| Universitetet i Stavanger <br> FACULTY OF SCIENCE AND MASTER'S TH | ECHNOLOGY <br> ESIS |
| :---: | :---: |
| Study program/specialization: <br> Petroleum engineering / Natural gas engineering | Spring / Autumn semester, 2020 <br> Open / Confidential |
| Author: <br> Zongqiang Luo | (Signature of author) |
| Program coordinator: N/A <br> Supervisor(s): Pål Ø. Andersen, Carita Augustsson |  |
| Title of master's thesis: <br> A LSSVR-PSO machine learning model for the estimation of reservoir porosity from petrophysical well logs |  |
| Credits: 30 |  |
| Keywords: <br> Porosity prediction; Well logging; Support Vector <br> Machine; Particle Swarm Optimization; Machine learning; | Number of pages: 78 <br> +supplemental material: 29 <br> Stavanger, Jun.10th / 2020 |

## Abstract

Reservoir porosity is a key parameter in the reservoir evaluation and geomechanics. To obtain accurate measurement of porosity can be time-consuming and expensive by core sampling or applying various well logging tools. Core sampling can also be limited to a small number of wells or partially sections of a wellbore. In this thesis, a more effective and economical method is introduced to provide porosity estimation. A least square support vector regression (LSSVR) model is developed to predict the reservoir porosity based on 1260 well logging data and porosity from routine core analysis from four wells in the Varg field, North Sea. Regularization and kernel parameters are the two primary components in the LSSVR algorithm, and they are optimized by employing particle swarm optimization (PSO) algorithm. A combined LSSVR-PSO model is developed to predict porosity by using petrophysical logs from Varg Field. As comparison, two unoptimized machine learning approaches k-nearest neighbors (KNN), support vector regression (SVR) and a hybrid porosity estimation method of density $\log$, neutron $\log$ and sonic log are utilized. Feature selection is conducted and sonic log, gamma-ray log, deep resistivity log, density log and compensated neutron $\log$ are selected as input features while caliper $\log$ is discarded as insufficient correlation relationship with porosity. The predicted porosity result from LSSVR-PSO model for well $15 / 12-20 \mathrm{~S}$, showing higher accuracy with $\mathrm{R}^{2}=0.945$, Root mean square error $($ RMSE $)=0.01341$ comparing with KNN, SVR and the hybrid porosity estimation method. The proposed LSSVR-PSO model for porosity prediction is reliable in the datasets range and it can be a more general porosity estimation model by varying the scale of the data samples and the number of wells.

Keywords: Porosity prediction; Well logging; Support Vector Machine; Particle Swarm Optimization; Machine learning;

## Acknowledgements

I would like to express my appreciation for the useful help from my supervisor Pål $\emptyset$. Andersen and Carita Augustsson at University of Stavanger, Norway.

I feel grateful to complete my master program and write my master thesis at University of Stavanger in Norway.

## Table of Contents

Abstract ..... ii
Acknowledgements ..... iii
Table of Contents ..... iv
List of Tables ..... vi
List of Figures ..... viii
Nomenclature ..... x
1 Introduction ..... 1
2 Basic Well Logs and Porosity Measurement ..... 4
3 Machine Learning and Optimization Techniques ..... 14
3.1 Machine Learning basics ..... 14
3.2 Description of Optimization techniques for SVMs ..... 26
3.3 Application of Machine Learning in Petroleum Industry ..... 28
4 Methodology ..... 30
4.1 LSSVR-PSO Algorithm ..... 30
4.2 LSSVR-PSO Model Design ..... 33
4.3 Data Preparation ..... 34
4.4 Feature Selection ..... 38
4.4.1 Pearson Correlation ..... 38
4.4.2 Distance Correlation ..... 39
4.5 Porosity Estimation by well logs ..... 40
4.6 Statistical Evaluation ..... 41
4.7 Varg Field Overview ..... 42
4.8 Model Parameter Setting ..... 49
5 Model Results and Sensitivity analysis ..... 51
5.1 Model Feature Selection ..... 51
5.2 LSSVR-PSO Model Validation and Calibration ..... 53
5.3 Model Performance Comparison ..... 57
5.4 Sensitivity Analysis. ..... 62
6 Discussion. ..... 70
7 Conclusion ..... 72
Bibliography ..... 73
Appendix ..... 79

## List of Tables

Table 1 Gamma radiation reference value for some common minerals and lithologies (Pirson, 1963)

Table 2 Sonic velocities and Interval Transit Times for different lithologies (Schlumberger, 1974)

Table 3 Matrix densities of different lithologies (Schlumberger, 1974)

Table 4 Kernel function Categories

Table 5 Statistical index of all petrophysical logging data in this thesis

Table 6 Statistical index of petrophysical logging data used for training and validation

Table 7 Statistical index of all petrophysical logging data used for blind well prediction

Table 8 Interpretation of Correlation coefficient values

Table 9 Summary of Varg field wells

Table 10 Well 15/12-5 Lithology Summary

Table 11 Well 15/12-6S Lithology Summary

Table 12 Well 15/12-9S Lithology Summary
Table 13 Parameter setting for LSSVR algorithm

Table 14 Parameters employed in PSO algorithm

Table 15 Model parameter settings for SVR and KNN algorithms

Table 16 Constant variables in DT log and Density log obtained by calibrated linear regression by true porosity

Table 17 Summary of models for the blind well porosity prediction

Table 18 Sensitivity analysis on single dataset with $20 \%$ increase in each feature - Sample A

Table 19 Sensitivity analysis on single dataset with $20 \%$ increase in each feature - Sample B

Table 20 Sensitivity analysis on single dataset with $20 \%$ increase in each feature - Sample C

Table 21 Summary of LSSVR-PSO model accuracy of input feature for the blind well dataset

Table 22 Data range comparison for HGAPSO-LSSVM model and LSSVR-PSO model for all dataset

## List of Figures

Figure 1 Logging \& Measuring Service Cost (Freedonia Group, 2015)

Figure 2 Simplified examples of materials with high and low porosity (Höök et al.2010)

Figure 3 Electrical potential change in rock

Figure 4 CNL neutron chart for lithology and scale conversions (Crain et al. 2006)

Figure 5 RCAL report for Well 15/12-5, Varg Field
Figure 6 Graphic illustration of (a) underfitting, (b) good fitting, (c) overfitting.

Figure 7 Trade-off of model complexity against training and test accuracy (Müller, 2016)

Figure 8 Graphic illustration of SVM hyperplane separation with outlier
Figure 9 Graphic illustration of SVM with hyperplane separation
Figure 10 Graphic illustration of SVR algorithm
Figure 11 Predictions made by three-nearest-neighbors regression on the wave dataset (Müller, 2016)

Figure 12 Graphic illustration of PSO algorithm
Figure 13 Flow chart of LSSVR-PSO model

Figure 14 Data statistical analysis: (a) DT (b) CA (c) GR (d) DR (e) RHOB (f) CNC logs

Figure 15 Location of Varg Field (Norwegian Petroleum Directorate, 2020)

Figure 16 Gamma Ray log, SP log, Deep resistivity $\log$ and medium resistivity log for well 15/12-5

Figure 17 Gamma ray $\log$, neutron $\log$, density $\log$ for well 15/12-5

Figure 18 Gamma Ray $\log$, SP log, Deep resistivity $\log$ and medium resistivity $\log$ for well 15/12-6S

Figure 19 Gamma ray $\log$, neutron log, density log for well 15/12-6S
Figure 20 Gamma Ray log, Deep resistivity log and medium resistivity log for well 15/12-9S

Figure 21 Gamma ray log, neutron log and density log for well 15/12-9S
Figure 22 Pearson correlation result for training and validation datasets

Figure 23 Distance correlation result for training and validation datasets
Figure 24 Scatter plot of LSSVR predicted porosity versus true porosity for validation dataset
Figure 25 Regression plot of LSSVR-PSO predicted porosity versus true porosity for validation dataset

Figure 26 Regression plot of LSSVR-PSO predicted porosity versus true porosity for blind well dataset

Figure 27 Relative deviation of LSSVR-PSO predicted porosity versus true porosity for blind well dataset

Figure 29 Regression plot of KNN predicted porosity versus true porosity for blind well dataset Figure 30 Relative deviation of KNN predicted porosity versus true porosity for blind well dataset

Figure 31 Regression plot of SVR predicted porosity versus true porosity for blind well dataset Figure 32 Relative deviation of SVR predicted porosity versus true porosity for blind well dataset

Figure 33 Linear regression plot of DT versus true porosity in training dataset
Figure 34 Linear regression plot of RHOB versus true porosity in training dataset
Figure 35 Linear regression plot of CNC versus true porosity in training dataset

Figure 36 Regression plot of hybrid approach predicted porosity versus true porosity for blind well dataset

Figure 37 DT sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$

Figure 38 GR sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$
Figure 39 DR sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$
Figure 40 RHOB sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$
Figure 41 CNC sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$
Figure 42 LSSVR-PSO predicted porosity with (a)DT, (b)GR, (c)DR, (d)RHOB and (e)CNC log variation

## Nomenclature

| Symbol | Description | Unit |
| :---: | :---: | :---: |
| $t, s$ | Arbitrary vector | - |
| $\omega_{a}$ | Arbitrary positive weight function | - |
| I | Current | A |
| C | Conductivity | $S \cdot m^{-1}$ |
| $P_{\text {curr }}$ | Current position | - |
| $\Gamma$ | Complete gamma function | - |
| $d$ | Calculated distance | - |
| $c c_{1}$ | Cognitive weight | - |
| $c_{d}$ | Distance correlation constant | - |
| $D_{\text {corr }}$ | Distance correlation co-efficient | - |
| $\phi_{\text {den }}$ | Density estimated porosity | $\mu s \cdot f^{-1}$ |
| E | Electrical potential | V |
| c | Electrical conductance | $S$ |
| Z | Estimated porosity by logs | - |
| $r$ | Electrical resistance | $\Omega$ |
| $x$ | Feature value | - |
| $\rho_{\text {fluid }}$ | Fluid density | $g m \cdot c c^{-1}$ |
| $Q_{1}$ | First quartile | - |
| $\omega$ | Feature co-efficient vector | - |
| Gbest | Group best individual position | - |
| A | Horizontal area | $m^{2}$ |
| $\omega_{\text {in }}$ | Inertia weight | - |
| $\Delta t_{l o g}$ | Interval transit time of formation | $\mu s \cdot f^{-1}$ |
| $\Delta t_{\text {matrix }}$ | Interval transit time of matrix | $\mu s \cdot f^{-1}$ |


| $\Delta t_{\text {fluid }}$ | Interval transit time of pore fluid | $\mu s \cdot f^{-1}$ |
| :---: | :---: | :---: |
| $\phi$ | Joint characteristic equation of vectors | - |
| K | Kernel function | - |
| $\sigma$ | Kernel parameter | - |
| $\tau i, \tau i *, \alpha, \alpha i, \alpha i *$ | Lagrangian multiplier | - |
| $R_{\text {Lower }}$ | Lower range | - |
| $L_{f}$ | Lagrangian function | - |
| $\rho_{\text {matrix }}$ | Matrix density | $g m \cdot c c^{-1}$ |
| $\rho_{\text {bulk }}$ | Measured formation bulk density | $g m \cdot c c^{-1}$ |
| $N_{S V M}$ | Number of supporting vectors | - |
| $y$ | Observation value | - |
| Pbest | Previous best individual position | - |
| $P$ | Pearson correlation co-efficient | - |
| $P_{\text {old }}$ | Previous position | - |
| $R$ | Resistivity | $\Omega \cdot \mathrm{m}$ |
| $L$ | Regularization norm | - |
| $C_{p}$ | Regularization penalty parameter | - |
| $\phi_{\text {sonic }}$ | Sonic estimated porosity | \% |
| $\varepsilon, \mu_{i}, \mu^{*}$ | Slack variable | - |
| $c c_{2}$ | Social weight | - |
| $Q_{3}$ | Third quartile | - |
| $R_{\text {Upper }}$ | Upper range | - |
| $u$ | Velocity | - |
| T | Weight co-efficient | - |

## 1 Introduction

Porosity is defined as a key petrophysical factor to determine the fluid storage capacity of aquifer, gas and oil fields, the space connection relationship between formation pore spaces with different mineral components. Porosity is also utilized for the indication of petrophysical metrics and lithofacies database in hydrocarbon reservoir evaluation and geoscience model establishment (Wendt et al., 1985). A detailed description of porosity can be used for reservoir engineers and production engineers to determine the reservoir exploration plan and production schedule.


Figure 1 Logging \& Measuring Service Cost (Freedonia Group, 2015)
Remarkable expense and time are spent on well-logging operation and core analysis laboratories about specific sections of the wellbores to acquire a comprehensive database of the rock properties within a targeted hydrocarbon reservoir section (Zhang, et al.,2018). Freedonia Group (2015) indicated that the total cost of the logging and measurement service cost in 2019 would be approximately 6.2 billion US dollars as Figure 1 shows. Additionally, to obtain accurate quantitative values of porosity is complicated and uneasy due to the uncertainties in well logging operation procedure
and unclear interaction between formations and reservoir fluids (Ghiasi-Freez, et al., 2014). Though the accuracy of porosity can be increased by calibrating with more core samples, the number of core sampling operation is also limited by time and cost. Various empirical equations have been proposed to provide the calculation base for porosity estimation with well logs (Wyllie, et al., 1958; Raymer et al., 1980; Krief et al., 1990; Pu et al., 2006; Li et al., 2009), but it is still a challenge to apply for these estimated formulas as most empirical equations are developed on specific reservoir conditions like unconsolidated carbonate, sandstone or inhomogeneous porous reservoir. Therefore, it is essential to improve the exploration efficiency of the conventional petroleum reservoir to maintain the economical competence of fossil fuels. Acquiring more accurate measurement of rock properties like porosity can contribute to the exploration optimization and production arrangement to enhance recovery with less investment.

The aim of this master's thesis is to develop a machine learning model that the porosity prediction of a single well can be accomplished by only inputting a series of petrophysical well logging data of the single well. This model is trained by the well logging data and the true porosity from routine core analysis laboratory from other wells in the same field.

In this thesis, some methods for the estimation of porosity in the Varg oil field, North Sea, was done by applying a hybrid conventional porosity estimation model with petrophysical logs, and a developed machine learning model of applying LSSVR and PSO algorithms. The Varg field is chosen because petrophysical logs and comparative data from different logs are available for this field. The hybrid conventional porosity estimation method is established on density logs, sonic logs, and neutron logs. The LSSVR model is developed and optimized by a PSO algorithm based on several common well logs like a sonic log, resistivity log, caliper log, etc. Additionally, two SVR and KNN machine learning models are also constructed for comparison purpose.

For this master's thesis work, the thesis content is organized as follows:
Chapter 2 represents the theoretical basics required to understand porosity concept, the measurement of porosity and introduction of several commonly used petrophysical logs in petroleum well logging operation.

Chapter 3 illustrates the basics of machine learning theory and algorithms applied in this thesis and introduces studies for porosity measurement in well logging, examples application of machine learning in the petroleum industry and various optimization methods for support vector machine algorithm.

Chapter4 describes the detailed methodologies of the LSSVR-PSO model, how to apply the LSSVR-PSO model to the well $\log$ dataset, and introduction for data preparation and parameter setting of the LSSVR-PSO model. This chapter also gives the overview of Varg field and some statistical evaluation metrics used in this thesis.

Chapter 5 lists the feature selection of LSSVR-PSO model and the model comparison results between LSSVR-PSO, KNN, SVR and the hybrid porosity estimation method are described. A sensitivity analysis is conducted for investigating the relationship between input features and predicted porosity.

Chapter 6 gives illustration of the LSSVR-PSO model results, advantages and limitation of LSSVR-PSO model are discussed.

Chapter 7 concludes the LSSVR-PSO model performance and thesis findings.
Bibliography summarizes the references cited in this thesis.

## 2 Basic Well Logs and Porosity Measurement

Porosity is a parameter that is defined as the empty volume fraction over the total volume. The space between porous rock is an ideal location for the storage of hydrocarbon. Thus, a high percentage of porosity would suggest that more hydrocarbon could be stored in the pore space than a low percentage of porosity. Due to the pressure difference between formations, the reservoir hydrocarbon can flow in the pore spaces. The higher the porosity of the rock is, the easier fluids like hydrocarbon could flow in a more porous condition as Figure 2 shows.

a) High porosity

b) Low porosity

Figure 2 Simplified examples of materials with high and low porosity (Höök et al.2010)
Well logging is a widely used operation to measure geological properties in the wellbore by physical recording or the response received from the well logging tools during the exploration, drilling, completion and production period of a petroleum reservoir development. In this thesis, frequently used well logs including the gamma ray $\log$, the caliper $\log$, the deep resistivity $\log$, the density $\log$ and the compensated neutron $\log$ are detailed described here as these six logs are available in the Varg field.

## Gamma ray log

The gamma-ray logging tool is defined as a widely applied tool in petrophysical parameter measurement by measuring the natural radioactivity for fluid, mud, or formation sections in the reservoir. Gamma-ray log data represents the concentration of
radioactive components for measured target by evaluating the energy loss when gamma radiation emanates in the formation. Normally, the gamma radioactivity from the formation is usually evaluated in API units and a higher gamma-ray reading can be obtained in shale than in clean sandstone and carbonates as shale contains more radioactive material. It is worthy to mention that the existence of potassium feldspar and mica, including glauconite can cause a high gamma-ray reading figure even in clean sandstone (Asquith et al., 2004).

Table 1 provides a summary of the gamma radiation reference value for some common minerals and lithologies. When the gamma-ray reading value is higher than 80 in API units, it probably suggests that the logged interval is primarily composed of shale rocks with low porosity. However, porosity estimation can be hard when the gamma-ray reading value is between 10 and 30, which requires other well logging tools to determine the lithologies. The measurement accuracy or reliability of the gamma-ray $\log$ is constrained by the initial intensity of gamma-ray emission and the amount of Compton scattering that gamma rays meet (Glover, 2000). Therefore, the gamma-ray logging tool is always equipped with a radioactive source like thorium, potassium, and uranium (Asquith et al., 2004).

The gamma-ray logging tool is useful in the lithological classification and geological assessment or shale volume calculation, it can be a single well logging tool and it can also be combined with other well logs like neutron log, density log, resistivity log, and caliper log. Additionally, the gamma-ray logs can also be utilized in-depth matching, cased hole correlation, recognition of radioactive mineral deposits, and facies depositional environment analysis (Glover, 2000).

Table 1 Gamma radiation reference value for some common minerals and lithologies (Pirson,1963)

| Mineral or Lithology | Composition | Gamma Radiation <br> (API Units) |
| :--- | :--- | :--- |
| Pure Mineral |  |  |
| Calcite | $\mathrm{CaCO}_{3}$ | 0 |
| Dolomite | $\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}$ | 0 |


| Halite | NaCl | 0 |
| :--- | :--- | :--- |
| Anhydrite | $\mathrm{CaSO}_{4}$ | 0 |
| Gypsum | $\mathrm{CaSO}_{4}(\mathrm{H} 2 \mathrm{O})_{2}$ | 0 |
| Sulphur | S | 0 |
| Mica | - | $200-350$ |
| Quartz | $\mathrm{SiO}_{2}$ | 0 |
| Lithology | - | $5-10$ |
| Limestone | - | $10-20$ |
| Dolomite | $10-30$ |  |
| Sandstone | $\mathrm{CH}_{0.849} \mathrm{~N}_{0.015} \mathrm{O}_{0.221}$ | $80-140$ |
| Shale | $\mathrm{CH}_{0.358} \mathrm{~N}_{0.009} \mathrm{O}_{0.022}$ | 0 |
| Others |  | 0 |
| Lignite |  |  |
| Anthracite |  |  |

## Caliper log

The caliper logging tool is designed with several flexible arms in the tool and the basic objective of this tool is to provide a measurement of wellbore diameter and wellbore shape by detecting the electrical signal changes when the arms are released or withdrawn from the tool.

The diameter and shape of the wellbore can always be changed when drilling through different lithologies, or other causes like the occurrence of mud cake. A combination of caliper $\log$ and gamma-ray $\log$ can be helpful in the lithological assessment, the bit size is regarded as an optimal measurement reference to monitor the diameter and shape along the wellbore.

Generally, there are three kinds of measuring scenarios for caliper log operation:
(1) Wellbore diameter equals to bit size:

This measurement may suggest that the tool is running through a pretty consolidated formation with relatively low permeability and possible lithologies can be massive sandstone or calcareous shale.
(2) Wellbore diameter is larger than bit size:

This measurement may suggest that the tool is running through a relatively soft formation and possible caving-in occurs. The possible lithologies can be unconsolidated sandstone or gravel.
(3) Wellbore diameter is smaller than bit size:

This measurement may indicate that part of the formation had already fell back into the wellbore and the existence of mudcake. The possible guessing for lithologies can be porous sandstone or carbonate.

The Caliper log has become a useful indicator in computing mudcake thickness, wellbore volume and required cement volume. The quality of wellbore determines the correctness of most well logging tools as the logging quality can be affected by the poor hole size setting. Thus, the caliper log also is often used as a reference wellbore correction for other well logging tools that are run under poor wellbore conditions. Furthermore, possible lithology information from the caliper log can offer additional help in wireline pressure tests and recovery of fluid samples (Glover, 2000).

## Resistivity log

Resistivity logging tool is a widely favorable tool in the determination of the existing zones of hydrocarbon by measuring the electrical resistivity of rocks and depositional sediments. The application of resistivity logging tool can be categories into three primary parts:
(1) Clarification of hydrocarbon layers and water-bearing layers;
(2) indicate permeable zones;
(3) Calculation of resistivity porosity (Asquith et al., 2004).

Here some basic concepts and Ohm's law about resistivity are restated and a remarkable contribution of Georg Ohm is the study that clearly illustrates the relationship between current, voltage and resistance (Georg Ohm, 1827). With a given conductor $I$, there is a proportional relationship existing between the current flowing from two points and the changes of electrical potential $\Delta E$. The constant of proportionality can be defined as the electrical conductance $c$ and the electrical resistance $r$ is characterized as the inverse of the conductance.

Here, the conductor $I$ between two points X and Y can be defined as:

$$
\begin{gather*}
I=c \Delta E  \tag{1}\\
r=\frac{1}{c} \tag{2}
\end{gather*}
$$

Then, substitute Eq.(2) into Eq.(1):

$$
\begin{equation*}
I=\frac{\Delta E}{r} \tag{3}
\end{equation*}
$$

Suppose that there are two different faces X and Y in a cube rock with horizontal area A and length of the cube L . The current $I$ can be estimated by measuring the electrical potential changes $\Delta E$ and then the resistivity $R$ of the rock in the horizontal direction can be computed with Eq.(4):

$$
\begin{equation*}
R=\frac{\Delta E}{I} \frac{A}{L} \tag{4}
\end{equation*}
$$

Hence, the conductivity $C$ can be rewritten as Eq.(5):

$$
\begin{equation*}
C=\frac{1}{R}=\frac{I}{\Delta E} \frac{L}{A} \tag{5}
\end{equation*}
$$



Figure 3 Electrical potential change in rock

The two primary types of resistivity logs that are applied in petrophysical parameter measurement are induction $\log$ and electrode log. Normally, the measuring result either is a direct measurement of resistivity or a direct measurement of conductivity, thus both measurement results can be used to get the measured resistivity results. In terms of sediments, formation water and water-based mud are detected low resistivity readings in resistivity log. On the contrary, hydrocarbon components like oil and gas always have higher resistivity than water or water-based mud. Thus, the resistivity $\log$ can be useful in identifying the hydrocarbon zones and non-hydrocarbon zones when combined with other petrophysical logs.

## Sonic log

The sonic logging tool is basically equipped with one sound transmitter and two or more sonic receivers and the formation response reflects the transmitting capacity of the formation by recording the interval transit time $(\Delta t)$. Lithology and porosity are characterized as key factors for the interval transit time ( $\Delta \mathrm{t})$ thus once the seismic velocity of the rock matrix $u_{\text {matrix }}$ and pore fluid $u_{\text {fluid }}$ are known or assumed, the porosity values can be estimated with Eq.(6) (Wyllie et al., 1958). Typical velocity and interval transit time reference values are given in the Table 2. It shall be mentioned that Eq.(6) is applicable on the condition that the rock material is perfectly homogenous (Wyllie et al., 1958).

$$
\begin{equation*}
\phi_{\text {sonic }}=\frac{\Delta t_{\text {log }}-\Delta t_{\text {matrix }}}{\Delta t_{\text {fluid }}-\Delta t_{\text {matrix }}} \tag{6}
\end{equation*}
$$

Table 2 Sonic velocities and Interval Transit Times for different lithologies (Schlumberger, 1974)

| Item | $u_{\text {matrix }}$ | $\Delta t_{\text {matrix }}$ | $\Delta t_{\text {matrix }}$ |
| :---: | :---: | :---: | :---: |
| $(f / s)$ | $(\mu s / f)$ | $(\mu s / f)$ <br> Commonly used |  |
| Sandstone | 18 to 19.5 | 55.5 to 51 | 55.5 to 51 |
| Limestone | 21 to 23 | 47.6 to 43.5 | 47.6 |
| Dolomite | 23 to 26 | 43.5 to 38.5 | 43.5 |
| Anhydrite | 20 | 50 | 50 |
| Salt (Halite) | 15 | 66.7 | 67 |
| Casing (Iron) | 17.5 | 57 | 57 |

## Density log

The density logging tool is defined as an equipment to provide the bulk density curves of the measured formation within a well log interval by recording the returned gammy ray count after the impaction of Compton scattering and photoelectric absorption (Tittaman and Wahl, 1965). The density log is comprised with a gammy ray source that transmits gamma ray into the formation during the well logging operation and normally Cobalt-60 or Cesium-137 would be selected as the gamma ray source.

Density porosity can be computed with the condition that the density of matrix and fluid are known. Combined with the measured bulk density record, the density porosity is estimated by Eq.(7) and typical values of matrix density for different lithologies in the Table 3. Some commonly used value for fluid density are $1.1 \mathrm{gm} / \mathrm{cc}$ for salt mud, 1.0 $\mathrm{gm} / \mathrm{cc}$ for fresh water and $0.7 \mathrm{gm} / \mathrm{cc}$ for gas (Glover, 2001).

$$
\begin{equation*}
\phi_{\text {den }}=\frac{\rho_{\text {matrix }}-\rho_{\text {bulk }}}{\rho_{\text {matrix }}-\rho_{\text {fluid }}} \tag{7}
\end{equation*}
$$

| Item | $\rho_{\text {matrix }}$ <br> $(\mathrm{gm} / \mathrm{cc})$ |
| :---: | :---: |
| Sandstone | 2.65 |
| Limestone | 2.71 |
| Dolomite | 2.88 |
| Anhydrite | 2.98 |
| Salt (Halite) | 2.03 |

## Neutron log

The neutron logging tool is designed with a chemical source within the equipment to measure the hydrogen ion concentration of the formation. The neutrons are emitted from the source into the logging formation and due to the collision process between neutrons and other formation material, the energy loss of the neutrons is related with the formation porosity, where the maximum amount of energy loss is a function of hydrogen concertation in the formation. Therefore, the responses from neutron log can be collected to measure the formation porosity. Neutron log responses can be affected lithology type, detector position placement and spacing between source and detectors, which can bring uncertainties for the estimated porosity.

In terms of the real rock formation, the hydrogen components exist both in the rock matrix and the fluids occupying the rock pore space, which can greatly influence the measurement of porosity in neutron log. This issue is handled by introducing limestone calibration for the neutron $\log$ tool as few other elements except hydrogen can contribute to measured response in pure limestone where the limestone can be assumed to be saturated with water (Glover, 2001). As Figure 4 shows, the apparent limestone neutron porosity reading matches the true porosity in limestone layers. If the logged interval lithologies are not limestone, then the apparent limestone neutron porosity needs to be calibrated to get the true porosity readings. It is noted that the calibrated charts can vary by different compensated neutron logging tool


Figure 4 CNL neutron chart for lithology and scale conversions (Crain et al. 2006)
The core analysis laboratory is an ideal and expensive approach to measure a great majority of petrophysical rock properties. However, clear limitation from economical perspective and specific sections of interests can been seen, but it is still recommended as an effective method to get the most accurate measurement of the formation like porosity in petroleum industry. In this section, a summary towards Routine Core Analysis Laboratory (RCAL) and Special Core Analysis Laboratory (SCAL) will be briefly introduced to show what the petrophysical properties are measured in these two techniques.

## Routine core analysis laboratory

Routine core analysis laboratory (RCAL) is widely used to acquire petrophysical properties from reservoir formation or other intervals of interests. The standard RCAL report contains horizontal and vertical permeability, porosity, pore saturation, grain density as Figure 5 shows. This petrophysical information can be collected by core plugs from the formation. Once the process of core sampling is completed and core samples are retrieved to the surface, consolidated methods are needed for core samples
to avoid drying of interface sensitive clays or permeability reduction on the way to be delivered to laboratory (Glover, 2001). In terms of the porosity measurement methods in laboratory, the most used two methods are imbibition and mercury injection. By immersing the core sampling rock within a fluid with known density, the weight difference of the core sample before and after immersion can be obtained. Then the pore volume of core sample can be computed, which is referred as connected porosity. As for mercury injection, the core sampling rock is immersed within mercury and gradual pressure change would lead to the displacement changes of mercury within the core sampling rock. The weight difference of mercury lost can be measured to compute the pore volume and porosity.


Figure 5 RCAL report for Well 15/12-5, Varg Field (Statoil,1986)

## Special core analysis laboratory

Compared with RCAL, Special core analysis laboratory (SCAL) can provide a wide range of petrophysical parameters by conducting fluid laboratory towards the core sampling from the geological formation. More analysis work is involved in SCAL to offer approaches to capillary pressure, relative permeability, wettability etc. With more detailed information from SCAL, it can help optimize the procedure of Enhanced Oil Recovery plan with a better geological and petrophysical understanding of the reservoir formation in petroleum industry compared to RCAL. Meanwhile, necessary plug preservation methods like wax coating are suggested during the pore sampling and delivery process (Glover, 2001).

## 3 Machine Learning and Optimization Techniques

### 3.1 Machine Learning basics

Machine learning can be defined as a training process of finding models that are derived from data and there are various definitions of machine learning from different perspectives. Samuel (1959) described machine learning as a procedure that programming computers can learn from experience and eliminate the requirement of detailed programming effort. In Mitchell's (1997) work, machine learning is defined that a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P , if its performance at tasks in T , as measured by P, improves with experience E. (Mitchell, 1997). Due to the rapid development of computation ability and information technology industrialization, a large amount of data is created. Machine learning is a power tool that are widely used in statistics, artificial intelligence and predictive analysis. Despite the commercial application like house price prediction and spam email classification, machine learning has a great impact on data-oriented researches in numerous industries.

Hastie et al. (2009) suggested that learning from data in the perspective of statistics can be illustrated as a procedure to extract important patterns and trends, and understand "what the data says". A more recent definition of machine learning is expressed as a combination of hacking skills, mathematics and statistics knowledge and substantive expertise (Conway \& White, 2012).

The aim of conducting machine learning is to learn an approximately behavioral function $\mathrm{g}(\mathrm{x})$ to describe a certain pattern of a dataset where an unknown pattern function $\mathrm{f}(\mathrm{x})$ may exist. By introducing a cost function or fitness function in machine learning and minimizing the error value or fitness value, a series of hyper-parameter can be discovered to make the machine learning model to have the best approximate pattern estimation of the dataset. A hyper-parameter is defined as a model parameter that needs to be set manually rather than learning from the data such as the number of neighbors in KNN algorithm and regularization parameter in SVM algorithm.

