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Abstract 

Reservoir porosity is a key parameter in the reservoir evaluation and geomechanics. To 

obtain accurate measurement of porosity can be time-consuming and expensive by core 

sampling or applying various well logging tools. Core sampling can also be limited to 

a small number of wells or partially sections of a wellbore. In this thesis,  a more 

effective and economical method is introduced to provide porosity estimation. A least 

square support vector regression (LSSVR) model is developed to predict the reservoir 

porosity based on 1260 well logging data and porosity from routine core analysis from 

four wells in the Varg field, North Sea. Regularization and kernel parameters are the 

two primary components in the LSSVR algorithm, and they are optimized by 

employing particle swarm optimization (PSO) algorithm. A combined LSSVR-PSO 

model is developed to predict  porosity by using petrophysical logs from Varg Field. 

As comparison, two unoptimized machine learning approaches k-nearest neighbors 

(KNN), support vector regression (SVR) and a hybrid porosity estimation method of 

density log, neutron log and sonic log are utilized. Feature selection is conducted and 

sonic log, gamma-ray log, deep resistivity log, density log and compensated neutron 

log are selected as input features while caliper log is discarded as insufficient 

correlation relationship with porosity. The predicted porosity result from LSSVR-PSO 

model for well 15/12-20S, showing higher accuracy with R2 =0.945, Root mean square 

error (RMSE) = 0.01341 comparing with KNN, SVR and the hybrid porosity estimation 

method. The proposed LSSVR-PSO model for porosity prediction is reliable in the 

datasets range and it can be a more general porosity estimation model by varying the 

scale of the data samples and the number of wells. 

 

Keywords: Porosity prediction; Well logging; Support Vector Machine; Particle 
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1 Introduction 

Porosity is defined as a key petrophysical factor to determine the fluid storage capacity 

of aquifer, gas and oil fields, the space connection relationship between formation pore 

spaces with different mineral components. Porosity is also utilized for the indication of 

petrophysical metrics and lithofacies database in hydrocarbon reservoir evaluation and 

geoscience model establishment (Wendt et al., 1985). A detailed description of porosity 

can be used for reservoir engineers and production engineers to determine the reservoir 

exploration plan and production schedule.   

 

Figure 1 Logging & Measuring Service Cost (Freedonia Group, 2015) 

Remarkable expense and time are spent on well-logging operation and core analysis 

laboratories about specific sections of the wellbores to acquire a comprehensive 

database of the rock properties within a targeted hydrocarbon reservoir section (Zhang, 

et al.,2018). Freedonia Group (2015) indicated that the total cost of the logging and 

measurement service cost in 2019 would be approximately 6.2 billion US dollars as 

Figure 1 shows. Additionally, to obtain accurate quantitative values of porosity is 

complicated and uneasy due to the uncertainties in well logging operation procedure 
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and unclear interaction between formations and reservoir fluids (Ghiasi-Freez, et al., 

2014). Though the accuracy of porosity can be increased by calibrating with more core 

samples, the number of core sampling operation is also limited by time and cost. 

Various empirical equations have been proposed to provide the calculation base for 

porosity estimation with well logs (Wyllie, et al., 1958; Raymer et al., 1980; Krief et 

al., 1990; Pu et al., 2006; Li et al., 2009), but it is still a challenge to apply for these 

estimated formulas as most empirical equations are developed on specific reservoir 

conditions like unconsolidated carbonate, sandstone or inhomogeneous porous 

reservoir. Therefore, it is essential to improve the exploration efficiency of the 

conventional petroleum reservoir to maintain the economical competence of fossil fuels. 

Acquiring more accurate measurement of rock properties like porosity can contribute 

to the exploration optimization and production arrangement to enhance recovery with 

less investment.  

The aim of this master’s thesis is to develop a machine learning model that the porosity 

prediction of a single well can be accomplished by only inputting a series of 

petrophysical well logging data of the single well. This model is trained by the well 

logging data and the true porosity from routine core analysis laboratory from other wells 

in the same field.  

In this thesis, some methods for the estimation of porosity in the Varg oil field, North 

Sea, was done by applying a hybrid conventional porosity estimation model with 

petrophysical logs, and a developed machine learning model of applying LSSVR and 

PSO algorithms. The Varg field is chosen because petrophysical logs and comparative 

data from different logs are available for this field. The hybrid conventional porosity 

estimation method is established on density logs,  sonic logs, and neutron logs. The 

LSSVR model is developed and optimized by a PSO algorithm based on several 

common well logs like a sonic log, resistivity log, caliper log, etc. Additionally, two 

SVR and KNN machine learning models are also constructed for  comparison purpose.  

