with a 2x2 region and a stride of 2. The line from the green part of the input to the green part of the output is to illustrate that	- 4
2.10	part of the input to the green part of the output is to illustrate that the	14
	output is calculated from this part of the input	14
	ReLU6 activation function	17
	Overfitting example.[30] Training error in blue, validation error in red	18
	4-Fold Cross Validation example	19
	SimenNet network structure [23]	2121
2 16	PlainNet calculation	$\frac{21}{22}$
	ResNet calculation	22
	Example of a confusion matrix	23
	GAN flowchart.	24
	Illustration of an auto-encoder	25
	Illustration of a VAE.	26
	α -GAN structure. \mathbf{X} reproduced: samples reproduced by the generator from encodings produced by the encoder. \mathbf{X} generated: samples produced by the generator given a "random" vector. \mathbf{Z} random: samples from the latent-generating distribution (random noise). \mathbf{Z} encoded: vectors produced by the encoder given a real sample.	27
2.233.1	General Federated Learning Process[46]	28 32
J. I	1 0011 0 DEGINDULIDO O DIGILL WIGHTI GO - U. 40	-04

3.2	Larsen's Dataset Characteristics [23] picture form Larsen's thesis is used with his consent
3.3	Extra Fully Connected Layers added to end of ResNet models
	Federated Network Structure
3.4	
3.5	Asynchronous Federated Network Structure
3.6	Asynchronous Federated system setup
3.7	Illustration of the different augmentations
3.8	Detailed architecture of the model from [62]. $n = number$ of the channels, $k = kernel$ size, $s = stride$ size, and $p = padding$ size. $xrand$ is the generator output from random vectors zr and $xrec$ is the output from encoded vectors ze
4.1	Confusion plot of reproduced model
4.1	Performance of reproduced model
4.3	v 0
4.4	BrainA different frac preprocessing result
4.5 4.6	BrainB preprocessing result
4.0	Sample of a real. NC brain
4.8 4.9	1 0
4.9	•
4.10	Sample of a generated AD brain
	Sample of generated DLB brain
	Best Result from appendix B.44 with extra evaluation metrics
	Comparison of Upscaled generated brain, original sized brain and a real
4.14	brain
1 15	Confusion plot for upscaled GAN test
	Performance of upscaled GAN test
	Confusion plot for upscaled GAN test
	Performance of upscaled GAN test
	Accuracy plot for training only GAN
	Loss plot for training only GAN
	Confusion plot for only GAN test
	Performance of only GAN test
	Model trained on real MRI images, classify the Generated GAN images 56
	Detailed metrics of Fold 6 from table B.45 when tested on real data 56
	Confusion plot of Fold 6 from table 4.7
	Evaluation metrics from fold 6 from table 4.7. Loss and Accuracy graph
	see appendix B.52
4.27	Six-fold CV result from experiment with 2 class classification NC versus
	DLB and AD
4.28	Average recall and precision from the Six-fold CV result 4.27 from experi-
	ment with 2 class classification NC versus DLB and AD
4.29	Confusion plot of fold 6 from 4.27
	Performance of model in fold 6 from 4.27. Loss and accuracy graph see
	annendirR 53

4.31	Six-fold CV result from experiment with 2 class classification DLB versus	
	AD	60
4.32	Average recall and precision from the Six-fold CV result 4.31 from experi-	
	ment with 2 class classification DLB versus AD	60
4.33	Confusion plot of fold 2 from 4.31	61
4.34	Performance of model in fold 2 from 4.31. Loss and accuracy graph see	
	appendix B.54	61
4.35	Confusion plot of model trained on FL1	62
4.36	Performance of model trained on FL1	62
4.37	Confusion plot of model trained on FL2	62
4.38	Performance of model trained on FL2	62
4.39	Confusion plot of best local model, set 1, trained with the Adam optimizer	63
4.40	Performance of best local model, set 1, trained with the Adam optimizer .	63
4.41	Confusion plot of the federated model, set 1, trained with the Adam	
	optimizer	64
4.42	Performance of the federated model, set 1, trained with the Adam optimizer	64
4.43	Confusion plot of best local model, set 2, trained with the Adam optimizer	64
4.44	Performance of best local model, set 2, trained with the Adam optimizer .	64
4.45	Confusion plot of the federated model, set 2, trained with the Adam	
	optimizer	65
4.46	Performance of the federated model, set 2, trained with the Adam optimizer	65
5.1	Federated Learning methods compared on various datasets. Graph from	
0.1	thesis in public domain with permission[73]	73

List of Tables

1.1	Thesis division table. (The person credited with a chapter has also written all subchapters unless otherwise specified.)	٠
3.1	MNIST dataset Asynchronous FL table	41
3.2	MNIST dataset Asynchronous FL results table	41
4.1	Results from testing different models	48
4.2 4.3	Bayesian optimization with augmenting	49
1.0	•	49
4.4	<i>5</i>	52
4.5	U V	57
4.6	Results from the Bayesian optimization algorithm with the ResNet34 with three FC blocks, augmentation(roll and rotate +-6 degree) and the "Frac=0.25 Remove Eye" dataset	58
4.7	Best six-fold CV result from the Bayesian optimization using the ResNet34 model with three FC blocks, augmentation(roll and rotate +-6 degree) and the "Frac=0.25 Remove Eye" dataset. Values in brackets are the standard	58
4.8	Results summary table from models set 1 and 2, normal and federated	65
4.9		65
5.1	Three-Class Problem: NC versus AD versus DLB. Values in brackets are the standard deviation. The [66] results are the average accuracy of a ten-fold CV, while ours and [23] is the average accuracy of a six-fold CV. The [65] are reporting the accuracy of a single model.	71
5.2	Results of this thesis and related work. Two-Class Problem: NC versus AD and DLB. Values in brackets are the standard deviation. The [66] results is the average accuracy of a ten-fold CV, while ours is the average	
		71
5.3	Two-Class Problem: AD versus DLB. Values in brackets are the standard deviation. The [66] is the average accuracy of a ten-fold CV, while ours is	
	the average accuracy of a six-fold CV	71

5.4	State of the art comparison. ACC: accuracy; BA: balanced accuracy. Values in round brackets are the standard deviation. MCI: Mild Cognitive Impairment; sMCI: MCI subjects that will remain stable; pMCI: MCI subjects that will progress to AD;	. 72
B.1	Results from experiment with different models	. 95
B.2	Results from experiment with different models	. 96
B.3	Results from test without augmentation	. 96
B.4	Augmentation Results from Rotate in XZ direction	. 97
B.5	Augmentation Results from Rotate in XY direction	. 98
B.6	Augmentation Results from Rotate in YZ direction	. 98
B.7	Augmentation Results from Translating/Roll	. 99
B.8	Augmentation Results from $Mirroring(Flip(0))$. 100
B.9	Augmentation Results from flipping left/right $(Flip(1)) \dots \dots \dots$. 100
B.10	Augmentation Results from flipping upside/down (Flip(2))	. 101
	Augmentation Results from Gaussian Blur	
B.12	Augmentation Results from different combinations 1	. 103
B.13	Augmentation Results from different combinations 2	. 104
B.14	Augmentation Results from different combinations 3	. 105
	6-CV Augmentation Results with no Augmentation	
B.16	6-CV Augmentation Results for Rotation in the XZ plane	. 106
B.17	6-CV Augmentation Results for Rotation in the XZ plane	. 107
	6-CV Augmentation Results for Rotation in the XY plane	
	6-CV Augmentation Results for Rotation in the YZ plane	
	6-CV Augmentation Results for Translations	
	6-CV Augmentation Results for Mirroring	
	6-CV Augmentation Results for Gaussian Blur	
	6-CV Augmentation Results from Different Combinations	
	6-CV Augmentation Results from Different Combinations	
	6-CV Augmentation Results from Different Combinations	
	6-CV Augmentation Results from Different Combinations	
	Augmentation Results with GAN	
	Augmentation Results with GAN	
	6-CV Augmentation Results with 50%GAN Images	
	Frac 0.5 Dataset with augmentations	
	6-CV Result Frac=0.5 dataset, No Augmentation	
	Frac 0.25 Dataset with augmentations	
	Frac 0.4 Dataset with augmentations	
	Frac0.25 Remove Eyes Dataset with augmentations	. 110
D.40	Augmentations	116
B 33	Frac 0.25 Remove Eyes Dataset with augmentations	
	Frac0.1 Reduce Bias Dataset with augmentations	
	Frac 0.2 Reduce Bias Dataset with augmentations	
	Experiments from the Frac0.25 Remove Eye Dataset: ResNet18	
	Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with	
2.01	LeakyReLII	119

B.38	Experiments from the Frac 0.25 Remove Eye Dataset: ResNet34 with	
	Different Hyperparameters	119
B.47	6-CV Result Frac=0.5 dataset, With Roll and Rotate Augmentations	119
B.39	Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with	
	Different Rotation, chance=70	120
B.48	Accuracy plot for training upscaled GAN Experiment1	120
B.49	Loss plot for training upscaled GAN Experiment1	120
B.40	Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with	
	Different Rotation, chance=90	121
B.50	Accuracy plot for training upscaled GAN Experiment 2	121
B.51	Loss plot for training upscaled GAN Experiment2	121
B.41	Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with	
	Different Rotation, chance=98	122
B.42	Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with	
	Different Rotation=+-30 Degree, and Bigger Translations	122
B.43	Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with	
	Different Rotation=+-6 Degree, and Bigger Translations	
B.52	Accuracy and Loss graphs from the training of fold 6 from table 4.7 $$	123
B.53	Accuracy and Loss graphs from the training of fold 6 from table 4.27	124
B.54	Accuracy and Loss graphs from the training of fold 2 from table 4.31	124
B.56	Accuracy plot of best local model, set 1, trained with the Adam optimizer $$	124
B.57	Loss plot of best local model, set 1, trained with the Adam optimizer	124
B.55	Experiments with training proposed model on NC vs AD data, so it can	
	be compared to other results easier	125
B.58	Accuracy plot of the federated model, set 1, trained with the Adam optimizer	125
B.59	Loss plot of the federated model, set 1, trained with the Adam optimizer .	125
B.60	Accuracy plot of best local model, set 2, trained with the Adam optimizer $$	125
B.61	Loss plot of best local model, set 2, trained with the Adam optimizer	125
B.62	Accuracy plot of the federated model, set 2, trained with the Adam optimizer	126
B.63	Loss plot of the federated model, set 2, trained with the Adam optimizer .	126

_

Appendix A

0

Appendix A

A.1 requirements.txt

File with the required python packages to run this code on.

A.2 fit.py

This file takes a dictionary as input and executes a model evaluation, until it reaches maximum amount of epochs or runs out of patience. Also the augmentation function is here.

A.3 Main_setup.py

File used for executing experiments. Dictionary with different hyperparameters is made here and sent to fit.py.

A.4 system_resources.py

File that contains functions used in fit.py, Main_setup.py, and test.py. All models are stored in here as well.

A.5 test.py

File containing setup for testing a model on the test set.

A.6 data_resources.py

A file containing code for creating specific metadata needed for the create_dataset function.

A.7 NormalizeSkullStripPipeline.py

Code for running prepossessing.

A.8 TestingAllFoldsInCVfold.py

Code used to test all folds inside a k-fold CV run.

A.9 upscaleGANimages.py

Code used to upscale GAN images.

A.10 Make_new_dataset_from_Simens_balance.py

Code used to make new datasets with Simens dataset balance.

A.11 AD_dataset.py, DLB_dataset.py, NC_dataset.py

Code used to load our dataset into the GAN training.

A.12 federatedAverage.py

File containing code for loading two models and calculating a new federated model.

A.13 start_websocket_server.py

Part of the asynchronous federated learning setup. Starts websocket clients on set ports. (Requires customized PySyft version)

A.14 run_websocket_server.py

Part of the asynchronous federated learning setup. File which contains code for the websocket server. ($Requires\ customized\ PySyft\ version$)

A.15 run_websocket_client.py

Part of the asynchronous federated learning setup. Starts the federated learning process. $(Requires\ customized\ PySyft\ version)\ Appendix\ A$

_

Appendix B

Appendix B

DenceNet w	ith Frac=0,25			SimenNet			
	AD pred	DLB pred	NC pred		AD pred	NC pred	DLB pred
AD true	39	4	14	AD true	50	3	4
DLB true	8	41	8	NC true	11	36	10
NC true	13	8	36	DLB true	18	8	31
Precision	0,65	0,7735849	0,6206897	Precision	0,63291	0,765957	0,688889
Recall	0,6842105	0,7192982	0,6315789	Recall	0,87719	0,631579	0,54386
F1	0,6666667	0,7454545	0,626087	F1	0,73529	0,692308	0,607843
Loss	0,7595083			Loss	0,83141		
Acc	67,836258			Acc	68,4211		
6-fold CV avg	-			6-fold CV avg	57,5049		

Resnet152 F	rac=0,25			Resnet152 with drop 0,1 in conv and 0,2 in linear layers Frac=0,25				ac=0,25	Resnet152 with drop in conv Frac=0,25						
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	35	13	9	AD true	36	7	14	AD true	34	5	18	AD true	30	10	17
DLB true	4	48	5	DLB true	16	30	11	DLB true	7	42	8	DLB true	5	49	3
NC true	9	14	34	NC true	10	3	44	NC true	11	5	41	NC true	9	18	30
Precision	0,7291667	0,64	0,7083333	Precision	0,58065	0,75	0,637681	Precision	0,6538462	0,8076923	0,61194	Precision	0,681818	0,636364	0,6
Recall	0,6140351	0,8421053	0,5964912	Recall	0,63158	0,526316	0,77193	Recall	0,5964912	0,7368421	0,719298	Recall	0,526316	0,859649	0,52632
F1	0,6666667	0,7272727	0,647619	F1	0,60504	0,618557	0,698413	F1	0,6238532	0,7706422	0,66129	F1	0,594059	0,731343	0,56075
Loss	0,8256135			Loss	1,20848			Loss	0,985702			Loss	1,193288		
Acc	68,421051			Acc	64,3275			Acc	68,421051			Acc	63,74269		
6-fold CV av	63,352826			6-fold CV avg	54,191			6-fold CV av	61,40351			6-fold CV avg	59,35673		