Basically, there are three major categories of machine learning: supervised learning, unsupervised learning and reinforcement learning. These three learning types are classified by whether the output data of learning result is desired or not. For instance,
the identification of a spam email belongs to a supervised learning problem as the fact that an email is known to be classified into spam or not spam. A customer segmentation shall be dimed as unsupervised learning problem as the features and outcome of segmentation is unknown before applying machine learning. Furthermore, the machine learning applied in this thesis is supervised machine learning model as the model is provided with labeled input datapoints and desired outputs.

The standard approach of supervised machine learning is to obtain the desired output by feeding the algorithm with a vast number of labeled inputs to train the model. In the example of rock porosity prediction based on petrophysical logs, the objective of the supervised machine learning model is to predict the rock porosity values with known petrophysical log samples. The fitness function in the prediction of rock porosity is the spread values between predicted rock porosity and measured porosity from RCAL.

A more detailed definition of the supervised machine learning model in this thesis can be suggested as follows: The task T is making a prediction of the rock porosity, the experience E can be expressed by the labeled input data of petrophysical logs, the performance measure P can be described by the spread value of fitness function and improved by feeding more samples of the input data from petrophysical logging records. Model fitting performance can be evaluated by introducing a fitness function, which is widely used to describe the model performance in pattern extraction and recognition. Overfitting and underfitting are two major issues that may occur when it comes to supervised machine learning (Müller, 2016).

Overfitting is described as the supervised model is particularly fitting to a set of data rather than capturing the pattern of the remaining training set and unable to be used for new data. On the contrary, underfitting is when a supervised model basically ends up failing to capture the patterns of most data within the training set. The graphic figure for illustrating overfitting and underfitting is showed in Figure 6.


Figure 6 Graphic illustration of (a) underfitting , (b) good fitting, (c) overfitting.
In the supervised machine learning model, the plan is to establish a trained model to make a relatively accurate estimation on unknown data with the same label as the training dataset. If the estimation turns out to be accurate, then it is concluded that this model can generalize from the training dataset to test dataset and generation is used to describe the robustness of the supervised model.

Additionally, a sweet pot is represented as the best generalization performance. The relationship of overfitting and underfitting is further described in Figure 7. Generally, a model with less complexity is estimated to achieve low accuracy for the training dataset than a model with higher complexity, so this model is underfitted for the training dataset. With more features to be added or optimization of hyper-parameter, the accuracy and generalization of the model for the training dataset can be increased till the sweet spot is reached. Once the model complexity overpassed the sweet spot, the model generalization tends to decline despite that the model accuracy for the training dataset is still rising, where this model is overfitted for the training dataset and may not be generalized enough for other datasets.


Figure 7 Trade-off of model complexity against training and test accuracy (Müller, 2016)
In order to avoid overfitted or underfitted model, data augmentation and hyperparameter adjustment are the two frequently used ways in supervised machine learning. The purpose of data augmentation is to increase the dataset size and diversity for both training set and test set by collecting more data or revising the existing data as new samples. Data augmentation is deemed as a standard regularization method and label preserving transformation can be utilized to manually increase samples in the dataset (Yaeger et al., 1996).

In terms of hyper-parameter adjustment, hyper-parameters are referred to as model parameters in machine learning like input weighting, bias etc., and the machine learning performance is highly influenced by the hyper-parameter settings before training the model on the training set. It is essential to choose a proper number of hyper-parameters in machine learning because a small number of hyper-parameter may lead to the overfitted model whereas too many hyper-parameter can also cause the model training inefficient or time-consuming in actual practice.

Regularization is an effective method to prevent the machine learning model from overfitting as regularization penalties are always introduced to minimize the error by
adding extra information. There are two major ways to add the regularization penalties into the machine learning model: L1 norm and L2 norm in Eq.(11)-(12):

$$
\begin{align*}
L_{1} & =C_{p} \sum_{i=1}^{n}\left|y_{i}-f\left(x_{i}\right)\right|  \tag{8}\\
L_{2} & =C_{p} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \tag{9}
\end{align*}
$$

## Support Vector Machines

Vapnik (1995) firstly proposed Support vector machines (SVMs) as one effective algorithm for model pattern recognition (Vapnik et al., 1995) and it is a fundamental method that the SVMs can solve nonlinear functions by leveling the data into a higher dimensional space and introducing an optimal hyperspace in the space through kernel functions. SVMs can be further divided into two categories: Support vector classification (SVC) and Support vector regression (SVR). SVR is developed on the basics of SVC with the same methodology. Therefore, some definition and properties of SVC are restated as follows:

State that we have a series of data samples ( $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ ), $\mathrm{i}=1, \ldots, \mathrm{n}$ where $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{n}}$ and $\mathrm{y}_{\mathrm{i}} \in[-1,1]$ in a linear SVC problem. By solving the Quadratic Programming (QP) equation, an ideal hyperplane of classification can be found with the condition of given constraint function. The object function is written as a maximizing problem in Eq.(10):

$$
\begin{equation*}
\max \frac{1}{\|\omega\|}+C_{p} \sum_{i=1}^{L} \varepsilon_{i}, i=1, \ldots, L \tag{10}
\end{equation*}
$$

Obviously, the maximizing problem can be transformed into the corresponding minimizing problem as follows:

$$
\begin{equation*}
\min \frac{1}{2}\|\omega\|^{2}+C_{p} \sum_{i=1}^{L} \varepsilon_{i}, i=1, \ldots, L \tag{11}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
y_{i}\left(\omega^{T} x_{i}+b\right) \geq 1-\varepsilon_{i}, \varepsilon_{i} \geq 0, i=1, \ldots, L \tag{12}
\end{equation*}
$$

Penalty parameter $C_{p}$ and slack parameter $\varepsilon$ are introduced to avoid outliers and misclassification of the dataset. Date points from the original dataset that are significantly different from other observations, which can be called as outliers. Outliers can have great impact on the application of SVC when limited data points in the dataset can be fed as training set. As Figure 8 shows, the existence of an outliner leads to a different hyperplane A that is far away from other observation with a smaller margin. However, if the outlier can be identified or eliminated, Hyperplane B can be represented to have a better classification performance.

Then an ideal hyperplane can be illustrated with known values of $\omega$ and $b$ as it can be defined as Eq.(13).

$$
\begin{equation*}
\omega^{T} x+b=0 \tag{13}
\end{equation*}
$$



Figure 8 Graphic illustration of SVM hyperplane separation with outlier
As this problem is a typical minimization dual problem with specific constraints, then the Wolfe dual problem equation can be introduced to write the objective function as:

$$
\begin{equation*}
\min _{\alpha} \frac{1}{2} \sum_{i=1}^{L} \sum_{i=1}^{L} y_{i} y_{j}\left(x_{i}, x_{j}\right) \alpha_{i} \alpha_{j}-\sum_{j=1}^{L} \alpha_{j} \tag{14}
\end{equation*}
$$

Here, $\alpha_{j}$ is the Lagrangian multipliers and this equation is subjected to:

$$
\begin{equation*}
\sum_{i=1}^{L} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq C, i=1, \ldots, L \tag{15}
\end{equation*}
$$

Then, the ideal separating hyperplane can be illustrated by computed $\omega$ and b with Eqs. (14) - (15) and a clear hyperplane drawing can be used to separate the dataset points into two categories with a given maximum margin as Figure 15 illustrates.


Figure 9 Graphic illustration of SVM with hyperplane separation

$$
\begin{gather*}
\omega=\sum_{i=1}^{L} \alpha^{\prime} x_{i} y_{i}  \tag{16}\\
b=\frac{1}{N_{S V M}}\left(y_{j}-\sum_{i=1}^{N_{S V M}} \alpha^{\prime} K\left(x_{i}, y_{i}\right)\right) \tag{17}
\end{gather*}
$$

The SVR algorithm was further developed in application of conducting regression analysis and solving time series prediction problems (Müller et al. 1997). The detailed theory basics and concepts are reviewed as follows:

Compared with the parameters and principle of SVC, SVR is aimed at solving the convex optimization problem under constraints, another loss function and two different slack variables $\mu_{i}, \mu^{*}$ are introduced to balance the infeasible constraints in the optimization problem (Bennett and Mangasarian, 1992). Thus, the objective function of the optimization problem can be expressed by Eq.(18) and $\langle.,$.$\rangle represents the dot$ product.

$$
\begin{equation*}
\min \frac{1}{2}\|\omega\|^{2}+C_{p} \sum_{i=1}^{L}\left(\mu_{i}+\mu_{i}^{*}\right) \tag{18}
\end{equation*}
$$

Subject to:

$$
\begin{gather*}
y_{i}-\left\langle\omega, x_{i}\right\rangle-b \leq \varepsilon+\mu_{i}(i=1,2, \ldots, L)  \tag{19}\\
\left\langle\omega, x_{i}\right\rangle+b-y_{i} \leq \varepsilon+\mu_{i}^{*}(i=1,2, \ldots, L)  \tag{20}\\
\mu_{i} \geq 0  \tag{21}\\
\mu_{i}^{*} \geq 0 \tag{22}
\end{gather*}
$$

Then, the loss function can be rewritten as equation as below and a graphic illustration is described as Figure 10 shows.


$$
|\mu|_{\varepsilon}=\left\{\begin{array}{lr}
0 & \text { if }|\mu| \leq \varepsilon  \tag{23}\\
|\mu|-\varepsilon & \text { others }
\end{array}\right.
$$

Furthermore, Lagrange multiplier is used in the objective function and then it proceeds as below:

$$
\begin{gather*}
L^{\prime}=\frac{1}{2}\|\omega\|^{2}+C \sum_{i=1}^{L}\left(\mu_{i}+\mu_{i}^{*}\right)+\sum_{i=1}^{L}\left(\tau_{i} \mu_{i}+\tau_{i}^{*} \mu_{i}^{*}\right) \\
\quad-\sum_{i=1}^{L} \alpha_{i}\left(\varepsilon+\mu_{i}-y_{i}+\left\langle\omega, x_{i}\right\rangle+b\right) \\
\quad-\sum_{i=1}^{L} \alpha_{i}^{*}\left(\varepsilon+\mu_{i}^{*}+y_{i}-\left\langle\omega, x_{i}\right\rangle-b\right) \tag{24}
\end{gather*}
$$

Here, then take the partial derivatives of Eq.(24):

$$
\begin{gather*}
\frac{\partial L}{\partial b}=\sum_{i=1}^{L}\left(\alpha_{i}+\alpha_{i}^{*}\right)  \tag{25}\\
\frac{\partial L}{\partial \omega}=\omega-\sum_{i=1}^{L}\left(\alpha_{i}+\alpha_{i}^{*}\right) x_{i}  \tag{26}\\
\frac{\partial L}{\partial \mu_{i}^{*}}=C-\alpha_{i}^{*}-\tau_{i}^{*}(i=1,2 \ldots L) \tag{27}
\end{gather*}
$$

Then, substitute Eqs.(25)-(27) into the objective function and constraints and eliminate the dual variables $\tau_{i}, \tau_{i}^{*}$ :

$$
\begin{align*}
& \max \left(-\frac{1}{2} \sum_{i, j=1}^{L}\left(\alpha_{i}+\alpha_{i}^{*}\right)\left(\alpha_{j}+\alpha_{j}^{*}\right)\left\langle x_{i}, x_{j}\right\rangle\right)  \tag{28}\\
& \max \left(-\varepsilon \sum_{i=1}^{L}\left(\alpha_{i}+\alpha_{i}^{*}\right)+\sum_{i=1}^{L} y_{i}\left(\alpha_{i}+\alpha_{i}^{*}\right)\right) \tag{29}
\end{align*}
$$

Subject to:

$$
\begin{equation*}
\sum_{i=1}^{L}\left(\alpha_{i}+\alpha_{i}^{*}\right)=0 \tag{30}
\end{equation*}
$$

$$
\begin{align*}
& 0 \leq \alpha_{i} \leq C_{p}  \tag{31}\\
& 0 \leq \alpha_{i}^{*} \leq C_{p} \tag{32}
\end{align*}
$$

Eventually, the objective function can be expressed as Eq.(34):

$$
\begin{gather*}
\omega=\sum_{i=1}^{L}\left(\alpha_{i}-\alpha_{i}^{*}\right) x_{i}  \tag{33}\\
f(x)=\sum_{i=1}^{L}\left(\alpha_{i}-\alpha_{i}^{*}\right)\left\langle x_{i}, x_{j}\right\rangle+b \tag{34}
\end{gather*}
$$

To conclude, SVM is a useful tool to solve linear and non-linear classification or regression problems as nonlinearity in the dataset can be solved by introducing kernel methods to be further linearly in a higher dimensional space, which provides the mathematic theory basics and parameters for LSSVR.

## K-Nearest Neighbors

K-Nearest Neighbors (KNN) algorithm is a widely applied algorithm for solving regression and classification problems in data mining and machine learning. KNN algorithm normally means that the pattern of each sample in the dataset can be illustrated or represented by the data values of k nearest neighbors.


Figure 11 Predictions made by three-nearest-neighbors regression on the wave dataset (Müller, 2016)

The primary concept of the KNN algorithm is that a certain sample is assumed in the feature space having the same pattern or characteristics as the k nearest neighbor samples. If the k nearest neighbors also share the same patter or characteristics, then it can be concluded that this sample belongs to the category as what k nearest neighbor samples belong to as Figure 11 shows. Distance calculation and number of neighbors are the two primary factors in applying KNN algorithm, the advantages of using KNN algorithm can be seen in two ways:
(1) The KNN algorithm itself is intelligible and easy to apply in practice;
(2) No specific parameter adjustment is required other than choosing numbers of neighbors (normally the selection of a number is between 6 and 10) and distance between data points (Müller, 2016).

The KNN algorithm may be optimal to be used in the dataset with many features as the speed of calculation can be slow as a result of heavy computing load.

## Particle Swarm Optimization

The PSO algorithm is described on a number of individual particles with an original population size of 20-50. Each particle is defined by three major parameters: the current position $P_{\text {curr }}^{i}$, the velocity $u_{i}$ and the previous best individual position Pbest $_{i}$. The term swarm describes all the searching particles. The objective of PSO algorithm is to optimize the model parameters and increase model performance. A fitness function is evaluated and computed for individual particle with their current location.

By comparing its previous location $P_{\text {old }}^{i}$, the present location and best location within the particles group, each particle can determine its action with iteration algorithm. Ultimately, a best fitness function would be found on the conditions that an acceptable good fitness result is obtained or a maximum iteration number is met. The whole process to find the optimal objective function is like the foraging behavior of birds.

In this method, coordinates are used to describe the current position $P_{\text {curr }}$ of the particle as a point in the space. The present particle position is treated as a problem solution during the iteration process. If the position is better than any that had been
discovered so far, it would be assigned to a new vector $p_{i}$ and the best function result will be stored in a variable that is called $P_{\text {best }_{i}}$ among all the iterations. By continuous updating the values of better position $p_{i}$ and best position $P_{\text {best }}$, the new position value will be updated by adding the velocity $u_{i}$ to $x_{i}$ by Eqs.(35)-(36) (Poli et al., 2007).
$u_{i_{\text {new }}}=\omega_{\text {in }} u_{i_{\text {old }}}+c c_{1} \times \operatorname{rand}(\quad) \times\left(P_{\text {best }_{i}}-x_{i}\right)+c c_{2} \times \operatorname{rand}(\quad) \times\left(G_{\text {best }_{i}}-x_{i}\right)(35)$

$$
\begin{equation*}
P_{i_{\text {new }}}=P_{i_{\text {old }}}+u_{i_{\text {new }}} \tag{36}
\end{equation*}
$$

By introducing $\omega_{\text {in }}$ as inertia weight, the scope of researching ability of particles can be managed to obtain the balance of global searching and individual optimization with smaller steps and larger steps respectively. With a relatively large value of $\omega$, the particles may be intended to focus more on global searching rather than individual optimization and the particles can be stuck into local optimum with a relatively small value of $\omega$. In terms of dealing with particles that are falling out of the search scope, another study had proved that those particles can be handled by giving a new random location within the designed search scope (Bemani et al., 2020) and they can be computed with the Eq.(37):

$$
\begin{equation*}
P_{j i_{n e w}}=\left(P_{j, \text { max }}-P_{j, \text { min }}\right) \times \operatorname{rand}(\quad)+P_{j, \text { min }} \tag{37}
\end{equation*}
$$

Here, $P_{\max }, P_{\min }$ are referred to the vectors with maximum and minimum values among the whole particles within the given searching area. A more detailed flow chart for a general PSO algorithm is showed in Figure 12.


Figure 12 Graphic illustration of PSO algorithm

### 3.2 Description of Optimization techniques for SVMs

Regularization parameter and penalty parameter are introduced in the SVM that are required to be optimized due to the variance of input database. The performance of SVMs can be decided by data size, model running time, accuracy of setting parameters and memory ability of constraints (Shawe et al., 2011). Therefore, a proper selection of optimization methods can be utilized to improve the SVMs performance in classification and regression problems.

Over the past decades, there are some literatures for optimization methods in SVMs such as Interior Point Algorithm, Chunking and Sequential minimal optimization
(SMO), Coordinate descent etc. (Shawe et al., 2011). Some basics and concepts about these optimization methods are reviewed and summarized as follows:

## Interior point algorithm

Interior point algorithm is designed to solve linear and non-linear convex optimization problems and it was firstly proposed in the 1950s and widely studied and discussed during 1960s (Fiacco \& McCormick, 1990). Once a method for solving linear programming based on a new polynomial-time algorithm was proposed (Karmarkar, 1984), the usages of interior point algorithm became a great option for investigating convex optimization and programming problems. Another advantage of interior point algorithm is that it shows high reliability and competence when dealing with small or moderate datasets containing less 5000 examples, so interior point algorithm may not be an ideal option for large dataset due to the notably expensive cost for computing large scale data (Shawe et al., 2011). A possible solution for applying interior point algorithm in large scale dataset was suggested (Schölkopf \& Smola, 2002) and their study indicates that a satisfying reverse matrix can be computed by applying a hybrid methodology of interior point algorithm and sparse greedy matrix estimation.

## Chunking and Sequential Minimal Optimization

Chunking algorithm is described as a method that a sequence is divided into several blocks to maintain the information. In order to guarantee a certain time complexity, normally an array of n elements is divided into $\sqrt{n}$ subsets, and each subset also has $\sqrt{n}$ elements. Therefore, the complexity of the general subset algorithm is combined with a root sign and each subset is set by the solutions from the previous subset. An improved decomposition algorithm to solve quadratic programming(QP) problem by dividing the large quadratic programming problems into subproblems was presented (Osuna et al., 1997), the contribution of Osuna's work shows that quadratic programming problems can be subdivided into subsets to gain a better convergence result without making assumption of the support vector numbers. As for Sequential minimal optimization (SMO), it was firstly described by Platt (Platt, 1998) and it is a well-developed algorithm solving QP issues by computing two examples with analytical solutions, which is significantly more efficient than solving QP problem with numerical solutions.
(Vapnik, 1982). Nevertheless, the process of running SMO for convergence with high accurate solution requirement can be slow (Platt, 1998).

## Coordinate descent

Coordinate descent is described as a simple and efficient non-gradient optimization algorithm in solving optimization problems. Compared with the gradient optimization algorithm that searches the minimum value of the function along the direction of the steepest gradient descent, the coordinate descent algorithm sequentially minimizes the objective function value along the coordinate axis. a dual coordinate descent method for large scale linear SVM was conducted (Hsieh et al., 2008) and the primary methodology of coordinate descent is to solve a series of simple optimization problems rather than computing a complex optimization problem.

### 3.3 Application of Machine Learning in Petroleum Industry

Recently, the evolution and application of artificial intelligence (AI) has enabled an optional way to obtain accurate prediction result by utilizing different machine learning methods. Four primary Machine learning methods are now being widely used in petroleum industry: Evolutionary Algorithms (EA), Swarm Intelligence (SI), Fuzzy Logic (FL) and Artificial Neural Networks (ANN) (Donaselaar et al.,2005; Kadkhodaie et al., 2017; Onalo et al., 2018).

For lithofacies classification, Dell'Aversana (2019) compared six different machine learning methods and Random Forest and Adaptive Boosting were regarded slightly more reliable than Naïve Bayes, Decision Tree and CN2 Rule Induction in lithofacies classification problems, SVM has a good classification performance. Another study further investigated the application of SVM in lithology classification and it is noted that SVM performs poor classification result in crystalline rocks when the training samples are imbalanced (Deng et al., 2017). Another case study for the Appalachian basin in the USA indicated that accurate prediction of facies and fractures in sedimentary rocks can be performed by using Bayesian Network and Random Forest methods based on petrophysical logs (Bhattacharya \& Mishra, 2018).

Some researchers have successfully initialized the application of artificial intelligence for petrophysical analysis, petroleum exploration and field production. An automatic identification approach by using support vector machine for depositional microfacies based on well logs is possible (Dahai et al, 2019) and it can be limited by applying it to tight sandstone gas reservoirs. The ANN method is applied to predict compressional wave transit time and shear wave transit time with real gamma ray and formation density $\log$ (Dang et al., 2017) and it is also applicable to the correction and supplementing of well log curves (Salmachi et al., 2013). Also, some studies are more focused on the estimation of rock properties by machine learning approaches. A combination method, ADA-SVR, is proposed to predict rock porosity with good robustness performance (Li, et al., 2019). A case study in the South Pars gas field utilizes a hybrid algorithm of ANN and imperialist competitive algorithm has successfully made an estimation of porosity and permeability (Jamshidian et al., 2015). In other areas of petroleum industry, proficient prediction of water versus gas ratio, cycle time and injection rates can be obtained by evolutionary algorithm in Chen et al. (2010). In the work of Salmachi et al. (2013), a reservoir simulator with optimization method and economic objective function is developed to find the optimal locations of infill wells for coal bed methane reservoirs. In the Norne field in the Norwegian Sea, hydrocarbon WAG performance evaluation can be performed by using hybrid GA-PSO machine learning methods to enhance oil recovery (Mohagheghian 2016). Fuzzy logic is an intelligent tool in evaluating the uncertainties by implementing fuzzy variables. Zhou (2016) proposed an estimated model for corrosion failure likelihood of oil and gas pipeline based on the fuzzy local approach. Shahabi (2016) established the selection of water reservoirs in Malyasia by fuzzy logic methods.

## 4 Methodology

### 4.1 LSSVR-PSO Algorithm

LSSVR is an advanced regression analysis technique, which is improved based on SVMs (Suykens, 1999). Comparing with the SVMs technique, LSSVR approaches a new optimization problem by reforming the inequality constrains in SVM into equality constraints and introducing Lagrangian multipliers and RBF kernel functions.

Here, the difference between LSSVR algorithm and SVR algorithm is that LSSVR algorithm is established to gain a satisfying regression model by only solving equations under linear constraints rather than solving quadratic programing equations under nonlinear constraints in SVR.

$$
\begin{equation*}
\min J(\omega, \varepsilon)=\frac{1}{2}|\omega|^{2}+\frac{1}{2} C_{p} \sum_{i=1}^{n} \varepsilon^{2} \tag{38}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
y_{i}\left[\omega^{\prime} \phi\left(x_{i}\right)+b\right]=1-\varepsilon_{i}, i=1,2, \ldots, n \tag{39}
\end{equation*}
$$

Where, $C_{p}$ is introduced as penalty parameter to balance the trade-off between the flatness of the function and the amount up to which deviations larger than $\varepsilon$ are tolerated. Then, introducing the Lagrangian multipliers:

$$
\begin{equation*}
L=J-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\omega^{T} g\left(x_{i}\right)+b\right)+\varepsilon_{i}-1\right], i=1,2, \ldots, n \tag{40}
\end{equation*}
$$

The partial derivatives of Eq.(40):

$$
\begin{gather*}
\frac{\partial L}{\partial \omega}=0 \rightarrow \omega=\sum_{i=1}^{n} \alpha_{i} y_{i} \phi\left(x_{i}\right)  \tag{41}\\
\frac{\partial L}{\partial \varepsilon_{i}}=0 \rightarrow \varepsilon_{i}=\frac{\alpha_{i}}{C_{p}} \tag{42}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial L}{\partial b}=0 \rightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0  \tag{43}\\
\frac{\partial L}{\partial \alpha_{i}}=0 \rightarrow \sum_{i=1}^{n} y_{i}\left[\omega^{\prime} \phi\left(x_{i}\right)+b\right]+\varepsilon_{i}-1=0 \tag{44}
\end{gather*}
$$

By substituting $\omega$ and $\varepsilon_{i}$, Eq.(40) could be simplified as follow:

$$
\left[\begin{array}{cc}
0 & I_{\alpha}{ }^{T}  \tag{45}\\
I_{\alpha} & \tau+C_{p}^{-1} I
\end{array}\right]\left[\begin{array}{l}
b \\
\alpha
\end{array}\right]=\left[\begin{array}{l}
0 \\
Y
\end{array}\right]
$$

Where:

$$
\begin{gather*}
Y=\left[y_{1} \phi\left(x_{1}\right), y_{2} \phi\left(x_{2}\right), \ldots, y_{n} \phi\left(x_{n}\right)\right]  \tag{46}\\
I_{\alpha}=[1,1, \ldots, 1]^{T}  \tag{47}\\
\alpha=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]^{T}  \tag{48}\\
\tau=\left[y_{i} y_{i} \phi\left(x_{i}\right)^{\prime} \phi\left(x_{j}\right)\right]_{n \times n} \tag{49}
\end{gather*}
$$

Therefore, the objective function is written as:

$$
\begin{equation*}
y(x)=\sum_{i=1}^{n} a_{j} y_{j} K\left(x, x_{i}\right)+b \tag{50}
\end{equation*}
$$

For nonlinear dataset, normally it could be tough to directly find the appropriate mapping for computation. Thus, the introduction of a kernel function in LSSVR is to map the input dataset into a higher dimensional space where the computed results are displayed. Depending on the dataset, there are several types of kernel functions to be applied like linear, polynomial and radial basis function (RBF) as Table 4 shows.

| Kernel Type | Kernel Expression |
| :---: | :---: |
| Linear | $K\left(x, x_{i}\right)=x \cdot x_{i}$ |
| Polynomial | $K\left(x, x_{i}\right)=\left(x \cdot x_{i}+1\right)^{m}$ |
| Gaussian RBF | $K\left(x, x_{i}\right)=\exp \left(-\frac{\left\\|x-x_{i}\right\\|^{2}}{2 \sigma^{2}}\right)$ |

Among all the kernel functions, RBF is proved to have excellent generalization performance and low computational cost in nonlinear regression problem (Suykens et al., 1999). In this case, RBF kernel function is applied due to the complicated and nonlinear dataset obtained by well logging. Once the vector values of $\alpha$ and b are solved, the estimate result $y(x)$ could be expressed with new dataset with known $\alpha$ and b by using Eq.(51):

$$
\begin{equation*}
y(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x, x_{i}\right)+b \tag{51}
\end{equation*}
$$

Here, $x_{\text {new }}$ and $x_{i}$ are vectors of size m ( m is the number of parameters)

$$
\begin{gather*}
x_{\text {new }}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right], x_{i}=\left[\begin{array}{c}
x_{1, i} \\
\vdots \\
x_{m, i}
\end{array}\right],\left\|x-x_{i}\right\|^{2}=\sum_{q=1}^{m}\left(x_{q}-x_{q, m}\right)^{2}  \tag{52}\\
y(x)=\sum_{i=1}^{n} \alpha_{i} \exp \left(\frac{\sum_{q=1}^{m}\left(x_{q}-x_{q, m}\right)^{2}}{2 \sigma^{2}}\right)+b \tag{53}
\end{gather*}
$$

Furthermore, an appropriate setting of kernel parameter $\sigma$ and regularization parameter $C_{p}$ would lead to a better outcome of generalization performance. With the purpose of a better prediction outcome, optimization techniques are chosen to optimize these parameters.

### 4.2 LSSVR-PSO Model Design

The LSSVR-PSO model is established by utilizing Python and this model is programmed and trained to search for the prediction value of porosity with well logging dataset from the Varg field. Therefore, Figure 13 illustrates the flow chart of applying the LSSVR-PSO model and the specific procedure of model implement using LSSVR and PSO algorithm are as follows:


Figure 13 Flow chart of LSSVR-PSO model
(1) Load pre-proceed well logging dataset.
(2) Initialize PSO and create random kernel parameter $\sigma$ and regularization parameter $C_{p}$.
(3) With the initial values of $\sigma$ and $C_{p}$, proceed the LSSVR model and calculate the RMSE for the training data and make RMSE as validate error.
(4) The validate error is set as fitness value. $\mathrm{P}_{\text {best }}$ and $\mathrm{G}_{\text {best }}$ in PSO will be update based on the fitness value, then use equation in PSO to update particle position and velocity to get the new values of $\sigma$ and $C_{p}$ of LSSVR.
(5) Once the maximum iteration number is satisfied, the optimal values of $\sigma$ and $C_{p}$ are obtained.
(6) Retrain the LSSVR with the optimal $\sigma$ and $C_{p}$, then establish LSSVR-PSO model.
(7) With the established LSSVR-PSO model, run the test dataset and evaluate the model performance.

### 4.3 Data Preparation

The accuracy, performance and quality of any suggested model can be highly affected by the consistency of the original dataset and appropriate model parameter settings. Thus, data pre-processing and outlier handling can be necessary and essential to make the dataset become representative. a total of series of 1260 data samples from four wells in Varg Field (well 15/12-5, well 15/12-6S, well 15/12-9S, well 15/12-20S) have been collected to form the comprehensive database.

All the data points employed in this thesis contain actual well logging recordings or RCAL data for Sonic Transit Time (DT), Caliper (CA), Gamma Ray (GR), Deep Resistivity (DR), Bulk Density (RHOB), Compensated Neutron Log (CNC), and Total Porosity (POR).

It is necessary to outline the statistical index of all the data points fed to the LSSVRPSO model. In order to fit and tune the parameters in machine learning model, the database can be randomly divided into training dataset and validation dataset with given percentage. All the datapoints from well $15 / 12-5$, well $15 / 12-6$ S, well $15 / 12-9$ S are divided randomly into two groups respectively as training dataset and validation dataset by a total series of 1100 data points with the percentage of $80 \%$ and $20 \%$ respectively. It is worthy to set another 160 sets of data samples from well 15/12-20S were chosen as blind well for pure prediction.

In the practice of data pre-processing, the prediction accuracy can be enhanced by scaling the novel data with mathematic approaches, which would eliminate the unbalance between great numerical ranges and smaller numerical ranges or other implicit numerical issues (Liu et al., 2018). Some studies suggest that it is applicable for SVMs to normalize the dataset into the different range [0.1,0.9] or [0.15, 0.85 ] (Kalanaki et al., 2013; Liu et al., 2018) to have a better performance.

Therefore, each of the dataset is scaled and two scaling methods are employed in this thesis. The first way is to scale the datapoint into the range of $[-1,1]$ with the following steps: Calculate the maximum value (MaxVal) and minimum value (MinVal) of the parameters on the complete training dataset and compute the middle point value (MidVal) and scale with equations. Then, calculate the scaled value (ScalVal) and this method scales all the parameters into [-1,1] with Eqs.(54)-(56):

$$
\begin{gather*}
\text { MidVal }=\frac{\text { MaxVal }+ \text { MinVal }}{2}  \tag{54}\\
\text { Scale }=\frac{\text { MaxVal }- \text { MinVal }}{2}  \tag{55}\\
\text { ScalVal }=\frac{y_{i}-\text { MidVal }}{\text { Scale }} \tag{56}
\end{gather*}
$$

The other way of scaling method is to apply logarithmic transformation on data points related with resistivity logs, which includes significant difference in magnitudes. Logarithmic transformation is utilized in basic research studies to enable the normal distribution of the data points and eliminate or reduce the skewness.