For this master’s thesis work, the thesis content is organized as follows:  

Chapter 2 represents the theoretical basics required to understand porosity concept, the 

measurement of porosity and introduction of several commonly used petrophysical logs 

in petroleum well logging operation.  
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Chapter 3 illustrates the basics of machine learning theory and algorithms applied in 

this thesis and introduces studies for porosity measurement in well logging, examples 

application of machine learning in the petroleum industry and various optimization 

methods for support vector machine algorithm. 

Chapter4 describes the detailed methodologies of  the LSSVR-PSO model, how to 

apply the LSSVR-PSO model to the well log dataset, and introduction for data 

preparation and parameter setting of the LSSVR-PSO model. This chapter also gives 

the overview of Varg field and some statistical evaluation metrics used in this thesis. 

Chapter 5 lists the feature selection of LSSVR-PSO model and the model comparison 

results between LSSVR-PSO, KNN, SVR and the hybrid porosity estimation method 

are described. A sensitivity analysis is conducted for investigating the relationship 

between input features and predicted porosity.  

Chapter 6 gives illustration of the LSSVR-PSO model results, advantages and 

limitation of LSSVR-PSO model are discussed.   

Chapter 7 concludes the LSSVR-PSO model performance and thesis findings. 

Bibliography summarizes the references cited in this thesis. 
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2 Basic Well Logs and Porosity Measurement 

Porosity is a parameter that is defined as the empty volume fraction over the total 

volume. The space between porous rock is an ideal location for the storage of 

hydrocarbon. Thus, a high percentage of porosity would suggest that more hydrocarbon 

could be stored in the pore space than a low percentage of porosity. Due to the pressure 

difference between formations, the reservoir hydrocarbon can flow in the pore spaces. 

The higher the porosity of the rock is, the easier fluids like hydrocarbon could flow in 

a more porous condition as Figure 2 shows. 

 

Figure 2 Simplified examples of materials with high and low porosity (Höök et al.2010) 

Well logging is a widely used operation to measure geological properties in the 

wellbore by physical recording or the response received from the well logging tools 

during the exploration, drilling, completion and production period of a petroleum 

reservoir development. In this thesis, frequently used well logs including the gamma 

ray log, the caliper log, the deep resistivity log, the density log and the compensated 

neutron log are detailed described here as these six logs are available in the Varg field.  

 

Gamma ray log 

The gamma-ray logging tool is defined as a widely applied tool in petrophysical 

parameter measurement by measuring the natural radioactivity for fluid, mud, or 

formation sections in the reservoir. Gamma-ray log data represents the concentration of 
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radioactive components for measured target by evaluating the energy loss when gamma 

radiation emanates in the formation. Normally, the gamma radioactivity from the 

formation is usually evaluated in API units and a higher gamma-ray reading can be 

obtained in shale than in clean sandstone and carbonates as shale contains more 

radioactive material. It is worthy to mention that the existence of potassium feldspar 

and mica, including glauconite can cause a high gamma-ray reading figure even in clean 

sandstone (Asquith et al., 2004).  

Table 1 provides a summary of the gamma radiation reference value for some common 

minerals and lithologies. When the gamma-ray reading value is higher than 80 in API 

units, it probably suggests that the logged interval is primarily composed of shale rocks 

with low porosity. However, porosity estimation can be hard when the gamma-ray 

reading value is between 10 and 30, which requires other well logging tools to 

determine the lithologies. The measurement accuracy or reliability of the gamma-ray 

log is constrained by the initial intensity of gamma-ray emission and the amount of 

Compton scattering that gamma rays meet (Glover, 2000). Therefore, the gamma-ray 

logging tool is always equipped with a radioactive source like thorium, potassium, and 

uranium (Asquith et al., 2004).  

The gamma-ray logging tool is useful in the lithological classification and geological 

assessment or shale volume calculation, it can be a single well logging tool and it can 

also be combined with other well logs like neutron log, density log, resistivity log, and 

caliper log. Additionally, the gamma-ray logs can also be utilized in-depth matching, 

cased hole correlation, recognition of radioactive mineral deposits, and facies 

depositional environment analysis (Glover, 2000). 