Resnet101 F	rac=0,25			Resnet101 with layers Frac=0,25		n conv and (),2 in linear	Resnet101 with 0,2 in linear layers Frac=0,25				
	NC pred	DLB pred	AD pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred	
NC true	30	10	17	AD true	33	5	19	AD true	34	11	12	
DLB true	6	43	8	DLB true	10	42	5	DLB true	7	45	5	
AD true	7	6	44	NC true	10	8	39	NC true	12	11	34	
Precision	0,6976744	0,7288136	0,6376812	Precision	0,62264	0,763636	0,619048	Precision	0,6415094	0,6716418	0,666667	
Recall	0,5263158	0,754386	0,7719298	Recall	0,57895	0,736842	0,684211	Recall	0,5964912	0,7894737	0,596491	
F1	0,6	0,7413793	0,6984127	F1	0,6	0,75	0,65	F1	0,6181818	0,7258065	0,62963	
Loss	1,1024115			Loss	0,88014			Loss	0,793385			
Acc	68,421051			Acc	66,6667			Acc	66,081871			
6-fold CV avg	64,814815			6-fold CV avg	62,8655			6-fold CV av	61,306044			

Table B.1: Results from experiment with different models

Resnet50 Fr	ac=0,25			Resnet50 with layers Frac=0,25		conv and 0,	2 in linear	Resnet50 w	Resnet50 with 0,2 in linear layers Frac=0,25 Resnet50 with drop in conv Frac=					v Frac=0,25	
	AD pred	DLB pred	NC pred	layers Frac-0,23		DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	35	5	_	AD true	34	5	_	AD true	35			AD true	33	9	
DLB true	6	42	9	DLB true	10	40		DLB true	9		11	DLB true	6	45	
NC true	7	13	37	NC true	8	7	42	NC true	8	8	41	NC true	13	10	34
Precision	0,7291667	0,7	0,5873016	Precision	0,65385	0,769231	0,626866	Precision	0,6730769	0,6981132	0,621212	Precision	0,634615	0,703125	0,6181
Recall	0,6140351	0,7368421	0,6491228	Recall	0,59649	0,701754	0,736842	Recall	0,6140351	0,6491228	0,719298	Recall	0,578947	0,789474	0,59649
F1	0,6666667	0,7179487	0,6166667	F1	0,62385	0,733945	0,677419	F1	0,6422018	0,6727273	0,666667	F1	0,605505	0,743802	0,6071
Loss	0,9434584			Loss	0,87347			Loss	1,0607615			Loss	0,867344		
Acc	66,666664			Acc	67,8363			Acc	66,081871			Acc	65,49708		
6-fold CV av	59,25926			6-fold CV avg	62,768			6-fold CV av	61,111111			6-fold CV avg	60,03899		
Resnet34 Fr	ac=0,25			Resnet34 with o		conv and 0,2	in linear	Resnet34 w	rith 0,2 in line	ear layers Fra	c=0,25				
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred				
AD true	41	2	14	AD true	45	5	7	AD true	48	4	5				
DLB true	9	36	12	DLB true	7	37	13	DLB true	12	33	12				
NC true	10	11	36	NC true	10	8	39	NC true	13	8	36				
Precision	0,6833333	0,7346939	0,5806452	Precision	0,72581	0,74	0,661017	Precision	0,6575342	0,7333333	0,679245				
Recall	0,7192982	0,6315789	0,6315789	Recall	0,78947	0,649123	0,684211	Recall	0,8421053	0,5789474	0,631579				
F1	0,7008547	0,6792453	0,605042	F1	0,7563	0,691589	0,672414	F1	0,7384615	0,6470588	0,654545				
Loss	0,83795			Loss	0,73705			Loss	0,8126327						
Acc	66,081871			Acc	70,7602			Acc	68,421051						
6-fold CV av	60,623781			6-fold CV avg	67,2515			6-fold CV av	64,619883						
Resnet18				Resnet18 with o	5			Resnet18 w	,	ear layers Fra	,	Resnet18 with			
	AD pred		DLB pred		AD pred	DLB pred	NC pred		AD pred		NC pred		AD pred	DLB pred	NC pred
AD true	33	11		AD true	44	4	9	AD true	42		8	AD true	34	7	16
NC true	8	40	-	DLB true	10	36		DLB true	11	42		DLB true	8	41	
DLB true	7	8		NC true	5	9	43	NC true	8	9	40	NC true	7	15	
Precision	0,6875	0,6779661	0,65625	Precision	0,74576			Precision	0,6885246			Precision	0,693878	0,650794	
Recall	0,5789474	-		Recall	0,77193	-	0,754386	Recall	0,7368421	0,7368421		Recall	0,596491	0,719298	
F1	0,6285714	0,6896552	0,6942149	F1	0,75862	0,679245	0,716667	F1	0,7118644	0,7304348	0,733945	F1	0,641509	0,683333	0,60345
Loss	0,7760452			Loss	0,69824			Loss	0,7552613			Loss	0,936865		
Acc	67,251465			Acc	71,9298			Acc	72,514618			Acc	64,32748		
6-fold CV av	64,619885			6-fold CV avg	67,8363			6-fold CV av	66,8616			6-fold CV avg	61,30604		1

Table B.2: Results from experiment with different models

No Augme	No Augmentation				ntation			No Augmentation			
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	38	11	8	AD true	42	3	12	AD true	29	11	17
DLB true	14	32	11	DLB true	16	24	17	DLB true	4	31	22
NC true	13	10	34	NC true	12	6	39	NC true	6	7	44
Precision	0,5846	0,6038	0,6415	Precision	0,6000	0,7273	0,5735	Precision	0,7436	0,6327	0,5301
Recall	0,6667	0,5614	0,5965	Recall	0,7368	0,4211	0,6842	Recall	0,5088	0,5439	0,7719
F1	0,6230	0,5818	0,6182	F1	0,6614	0,5333	0,6240	F1	0,6042	0,5849	0,6286
Loss	0,8525			Loss	0,9697			Loss	0,8462		
Acc	60,819			Acc	61,404			Acc	60,819		

Table B.3: Results from test without augmentation

Rotate +-6 degree XZ axis, 50%				Rotate +-6 degree XZ axis, 90% augmented				Rotate +-30 degree XZ axis, 90% augmented			
Rotate +-6	degree X	Z axis, 50%		Rotate +-6	degree XZ a	axis, 90% augi	nented	Rotate +-30	degree XZ	axis, 90% aug	gmented
augmente	ed										
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	25	12	20	AD true	43	4	10	AD true	40	5	12
DLB true	4	43	10	DLB true	12	32	13	DLB true	8	38	11
NC true	6	14	37	NC true	12	6	39	NC true	10	5	42
Precision	0,7143	0,6232	0,5522	Precision	0,6418	0,7619	0,6290	Precision	0,6897	0,7917	0,6462
Recall	0,4386	0,7544	0,6491	Recall	0,7544	0,5614	0,6842	Recall	0,7018	0,6667	0,7368
F1	0,5435	0,6825	0,5968	F1	0,6935		0,6555	F1	0,6957	0,7238	0,6885
Loss	0,9968	0,0025	0,0300	Loss	0,9072	5,51.55	0,0000	Loss	0,7977	0,7250	0,0000
Acc	61,40			Acc	66,67			Acc	70,18		
7100	01,10			7100	00,07			7100	70,20		
Rotate 4-6	n degree '	XZ axis, 90%		Rotate 4-4	5 dograp V7	axis, 90% aug	mented	Rotate +-45	ποστορ Υ7	axis, 99% aug	mented
augmente	_	NZ GA13, 3070		Notate 1-4	degree Az	. axis, 5070 au	illenteu	Notate 1-43	uegree Az	axis, 3370 aug	inenteu
augmente		DID - I	No - I		40 1	DID - I	NO I		AD	DID	NO 1
AD+	AD pred	DLB pred	NC pred	AD+	AD pred	DLB pred	NC pred	A.D. torr		DLB pred	NC pred
AD true	35	8		AD true	36		18	AD true	41	2	14
DLB true	10	32		DLB true	5		16	DLB true	9	37	11
NC true	10	7	40	NC true	7	6	44	NC true	11	7	39
Precision	0,63636	-	-	Precision	0,7500		0,5641	Precision	0,6721	0,8043	0,6094
Recall	0,61404			Recall	0,6316	-	0,7719	Recall	0,7193	0,6491	0,6842
F1	0,625	0,61538462	0,634921	F1	0,6857	0,7059	0,6519	F1	0,6949	0,7184	0,6446
Loss	0,75692			Loss	0,7889			Loss	0,9153		
Acc	62,57			Acc	67,84			Acc	68,42		
D-4-4 2	Rotate +-37 degree XZ axis, 90%										
augmente	_	XZ axis, 90%		Rotate +-2	0 degree XZ	axis, 90% aug	gmented	Rotate +-25	degree XZ	axis, 90% aug	gmented
	ed	_	NC pred	Rotate +-2				Rotate +-25			
augmente	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
augmente AD true	AD pred	DLB pred	13	AD true	AD pred	DLB pred	NC pred	AD true	AD pred	DLB pred	NC pred
AD true DLB true	AD pred	DLB pred 16 48	13 7	AD true DLB true	AD pred 48 21	DLB pred 2	NC pred	AD true DLB true	AD pred 30 6	DLB pred 8	NC pred 19
AD true DLB true NC true	AD pred 28 2 9	DLB pred 16 48	13 7 39	AD true DLB true NC true	AD pred 48 21 15	DLB pred 27 12	NC pred 7 9 30	AD true DLB true NC true	AD pred 30 6	DLB pred 8 34	NC pred 19 17 43
AD true DLB true NC true Precision	AD pred 28 2 9 0,71795	DLB pred 16 48 9 0,65753425	13 7 39 0,661017	AD true DLB true NC true Precision	AD pred 48 21 15 0,5714	DLB pred 2 27 12 0,6585	NC pred 7 9 30 0,6522	AD true DLB true NC true Precision	AD pred 30 6 6 0,7143	DLB pred 8 34 8 0,6800	NC pred 19 17 43 0,5443
AD true DLB true NC true Precision Recall	AD pred 28 2 9 0,71795 0,49123	DLB pred 16 48 9 0,65753425 0,84210526	13 7 39 0,661017 0,684211	AD true DLB true NC true Precision Recall	AD pred 48 21 15 0,5714 0,8421	DLB pred 2 27 12 0,6585 0,4737	NC pred 7 9 30 0,6522 0,5263	AD true DLB true NC true Precision Recall	AD pred 30 6 6 0,7143 0,5263	DLB pred 8 34 8 0,6800 0,5965	NC pred 19 17 43 0,5443 0,7544
AD true DLB true NC true Precision Recall F1	AD pred 28 2 9 0,71795 0,49123 0,58333	DLB pred 16 48 9 0,65753425	13 7 39 0,661017 0,684211	AD true DLB true NC true Precision Recall F1	AD pred 48 21 15 0,5714 0,8421 0,6809	DLB pred 2 27 12 0,6585 0,4737 0,5510	NC pred 7 9 30 0,6522	AD true DLB true NC true Precision Recall F1	AD pred 30 6 6 0,7143 0,5263 0,6061	DLB pred 8 34 8 0,6800	NC pred 19 17 43 0,5443
AD true DLB true NC true Precision Recall F1 Loss	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184	DLB pred 16 48 9 0,65753425 0,84210526	13 7 39 0,661017 0,684211	AD true DLB true NC true Precision Recall F1 Loss	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089	DLB pred 2 27 12 0,6585 0,4737 0,5510	NC pred 7 9 30 0,6522 0,5263	AD true DLB true NC true Precision Recall F1 Loss	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744	DLB pred 8 34 8 0,6800 0,5965	NC pred 19 17 43 0,5443 0,7544
AD true DLB true NC true Precision Recall F1	AD pred 28 2 9 0,71795 0,49123 0,58333	DLB pred 16 48 9 0,65753425 0,84210526	13 7 39 0,661017 0,684211	AD true DLB true NC true Precision Recall F1	AD pred 48 21 15 0,5714 0,8421 0,6809	DLB pred 2 27 12 0,6585 0,4737 0,5510	NC pred 7 9 30 0,6522 0,5263	AD true DLB true NC true Precision Recall F1	AD pred 30 6 6 0,7143 0,5263 0,6061	DLB pred 8 34 8 0,6800 0,5965	NC pred 19 17 43 0,5443 0,7544
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(:	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515	DLB pred 16 48 9 0,65753425 0,84210526	13 7 39 0,661017 0,684211 0,672414	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-{1	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035	DLB pred 2 27 12 0,6585 0,4737 0,5510	NC pred 7 9 30 0,6522 0,5263 0,5825	AD true DLB true NC true Precision Recall F1 Loss Acc	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57	DLB pred 8 34 8 0,6800 0,5965	NC pred 19 17 43 0,5443 0,7544 0,6324
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate + ('Augmenta')	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) deg	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 gree XZ axis,	13 7 39 0,661017 0,684211 0,672414	AD true DLB true NC true Precision Recall F1 Loss Acc	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035	DLB pred 2 27 12 0,6585 0,4737 0,5510	NC pred 7 9 30 0,6522 0,5263 0,5825	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 of second try	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug	NC pred 19 17 43 0,5443 0,7544 0,6324 mented,
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(: Augmenta	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) deg attion AD pred	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 ree XZ axis, DLB pred	13 7 39 0,661017 0,684211 0,672414 90% NC pred	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(1 Augmenta	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degree	DLB pred 2 27 12 0,6585 0,4737 0,5510 Pee XZ axis, 909 DLB pred	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate + 30 (second try	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ	DLB pred	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate + (Augmenta	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) deg tion AD pred 19	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 gree XZ axis, DLB pred 13	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate + (1 Augmenta	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degree	DLB pred 2 27 12 0,6585 0,4737 0,5510 Pee XZ axis, 909 DLB pred 8	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 of second try AD true	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42	DLB pred	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate + ('Augmenta') AD true DLB true	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) deg tion AD pred 19 4	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 ree XZ axis, DLB pred 13 36	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25 17	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate + (1 Augmenta AD true DLB true	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degree	DLB pred 2 27 12 0,6585 0,4737 0,5510 22 24 25 25 26 27 27 27 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6 7	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 of second try AD true DLB true	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42 12	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug DLB pred 5 31	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10 14
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(: Augmenta	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) deg tion AD pred 19 4 3	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 gree XZ axis, DLB pred 13 36 13	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25 17 41	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate + (1 Augmenta AD true DLB true NC true	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degretion AD pred 43 8 17	DLB pred 2 27 12 0,6585 0,4737 0,5510 22 24 25 25 26 27 27 27 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6 7 24	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 of second try AD true DLB true NC true	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42 12 15	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug DLB pred 5 31	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10 14 38
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(: Augmenta AD true DLB true NC true Precision	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) degetion AD pred 19 4 3 0,73077	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 ree XZ axis, DLB pred 13 36 13 0,58064516	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25 17 41 0,493976	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(1 Augmenta AD true DLB true NC true Precision	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degretion AD pred 43 8 17 0,6324	DLB pred 2 27 12 0,6585 0,4737 0,5510 DLB pred 8 42 16 0,6364	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6 7 24 0,6486	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 of second try AD true DLB true NC true Precision	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42 12 15 0,6087	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug DLB pred 5 31 4 0,7750	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10 14 38 0,6129
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(: Augmenta AD true DLB true NC true Precision Recall Rotate	AD pred 28 2 9 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) degetion AD pred 19 4 3 0,73077 0,33333	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 Tree XZ axis, DLB pred 13 36 13 0,58064516 0,63157895	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25 17 41 0,493976 0,719298	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(1 Augmenta AD true DLB true NC true Precision Recall	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degretion AD pred 43 8 17 0,6324 0,7544	DLB pred 2 27 12 0,6585 0,4737 0,5510 Example 2	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6 7 24 0,6486 0,4211	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +30 of second try AD true DLB true NC true Precision Recall	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42 12 15 0,6087 0,7368	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug DLB pred 5 31 4 0,7750 0,5439	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10 14 38 0,6129 0,6667
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(: Augmenta AD true DLB true NC true Precision Recall F1	AD pred 28 29 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) degention AD pred 19 4 3 0,73077 0,33333 0,45783	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 ree XZ axis, DLB pred 13 36 13 0,58064516	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25 17 41 0,493976	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(1 Augmenta AD true DLB true NC true Precision Recall F1	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degretion AD pred 43 8 17 0,6324 0,7544 0,6880	DLB pred 2 27 12 0,6585 0,4737 0,5510 DLB pred 8 42 16 0,6364	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6 7 24 0,6486	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 of second try AD true DLB true NC true Precision Recall F1 F1	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42 12 15 0,6087 0,7368 0,6667	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug DLB pred 5 31 4 0,7750	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10 14 38 0,6129
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(: Augmenta AD true DLB true NC true Precision Recall F1 Loss	AD pred 28 29 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) degention AD pred 19 4 3 0,73077 0,33333 0,45783 0,92242	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 Tree XZ axis, DLB pred 13 36 13 0,58064516 0,63157895	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25 17 41 0,493976 0,719298	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(1 Augmenta AD true DLB true NC true Precision Recall F1 Loss	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degretion AD pred 43 8 17 0,6324 0,7544 0,6880 0,8745	DLB pred 2 27 12 0,6585 0,4737 0,5510 Example 2	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6 7 24 0,6486 0,4211	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 c second try AD true DLB true NC true Precision Recall F1 Loss	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42 12 15 0,6087 0,7368 0,6667 0,7164	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug DLB pred 5 31 4 0,7750 0,5439	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10 14 38 0,6129 0,6667
AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(: Augmenta AD true DLB true NC true Precision Recall F1	AD pred 28 29 0,71795 0,49123 0,58333 0,77184 67,2515 15-30) degention AD pred 19 4 3 0,73077 0,33333 0,45783	DLB pred 16 48 9 0,65753425 0,84210526 0,73846154 Tree XZ axis, DLB pred 13 36 13 0,58064516 0,63157895	13 7 39 0,661017 0,684211 0,672414 90% NC pred 25 17 41 0,493976 0,719298	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-(1 Augmenta AD true DLB true NC true Precision Recall F1	AD pred 48 21 15 0,5714 0,8421 0,6809 0,9089 61,4035 5-60) degretion AD pred 43 8 17 0,6324 0,7544 0,6880	DLB pred 2 27 12 0,6585 0,4737 0,5510 Example 2	NC pred 7 9 30 0,6522 0,5263 0,5825 6 chance of NC pred 6 7 24 0,6486 0,4211	AD true DLB true NC true Precision Recall F1 Loss Acc Rotate +-30 of second try AD true DLB true NC true Precision Recall F1 F1	AD pred 30 6 6 0,7143 0,5263 0,6061 0,8744 62,57 degree XZ AD pred 42 12 15 0,6087 0,7368 0,6667	DLB pred 8 34 8 0,6800 0,5965 0,6355 axis, 90% aug DLB pred 5 31 4 0,7750 0,5439	NC pred 19 17 43 0,5443 0,7544 0,6324 mented, NC pred 10 14 38 0,6129 0,6667