Outlier handling normally contains outlier identification and outlier modification to maintain the data features especially when it comes to the small-scale database. In terms of outlier identification, Tukey's test is introduced where the outlier identification is explained (Tukey, 1949) and the main idea of Tukey's test is to identify a specific range where the upper and lower bounds are defined in Eq.(57)-(58):

$$
\begin{align*}
& R_{\text {Lower }}=Q_{1}-1.5\left(Q_{3}-Q_{1}\right)  \tag{57}\\
& R_{\text {Upper }}=Q_{3}+1.5\left(Q_{3}-Q_{1}\right)  \tag{58}\\
& 35
\end{align*}
$$

A data sample that is out of the range of $\left[R_{\text {Lower }}, R_{\text {Upper }}\right]$ can be dimed as an outlier. When the outliers in data sets are clarified and the number of outliers is notable compared with the scale of the datasets, three common ways of outlier modification are:
(1) Delete the outlier data samples;
(2) Replace the outlier data samples with average value;
(3) Substitute the outlier data samples with the average value of the data points before and after the outliers.


Figure 14 Data statistical analysis: (a) DT (b) CA (c) GR (d) DR (e) RHOB (f) CNC logs
The statistical distribution analysis for each $\log$ is conducted as Figure 14 shows, outliers in each log are marked as black and few outliers appear in DT, CA, GR, RHOB logs and these data points may not have a significant influence on the model performance, thus all the data samples in those four logs are included. A larger number of outliers is filtered out in DR and CNC logs, but outliers in DR and CNC logs are caused by the detection of hydrocarbon components during the well logging, therefore the outliers in DR and CNC shall be kept and no modification is needed.

Additionally, it is beneficial to have a glimpse of the data distribution of all the related datasets, Table 5-7 display the statistical indexes of the database used in this thesis and machine learning models.

Table 5 Statistical index of all petrophysical logging data in this thesis

| Parameter | Min | Max | Average | P10 | P90 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DT $(\mu s / f)$ | 44.08 | 124.06 | 83.75 | 70.09 | 98.36 |
| CA (inch) | 6.00 | 21.00 | 12.20 | 9.00 | 15.50 |
| GR (API) | 21.45 | 70.27 | 37.38 | 25.89 | 51.37 |
| DR (OHMM) | 0.69 | 36.82 | 4.465 | 0.96 | 10.53 |
| RHOB (gm/cc) | 1.98 | 2.92 | 2.36 | 2.14 | 2.55 |
| CNC (\%) | 3.81 | 54.27 | 20.12 | 15.89 | 24.78 |
| POR | 0.02 | 0.38 | 0.17 | 0.08 | 0.29 |

Table 6 Statistical index of petrophysical logging data used for training and validation

| Parameter | Min | Max | Average | P10 | P90 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DT $(\mu s / f)$ | 44.08 | 124.06 | 87.15 | 77.97 | 98.80 |
| CA (inch) | 6.00 | 21.00 | 9.75 | 8.46 | 13.00 |
| GR (API) | 21.45 | 108.29 | 53.23 | 30.19 | 86.17 |
| DR (OHMM) | 0.19 | 36.82 | 3.74 | 0.31 | 9.88 |
| RHOB (gm/cc) | 1.98 | 2.92 | 2.29 | 2.13 | 2.46 |
| CNC (\%) | 3.81 | 54.27 | 20.12 | 15.90 | 24.78 |
| POR | 0.02 | 0.38 | 0.20 | 0.10 | 0.31 |

Table 7 Statistical index of all petrophysical logging data used for blind well prediction

| Parameter | Min | Max | Average | P10 | P90 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DT $(\mu s / f)$ | 65.46 | 87.42 | 78.94 | 70.22 | 85.34 |
| CA (inch) | 8.40 | 8.80 | 8.51 | 8.42 | 8.64 |
| GR (API) | 5.15 | 163.59 | 53.54 | 9.85 | 97.37 |
| DR (OHMM) | 0.26 | 24.21 | 3.60 | 0.54 | 12.15 |
| RHOB (gm/cc) | 2.21 | 2.66 | 2.44 | 2.28 | 2.59 |
| CNC (\%) | 5.73 | 30.34 | 18.92 | 13.38 | 25.53 |
| POR | 0.03 | 0.24 | 0.14 | 0.07 | 0.21 |

### 4.4 Feature Selection

Feature selection is described as a primary process in machine learning and its primary purpose is to select input features for the machine learning model based on the relevance between features and model output. A good feature selection can increase the model performance with lower error rate, and it can also enhance the model generalization and avoid overfitting problem at the same time. Pearson correlation and distance correlation are two frequently used methods in feature selection, so some concepts of those two methods are illustrated in the following content.

### 4.4.1 Pearson Correlation

In terms of Pearson correlation, $\mathrm{p}_{\mathrm{j}}$ represents a value in the range of +1 and -1 considering with the given dataset $\left.\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right)\right\}$ by using Eq. (59) and it can reveal the correlations between x and y , where +1 refers to total positive correlation and -1 refers to total negative correlation. Therefore, the absolute value of correlation coefficient is closer to 1 , it indicates higher correlation relationship between variables. For Pearson Correlation, the correlation relationship is measured by the absolute values of $p_{j}$, which means a higher absolute value suggests higher correlation between the dependent variable y and x . The different sign of $p_{j}$ shows that whether the dependent
variable $y$ would follow the changes of the increase or decrease of x . Table 8 lists out the interpretation of Pearson correlation coefficient value.

$$
\begin{equation*}
p_{j}=\frac{\sum_{i=1}^{n}\left(x_{j, i}-\bar{x}_{j}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{j, i}-\bar{x}_{j}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}, j=1, \ldots n \tag{59}
\end{equation*}
$$

Table 8 Interpretation of Correlation coefficient values

| Correlation coefficient value | Interpretation |
| :---: | :---: |
| $\pm 1$ | Perfect positive/negative relationship |
| $\pm 0.8$ | Fairly strong positive/negative relationship |
| $\pm 0.6$ | Moderate strong positive/negative relationship |
| 0 | No relationship |

### 4.4.2 Distance Correlation

Székely et al., (2007) proposed Distance Correlation as a new approach to evaluate the all categories of dependence between random vectors. The definition and properties of Distance Correlation are reviewed as follows:

Distance Correlation (Dcorr) is defined to evaluate the correlation between two random vectors P and Q :
(1) $\operatorname{Dcorr}(\mathrm{P}, \mathrm{Q})$ is characterized for P and Q with arbitrary dimensions, P and Q are not compulsorily required to be in the same dimensions.
(2) P and Q are identified as independent only when $\operatorname{Dcorr}(\mathrm{P}, \mathrm{Q})=0$.
(3) $\operatorname{Dcorr}(P, Q) \in[0,1]$.

Meanwhile, Distance covariance (Dcov) is defined as a calculation distance between the joint characteristic equation $\phi_{P, Q}$ of P and Q . the marginal characteristic equations of P and Q are introduced as the product metrics $\phi_{P} \phi_{Q}$ (Székely et al., 2007)

$$
\operatorname{Dcov}^{2}(P, Q)=\left\|\phi_{P, Q}(t, s)-\phi_{P}(t) \phi_{Q}(s)\right\|_{\omega}^{2}
$$

$$
\begin{equation*}
=\int_{R^{X+Y}}\left|\phi_{P, Q}(t, s)-\phi_{P}(t) \phi_{Q}(s)\right|^{2} \omega(t, s) d t d s \tag{60}
\end{equation*}
$$

A detailed study provides the detailed proof steps of Lemma 1 (Székely \& Rizzo, 2005) and the simplified form of Lemma 1 is described as follows:

$$
\begin{gather*}
\omega(t, s)=\left(c_{X} c_{Y}|t|_{X}^{1+X}|s|_{Y}^{1+Y}\right)^{-1}  \tag{61}\\
c_{d}=\frac{\pi^{\frac{1+d}{2}}}{\Gamma\left(\frac{1+d}{2}\right)} \tag{62}
\end{gather*}
$$

Combine Eqs.(61)-(62), then the standardized form of Distance correlation is expressed as Eq.(63):

$$
\begin{equation*}
\operatorname{Dcorr}(P, Q)=\frac{\operatorname{Dcov}^{2}(P, Q)}{\sqrt{\operatorname{Dcov}^{2}(P, Q)}} \tag{63}
\end{equation*}
$$

For Distance Correlation, the distance correlation is evaluated by the absolute values of $D_{\text {corr }}$, which indicates that a higher absolute value means higher correlation relationship between the dependent variable P and Q .

### 4.5 Porosity Estimation by well logs

In this thesis, the neutron $\log$, the sonic $\log$ and the density $\log$ are the three main logs employed to make a prediction of porosity based on the calibrated model with true porosity. Therefore, some prerequisites and assumptions are made in the employment of conventional approaches as follows:
(1) Matrix density and fluid density in the logged interval for density logging are assumed to be constant (Glover, 2002).
(2) Matrix transit time and fluid transit time in the logged interval for sonic logging are assumed to be constant (Glover, 2002).
(3) The same linear calibration is applied for neutron log, density log and sonic log and calibrated with true porosity from RCAL for the dataset of well 15/12-5,
well $15 / 12-6$ S and well $15 / 12-9$ S to make a porosity prediction on well 15/1220S.

As for sonic $\log$ and density $\log$, once the related variables are dimed as constant in Eqs.(6)-(7) and the matrix density, fluid density in density log and matrix transit time, fluid transit time can be recomputed by calibrating with the true porosity from RCAL. Due to difference in dataset quality in the practical well logging operations, the actual measurements from these three logs may not be equally evaluated and utilized for porosity estimation. Thus, specific weights are assigned to each log porosity estimation to balance the quality of data samples and prediction accuracy as Eq.(64) shows. The exacta values for weights can be aligned with regression $r$ square results in each $\log$ and the weights shall be added to one.
$Z\left(\right.$ POR $_{D T}$, POR $\left._{\text {RHOB }}, P O R_{C N C}\right)=T_{1} \times P O R_{D T}+T_{2} \times P O R_{R H O B}+T_{3} \times P O R_{C N C}(64)$

### 4.6 Statistical Evaluation

Several statistical evaluation methods are listed to assess the derivation between the observation data and predicted data and performance of the model:
(1) Root Mean square error (RMSE):

$$
\begin{equation*}
R M S E=\sqrt{\frac{\sum\left(x_{0}-x\right)^{2}}{n}} \tag{65}
\end{equation*}
$$

(2) Average absolute error (MAE):

$$
\begin{equation*}
M A E=\frac{\sum\left|x_{0}-x\right|}{n} \tag{66}
\end{equation*}
$$

(3) Pearson Coefficient of determination $\left(\mathrm{R}^{2}\right)$ :

$$
\begin{equation*}
R^{2}=1-\frac{\sum\left(y_{i}-y_{i}^{\text {pred }}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}} \tag{67}
\end{equation*}
$$

(4) Distance Correlation:

$$
\begin{equation*}
\operatorname{Dcorr}(P, Q)=\frac{\operatorname{Dcov}^{2}(P, Q)}{\sqrt{\operatorname{Dcov}^{2}(P, Q)}} \tag{68}
\end{equation*}
$$

### 4.7 Varg Field Overview

The Varg field is in the central area of the North Sea, situated about 230km southwest of Stavanger. The discovery and filed production started in 1984 and 1998 respectively, the well $15 / 12-5$ and the well $15 / 12-6$ S were drilled as two appraisal wells to confirm the discovery of the Varg field. The production of the Varg field had already been stopped and new decommissioning operation was approved in 2015 and the decommissioning operation shall be completed by the end of 2021 per schedule.


Figure 15 Location of Varg Field (Norwegian Petroleum Directorate, 2020)
Table 9 Summary of Varg field wells

|  | $15 / 12-5$ | $15 / 12-6 \mathrm{~S}$ | $15 / 12-9 \mathrm{~S}$ | $15 / 12-20 \mathrm{~S}$ |
| :--- | :--- | :--- | :--- | :--- |
| Well type | Appraisal | Wildcat | Appraisal | Wildcat |
| Water depth (m) | 84 | 84 | 84 | 84 |
| Total depth(MD) [m RKB] | 3150 | 3050 | 3848 | 4192 |
| Final vertical depth(TVD) [m RKB] | 3149 | 3034 | 3213 | 3141.5 |
| 1st level with HC,age | Late Jurassic | Late Jurassic | Late Jurassic | Late Jurassic |
| 1st level with HC,formaiton | Ula FM | Intra Heather FM SS | Intra Heather FM SS | Sleipner FM |
| Oldest penetrated age | Late Triassic | Triassic | Triassic | Late Triassic |
| Oldest penetrated formation | Skagerrak FM | Skagerrak FM | Skagerrak FM | Skagerrak FM |
| Target upper depth (m) | 2895.75 | 2855.75 | 3389 | 3815 |
| Target lower depth (m) | 2942 | 2964 | 3554.75 | 3897.5 |

With the available and comparable well logging data samples in well $15 / 12-5$, well 15/12-6S, well 15/12-9S and well 15/12-20S, Table 4 presents a summary of basic well information for these four wells used in the thesis. The target upper depth and target lower depth define the target zone where core samples are taken during RCAL. Therefore, more focus will be on the sections within the target zone for lithological description for well 15/12-5, well 15/12-6S, well 15/12-9S whereas no completion well report for 15/12-20S is provided, so 15/12-20S lithology description is not included here.

For well 15/12-5, the target zone is located between 2895.75 m and 2942 m depth, which can be divided into two sections. The first section from 2895.75 m - 2918 m depth belongs to the Heather Formation of the Viking Group. Siltstone, claystone and shale are the primary lithologies in the Heather Formation and its age is middle Oxfordian to early Kimmeridgian(Upper Jurassic).

Table 10 Well 15/12-5 Lithology Summary

| Lithology | Color | Hardness | Description |
| :--- | :--- | :--- | :--- |
| Siltstone | Dark grey | Firm - Hard | Locally weakly laminated siltstone <br> with very find sand |
| Claystone | Medium grey | Hard | Massive silty in parts and non- <br> calcareous |
| Shale | Dark grey | Hard - Brittle | Fissile, slightly carbonaceous and non- <br> calcareous |



Figure 16 Gamma Ray log, SP log, Deep resistivity log and medium resistivity log for well 15/12-5


Figure 17 Gamma ray log, neutron log, density log for well 15/12-5

A series of high gamma ray readings shall be noted between 2895 m and 2915 m from the Figure 16 and 17 and some key lithological information can be gained from Statoil (1986) and described in Table 10. The other section from 2918m - 2942m depth belongs to the Vestland Group with Oxfordian Sandstone Unit.

For well $15 / 12-6 \mathrm{~S}$, the target zone is located between 2855.75 m and 2964 m depth, which can be divided into two sections. The first section from 2855.75 m - 2933 m depth belongs to the Oxfordian Sandstone of the Vestland Group. Sandstone is the primary lithology in the Oxfordian Sandstone and its age is early to late Oxfordian (Late Jurassic). Pale to dark yellow brown oil stained sandstone, coal fragments and mica are common in the formation. The grains in the sandstone vary from very fine to very coarse sand.

The other section from 2933m - 2964m depth belongs to the Sleipner Formation, where the age is Middle Jurassic with terrestrial / deltaic depositional environment from Statoil (1990). This section is mainly composed of layers of sandstone, claystone and coal. Additionally, some key lithological information can be obtained from Statoil (1990) as showed in Table 11.

Table 11 Well 15/12-6S Lithology Summary

| Lithology | Color | Hardness | Description |
| :--- | :--- | :--- | :--- |
| Sandstone | Light grey | Very hard | Cemented with silica and no <br> visible porosity |
| Claystone | Moderate brown to <br> greyish red | Soft - Firm | Very silty and sandy in some <br> parts |
| Coal | Black to brownish <br> black | Hard | Slightly micaceous and no <br> visible porosity |



Figure 18 Gamma Ray log, SP log, Deep resistivity log and medium resistivity log for well 15/12-6S


Figure 19 Gamma ray log, neutron log, density log for well 15/12-6S

For well $15 / 12-9$ S, the target zone is located between 3389 m and 3554.75 m depth, which belongs to the Oxfordian Sandstone of the Vestland Group. Sandstone is the primary lithology in the Oxfordian Sandstone with a narrow layer of dolomite between 3440m and 3444m. The formation age is Lower Oxfordian to Lower Kimmeridgian with Marine shelf depositional environment.

The sandstone in the Oxfordian Sandstone formation varies by depth, relatively pure and clean sandstone exist in the upper layer of the formation, which can be seen from Fig.(8)-(9) and the well completion report (Statoil, 1993). The sandstone in the lower layers is composed of clean sandstone with stingers of limestone. Additionally, some key lithological information can be obtained from the well completion report (Statoil, 1990), Figure (20)-(21) and showed in Table 12.

Table 12 Well 15/12-9S Lithology Summary

| Lithology | Color | Hardness | Description |
| :--- | :--- | :--- | :--- |
| Sandstone | Grey | Hard - Very hard | Silty, argillaceous and cemented <br> with silica |
| Sand | Light brown, <br> brownish grey | Soft | Slightly bioturbated with poor <br> visible porosity |
| Dolomite | Yellow grey to <br> brownish grey | Hard | Sandy and calcareous in some |
| parts |  |  |  |



Figure 20 Gamma Ray log, Deep resistivity log and medium resistivity log for well 15/12-9S


Figure 21 Gamma ray log, neutron log and density log for well 15/12-9S

### 4.8 Model Parameter Setting

After the optimization of applying PSO for initial LSSVR, the model parameters employed in LSSVR (regularization parameter $C_{p}$ and kernel parameter $\sigma$ ) are optimized before feeding the training and validation datasets again to have an ideal LSSVR-PSO model as Table 13 shows. Here, the range of some parameters are defined as: $C_{p} \in\left[2,2^{10}\right], \sigma \in\left[2^{-6}, 2\right]$. The optimization parameter setting for PSO (population of particles, maximum iteration time, cognitive weight $c c_{1}$, social weight $c c_{2}$ and inertia weight $\omega$ ) are listed in Table 14. Additionally, the parameter setting of another two machine learning models SVR and KNN for comparison are listed in Table 15

Table 13 Parameter setting for LSSVR algorithm

| Model | Item | Value / Type |
| :--- | :--- | :--- |
|  | Number of input features | 6 |
| Kernel function | RBF |  |
| LSSVR-PSO | Kernel parameter $(\sigma)$ | 0.571 |
|  | Number of training data samples | 13.105 |
|  | Number of validation data samples | 880 |
|  | Total data samples | 220 |
|  |  | 1100 |
|  |  |  |

Table 14 Parameters employed in PSO algorithm

| Model | Item | Value |
| :--- | :--- | :--- |
| PSO | Population of particles | 50 |
|  | Maximum iteration time | 100 |
|  | Cognitive weight $c c_{1}$, | 2.05 |
|  | Social weight $c c_{2}$ | 2.05 |
|  | Inertia weight $\omega_{\text {in }}$ | 0.9 |

Table 15 Model parameter settings for SVR and KNN algorithms

| Model | Item | Value |
| :--- | :--- | :--- |
| SVR | Regularization parameter $\left(C_{p}\right)$ | 10 |
|  | Kernel parameter $(\sigma)$ | 0.5 |
| KNN | Number of Neighbor | 5 |

## 5 Model Results and Sensitivity analysis

### 5.1 Model Feature Selection

Normally, the model performance is highly affected by the input features for training and validation, because excessive input features will lead to information redundancy and reduced interpretability of the model, so it is necessary to screen the input features. In this thesis, the correlation relationship between well logs and porosity needs to be measured by correlation co-efficient and higher correlation co-efficient values of the well $\log$ would be relevant to porosity. Therefore, the well logs with high correlation co-efficient values are selected and fed as input features for the prediction LSSVR-PSO model.

Unlike other known correlation approaches, as for the Distance Correlation approach, the correlation between random vectors would be classified as independent only when the distance correlation value equals to zero. Furthermore, the equal dimensions or linearity are not required, and no specific constraints or assumption are needed for the compared vectors in Distance Correlation approach, which enables more generalization than classical Pearson Correlation where normal distribution assumption needs to be made. Hence, Pearson Correlation and Distance Correlation methods are utilized for the training and validation datasets to figure out the relationship between petrophysical logging data and porosity and determine what will be fed to the LSSVR-PSO model.

All the five conventional parameters have different correlation with porosity as Figure 22 shows. CA and DR are less significant compared with others with $p \sim-0.21$ and $p \sim$ 0.04 respectively. RHOB dependence shows the most notable correlation $p \sim-0.73$ and the correlation values for DT, GR and CNC are $p \sim 0.53, \mathrm{p} \sim-0.44, \mathrm{p} \sim 0.35$. It is noted that GR is in negative correlation with porosity as high GR values always indicate less porous rock space for shale where the rock porosity is remarkably low.


Figure 22 Pearson correlation result for training and validation datasets

The correlation summary for all five logs is represented in Figure 23 and it can be seen that CA is the parameter with lowest correlation values with $D_{\text {corr }} \sim 0.26$ in the correlation with porosity. The highest correlation value is obtained in RHOB with $D_{\text {corr }}$ $\sim 0.75$ and the correlation values for DT, DR, GR, CNC are $D_{\text {corr }} \sim 0.61, D_{\text {corr }} \sim 0.27$, $D_{\text {corr }} \sim 0.51$ and $D_{\text {corr }} \sim 0.45$ respectively.

Considering the two correlation analysis results from Pearson Correlation and Distance Correlation, DT, DR, GR, RHOB, CNC are selected as input features of LSSVR-PSO model in the thesis because it is most likely that a relationship among DT, DR, GR, RHOB, CNC and porosity exists.


Figure 23 Distance correlation result for training and validation datasets

### 5.2 LSSVR-PSO Model Validation and Calibration

Once the LSSVR model is initialized with training dataset and run the LSSVR model for validation dataset to acquire the predicted porosity. The LSSVR-PSO predicted porosity can be compared with true porosity from core analysis and demonstrated in the Figure 24. The data in validation dataset are marked with red triangle and the blue line is described as the fitting line that indicates the accuracy of predicted porosity versus true porosity with $\mathrm{R}^{2}=0.769$.


Figure 24 Scatter plot of LSSVR predicted porosity versus true porosity for validation dataset

For the next step, the hyper-parameter in the LSSVR model is optimized by employing PSO algorithm for the training dataset, the optimized parameters in the optimal LSSVRPSO model were found: $C_{p}=13.105$ and $\sigma=0.557$. As the Figure 25 represents, a comprehensive graphic comparison is conducted between LSSVR-PSO predicted porosity and true porosity with high accuracy performance where $\mathrm{R}^{2}=0.979$ after applying PSO algorithm for the validation dataset.

Since the calibrated LSSVR-PSO model has addressed high accuracy porosity prediction in validation dataset, then this calibrated model can be further utilized in the prediction of a blind well to verify the generalization and robustness of the model. As Figure 26 depicts, a graphic comparison is represented between the LSSVR-PSO predicted porosity and the true porosity with a great fitness with R2 $=0.945$ for the blind well dataset.


Figure 25 Regression plot of LSSVR-PSO predicted porosity versus true porosity for validation dataset


Figure 26 Regression plot of LSSVR-PSO predicted porosity versus true porosity for blind well dataset

Furthermore, a data distribution plot has been drawn for showing the porosity deviation percentage between the predicted porosity and true porosity. As showed in Figure 26, the prediction deviation is relatively within about $10 \%-20 \%$ when the true porosity is larger than 0.15 . However, when it comes to tight rock where porosity is lower than 0.15 , the predicted porosity result from LSSVR-PSO model becomes unreliable with significantly large error.


Figure 27 Relative deviation of LSSVR-PSO predicted porosity versus true porosity for blind well dataset

In order to understand the deviation distribution among all input features in LSSVRPSO model, Fig. 27-31 are constructed by performing the LSSVR-PSO model versus DT, GR, DR, RHOB and CNC. Most of the recorded data samples from DT, RHOB and CNC logs are in good coordination level with the deviation between true porosity and predicted LSSVR-PSO porosity. It is worthy to demonstrate that the significant deviations occur when the recorded GR is larger than 100 API as Figure 28 shows.


Figure 28 LSSVR-PSO Predicted porosity deviation versus petrophysical logs

### 5.3 Model Performance Comparison

To compare and evaluate the prediction performance of the LSSVR-PSO model, the two machine learning methods KNN and SVR are introduced and employed with the same datasets and input features. As Figure 29-30 show, the scatter plots illustrate the prediction accuracy of porosity in KNN method with five neighbors and estimation deviation between KNN predicted porosity and true porosity from RCAL. The
correlation co-efficient between true porosity and predicted porosity for the blind well $\mathrm{R}^{2}=0.839$.


Figure 29 Regression plot of KNN predicted porosity versus true porosity for blind well dataset


Figure 30 Relative deviation of KNN predicted porosity versus true porosity for blind well dataset

Similarly, the porosity estimation and prediction deviation distribution can be illustrated from Fig. 31-32 for the SVR machine learning method, the accuracy of this
approach is higher than for the KNN method with the correlation co-efficient value $\mathrm{R}^{2}$ $=0.898$.


Figure 31 Regression plot of SVR predicted porosity versus true porosity for blind well dataset


Figure 32 Relative deviation of SVR predicted porosity versus true porosity for blind well dataset

As it is mentioned in section 4.5, a suggested hybrid porosity estimation based on well logs is introduced for comparison, thus four constant variables for density log and sonic log can be calculated by plotting the scatter plots of data samples of three logs with true porosity from the training database composed of well $15 / 12-5$, well $15 / 12-6 \mathrm{~S}$ and well $15 / 12-9 \mathrm{~S}$. As Figure $36-38$ show, the correlation co-efficient $\mathrm{R}^{2}$ are $0.2813,0.5294$ and 0.1217 for sonic log, density $\log$ and neutron $\log$ respectively. The recalculated values of matrix density, fluid density, interval transit time of matrix and interval transit time of fluid are $2.79 \mathrm{gm} / \mathrm{cc}, 0.36 \mathrm{gm} / \mathrm{cc}, 41.956 \mu \mathrm{~s} / f$, and $1.3 \mu \mathrm{~s} / f$ respectively.


Figure 33 Linear regression plot of DT versus true porosity in training dataset



Figure 35 Linear regression plot of CNC versus true porosity in training dataset

Table 16 Constant variables in DT log and Density log obtained by calibrated linear regression by true porosity

| Constant variable | Value |
| :---: | :---: |
| $\rho_{\text {matrix }}$, Matrix density | $2.79(\mathrm{gm} / \mathrm{cc})$ |
| $\rho_{\text {fluid }}$, Fluid density | $0.36(\mathrm{gm} / \mathrm{cc})$ |
| $\Delta t_{\text {matrix }}$, Interval transit time of matrix | $41.956(\mu s / f)$ |
| $\Delta t_{\text {fluid }}$, Interval transit time of fluid | $264.178(\mu s / f)$ |

With the given condition, the correlation co-efficient $\mathrm{R}^{2}$ for the three logs are 0.2813 , 0.5294 and 0.1217 for sonic log, density $\log$ and neutron log respectively as Table 16 gives. The value selection of estimated porosity weights for Eq.(67) in this case are $\mathrm{T}_{1}$ $=0.6, \mathrm{~T}_{2}=0.3$, and $\mathrm{T}_{3}=0$. Thus, the estimated porosity by the hybrid approach with three logs can be calculated in Eq.(64) and the prediction result is showed in Figure 36 with the correlation co-efficient $\mathrm{R}^{2}=0.5078$


Figure 36 Regression plot of hybrid approach predicted porosity versus true porosity for blind well dataset

Among the proposed machine learning methods and conventional approach, Table 17 gives a summary of model prediction performance. It can be demonstrated that LSSVRPSO model shows the best performance with highest correlation co-efficient $\mathrm{R}^{2}=0.945$, lowest $\mathrm{RMSE}=0.01341$ and MAE $=0.01029$ for porosity estimation in blind well among all the models.

Table 17 Summary of models for the blind well porosity prediction

| Model Type | Model | $\mathrm{R}^{2}$ | RMSE | MAE |
| :--- | :--- | :--- | :--- | :--- |
| Hybrid approach | DT+ RHOB + CNC | 0.508 | 0.04332 | 0.03424 |
| Machine Learning | KNN | 0.839 | 0.02076 | 0.01475 |
| methods | SVR | 0.898 | 0.01502 | 0.01164 |
|  | LSSVR-PSO | 0.945 | 0.01341 | 0.01029 |

### 5.4 Sensitivity Analysis

Sensitivity analysis is defined as a process to show the relationship between a mathematical model output and the existing uncertainties in input features under some
certain assumptions. Assumptions, input features and regression equations are key components of a regression model and the uncertainties can exist in every assumption, input parameter and regression equation in practical application, which may highly affect the regression performance of the model and cause errors. Hence, there are some advantages to employ sensitivity analysis on models as follows:
(1) Robustness testing.
(2) Model validation range for input features and output results.
(3) Accuracy priority on input features.
(4) Ease the calibration stage with large scale input features (Bahremand,2008).
(5) Clarify potential relationships between input features, observation and model output.

In this thesis, the sensitivity analysis is conducted in two parts: (a) Single feature variation for single data point; (b) A series of feature variations for prediction accuracy. Firstly, Table 18-20 represents the sensitivity outcome for a randomly selection of three data samples in the blind well dataset by varying a fixed input feature by increasing it with $20 \%$ and keep the others remain constant. The spread ratio is defined as the value difference between true porosity and predicted porosity. It can be observed that the variation of RHOB log values can cause a significantly high spread ratio between predicted porosity and true porosity.