 

Table 1 Gamma radiation reference value for some common minerals and lithologies (Pirson,1963) 

Mineral or Lithology Composition Gamma Radiation 

(API Units) 

Pure Mineral 

Calcite CaCO3 0 

Dolomite CaMg(CO3)2 0 
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Halite NaCl 0 

Anhydrite CaSO4 0 

Gypsum CaSO4(H2O)2 0 

Sulphur S 0 

Mica - 200-350 

Quartz SiO2 0 

Lithology 

Limestone - 5-10 

Dolomite - 10-20 

Sandstone - 10-30 

Shale - 80-140 

Others   

Lignite CH0.849 N0.015 O0.221 0 

Anthracite CH0.358 N0.009 O0.022 0 

 

Caliper log 

The caliper logging tool is designed with several flexible arms in the tool and the basic 

objective of this tool is to provide a measurement of wellbore diameter and wellbore 

shape by detecting the electrical signal changes when the arms are released or 

withdrawn from the tool.  

The diameter and shape of the wellbore can always be changed when drilling through 

different lithologies, or other causes like the occurrence of mud cake. A combination 

of caliper log and gamma-ray log can be helpful in the lithological assessment, the bit 

size is regarded as an optimal measurement reference to monitor the diameter and shape 

along the wellbore.  

Generally, there are three kinds of measuring scenarios for caliper log operation: 
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(1) Wellbore diameter equals to bit size: 

This measurement may suggest that the tool is running through a pretty 

consolidated formation with relatively low permeability and possible lithologies 

can be massive sandstone or calcareous shale. 

 

(2) Wellbore diameter is larger than bit size: 

This measurement may suggest that the tool is running through a relatively soft 

formation and possible caving-in occurs. The possible lithologies can be 

unconsolidated sandstone or gravel. 

 

(3) Wellbore diameter is smaller than bit size: 

This measurement may indicate that part of the formation had already fell back 

into the wellbore and the existence of mudcake. The possible guessing for 

lithologies can be porous sandstone or carbonate. 

 

The Caliper log has become a useful indicator in computing mudcake thickness, 

wellbore volume and required cement volume. The quality of wellbore determines the 

correctness of most well logging tools as the logging quality can be affected by the poor 

hole size setting. Thus, the caliper log also is often used as a reference wellbore 

correction for other well logging tools that are run under poor wellbore conditions. 

Furthermore, possible lithology information from the caliper log can offer additional 

help in wireline pressure tests and recovery of fluid samples (Glover, 2000). 

 

Resistivity log 

Resistivity logging tool is a widely favorable tool in the determination of the existing 

zones of hydrocarbon by measuring the electrical resistivity of rocks and depositional 

sediments. The application of resistivity logging tool can be categories into three 

primary parts:  

(1) Clarification of hydrocarbon layers and water-bearing layers;  

(2) indicate permeable zones;  

(3) Calculation of resistivity porosity (Asquith et al., 2004).  
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Here some basic concepts and Ohm’s law about resistivity are restated and a remarkable 

contribution of Georg Ohm is the study that clearly illustrates the relationship between 

current, voltage and resistance (Georg Ohm, 1827).  With a given conductor 𝐼, there is 

a proportional relationship existing between the current flowing from two points and 

the changes of electrical potential Δ𝐸. The constant of proportionality can be defined 

as the electrical conductance 𝑐 and the electrical resistance 𝑟 is characterized as the 

inverse of the conductance.  

Here, the conductor 𝐼 between two points X and Y can be defined as:  

𝐼 = 𝑐 Δ𝐸 (1) 

𝑟 =
1

𝑐
(2) 

Then, substitute Eq.(2) into Eq.(1): 

𝐼 =
Δ𝐸

𝑟
(3) 

Suppose that there are two different faces X and Y in a cube rock with horizontal area 

A and length of the cube L. The current 𝐼 can be estimated by measuring the electrical 

potential changes Δ𝐸 and then the resistivity 𝑅 of the rock in the horizontal direction 

can be computed with Eq.(4): 

𝑅 =
Δ𝐸

𝐼

𝐴

𝐿
(4) 

 

Hence, the conductivity 𝐶 can be rewritten as Eq.(5): 

𝐶 =
1

𝑅
=

𝐼

Δ𝐸

𝐿

𝐴
(5) 
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Figure 3 Electrical potential change in rock 

 

The two primary types of resistivity logs that are applied in petrophysical parameter 

measurement are induction log and electrode log. Normally, the measuring result either 

is a direct measurement of resistivity or a direct measurement of conductivity, thus both 

measurement results can be used to get the measured resistivity results. In terms of 

sediments, formation water and water-based mud are detected low resistivity readings 

in resistivity log. On the contrary, hydrocarbon components like oil and gas always 

have higher resistivity than water or water-based mud. Thus, the resistivity log can be 

useful in identifying the hydrocarbon zones and non-hydrocarbon zones when 

combined with other petrophysical logs. 