Table B.4: Augmentation Results from Rotate in XZ direction

Rotate +-15degree YZ axis, 90%

augmented

Rotate +-45 degree YZ axis, 90%

augmented

Rotate +	ted	ree XY ax		augmented			Rotate +-30degree XY axis, 90% augmented				
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	39	10	8	AD true	28	8	21	AD_test	37	10	10
DLB true	6	39	12	DLB true	5	24	28	DLB_test	7	41	9
NC true	11	5	41	NC true	5	6	46	NC_test	9	10	38
Precision	0,6964	0,7222	0,6721	Precision	0,7368	0,6316	0,4842	Precision	0,6981	0,6721	0,6667
Recall	0,6842	0,6842	0,7193	Recall	0,4912	0,4211	0,8070	Recall	0,6491	0,7193	0,6667
F1	0,6903	0,7027	0,6949	F1	0,5895	0,5053	0,6053	F1	0,6727	0,6949	0,6667
Loss	0,7687			Loss	0,8735			Loss	0,9191		
Acc	69,591			Acc	57,310			Acc	67,836		
Rotate +	+-30deg	gree XY as	Ris,	Rotate 4	⊦-30degr	ee XY axis	, 99%	Rotate +-	30degr	ee XY axis	, 90%
99% aug	gmente	Н		augmen	ted						
				augmented							
	AD pred		NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	AD pred 38		NC pred 15	AD true	AD pred 31	DLB pred 7	NC pred 19	AD_test	AD pred 43	DLB pred 9	NC pred 5
AD true DLB true			15 14	AD true DLB true		DLB pred 7 31		AD_test DLB_test		DLB pred 9 42	NC pred 5 4
	38	DLB pred 4	15			7	19		43	9	NC pred 5 4 32
DLB true	38 12 14	DLB pred 4	15 14	DLB true	31 7 13	7 31 6	19 19	DLB_test	43 11	9 42	5 4 32
DLB true NC true	38 12 14	DLB pred 4 31 7	15 14 36 0,5538	DLB true NC true	31 7 13	7 31 6 0,7045	19 19 38 0,5000	DLB_test NC_test	43 11 14	9 42 11	5 4 32 0,7805
DLB true NC true Precision	38 12 14 0,5938	DLB pred 4 31 7 0,7381	15 14 36 0,5538 0,6316	DLB true NC true Precision	31 7 13 0,6078	7 31 6 0,7045 0,5439	19 19 38 0,5000 0,6667	DLB_test NC_test Precision	43 11 14 0,6324	9 42 11 0,6774	5 4 32 0,7805 0,5614
DLB true NC true Precision Recall	38 12 14 0,5938 0,6667	DLB pred 4 31 7 0,7381 0,5439	15 14 36 0,5538 0,6316	DLB true NC true Precision Recall	31 7 13 0,6078 0,5439	7 31 6 0,7045 0,5439 0,6139	19 19 38 0,5000 0,6667	DLB_test NC_test Precision Recall	43 11 14 0,6324 0,7544	9 42 11 0,6774 0,7368	5 4 32 0,7805 0,5614

Table B.5: Augmentation Results from Rotate in XY direction

Rotate +-30degree YZ axis, 90%

augmented

				dagmented				dagmented			
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	41	6	10	AD true	35	14	8	AD true	34	11	12
DLB true	12	33	12	DLB true	7	43	7	DLB true	3	39	15
NC true	11	6	40	NC true	7	12	38	NC true	9	13	35
Precision			-	Precision	0,7143		0,7170	Precision	0,7391	0,6190	0,5645
Recall	0,7193		0,7018	Recall	0,6140	0,7544	0,6667	Recall	0,5965	0,6842	0,6140
F1	0,6777	0,647059	0,6723	F1	0,6604	0,6825	0,6909	F1	0,6602	0,6500	0,5882
Loss	0,7668			Loss	0,7140			Loss	0,7525		
Acc	66,667			Acc	67,8363			Acc	63,158		
Rotate +	gmented		xis,								
	AD pred	DLB pred	NC pred								
AD true	36		13								
DLB true	14	32	11								
NC true	12	5	40								
Precision	0,5806	0,7111	0,6250								
Recall	0,6316	0,5614	0,7018								
F1	0,6050	0,6275	0,6612								
Loss	0,8678										
Acc	63,158										

Table B.6: Augmentation Results from Rotate in YZ direction

4 pixels	90% chance to move the Brain 4 pixels in x,z,y directions(Roll), 70% chance for each direction				Roll 90%, 70% each direction			Roll 95%	, 66% e	ach directi	on
70% ch	ance fo	r each dire	ection								
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	38	13	6	AD pred	42	8	7	AD true	48	4	5
DLB true	5	45	7	DLB_test	9	33	15	DLB true	9	36	12
NC true	9	15	33	NC_test	11	8	38	NC true	16	6	35
Precision	0,7308	0,6164	0,7174	Precision	0,6774	0,6735	0,6333	Precision	0,6575	0,7826	0,6731
Recall	0,6667	0,7895			0,7368	0,5789	0,6667	Recall	0,8421	0,6316	0,6140
F1	0,6972	0,6923	0,6408	F1	0,7059	0,6226	0,6496	F1	0,7385	0,6990	0,6422
Loss	0,7757			Loss	0,7518			Loss	0,6712		
Acc	67,836			Acc	66,082			Acc	69,591		
Roll 99%	4, 70% (each direc	etion	Roll 99%	, 90% e	ach directi	ion	Roll 99%,	80% ea	ich directio	on
						I = . =					
		DLB pred					NC pred				NC pred
AD true	34	12	11	AD true	44	3	10	AD true	44	6	7
DLB true	4	47	6	DLB true	18		13	DLB true	20	21	16
NC true	9		36	NC true	16		37	NC true	17	3	37
Precision	0,7234	0,6620	0,6792	Precision	0,5641			Precision	0,5432	0,7000	0,6167
Recall	0,5965	0,8246	-	Recall	0,7719		0,6491	Recall	0,7719	0,3684	0,6491
F1	0,6538	0,7344	0,6545	F1	0,6519	_	0,6325	F1	0,6377	0,4828	0,6325
Loss	0,7506			Loss	0,8071			Loss	0,7773		
Acc	68,4211			Acc	62,5731			Acc	59,649		
Holl 997		each direc		Holl 95%	_	ch directi		Holl 95%,		ch direction	
		DLB pred				DLB pred	NC pred				NC pred
AD true	44	(6	AD true	45		9	AD true	30	9	18
DLB true	10	38	9	DLB true	9			DLB true	6	34	17
NC true	10		35	NC true	10	_		NC true	4	6	47
Precision	0,6875	0,6667	0,7000	Precision	0,7031	-		Precision	0,7500	0,6939	0,5732
Recall	0,7719		0,6140	Recall	0,7895		0,7368	Recall	0,5263	0,5965	0,8246
F1	0,7273	0,6667	0,6542	F1	0,7438		0,7119	F1	0,6186	0,6415	0,6763
Loss	0,7781			Loss	0,6216			Loss	0,7463		
Acc	68,4211			Acc	73,0994			Acc	64,912		

 $\textbf{Table B.7:} \ \operatorname{Augmentation} \ \operatorname{Results} \ \operatorname{from} \ \operatorname{Translating}/\operatorname{Roll}$

Mirror in	nage 50	% augmer	nted	Mirror im	age 50%	augmente	ed	Mirror ima	ige 50%	augmente	·d
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	31	7	19	AD true	39	8	10	AD true	32	9	16
DLB true	7	31	19	DLB true	7	42	8	DLB true	5	43	9
NC true	13	6	38	NC true	17	8	32	NC true	8	10	39
Precision	0,6078	0,7045	0,5000	Precision	0,6190	0,7241	0,6400	Precision	0,7111	0,6935	0,6094
Recall	0,5439	0,5439	0,6667	Recall	0,6842	0,7368	0,5614	Recall	0,5614	0,7544	0,6842
F1	0,5741	0,6139	0,5714	F1	0,6500	0,7304	0,5981	F1	0,6275	0,7227	0,6446
Loss	0,8579			Loss	0,8241			Loss	1,1321		
Acc	58,480			Acc	66,0819			Acc	66,667		
Mirror in	nage 50	% augmer	nted	Mirror im	age 25%	augmente	•d	Mirror ima	ge 10%	augmente	d
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	40	9	8	AD true	39	7	11	AD true	40	6	11
DLB true	13	36	8	DLB true	11	37	9	DLB true	8	31	18
NC true	16	13	28	NC true	14	9	34	NC true	13	2	42
Precision	0,5797	0,6207	0,6364	Precision	0,6094	0,6981	0,6296	Precision	0,6557	0,7949	0,5915
Recall	0,7018	0,6316	0,4912	Recall	0,6842	0,6491	0,5965	Recall	0,7018	0,5439	0,7368
F1	0,6349	0,6261	0,5545	F1	0,6446	0,6727	0,6126	F1	0,6780	0,6458	0,6563
	0.0000			Loss	0,8740			Loss	1,0269		
Loss	0,9598			2033	-,						

Table B.8: Augmentation Results from Mirroring(Flip(0))

Flip 1 5	AD pred DLB pred N			Flip 1 50)% augm	ented		Flip 1 502	. augme	ented	
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	38	7	12	AD true	28	10	19	AD true	22	7	28
DLB true	13	31	13	DLB true	11	31	15	DLB true	4	36	17
NC true	10	4	43	NC true	9	9	39	NC true	5	8	44
Precision	0,6230	0,7381	0,6324	Precision	0,5833	0,6200	0,5342	Precision	0,7097	0,7059	0,4944
Recall	0,6667	0,5439	0,7544	Recall	0,4912	0,5439	0,6842	Recall	0,3860	0,6316	0,7719
F1	0,6441	0,6263	0,6880	F1	0,5333	0,5794	0,6000	F1	0,5000	0,6667	0,6027
Loss	0,8787			Loss	0,8904			Loss	0,8961		
Acc	65,4971			Acc	57,3099			Acc	59,649		
Flip 1 2	5% augi	mented		Flip 1 10	% augme	ented					
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred				
AD true	31	15	11	AD true	27	16	14				
DLB true	4	46	7	DLB true	8	40	9				
NC true	7	15	35	NC true	10	9	38				
Precision	0,7381	0,6053	0,6604	Precision	0,6000	0,6154	0,6230				
Recall	0,5439	0,8070	0,6140	Recall	0,4737	0,7018	0,6667				
F1	0,6263	0,6917	0,6364	F1	0,5294	0,6557	0,6441				
Loss	0,8689			Loss	0,8659						
Acc	65,4971			Acc	61,4035						