Table 18 Sensitivity analysis on single dataset with $20 \%$ increase in each feature - Sample A

| Item | DT | GR | DR | RHOB | CNC | True Porosity | Predicted Porosity <br> (LSSVR-PSO) | Spread ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference | 68.49 | 61.34 | 5.89 | 2.52 | 19.41 | 0.099 | 0.096 | $3.125 \%$ |
| Vary DT | 82.18 | 61.34 | 5.89 | 2.52 | 19.41 | 0.099 | 0.101 | $-1.980 \%$ |
| Vary GR | 68.49 | 73.61 | 5.89 | 2.52 | 19.41 | 0.099 | 0.102 | $-2.941 \%$ |
| Vary DR | 68.49 | 61.34 | 7.06 | 2.52 | 19.41 | 0.099 | 0.099 | $0.000 \%$ |
| Vary RHOB | 68.49 | 61.34 | 5.89 | 3.02 | 19.41 | 0.099 | 0.130 | $-23.846 \%$ |
| Vary CNC | 68.49 | 61.34 | 5.89 | 2.52 | 23.29 | 0.099 | 0.096 | $3.125 \%$ |

Table 19 Sensitivity analysis on single dataset with $20 \%$ increase in each feature - Sample B

| Item | DT | GR | DR | RHOB | CNC | True Porosity | Predicted Porosity <br> (LSSVR-PSO) | Spread ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference | 66.15 | 43.99 | 7.48 | 2.57 | 12.88 | 0.119 | 0.124 | $-4.032 \%$ |
| Vary DT | 79.38 | 43.99 | 7.48 | 2.57 | 12.88 | 0.119 | 0.127 | $-6.299 \%$ |
| Vary GR | 66.15 | 52.79 | 7.48 | 2.57 | 12.88 | 0.119 | 0.123 | $-3.252 \%$ |
| Vary DR | 66.15 | 43.99 | 8.98 | 2.57 | 12.88 | 0.119 | 0.127 | $-6.299 \%$ |
| Vary RHOB | 66.15 | 43.99 | 7.48 | 3.08 | 12.88 | 0.119 | 0.153 | $-22.222 \%$ |
| Vary CNC | 66.15 | 43.99 | 7.48 | 2.57 | 15.46 | 0.119 | 0.123 | $-3.252 \%$ |

Table 20 Sensitivity analysis on single dataset with $20 \%$ increase in each feature - Sample C

| Item | DT | GR | DR | RHOB | CNC | True Porosity | Predicted Porosity <br> (LSSVR-PSO) | Spread ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference | 80.08 | 16.36 | 12.13 | 2.35 | 14.25 | 0.069 | 0.078 | $-11.538 \%$ |
| Vary DT | 96.09 | 16.36 | 12.13 | 2.35 | 14.25 | 0.069 | 0.082 | $-15.854 \%$ |
| Vary GR | 80.08 | 19.63 | 12.13 | 2.35 | 14.25 | 0.069 | 0.076 | $-9.211 \%$ |
| Vary DR | 80.08 | 16.36 | 14.56 | 2.35 | 14.25 | 0.069 | 0.08 | $-13.750 \%$ |
| Vary RHOB | 80.08 | 16.36 | 12.13 | 2.82 | 14.25 | 0.069 | 0.113 | $-38.938 \%$ |
| Vary CNC | 80.08 | 16.36 | 12.13 | 2.35 | 17.10 | 0.069 | 0.078 | $-11.538 \%$ |

In the second part of the sensitivity analysis, this part of sensitivity analysis has been employed towards all the input features (DT, GR, DR, RHOB and CNC) with the LSSVR-PSO optimal model for blind well database. The sensitivity method is to fix four input features and make a prediction of porosity when the remaining input feature increases $10 \%, 20 \%, 30 \%$ and $50 \%$ for the blind well. Then, the first quartile and third quartile of true porosity in the blind well dataset can be computed by using Eq.(57)-(58) are: 0.091 and 0.192 and all the blind well data samples are divided into three groups in group intervals $[0,0.091)$, $[0.091,0.192)$ and $[0.192,1)$. Hence, a series of 9 data samples are randomly selected from these three groups to show how the predicted
porosity varies when the input features increases $10 \%, 20 \%, 30 \%$ and $50 \%$ for the blind well dataset.

In this way, a better illustration of relationship between input features and predicted porosity by scatter plots and the graphic sensitivity analysis results are showed in Figure 37-41 for DT, GR, DR, RHOB and CNC respectively.


Figure 37 DT sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$


Figure 38 GR sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$


Figure 39 DR sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$


Figure 40 RHOB sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$


Figure 41 CNC sensitivity analysis: (a) $10 \%$ (b) $20 \%$ (c) $30 \%$ (d) $50 \%$
Meanwhile, a series of input feature variations versus LSSVR-PSO predicted porosity is illustrated in Figure 42. The data points marked with same color represents the original value of plotted $\log$ with the value increasing in $0 \%, 10 \%, 20 \%, 30 \%$ and $50 \%$. Additionally, Table 21 provides a summary of sensitivity results by measurement of RMSE and $\mathrm{R}^{2}$ for all the data samples in the blind well.



Figure 42 LSSVR-PSO predicted porosity with (a)DT, (b)GR, (c)DR, (d)RHOB and (e)CNC log variation

Table 21 Summary of LSSVR-PSO model accuracy of input feature for the blind well dataset

| Input feature | Vary | RMSE | $\mathrm{R}^{2}$ |
| :---: | :---: | :---: | :---: |
|  | $10 \%$ | 0.107 | 0.932 |
| DT | $20 \%$ | 0.113 | 0.912 |
|  | $30 \%$ | 0.121 | 0.882 |
|  | $50 \%$ | 0.136 | 0.782 |
|  | $10 \%$ | 0.114 | 0.896 |
| GR | $20 \%$ | 0.127 | 0.815 |
|  | $30 \%$ | 0.141 | 0.697 |
|  | $50 \%$ | 0.164 | 0.381 |
|  | $10 \%$ | 0.102 | 0.943 |
| DR | $20 \%$ | 0.104 | 0.939 |
|  | $30 \%$ | 0.106 | 0.934 |
|  | $50 \%$ | 0.111 | 0.911 |
|  | $10 \%$ | 0.129 | 0.849 |
| RHOB | $20 \%$ | 0.160 | 0.577 |
|  | $30 \%$ | 0.175 | 0.023 |
|  | $50 \%$ | 0.187 | -2.611 |


|  | $10 \%$ | 0.103 | 0.943 |
| :---: | :---: | :---: | :---: |
| CNC | $20 \%$ | 0.103 | 0.942 |
|  | $30 \%$ | 0.104 | 0.940 |
|  | $50 \%$ | 0.105 | 0.936 |

According to the sensitivity analysis results, some conclusions can be observed that how the uncertainties affect LSSVM-PSO model prediction performance and the relationships between different parameters and porosity:
(1) Porosity estimation is highly affected by the fluctuation in RHOB and the model may not be applicable with low $R^{2}$ value when the values changes in RHOB is varying over $30 \%$.
(2) Porosity prediction is slightly influenced by the uncertainties in DT and GR and the model can maintain about $70 \%-80 \%$ prediction accuracy.
(3) Significant predicted porosity variation in high GR $\log$ values than those in low GR $\log$ values.
(4) CNC and DR are two input features that are stagnant and stable for the porosity prediction.

## 6 Discussion

In this chapter, more interpretation of the LSSVR-PSO model is discussed based on the porosity estimation results from the LSSVR-PSO model. Furthermore, the advantages and limitations of the LSSVR-PSO model are addressed as well.

For the interpretation of model results, the porosity estimation result of the LSSVRPSO model has showed that accurate reservoir porosity estimation can be achieved only based on the well logging data from selected petrophysical logs with $R^{2}=0.945$. In this thesis, estimation results from KNN, SVR and the hybrid approach are utilized for comparison, the LSSVR-PSO model has the highest $\mathrm{R}^{2}$ and lowest MSE and MAE among those comparison methods. However, the prediction performance of the LSSVR-PSO model is worse than the outcome of ADA-SVR model with $\mathrm{R}^{2}=0.963$ (Li et al., 2019) or the prediction of HGAPSO-LSSVM model with $\mathrm{R}^{2}=0.975$ (Ahmadi and Chen, 2019). The number of data points may not lead to the worse performance as 1260 data points are applied in the LSSVR-PSO model while 739 and 1000 data points are utilized in Li and Ahmadi 's work. Therefore, feature selection and data range may be the causes of lower estimation accuracy of the LSSVR-PSO in this thesis.

After the conduction of feature selection of the LSSVR-PSO model, the LSSVR-PSO model porosity estimation results are built on five petrophysical logs: DT, GR, DR, RHOB and CNC. However, only DT, CNC and RHOB are chosen as input features for ADA-SVR model (Li et al., 2019). Reduce the number of input features may increase the prediction accuracy, but the generalizability of model can be limited because the model performance would only rely on the data from few petrophysical logs.

On the other hand, the data range also have an impact on the model performance. Table 22 illustrates the data range comparison for petrophysical logs in HGAPSO-LSSVM model (Ahmadi and Chen, 2019) and LSSVR-PSO model. Both DT and porosity values in LSSVR-PSO is significantly larger than HGAPSO-LSSVM, which indicates that LSSVR-PSO model can be applied in a more general well with large applicable data range but slightly less accuracy.

Table 22 Data range comparison for HGAPSO-LSSVM model and LSSVR-PSO model for all dataset

| Input <br> feature | DT |  | RHOB |  | Porosity |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Model | HGAPSO- | LSSVR- | HGAPSO- | LSSVR- | HGAPSO- | LSSVR- |
|  | LSSVM | PSO | LSSVM | PSO | LSSVM | PSO |
| Min | 48.39 | 44.08 | 2.28 | 1.98 | 0.03 | 0.02 |
| Max | 81.71 | 124.06 | 2.75 | 2.92 | 0.24 | 0.38 |
| Average | 57.88 | 83.75 | 2.57 | 2.36 | 0.08 | 0.17 |

The advantages of the LSSVR-PSO model are: (1) Provide a more efficient and economical method to obtain reservoir porosity than RCAL; (2) Reduce well logging service cost because some irrelevant well logs for porosity estimation can be notified during the process of feature selection, so these irrelevant well logging operations can be removed.

As for the limitations, the generalizability of the LSSVR-PSO model is limited by the training and validation dataset. The porosity prediction accuracy of the blind well is high, but it may not have the same performance for another well from Varg field with the same data in training and validation. The generalizability of applying LSSVR-PSO model in other fields in Varg field can be enhanced by increasing the number of wells used in training and validation dataset. The LSSVR-PSO model can be applied to predict reservoir porosity in North Sea by introducing more fields in North Sea. Additionally, variables used in the hybrid porosity estimation method are simplified by assigning the representative constant values from the perspective of theoretical calculation. However, constant variables may not be applicable for the real rock conditions. The performance of the hybrid porosity estimation method can be improved by calibrating by more true porosity data from RCAL. Besides, the hyper-parameter in KNN and SVR algorithms are not optimized and those parameters can be further optimized to achieve a higher prediction accuracy.

## 7 Conclusion

(1) Compared to the unoptimized KNN, SVR and the hybrid porosity estimation method, the LSSVR-PSO model have presented best porosity estimation result with $\mathrm{R}^{2}=0.945$, $\mathrm{RMSE}=0.01341$ and $\mathrm{MAE}=0.101029$. The prediction application of LSSVR-PSO model on Varg field data has showed excellent performance, which may potentially provide a key method for reservoir rock property measurement and exploration.
(2) In the case of porosity estimation, distance correlation can provide a better illustration on the correlation relationship between different well logs and porosity where the data samples are in non-linear. Deep resistivity shows insignificant correlation between porosity in Pearson correlation and it may be ignored if only depending on Pearson correlation. On the contrary, relatively significant correlation can be observed between deep resistivity in distance correlation.
(3) Density $\log$ is found to be the most relevant $\log$ as input feature in porosity estimation by LSSVR-PSO model while Caliper log is discarded as the least relevance with porosity. Data quality of the density log can have a great impact on the model porosity estimation and the prediction result may not be reliable when the values changes in density log is varying over $30 \%$.
(4) Well logging service cost can be reduced by removing some irrelevant well logs found during the process of feature selection for porosity estimation in LSSVRPSO model.

## Bibliography

Ahmadi, Mohammad Ali, and Zhangxing Chen. "Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs." Petroleum 5.3 (2019): 271-284.

Amaefule, Jude O., Mehmet Altunbay, Djebbar Tiab, David G. Kersey, and Dare K. Keelan."Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells." SPE annual technical conference and exhibition. Society of Petroleum Engineers, 1993.

Asquith, George B., Daniel Krygowski, and Charles R. Gibson. Basic well log analysis. Vol. 16. Tulsa: American Association of Petroleum Geologists, 2004.
B. Schölkopf, A. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2002.

Bahremand, A., and F. De Smedt. "Distributed hydrological modeling and sensitivity analysis in Torysa Watershed, Slovakia." Water Resources Management 22.3 (2008): 393-408.

Bemani, A., Baghban, A., Mohammadi, A.H. and Andersen, P.Ø., 2020. Estimation of Adsorption Capacity of CO2, CH4, and their Binary Mixtures in Quidam Shale using LSSVR: Application in CO2 Enhanced Shale Gas Recovery and CO2 Storage. Journal of Natural Gas Science and Engineering, p. 103204.

Bennett, Kristin P., and Olvi L. Mangasarian. "Robust linear programming discrimination of two linearly inseparable sets." Optimization methods and software 1.1 (1992): 23-34.

Bhattacharya, Shuvajit, and Srikanta Mishra. "Applications of machine learning for facies and fracture prediction using Bayesian Network Theory and Random Forest: Case studies from the Appalachian basin, USA." Journal of Petroleum Science and Engineering 170 (2018): 1005-1017.

British Petroleum Company plc. BP Energy Outlook, The British Petroleum Company plc, 2018

Bühlmann, Peter, and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and applications. Springer Science \& Business Media, 2011.

Burkov, Andriy. The hundred-page machine learning book. Quebec City, Can.: Andriy Burkov, 2019.

Chen, S., Li, H., Yang, D., \& Tontiwachwuthikul, P."Optimal parametric design for water-alternating-gas (WAG) process in a CO2-miscible flooding reservoir." Journal of canadian petroleum technology 49.10 (2010): 75-82.

Conway, Drew, and John White. Machine learning for hackers. " O'Reilly Media, Inc.", 2012.
Crain, Eric Ross, and P. Eng. Crain's Petrophysical Pocket Pal. Ontario: ER Ross, 2006.

Dang, Ha Song, An Hai Le, and Duc Minh Do. "Correction and supplementingation of the well log curves for Cuu Long oil basin by using the Artificial Neural Networks." VNU Journal of Science: Earth and Environmental Sciences 33.1 (2017).

Dangeti, Pratap. Statistics for machine learning. Packt Publishing Ltd, 2017.
DELL'AVERSANA, Paolo. "Comparison of different Machine Learning algorithms for lithofacies classification from well logs." Bollettino di Geofisica Teorica ed Applicata 60.1 (2019).

Deng, C., Pan, H., Fang, S., Konaté, A. A., \& Qin, R. "Support vector machine as an alternative method for lithology classification of crystalline rocks." Journal of Geophysics and Engineering 14.2 (2017): 341-349.

Donselaar, Marinus E., and Jasper M. Schmidt. "Integration of outcrop and borehole image logs for high-resolution facies interpretation: example from a fluvial fan in the Ebro Basin, Spain." Sedimentology 52.5 (2005): 1021-1042.

Fiacco, Anthony V., and Garth P. McCormick. Nonlinear programming: sequential unconstrained minimization techniques. Vol. 4. Siam, 1990.

Freedonia Group (2015), Logging \& Measuring Services to Reach \$6.2 Billion in 2019 from: https://www.upstreampumping.com/article/2015/logging-measuring-services-reach-62-billion-2019

Ghiasi-Freez, J., M. Ziaii, A. Kadkhodaie-Ilkhchi, and J. Honarmand. "A reservoir rock porosity estimation through image analysis and fuzzy logic techniques." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36.12 (2014): 1276-1284.

Glover, Paul WJ. "Petrophysics." University of Aberdeen, UK (2000).
Glover, Paul. "Formation Evaluation MSC course notes." Aberdeen University (2001): 84-94.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science \& Business Media, 2009.

Höök, Mikael. Coal and oil: The dark monarchs of global energy: understanding supply and extraction patterns and their importance for future production. Diss. Acta Acta Universitatis Upsaliensis, 2010.

Hsieh, Cho-Jui, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sundararajan. "A dual coordinate descent method for large-scale linear SVM." Proceedings of the 25th international conference on Machine learning. 2008.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning. Vol. 112. New York: springer, 2013.

Kadkhodaie, Ali, and Reza Rezaee. "Intelligent sequence stratigraphy through a wavelet-based decomposition of well log data." Journal of Natural Gas Science and Engineering 40 (2017): 38-50.

Kalanaki, Moosa, Jaber Soltani, and Sajjad Tavassoli. "The use of hybrid SVR-PSO model to predict pipes failure rates." International journal of science and engineering research 4.11 (2013): 1022-1025.

Karmarkar, Narendra. "A new polynomial-time algorithm for linear programming." Proceedings of the sixteenth annual ACM symposium on Theory of computing. 1984.

Kennedy, James, and Russell Eberhart. "Particle swarm optimization." Proceedings of ICNN'95-International Conference on Neural Networks. Vol. 4. IEEE, 1995.

Krief, M., Garat, J., Stellingwerff, J., \& Ventre, J. "A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic)." The Log Analyst 31.06 (1990).

Li, Ning, Hongliang Wu, Qingfu Feng, Kewen Wang, Yujiang Shi, Qingfeng Li, and Xinping Luo. "Matrix porosity calculation in volcanic and dolomite reservoirs and its application." Applied Geophysics 6.3 (2009): 287.

Li, Zhongwei, Yuqi Xie, Xueqiang Li, and Wenyang Zhao. "Prediction and application of porosity based on support vector regression model optimized by adaptive dragonfly algorithm." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (2019): 1-14.

Liu, Hsiou-Hsiang, Lung-Cheng Chang, Chien-Wei Li, and Cheng-Hong Yang. "Particle swarm optimization-based support vector regression for tourist arrivals forecasting." Computational Intelligence and Neuroscience 2018 (2018).

Mazilu, Sinziana, and José Iria. "L1 vs. L2 regularization in text classification when learning from labeled features." 2011 10th International Conference on Machine Learning and Applications and Workshops. Vol. 1. IEEE, 2011.

Mitchell, Tom M. "Machine learning." (1997).

Mohagheghian, Erfan. An application of evolutionary algorithms for WAG optimisation in the Norne Field. Diss. Memorial University of Newfoundland, 2016.

Müller, Andreas C., and Sarah Guido. Introduction to machine learning with Python: a guide for data scientists. " O'Reilly Media, Inc.", 2016.

Müller, K. R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., \& Vapnik, V. "Predicting time series with support vector machines." International Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg, 1997.

Norwegian Petroleum Directorate (2020), Factpages: Field Varg. Retrieved from: https://factpages.npd.no/en/field/pageview/shutdown/43451

Ohm, Georg Simon. The galvanic chain processed mathematically. TH Riemann, 1827.

Onalo, David, Sunday Adedigba, Faisal Khan, Lesley A. James, and Stephen Butt. "Data driven model for sonic well log prediction." Journal of Petroleum Science and Engineering 170 (2018): 1022-1037.

Osuna, Edgar, Robert Freund, and Federico Girosi. "An improved training algorithm for support vector machines." Neural networks for signal processing VII. Proceedings of the 1997 IEEE signal processing society workshop. IEEE, 1997.

Pirson, Sylvain J. "Handbook of well log analysis for oil and gas formation evaluation." (1963).

Platt, John. "Sequential minimal optimization: A fast algorithm for training support vector machines." (1998).

Pu, Xiugang, Zhilong Huang, Jiansheng Zhou, Dun-qing XIAO, and Sa LIU. "Quantitative characterization of the controlling effect of pore structure on the physical property of clastic reservoir." XIAN SHIYOU DAXUE XUEBAO ZIRAN KEXUE BAN 21.2 (2006): 15.

Raymer, L. L., E. R. Hunt, and John S. Gardner. "An improved sonic transit time-to-porosity transform." SPWLA 21st annual logging symposium. Society of Petrophysicists and WellLog Analysts, 1980.

Salmachi A, Sayyafzadeh M, Haghighi M (2013) Infill well placement optimization in coal bed methane reservoirs using genetic algorithm. Fuel 111:248-258

Samuel, Arthur L. "Some studies in machine learning using the game of checkers." IBM Journal of research and development 3.3 (1959): 210-229.

Schlumberger. (1974). Log Interpretation Manual/Applications. Vol. 2. Houston Schlumberger Well Service Inc.

Shahabi, Himan, Bakhtyar Ali Ahmad, Baharin Bin Ahmad, Mohammad Javad Taheri Amiri, Soroush Keihanfard, and Saeed Ebrahimi. "Assessment of WLC and Fuzzy Logic Methods for Sit e Selection of Water Reservoirs in Malaysia." Polish Journal of Environmental Studies 25.3 (2016)

Shawe-Taylor, J. and Sun, S., 2011. A review of optimization methodologies in support vector machines. Neurocomputing, 74(17), pp.3609-3618.

Shi, Yuhui, and Russell Eberhart. "A modified particle swarm optimizer." 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360). IEEE, 1998.

Smola, Alex J., and Bernhard Schölkopf. "A tutorial on support vector regression." Statistics and computing 14.3 (2004): 199-222.

Statoil. Completion Report Well 15/12-5 PL 038. Statoil, 1986
Statoil. Completion Report Well 15/12-6S PL 038. Statoil, 1990
Statoil. Completion Report Well 15/12-9S PL 038. Statoil, 1993
Stitson, Mark, Alex Gammerman, Vladimir Vapnik, Volodya Vovk, Chris Watkins, and Jason Weston. "Support vector regression with ANOVA decomposition kernels." Advances in kernel methods-Support vector learning (1999): 285-292.

Suykens, Johan AK, and Joos Vandewalle. "Least squares support vector machine classifiers." Neural processing letters 9.3 (1999): 293-300.

Székely, Gábor J., Maria L. Rizzo, and Nail K. Bakirov. "Measuring and testing dependence by correlation of distances." The annals of statistics 35.6 (2007): 2769-2794.

Tittman, Jay, and J. S. Wahl. "The physical foundations of formation density logging (gammagamma)." Geophysics 30.2 (1965): 284-294.

Tukey, John W. "Comparing individual means in the analysis of variance." Biometrics (1949): 99-114.

Vapnik V. 1995. The Nature of Statistical Learning Theory. Springer, New York.

Vapnik, Vladimir, Steven E. Golowich, and Alex J. Smola. "Support vector method for function approximation, regression estimation and signal processing." Advances in neural information processing systems. 1997.

Vapnik, Vladimir. Estimation of dependences based on empirical data. Springer Science \& Business Media, 2006

Wang, Dahai, Jun Peng, Qian Yu, Yuanyuan Chen, and Hanghang Yu. "Support vector machine algorithm for automatically identifying depositional microfacies using well logs." Sustainability 11.7 (2019): 1919.

Wendt, W.A., Sakurai, S., Nelson, P.H., 1985. Permeability prediction from well logs using multiple regression. In: Lake, L.W., Caroll, H.B.J. (Eds.), Reservoir Characterization. Academic Press, New York.

Wyllie, M. R. J., A. R. Gregory, and G. H. F. Gardner. "An experimental investigation of factors affecting elastic wave velocities in porous media." Geophysics 23.3 (1958): 459-493.

Yaeger, Larry S., Richard F. Lyon, and Brandyn J. Webb. "Effective training of a neural network character classifier for word recognition." Advances in neural information processing systems. 1997.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.

Zhang, Jie, Xin Nie, Suyun Xiao, Chong Zhang, Chaomo Zhang, and Zhansong Zhang. "Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log." Acta Geophysica 66.2 (2018): 191-201.

Zhou, Qi, Wei Wu, Dongpeng Liu, Kaikai Li, and Qiao Qiao. "Estimation of corrosion failure likelihood of oil and gas pipeline based on fuzzy logic approach." Engineering Failure Analysis 70 (2016): 48-55.

## Appendix

Well logs dataset (Well 15/12-5)

| DT | CA | GR | DR | RHOB | CNC | POR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81.2153 | 9.3052 | 88.8625 | 1.7826 | 2.4832 | 20.297 | 0.082 |
| 81.6998 | 9.2371 | 90.1049 | 1.7768 | 2.4732 | 20.6701 | 0.07 |
| 82.5162 | 9.1621 | 90.986 | 1.7742 | 2.4825 | 21.6049 | 0.075 |
| 82.2469 | 9.1285 | 89.7354 | 1.7827 | 2.4848 | 21.013 | 0.07 |
| 81.3693 | 9.0664 | 88.6989 | 1.8328 | 2.4347 | 21.4587 | 0.078 |
| 81.6266 | 9.0454 | 87.7778 | 1.8398 | 2.4216 | 21.4248 | 0.072 |
| 81.5932 | 9.033 | 88.8979 | 1.8381 | 2.4269 | 21.3466 | 0.08 |
| 81.4977 | 9.0292 | 89.4596 | 1.8388 | 2.4531 | 20.9949 | 0.073 |
| 81.3992 | 9.0375 | 87.018 | 1.8413 | 2.4585 | 20.6543 | 0.072 |
| 81.4856 | 9.0434 | 84.17 | 1.8439 | 2.4564 | 21.0363 | 0.077 |
| 81.924 | 9.0405 | 86.8776 | 1.8431 | 2.4459 | 21.6084 | 0.078 |
| 82.5582 | 9.0355 | 90.3839 | 1.8419 | 2.4314 | 21.7267 | 0.071 |
| 82.2426 | 8.862 | 90.1166 | 1.9158 | 2.4633 | 21.748 | 0.074 |
| 81.1013 | 8.8594 | 90.9492 | 1.8959 | 2.4581 | 21.4412 | 0.077 |
| 81.2744 | 8.8571 | 91.0568 | 1.8863 | 2.4611 | 21.6233 | 0.073 |
| 81.4863 | 8.8457 | 91.0797 | 1.8706 | 2.4616 | 21.0303 | 0.086 |
| 81.4655 | 8.8479 | 90.2372 | 1.8495 | 2.4428 | 20.4283 | 0.075 |
| 81.4448 | 8.8592 | 87.7521 | 1.8049 | 2.4169 | 20.1886 | 0.078 |
| 81.5385 | 8.8556 | 86.6512 | 1.7713 | 2.4187 | 20.533 | 0.081 |
| 81.6706 | 8.8489 | 86.0969 | 1.738 | 2.3895 | 20.52 | 0.08 |
| 81.4465 | 8.8496 | 85.095 | 1.7258 | 2.383 | 19.9895 | 0.086 |
| 81.1163 | 8.8447 | 85.4208 | 1.7212 | 2.4424 | 20.1898 | 0.097 |
| 81.3283 | 8.8423 | 88.2352 | 1.7267 | 2.4757 | 20.966 | 0.099 |
| 81.6166 | 8.8368 | 89.9677 | 1.7451 | 2.4667 | 21.4572 | 0.072 |
| 81.022 | 8.8669 | 87.1616 | 1.7387 | 2.3973 | 20.3133 | 0.08 |
| 81.0191 | 8.8713 | 88.4046 | 1.7197 | 2.411 | 20.2809 | 0.082 |
| 81.1255 | 8.8652 | 88.51 | 1.7154 | 2.4377 | 20.028 | 0.078 |
| 81.0932 | 8.8578 | 84.8589 | 1.7109 | 2.4595 | 19.0967 | 0.105 |
| 80.8822 | 8.8555 | 85.5083 | 1.7222 | 2.4535 | 18.2637 | 0.091 |
| 81.0614 | 8.853 | 87.2752 | 1.7388 | 2.4161 | 18.6288 | 0.102 |
| 82.0434 | 8.8338 | 87.7814 | 1.7575 | 2.3945 | 20.5869 | 0.085 |
| 82.6952 | 8.8299 | 87.8393 | 1.7636 | 2.4248 | 22.2563 | 0.092 |
| 82.4709 | 8.8433 | 88.6685 | 1.7651 | 2.4605 | 22.6234 | 0.092 |
| 81.9391 | 8.8221 | 89.86 | 1.7613 | 2.4589 | 21.2079 | 0.093 |
| 81.5825 | 8.7802 | 91.3703 | 1.7488 | 2.467 | 19.5299 | 0.085 |
| 81.6968 | 8.776 | 91.1501 | 1.735 | 2.4811 | 19.6407 | 0.095 |
| 82.2392 | 8.7729 | 90.2003 | 1.7121 | 2.4748 | 20.2518 | 0.091 |
| 82.452 | 8.7587 | 88.3284 | 1.6933 | 2.4297 | 19.8046 | 0.095 |
| 82.0751 | 8.7581 | 84.0868 | 1.6738 | 2.3734 | 18.9427 | 0.098 |
| 81.7539 | 8.7635 | 82.6781 | 1.6678 | 2.3905 | 19.4734 | 0.1 |
| 81.6354 | 8.75 | 82.5153 | 1.6674 | 2.4373 | 20.195 | 0.105 |


| 81.4879 | 8.7351 | 81.7564 | 1.6717 | 2.4314 | 19.4358 | 0.105 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81.3925 | 8.7282 | 79.7869 | 1.6934 | 2.4204 | 20.1153 | 0.097 |
| 81.4379 | 8.7088 | 78.8932 | 1.7184 | 2.4381 | 19.6708 | 0.102 |
| 81.4046 | 8.6976 | 78.6662 | 1.7388 | 2.4552 | 19.6048 | 0.105 |
| 81.2822 | 8.6828 | 78.9616 | 1.754 | 2.4661 | 20.0694 | 0.096 |
| 81.1234 | 8.6709 | 80.2364 | 1.7337 | 2.4394 | 20.2844 | 0.095 |
| 80.8677 | 8.6504 | 81.4071 | 1.6394 | 2.4045 | 20.5391 | 0.095 |
| 80.577 | 8.6175 | 79.8648 | 1.5176 | 2.398 | 20.0329 | 0.077 |
| 80.2065 | 8.5487 | 73.1844 | 1.3286 | 2.3891 | 18.1566 | 0.103 |
| 80.4977 | 8.4939 | 66.9379 | 1.2037 | 2.3875 | 17.0316 | 0.132 |
| 82.4211 | 8.4548 | 59.7404 | 1.0744 | 2.3844 | 17.1535 | 0.158 |
| 84.9536 | 8.4573 | 54.8894 | 1.0173 | 2.3834 | 18.5224 | 0.185 |
| 87.6901 | 8.4557 | 52.2188 | 0.9639 | 2.3564 | 20.8129 | 0.144 |
| 87.563 | 8.4325 | 55.6613 | 0.9359 | 2.3267 | 20.9943 | 0.171 |
| 85.6203 | 8.4023 | 58.6538 | 0.9081 | 2.3035 | 20.4308 | 0.195 |
| 85.0906 | 8.4027 | 54.9105 | 0.8959 | 2.3075 | 20.5253 | 0.204 |
| 86.8995 | 8.4221 | 49.1352 | 0.8915 | 2.2819 | 21.1969 | 0.172 |
| 88.5705 | 8.4235 | 48.0837 | 0.8984 | 2.2491 | 21.6364 | 0.178 |
| 86.9131 | 8.358 | 48.9096 | 1.0298 | 2.309 | 21.5034 | 0.19 |
| 88.5053 | 8.3316 | 45.9838 | 1.1123 | 2.2776 | 22.9691 | 0.166 |
| 88.1855 | 8.3035 | 44.3991 | 1.1842 | 2.2535 | 22.6247 | 0.171 |
| 84.8228 | 8.2899 | 41.0182 | 1.2797 | 2.2335 | 20.8149 | 0.243 |
| 82.4152 | 8.2863 | 38.974 | 1.3342 | 2.2477 | 20.1287 | 0.215 |
| 82.4678 | 8.2746 | 39.3202 | 1.3692 | 2.2908 | 20.567 | 0.227 |
| 84.0398 | 8.2846 | 40.8985 | 1.3551 | 2.2951 | 21.3121 | 0.19 |
| 85.3402 | 8.3131 | 43.5492 | 1.3097 | 2.2835 | 21.2578 | 0.16 |
| 85.3966 | 8.3092 | 45.7288 | 1.2787 | 2.2722 | 20.8857 | 0.231 |
| 85.2712 | 8.2856 | 46.9411 | 1.2607 | 2.2665 | 20.9262 | 0.238 |
| 85.674 | 8.2768 | 46.1244 | 1.274 | 2.2763 | 21.2281 | 0.271 |
| 87.1687 | 8.2835 | 44.1411 | 1.3154 | 2.2688 | 22.3684 | 0.247 |
| 88.6282 | 8.2998 | 43.1315 | 1.3474 | 2.2467 | 22.868 | 0.272 |
| 85.9776 | 8.2965 | 40.3213 | 1.4597 | 2.2463 | 21.7799 | 0.243 |
| 83.7541 | 8.3264 | 38.6701 | 1.4215 | 2.3212 | 20.4433 | 0.251 |
| 85.2752 | 8.3592 | 41.2052 | 1.3533 | 2.357 | 21.4642 | 0.207 |
| 87.8702 | 8.3455 | 43.9509 | 1.3091 | 2.3075 | 22.8186 | 0.287 |
| 89.6494 | 8.3189 | 44.2498 | 1.3006 | 2.2841 | 22.8596 | 0.264 |
| 89.7487 | 8.3091 | 42.9095 | 1.3531 | 2.2972 | 22.8488 | 0.176 |
| 89.7096 | 8.3241 | 41.017 | 1.4628 | 2.2777 | 23.9664 | 0.12 |
| 87.467 | 8.355 | 40.1137 | 1.5195 | 2.2516 | 23.9476 | 0.292 |
| 80.94 | 8.3803 | 38.5666 | 1.5301 | 2.2487 | 22.0003 | 0.244 |
| 79.3221 | 8.3797 | 37.418 | 1.4851 | 2.2822 | 21.7877 | 0.257 |
| 84.1986 | 8.3672 | 37.6819 | 1.376 | 2.2909 | 23.4613 | 0.28 |
| 88.0658 | 8.3581 | 39.1537 | 1.2899 | 2.2507 | 24.1987 | 0.284 |
| 90.403 | 8.3644 | 39.4657 | 1.211 | 2.1997 | 25.7574 | 0.29 |
| 91.7111 | 8.3778 | 38.4556 | 1.1949 | 2.184 | 26.3936 | 0.311 |
| 93.5121 | 8.3815 | 38.0609 | 1.201 | 2.1858 | 26.2148 | 0.296 |