 

Sonic log 

The sonic logging tool is basically equipped with one sound transmitter and two or 

more sonic receivers and the formation response reflects the transmitting capacity of 

the formation by recording the interval transit time (∆t). Lithology and porosity are 

characterized as key factors for the interval transit time (∆t) thus once the seismic 

velocity of the rock matrix 𝑢𝑚𝑎𝑡𝑟𝑖𝑥 and pore fluid 𝑢𝑓𝑙𝑢𝑖𝑑 are known or assumed, the 

porosity values can be estimated with Eq.(6) (Wyllie et al., 1958). Typical velocity and 

interval transit time reference values are given in the Table 2. It shall be mentioned that 

Eq.(6) is applicable on the condition that the rock material is perfectly homogenous 

(Wyllie et al., 1958). 
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𝜙𝑠𝑜𝑛𝑖𝑐 =
∆𝑡𝑙𝑜𝑔 − ∆𝑡𝑚𝑎𝑡𝑟𝑖𝑥  

∆𝑡𝑓𝑙𝑢𝑖𝑑 − ∆𝑡𝑚𝑎𝑡𝑟𝑖𝑥
(6) 

 

Table 2 Sonic velocities and Interval Transit Times for different lithologies (Schlumberger, 1974) 

Item 

𝑢𝑚𝑎𝑡𝑟𝑖𝑥 

(𝑓/𝑠) 

∆𝑡𝑚𝑎𝑡𝑟𝑖𝑥 

(𝜇𝑠/𝑓) 

∆𝑡𝑚𝑎𝑡𝑟𝑖𝑥 

(𝜇𝑠/𝑓) 

Commonly used 

Sandstone 18 to 19.5 55.5 to 51 55.5 to 51 

Limestone 21 to 23 47.6 to 43.5 47.6 

Dolomite 23 to 26 43.5 to 38.5 43.5 

Anhydrite 20 50 50 

Salt (Halite) 15 66.7 67 

Casing (Iron) 17.5 57 57 

 

 

Density log 

The density logging tool is defined as an equipment to provide the bulk density curves 

of the measured formation within a well log interval by recording the returned gammy 

ray count after the impaction of Compton scattering and photoelectric absorption 

(Tittaman and Wahl, 1965). The density log is comprised with a gammy ray source that 

transmits gamma ray into the formation during the well logging operation and normally 

Cobalt-60 or Cesium-137 would be selected as the gamma ray source. 

Density porosity can be computed with the condition that the density of matrix and fluid 

are known. Combined with the measured bulk density record, the density porosity is 

estimated by Eq.(7) and typical values of matrix density for different lithologies in the 

Table 3. Some commonly used value for fluid density are 1.1 gm/cc for salt mud, 1.0 

gm/cc for fresh water and 0.7 gm/cc for gas (Glover, 2001). 

𝜙𝑑𝑒𝑛 =
𝜌𝑚𝑎𝑡𝑟𝑖𝑥 − 𝜌𝑏𝑢𝑙𝑘

𝜌𝑚𝑎𝑡𝑟𝑖𝑥 − 𝜌𝑓𝑙𝑢𝑖𝑑
(7) 
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Table 3 Matrix densities of different lithologies (Schlumberger, 1974) 

Item 

𝜌𝑚𝑎𝑡𝑟𝑖𝑥 

(gm/cc) 

Sandstone 2.65 

Limestone 2.71 

Dolomite 2.88 

Anhydrite 2.98 

Salt (Halite) 2.03 

 

 

Neutron log 

The neutron logging tool is designed with a chemical source within the equipment to 

measure the hydrogen ion concentration of the formation. The neutrons are emitted 

from the source into the logging formation and due to the collision process between 

neutrons and other formation material, the energy loss of the neutrons is related with 

the formation porosity, where the maximum amount of energy loss is a function of 

hydrogen concertation in the formation. Therefore, the responses from neutron log can 

be collected to measure the formation porosity.  Neutron log responses can be affected 

lithology type, detector position placement and spacing between source and detectors, 

which can bring uncertainties for the estimated porosity.  