Table B.9: Augmentation Results from flipping left/right (Flip(1))

AD pred DLB pred NC pred

10

30

Flip 2 50% augmented

AD true

DLB true

10

23

NC pred

28

Flip 2 50% augmented

AD true

DLB true

AD pred DLB pred

NC true	3	9	45	NC true	6	15	36	NC true	5	9	43
Precision	0,7059	0,6122	0,5114	Precision	0,6591	0,5882	0,4737	Precision	0,6765	0,5476	0,4526
Recall	0,4211	0,5263	0,7895	Recall	0,5088	0,5263	0,6316	Recall	0,4035	0,4035	0,7544
F1	0,5275	0,5660	0,6207	F1	0,5743	0,5556	0,5414	F1	0,5055	0,4646	0,5658
Loss	1,1451			Loss	0,9652			Loss	0,9985		
Acc	57,895			Acc	55,5556			Acc	52,047		
Flip 2 2	5% aug	mented		Flip 2 10)% augme	ented					
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred				
AD true	38	2	17	AD true	24	9	24				
DLB true	15	28	14	DLB true	6	40	11				
NC true	8	6	43	NC true	1	9	47				
Precision	0,6230	0,7778	0,5811	Precision	0,7742	0,6897	0,5732				
Recall	0,6667	0,4912	0,7544	Recall	0,4211	0,7018	0,8246				
F1	0,6441	0,6022	0,6565	F1	0,5455	0,6957	0,6763				
Loss	0,8573			Loss	0,8384						
Acc											

AD pred DLB pred NC pred

30

Flip 2 50% augmented

AD true

DLB true

20

Table B.10: Augmentation Results from flipping upside/down (Flip(2))

Gaussian filter 50% (sigma = 1)				Gaussian filter 30% (sigma = 1)			Gaussian filter 40% (sigma = 1)				
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred			DLB pred	NC pred
AD true	28	10	19	AD true	36	2	19	AD true	39	5	13
DLB true	18	32	7	DLB true	8	32	17	DLB true	7	41	9
NC true	8		38	NC true	7	5	45	NC true	9	9	39
Precision	0,5185	0,6038	0,5938	Precision	0,7059	0,8205	0,5556	Precision	0,7091	0,7455	0,6393
Recall	0,4912	0,5614	0,6667	Recall	0,6316	0,5614	0,7895	Recall	0,6842	0,7193	
F1	0,5045		0,6281	F1	0,6667	0,6667	0,6522	F1	0,6964	0,7321	0,6610
Loss	1,1968			Loss	0,8937			Loss	0,8851		
Acc	57,310			Acc	66,0819			Acc	69,591		
	ı filter(s	igma = 0,6	6-0,01)	Gausian	filter(sig	ma = 1-0,0)1) 90%	Gausian f	ilter(sig	ma = 1-0,0	1) 99%
90%											
			NC pred		AD pred		NC pred			DLB pred	NC pred
AD true	38		7	AD true	35	_	14	AD true	44	4	9
DLB true	12	36		DLB true	12	30	15	DLB true	12	34	11
NC true	18		28	NC true	12			NC true	20	8	29
Precision	0,5588		0,6364	Precision	0,5932	-	0,5469	Precision	0,5789	0,7391	
Recall	0,6667	0,631579	0,4912	Recall	0,6140	-	0,6140	Recall	0,7719	0,5965	0,5088
F1	0,608	0,62069	0,5545	F1	0,6034		0,5785	F1	0,6617	0,6602	0,5472
Loss	0,9117			Loss	0,9729			Loss	1,1133		
Acc	59,649			Acc	58,4795			Acc	62,573		
Gausiar		igma = 2-1		Gaussia)% (sigma	= 1)				
		DLB pred	NC pred		AD pred	DLB pred	NC pred				
AD true	27	2	28	AD true	23	7	27				
DLB true	16	21	20	DLB true	8		21				
NC true	10		46	NC true	5	_	46				
Precision	0,5094	0,8750	0,4894	Precision	0,63889	-	0,489362				
Recall	0,4737	0,3684	0,8070	Recall	0,40351						
F1	0,4909		0,6093	F1	0,49462	0,571429	0,609272				
Loss	1,0965			Loss	1,25137						
Acc	54,971			Acc	56,7251						
			-	D 11 A		. D. L	f (1	:_ Dl			

 Table B.11: Augmentation Results from Gaussian Blur

xz rot 30 gausian	()40%			xz rot 30	_	99%, gausi		xz rot 30d		95%, gausi	an10%
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	39	6	12	AD true	36	10	11	AD true	34	12	11
DLB true	12	37	8	DLB true	5	40	12	DLB true	5	47	5
NC true	14	6	37	NC true	9	_	39	NC true	8	16	33
Precision	0,6	0,755102	0,6491	Precision	0,7200	0,6780	0,6290	Precision	0,7234	0,6267	0,6735
Recall	0,6842	0,649123	0,6491	Recall	0,6316	0,7018	0,6842	Recall	0,5965	0,8246	0,5789
F1	0,6393	0,698113	0,6491	F1	0,6729	0,6897	0,6555	F1	0,6538	0,7121	0,6226
Loss	0,8633			Loss	0,8177			Loss	0,8855		
Acc	66,082			Acc	67,2515			Acc	66,667		
1	_	80%, xy i		xz rot 30degree 70%, xy rot				1	_	30%, xy rot	- 1
30degre		gausian(s	_	30degree 70%, gausian(sigma = 1)				90%, gau		ma = 1) 10:	×-
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	45	3	9	AD_test	46		4	AD true	34	10	13
DLB true	11	38	8	DLB_test	12		3	DLB true	8	44	5
NC true	19	12	26	NC_test	29		15	NC true	13	9	35
Precision	0,6000	0,7170	0,6047	Precision	0,5287	0,6774	0,6818	Precision	0,6182	0,6984	0,6604
Recall	0,7895	0,6667	0,4561	Recall	0,8070	0,7368	0,2632	Recall	0,5965	0,7719	0,6140
F1	0,6818	0,6909	0,5200	F1	0,6389		0,3797	F1	0,6071	0,7333	0,6364
Loss	0,7991			Loss	0,8963			Loss	0,8144		
Acc	63,743			Acc	60,2339			Acc	66,082		
xz and y gausian		30 degree	es 90%,	xz and y gausian		0 degree 9	0%,	xz and yz	rot +-3	0 degrees	90%
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	34	15	8	AD_test	36		11	AD true	38	6	13
DLB true	8	44	5	DLB_test	13	32	12	DLB true	9	42	6
NC true	16	9	32	NC_test	16		34	NC true	12	12	33
Precision	0,5862	0,6471	0,7111	Precision	0,5538	0,6531	0,5965	Precision	0,6441	0,7000	0,6346
Recall	0,5965	0,7719	0,5614	Recall	0,6316		0,5965	Recall	0,6667	0,7368	0,5789
F1	0,5913	0,7040	0,6275	F1	0,5902	0,6038	0,5965	F1	0,6552	0,7179	0,6055
Loss	0,8470	-		Loss	0,8562			Loss	0,7801		
Acc	64,327			Acc	59,6491			Acc	66,082		

Table B.12: Augmentation Results from different combinations 1

xz and x	y +-30 d	degree 70	1%	яz(0,2) я	sy(0,1) 30	degree 70	%	XY(0,1) Y	Z(1,2) 3	0 degree 7	0%		
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		
AD true	37	4	16	AD_test	42	4	11	AD true	42	6	9		
DLB true	10	37	10	DLB_test	11	39	7	DLB true	14	36	7		
NC true	8	4	45	NC_test	8	10	39	NC true	16	5	36		
Precision	0,6727	0,8222	0,6338	Precision	0,6885	0,7358	0,6842	Precision	0,5833	0,7660	0,6923		
Recall	0,6491	0,6491	0,7895	Recall	0,7368	0,6842	0,6842	Recall	0,7368	0,6316	0,6316		
F1	0,6607	0,7255	0,7031	F1	0,7119	0,7091	0,6842	F1	0,6512	0,6923	0,6606		
Loss	0,7638			Loss	0,7800			Loss	0,7137				
Acc	69,591			Acc	70,175			Acc	66,667				
		30 degree		xz(0,2) y	ız(1,2) 30	degree 90		XY(0,1) YZ(1,2) 30 degree 70% AD pred DLB pred NC p					
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		NC pred				
AD true	41	5	11	AD_test	22	18	17	AD true	36	8	13		
DLB true	12	36	9	DLB_test	2	50	5	DLB true	4	45	8		
NC true	19	5	33	NC_test	5	12	40	NC true	8	9	40		
Precision	0,5694	0,7826	0,6226	Precision	0,7586	0,6250	0,6452	Precision	0,7500	0,7258	0,6557		
Recall	0,7193	0,6316	0,5789	Recall	0,3860	0,8772	0,7018	Recall	0,6316	0,7895			
F1	0,6357	0,6990	0,6000	F1	0,5116	0,7299	0,6723	F1	0,6857	0,7563	0,6780		
Loss	0,7724			Loss	0,7777			Loss	0,7550				
Acc	64,327			Acc	65,4971			Acc	70,760				
ху хг уг	30 degi			ху хг уг	30 degre	e 70%		ху хг уг З					
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		
AD true	8	18	31	AD_test	19	18	20	AD true	43	4	10		
DLB true	0	33	24	DLB_test	1	43	13	DLB true	9	36	12		
NC true	2	13	42	NC_test	7	8	42	NC true	11		40		
Precision	0,8000	0,5156	0,4330	Precision	0,7037	0,6232	0,5600	Precision	0,6825	0,7826	0,6452		
Recall	0,1404	0,5789	0,7368	Recall	0,3333	0,7544		Recall	0,7544	0,6316	0,7018		
F1	0,2388	0,5455	0,5455	F1	0,4524	0,6825	0,6364	F1	0,7167	0,6930	0,6723		
Loss	1,0463			Loss	0,7513			Loss	0,7024				
Acc	48,538			Acc	60,8187			Acc	69,591				

Table B.13: Augmentation Results from different combinations 2

NC pred

22

16

38

0,5000

AD_test

DLB_test

NC_test

Precision

11

41

14

0,6212

xz(0,2) xy(0,1) 30degree 70%, Roll 90%

24

0

5

0,8276

AD true

DLB true

NC true

Precision

AD pred DLB pred

4

37

8

0,7551

NC pred

15 15

43

0,5890

xz(0,2) xy(0,1) 30degree 45%, Roll 45%

AD pred DLB pred

38

5

6

0,7755

	-,	-,	-/		-7	-7	-/		-7	-/	-/
Recall	0,4211	0,7193	0,6667	Recall	0,6140	0,7544	0,7018	Recall	0,6667	0,6491	0,7544
F1	0,5581	0,6667	0,5714	F1	0,6731	0,7350	0,6612	F1	0,7170	0,6981	0,6615
Loss	0,8067			Loss	0,6621			Loss	0,7619		
Acc	60,2339			Acc	69,0059			Acc	69,006		
90% augm	enting, ro	t XY(45%) XZ	(90%) 30	Roll 95%-6	6%, rotate +	-5 degree XZ	and XY 80%	Roll 95%-669	%, rotate +	-5 degree YZ	70%
degree, r	oll 90%										
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	30	11	16	AD_test	44	7	6	AD_test	43	4	10
DLB true	4	37	16	DLB_test	9	36	12	DLB_test	16	30	11
NC true	6	6	45	NC_test	17	10	30	NC_test	10	3	44
Precision	0,7500	0,6852	0,5844	Precision	0,6285714	0,67924528	0,625	Precision	0,62319	0,810810811	0,676923077
Recall	0,5263	0,6491	0,7895	Recall	0,7719298	0,63157895	0,52631579	Recall	0,75439	0,526315789	0,771929825
F1	0,6186	0,6667	0,6716	F_beta	0,6929134	0,65454545	0,57142857	F_beta	0,68254	0,638297872	0,721311475
Loss	0,7210			Loss	0,7138808			Loss	0,71399		
Acc	65,4971			Acc	64,327484			Acc	68,4211		
Roll 95%-6	56%, rotate	e +-6 degree	XZ 90%	Roll 95%-6	6%, rotate +	-15 degree X	Z 90%	Roll 95%-669	%, rotate +	-5 degree XZ	and XY 50%
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD_test	33	10	14	AD_test	39	6	12	AD_test	27	6	24
DLB_test	6	43	8	DLB_test	7	41	9	DLB_test	3	42	12
NC_test	5	11	41	NC_test	8	13	36	NC_test	3	7	47
Precision	0,75	0,671875	0,650794	Precision	0,7222222	0,68333333	0,63157895	Precision	0,81818	0,763636364	0,56626506
Recall	0,57895	0,75438596	0,719298	Recall	0,6842105	0,71929825	0,63157895	Recall	0,47368	0,736842105	0,824561404
F_beta	0,65347	0,7107438	0,683333	F_beta	0,7027027	0,7008547	0,63157895	F_beta	0,6	0,75	0,671428571
Loss	0,83472			Loss	0,7074473			Loss	0,8212		
Acc	68,4211			Acc	67,836258			Acc	67,8363		