| 94.2867 | 8.3852 | 37.84 | 1.2003 | 2.1904 | 26.4781 | 0.321 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95.0268 | 8.4255 | 37.201 | 1.177 | 2.1621 | 27.0015 | 0.305 |
| 96.0013 | 8.5058 | 35.7702 | 1.0428 | 2.129 | 27.8144 | 0.225 |
| 94.9074 | 8.5517 | 36.887 | 0.8471 | 2.1697 | 26.5165 | 0.307 |
| 93.5638 | 8.5483 | 37.7182 | 0.8232 | 2.2135 | 25.1124 | 0.296 |
| 92.9794 | 8.5569 | 37.1798 | 0.8261 | 2.2118 | 25.183 | 0.286 |
| 93.5063 | 8.5793 | 35.9196 | 0.8778 | 2.1569 | 25.8665 | 0.117 |
| 91.409 | 8.5908 | 38.934 | 0.8972 | 2.1741 | 24.4048 | 0.249 |
| 86.81 | 8.575 | 40.6705 | 0.8784 | 2.2205 | 22.2545 | 0.264 |
| 81.387 | 8.5179 | 43.8274 | 0.8225 | 2.3238 | 20.8842 | 0.289 |
| 81.8831 | 8.4865 | 44.4202 | 0.776 | 2.3276 | 21.7792 | 0.276 |
| 86.7765 | 8.467 | 40.5898 | 0.7263 | 2.2344 | 24.1152 | 0.287 |
| 90.6019 | 8.479 | 38.568 | 0.7147 | 2.1825 | 25.4639 | 0.166 |
| 93.7318 | 8.5263 | 38.1696 | 0.7374 | 2.1299 | 25.9464 | 0.173 |
| 93.619 | 8.5344 | 38.2079 | 0.7855 | 2.1232 | 25.7523 | 0.274 |
| 90.1791 | 8.4972 | 38.5699 | 0.8911 | 2.1537 | 24.076 | 0.291 |
| 86.7893 | 8.4823 | 39.1619 | 1.001 | 2.1761 | 22.8064 | 0.271 |
| 85.8051 | 8.472 | 39.2539 | 1.177 | 2.1982 | 22.4902 | 0.262 |
| 88.677 | 8.462 | 36.5885 | 1.3329 | 2.1858 | 22.0329 | 0.225 |
| 93.0887 | 8.4419 | 30.2455 | 1.7207 | 2.1085 | 21.3412 | 0.279 |
| 90.8501 | 8.428 | 31.876 | 1.856 | 2.1179 | 19.9634 | 0.307 |
| 89.2854 | 8.4228 | 32.8702 | 1.8209 | 2.1544 | 19.6744 | 0.299 |
| 94.5016 | 8.379 | 33.3102 | 1.4975 | 2.2042 | 23.2257 | 0.204 |
| 99.3743 | 8.4056 | 32.8298 | 1.2884 | 2.1823 | 23.8192 | 0.26 |
| 91.0277 | 8.4651 | 37.2691 | 0.9578 | 2.2054 | 22.889 | 0.306 |
| 91.7656 | 8.473 | 37.4442 | 0.9268 | 2.1782 | 23.4244 | 0.307 |
| 97.2183 | 8.4882 | 36.2823 | 0.8814 | 2.1124 | 24.9403 | 0.3 |
| 100.9357 | 8.5056 | 35.2956 | 0.8466 | 2.0999 | 25.3179 | 0.306 |
| 102.287 | 8.5359 | 35.6845 | 0.7846 | 2.1174 | 24.4933 | 0.301 |
| 102.0598 | 8.5307 | 35.8561 | 0.7266 | 2.1268 | 24.0543 | 0.316 |
| 102.3975 | 8.4974 | 34.4574 | 0.6439 | 2.1167 | 23.7428 | 0.328 |
| 102.62 | 8.4923 | 35.3538 | 0.5876 | 2.1072 | 23.8061 | 0.273 |
| 101.7951 | 8.5225 | 36.8547 | 0.5298 | 2.1139 | 24.4101 | 0.281 |
| 100.0515 | 8.5414 | 35.8536 | 0.5102 | 2.127 | 24.0659 | 0.236 |
| 96.5401 | 8.5487 | 35.4521 | 0.5119 | 2.166 | 22.9372 | 0.26 |
| 93.108 | 8.5509 | 36.2453 | 0.5255 | 2.1975 | 21.6539 | 0.269 |

Well logs dataset (Well 15/12-6S)

| 80.641 | 10.000 | 53.261 | 1.824 | 2.449 | 14.662 | 0.107 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 80.469 | 12.000 | 59.179 | 1.845 | 2.432 | 16.002 | 0.109 |
| 79.969 | 8.000 | 54.741 | 1.801 | 2.539 | 18.498 | 0.106 |
| 80.063 | 8.000 | 50.302 | 1.791 | 2.436 | 15.763 | 0.102 |
| 79.836 | 9.500 | 56.590 | 1.777 | 2.480 | 15.704 | 0.106 |
| 80.109 | 10.000 | 51.042 | 1.766 | 2.450 | 18.453 | 0.114 |
| 80.281 | 11.000 | 56.220 | 1.749 | 2.493 | 14.775 | 0.107 |


| 80.094 | 10.000 | 56.960 | 1.714 | 2.431 | 20.127 | 0.103 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80.266 | 15.000 | 60.658 | 1.680 | 2.415 | 16.005 | 0.102 |
| 80.313 | 15.000 | 52.521 | 1.658 | 2.471 | 14.941 | 0.110 |
| 80.141 | 11.000 | 51.782 | 1.615 | 2.449 | 15.170 | 0.112 |
| 79.766 | 11.000 | 54.741 | 1.601 | 2.465 | 14.271 | 0.114 |
| 80.578 | 10.000 | 50.302 | 1.678 | 2.438 | 18.641 | 0.119 |
| 80.156 | 11.500 | 54.371 | 1.693 | 2.464 | 19.587 | 0.101 |
| 79.063 | 14.000 | 60.658 | 1.727 | 2.543 | 17.245 | 0.127 |
| 79.156 | 10.000 | 59.179 | 1.757 | 2.480 | 18.280 | 0.107 |
| 79.469 | 9.500 | 58.069 | 1.712 | 2.440 | 17.336 | 0.103 |
| 79.500 | 10.000 | 56.220 | 1.670 | 2.399 | 20.282 | 0.101 |
| 78.813 | 6.000 | 53.261 | 1.620 | 2.397 | 25.078 | 0.128 |
| 79.703 | 6.500 | 45.864 | 1.619 | 2.498 | 20.186 | 0.122 |
| 79.313 | 8.000 | 51.042 | 1.626 | 2.480 | 16.539 | 0.128 |
| 77.094 | 9.000 | 50.302 | 1.658 | 2.507 | 18.044 | 0.117 |
| 78.406 | 12.000 | 54.001 | 1.683 | 2.422 | 15.629 | 0.144 |
| 78.250 | 11.000 | 56.220 | 1.713 | 2.440 | 17.649 | 0.134 |
| 78.586 | 10.000 | 52.891 | 1.751 | 2.494 | 17.759 | 0.118 |
| 78.547 | 11.000 | 49.562 | 1.796 | 2.428 | 14.636 | 0.095 |
| 77.086 | 11.500 | 53.631 | 1.828 | 2.421 | 19.630 | 0.129 |
| 83.898 | 8.500 | 53.261 | 2.089 | 2.378 | 17.062 | 0.117 |
| 84.609 | 7.000 | 48.823 | 2.246 | 2.376 | 19.086 | 0.113 |
| 78.195 | 9.500 | 44.384 | 2.384 | 2.430 | 21.222 | 0.136 |
| 79.531 | 11.000 | 37.727 | 2.640 | 2.327 | 15.835 | 0.121 |
| 79.711 | 11.000 | 39.576 | 2.845 | 2.387 | 17.802 | 0.108 |
| 79.250 | 12.000 | 39.946 | 2.908 | 2.412 | 16.692 | 0.119 |
| 79.391 | 11.000 | 43.275 | 2.824 | 2.340 | 16.847 | 0.148 |
| 79.422 | 12.000 | 44.384 | 2.677 | 2.324 | 13.945 | 0.121 |
| 77.852 | 7.500 | 45.494 | 2.462 | 2.341 | 19.163 | 0.171 |
| 76.781 | 11.000 | 53.261 | 2.250 | 2.438 | 15.286 | 0.158 |
| 76.727 | 9.500 | 54.371 | 2.112 | 2.462 | 16.760 | 0.154 |
| 77.438 | 13.000 | 58.439 | 2.053 | 2.313 | 15.907 | 0.159 |
| 77.141 | 12.000 | 54.001 | 2.043 | 2.516 | 18.673 | 0.157 |
| 75.563 | 11.000 | 53.261 | 2.116 | 2.427 | 15.980 | 0.163 |
| 71.250 | 12.500 | 54.371 | 2.264 | 2.464 | 14.517 | 0.110 |
| 70.266 | 12.000 | 48.823 | 2.511 | 2.537 | 17.449 | 0.113 |
| 71.578 | 14.500 | 55.850 | 2.809 | 2.551 | 14.484 | 0.108 |
| 71.750 | 13.000 | 70.275 | 3.174 | 2.481 | 14.922 | 0.133 |
| 70.180 | 12.500 | 60.289 | 3.941 | 2.513 | 14.109 | 0.130 |
| 68.938 | 15.000 | 58.439 | 5.145 | 2.608 | 14.943 | 0.126 |
| 66.680 | 15.000 | 51.412 | 7.344 | 2.505 | 14.727 | 0.093 |
| 60.391 | 15.000 | 42.165 | 10.442 | 2.587 | 12.093 | 0.112 |
| 57.383 | 13.500 | 32.548 | 13.785 | 2.579 | 12.440 | 0.109 |
| 57.281 | 11.000 | 28.110 | 18.673 | 2.395 | 7.854 | 0.119 |
| 57.016 | 12.000 | 26.261 | 21.572 | 2.643 | 8.398 | 0.097 |
| 61.281 | 11.000 | 28.110 | 22.854 | 2.536 | 6.415 | 0.095 |


| 62.258 | 10.500 | 25.521 | 23.197 | 2.497 | 5.684 | 0.094 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66.281 | 8.000 | 24.411 | 22.585 | 2.524 | 7.127 | 0.091 |
| 72.297 | 13.000 | 24.041 | 23.298 | 2.439 | 8.423 | 0.135 |
| 77.000 | 13.000 | 23.672 | 25.273 | 2.292 | 8.938 | 0.104 |
| 71.844 | 12.500 | 22.562 | 26.554 | 2.392 | 13.334 | 0.075 |
| 57.531 | 15.000 | 27.370 | 27.210 | 2.433 | 11.350 | 0.060 |
| 59.898 | 14.000 | 21.452 | 30.019 | 2.532 | 7.864 | 0.108 |
| 66.125 | 11.000 | 21.452 | 33.868 | 2.552 | 6.363 | 0.120 |
| 56.117 | 11.000 | 23.302 | 36.112 | 2.527 | 9.182 | 0.142 |
| 44.078 | 12.000 | 21.452 | 36.821 | 2.418 | 7.575 | 0.119 |
| 50.203 | 10.500 | 23.302 | 36.075 | 2.434 | 11.982 | 0.075 |
| 54.156 | 11.000 | 23.672 | 33.851 | 2.478 | 8.939 | 0.089 |
| 74.797 | 12.000 | 24.041 | 28.049 | 2.391 | 11.836 | 0.160 |
| 84.219 | 16.500 | 23.672 | 20.760 | 2.228 | 14.794 | 0.076 |
| 89.359 | 12.000 | 25.891 | 17.601 | 2.299 | 18.939 | 0.146 |
| 99.547 | 14.500 | 26.261 | 16.402 | 2.232 | 26.058 | 0.103 |
| 106.141 | 13.000 | 25.891 | 15.749 | 2.136 | 17.690 | 0.136 |
| 100.750 | 12.000 | 25.151 | 15.039 | 2.041 | 21.566 | 0.145 |
| 98.031 | 11.000 | 25.151 | 14.348 | 2.175 | 16.286 | 0.262 |
| 94.773 | 11.000 | 25.521 | 13.552 | 2.261 | 16.767 | 0.141 |
| 98.625 | 9.000 | 25.891 | 11.474 | 2.121 | 21.395 | 0.211 |
| 107.313 | 13.000 | 33.288 | 8.681 | 2.222 | 22.634 | 0.289 |
| 95.633 | 14.500 | 28.850 | 7.596 | 2.147 | 24.606 | 0.229 |
| 84.969 | 12.000 | 29.589 | 7.308 | 2.187 | 21.659 | 0.283 |
| 86.102 | 13.000 | 29.959 | 7.670 | 2.196 | 19.494 | 0.294 |
| 87.359 | 16.000 | 31.069 | 8.499 | 2.059 | 21.292 | 0.303 |
| 95.055 | 17.500 | 29.589 | 9.591 | 2.319 | 15.545 | 0.310 |
| 106.234 | 16.000 | 28.850 | 10.511 | 2.267 | 23.773 | 0.297 |
| 111.375 | 13.500 | 25.151 | 11.498 | 2.143 | 16.683 | 0.228 |
| 110.547 | 13.000 | 25.891 | 12.016 | 2.108 | 20.993 | 0.274 |
| 112.109 | 14.500 | 27.370 | 11.480 | 2.127 | 23.745 | 0.188 |
| 105.125 | 15.000 | 28.850 | 11.065 | 2.133 | 25.488 | 0.209 |
| 102.867 | 10.500 | 27.740 | 10.925 | 2.050 | 20.028 | 0.302 |
| 102.797 | 11.000 | 30.329 | 10.932 | 2.100 | 21.893 | 0.308 |
| 102.328 | 16.500 | 25.521 | 10.831 | 2.209 | 22.281 | 0.291 |
| 103.031 | 13.000 | 26.631 | 10.414 | 2.185 | 18.673 | 0.301 |
| 98.219 | 12.000 | 27.000 | 9.717 | 2.191 | 22.210 | 0.295 |
| 93.891 | 15.000 | 28.110 | 8.873 | 2.162 | 19.349 | 0.315 |
| 93.586 | 15.500 | 26.631 | 7.857 | 2.196 | 19.016 | 0.297 |
| 96.078 | 14.000 | 31.069 | 6.922 | 2.144 | 17.635 | 0.296 |
| 95.695 | 14.000 | 30.699 | 6.496 | 2.196 | 19.043 | 0.282 |
| 93.750 | 14.000 | 33.288 | 6.625 | 2.208 | 18.744 | 0.291 |
| 92.289 | 11.500 | 31.439 | 7.068 | 2.195 | 20.230 | 0.210 |
| 92.109 | 12.000 | 31.069 | 7.647 | 2.299 | 20.251 | 0.255 |
| 92.195 | 13.500 | 26.631 | 8.140 | 2.217 | 19.451 | 0.278 |
| 89.641 | 11.000 | 27.370 | 8.433 | 2.165 | 22.543 | 0.212 |


| 87.773 | 13.000 | 26.631 | 8.365 | 2.191 | 16.704 | 0.228 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 86.594 | 14.000 | 30.329 | 8.390 | 2.186 | 20.693 | 0.233 |
| 83.594 | 12.500 | 31.439 | 8.248 | 2.262 | 18.572 | 0.287 |
| 81.141 | 12.000 | 27.370 | 7.999 | 2.227 | 23.549 | 0.246 |
| 74.852 | 10.500 | 27.000 | 7.660 | 2.157 | 19.346 | 0.229 |
| 70.078 | 12.000 | 28.110 | 7.281 | 2.126 | 19.137 | 0.267 |
| 72.102 | 9.500 | 29.220 | 6.765 | 2.155 | 20.898 | 0.326 |
| 90.891 | 11.000 | 29.589 | 6.307 | 2.147 | 18.901 | 0.304 |
| 89.992 | 13.000 | 25.521 | 6.263 | 2.239 | 22.174 | 0.225 |
| 90.563 | 11.000 | 40.686 | 6.493 | 2.262 | 25.290 | 0.238 |
| 85.055 | 10.000 | 34.398 | 6.932 | 2.208 | 22.227 | 0.241 |
| 86.328 | 10.000 | 30.329 | 7.836 | 2.266 | 20.555 | 0.377 |
| 91.938 | 10.500 | 28.480 | 9.452 | 2.176 | 19.357 | 0.301 |
| 98.563 | 10.000 | 26.631 | 10.536 | 2.223 | 22.763 | 0.295 |
| 94.070 | 13.000 | 26.261 | 11.167 | 2.107 | 20.642 | 0.254 |
| 82.047 | 15.000 | 22.192 | 11.546 | 2.204 | 20.159 | 0.281 |
| 87.906 | 12.000 | 23.672 | 11.556 | 2.186 | 19.421 | 0.275 |
| 91.188 | 13.000 | 33.288 | 10.837 | 2.165 | 14.038 | 0.307 |
| 84.063 | 14.500 | 27.740 | 10.076 | 2.221 | 14.993 | 0.286 |
| 77.875 | 9.000 | 28.110 | 9.973 | 2.335 | 17.203 | 0.293 |
| 93.313 | 10.000 | 25.891 | 10.229 | 2.180 | 17.152 | 0.229 |
| 102.578 | 10.000 | 27.370 | 9.970 | 2.096 | 22.325 | 0.229 |
| 89.508 | 12.000 | 22.932 | 9.487 | 2.017 | 21.458 | 0.322 |
| 90.500 | 14.000 | 22.932 | 9.024 | 2.286 | 20.909 | 0.317 |
| 95.367 | 12.500 | 25.521 | 8.550 | 2.107 | 17.674 | 0.157 |
| 97.594 | 12.000 | 26.631 | 7.938 | 2.069 | 23.396 | 0.261 |
| 95.172 | 10.500 | 22.562 | 7.553 | 1.999 | 22.028 | 0.321 |
| 94.375 | 10.000 | 23.672 | 7.446 | 1.981 | 28.975 | 0.336 |
| 95.242 | 12.000 | 21.822 | 7.113 | 2.020 | 23.432 | 0.122 |
| 89.672 | 10.000 | 21.452 | 6.542 | 2.107 | 32.989 | 0.325 |
| 96.539 | 11.500 | 22.562 | 5.967 | 2.185 | 31.268 | 0.344 |
| 101.203 | 10.000 | 26.631 | 5.525 | 2.093 | 19.491 | 0.194 |
| 104.844 | 12.000 | 29.220 | 5.188 | 2.076 | 26.981 | 0.326 |
| 102.750 | 10.000 | 34.028 | 5.161 | 2.096 | 25.327 | 0.237 |
| 103.680 | 10.000 | 29.959 | 5.381 | 2.143 | 24.328 | 0.099 |
| 104.828 | 9.000 | 25.151 | 5.689 | 2.032 | 21.324 | 0.190 |
| 103.289 | 9.000 | 29.589 | 6.018 | 2.114 | 30.108 | 0.232 |
| 101.930 | 9.500 | 29.959 | 6.138 | 2.029 | 27.349 | 0.319 |
| 98.375 | 7.000 | 29.589 | 6.264 | 2.005 | 31.866 | 0.304 |
| 93.234 | 11.000 | 28.480 | 6.511 | 2.018 | 27.754 | 0.288 |
| 90.266 | 9.000 | 28.110 | 6.536 | 2.131 | 21.654 | 0.334 |
| 81.164 | 8.000 | 26.631 | 6.228 | 2.154 | 22.260 | 0.354 |
| 84.578 | 8.000 | 24.411 | 5.700 | 2.260 | 19.603 | 0.372 |
| 92.711 | 8.500 | 26.631 | 5.485 | 2.223 | 21.726 | 0.381 |
| 97.438 | 8.000 | 26.631 | 5.345 | 2.090 | 19.427 | 0.363 |
| 85.352 | 8.000 | 32.918 | 5.411 | 2.077 | 22.051 | 0.309 |


| 77.500 | 12.000 | 31.809 | 5.467 | 2.244 | 26.226 | 0.288 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75.375 | 20.000 | 27.740 | 5.467 | 2.372 | 15.288 | 0.253 |
| 77.563 | 12.000 | 34.768 | 5.320 | 2.302 | 15.008 | 0.248 |
| 77.148 | 10.500 | 32.918 | 4.748 | 2.265 | 15.779 | 0.327 |
| 82.641 | 11.000 | 37.727 | 4.088 | 2.405 | 11.497 | 0.304 |
| 85.406 | 10.500 | 42.535 | 3.339 | 2.306 | 18.441 | 0.312 |
| 84.500 | 11.000 | 42.165 | 2.784 | 2.257 | 22.159 | 0.114 |
| 76.211 | 10.000 | 39.206 | 2.493 | 2.425 | 18.292 | 0.191 |
| 73.547 | 7.000 | 42.905 | 2.327 | 2.511 | 12.872 | 0.107 |
| 76.320 | 9.000 | 45.864 | 2.181 | 2.410 | 18.281 | 0.132 |
| 79.813 | 10.000 | 49.562 | 2.012 | 2.466 | 10.916 | 0.203 |
| 83.281 | 9.500 | 46.603 | 1.898 | 2.416 | 16.016 | 0.190 |
| 82.563 | 9.000 | 45.864 | 1.927 | 2.367 | 18.301 | 0.150 |
| 81.078 | 10.000 | 50.302 | 1.919 | 2.403 | 21.433 | 0.127 |
| 81.641 | 8.500 | 45.124 | 2.010 | 2.342 | 19.501 | 0.086 |
| 81.016 | 9.000 | 40.686 | 2.146 | 2.425 | 15.902 | 0.142 |
| 81.813 | 9.500 | 45.494 | 2.241 | 2.410 | 18.367 | 0.180 |
| 84.406 | 13.000 | 44.384 | 2.328 | 2.404 | 21.392 | 0.164 |
| 87.422 | 10.000 | 37.727 | 2.664 | 2.239 | 27.517 | 0.177 |
| 83.297 | 9.000 | 33.658 | 2.934 | 2.345 | 25.056 | 0.242 |
| 81.953 | 11.000 | 41.425 | 3.044 | 2.292 | 30.114 | 0.201 |
| 81.008 | 12.500 | 34.398 | 3.028 | 2.272 | 18.520 | 0.176 |
| 78.672 | 13.000 | 31.809 | 2.840 | 2.308 | 29.352 | 0.160 |
| 92.750 | 10.000 | 44.384 | 2.828 | 2.351 | 19.611 | 0.149 |
| 96.203 | 10.500 | 42.165 | 2.687 | 2.500 | 29.823 | 0.207 |
| 91.922 | 9.000 | 32.548 | 2.705 | 2.295 | 20.806 | 0.248 |
| 90.758 | 11.000 | 35.138 | 2.870 | 2.196 | 34.174 | 0.172 |
| 89.547 | 11.000 | 36.247 | 2.916 | 2.183 | 32.452 | 0.231 |
| 89.711 | 9.500 | 37.727 | 2.773 | 2.243 | 24.748 | 0.099 |
| 90.063 | 10.000 | 30.329 | 2.665 | 2.231 | 25.620 | 0.261 |
| 90.938 | 10.500 | 34.398 | 2.586 | 2.169 | 19.095 | 0.281 |
| 91.219 | 11.000 | 31.809 | 2.528 | 2.211 | 27.195 | 0.259 |
| 90.828 | 10.000 | 36.617 | 2.509 | 2.176 | 39.806 | 0.253 |
| 88.188 | 8.000 | 41.425 | 2.529 | 2.168 | 31.330 | 0.255 |
| 88.016 | 7.500 | 38.096 | 2.589 | 2.280 | 21.123 | 0.286 |
| 86.969 | 8.000 | 33.288 | 2.608 | 2.192 | 19.218 | 0.210 |
| 85.422 | 8.500 | 38.466 | 2.520 | 2.281 | 20.324 | 0.210 |
| 83.109 | 9.000 | 41.425 | 2.464 | 2.222 | 24.641 | 0.231 |
| 82.555 | 7.000 | 39.946 | 2.434 | 2.360 | 27.371 | 0.224 |
| 84.063 | 9.000 | 36.987 | 2.377 | 2.381 | 18.861 | 0.186 |
| 88.250 | 9.000 | 38.466 | 2.332 | 2.263 | 16.938 | 0.257 |
| 90.563 | 9.000 | 38.466 | 2.318 | 2.289 | 21.015 | 0.203 |
| 91.711 | 7.500 | 38.096 | 2.310 | 2.264 | 26.456 | 0.227 |
| 89.313 | 8.000 | 39.206 | 2.317 | 2.129 | 25.863 | 0.234 |
| 77.414 | 9.500 | 36.987 | 2.598 | 2.357 | 15.312 | 0.065 |
| 73.891 | 10.000 | 27.370 | 2.478 | 2.446 | 18.110 | 0.217 |


| 70.789 | 6.500 | 35.877 | 2.304 | 2.481 | 17.688 | 0.248 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72.297 | 13.000 | 42.905 | 2.184 | 2.459 | 15.861 | 0.227 |
| 76.695 | 10.500 | 35.507 | 2.004 | 2.466 | 13.353 | 0.280 |
| 84.828 | 10.000 | 40.686 | 1.784 | 2.407 | 19.470 | 0.234 |
| 83.789 | 9.500 | 39.576 | 1.740 | 2.305 | 19.721 | 0.194 |
| 78.813 | 9.000 | 49.562 | 1.748 | 2.363 | 21.764 | 0.160 |
| 77.055 | 10.500 | 45.124 | 1.792 | 2.492 | 20.429 | 0.148 |
| 84.594 | 9.000 | 39.206 | 1.854 | 2.518 | 20.430 | 0.140 |
| 90.461 | 10.500 | 35.138 | 1.977 | 2.301 | 21.630 | 0.072 |
| 92.328 | 13.000 | 31.069 | 2.062 | 2.314 | 27.573 | 0.217 |
| 92.695 | 12.000 | 27.000 | 2.099 | 2.276 | 18.349 | 0.230 |
| 89.453 | 10.000 | 26.631 | 2.174 | 2.338 | 18.753 | 0.159 |
| 87.063 | 7.000 | 30.329 | 2.156 | 2.476 | 18.858 | 0.123 |
| 90.453 | 11.000 | 32.548 | 2.087 | 2.322 | 17.557 | 0.100 |
| 97.484 | 7.500 | 34.398 | 2.110 | 2.223 | 26.047 | 0.217 |
| 95.219 | 8.000 | 42.905 | 2.176 | 2.269 | 22.125 | 0.207 |
| 92.156 | 11.000 | 45.124 | 2.203 | 2.222 | 26.109 | 0.241 |
| 90.703 | 12.000 | 42.905 | 2.254 | 2.271 | 17.506 | 0.245 |
| 92.672 | 11.000 | 30.329 | 2.333 | 2.319 | 22.956 | 0.165 |
| 98.031 | 12.000 | 30.329 | 2.381 | 2.311 | 21.803 | 0.197 |
| 100.414 | 11.500 | 32.918 | 2.337 | 2.154 | 24.457 | 0.247 |
| 90.766 | 16.000 | 36.987 | 2.191 | 2.265 | 21.306 | 0.282 |
| 89.211 | 13.500 | 32.179 | 1.975 | 2.306 | 13.193 | 0.228 |
| 91.219 | 14.000 | 38.466 | 1.842 | 2.263 | 15.125 | 0.206 |
| 89.070 | 14.000 | 42.905 | 1.777 | 2.254 | 23.897 | 0.189 |
| 84.578 | 17.000 | 39.946 | 1.816 | 2.452 | 17.509 | 0.141 |
| 90.109 | 18.500 | 38.836 | 1.927 | 2.418 | 18.674 | 0.276 |
| 94.219 | 14.000 | 34.768 | 2.128 | 2.383 | 15.353 | 0.277 |
| 100.086 | 15.000 | 31.439 | 2.347 | 2.243 | 16.700 | 0.179 |
| 96.266 | 13.000 | 30.329 | 2.468 | 2.246 | 24.760 | 0.185 |
| 99.211 | 9.000 | 28.850 | 2.578 | 2.273 | 20.316 | 0.209 |
| 92.234 | 12.000 | 34.768 | 2.911 | 2.239 | 28.757 | 0.116 |
| 89.313 | 13.000 | 32.918 | 3.317 | 2.335 | 18.160 | 0.196 |
| 88.875 | 13.000 | 33.288 | 3.819 | 2.312 | 18.963 | 0.176 |
| 55.398 | 12.000 | 28.110 | 9.304 | 2.497 | 11.832 | 0.296 |
| 52.438 | 9.000 | 26.631 | 12.095 | 2.634 | 8.663 | 0.272 |
| 50.023 | 10.500 | 27.000 | 14.418 | 2.698 | 4.936 | 0.253 |
| 51.938 | 12.000 | 22.932 | 16.410 | 2.643 | 3.970 | 0.161 |
| 51.297 | 9.000 | 24.041 | 17.192 | 2.721 | 3.808 | 0.241 |
| 53.594 | 9.000 | 28.850 | 14.997 | 2.735 | 5.126 | 0.035 |
| 55.508 | 13.000 | 26.631 | 9.764 | 2.767 | 6.965 | 0.077 |
| 56.484 | 16.000 | 25.891 | 6.327 | 2.756 | 8.358 | 0.033 |
| 64.125 | 16.500 | 25.891 | 4.753 | 2.773 | 7.544 | 0.035 |
| 85.641 | 16.000 | 27.370 | 3.520 | 2.379 | 11.793 | 0.030 |
| 101.344 | 17.000 | 28.850 | 2.942 | 2.321 | 18.063 | 0.029 |
| 102.906 | 15.000 | 30.329 | 2.604 | 2.246 | 24.175 | 0.034 |