In terms of the real rock formation, the hydrogen components exist both in the rock 

matrix and the fluids occupying the rock pore space, which can greatly influence the 

measurement of porosity in neutron log. This issue is handled by introducing limestone 

calibration for the neutron log tool as few other elements except hydrogen can 

contribute to measured response in pure limestone where the limestone can be assumed 

to be saturated with water (Glover, 2001). As Figure 4 shows, the apparent limestone 

neutron porosity reading matches the true porosity in limestone layers. If the logged 

interval lithologies are not limestone, then the apparent limestone neutron porosity 

needs to be calibrated to get the true porosity readings. It is noted that the calibrated 

charts can vary by different compensated neutron logging tool  
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Figure 4 CNL neutron chart for lithology and scale conversions (Crain et al. 2006) 

The core analysis laboratory is an ideal and expensive approach to measure a great 

majority of petrophysical rock properties. However, clear limitation from economical 

perspective and specific sections of interests can been seen, but it is still recommended 

as an effective method to get the most accurate measurement of the formation like 

porosity in petroleum industry. In this section, a summary towards Routine Core 

Analysis Laboratory (RCAL) and Special Core Analysis Laboratory (SCAL) will be 

briefly introduced to show what the petrophysical properties are measured in these two 

techniques. 

 

Routine core analysis laboratory 

Routine core analysis laboratory (RCAL) is widely used to acquire petrophysical 

properties from reservoir formation or other intervals of interests. The standard RCAL 

report contains horizontal and vertical permeability, porosity, pore saturation, grain 

density as Figure 5 shows. This petrophysical information can be collected by core 

plugs from the formation. Once the process of core sampling is completed and core 

samples are retrieved to the surface, consolidated methods are needed for core samples 
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to avoid drying of interface sensitive clays or permeability reduction on the way to be 

delivered to laboratory (Glover, 2001). In terms of the porosity measurement methods 

in laboratory, the most used two methods are imbibition and mercury injection. By 

immersing the core sampling rock within a fluid with known density, the weight 

difference of the core sample before and after immersion can be obtained. Then the 

pore volume of core sample can be computed, which is referred as connected porosity. 

As for mercury injection, the core sampling rock is immersed within mercury and 

gradual pressure change would lead to the displacement changes of mercury within the 

core sampling rock. The weight difference of mercury lost can be measured to compute 

the pore volume and porosity.   

 

Figure 5 RCAL report for Well 15/12-5, Varg Field (Statoil,1986) 

 

Special core analysis laboratory  

Compared with RCAL, Special core analysis laboratory (SCAL) can provide a wide 

range of petrophysical parameters by conducting fluid laboratory towards the core 

sampling from the geological formation. More analysis work is involved in SCAL to 

offer approaches to capillary pressure, relative permeability, wettability etc. With more 

detailed information from SCAL, it can help optimize the procedure of Enhanced Oil 

Recovery plan with a better geological and petrophysical understanding of the reservoir 

formation in petroleum industry compared to RCAL. Meanwhile, necessary plug 

preservation methods like wax coating are suggested during the pore sampling and 

delivery process (Glover, 2001). 
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3 Machine Learning and Optimization Techniques 

3.1 Machine Learning basics 

Machine learning can be defined as a training process of finding models that are derived 

from data and there are various definitions of machine learning from different 

perspectives. Samuel (1959) described machine learning as a procedure that 

programming computers can learn from experience and eliminate the requirement of 

detailed programming effort. In Mitchell’s (1997) work, machine learning is defined 

that a computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E. (Mitchell, 1997).  Due to the rapid development of 

computation ability and information technology industrialization, a large amount of 

data is created. Machine learning is a power tool that are widely used in statistics, 

artificial intelligence and predictive analysis. Despite the commercial application like 

house price prediction and spam email classification, machine learning has a great 

impact on data-oriented researches in numerous industries. 

Hastie et al. (2009) suggested that learning from data in the perspective of statistics can 

be illustrated as a procedure to extract important patterns and trends, and understand 

“what the data says”. A more recent definition of machine learning is expressed as a 

combination of hacking skills, mathematics and statistics knowledge and substantive 

expertise (Conway & White, 2012).  

The aim of conducting machine learning is to learn an approximately behavioral 

function g(x) to describe a certain pattern of a dataset where an unknown pattern 

function f(x) may exist. By introducing a cost function or fitness function in machine 

learning and minimizing the error value or fitness value, a series of hyper-parameter 

can be discovered to make the machine learning model to have the best approximate 

pattern estimation of the dataset. A hyper-parameter is defined as a model parameter 

that needs to be set manually rather than learning from the data such as the number of 

neighbors in KNN algorithm and regularization parameter in SVM algorithm.   