xz(0,2) xy(0,1) 30degree 70%, Roll 50%

35

4

8

0,7447

AD pred

DLB pred

NC pred

14

10

40

0,6250

AD true

DLB true

NC true

Precision

8

43

9

0,7167

Table B.14: Augmentation Results from different combinations 3

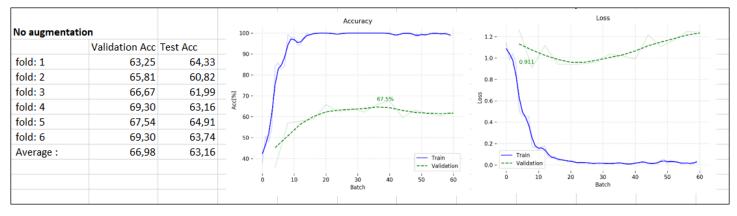


Table B.15: 6-CV Augmentation Results with no Augmentation

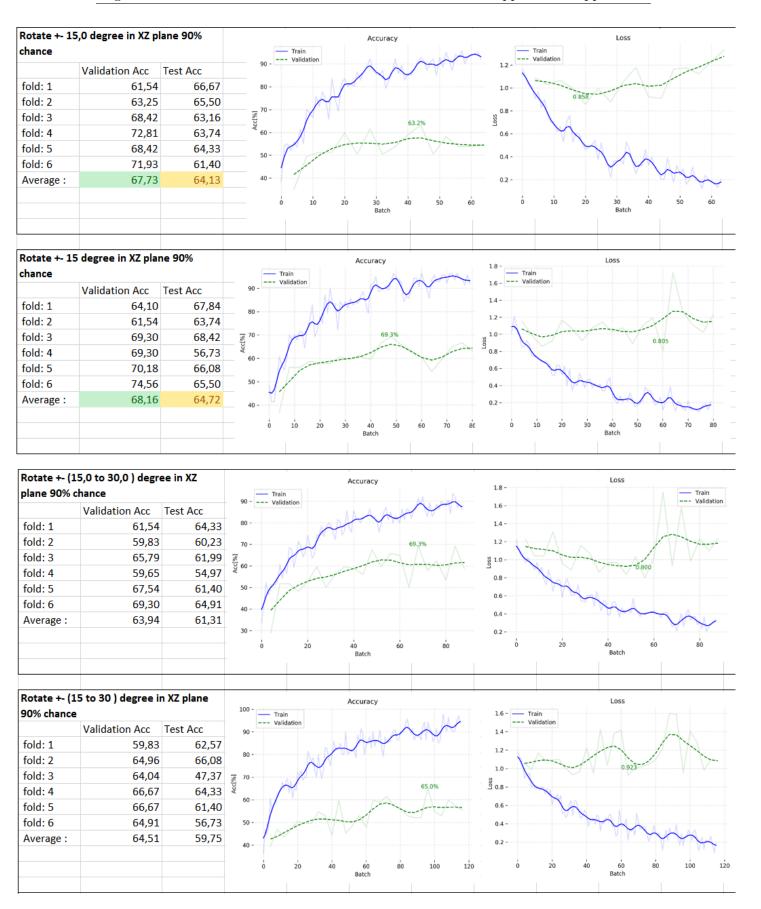


Table B.16: 6-CV Augmentation Results for Rotation in the XZ plane

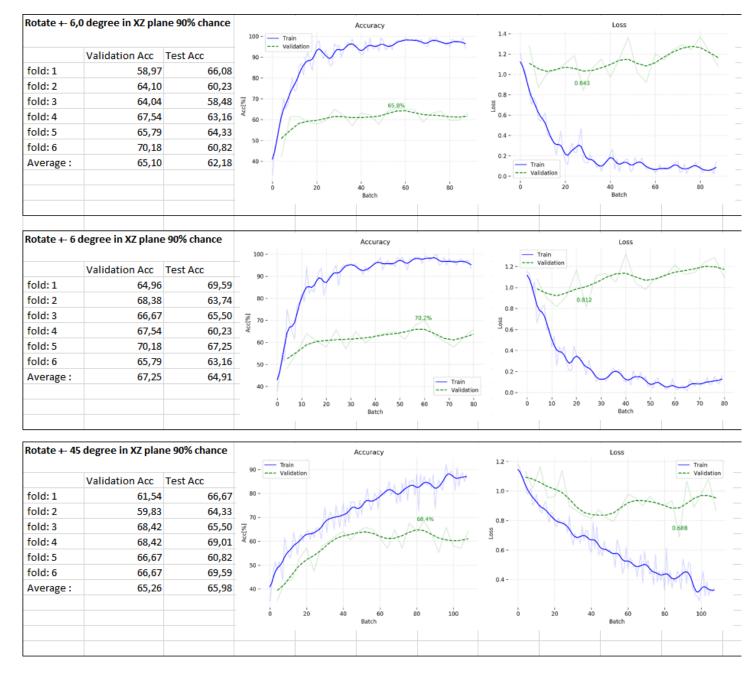


 Table B.17:
 6-CV Augmentation Results for Rotation in the XZ plane

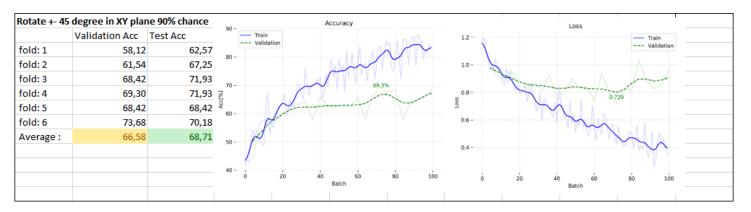


Table B.18: 6-CV Augmentation Results for Rotation in the XY plane

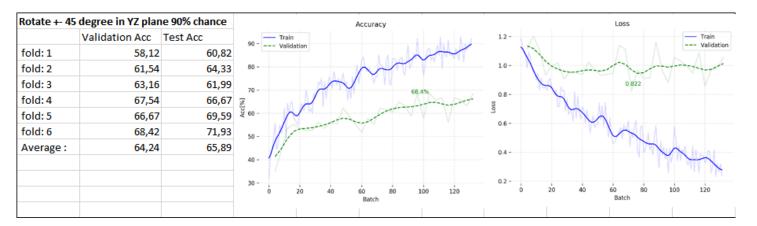


Table B.19: 6-CV Augmentation Results for Rotation in the YZ plane

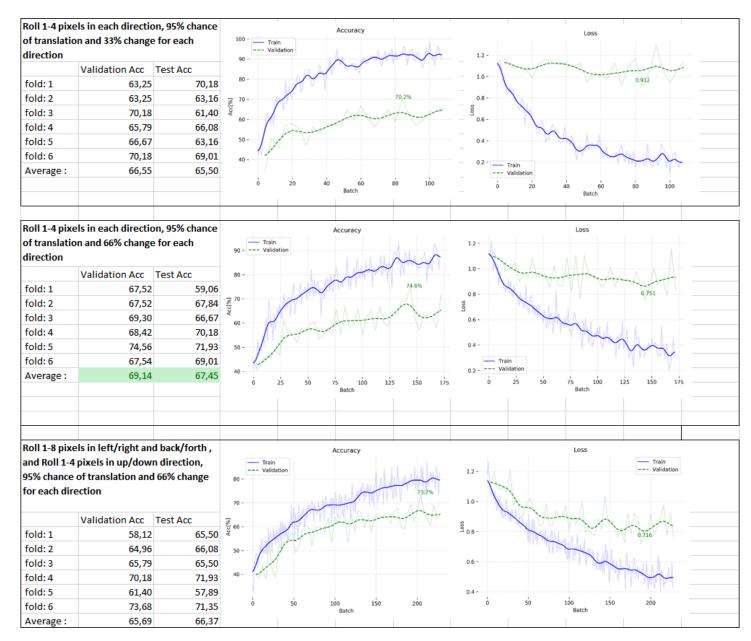


Table B.20: 6-CV Augmentation Results for Translations

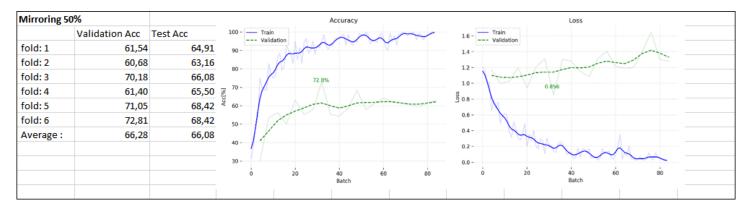


Table B.21: 6-CV Augmentation Results for Mirroring

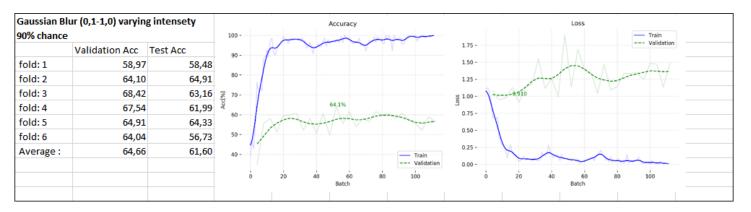


Table B.22: 6-CV Augmentation Results for Gaussian Blur

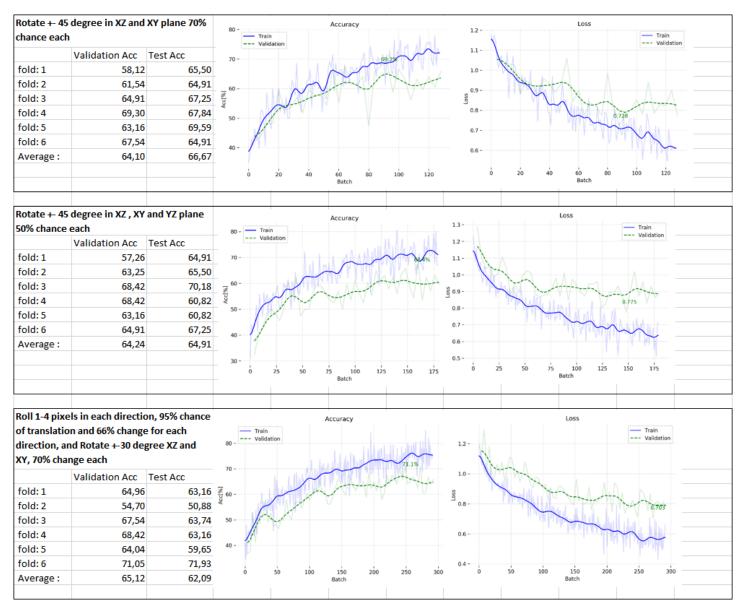


Table B.23: 6-CV Augmentation Results from Different Combinations

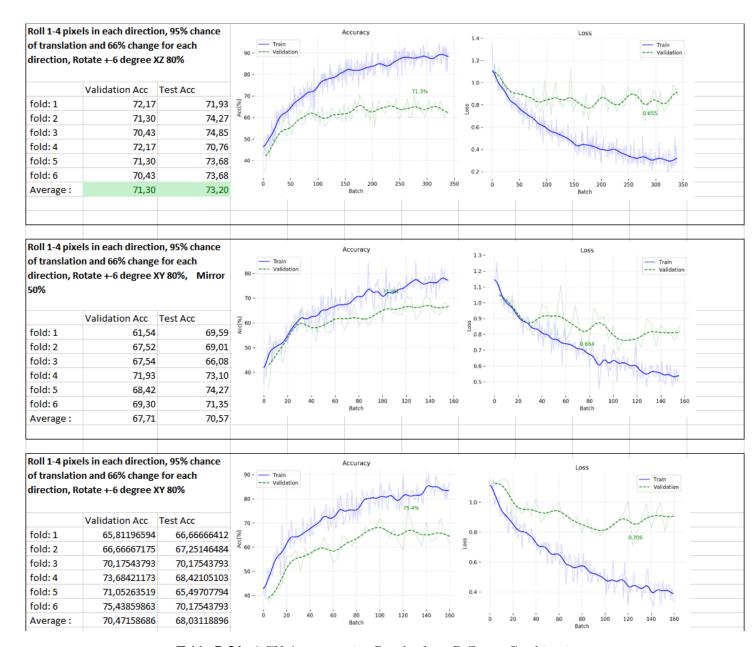


Table B.24: 6-CV Augmentation Results from Different Combinations

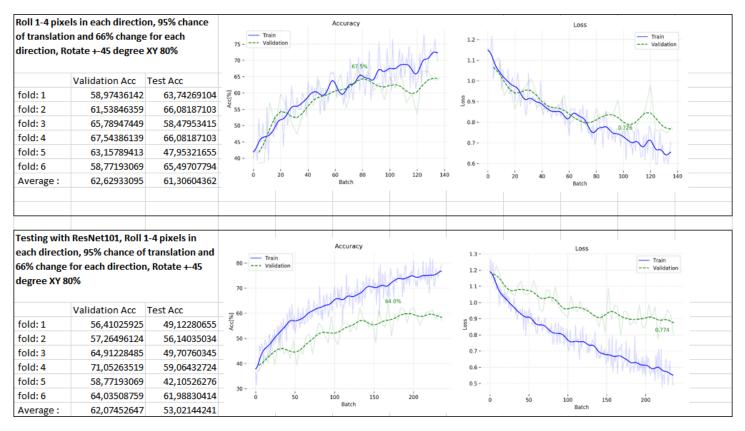


Table B.25: 6-CV Augmentation Results from Different Combinations

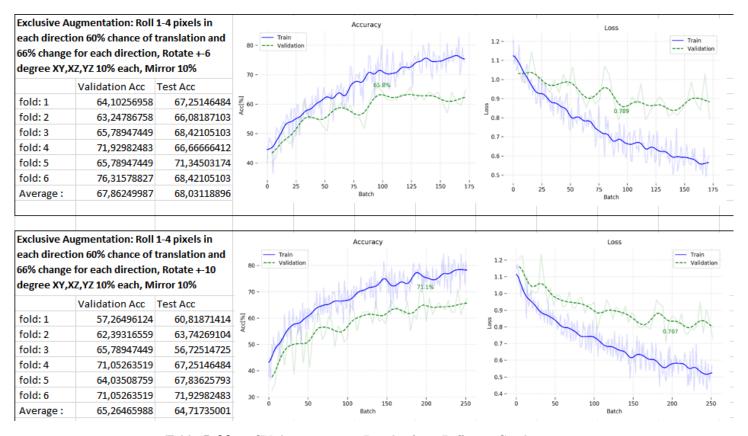


 Table B.26:
 6-CV Augmentation Results from Different Combinations

GAN 50	/50			GAN 50/	50			GAN 50/5	0		
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD_test	43	3	11	AD_test	43	4	10	AD_test	41	7	9
DLB_test	11	29	17	DLB_test	13	35	9	DLB_test	7	36	14
NC_test	7	3	47	NC_test	10	16	31	NC_test	13	4	40
Precision	0,7049	0,828571	0,6267	Precision	0,65152	0,636364		Precision	0,6721	0,765957	0,6349206
Recall	0,7544	0,508772	0,8246	Recall	0,75439	0,614035	-	Recall	0,7193	0,631579	0,7017544
F_beta	0,7288	0,630435	0,7121	F_beta	0,69919	0,625	0,579439	F_beta	0,6949	0,692308	0,6666667
Loss	0,7497			Loss	1,06035			Loss	0,7219		
Acc	69,591			Acc	63,7427			Acc	68,421		
GAN 50				GAN 50/	50						
		DLB pred	NC pred		AD pred	DLB pred	NC pred				
AD_test	35	12	10	AD_test	40	_	9				
DLB_test	5	41	11	DLB_test	8	36	13				
NC_test	12	9	36	NC_test	9	7	41				
Precision	0,6731	0,66129	0,6316	Precision	0,70175	0,705882	0,650794				
Recall	0,614	0,719298	0,6316	Recall	0,70175						
F_beta	0,6422	0,689076	0,6316	F_beta	0,70175	0,666667	0,683333				
Loss	0,831			Loss	0,75868						
Acc	65,497			Acc	68,4211						