| 104.602 | 16.000 | 31.439 | 2.463 | 2.216 | 17.616 | 0.067 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101.656 | 17.000 | 31.069 | 2.374 | 2.250 | 23.739 | 0.039 |
| 101.305 | 14.500 | 33.288 | 2.289 | 2.162 | 16.050 | 0.047 |
| 98.781 | 11.000 | 34.028 | 2.166 | 2.185 | 25.131 | 0.151 |
| 87.172 | 18.000 | 42.165 | 2.116 | 2.310 | 20.361 | 0.272 |
| 77.391 | 17.500 | 37.357 | 2.077 | 2.440 | 17.486 | 0.299 |
| 77.266 | 15.000 | 37.727 | 2.044 | 2.514 | 20.730 | 0.280 |
| 86.984 | 16.000 | 33.288 | 2.068 | 2.321 | 15.378 | 0.253 |
| 95.203 | 16.500 | 36.247 | 2.125 | 2.298 | 17.419 | 0.171 |
| 96.188 | 14.000 | 31.809 | 2.088 | 2.172 | 22.329 | 0.229 |
| 93.398 | 14.000 | 33.288 | 1.991 | 2.286 | 18.993 | 0.243 |
| 91.531 | 13.000 | 32.548 | 1.955 | 2.128 | 19.746 | 0.260 |
| 88.648 | 14.000 | 36.617 | 1.892 | 2.275 | 19.514 | 0.234 |
| 87.375 | 15.000 | 36.987 | 1.815 | 2.322 | 22.701 | 0.269 |
| 88.430 | 15.000 | 36.617 | 1.849 | 2.350 | 22.029 | 0.266 |
| 83.469 | 15.000 | 41.425 | 2.002 | 2.284 | 22.026 | 0.256 |
| 76.297 | 13.000 | 38.836 | 2.184 | 2.380 | 17.958 | 0.266 |
| 71.547 | 15.000 | 36.987 | 2.270 | 2.519 | 14.295 | 0.272 |
| 77.328 | 15.500 | 30.699 | 2.256 | 2.468 | 12.640 | 0.260 |
| 85.672 | 21.000 | 29.589 | 2.148 | 2.299 | 15.345 | 0.197 |
| 91.469 | 17.500 | 33.288 | 1.946 | 2.269 | 17.062 | 0.204 |
| 92.031 | 14.000 | 31.809 | 1.713 | 2.293 | 19.193 | 0.200 |
| 88.344 | 16.500 | 34.028 | 1.542 | 2.254 | 17.287 | 0.111 |
| 85.844 | 10.000 | 41.425 | 1.494 | 2.309 | 29.168 | 0.170 |
| 85.664 | 14.000 | 36.987 | 1.563 | 2.246 | 22.701 | 0.217 |
| 86.172 | 8.000 | 35.507 | 1.868 | 2.200 | 23.783 | 0.222 |
| 80.836 | 14.500 | 38.466 | 2.279 | 2.690 | 19.400 | 0.230 |
| 67.906 | 16.000 | 34.028 | 2.803 | 2.454 | 15.554 | 0.235 |
| 57.234 | 13.500 | 25.151 | 3.450 | 2.557 | 13.209 | 0.250 |
| 59.266 | 11.000 | 25.151 | 3.918 | 2.525 | 10.618 | 0.201 |
| 62.555 | 10.000 | 27.370 | 3.671 | 2.666 | 8.825 | 0.204 |
| 64.250 | 17.000 | 25.891 | 2.818 | 2.585 | 9.010 | 0.185 |
| 63.820 | 13.500 | 27.370 | 2.315 | 2.501 | 14.853 | 0.166 |
| 69.969 | 14.000 | 29.589 | 1.982 | 2.443 | 12.177 | 0.102 |
| 83.234 | 13.000 | 30.329 | 1.601 | 2.411 | 13.874 | 0.039 |
| 93.516 | 10.000 | 34.028 | 1.398 | 2.312 | 22.079 | 0.045 |
| 97.883 | 10.500 | 30.329 | 1.290 | 2.162 | 21.560 | 0.075 |
| 98.406 | 12.000 | 31.809 | 1.190 | 2.140 | 19.471 | 0.095 |
| 96.898 | 13.500 | 36.247 | 1.108 | 2.219 | 17.195 | 0.072 |
| 94.891 | 13.000 | 33.288 | 1.036 | 2.211 | 28.642 | 0.082 |
| 91.047 | 14.500 | 37.727 | 0.933 | 2.330 | 25.942 | 0.273 |
| 89.016 | 11.000 | 38.466 | 0.829 | 2.307 | 27.365 | 0.220 |
| 88.453 | 15.000 | 44.754 | 0.795 | 2.377 | 26.409 | 0.249 |
| 88.922 | 16.000 | 41.425 | 0.772 | 2.362 | 30.766 | 0.266 |
| 90.453 | 11.000 | 34.028 | 0.790 | 2.342 | 29.863 | 0.241 |
| 92.289 | 11.000 | 36.247 | 0.846 | 2.269 | 24.226 | 0.213 |


| 91.703 | 12.000 | 35.507 | 0.932 | 2.267 | 19.911 | 0.192 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88.313 | 12.500 | 38.466 | 1.036 | 2.340 | 18.295 | 0.209 |
| 88.438 | 10.000 | 45.124 | 1.124 | 2.331 | 30.183 | 0.178 |
| 89.086 | 11.500 | 38.096 | 1.254 | 2.255 | 19.974 | 0.193 |
| 82.984 | 10.000 | 36.247 | 1.362 | 2.354 | 18.295 | 0.200 |
| 70.500 | 11.500 | 32.179 | 1.325 | 2.471 | 18.504 | 0.225 |
| 66.438 | 11.000 | 34.028 | 1.182 | 2.634 | 14.672 | 0.210 |
| 77.461 | 8.500 | 35.507 | 1.011 | 2.349 | 11.969 | 0.182 |
| 88.625 | 12.000 | 34.028 | 0.849 | 2.292 | 17.369 | 0.205 |
| 90.430 | 14.500 | 38.836 | 0.770 | 2.265 | 22.626 | 0.194 |
| 90.188 | 9.000 | 39.946 | 0.759 | 2.355 | 19.668 | 0.199 |
| 88.906 | 9.500 | 37.727 | 0.801 | 2.343 | 17.033 | 0.161 |
| 81.922 | 11.000 | 39.946 | 0.833 | 2.528 | 28.332 | 0.078 |
| 79.914 | 14.000 | 38.466 | 0.866 | 2.503 | 24.220 | 0.073 |
| 83.953 | 16.000 | 42.165 | 0.907 | 2.398 | 24.813 | 0.181 |
| 83.391 | 15.000 | 42.905 | 0.871 | 2.464 | 21.431 | 0.187 |
| 82.688 | 13.000 | 40.316 | 0.857 | 2.470 | 22.454 | 0.189 |
| 82.609 | 16.000 | 38.466 | 0.822 | 2.445 | 31.317 | 0.177 |
| 86.625 | 14.500 | 37.727 | 0.757 | 2.364 | 24.191 | 0.158 |
| 83.344 | 15.000 | 36.987 | 0.733 | 2.431 | 20.573 | 0.068 |
| 81.805 | 15.000 | 35.877 | 0.733 | 2.588 | 16.230 | 0.165 |
| 82.172 | 15.000 | 39.946 | 0.731 | 2.308 | 17.747 | 0.124 |
| 87.234 | 15.500 | 45.864 | 0.694 | 2.421 | 23.066 | 0.143 |
| 88.813 | 12.000 | 41.425 | 0.723 | 2.336 | 25.532 | 0.181 |
| 91.734 | 12.500 | 42.165 | 0.744 | 2.308 | 22.323 | 0.192 |
| 93.078 | 11.000 | 41.425 | 0.770 | 2.215 | 16.194 | 0.167 |
| 92.359 | 11.500 | 38.836 | 0.768 | 2.181 | 25.919 | 0.151 |
| 85.414 | 13.500 | 35.877 | 0.793 | 2.336 | 22.865 | 0.180 |
| 83.891 | 13.000 | 34.768 | 0.848 | 2.371 | 16.877 | 0.171 |
| 85.531 | 12.000 | 34.768 | 0.978 | 2.280 | 19.339 | 0.190 |
| 82.703 | 13.000 | 39.206 | 1.118 | 2.398 | 19.623 | 0.170 |
| 74.016 | 13.000 | 35.877 | 1.163 | 2.550 | 16.723 | 0.211 |
| 70.406 | 10.000 | 34.768 | 1.194 | 2.485 | 16.042 | 0.194 |
| 78.695 | 14.000 | 40.686 | 1.161 | 2.376 | 24.882 | 0.178 |
| 84.227 | 11.000 | 39.576 | 0.960 | 2.378 | 21.129 | 0.154 |
| 81.797 | 11.000 | 40.686 | 0.980 | 2.503 | 18.734 | 0.154 |
| 81.016 | 12.000 | 41.055 | 1.064 | 2.534 | 12.306 | 0.169 |
| 82.781 | 14.000 | 45.124 | 1.205 | 2.367 | 22.145 | 0.084 |
| 83.633 | 13.000 | 52.151 | 1.317 | 2.447 | 24.405 | 0.051 |
| 81.344 | 14.000 | 42.905 | 1.394 | 2.437 | 25.930 | 0.130 |
| 78.727 | 14.500 | 44.014 | 1.446 | 2.463 | 21.799 | 0.149 |
| 78.984 | 11.000 | 41.425 | 1.455 | 2.447 | 18.169 | 0.146 |
| 83.391 | 12.000 | 42.165 | 1.328 | 2.480 | 19.729 | 0.130 |
| 83.648 | 12.000 | 44.014 | 1.279 | 2.547 | 26.255 | 0.119 |
| 82.656 | 14.000 | 42.905 | 1.279 | 2.443 | 21.707 | 0.125 |
| 82.320 | 14.500 | 49.562 | 1.298 | 2.450 | 46.889 | 0.099 |


| 82.813 | 13.000 | 47.343 | 1.321 | 2.490 | 33.233 | 0.094 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 82.102 | 13.500 | 42.165 | 1.346 | 2.501 | 18.184 | 0.167 |
| 82.453 | 12.000 | 51.042 | 1.380 | 2.448 | 27.380 | 0.116 |
| 100.828 | 12.000 | 45.864 | 1.866 | 2.496 | 25.759 | 0.111 |
| 101.492 | 11.500 | 45.864 | 2.254 | 2.453 | 34.578 | 0.114 |
| 98.016 | 16.000 | 43.644 | 2.877 | 2.522 | 24.171 | 0.121 |
| 99.445 | 18.000 | 40.316 | 3.797 | 2.066 | 25.258 | 0.119 |
| 85.563 | 16.000 | 27.370 | 6.921 | 2.230 | 31.907 | 0.122 |
| 80.922 | 14.500 | 29.220 | 6.770 | 2.406 | 22.765 | 0.126 |
| 70.227 | 14.000 | 29.220 | 3.309 | 2.579 | 12.191 | 0.035 |
| 77.359 | 16.000 | 26.631 | 3.588 | 2.563 | 11.287 | 0.081 |
| 75.109 | 18.000 | 33.288 | 3.862 | 2.634 | 21.165 | 0.124 |
| 83.531 | 16.000 | 31.809 | 3.658 | 2.433 | 17.846 | 0.050 |
| 87.109 | 13.000 | 43.644 | 3.372 | 2.256 | 54.266 | 0.053 |
| 77.828 | 15.000 | 65.837 | 2.393 | 2.298 | 47.526 | 0.094 |
| 86.375 | 12.000 | 51.412 | 2.117 | 2.918 | 21.138 | 0.078 |
| 124.063 | 15.000 | 44.384 | 1.838 | 2.061 | 29.312 | 0.047 |
| 59.703 | 14.000 | 38.096 | 3.409 | 2.809 | 16.230 | 0.049 |
| 57.781 | 11.500 | 38.096 | 3.272 | 2.774 | 14.338 | 0.034 |
| 56.234 | 13.000 | 37.727 | 2.936 | 2.666 | 17.299 | 0.021 |
| 56.344 | 13.000 | 44.014 | 2.524 | 2.405 | 15.515 | 0.037 |
| 75.688 | 10.000 | 54.371 | 2.329 | 2.543 | 19.073 | 0.078 |
| 76.906 | 10.000 | 49.562 | 2.140 | 2.577 | 20.591 | 0.070 |
| 75.813 | 12.000 | 51.412 | 1.978 | 2.512 | 24.884 | 0.085 |
| 77.344 | 15.000 | 43.644 | 1.821 | 2.528 | 20.171 | 0.087 |
| 77.000 | 12.000 | 45.864 | 1.717 | 2.557 | 12.303 | 0.086 |
| 76.266 | 12.000 | 48.083 | 1.700 | 2.413 | 22.155 |  |

Well logs dataset (Well 15/12-9S)

| DT | CA | GR | DR | RHOB | CNC | POR |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 87.698 | 8.771 | 61.666 | 2.649 | 2.340 | 19.387 | 0.174 |
| 87.803 | 8.755 | 60.079 | 2.668 | 2.332 | 19.673 | 0.191 |
| 88.219 | 8.754 | 59.949 | 2.680 | 2.310 | 20.450 | 0.176 |
| 88.253 | 8.754 | 60.308 | 2.704 | 2.287 | 20.531 | 0.202 |
| 87.615 | 8.754 | 60.851 | 2.744 | 2.298 | 20.222 | 0.179 |
| 87.137 | 8.753 | 61.166 | 2.779 | 2.321 | 20.360 | 0.177 |
| 87.572 | 8.738 | 60.731 | 2.813 | 2.321 | 20.686 | 0.183 |
| 88.365 | 8.698 | 61.124 | 2.875 | 2.302 | 20.932 | 0.172 |
| 88.595 | 8.665 | 61.764 | 2.990 | 2.286 | 20.908 | 0.236 |
| 87.961 | 8.656 | 60.283 | 3.125 | 2.290 | 20.419 | 0.221 |
| 86.719 | 8.656 | 57.822 | 3.217 | 2.297 | 20.084 | 0.159 |
| 86.222 | 8.656 | 56.818 | 3.307 | 2.288 | 20.507 | 0.213 |
| 86.678 | 8.654 | 56.356 | 3.434 | 2.296 | 20.768 | 0.231 |
| 87.171 | 8.640 | 54.801 | 3.523 | 2.311 | 20.452 | 0.186 |
| 87.593 | 8.608 | 54.572 | 3.553 | 2.299 | 20.439 | 0.158 |


| 88.412 | 8.575 | 55.698 | 3.584 | 2.281 | 21.240 | 0.237 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88.772 | 8.560 | 55.862 | 3.624 | 2.270 | 22.059 | 0.232 |
| 88.346 | 8.557 | 55.884 | 3.594 | 2.267 | 22.119 | 0.233 |
| 87.889 | 8.559 | 57.411 | 3.528 | 2.265 | 22.402 | 0.190 |
| 87.757 | 8.581 | 59.571 | 3.519 | 2.258 | 23.221 | 0.192 |
| 87.741 | 8.622 | 59.329 | 3.553 | 2.275 | 23.201 | 0.241 |
| 87.363 | 8.646 | 58.093 | 3.603 | 2.303 | 22.398 | 0.198 |
| 86.473 | 8.625 | 58.391 | 3.675 | 2.299 | 22.303 | 0.193 |
| 85.950 | 8.583 | 57.872 | 3.806 | 2.261 | 23.023 | 0.204 |
| 86.552 | 8.561 | 55.134 | 4.029 | 2.221 | 23.545 | 0.198 |
| 87.943 | 8.557 | 52.160 | 4.275 | 2.205 | 23.944 | 0.181 |
| 89.627 | 8.556 | 51.184 | 4.482 | 2.217 | 24.629 | 0.257 |
| 90.538 | 8.534 | 52.854 | 4.625 | 2.239 | 24.849 | 0.197 |
| 91.731 | 8.493 | 54.005 | 4.705 | 2.245 | 24.032 | 0.235 |
| 95.103 | 8.464 | 53.765 | 4.740 | 2.244 | 23.177 | 0.217 |
| 97.785 | 8.459 | 54.372 | 4.807 | 2.254 | 22.685 | 0.238 |
| 99.613 | 8.459 | 54.689 | 4.892 | 2.259 | 21.929 | 0.231 |
| 104.341 | 8.466 | 53.623 | 4.953 | 2.245 | 21.724 | 0.226 |
| 109.552 | 8.501 | 53.847 | 5.037 | 2.237 | 21.953 | 0.239 |
| 111.535 | 8.552 | 55.163 | 5.102 | 2.242 | 21.630 | 0.241 |
| 111.427 | 8.572 | 55.081 | 5.004 | 2.239 | 21.387 | 0.208 |
| 110.093 | 8.564 | 54.180 | 4.775 | 2.234 | 21.571 | 0.229 |
| 104.035 | 8.568 | 53.578 | 4.576 | 2.264 | 21.232 | 0.251 |
| 91.525 | 8.605 | 55.198 | 4.542 | 2.317 | 20.086 | 0.269 |
| 81.431 | 8.642 | 58.836 | 4.659 | 2.314 | 19.748 | 0.149 |
| 78.463 | 8.653 | 59.529 | 5.006 | 2.258 | 20.948 | 0.165 |
| 81.871 | 8.632 | 56.534 | 5.924 | 2.213 | 22.185 | 0.252 |
| 87.715 | 8.585 | 55.026 | 7.706 | 2.180 | 23.039 | 0.236 |
| 93.092 | 8.524 | 54.054 | 10.275 | 2.168 | 23.497 | 0.314 |
| 99.915 | 8.481 | 51.490 | 12.360 | 2.180 | 22.914 | 0.269 |
| 103.395 | 8.472 | 49.223 | 13.318 | 2.215 | 20.962 | 0.250 |
| 95.001 | 8.476 | 46.955 | 13.508 | 2.290 | 18.068 | 0.259 |
| 84.831 | 8.467 | 45.183 | 13.585 | 2.336 | 17.587 | 0.079 |
| 84.482 | 8.459 | 45.135 | 13.720 | 2.270 | 18.394 | 0.236 |
| 91.656 | 8.459 | 45.743 | 13.688 | 2.192 | 22.099 | 0.315 |
| 97.361 | 8.459 | 46.971 | 13.406 | 2.157 | 23.971 | 0.301 |
| 99.001 | 8.459 | 48.680 | 13.190 | 2.143 | 24.458 | 0.283 |
| 95.557 | 8.459 | 50.833 | 13.403 | 2.139 | 24.474 | 0.296 |
| 87.925 | 8.459 | 51.373 | 13.830 | 2.134 | 24.173 | 0.292 |
| 80.440 | 8.459 | 50.027 | 14.091 | 2.129 | 23.819 | 0.297 |
| 76.321 | 8.459 | 50.216 | 13.847 | 2.126 | 23.601 | 0.276 |
| 77.903 | 8.459 | 49.649 | 13.028 | 2.119 | 23.891 | 0.275 |
| 88.565 | 8.459 | 47.629 | 11.633 | 2.109 | 24.401 | 0.269 |
| 97.757 | 8.459 | 47.762 | 10.181 | 2.105 | 24.629 | 0.307 |
| 100.300 | 8.459 | 50.214 | 9.104 | 2.110 | 24.892 | 0.286 |
| 99.990 | 8.459 | 52.801 | 8.313 | 2.137 | 24.639 | 0.299 |


| 98.316 | 8.459 | 52.439 | 7.603 | 2.192 | 23.192 | 0.250 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 94.770 | 8.459 | 50.362 | 7.038 | 2.240 | 21.873 | 0.236 |
| 90.586 | 8.459 | 50.180 | 6.717 | 2.250 | 21.320 | 0.259 |
| 88.276 | 8.459 | 52.854 | 6.546 | 2.238 | 21.131 | 0.215 |
| 88.438 | 8.460 | 56.796 | 6.446 | 2.227 | 21.142 | 0.251 |
| 89.736 | 8.474 | 58.238 | 6.488 | 2.221 | 21.067 | 0.258 |
| 90.730 | 8.493 | 57.126 | 6.747 | 2.195 | 21.166 | 0.225 |
| 91.545 | 8.500 | 55.646 | 7.314 | 2.156 | 22.044 | 0.284 |
| 92.407 | 8.520 | 53.562 | 8.457 | 2.128 | 23.211 | 0.288 |
| 93.868 | 8.557 | 46.078 | 12.110 | 2.127 | 22.338 | 0.334 |
| 94.540 | 8.557 | 44.730 | 13.279 | 2.124 | 20.960 | 0.288 |
| 94.414 | 8.557 | 44.908 | 13.562 | 2.125 | 20.198 | 0.262 |
| 93.724 | 8.557 | 44.680 | 13.364 | 2.136 | 20.159 | 0.265 |
| 93.952 | 8.557 | 44.348 | 13.576 | 2.150 | 20.290 | 0.297 |
| 95.320 | 8.557 | 43.732 | 14.830 | 2.165 | 20.045 | 0.273 |
| 98.158 | 8.557 | 30.881 | 33.965 | 2.157 | 18.276 | 0.253 |
| 97.581 | 8.557 | 31.398 | 35.438 | 2.162 | 18.819 | 0.251 |
| 96.949 | 8.557 | 33.179 | 33.979 | 2.174 | 18.584 | 0.264 |
| 95.135 | 8.554 | 33.986 | 32.418 | 2.219 | 16.729 | 0.234 |
| 90.905 | 8.544 | 33.637 | 31.339 | 2.296 | 13.679 | 0.218 |
| 83.561 | 8.541 | 33.526 | 29.111 | 2.385 | 10.799 | 0.213 |
| 74.807 | 8.551 | 33.665 | 24.985 | 2.462 | 8.769 | 0.114 |
| 67.190 | 8.557 | 35.578 | 20.243 | 2.466 | 8.827 | 0.082 |
| 66.099 | 8.557 | 40.600 | 16.023 | 2.416 | 10.955 | 0.174 |
| 71.516 | 8.557 | 43.878 | 12.755 | 2.381 | 12.787 | 0.144 |
| 76.871 | 8.557 | 43.352 | 10.647 | 2.342 | 14.436 | 0.133 |
| 79.041 | 8.557 | 44.225 | 9.681 | 2.278 | 16.570 | 0.198 |
| 81.494 | 8.557 | 47.706 | 9.369 | 2.219 | 18.346 | 0.226 |
| 85.049 | 8.557 | 50.620 | 9.488 | 2.174 | 19.704 | 0.257 |
| 89.125 | 8.557 | 50.309 | 9.769 | 2.141 | 20.940 | 0.254 |
| 93.158 | 8.557 | 47.872 | 9.849 | 2.131 | 21.467 | 0.289 |
| 97.734 | 8.557 | 48.318 | 9.579 | 2.155 | 20.648 | 0.296 |
| 103.493 | 8.557 | 51.557 | 9.155 | 2.207 | 18.849 | 0.274 |
| 106.803 | 8.557 | 52.922 | 8.836 | 2.256 | 17.540 | 0.186 |
| 106.445 | 8.557 | 52.149 | 8.790 | 2.244 | 18.139 | 0.122 |
| 107.030 | 8.557 | 51.004 | 9.063 | 2.173 | 20.507 | 0.122 |
| 104.448 | 8.517 | 44.510 | 11.277 | 2.106 | 23.721 | 0.305 |
| 103.854 | 8.548 | 44.370 | 11.412 | 2.109 | 23.490 | 0.325 |
| 99.864 | 8.557 | 46.711 | 11.495 | 2.122 | 23.342 | 0.280 |
| 91.603 | 8.557 | 45.478 | 10.894 | 2.181 | 22.203 | 0.282 |
| 90.255 | 8.557 | 45.489 | 10.409 | 2.190 | 21.848 | 0.228 |
| 89.542 | 8.557 | 48.040 | 9.865 | 2.189 | 22.198 | 0.285 |
| 89.854 | 8.557 | 50.980 | 9.158 | 2.182 | 22.336 | 0.235 |
| 91.080 | 8.557 | 52.997 | 8.351 | 2.179 | 22.637 | 0.283 |
| 92.170 | 8.557 | 53.866 | 7.693 | 2.193 | 21.883 | 0.258 |
| 91.884 | 8.557 | 57.142 | 7.309 | 2.215 | 20.516 | 0.242 |


| 90.593 | 8.557 | 60.477 | 7.179 | 2.230 | 20.378 | 0.206 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89.914 | 8.557 | 60.132 | 7.477 | 2.234 | 20.847 | 0.237 |
| 89.438 | 8.557 | 57.314 | 8.522 | 2.242 | 19.212 | 0.231 |
| 86.303 | 8.557 | 51.512 | 10.615 | 2.287 | 14.001 | 0.212 |
| 77.564 | 8.557 | 43.587 | 13.823 | 2.362 | 9.303 | 0.153 |
| 67.686 | 8.557 | 36.939 | 17.406 | 2.407 | 6.463 | 0.118 |
| 63.750 | 8.557 | 34.963 | 19.338 | 2.374 | 6.243 | 0.067 |
| 67.728 | 8.557 | 38.002 | 17.555 | 2.289 | 9.362 | 0.136 |
| 76.915 | 8.557 | 44.180 | 13.698 | 2.229 | 15.693 | 0.251 |
| 86.339 | 8.557 | 51.505 | 10.370 | 2.224 | 20.209 | 0.248 |
| 89.918 | 8.557 | 56.617 | 8.437 | 2.241 | 19.536 | 0.221 |
| 88.623 | 8.558 | 56.562 | 7.617 | 2.231 | 19.148 | 0.218 |
| 87.110 | 8.569 | 53.790 | 7.632 | 2.192 | 20.426 | 0.258 |
| 87.853 | 8.604 | 52.993 | 8.028 | 2.163 | 21.631 | 0.278 |
| 89.894 | 8.644 | 52.093 | 8.718 | 2.159 | 21.944 | 0.299 |
| 90.813 | 8.655 | 49.606 | 10.212 | 2.184 | 21.411 | 0.304 |
| 90.044 | 8.667 | 47.823 | 12.971 | 2.277 | 18.738 | 0.293 |
| 85.774 | 8.703 | 45.618 | 17.298 | 2.457 | 14.270 | 0.260 |
| 83.132 | 8.532 | 54.094 | 8.687 | 2.209 | 20.617 | 0.257 |
| 88.216 | 8.528 | 52.968 | 7.509 | 2.199 | 20.954 | 0.244 |
| 89.788 | 8.525 | 52.885 | 7.076 | 2.189 | 20.819 | 0.253 |
| 90.141 | 8.530 | 54.559 | 6.847 | 2.184 | 20.884 | 0.246 |
| 90.466 | 8.544 | 54.999 | 6.513 | 2.191 | 20.973 | 0.254 |
| 88.943 | 8.557 | 55.147 | 5.192 | 2.243 | 20.100 | 0.243 |
| 88.472 | 8.557 | 56.045 | 4.960 | 2.271 | 19.607 | 0.222 |
| 87.621 | 8.557 | 59.724 | 4.686 | 2.297 | 19.264 | 0.208 |
| 86.743 | 8.546 | 62.010 | 4.487 | 2.300 | 18.865 | 0.214 |
| 86.413 | 8.510 | 62.349 | 4.525 | 2.291 | 18.696 | 0.208 |
| 86.620 | 8.473 | 60.302 | 5.096 | 2.271 | 19.023 | 0.199 |
| 86.885 | 8.460 | 54.992 | 6.281 | 2.248 | 17.880 | 0.221 |
| 85.817 | 8.470 | 46.564 | 7.957 | 2.266 | 13.858 | 0.226 |
| 80.463 | 8.506 | 38.631 | 9.403 | 2.329 | 9.880 | 0.145 |
| 72.551 | 8.544 | 34.981 | 9.723 | 2.390 | 8.187 | 0.100 |
| 72.949 | 8.557 | 49.444 | 6.689 | 2.337 | 14.501 | 0.193 |
| 80.439 | 8.557 | 57.527 | 5.133 | 2.307 | 17.547 | 0.224 |
| 84.948 | 8.557 | 58.166 | 4.250 | 2.294 | 18.535 | 0.195 |
| 86.369 | 8.557 | 58.279 | 3.834 | 2.273 | 19.793 | 0.226 |
| 87.403 | 8.557 | 59.288 | 3.664 | 2.249 | 20.513 | 0.243 |
| 88.678 | 8.557 | 59.095 | 3.624 | 2.243 | 20.231 | 0.251 |
| 88.822 | 8.557 | 58.636 | 3.656 | 2.247 | 20.119 | 0.190 |
| 88.481 | 8.557 | 59.005 | 3.733 | 2.239 | 20.477 | 0.268 |
| 88.950 | 8.557 | 60.768 | 3.824 | 2.229 | 21.012 | 0.258 |
| 89.908 | 8.557 | 61.519 | 3.904 | 2.227 | 21.429 | 0.251 |
| 90.926 | 8.557 | 59.494 | 3.945 | 2.228 | 21.378 | 0.255 |
| 91.555 | 8.557 | 57.249 | 3.979 | 2.233 | 20.674 | 0.241 |
| 91.334 | 8.557 | 56.724 | 4.046 | 2.243 | 19.889 | 0.221 |


| 90.320 | 8.557 | 56.486 | 4.086 | 2.249 | 19.410 | 0.216 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89.375 | 8.557 | 55.961 | 4.021 | 2.232 | 19.468 | 0.250 |
| 88.940 | 8.557 | 57.238 | 3.865 | 2.213 | 20.067 | 0.220 |
| 88.853 | 8.557 | 61.773 | 3.623 | 2.225 | 20.435 | 0.250 |
| 88.456 | 8.557 | 66.436 | 3.327 | 2.266 | 19.976 | 0.201 |
| 87.441 | 8.557 | 67.656 | 3.058 | 2.300 | 19.545 | 0.175 |
| 86.196 | 8.557 | 63.582 | 2.907 | 2.317 | 19.567 | 0.238 |
| 85.568 | 8.557 | 61.082 | 2.855 | 2.316 | 19.301 | 0.167 |
| 85.811 | 8.557 | 62.629 | 2.910 | 2.294 | 19.018 | 0.199 |
| 86.703 | 8.557 | 63.700 | 3.156 | 2.261 | 19.686 | 0.183 |
| 88.180 | 8.560 | 61.907 | 3.685 | 2.210 | 21.629 | 0.255 |
| 91.206 | 8.580 | 57.302 | 4.643 | 2.128 | 23.962 | 0.216 |
| 96.379 | 8.622 | 51.956 | 6.278 | 2.057 | 24.810 | 0.340 |
| 105.832 | 8.656 | 45.864 | 11.807 | 2.044 | 22.114 | 0.322 |
| 105.195 | 8.656 | 42.065 | 14.451 | 2.076 | 20.064 | 0.321 |
| 101.759 | 8.656 | 38.124 | 15.382 | 2.108 | 18.374 | 0.277 |
| 98.020 | 8.660 | 36.591 | 13.001 | 2.141 | 17.553 | 0.271 |
| 95.567 | 8.693 | 37.152 | 8.713 | 2.203 | 17.442 | 0.274 |
| 94.106 | 8.767 | 41.349 | 5.005 | 2.288 | 17.738 | 0.292 |
| 91.750 | 8.830 | 53.339 | 3.270 | 2.353 | 18.439 | 0.171 |
| 88.497 | 8.850 | 65.960 | 2.485 | 2.373 | 19.080 | 0.146 |
| 85.985 | 8.838 | 73.623 | 2.157 | 2.364 | 19.757 | 0.154 |
| 85.069 | 8.815 | 76.773 | 2.133 | 2.357 | 20.295 | 0.174 |
| 84.860 | 8.795 | 75.860 | 2.371 | 2.358 | 20.661 | 0.161 |
| 84.865 | 8.745 | 71.085 | 2.892 | 2.315 | 21.548 | 0.130 |
| 86.942 | 8.677 | 62.562 | 3.758 | 2.182 | 22.546 | 0.361 |
| 105.673 | 8.640 | 40.879 | 13.155 | 2.027 | 21.181 | 0.328 |
| 104.975 | 8.652 | 34.896 | 19.241 | 2.043 | 20.763 | 0.321 |
| 104.294 | 8.656 | 32.284 | 19.042 | 2.052 | 20.590 | 0.335 |
| 103.599 | 8.656 | 30.221 | 18.448 | 2.057 | 19.969 | 0.327 |
| 104.057 | 8.656 | 29.349 | 18.050 | 2.049 | 19.244 | 0.311 |
| 104.998 | 8.656 | 28.685 | 18.629 | 2.050 | 19.522 | 0.345 |
| 105.227 | 8.660 | 28.184 | 18.609 | 2.059 | 19.526 | 0.339 |
| 104.504 | 8.686 | 29.230 | 16.349 | 2.083 | 19.080 | 0.327 |
| 103.506 | 8.739 | 35.851 | 11.769 | 2.153 | 18.738 | 0.329 |
| 98.007 | 8.878 | 90.454 | 4.474 | 2.368 | 19.311 | 0.144 |
| 92.045 | 8.924 | 97.977 | 3.044 | 2.399 | 19.314 | 0.130 |
| 87.467 | 8.911 | 85.906 | 2.292 | 2.399 | 19.221 | 0.122 |
| 85.442 | 8.864 | 76.033 | 1.957 | 2.391 | 19.487 | 0.135 |
| 84.926 | 8.805 | 72.271 | 1.885 | 2.373 | 19.484 | 0.131 |
| 84.803 | 8.738 | 70.879 | 1.911 | 2.353 | 19.034 | 0.186 |
| 84.740 | 8.710 | 70.898 | 1.983 | 2.344 | 18.780 | 0.129 |
| 84.419 | 8.729 | 71.604 | 2.167 | 2.341 | 19.170 | 0.176 |
| 84.172 | 8.728 | 71.480 | 2.490 | 2.310 | 20.551 | 0.151 |
| 86.061 | 8.690 | 67.606 | 2.895 | 2.224 | 22.400 | 0.159 |
| 91.640 | 8.678 | 60.957 | 3.224 | 2.164 | 22.640 | 0.277 |