Basically, there are three major categories of machine learning: supervised learning, 

unsupervised learning and reinforcement learning. These three learning types are 

classified by whether the output data of learning result is desired or not. For instance, 
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the identification of a spam email belongs to a supervised learning problem as the fact 

that an email is known to be classified into spam or not spam. A customer segmentation 

shall be dimed as unsupervised learning problem as the features and outcome of 

segmentation is unknown before applying machine learning. Furthermore, the machine 

learning applied in this thesis is supervised machine learning model as the model is 

provided with labeled input datapoints and desired outputs. 

The standard approach of supervised machine learning is to obtain the desired output 

by feeding the algorithm with a vast number of labeled inputs to train the model. In the 

example of rock porosity prediction based on petrophysical logs, the objective of the 

supervised machine learning model is to predict the rock porosity values with known 

petrophysical log samples. The fitness function in the prediction of rock porosity is the 

spread values between predicted rock porosity and measured porosity from RCAL. 

A more detailed definition of the supervised machine learning model in this thesis can 

be suggested as follows: The task T is making a prediction of the rock porosity, the 

experience E can be expressed by the labeled input data of petrophysical logs, the 

performance measure P can be described by the spread value of fitness function and 

improved by feeding more samples of the input data from petrophysical logging records. 

Model fitting performance can be evaluated by introducing a fitness function, which is 

widely used to describe the model performance in pattern extraction and recognition. 

Overfitting and underfitting are two major issues that may occur when it comes to 

supervised machine learning (Müller, 2016). 

Overfitting is described as the supervised model is particularly fitting to a set of data 

rather than capturing the pattern of the remaining training set and unable to be used for 

new data. On the contrary, underfitting is when a supervised model basically ends up 

failing to capture the patterns of most data within the training set. The graphic figure 

for illustrating overfitting and underfitting is showed in Figure 6. 
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Figure 6 Graphic illustration of (a) underfitting , (b) good fitting, (c) overfitting. 

In the supervised machine learning model, the plan is to establish a trained model to 

make a relatively accurate estimation on unknown data with the same label as the 

training dataset. If the estimation turns out to be accurate, then it is concluded that this 

model can generalize from the training dataset to test dataset and generation is used to 

describe the robustness of the supervised model.  

Additionally, a sweet pot is represented as the best generalization performance. The 

relationship of overfitting and underfitting is further described in Figure 7. Generally, 

a model with less complexity is estimated to achieve low accuracy for the training 

dataset than a model with higher complexity, so this model is underfitted for the training 

dataset. With more features to be added or optimization of hyper-parameter, the 

accuracy and generalization of the model for the training dataset can be increased till 

the sweet spot is reached. Once the model complexity overpassed the sweet spot, the 

model generalization tends to decline despite that the model accuracy for the training 

dataset is still rising, where this model is overfitted for the training dataset and may not 

be generalized enough for other datasets. 
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Figure 7 Trade-off of model complexity against training and test accuracy (Müller, 2016) 

In order to avoid overfitted or underfitted model, data augmentation and hyper-

parameter adjustment are the two frequently used ways in supervised machine learning. 

The purpose of data augmentation is to increase the dataset size and diversity for both 

training set and test set by collecting more data or revising the existing data as new 

samples. Data augmentation is deemed as a standard regularization method and label 

preserving transformation can be utilized to manually increase samples in the dataset 

(Yaeger et al., 1996).  

In terms of hyper-parameter adjustment, hyper-parameters are referred to as model 

parameters in machine learning like input weighting, bias etc., and the machine learning 

performance is highly influenced by the hyper-parameter settings before training the 

model on the training set. It is essential to choose a proper number of hyper-parameters 

in machine learning because a small number of hyper-parameter may lead to the 

overfitted model whereas too many hyper-parameter can also cause the model training 

inefficient or time-consuming in actual practice.  