Table B.27: Augmentation Results with GAN

GAN rot 66%	5degre	e 70%, ro	II 95-	GAN rot	5degree	90% roll 9	5-66%
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD_test	46	4	7	AD_test	41	6	10
DLB_test	13	38	6	DLB_test	10	35	12
NC_test	13	11	33	NC_test	9	7	41
Precision	0,6389	0,716981	0,7174	Precision	0,68333	0,729167	0,650794
Recall	0,807	0,666667	0,5789	Recall	0,7193	0,614035	0,719298
F_beta	0,7132	0,690909	0,6408	F_beta	0,70085	0,666667	0,683333
Loss	0,7578			Loss	0,73299		
Acc	68,421			Acc	68,4211		

Table B.28: Augmentation Results with GAN

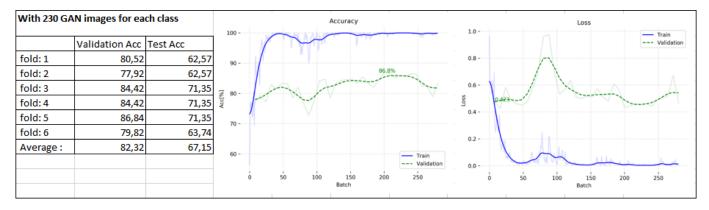


Table B.44: 6-CV Augmentation Results with 50% GAN Images

Datas	et = [Fr	ac0,5]										
_	 snet34 dropC on = [Roll 95% 	-	2 XZ axis +-5	Augmentati	Augmentation = [roll 95%-66%, rotate XZ and XY axis Hy				Model = [SimenNet] HyperParameters = [ADAM(Ir=0,0000297, weight decay=0,1552, Dropp=0,186, smoth0.6)]			
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred	
AD true	40		11	AD true	30	<u> </u>	20	AD pred	37	-	12	
DLB true	12	40	5	DLB true	3	42	12	DLB true	6	44	7	
NC true	5	7	45	NC true	3	6	48	NC true	5	9	43	
Precision	0,70175439	0,75471698	0,73770492	Precision	0,83333333	0,76363636	0,6	Precision	0,77083333	0,72131148	0,69354839	
Recall	0,70175439	0,70175439	0,78947368	Recall	0,52631579	0,73684211	0,842105263	Recall	0,64912281	0,77192982	0,75438596	
F1	0,70175439	0,72727273	0,76271186	F1	0,64516129	0,75	0,700729927	F1	0,7047619	0,74576271	0,72268908	
Loss	0,67450616			Loss	0,67572735			Loss	0,89946733			
Acc	73,0994186			Acc	70,1754379			Acc	72,5146179			
Model = [Re	snet34 dropC	onv01Lin02]		Model = [Re	snet34 dropC	onv01Lin02]						
	on = [roll 95% and 50% add	•	٠ .	Augmentation upscaled GA	on = [roll 95% AN images]	-66% , and 50	% added					
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred					
AD true	49	4	4	AD true	40	7	10					
DLB true	24	22	11	DLB true	11	37	9					
NC true	14	4	39	NC true	7	6	44					
Precision	0,56321839	0,73333333	0,7222222	Precision	0,68965517	0,74	0,698412698					
Recall	0,85964912	0,38596491	0,68421053	Recall	0,70175439	0,64912281	0,771929825					
F1	0,68055556	0,50574713	0,7027027	F1	0,69565217	0,69158879	0,733333333					
Loss	0,97882586			Loss	0,77076493							
Acc	64,3274841			Acc	70,760231							

Table B.29: Frac0.5 Dataset with augmentations

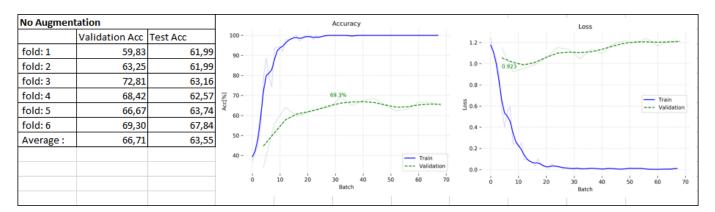


Table B.45: 6-CV Result Frac=0.5 dataset, No Augmentation

Datase	et = [Fr	rac0,25	5]								
			•								
Model = [l	Resnet34	dropConv0).1Lin0.2]	Model = [Resnet34 o	dropConv0	.1Lin0.2]	Model = [Resnet34	dropConv0	.1Lin0.2]
Augmenta	ation = [+-	5deg XZ 7	0%, roll	Augment	ation = [rot	ate XY(0,1) XZ(0,2)	Augmenta	ation = [ro	II 95%-662	. and
90% with	66%, Gaus	sian 7%]		90%, roll	95%-66%,	and, gaus	ian 7%]	rotate +-	5 degree 2	KZ(0,2) 50:	%]
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	44	7	6	AD true	34	3	20	AD true	34	13	10
DLB true	7	47	3	DLB true	8	35	14	DLB true	1	52	4
NC true	8	12	37	NC true	6	4	47	NC true	3	10	44
Precision	0,745763	0,712121	0,804348	Precision	0,708333	0,833333	0,580247	Precision	0,894737	0,693333	0,7586207
Recall	0,77193	0,824561	0,649123	Recall	0,596491	0,614035	0,824561	Recall	0,596491	0,912281	0,7719298
F1	0,758621	0,764228	0,718447	F1	0,647619	0,707071	0,681159	F1	0,715789	0,787879	0,7652174
Loss	0,621887			Loss	0,927193			Loss	0,806691		
Acc	74,85381			Acc	67,83626			Acc	76,02339		
Model = [l	Resnet34 (dropConv0).1Lin0.2]	Model = [Resnet152	dropConv	0.01		Resnet152		
Augmenta	ation = [rol	l 95% - 66	%, and	Lin0.2]				dropConv	0.01Lin0.2	2] Augmen	tation =
rotate +-	5 degree >	KZ and XY	axis	Augment	ation = [rol	95% - 66	% and	[roll 95%	- 66% and	rotate +-	5 degree
50%]				rotate +-	5 degree >	(Z 50%]		XY 50%]			
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	41		. 6	AD true	44	. 6	7	AD true	40		. 8
DLB true	2	53	2	DLB true	6	44	7	DLB true	6	40	11
NC true	13			NC true	8	5	44	NC true	5		49
Precision	0,732143	0,706667	0,8	Precision	0,758621	0,8	0,758621	Precision	0,784314	0,769231	0,7205882
Recall	0,719298	0,929825	0,561404	Recall	0,77193	0,77193	0,77193	Recall	0,701754	0,701754	0,8596491
F1	0,725664	0,80303	0,659794	F1	0,765217	0,785714	0,765217	F1	0,740741	0,733945	0,784
Loss	0,695718			Loss	0,605758			Loss	0,597721		
Acc	73,68421			Acc	77,19299			Acc	75,4386		
Model = [l	Resnet34 (dropConv0	11Lin02]	Model = [SimenNet]	Augmenta	ation =	Model = [SimenNet]		
Augmenta	ation = [rol	l 95% with	66%]	[roll 95%	- 66% and	rotate +- !	5 degree	HyperPar	ameters =	[ADAM(
				XZ(0,2) 5	0%],					ht_decay=	0,1552,
				HyperPar	ameters =	(ADAM(Dropp=0,	186, smotk	10,6)]	
				lr=0,0000)297, v eigl	nt_decay=	0,1552,				
				Dropp=0,	186, smoth	0,6)]					
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	40	10	7	AD true	37	. 8	12	AD true	44	. 8	. 5
DLB true	7	45	5	DLB true	2	50	5	DLB true	9		10
NC true	10		$\overline{}$	NC true	7	9	41	NC true	11		41
Precision	0,701754	0,714286	0,764706	Precision	0,804348	0,746269	0,706897	Precision	0,6875	0,745098	0,7321429
			-	Recall	0.649123	0.877193	0.719298	Recall	0.77193		0,7192982
Hecall	0,701754	0,(034(4	0,0042111	I Lecall							
Recall F1		-,		F1		0,806452		F1	0,727273		0,7256637
	0,701754 0,701754 0,689298	0,75			0,718447		0,713043	F1 Loss	0,727273 0,948154	0,703704	0,7256637

Table B.30: Frac0.25 Dataset with augmentations

-	snet34 dropC on = [roll 95% ree 70%]	-	XZ and XY	1 -	snet34 dropC on = [roll 95%	-	
AD pred DLB pred NC pred					AD pred	DLB pred	NC pred
AD true	41	9	7	AD true	42	8	7
DLB true	6	42	9	DLB true	6	45	6
NC true	7	4	46	NC true	9	10	38
Precision	0,7592593	0,7636364	0,7419355	Precision	0,7368421	0,7142857	0,74509804
Recall	0,7192982	0,7368421	0,8070175	Recall	0,7368421	0,7894737	0,66666667
F1	0,7387387	0,75	0,7731092	F1	0,7368421	0,75	0,7037037
Loss	0,6041034			Loss	0,6698055		
Acc	75,438599			Acc	73,099419		

Table B.31: Frac0.4 Dataset with augmentations

Datas	et = [Fr	ac0,25	Eye Re	moval]							
Model = [Re	esnet34 dropC	onv01Lin02]		_	-	conv01Lin02] egree 50%, R	oll 95%-66%	_	-	onv01Lin02], egree 50%, R	oll 95%-66%
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	41	6	10	AD true	43	6	. 8	AD pred	43	3	11
DLB true	8	34	15	DLB true	3	49	5	DLB true	7	43	7
NC true	8	4	45	NC true	13	2	42	NC true	10	1	46
Precision	0,71929825	0,77272727	0,64285714	Precision	0,72881356	0,85964912	0,76363636	Precision	0,71666667	0,91489362	0,71875
Recall	0,71929825	0,59649123	0,78947368	Recall	0,75438596	0,85964912	0,73684211	Recall	0,75438596	0,75438596	0,807017544
F1	0,71929825	0,67326733	0,70866142	F1	0,74137931	0,85964912	0,75	F1	0,73504274	0,82692308	0,760330579
Loss	0,80671223			Loss	0,58335911			Loss	0,67090586		
Acc	70,1754379			Acc	78,3625717	1		Acc	77,1929855		
Model = [Re	esnet34 dropC	onv01Lin02],		Model = [Re	snet34 dropC	onv01Lin02],		Model = [Resnet34 dropConv01Lin02],			
Augmentat	ion = [XZ axsis	+-6,0 degree	70%, Roll	Augmentati	on = [XZ axsis	+-6,0 degree	90%, Roll	Augmentati	on = [XZ axsis	+-6,0 degree	98%, Roll
95%-66% ea	ach direction]			95%-66% ea	ch direction]			95%-66% ea	ch direction]		
Best Fold	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	45	4	8	AD true	51	. 3	3	AD true	45	6	6
DLB true	6	44	7	DLB true	7	47	3	DLB true	10	47	0
NC true	4	3	50	NC true	8	5	44	NC true	7	3	47
Precision	0,81818182	0,8627451	0,76923077	Precision	0,7727	0,8545	0,8800	Precision	0,72580645	0,83928571	0,886792453
Recall	0,78947368	0,77192982	0,87719298	Recall	0,8947	0,8246	0,7719	Recall	0,78947368	0,8245614	0,824561404
F1	0,80357143	0,81481481	0,81967213	F1	0,8293	0,8393	0,8224	F1	0,75630252	0,83185841	0,854545455
Loss	0,45309733			Loss	0,4890			Loss	0,52965451		
Acc	81,2865524			Acc	83,0409			Acc	81,2865524		

Table B.32: Frac0.25 Remove Eyes Dataset with augmentations

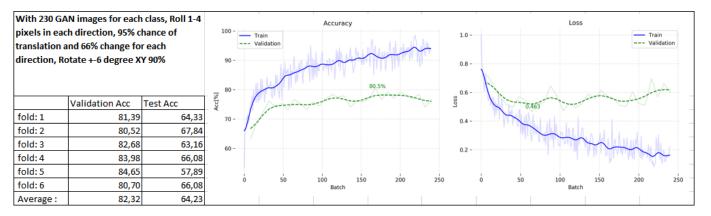


Table B.46: 6-CV Augmentation Results with $50\% \mathrm{GAN}$ Images, Roll and Rotate Augmentations