| 97.906 | 8.728 | 57.665 | 3.361 | 2.214 | 20.912 | 0.335 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 99.049 | 8.797 | 62.626 | 3.258 | 2.336 | 19.200 | 0.305 |
| 94.002 | 8.834 | 72.210 | 2.987 | 2.405 | 18.316 | 0.118 |
| 86.830 | 8.849 | 80.758 | 2.608 | 2.413 | 18.500 | 0.112 |
| 83.726 | 8.852 | 85.688 | 2.257 | 2.404 | 19.354 | 0.117 |
| 85.050 | 8.853 | 91.646 | 2.056 | 2.404 | 19.347 | 0.079 |
| 86.988 | 8.853 | 95.200 | 2.001 | 2.414 | 18.402 | 0.116 |
| 85.694 | 8.853 | 92.560 | 1.993 | 2.416 | 17.885 | 0.099 |
| 83.028 | 8.853 | 90.798 | 1.970 | 2.415 | 17.883 | 0.097 |
| 82.201 | 8.853 | 91.639 | 1.925 | 2.415 | 17.784 | 0.104 |
| 82.675 | 8.853 | 90.075 | 1.862 | 2.408 | 17.559 | 0.097 |
| 82.905 | 8.853 | 86.559 | 1.791 | 2.407 | 17.474 | 0.105 |
| 83.087 | 8.853 | 84.410 | 1.724 | 2.413 | 17.589 | 0.111 |
| 82.996 | 8.853 | 84.047 | 1.654 | 2.417 | 17.708 | 0.122 |
| 82.538 | 8.853 | 84.473 | 1.577 | 2.412 | 17.790 | 0.118 |
| 82.350 | 8.852 | 85.882 | 1.509 | 2.404 | 17.908 | 0.129 |
| 82.801 | 8.848 | 87.470 | 1.460 | 2.406 | 18.117 | 0.116 |
| 83.548 | 8.836 | 89.392 | 1.429 | 2.405 | 18.281 | 0.136 |
| 84.030 | 8.838 | 89.663 | 1.413 | 2.393 | 18.143 | 0.140 |
| 84.171 | 8.845 | 87.011 | 1.409 | 2.384 | 18.023 | 0.136 |
| 84.141 | 8.838 | 85.259 | 1.418 | 2.391 | 18.204 | 0.145 |
| 84.144 | 8.836 | 87.377 | 1.444 | 2.405 | 18.059 | 0.117 |
| 83.947 | 8.847 | 87.791 | 1.485 | 2.392 | 17.618 | 0.120 |
| 83.501 | 8.852 | 82.867 | 1.517 | 2.371 | 17.374 | 0.142 |
| 83.397 | 8.853 | 80.062 | 1.519 | 2.378 | 17.066 | 0.157 |
| 83.303 | 8.853 | 83.113 | 1.507 | 2.392 | 16.991 | 0.192 |
| 82.790 | 8.853 | 87.091 | 1.498 | 2.393 | 17.004 | 0.133 |
| 82.467 | 8.853 | 87.827 | 1.472 | 2.395 | 16.848 | 0.165 |
| 82.608 | 8.853 | 86.113 | 1.426 | 2.383 | 17.071 | 0.145 |
| 83.421 | 8.853 | 83.849 | 1.388 | 2.368 | 17.621 | 0.149 |
| 84.441 | 8.853 | 82.307 | 1.379 | 2.371 | 18.193 | 0.179 |
| 84.869 | 8.853 | 80.253 | 1.395 | 2.375 | 18.576 | 0.180 |
| 84.793 | 8.853 | 79.038 | 1.411 | 2.370 | 18.630 | 0.156 |
| 85.036 | 8.853 | 79.234 | 1.417 | 2.376 | 18.764 | 0.177 |
| 85.571 | 8.853 | 79.501 | 1.423 | 2.392 | 19.244 | 0.183 |
| 85.868 | 8.853 | 81.771 | 1.440 | 2.390 | 19.594 | 0.143 |
| 85.937 | 8.853 | 87.159 | 1.460 | 2.377 | 19.737 | 0.157 |
| 85.967 | 8.853 | 93.532 | 1.463 | 2.374 | 19.746 | 0.167 |
| 85.678 | 8.853 | 97.209 | 1.460 | 2.381 | 19.168 | 0.169 |
| 85.594 | 8.852 | 94.529 | 1.480 | 2.393 | 18.257 | 0.142 |
| 85.809 | 8.834 | 88.108 | 1.556 | 2.395 | 17.811 | 0.140 |
| 85.629 | 8.774 | 84.953 | 1.713 | 2.366 | 18.106 | 0.141 |
| 85.397 | 8.698 | 81.987 | 1.936 | 2.307 | 18.265 | 0.155 |
| 85.174 | 8.675 | 72.251 | 2.131 | 2.278 | 18.042 | 0.188 |
| 84.767 | 8.719 | 66.062 | 2.245 | 2.321 | 17.903 | 0.259 |
| 84.123 | 8.798 | 75.104 | 2.273 | 2.398 | 17.777 | 0.253 |


| 82.881 | 8.837 | 89.890 | 2.174 | 2.444 | 17.798 | 0.122 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81.102 | 8.826 | 97.709 | 2.028 | 2.477 | 17.623 | 0.093 |
| 78.974 | 8.790 | 93.966 | 2.015 | 2.481 | 17.610 | 0.118 |
| 77.871 | 8.752 | 83.541 | 2.279 | 2.412 | 17.434 | 0.124 |
| 79.635 | 8.708 | 74.870 | 2.760 | 2.323 | 16.473 | 0.135 |
| 83.588 | 8.685 | 67.934 | 3.193 | 2.291 | 15.787 | 0.163 |
| 86.113 | 8.741 | 64.260 | 3.296 | 2.339 | 16.026 | 0.218 |
| 86.064 | 8.853 | 76.415 | 3.064 | 2.419 | 17.210 | 0.259 |
| 84.525 | 8.927 | 96.920 | 2.652 | 2.453 | 18.260 | 0.116 |
| 83.660 | 8.949 | 104.368 | 2.255 | 2.461 | 18.396 | 0.098 |
| 83.434 | 8.951 | 104.727 | 1.952 | 2.470 | 18.313 | 0.083 |
| 82.976 | 8.951 | 106.087 | 1.767 | 2.460 | 18.446 | 0.126 |
| 82.736 | 8.951 | 107.232 | 1.661 | 2.449 | 18.493 | 0.119 |
| 82.701 | 8.951 | 108.287 | 1.600 | 2.453 | 18.222 | 0.096 |
| 82.164 | 8.951 | 106.324 | 1.559 | 2.445 | 17.955 | 0.121 |
| 81.656 | 8.951 | 102.052 | 1.536 | 2.439 | 17.967 | 0.124 |
| 81.919 | 8.951 | 102.467 | 1.535 | 2.457 | 18.240 | 0.127 |
| 82.605 | 8.951 | 105.817 | 1.547 | 2.467 | 18.498 | 0.126 |
| 83.094 | 8.951 | 104.065 | 1.570 | 2.458 | 18.335 | 0.107 |
| 83.100 | 8.951 | 100.231 | 1.565 | 2.453 | 17.890 | 0.114 |
| 82.920 | 8.951 | 100.848 | 1.472 | 2.455 | 17.443 | 0.129 |
| 82.840 | 8.951 | 103.527 | 1.346 | 2.455 | 17.131 | 0.124 |
| 82.776 | 8.951 | 105.528 | 1.297 | 2.456 | 17.208 | 0.109 |
| 82.600 | 8.952 | 105.859 | 1.288 | 2.453 | 17.407 | 0.106 |
| 82.321 | 8.965 | 104.222 | 1.284 | 2.449 | 17.359 | 0.127 |
| 81.929 | 8.995 | 99.896 | 1.282 | 2.462 | 17.165 | 0.109 |
| 81.596 | 9.023 | 95.324 | 1.280 | 2.463 | 17.124 | 0.125 |
| 81.576 | 9.041 | 93.872 | 1.281 | 2.441 | 17.240 | 0.130 |
| 81.840 | 9.049 | 93.295 | 1.301 | 2.429 | 17.129 | 0.144 |
| 82.019 | 9.049 | 92.197 | 1.350 | 2.439 | 16.823 | 0.133 |
| 81.713 | 9.049 | 91.539 | 1.418 | 2.454 | 16.710 | 0.145 |
| 81.192 | 9.049 | 91.411 | 1.486 | 2.464 | 16.774 | 0.103 |
| 80.792 | 9.049 | 91.382 | 1.539 | 2.463 | 16.639 | 0.115 |
| 80.424 | 9.049 | 90.691 | 1.561 | 2.455 | 16.269 | 0.107 |
| 80.204 | 9.049 | 91.167 | 1.570 | 2.461 | 16.109 | 0.132 |
| 80.372 | 9.049 | 92.880 | 1.577 | 2.472 | 16.226 | 0.131 |
| 80.554 | 9.049 | 93.082 | 1.584 | 2.478 | 16.234 | 0.118 |
| 80.104 | 9.049 | 91.843 | 1.583 | 2.480 | 15.917 | 0.120 |
| 79.304 | 9.049 | 90.197 | 1.574 | 2.474 | 15.557 | 0.105 |
| 79.130 | 9.049 | 90.838 | 1.565 | 2.470 | 15.444 | 0.110 |
| 79.694 | 9.049 | 91.934 | 1.557 | 2.471 | 15.433 | 0.130 |
| 80.485 | 9.049 | 91.964 | 1.546 | 2.464 | 15.355 | 0.138 |
| 80.812 | 9.049 | 92.268 | 1.540 | 2.449 | 15.419 | 0.126 |
| 80.798 | 9.049 | 91.843 | 1.533 | 2.434 | 15.744 | 0.114 |
| 80.844 | 9.049 | 91.426 | 1.509 | 2.422 | 16.110 | 0.132 |
| 81.084 | 9.049 | 91.206 | 1.462 | 2.421 | 16.272 | 0.115 |


| 81.559 | 9.049 | 91.084 | 1.397 | 2.426 | 16.437 | 0.113 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81.942 | 9.049 | 90.930 | 1.324 | 2.429 | 16.812 | 0.128 |
| 82.043 | 9.049 | 88.906 | 1.256 | 2.425 | 17.145 | 0.119 |
| 82.118 | 9.049 | 84.527 | 1.197 | 2.407 | 17.215 | 0.140 |
| 82.373 | 9.049 | 78.874 | 1.154 | 2.399 | 17.139 | 0.137 |
| 82.565 | 9.049 | 77.146 | 1.133 | 2.412 | 17.214 | 0.151 |
| 82.458 | 9.049 | 80.183 | 1.138 | 2.430 | 17.393 | 0.161 |
| 81.964 | 9.049 | 80.931 | 1.159 | 2.431 | 17.263 | 0.154 |
| 81.432 | 9.049 | 79.613 | 1.191 | 2.416 | 16.932 | 0.133 |
| 81.258 | 9.049 | 80.343 | 1.245 | 2.413 | 16.782 | 0.143 |
| 81.299 | 9.049 | 82.511 | 1.331 | 2.439 | 16.880 | 0.138 |
| 81.380 | 9.049 | 84.551 | 1.445 | 2.456 | 17.116 | 0.169 |
| 80.845 | 9.049 | 82.542 | 1.561 | 2.452 | 16.729 | 0.124 |
| 78.963 | 9.049 | 77.829 | 1.629 | 2.466 | 15.801 | 0.109 |
| 76.808 | 9.049 | 75.160 | 1.626 | 2.476 | 15.473 | 0.146 |
| 77.043 | 9.049 | 77.192 | 1.575 | 2.470 | 15.982 | 0.091 |
| 79.223 | 9.049 | 80.437 | 1.507 | 2.465 | 16.691 | 0.136 |
| 80.762 | 9.049 | 80.693 | 1.427 | 2.459 | 17.122 | 0.136 |
| 80.796 | 9.049 | 80.209 | 1.363 | 2.448 | 17.573 | 0.143 |
| 80.898 | 9.049 | 81.445 | 1.325 | 2.433 | 18.171 | 0.132 |
| 81.441 | 9.049 | 81.507 | 1.307 | 2.418 | 18.377 | 0.124 |
| 81.827 | 9.049 | 81.220 | 1.292 | 2.415 | 18.387 | 0.156 |
| 81.722 | 9.049 | 83.205 | 1.268 | 2.427 | 18.355 | 0.166 |
| 81.472 | 9.049 | 84.868 | 1.243 | 2.429 | 18.196 | 0.147 |
| 81.660 | 9.049 | 85.776 | 1.232 | 2.410 | 17.997 | 0.116 |
| 82.109 | 9.049 | 85.885 | 1.237 | 2.401 | 17.660 | 0.153 |
| 82.207 | 9.049 | 84.201 | 1.267 | 2.405 | 17.514 | 0.164 |
| 81.845 | 9.049 | 83.761 | 1.317 | 2.410 | 17.562 | 0.150 |
| 81.264 | 9.049 | 84.541 | 1.358 | 2.420 | 17.487 | 0.154 |
| 80.846 | 9.049 | 85.116 | 1.371 | 2.434 | 17.214 | 0.121 |
| 80.844 | 9.049 | 86.172 | 1.367 | 2.445 | 17.234 | 0.121 |
| 81.149 | 9.049 | 88.019 | 1.346 | 2.450 | 17.395 | 0.155 |
| 81.349 | 9.049 | 88.953 | 1.307 | 2.445 | 17.136 | 0.139 |
| 81.445 | 9.049 | 87.970 | 1.259 | 2.424 | 16.749 | 0.089 |
| 81.559 | 9.049 | 86.887 | 1.218 | 2.401 | 16.602 | 0.164 |
| 81.890 | 9.049 | 81.766 | 1.233 | 2.408 | 16.192 | 0.145 |
| 82.232 | 9.049 | 81.601 | 1.289 | 2.435 | 16.556 | 0.152 |
| 82.404 | 9.049 | 87.221 | 1.348 | 2.455 | 16.985 | 0.167 |
| 82.285 | 9.049 | 91.409 | 1.393 | 2.449 | 17.206 | 0.154 |
| 82.019 | 9.049 | 87.272 | 1.403 | 2.435 | 17.192 | 0.130 |
| 81.590 | 9.049 | 80.948 | 1.390 | 2.438 | 16.914 | 0.119 |
| 81.104 | 9.049 | 78.081 | 1.368 | 2.444 | 16.551 | 0.140 |
| 80.858 | 9.048 | 80.486 | 1.346 | 2.439 | 16.181 | 0.155 |
| 80.880 | 9.033 | 82.997 | 1.316 | 2.435 | 16.321 | 0.136 |
| 81.108 | 8.993 | 81.661 | 1.270 | 2.421 | 16.826 | 0.150 |
| 81.424 | 8.960 | 81.809 | 1.215 | 2.408 | 17.190 | 0.148 |


| 81.825 | 8.951 | 83.418 | 1.163 | 2.405 | 17.409 | 0.110 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 82.756 | 8.951 | 86.367 | 1.124 | 2.393 | 17.163 | 0.150 |
| 82.468 | 8.951 | 87.685 | 1.132 | 2.402 | 17.442 | 0.165 |
| 81.879 | 8.951 | 84.936 | 1.145 | 2.417 | 17.293 | 0.166 |
| 81.551 | 8.951 | 81.636 | 1.151 | 2.426 | 17.487 | 0.141 |
| 81.437 | 8.951 | 80.521 | 1.138 | 2.432 | 17.435 | 0.143 |
| 81.619 | 8.951 | 80.758 | 1.107 | 2.430 | 17.433 | 0.136 |
| 82.159 | 8.951 | 79.444 | 1.071 | 2.420 | 17.896 | 0.139 |
| 82.769 | 8.951 | 78.037 | 1.044 | 2.419 | 18.103 | 0.143 |
| 82.809 | 8.951 | 78.659 | 1.028 | 2.431 | 18.039 | 0.152 |
| 82.379 | 8.951 | 80.299 | 1.014 | 2.429 | 17.694 | 0.159 |
| 83.044 | 8.951 | 80.668 | 1.000 | 2.414 | 17.538 | 0.137 |
| 84.872 | 8.951 | 78.545 | 0.997 | 2.414 | 17.461 | 0.137 |
| 84.435 | 8.951 | 76.112 | 1.002 | 2.416 | 17.563 | 0.157 |
| 82.283 | 8.951 | 75.214 | 1.009 | 2.400 | 18.221 | 0.154 |
| 81.906 | 8.952 | 74.693 | 1.033 | 2.400 | 18.639 | 0.123 |
| 82.125 | 8.988 | 73.457 | 1.091 | 2.388 | 19.299 | 0.148 |
| 81.063 | 9.330 | 71.783 | 1.177 | 2.286 | 18.884 | 0.136 |
| 80.178 | 9.837 | 71.628 | 1.244 | 2.216 | 17.459 | 0.154 |
| 83.717 | 9.796 | 72.372 | 1.277 | 2.213 | 18.495 | 0.127 |
| 90.097 | 9.419 | 78.508 | 1.299 | 2.209 | 21.980 | 0.161 |
| 94.840 | 9.170 | 91.480 | 1.295 | 2.243 | 23.801 | 0.139 |
| 95.446 | 8.943 | 95.946 | 1.242 | 2.308 | 23.014 | 0.123 |
| 88.992 | 8.860 | 86.178 | 1.181 | 2.377 | 19.750 | 0.129 |
| 81.649 | 8.868 | 79.119 | 1.157 | 2.416 | 18.224 | 0.134 |
| 79.565 | 8.892 | 80.789 | 1.162 | 2.431 | 17.687 | 0.150 |
| 79.808 | 8.923 | 82.074 | 1.156 | 2.436 | 17.348 | 0.151 |
| 80.729 | 8.946 | 81.512 | 1.139 | 2.435 | 17.411 | 0.112 |
| 81.416 | 8.951 | 79.468 | 1.126 | 2.435 | 17.670 | 0.127 |
| 81.598 | 8.951 | 78.317 | 1.121 | 2.442 | 17.740 | 0.136 |
| 81.825 | 8.951 | 79.992 | 1.123 | 2.444 | 17.888 | 0.134 |
| 82.367 | 8.951 | 81.733 | 1.129 | 2.435 | 18.307 | 0.130 |
| 82.990 | 8.951 | 81.195 | 1.136 | 2.428 | 18.347 | 0.115 |
| 83.527 | 8.951 | 79.004 | 1.141 | 2.420 | 17.948 | 0.133 |
| 83.665 | 8.951 | 77.104 | 1.147 | 2.414 | 17.760 | 0.139 |
| 83.423 | 8.951 | 76.429 | 1.158 | 2.424 | 17.589 | 0.140 |
| 83.115 | 8.951 | 76.396 | 1.171 | 2.432 | 17.067 | 0.139 |
| 82.814 | 8.951 | 76.884 | 1.181 | 2.426 | 16.796 | 0.140 |
| 82.745 | 8.951 | 76.685 | 1.189 | 2.416 | 17.066 | 0.146 |
| 83.431 | 8.951 | 76.130 | 1.193 | 2.407 | 17.180 | 0.120 |
| 84.372 | 8.951 | 77.074 | 1.193 | 2.408 | 17.050 | 0.134 |
| 84.976 | 8.950 | 76.773 | 1.188 | 2.409 | 17.359 | 0.140 |
| 85.282 | 8.941 | 74.539 | 1.185 | 2.403 | 18.210 | 0.163 |
| 85.578 | 8.922 | 73.496 | 1.175 | 2.402 | 18.922 | 0.152 |
| 85.703 | 8.893 | 74.393 | 1.171 | 2.408 | 19.168 | 0.153 |
| 85.294 | 8.864 | 76.600 | 1.187 | 2.418 | 19.187 | 0.155 |


| 84.484 | 8.835 | 76.978 | 1.223 | 2.437 | 19.219 | 0.163 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 84.270 | 8.770 | 74.651 | 1.293 | 2.442 | 19.761 | 0.169 |
| 85.196 | 8.669 | 74.212 | 1.433 | 2.413 | 20.485 | 0.135 |
| 85.827 | 8.588 | 75.138 | 1.644 | 2.386 | 20.563 | 0.160 |
| 83.993 | 8.561 | 72.938 | 1.846 | 2.405 | 19.446 | 0.175 |
| 79.946 | 8.557 | 66.613 | 1.937 | 2.459 | 17.770 | 0.171 |
| 77.409 | 8.557 | 61.897 | 1.913 | 2.470 | 17.548 | 0.189 |
| 80.134 | 8.557 | 65.872 | 1.832 | 2.412 | 18.759 | 0.123 |
| 84.658 | 8.557 | 73.484 | 1.762 | 2.354 | 19.474 | 0.127 |
| 87.488 | 8.557 | 78.521 | 1.743 | 2.320 | 19.344 | 0.190 |
| 88.972 | 8.557 | 78.723 | 1.848 | 2.303 | 19.158 | 0.189 |
| 90.881 | 8.557 | 75.951 | 2.115 | 2.288 | 19.236 | 0.198 |
| 93.421 | 8.557 | 71.397 | 2.574 | 2.255 | 19.442 | 0.199 |
| 96.169 | 8.557 | 65.084 | 3.238 | 2.200 | 19.864 | 0.188 |
| 98.803 | 8.557 | 58.580 | 4.024 | 2.140 | 20.867 | 0.216 |
| 100.644 | 8.557 | 54.078 | 4.709 | 2.098 | 21.632 | 0.237 |
| 101.093 | 8.557 | 51.340 | 4.970 | 2.080 | 21.685 | 0.309 |
| 100.712 | 8.557 | 49.635 | 4.791 | 2.084 | 21.849 | 0.294 |
| 100.502 | 8.557 | 50.442 | 4.379 | 2.087 | 22.617 | 0.252 |
| 101.179 | 8.557 | 53.646 | 3.998 | 2.073 | 23.376 | 0.308 |
| 102.077 | 8.557 | 56.017 | 3.757 | 2.065 | 23.427 | 0.356 |
| 101.583 | 8.557 | 56.050 | 3.746 | 2.079 | 22.565 | 0.331 |
| 100.264 | 8.557 | 53.948 | 3.934 | 2.109 | 21.096 | 0.330 |
| 99.757 | 8.557 | 46.615 | 4.704 | 2.114 | 19.776 | 0.307 |
| 100.732 | 8.559 | 49.001 | 5.484 | 2.074 | 20.266 | 0.300 |
| 101.244 | 8.586 | 47.632 | 5.507 | 2.091 | 20.052 | 0.290 |
| 101.417 | 8.615 | 48.671 | 5.524 | 2.091 | 19.950 | 0.312 |
| 101.583 | 8.644 | 48.534 | 5.397 | 2.074 | 20.176 | 0.291 |
| 102.018 | 8.655 | 46.775 | 5.005 | 2.059 | 20.779 | 0.328 |
| 102.420 | 8.656 | 45.758 | 4.441 | 2.056 | 21.314 | 0.331 |
| 102.549 | 8.656 | 46.798 | 3.772 | 2.064 | 21.358 | 0.334 |
| 102.533 | 8.657 | 46.868 | 3.140 | 2.075 | 20.778 | 0.338 |
| 101.944 | 8.712 | 45.899 | 1.920 | 2.098 | 20.763 | 0.321 |
| 101.165 | 8.745 | 48.193 | 1.287 | 2.126 | 20.952 | 0.325 |
| 99.473 | 8.754 | 49.961 | 0.826 | 2.145 | 21.276 | 0.305 |
| 97.043 | 8.754 | 50.301 | 0.625 | 2.173 | 21.444 | 0.298 |
| 94.291 | 8.754 | 48.722 | 0.553 | 2.222 | 21.134 | 0.304 |
| 90.602 | 8.741 | 46.097 | 0.509 | 2.267 | 20.285 | 0.279 |
| 85.319 | 8.677 | 45.007 | 0.468 | 2.306 | 19.091 | 0.285 |
| 80.578 | 8.597 | 45.516 | 0.424 | 2.325 | 18.266 | 0.235 |
| 78.697 | 8.559 | 45.719 | 0.366 | 2.295 | 18.424 | 0.170 |
| 81.770 | 8.557 | 46.044 | 0.299 | 2.221 | 19.819 | 0.133 |
| 87.505 | 8.557 | 48.113 | 0.245 | 2.155 | 21.509 | 0.132 |
| 89.737 | 8.557 | 49.700 | 0.215 | 2.132 | 22.155 | 0.304 |
| 85.583 | 8.557 | 48.560 | 0.216 | 2.148 | 21.893 | 0.304 |
| 82.052 | 8.557 | 46.171 | 0.234 | 2.181 | 21.067 | 0.311 |


| 83.345 | 8.557 | 45.395 | 0.260 | 2.205 | 19.978 | 0.310 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 86.465 | 8.558 | 46.259 | 0.283 | 2.197 | 19.369 | 0.289 |
| 89.253 | 8.564 | 46.504 | 0.292 | 2.169 | 19.919 | 0.265 |
| 92.064 | 8.581 | 47.193 | 0.283 | 2.148 | 21.341 | 0.220 |
| 94.564 | 8.609 | 47.933 | 0.264 | 2.145 | 22.695 | 0.281 |
| 95.973 | 8.639 | 47.480 | 0.249 | 2.150 | 23.277 | 0.294 |
| 96.244 | 8.654 | 46.412 | 0.242 | 2.149 | 23.802 | 0.301 |
| 95.982 | 8.656 | 45.656 | 0.240 | 2.141 | 24.312 | 0.313 |
| 95.784 | 8.656 | 45.867 | 0.239 | 2.135 | 24.430 | 0.321 |
| 96.512 | 8.672 | 46.289 | 0.238 | 2.133 | 24.478 | 0.312 |
| 97.482 | 8.712 | 45.896 | 0.238 | 2.135 | 24.530 | 0.297 |
| 97.800 | 8.746 | 44.702 | 0.242 | 2.136 | 24.775 | 0.307 |
| 97.834 | 8.754 | 43.854 | 0.254 | 2.128 | 25.350 | 0.310 |
| 97.907 | 8.749 | 44.784 | 0.274 | 2.119 | 25.960 | 0.317 |
| 93.206 | 8.709 | 46.324 | 0.306 | 2.203 | 22.169 | 0.302 |
| 87.222 | 8.678 | 44.838 | 0.307 | 2.224 | 21.559 | 0.305 |
| 84.681 | 8.652 | 45.845 | 0.303 | 2.170 | 21.988 | 0.162 |
| 88.529 | 8.617 | 47.937 | 0.285 | 2.131 | 23.898 | 0.156 |
| 94.215 | 8.576 | 48.412 | 0.255 | 2.128 | 23.922 | 0.242 |
| 96.578 | 8.559 | 47.379 | 0.232 | 2.128 | 23.917 | 0.308 |
| 96.821 | 8.557 | 46.055 | 0.221 | 2.125 | 25.408 | 0.311 |
| 96.780 | 8.557 | 46.108 | 0.220 | 2.127 | 26.819 | 0.328 |
| 96.683 | 8.557 | 47.118 | 0.221 | 2.135 | 27.194 | 0.318 |
| 96.356 | 8.554 | 46.472 | 0.223 | 2.138 | 27.150 | 0.308 |
| 95.975 | 8.543 | 45.163 | 0.223 | 2.137 | 26.868 | 0.321 |
| 95.613 | 8.541 | 44.937 | 0.222 | 2.140 | 26.480 | 0.319 |
| 95.327 | 8.552 | 45.312 | 0.219 | 2.149 | 26.236 | 0.312 |
| 95.131 | 8.557 | 46.213 | 0.212 | 2.156 | 25.893 | 0.311 |
| 94.998 | 8.557 | 46.985 | 0.206 | 2.155 | 25.799 | 0.307 |
| 95.239 | 8.557 | 46.064 | 0.210 | 2.153 | 26.319 | 0.306 |
| 94.849 | 8.550 | 42.948 | 0.239 | 2.173 | 25.945 | 0.311 |
| 91.452 | 8.520 | 40.337 | 0.302 | 2.222 | 23.225 | 0.298 |
| 84.881 | 8.493 | 40.037 | 0.405 | 2.280 | 19.644 | 0.294 |
| 78.466 | 8.517 | 41.243 | 0.537 | 2.306 | 17.419 | 0.298 |
| 76.027 | 8.549 | 42.682 | 0.632 | 2.277 | 17.613 | 0.175 |
| 77.973 | 8.557 | 43.862 | 0.612 | 2.223 | 19.140 | 0.238 |
| 82.447 | 8.557 | 44.487 | 0.494 | 2.180 | 21.157 | 0.232 |
| 87.308 | 8.557 | 44.262 | 0.382 | 2.153 | 22.597 | 0.294 |
| 90.264 | 8.557 | 43.411 | 0.318 | 2.140 | 23.089 | 0.301 |
| 90.931 | 8.557 | 43.275 | 0.297 | 2.144 | 23.190 | 0.273 |
| 90.649 | 8.557 | 43.522 | 0.295 | 2.156 | 22.810 | 0.285 |
| 89.918 | 8.557 | 44.559 | 0.288 | 2.162 | 22.271 | 0.318 |
| 89.637 | 8.557 | 44.401 | 0.270 | 2.156 | 22.488 | 0.272 |
| 90.993 | 8.557 | 42.039 | 0.245 | 2.139 | 23.326 | 0.275 |
| 93.844 | 8.557 | 41.379 | 0.223 | 2.126 | 24.276 | 0.314 |
| 96.035 | 8.557 | 42.875 | 0.212 | 2.125 | 24.680 | 0.302 |