Regularization is an effective method to prevent the machine learning model from 

overfitting as regularization penalties are always introduced to minimize the error by 
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adding extra information. There are two major ways to add the regularization penalties 

into the machine learning model: L1 norm and L2 norm in Eq.(11)-(12): 

𝐿1 = 𝐶𝑝 ∑|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑛

𝑖=1

(8) 

𝐿2 = 𝐶𝑝 ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

(9) 

 

Support Vector Machines 

Vapnik (1995) firstly proposed Support vector machines (SVMs) as one effective 

algorithm for model pattern recognition (Vapnik et al., 1995) and it is a fundamental 

method that the SVMs can solve nonlinear functions by leveling the data into a higher 

dimensional space and introducing an optimal hyperspace in the space through kernel 

functions. SVMs can be further divided into two categories: Support vector 

classification (SVC) and Support vector regression (SVR). SVR is developed on the 

basics of SVC with the same methodology. Therefore, some definition and properties 

of SVC are restated as follows: 

State that we have a series of data samples (xi,yi), i=1,…,n where xi ∈ Rn and yi ∈ [-1,1] 

in a linear SVC problem. By solving the Quadratic Programming (QP) equation, an 

ideal hyperplane of classification can be found with the condition of given constraint 

function. The object function is written as a maximizing problem in Eq.(10): 

max
1

‖𝜔‖
+ 𝐶𝑝 ∑ 𝜀𝑖

𝐿

𝑖=1

, 𝑖 = 1, …  , 𝐿 (10) 

Obviously, the maximizing problem can be transformed into the corresponding 

minimizing problem as follows: 

min
1

2
‖𝜔‖2 + 𝐶𝑝 ∑ 𝜀𝑖

𝐿

𝑖=1

, 𝑖 = 1, …  , 𝐿 (11) 

Subject to: 

𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖, 𝜀𝑖 ≥ 0, 𝑖 = 1, … , 𝐿 (12) 
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Penalty parameter 𝐶𝑝  and slack parameter 𝜀  are introduced to avoid outliers and 

misclassification of the dataset. Date points from the original dataset that are 

significantly different from other observations, which can be called as outliers. Outliers 

can have great impact on the application of SVC when limited data points in the dataset 

can be fed as training set. As Figure 8 shows, the existence of an outliner leads to a 

different hyperplane A that is far away from other observation with a smaller margin. 

However, if the outlier can be identified or eliminated, Hyperplane B can be represented 

to have a better classification performance.  

Then an ideal hyperplane can be illustrated with known values of 𝜔 and 𝑏 as it can be 

defined as Eq.(13). 

𝜔𝑇𝑥 + 𝑏 = 0 (13) 

 

Figure 8 Graphic illustration of SVM hyperplane separation with outlier 

As this problem is a typical minimization dual problem with specific constraints, then 

the Wolfe dual problem equation can be introduced to write the objective function as: 

min
𝛼

1

2
∑ ∑ 𝑦𝑖𝑦𝑗(𝑥𝑖, 𝑥𝑗)𝛼𝑖𝛼𝑗 − ∑ 𝛼𝑗

𝐿

𝑗=1

𝐿

𝑖=1

𝐿

𝑖=1

(14) 
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Here, 𝛼𝑗 is the Lagrangian multipliers and this equation is subjected to: 

∑ 𝛼𝑖𝑦𝑖 = 0

𝐿

𝑖=1

, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝐿 (15) 

Then, the ideal separating hyperplane can be illustrated by computed 𝜔 and b with Eqs. 

(14) – (15) and a clear hyperplane drawing can be used to separate the dataset points 

into two categories with a given maximum margin as Figure 15 illustrates. 

 

Figure 9 Graphic illustration of SVM with hyperplane separation 

𝜔 = ∑ 𝛼′𝑥𝑖𝑦𝑖

𝐿

𝑖=1

(16) 

𝑏 =
1

𝑁𝑆𝑉𝑀
(𝑦𝑗 − ∑ 𝛼′𝐾(𝑥𝑖 , 𝑦𝑖)

𝑁𝑆𝑉𝑀

𝑖=1

) (17) 

The SVR algorithm was further developed in application of conducting regression 

analysis and solving time series prediction problems (Müller et al. 1997).  The detailed 

theory basics and concepts are reviewed as follows: 
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Compared with the parameters and principle of SVC, SVR is aimed at solving the 

convex optimization problem under constraints, another loss function and two different 

slack variables 𝜇𝑖 , 𝜇∗  are introduced to balance the infeasible constraints in the 

optimization problem (Bennett and Mangasarian, 1992). Thus, the objective function 

of the optimization problem can be expressed by Eq.(18) and 〈. , . 〉 represents the dot 

product. 

min
1

2
‖𝜔‖2 + 𝐶𝑝 ∑(𝜇𝑖 + 𝜇𝑖

∗)

𝐿

𝑖=1

(18) 

Subject to:  

𝑦𝑖 − 〈𝜔, 𝑥𝑖〉 − 𝑏 ≤  𝜀 + 𝜇𝑖 (𝑖 = 1,2, … , 𝐿) (19) 

〈𝜔, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤  𝜀 + 𝜇𝑖
∗ (𝑖 = 1,2, … , 𝐿) (20)  

𝜇𝑖 ≥ 0 (21) 

𝜇𝑖
∗ ≥ 0 (22) 

 Then, the loss function can be rewritten as equation as below and a graphic illustration 

is described as Figure 10 shows. 