	Model = [Resnet101 dropConv(0.1 and 0.05) Lin0.2				_							
1		•	, -	1	snet50 dropC	•						
_	on = [XZ axis	+-6,0 degree :	90%, Roll	Augmentation = [XZ axis +-6,0 degree 90%, Roll				Augmentation = [XZ axsis +-15,0 degree 90%, Roll				
95%-66% ea	95%-66% each direction]				ch direction]			95%-66% ea	ch direction]			
	AD pred	DLB pred	NC pred		AD true	DLB true	NC true		AD pred	DLB pred	NC pred	
AD true	48	5	4	AD true	32	10	15	AD true	41	6	10	
DLB true	7	45	5	DLB true	3	49	5	DLB true	4	51	2	
NC true	12	4	41	NC true	4	4	49	NC true	8	5	44	
Precision	0,71641791	0,83333333	0,82	Precision	0,82051282	0,7777778	0,71014493	Precision	0,77358491	0,82258065	0,785714286	
Recall	0,84210526	0,78947368	0,71929825	Recall	0,56140351	0,85964912	0,85964912	Recall	0,71929825	0,89473684	0,771929825	
F1	0,77419355	0,81081081	0,76635514	F1	0,66666667	0,81666667	0,77777778	Support	57	57	57	
Loss	0,59983303			Loss	0,62656602			Loss	0,49375469			
Acc	78,3625717			Acc	76,0233917			Acc	79,5321655			
Model = [Re	snet152 drop	Conv0.1Lin0.2	2]	Model = [Re	snet34 dropC	onv01Lin02],		Model = [Re	snet34 dropC	onv01Lin02],		
Augmentati	on = [XZ +-6,0	degree 90%,	Roll 95%-	Augmentati	on = [XZ axsis	+-6,0 degree	80%, Roll	Augmentati	Augmentation = [XZ axsis +-30,0 degree 80%, Roll			
66% each dir	ection]			95%-66% ea	ch direction (-	+-7 pixels in l	eft/right and	95%-66% ea	5%-66% each direction (+-7 pixels in left/right and			
				back/forth a	nd +- 4 in up/	down)]		back/forth a	orth and +- 4 in up/down)]			
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred	6 fold CV res	ults			
AD true	36	11	10	AD true	46	6	5		Validation A	Test Acc		
DLB true	2	51	4	DLB true	5	48	4	fold: 1	73,5042801	76,6081848		
NC true	8	4	45	NC true	6	5	46	fold: 2	70,9401779	74,2690048		
Precision	0,7826087	0,77272727	0,76271186	Precision	0,80701754	0,81355932	0,83636364	fold: 3	76,3157883	78,3625717		
Recall	0,63157895	0,89473684	0,78947368	Recall	0,80701754	0,84210526	0,80701754	fold: 4	66,6666641	71,3450317		
F1	0,69902913	0,82926829	0,77586207	F1	0,80701754	0,82758621	0,82142857	fold: 5	71,0526352	66,6666641		
Loss	0,62782085			Loss	0,44483703			fold: 6	73,6842117	77,1929855		
Acc	77,1929855			Acc	81,8713455			Average:	72,0272929	74,0740738		

 Table B.33: Frac0.25 Remove Eyes Dataset with augmentations

Datas	et = [Fr	ac0,1 R	educe	Bias]			
Augmentati		34 dropConv01Lin02] Model = [Resnet34 dropConv01Lin02] [XZ axis +-6,0 degree 90%, Roll rection] Model = [XZ axis +-6,0 degree 50% acch direction]					
	AD pred	DLB pred	NC pred		AD pred	DLB pred	NC pred
AD true	34	11	12	AD true	43	3	11
DLB true	1	50	6	DLB true	11	43	3
NC true	8	7	42	NC true	14	3	40
Precision	0,79069767	0,73529412	0,7	Precision	0,63235294	0,87755102	0,740740741
Recall	0,59649123	0,87719298	0,73684211	Recall	0,75438596	0,75438596	0,701754386
F1	0,68	0,8	0,71794872	F1	0,688	0,81132075	0,720720721
Loss	0,69698638			Loss	0,7714639		
Acc	73,6842117			Acc	73,6842117		

 Table B.34: Frac0.1 Reduce Bias Dataset with augmentations

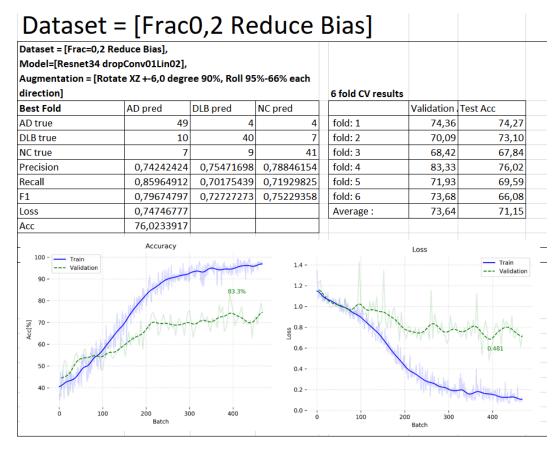


Table B.35: Frac0.2 Reduce Bias Dataset with augmentations

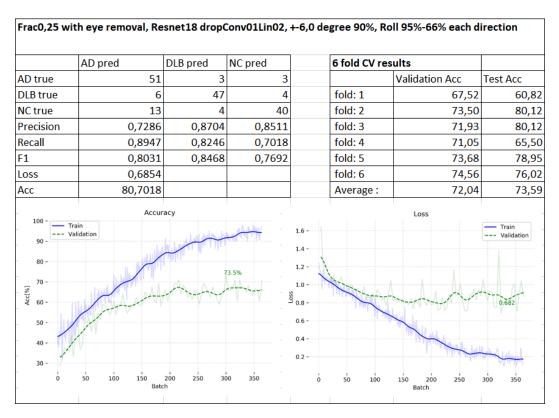


Table B.36: Experiments from the Frac0.25 Remove Eye Dataset: ResNet18

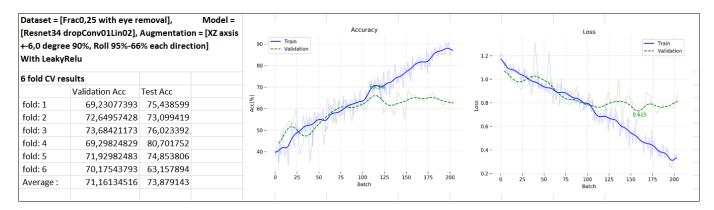


Table B.37: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with LeakyReLU

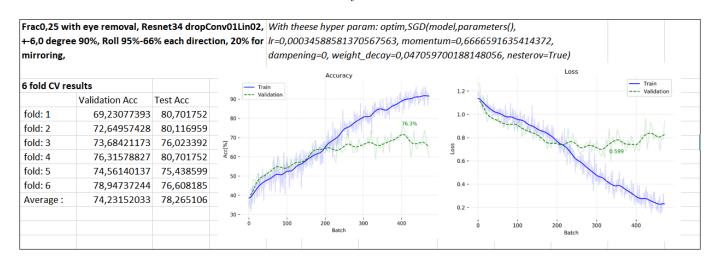


Table B.38: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with Different Hyperparameters

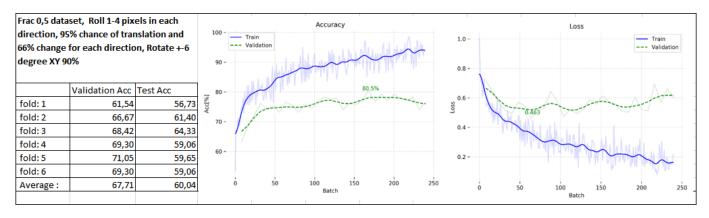


Table B.47: 6-CV Result Frac=0.5 dataset, With Roll and Rotate Augmentations

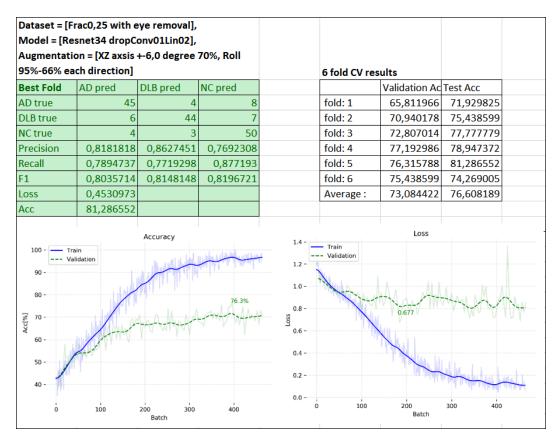


Table B.39: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with Different Rotation, chance=70

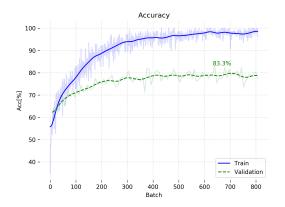


Table B.48: Accuracy plot for training upscaled GAN Experiment1



Table B.49: Loss plot for training upscaled GAN Experiment1

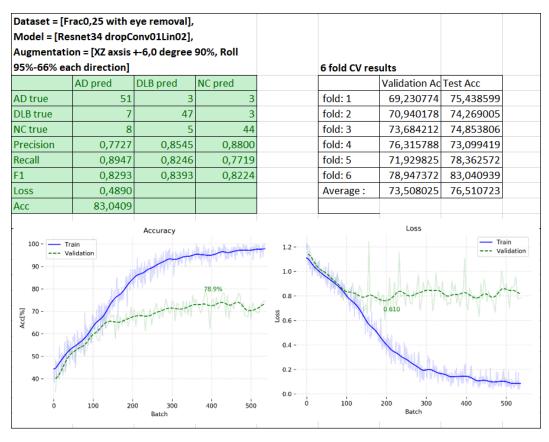


Table B.40: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with Different Rotation, chance=90

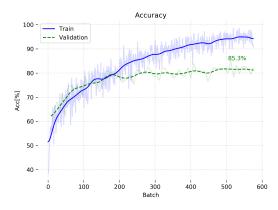


Table B.50: Accuracy plot for training upscaled GAN Experiment2

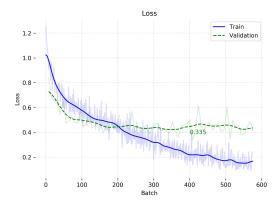


Table B.51: Loss plot for training upscaled GAN Experiment2



Table B.41: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with Different Rotation, chance=98

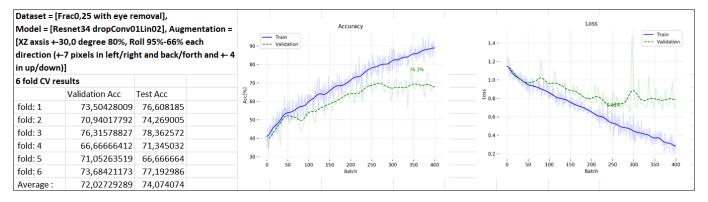


Table B.42: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with Different Rotation=+-30 Degree, and Bigger Translations

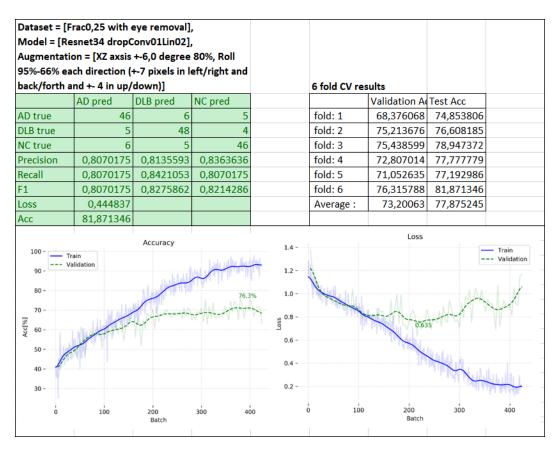


Table B.43: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with Different Rotation=+-6 Degree, and Bigger Translations

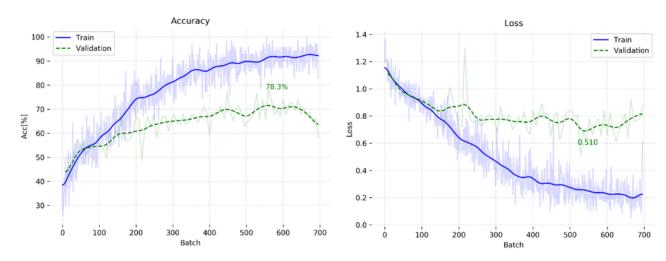


Table B.52: Accuracy and Loss graphs from the training of fold 6 from table 4.7

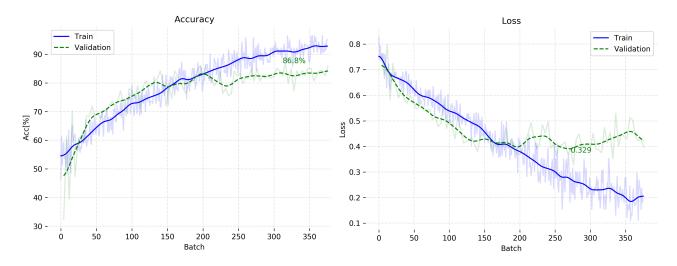


Table B.53: Accuracy and Loss graphs from the training of fold 6 from table 4.27

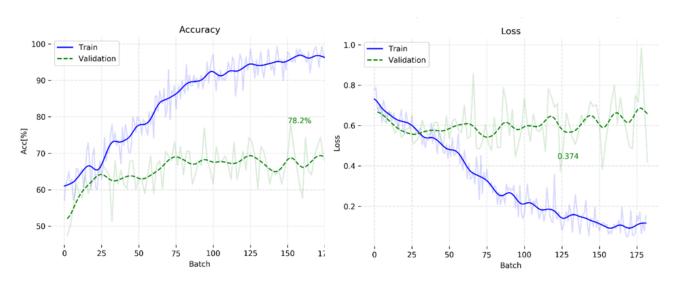


Table B.54: Accuracy and Loss graphs from the training of fold 2 from table 4.31

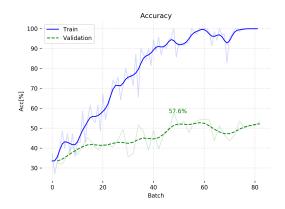


Table B.56: Accuracy plot of best local model, set 1, trained with the Adam optimizer

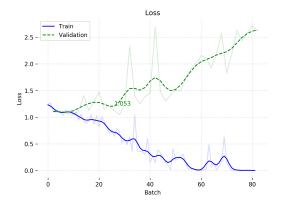


Table B.57: Loss plot of best local model, set 1, trained with the Adam optimizer

6 fold CV results, 2 class AD vs NC								
	Validation Ac	Test Acc						
fold: 1	79,49	85,09						
fold: 2	80,77	84,21						
fold: 3	71,05	80,70						
fold: 4	80,26	78,95						
fold: 5	89,47	85,09						
fold: 6	80,26	83,33						
Average:	80,22	82,89						

Confusion plot and metics from results in fold 5							
AD pred Ncpred							
AD true	51	6					
NC true	11	46					
Precision	0,8226	0,8846					
Recall	0,8947	0,8070					
F1	0,8571	0,8440					
Loss	0,3991						
Acc	85,09						

	AD	NC	Average
Average recall	0,8509	0,8070	0,8289
Average precision	0,8161	0,8466	0,8313

Table B.55: Experiments with training proposed model on NC vs AD data, so it can be compared to other results easier

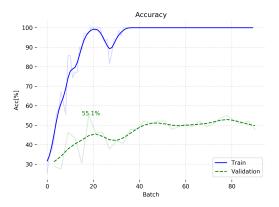


Table B.58: Accuracy plot of the federated model, set 1, trained with the Adam optimizer