| 96.853 | 8.557 | 42.645 | 0.214 | 2.139 | 23.799 | 0.298 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 96.082 | 8.557 | 40.968 | 0.234 | 2.157 | 22.844 | 0.308 |
| 96.014 | 8.557 | 42.113 | 0.242 | 2.154 | 23.220 | 0.306 |
| 96.257 | 8.560 | 43.127 | 0.244 | 2.154 | 23.152 | 0.297 |
| 96.351 | 8.580 | 43.359 | 0.243 | 2.151 | 23.165 | 0.298 |
| 96.086 | 8.622 | 43.831 | 0.240 | 2.150 | 23.392 | 0.303 |
| 95.502 | 8.650 | 44.167 | 0.239 | 2.146 | 23.862 | 0.314 |
| 95.083 | 8.656 | 44.497 | 0.239 | 2.137 | 24.374 | 0.317 |
| 95.412 | 8.656 | 45.252 | 0.236 | 2.133 | 24.668 | 0.292 |
| 96.011 | 8.656 | 44.026 | 0.232 | 2.134 | 24.931 | 0.307 |
| 96.314 | 8.656 | 42.449 | 0.233 | 2.138 | 25.102 | 0.312 |
| 95.843 | 8.656 | 42.978 | 0.245 | 2.145 | 25.120 | 0.301 |
| 94.641 | 8.655 | 43.947 | 0.267 | 2.151 | 25.259 | 0.311 |
| 93.049 | 8.640 | 45.067 | 0.294 | 2.158 | 25.431 | 0.310 |
| 91.290 | 8.600 | 45.428 | 0.316 | 2.171 | 24.913 | 0.306 |
| 89.503 | 8.566 | 44.573 | 0.318 | 2.173 | 24.160 | 0.267 |
| 88.959 | 8.558 | 43.809 | 0.299 | 2.157 | 24.173 | 0.295 |
| 90.624 | 8.550 | 45.210 | 0.268 | 2.135 | 24.872 | 0.281 |
| 93.109 | 8.519 | 47.252 | 0.238 | 2.116 | 25.815 | 0.257 |
| 95.369 | 8.478 | 47.674 | 0.217 | 2.106 | 26.677 | 0.312 |
| 97.191 | 8.462 | 47.661 | 0.206 | 2.109 | 27.285 | 0.296 |
| 98.027 | 8.473 | 48.103 | 0.204 | 2.118 | 27.428 | 0.328 |
| 97.408 | 8.492 | 48.940 | 0.213 | 2.124 | 26.945 | 0.319 |
| 96.323 | 8.489 | 49.651 | 0.230 | 2.134 | 26.206 | 0.326 |
| 95.282 | 8.480 | 48.427 | 0.244 | 2.149 | 25.406 | 0.327 |
| 94.102 | 8.474 | 45.627 | 0.245 | 2.155 | 24.846 | 0.266 |
| 92.914 | 8.463 | 44.618 | 0.238 | 2.148 | 24.902 | 0.312 |
| 92.331 | 8.459 | 46.154 | 0.231 | 2.134 | 25.597 | 0.291 |
| 92.827 | 8.459 | 47.669 | 0.227 | 2.123 | 26.128 | 0.297 |
| 93.977 | 8.459 | 47.299 | 0.229 | 2.131 | 25.151 | 0.290 |
| 95.102 | 8.459 | 46.086 | 0.244 | 2.154 | 23.478 | 0.323 |
| 93.449 | 8.471 | 46.628 | 0.346 | 2.214 | 22.079 | 0.316 |
| 90.460 | 8.476 | 47.641 | 0.398 | 2.255 | 21.432 | 0.255 |
| 87.428 | 8.467 | 45.288 | 0.424 | 2.267 | 20.084 | 0.303 |
| 85.421 | 8.459 | 42.306 | 0.425 | 2.250 | 20.316 | 0.241 |
| 85.697 | 8.459 | 44.051 | 0.408 | 2.214 | 20.522 | 0.235 |
| 87.470 | 8.459 | 46.185 | 0.392 | 2.176 | 19.807 | 0.264 |
| 89.364 | 8.459 | 45.918 | 0.387 | 2.177 | 19.667 | 0.279 |
| 89.076 | 8.459 | 45.976 | 0.380 | 2.217 | 18.580 | 0.269 |
| 87.374 | 8.459 | 45.589 | 0.364 | 2.192 | 18.796 | 0.300 |
| 87.997 | 8.459 | 44.741 | 0.347 | 2.158 | 19.844 | 0.299 |
| 90.734 | 8.459 | 43.242 | 0.334 | 2.138 | 20.662 | 0.189 |
| 92.533 | 8.459 | 44.334 | 0.341 | 2.154 | 20.188 | 0.204 |
| 91.368 | 8.459 | 46.509 | 0.375 | 2.202 | 18.508 | 0.310 |
| 87.683 | 8.459 | 45.504 | 0.417 | 2.239 | 16.893 | 0.315 |
| 84.021 | 8.459 | 41.330 | 0.453 | 2.249 | 16.019 | 0.283 |


| 82.741 | 8.459 | 39.760 | 0.486 | 2.244 | 15.686 | 0.280 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 82.961 | 8.459 | 41.590 | 0.492 | 2.228 | 16.068 | 0.176 |
| 83.110 | 8.459 | 43.861 | 0.444 | 2.203 | 17.574 | 0.238 |
| 83.818 | 8.459 | 45.224 | 0.382 | 2.172 | 19.352 | 0.229 |
| 85.819 | 8.459 | 45.717 | 0.340 | 2.157 | 19.949 | 0.240 |
| 87.683 | 8.459 | 45.542 | 0.308 | 2.151 | 20.153 | 0.236 |
| 89.529 | 8.459 | 45.666 | 0.281 | 2.139 | 21.504 | 0.249 |
| 92.296 | 8.459 | 46.622 | 0.270 | 2.138 | 23.146 | 0.326 |
| 94.387 | 8.459 | 47.324 | 0.274 | 2.143 | 23.866 | 0.297 |
| 94.777 | 8.459 | 47.116 | 0.293 | 2.142 | 23.948 | 0.274 |
| 94.030 | 8.459 | 46.758 | 0.330 | 2.137 | 23.786 | 0.253 |
| 92.748 | 8.459 | 45.707 | 0.384 | 2.135 | 23.485 | 0.263 |
| 91.384 | 8.459 | 44.661 | 0.451 | 2.154 | 23.032 | 0.264 |
| 90.440 | 8.459 | 45.999 | 0.528 | 2.186 | 22.291 | 0.321 |
| 89.225 | 8.470 | 48.277 | 0.591 | 2.202 | 21.156 | 0.246 |
| 87.471 | 8.506 | 50.900 | 0.615 | 2.206 | 20.426 | 0.255 |
| 86.607 | 8.539 | 53.981 | 0.586 | 2.207 | 20.617 | 0.265 |
| 87.296 | 8.527 | 55.693 | 0.536 | 2.208 | 20.609 | 0.244 |
| 88.720 | 8.485 | 53.594 | 0.496 | 2.216 | 20.158 | 0.271 |
| 89.259 | 8.470 | 49.784 | 0.468 | 2.243 | 19.112 | 0.193 |
| 87.844 | 8.497 | 46.543 | 0.426 | 2.257 | 18.118 | 0.245 |
| 86.335 | 8.538 | 44.100 | 0.374 | 2.231 | 18.631 | 0.230 |
| 88.442 | 8.556 | 44.177 | 0.341 | 2.195 | 20.290 | 0.031 |
| 92.451 | 8.557 | 46.534 | 0.325 | 2.174 | 21.497 | 0.219 |
| 94.348 | 8.557 | 48.626 | 0.316 | 2.172 | 21.278 | 0.151 |
| 94.254 | 8.557 | 49.870 | 0.320 | 2.174 | 20.696 | 0.275 |
| 93.686 | 8.557 | 50.621 | 0.334 | 2.171 | 20.466 | 0.225 |
| 93.411 | 8.557 | 50.570 | 0.333 | 2.162 | 20.269 | 0.292 |
| 94.032 | 8.557 | 50.413 | 0.327 | 2.147 | 20.151 | 0.226 |
| 95.402 | 8.557 | 49.388 | 0.331 | 2.142 | 20.449 | 0.269 |
| 96.221 | 8.557 | 48.026 | 0.340 | 2.152 | 21.075 | 0.260 |
| 96.439 | 8.557 | 49.189 | 0.346 | 2.157 | 21.405 | 0.246 |
| 96.767 | 8.557 | 51.600 | 0.351 | 2.149 | 21.486 | 0.300 |
| 97.012 | 8.557 | 51.558 | 0.339 | 2.142 | 21.701 | 0.300 |
| 97.106 | 8.557 | 48.853 | 0.304 | 2.141 | 22.187 | 0.294 |
| 97.591 | 8.557 | 46.626 | 0.262 | 2.132 | 23.210 | 0.263 |
| 98.335 | 8.557 | 46.725 | 0.232 | 2.122 | 24.157 | 0.301 |
| 98.809 | 8.557 | 47.377 | 0.217 | 2.122 | 24.272 | 0.278 |
| 99.216 | 8.557 | 47.953 | 0.216 | 2.119 | 23.855 | 0.285 |
| 99.809 | 8.557 | 48.547 | 0.222 | 2.118 | 23.359 | 0.308 |
| 100.023 | 8.557 | 50.092 | 0.232 | 2.125 | 23.101 | 0.306 |
| 99.631 | 8.557 | 52.067 | 0.247 | 2.129 | 23.053 | 0.304 |
| 99.297 | 8.557 | 52.498 | 0.268 | 2.132 | 23.068 | 0.311 |
| 98.972 | 8.557 | 52.465 | 0.291 | 2.131 | 22.628 | 0.310 |
| 98.699 | 8.557 | 52.846 | 0.310 | 2.122 | 22.317 | 0.292 |
| 98.964 | 8.557 | 53.144 | 0.326 | 2.117 | 22.436 | 0.306 |


| 99.539 | 8.557 | 54.463 | 0.336 | 2.121 | 22.158 | 0.313 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 99.936 | 8.557 | 55.686 | 0.339 | 2.127 | 21.853 | 0.301 |
| 100.109 | 8.557 | 55.267 | 0.343 | 2.130 | 22.184 | 0.284 |
| 100.066 | 8.557 | 55.574 | 0.354 | 2.130 | 23.077 | 0.313 |
| 99.938 | 8.553 | 59.639 | 0.371 | 2.133 | 23.854 | 0.297 |
| 99.666 | 8.528 | 64.395 | 0.391 | 2.144 | 23.537 | 0.255 |
| 98.892 | 8.485 | 64.583 | 0.404 | 2.157 | 22.612 | 0.299 |
| 97.926 | 8.462 | 61.820 | 0.404 | 2.156 | 21.833 | 0.273 |
| 97.950 | 8.459 | 58.321 | 0.397 | 2.140 | 21.257 | 0.312 |
| 99.022 | 8.459 | 55.470 | 0.388 | 2.134 | 20.706 | 0.286 |
| 99.552 | 8.459 | 53.596 | 0.381 | 2.145 | 20.151 | 0.276 |
| 98.678 | 8.459 | 54.292 | 0.380 | 2.158 | 20.075 | 0.294 |
| 96.956 | 8.459 | 57.059 | 0.395 | 2.169 | 20.316 | 0.239 |
| 95.463 | 8.459 | 59.396 | 0.427 | 2.183 | 20.348 | 0.314 |
| 94.710 | 8.459 | 59.902 | 0.474 | 2.208 | 19.684 | 0.253 |
| 93.125 | 8.459 | 57.574 | 0.519 | 2.265 | 17.724 | 0.303 |
| 88.378 | 8.459 | 54.599 | 0.543 | 2.319 | 16.032 | 0.284 |
| 82.662 | 8.459 | 53.411 | 0.539 | 2.299 | 16.634 | 0.259 |
| 81.713 | 8.459 | 53.613 | 0.495 | 2.245 | 18.123 | 0.263 |
| 85.694 | 8.459 | 53.413 | 0.401 | 2.197 | 18.992 | 0.257 |
| 90.712 | 8.459 | 51.771 | 0.299 | 2.150 | 20.196 | 0.283 |
| 94.481 | 8.459 | 50.901 | 0.233 | 2.117 | 21.607 | 0.076 |
| 96.700 | 8.459 | 50.648 | 0.202 | 2.107 | 22.260 | 0.244 |
| 97.189 | 8.459 | 50.123 | 0.191 | 2.114 | 22.598 | 0.237 |
| 96.856 | 8.459 | 50.948 | 0.199 | 2.119 | 22.911 | 0.276 |
| 96.346 | 8.459 | 53.671 | 0.219 | 2.119 | 22.734 | 0.301 |
| 95.797 | 8.459 | 54.891 | 0.230 | 2.123 | 22.225 | 0.310 |
| 95.268 | 8.459 | 52.757 | 0.232 | 2.131 | 21.854 | 0.295 |
| 94.908 | 8.459 | 50.110 | 0.230 | 2.134 | 22.326 | 0.304 |
| 95.209 | 8.459 | 49.931 | 0.215 | 2.135 | 23.230 | 0.281 |
| 95.506 | 8.459 | 52.232 | 0.217 | 2.138 | 22.962 | 0.322 |
| 95.495 | 8.459 | 53.234 | 0.220 | 2.140 | 22.662 | 0.297 |
| 95.229 | 8.459 | 51.112 | 0.221 | 2.139 | 22.325 | 0.298 |
| 95.068 | 8.459 | 48.357 | 0.218 | 2.138 | 22.367 | 0.298 |
| 94.942 | 8.459 | 48.316 | 0.213 | 2.139 | 22.845 | 0.313 |
| 94.872 | 8.459 | 49.339 | 0.212 | 2.138 | 23.209 | 0.292 |
| 95.125 | 8.459 | 49.722 | 0.218 | 2.137 | 23.304 | 0.289 |
| 95.529 | 8.459 | 50.779 | 0.225 | 2.142 | 22.792 | 0.288 |
| 95.730 | 8.459 | 51.569 | 0.235 | 2.158 | 22.322 | 0.316 |
| 93.677 | 8.459 | 48.674 | 0.263 | 2.232 | 20.399 | 0.275 |
| 93.947 | 8.459 | 45.841 | 0.265 | 2.231 | 20.224 | 0.305 |
| 94.713 | 8.459 | 46.309 | 0.267 | 2.204 | 21.477 | 0.282 |
| 93.797 | 8.459 | 51.228 | 0.267 | 2.195 | 22.098 | 0.296 |
| 93.229 | 8.459 | 55.286 | 0.264 | 2.193 | 21.766 | 0.224 |
| 93.321 | 8.459 | 54.347 | 0.289 | 2.203 | 21.258 | 0.304 |
| 91.730 | 8.459 | 53.713 | 0.347 | 2.242 | 20.172 | 0.275 |


| 87.983 | 8.461 | 53.978 | 0.428 | 2.318 | 18.474 | 0.275 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 82.742 | 8.481 | 54.114 | 0.509 | 2.393 | 16.904 | 0.244 |
| 78.044 | 8.514 | 54.301 | 0.546 | 2.397 | 16.790 | 0.270 |
| 76.803 | 8.532 | 57.036 | 0.522 | 2.321 | 18.331 | 0.249 |
| 90.611 | 8.552 | 65.499 | 0.361 | 2.206 | 20.877 | 0.150 |
| 90.569 | 8.557 | 67.094 | 0.348 | 2.224 | 20.587 | 0.174 |
| 89.357 | 8.552 | 68.691 | 0.358 | 2.227 | 20.604 | 0.225 |
| 88.663 | 8.531 | 68.758 | 0.380 | 2.236 | 20.420 | 0.207 |

Well logs dataset (Well 15/12-20S)

| DT | CA | GR | DR | RHOB | CNC | POR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68.485 | 8.601 | 61.344 | 5.886 | 2.519 | 19.410 | 0.099 |
| 66.146 | 8.567 | 43.991 | 7.483 | 2.566 | 12.880 | 0.119 |
| 65.456 | 8.476 | 38.238 | 8.649 | 2.581 | 11.130 | 0.171 |
| 66.183 | 8.454 | 36.687 | 10.940 | 2.537 | 10.130 | 0.178 |
| 69.931 | 8.397 | 8.935 | 20.865 | 2.312 | 9.300 | 0.136 |
| 75.959 | 8.397 | 8.959 | 12.298 | 2.331 | 12.100 | 0.185 |
| 79.063 | 8.420 | 16.579 | 12.909 | 2.343 | 13.960 | 0.171 |
| 80.076 | 8.420 | 16.356 | 12.130 | 2.349 | 14.250 | 0.069 |
| 76.615 | 8.420 | 12.629 | 19.497 | 2.342 | 12.610 | 0.152 |
| 70.578 | 8.420 | 7.256 | 23.660 | 2.359 | 9.570 | 0.142 |
| 67.801 | 8.420 | 9.861 | 24.205 | 2.425 | 8.510 | 0.055 |
| 66.969 | 8.408 | 9.439 | 23.320 | 2.446 | 7.850 | 0.118 |
| 66.779 | 8.420 | 8.428 | 21.195 | 2.496 | 8.070 | 0.183 |
| 68.514 | 8.420 | 9.294 | 22.060 | 2.473 | 10.310 | 0.154 |
| 74.665 | 8.420 | 28.444 | 9.973 | 2.380 | 15.470 | 0.193 |
| 81.625 | 8.420 | 20.433 | 11.459 | 2.386 | 13.440 | 0.040 |
| 77.293 | 8.595 | 46.527 | 7.838 | 2.406 | 21.350 | 0.042 |
| 74.117 | 8.567 | 36.350 | 5.099 | 2.492 | 14.820 | 0.038 |
| 73.768 | 8.510 | 26.244 | 3.417 | 2.515 | 14.200 | 0.053 |
| 80.263 | 8.567 | 45.523 | 3.705 | 2.507 | 25.190 | 0.031 |
| 87.422 | 8.567 | 56.575 | 10.063 | 2.350 | 30.340 | 0.145 |
| 85.499 | 8.601 | 37.032 | 16.676 | 2.310 | 16.330 | 0.163 |
| 78.826 | 8.454 | 26.970 | 9.321 | 2.464 | 14.260 | 0.141 |
| 77.691 | 8.420 | 21.345 | 9.643 | 2.341 | 12.530 | 0.212 |
| 80.564 | 8.420 | 14.452 | 17.242 | 2.219 | 13.950 | 0.203 |
| 82.731 | 8.397 | 14.210 | 15.960 | 2.218 | 15.590 | 0.221 |


| 82.455 | 8.397 | 15.815 | 16.658 | 2.278 | 14.730 | 0.205 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 82.060 | 8.397 | 18.003 | 15.344 | 2.298 | 14.250 | 0.200 |
| 82.738 | 8.420 | 15.056 | 18.442 | 2.235 | 14.010 | 0.213 |
| 84.333 | 8.420 | 14.140 | 12.886 | 2.224 | 15.670 | 0.193 |
| 85.370 | 8.420 | 13.791 | 11.678 | 2.221 | 17.440 | 0.195 |
| 85.741 | 8.420 | 12.156 | 4.162 | 2.251 | 19.300 | 0.213 |
| 82.509 | 8.420 | 14.812 | 2.700 | 2.264 | 18.420 | 0.214 |
| 82.866 | 8.437 | 12.113 | 1.515 | 2.273 | 18.390 | 0.173 |
| 83.304 | 8.420 | 11.534 | 0.941 | 2.284 | 18.420 | 0.182 |
| 83.878 | 8.397 | 10.805 | 0.623 | 2.307 | 19.040 | 0.216 |
| 82.650 | 8.420 | 12.869 | 0.556 | 2.283 | 19.300 | 0.219 |
| 84.523 | 8.420 | 18.484 | 0.823 | 2.265 | 19.430 | 0.219 |
| 85.057 | 8.420 | 18.506 | 0.540 | 2.281 | 18.380 | 0.233 |
| 83.953 | 8.397 | 10.580 | 0.360 | 2.265 | 18.800 | 0.221 |
| 83.721 | 8.420 | 10.065 | 0.289 | 2.276 | 18.800 | 0.237 |
| 83.281 | 8.420 | 9.708 | 0.259 | 2.297 | 19.100 | 0.219 |
| 82.851 | 8.420 | 7.757 | 0.341 | 2.269 | 19.660 | 0.226 |
| 82.687 | 8.420 | 8.625 | 0.388 | 2.277 | 18.730 | 0.200 |
| 83.323 | 8.420 | 13.625 | 0.602 | 2.284 | 18.420 | 0.214 |
| 84.916 | 8.454 | 8.444 | 0.461 | 2.239 | 20.610 | 0.213 |
| 85.791 | 8.454 | 8.505 | 0.389 | 2.218 | 21.340 | 0.214 |
| 86.174 | 8.420 | 9.653 | 0.350 | 2.208 | 21.460 | 0.174 |
| 84.819 | 8.397 | 13.331 | 0.365 | 2.279 | 19.070 | 0.208 |
| 83.303 | 8.420 | 11.905 | 0.482 | 2.305 | 17.840 | 0.212 |
| 80.211 | 8.420 | 7.844 | 0.547 | 2.328 | 16.770 | 0.235 |
| 79.125 | 8.420 | 8.629 | 0.505 | 2.315 | 17.170 | 0.225 |
| 80.674 | 8.420 | 6.483 | 0.342 | 2.284 | 17.890 | 0.223 |
| 81.046 | 8.408 | 5.149 | 0.360 | 2.271 | 18.890 | 0.202 |
| 77.240 | 8.397 | 14.646 | 1.203 | 2.357 | 15.180 | 0.051 |
| 77.780 | 8.420 | 23.542 | 1.571 | 2.378 | 14.970 | 0.178 |
| 75.479 | 8.420 | 24.775 | 1.644 | 2.422 | 10.870 | 0.148 |
| 68.957 | 8.420 | 32.365 | 1.973 | 2.516 | 6.690 | 0.152 |
| 65.470 | 8.420 | 33.396 | 2.111 | 2.557 | 5.730 | 0.067 |
| 66.517 | 8.476 | 28.382 | 2.031 | 2.561 | 7.460 | 0.042 |
| 71.450 | 8.454 | 17.237 | 1.196 | 2.475 | 14.420 | 0.152 |


| 74.162 | 8.454 | 22.247 | 0.995 | 2.463 | 15.410 | 0.096 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74.990 | 8.476 | 22.208 | 0.979 | 2.452 | 15.940 | 0.128 |
| 73.906 | 8.454 | 23.408 | 0.970 | 2.476 | 16.090 | 0.119 |
| 74.978 | 8.454 | 19.510 | 0.881 | 2.434 | 17.220 | 0.062 |
| 76.324 | 8.420 | 21.560 | 0.759 | 2.409 | 15.610 | 0.197 |
| 77.700 | 8.420 | 19.152 | 0.658 | 2.397 | 16.950 | 0.130 |
| 77.893 | 8.454 | 15.620 | 0.588 | 2.382 | 17.770 | 0.156 |
| 76.797 | 8.454 | 13.474 | 0.506 | 2.324 | 17.790 | 0.190 |
| 80.105 | 8.437 | 12.123 | 0.417 | 2.305 | 19.610 | 0.170 |
| 79.220 | 8.476 | 10.848 | 0.511 | 2.289 | 19.170 | 0.233 |
| 76.205 | 8.454 | 21.073 | 1.239 | 2.320 | 16.480 | 0.218 |
| 70.724 | 8.454 | 42.788 | 2.679 | 2.443 | 15.670 | 0.216 |
| 69.327 | 8.476 | 69.423 | 2.782 | 2.566 | 16.180 | 0.040 |
| 69.287 | 8.544 | 72.745 | 3.024 | 2.547 | 16.870 | 0.032 |
| 68.975 | 8.476 | 90.149 | 3.324 | 2.544 | 18.370 | 0.088 |
| 67.853 | 8.510 | 110.097 | 3.481 | 2.582 | 20.150 | 0.072 |
| 70.249 | 8.510 | 84.331 | 2.774 | 2.571 | 18.460 | 0.059 |
| 71.414 | 8.510 | 72.195 | 2.521 | 2.539 | 18.480 | 0.047 |
| 75.551 | 8.567 | 52.149 | 1.722 | 2.492 | 19.150 | 0.090 |
| 78.653 | 8.510 | 40.578 | 1.098 | 2.410 | 18.150 | 0.078 |
| 80.363 | 8.493 | 34.213 | 0.963 | 2.400 | 16.120 | 0.167 |
| 78.688 | 8.544 | 39.559 | 0.979 | 2.465 | 15.390 | 0.168 |
| 75.428 | 8.476 | 46.442 | 0.998 | 2.451 | 16.710 | 0.124 |
| 76.383 | 8.527 | 34.758 | 0.982 | 2.428 | 16.890 | 0.072 |
| 77.612 | 8.544 | 31.126 | 1.073 | 2.423 | 14.830 | 0.150 |
| 75.829 | 8.544 | 41.059 | 1.319 | 2.498 | 15.280 | 0.147 |
| 73.457 | 8.544 | 44.779 | 1.336 | 2.482 | 16.510 | 0.097 |
| 74.093 | 8.544 | 47.685 | 1.215 | 2.465 | 17.070 | 0.132 |
| 75.336 | 8.544 | 51.982 | 1.081 | 2.450 | 17.310 | 0.120 |
| 76.191 | 8.567 | 75.606 | 0.990 | 2.455 | 19.870 | 0.132 |
| 78.117 | 8.544 | 71.480 | 0.763 | 2.356 | 21.450 | 0.102 |
| 79.388 | 8.544 | 66.883 | 0.732 | 2.353 | 22.630 | 0.188 |
| 80.865 | 8.567 | 74.978 | 1.064 | 2.372 | 19.740 | 0.202 |
| 77.993 | 8.510 | 105.125 | 1.412 | 2.475 | 18.050 | 0.193 |
| 75.135 | 8.565 | 105.067 | 1.512 | 2.522 | 17.030 | 0.043 |


| 76.228 | 8.558 | 142.719 | 1.252 | 2.486 | 19.470 | 0.104 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 77.248 | 8.587 | 105.720 | 0.954 | 2.493 | 20.190 | 0.107 |
| 79.414 | 8.493 | 89.839 | 0.842 | 2.408 | 20.830 | 0.158 |
| 80.846 | 8.476 | 81.578 | 0.849 | 2.445 | 21.650 | 0.175 |
| 80.157 | 8.454 | 68.637 | 1.048 | 2.379 | 19.800 | 0.171 |
| 78.884 | 8.510 | 88.728 | 1.144 | 2.445 | 20.110 | 0.204 |
| 76.151 | 8.454 | 79.567 | 1.197 | 2.499 | 17.990 | 0.115 |
| 74.836 | 8.476 | 71.711 | 1.163 | 2.488 | 19.130 | 0.108 |
| 74.970 | 8.420 | 68.107 | 1.058 | 2.455 | 19.070 | 0.129 |
| 76.331 | 8.420 | 70.451 | 0.975 | 2.426 | 20.400 | 0.120 |
| 79.862 | 8.454 | 75.235 | 0.893 | 2.397 | 21.580 | 0.168 |
| 81.360 | 8.420 | 77.144 | 0.820 | 2.392 | 21.050 | 0.162 |
| 82.839 | 8.420 | 81.387 | 0.688 | 2.368 | 22.160 | 0.167 |
| 84.616 | 8.420 | 74.555 | 0.601 | 2.337 | 20.890 | 0.188 |
| 85.421 | 8.420 | 75.448 | 0.612 | 2.319 | 20.230 | 0.212 |
| 84.874 | 8.420 | 93.801 | 0.651 | 2.333 | 21.100 | 0.203 |
| 85.334 | 8.454 | 118.546 | 0.833 | 2.375 | 20.950 | 0.211 |
| 85.454 | 8.510 | 163.591 | 1.151 | 2.550 | 27.760 | 0.204 |
| 75.940 | 8.454 | 91.994 | 1.205 | 2.660 | 19.860 | 0.090 |
| 77.939 | 8.454 | 88.637 | 1.140 | 2.468 | 18.830 | 0.073 |
| 78.876 | 8.476 | 93.109 | 1.134 | 2.513 | 22.050 | 0.076 |
| 79.155 | 8.595 | 98.569 | 1.153 | 2.564 | 21.360 | 0.157 |
| 79.564 | 8.510 | 97.022 | 1.170 | 2.605 | 21.630 | 0.145 |
| 79.998 | 8.584 | 99.661 | 1.188 | 2.580 | 24.360 | 0.085 |
| 81.084 | 8.567 | 90.822 | 1.223 | 2.609 | 25.830 | 0.108 |
| 82.635 | 8.601 | 91.497 | 1.318 | 2.646 | 29.090 | 0.099 |
| 81.584 | 8.748 | 89.209 | 1.422 | 2.614 | 29.440 | 0.089 |
| 79.040 | 8.805 | 88.087 | 1.515 | 2.623 | 26.120 | 0.096 |
| 77.958 | 8.658 | 86.555 | 1.554 | 2.587 | 23.500 | 0.098 |
| 79.294 | 8.641 | 89.347 | 1.543 | 2.567 | 22.970 | 0.082 |
| 80.015 | 8.658 | 88.807 | 1.551 | 2.571 | 22.980 | 0.074 |
| 80.977 | 8.601 | 89.148 | 1.558 | 2.580 | 21.240 | 0.091 |
| 83.329 | 8.624 | 93.909 | 1.518 | 2.587 | 23.620 | 0.086 |
| 84.328 | 8.601 | 95.630 | 1.457 | 2.591 | 26.330 | 0.086 |
| 85.358 | 8.748 | 99.310 | 1.383 | 2.546 | 27.560 | 0.087 |


| 85.392 | 8.777 | 99.197 | 1.333 | 2.547 | 29.220 | 0.088 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85.669 | 8.703 | 103.091 | 1.308 | 2.553 | 29.940 | 0.099 |
| 85.543 | 8.714 | 106.285 | 1.257 | 2.542 | 28.410 | 0.108 |
| 85.532 | 8.675 | 102.835 | 1.233 | 2.540 | 28.960 | 0.100 |
| 86.122 | 8.641 | 106.926 | 1.250 | 2.534 | 27.840 | 0.099 |
| 86.108 | 8.805 | 101.360 | 1.287 | 2.558 | 26.230 | 0.091 |
| 84.980 | 8.771 | 95.710 | 1.365 | 2.578 | 26.560 | 0.093 |
| 83.394 | 8.714 | 97.241 | 1.466 | 2.594 | 23.730 | 0.089 |
| 80.889 | 8.641 | 91.538 | 1.548 | 2.588 | 18.680 | 0.093 |
| 78.677 | 8.612 | 86.600 | 1.611 | 2.593 | 19.770 | 0.101 |
| 79.838 | 8.601 | 84.353 | 1.683 | 2.590 | 20.100 | 0.074 |
| 82.417 | 8.601 | 84.345 | 1.704 | 2.608 | 21.790 | 0.087 |
| 83.274 | 8.601 | 86.561 | 1.696 | 2.583 | 21.780 | 0.092 |
| 82.152 | 8.646 | 89.032 | 1.671 | 2.598 | 21.960 | 0.095 |
| 81.680 | 8.612 | 86.655 | 1.560 | 2.584 | 20.340 | 0.086 |
| 82.833 | 8.658 | 78.234 | 1.449 | 2.531 | 20.690 | 0.091 |
| 82.496 | 8.658 | 71.141 | 1.201 | 2.508 | 19.050 | 0.083 |
| 81.908 | 8.624 | 69.195 | 1.018 | 2.502 | 19.140 | 0.103 |
| 83.941 | 8.624 | 61.187 | 0.889 | 2.469 | 19.800 | 0.109 |
| 85.880 | 8.601 | 56.273 | 0.862 | 2.433 | 19.830 | 0.150 |
| 84.798 | 8.624 | 61.490 | 0.924 | 2.430 | 20.190 | 0.171 |
| 81.760 | 8.612 | 75.295 | 0.981 | 2.525 | 23.000 | 0.160 |
| 80.929 | 8.692 | 81.256 | 1.150 | 2.545 | 22.980 | 0.123 |
| 80.217 | 8.567 | 80.533 | 1.234 | 2.587 | 23.520 | 0.105 |
| 79.615 | 8.567 | 83.867 | 1.291 | 2.603 | 24.250 | 0.125 |
| 79.960 | 8.601 | 85.299 | 1.327 | 2.599 | 25.500 | 0.096 |
| 81.140 | 8.584 | 89.167 | 1.374 | 2.636 | 25.260 | 0.082 |
| 81.697 | 8.624 | 93.419 | 1.406 | 2.586 | 26.100 | 0.087 |
| 81.654 | 8.567 | 89.653 | 1.410 | 2.579 | 23.260 | 0.099 |