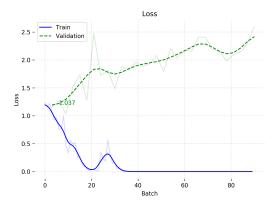


Table B.59: Loss plot of the federated model, set 1, trained with the Adam optimizer

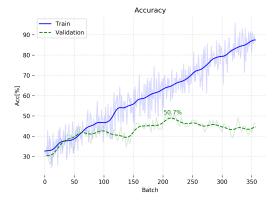


Table B.60: Accuracy plot of best local model, set 2, trained with the Adam optimizer

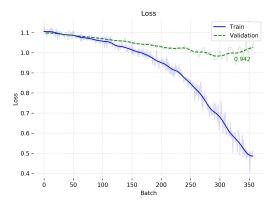


Table B.61: Loss plot of best local model, set 2, trained with the Adam optimizer

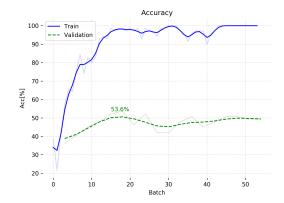


Table B.62: Accuracy plot of the federated model, set 2, trained with the Adam optimizer



Table B.63: Loss plot of the federated model, set 2, trained with the Adam optimizer

Appendix B

- [1] Engineering National Academies of Sciences, Medicine, et al. *Improving diagnosis* in health care. National Academies Press, 2015.
- [2] Liam Peytona Mana Azarm-Daigle, Craig Kuziemsky. A Review of Cross Organizational Healthcare Data Sharing. URL https://www.sciencedirect.com/science/article/pii/S1877050915024989.
- [3] Zeynettin Akkus Timothy L. Kline Bradley J. Erickson, Panagiotis Korfiatis. Machine learning for medical imaging. URL https://pubs.rsna.org/doi/10.1148/rg. 2017160130.
- [4] National Institute on Aging. What is Dementia? Symptoms, Types, and diagnosis. URL https://www.nia.nih.gov/health/what-dementia-symptoms-types-and-diagnosis.
- [5] The World Health Organization. Dementia, 2020. URL https://www.who.int/news-room/fact-sheets/detail/dementia.
- [6] Alzheimer's Association. Vascular dementia, date: 2020-07-13. URL https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/vascular-dementia.
- [7] Alz.org. Lewy body dementia, . URL https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/lewy-body-dementia.
- [8] Alz.org. What Is Dementia?, . URL https://www.alz.org/alzheimers-dementia/what-is-dementia.

[9]

[10] National Institute on aging. Alzheimer's Disease Fact Sheet. URL https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet.

Bibliography BIBLIOGRAPHY

[11] BruceBlaus. Alzheimersdisease.jpg, date: 2020-07-08, license: Creative commons attribution-share alike 4.0 international. URL https://commons.wikimedia.org/wiki/File:Alzheimers_Disease.jpg.

- [12] alzheimers.org.uk. What Is Alzheimer's Disease? URL https://www.alzheimers.org.uk/about-dementia/types-dementia/alzheimers-disease.
- [13] Knut Engedal Store Norske Leksikon. Demens med lewylegemer. URL https://sml.snl.no/demens_med_lewylegemer.
- [14] National Institute on Aging. What is Lewy Body Dementia. URL https://www.nia.nih.gov/health/what-lewy-body-dementia.
- [15] Suraj Rajan. Lewy bodies(alpha synuclein inclusions)1.jpg, date: 2020-07-08, license: Creative commons attribution-share alike 4.0 international. URL https://commons.wikimedia.org/wiki/File:Lewy_bodies_(alpha_synuclein_inclusions)_1.jpg.
- [16] National Health Service. Dementia with Lewy bodies. URL https://www.nhs.uk/conditions/dementia-with-lewy-bodies/.
- [17] National Institute of Biomedical Imaging and Bioengineering. Magnetic Resonance Imaging (MRI. URL https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri.
- [18] Marilyn S Albert, Steven T DeKosky, Dennis Dickson, Bruno Dubois, Howard H Feldman, Nick C Fox, Anthony Gamst, David M Holtzman, William J Jagust, Ronald C Petersen, et al. The diagnosis of mild cognitive impairment due to alzheimer's disease: recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimer's & dementia, 7(3):270–279, 2011.
- [19] Laura Bonanni, Astrid Thomas, and Marco Onofrj. Diagnosis and management of dementia with lewy bodies: Third report of the dlb consortium. Neurology, 66(9): 1455–1455, 2006. ISSN 0028-3878. doi: 10.1212/01.wnl.0000224698.67660.45. URL https://n.neurology.org/content/66/9/1455.1.
- [20] EJ Burton, R Barber, EB Mukaetova-Ladinska, J Robson, RH Perry, E Jaros, RN Kalaria, and JT O'brien. Medial temporal lobe atrophy on mri differentiates alzheimer's disease from dementia with lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. *Brain*, 132(1): 195–203, 2009.

[21] Federica Agosta, Sebastiano Galantucci, and Massimo Filippi. Advanced magnetic resonance imaging of neurodegenerative diseases. *Neurological sciences*, 38(1):41–51, 2017.

- [22] Elijah Mak, Li Su, Guy B Williams, Rosie Watson, Michael Firbank, Andrew Blamire, and John O'Brien. Differential atrophy of hippocampal subfields: a comparative study of dementia with lewy bodies and alzheimer disease. The American Journal of Geriatric Psychiatry, 24(2):136–143, 2016.
- [23] Simen Norrheim Larsen. Data-assisted differential diagnosis of dementia by deep neural networks, 2019. URL http://hdl.handle.net/11250/2620347.
- [24] SH Shabbeer Basha, Shiv Ram Dubey, Viswanath Pulabaigari, and Snehasis Mukherjee. Impact of fully connected layers on performance of convolutional neural networks for image classification. *Neurocomputing*, 378:112–119, 2020.
- [25] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value of adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems, pages 4148–4158, 2017.
- [26] Sebastian Ruder. An overview of gradient descent optimization algorithms, date: 2020-07-14. URL https://arxiv.org/pdf/1609.04747.pdf.
- [27] Jimmy Lei Ba Diederik P. Kingma. Adam: A method for stochastic optimization. Published as a conference paper at ICLR 2015, 2015.
- [28] DanB. Rectified linear units (relu) in deep learning, date: 2020-07-14. URL https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning.
- [29] Anas Al-Masri. What are overfitting and underfitting in machine learning?, date: 2020-07-14. URL https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690.
- [30] Gringer. Overfitting svg, date: 2020-07-14, license: Creative commons attribution 3.0 unported. URL https://en.wikipedia.org/wiki/File:Overfitting_svg.svg.
- [31] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13(1):281–305, 2012.
- [32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

Bibliography BIBLIOGRAPHY

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.

- [34] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan: Multitrack sequential generative adversarial networks for symbolic music generation and accompaniment. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.
- [35] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, *Advances in Neural Information Processing Systems 29*, pages 613–621. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/6194-generating-videos-with-scene-dynamics.pdf.
- [36] Kevin Schawinski, Ce Zhang, Hantian Zhang, Lucas Fowler, and Gokula Krishnan Santhanam. Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit. *Monthly Notices of the Royal Astronomical Society: Letters*, 467(1):L110–L114, 2017.
- [37] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In *The European Conference on Computer Vision (ECCV) Workshops*, September 2018.
- [38] GAN Why it is so hard to train Generative Adversarial Networks, https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b, (Accessed: 25/06/2020).
- [39] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
- [40] Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, and Shakir Mohamed. Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:1706.04987, 2017.
- [41] Wolfgang Grieskamp Dzmitry Huba Alex Ingerman Vladimir Ivanov Chloe Kiddon Jakub Konecny Stefano Mazzocchi H. Brendan McMahan Timon Van Overveldt David Petrou Daniel Ramage Jason Roselander Keith Bonawitz, Hubert Eichner. Towards federated learning at scale: System design. 2019.
- [42] Felix X. Yu Ananda Theertha Suresh Dave Bacon Jakub Konecny, H. Brendan McMahan. Federated learning: Strategies for improving communication efficiency. 2017.

[43] Daniel Ramage Jakub Konecny, H. Brendan McMahan. Federated optimization: Distributed optimization beyond the datacenter. 2015.

- [44] Marc Tommasi Paul Vanhaesebrouck, Aurelien Bellet. Decentralized collaborative learning of personalized models over networks. 2017.
- [45] Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Machine Learning without Centralized Training Data. URL https://ai.googleblog.com/2017/04/federated-learning-collaborative.html.
- [46] Jeromemetronome. Federated learning general process in central orchestrator setup, date: 2020-07-13, license: Creative commons attribution-share alike 4.0 international. URL https://en.wikipedia.org/wiki/Federated_learning#/media/File:Federated_learning_process_central_case.png.
- [47] Daniel Ramage Seth Hampson Blaise Aguera y Arcas H. Brendan McMahan, Eider Moore. Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629v3, 2017.
- [48] PyTorch. PyTorch. URL https://pytorch.org/.
- [49] Open Minded. PySyft. URL https://github.com/OpenMined/PySyft/.
- [50] Inc Red Hat. Docker. URL https://opensource.com/resources/what-docker/.
- [51] Krzysztof Gorgolewski, Christopher D Burns, Cindee Madison, Dav Clark, Yaroslav O Halchenko, Michael L Waskom, and Satrajit S Ghosh. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in neuroinformatics, 5:13, 2011.
- [52] Nipype. Nipype Dockerimage. URL https://hub.docker.com/r/nipype/nipype/.
- [53] Alzheimer's Disease Neuroimaging Initiative(ADNI) databases, http://adni.loni.usc.edu/data-samples/access-data/, (Accessed: 13/07/2020).
- [54] SPM12 Statistical Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/, (Accessed: 14/06/2020).
- [55] Stephen M Smith. Fast robust automated brain extraction. *Human brain mapping*, 17(3):143–155, 2002.
- [56] Mark Jenkinson, Mickael Pechaud, Stephen Smith, et al. Bet2: Mr-based estimation of brain, skull and scalp surfaces. In *Eleventh annual meeting of the organization for human brain mapping*, volume 17, page 167. Toronto., 2005.

Bibliography BIBLIOGRAPHY

[57] Valeriu Popescu, Marco Battaglini, WS Hoogstrate, Sander CJ Verfaillie, IC Sluimer, Ronald A van Schijndel, Bob W van Dijk, Keith S Cover, Dirk L Knol, Mark Jenkinson, et al. Optimizing parameter choice for fsl-brain extraction tool (bet) on 3d t1 images in multiple sclerosis. *Neuroimage*, 61(4):1484–1494, 2012.

- [58] Adrien Payan and Giovanni Montana. Predicting alzheimer's disease: a neuroimaging study with 3d convolutional neural networks. arXiv preprint arXiv:1502.02506, 2015.
- [59] Francesco Saverio Zuppichini Implementing ResNet in Pytorch, https://github.com/francescosaveriozuppichini/resnet, (Accessed: 04/07/2020).
- [60] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the disharmony between dropout and batch normalization by variance shift. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2682–2690, 2019.
- [61] Marios Aspris Simple Implementation of Densely Connected Convolutional Networks in PyTorch, https://github.com/con-mi/deep-learning-projects/blob/master/simple_implementation_of_densely_connected_neural_networks.ipynb, (Accessed: 04/07/2020).
- [62] Gihyun Kwon, Chihye Han, and Dae-shik Kim. Generation of 3d brain mri using auto-encoding generative adversarial networks. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 118–126. Springer, 2019.
- [63] Generation of 3d brain mri using auto-encoding generative adversarial networks.
- [64] OpenMinded. Websockets mnist example. URL https://github.com/OpenMined/ PySyft/tree/master/examples/tutorials/advanced/websockets_mnist.
- [65] Akihiko Wada, Kohei Tsuruta, Ryusuke Irie, Koji Kamagata, Tomoko Maekawa, Shohei Fujita, Saori Koshino, Kanako Kumamaru, Michimasa Suzuki, Atsushi Nakanishi, et al. Differentiating alzheimer's disease from dementia with lewy bodies using a deep learning technique based on structural brain connectivity. Magnetic Resonance in Medical Sciences, 18(3):219, 2019.
- [66] Ketil Oppedal, Trygve Eftestøl, Kjersti Engan, Mona K Beyer, and Dag Aarsland. Classifying dementia using local binary patterns from different regions in magnetic resonance images. *International journal of biomedical imaging*, 2015, 2015.
- [67] Junhao Wen, Elina Thibeau-Sutre, Mauricio Diaz-Melo, Jorge Samper-González, Alexandre Routier, Simona Bottani, Didier Dormont, Stanley Durrleman, Ninon

Burgos, Olivier Colliot, et al. Convolutional neural networks for classification of alzheimer's disease: Overview and reproducible evaluation. *Medical Image Analysis*, page 101694, 2020.

- [68] Jyoti Islam and Yanqing Zhang. Brain mri analysis for alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks. *Brain informatics*, 5(2):2, 2018.
- [69] Mingxia Liu, Jun Zhang, Ehsan Adeli, and Dinggang Shen. Landmark-based deep multi-instance learning for brain disease diagnosis. *Medical image analysis*, 43: 157–168, 2018.
- [70] Karl Bäckström, Mahmood Nazari, Irene Yu-Hua Gu, and Asgeir Store Jakola. An efficient 3d deep convolutional network for alzheimer's disease diagnosis using mr images. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 149–153. IEEE, 2018.
- [71] Karim Aderghal, Alexander Khvostikov, Andrei Krylov, Jenny Benois-Pineau, Karim Afdel, and Gwenaelle Catheline. Classification of alzheimer disease on imaging modalities with deep cnns using cross-modal transfer learning. In 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pages 345–350. IEEE, 2018.
- [72] Upul Senanayake, Arcot Sowmya, and Laughlin Dawes. Deep fusion pipeline for mild cognitive impairment diagnosis. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 1394–1997. IEEE, 2018.
- [73] Yuekai Sun Dimitris Papailiopoulos Yasaman Khazaeni Hongyi Wang, Mikhail Yurochkin. Federated learning with matched averaging. Published as a conference paper at ICLR 2020, 2020.
- [74] Tensorflow. Federated learning, date: 2020-07-13. URL https://www.tensorflow.org/federated_learning.
- [75] Hien Tran Khanh Tran Tien-Dung Cao, Tram Truong-Huu. A federated learning framework for privacy-preserving and parallel training. arXiv:2001.09782v2, 2020.