 

Figure 10 Graphic illustration of SVR algorithm 
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|𝜇|𝜀 = {
0             𝑖𝑓 |𝜇| ≤  𝜀
|𝜇| − 𝜀        𝑜𝑡ℎ𝑒𝑟𝑠

(23) 

Furthermore, Lagrange multiplier is used in the objective function and then it proceeds 

as below: 

𝐿′ =
1

2
‖𝜔‖2 + 𝐶 ∑(𝜇𝑖 + 𝜇𝑖

∗)

𝐿

𝑖=1

+ ∑(𝜏𝑖 𝜇𝑖 + 𝜏𝑖
∗𝜇𝑖

∗)

𝐿

𝑖=1

 

− ∑ 𝛼𝑖(𝜀 + 𝜇𝑖 − 𝑦𝑖 + 〈𝜔, 𝑥𝑖〉 + 𝑏)

𝐿

𝑖=1

 

− ∑ 𝛼𝑖
∗(𝜀 + 𝜇𝑖

∗ + 𝑦𝑖 − 〈𝜔, 𝑥𝑖〉 − 𝑏)

𝐿

𝑖=1

(24) 

Here, then take the partial derivatives of Eq.(24): 

𝜕𝐿

𝜕𝑏
= ∑(𝛼𝑖 + 𝛼𝑖

∗)

𝐿

𝑖=1

(25) 

𝜕𝐿

𝜕𝜔
= 𝜔 − ∑(𝛼𝑖 + 𝛼𝑖

∗)𝑥𝑖

𝐿

𝑖=1

(26) 

𝜕𝐿

𝜕𝜇𝑖
∗ = 𝐶 − 𝛼𝑖

∗ − 𝜏𝑖
∗(𝑖 = 1,2 … 𝐿) (27) 

Then, substitute Eqs.(25)-(27) into the objective function and constraints and eliminate 

the dual variables 𝜏𝑖 , 𝜏𝑖
∗: 

max (−
1

2
∑ (𝛼𝑖 + 𝛼𝑖

∗)(𝛼𝑗 + 𝛼𝑗
∗)〈𝑥𝑖, 𝑥𝑗〉

𝐿

𝑖,𝑗=1

) (28) 

max (−𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) +

𝐿

𝑖=1

∑ 𝑦𝑖(𝛼𝑖 + 𝛼𝑖
∗)

𝐿

𝑖=1

) (29) 

Subject to: 

∑(𝛼𝑖 + 𝛼𝑖
∗)

𝐿

𝑖=1

= 0 (30) 
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0 ≤ 𝛼𝑖 ≤ 𝐶𝑝 (31) 

0 ≤ 𝛼𝑖
∗ ≤ 𝐶𝑝 (32) 

Eventually, the objective function can be expressed as Eq.(34):  

𝜔 = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝐿

𝑖=1

𝑥𝑖 (33) 

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝐿

𝑖=1

〈𝑥𝑖 , 𝑥𝑗〉 + 𝑏 (34) 

To conclude, SVM is a useful tool to solve linear and non-linear classification or 

regression problems as nonlinearity in the dataset can be solved by introducing kernel 

methods to be further linearly in a higher dimensional space, which provides the 

mathematic theory basics and parameters for LSSVR.  

 

K-Nearest Neighbors 

K-Nearest Neighbors (KNN) algorithm is a widely applied algorithm for solving 

regression and classification problems in data mining and machine learning. KNN 

algorithm normally means that the pattern of each sample in the dataset can be 

illustrated or represented by the data values of k nearest neighbors.  

 

Figure 11 Predictions made by three-nearest-neighbors regression on the wave dataset (Müller, 2016) 
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The primary concept of the KNN algorithm is that a certain sample is assumed in the 

feature space having the same pattern or characteristics as the k nearest neighbor 

samples. If the k nearest neighbors also share the same patter or characteristics, then it 

can be concluded that this sample belongs to the category as what k nearest neighbor 

samples belong to as Figure 11 shows. Distance calculation and number of neighbors 

are the two primary factors in applying KNN algorithm, the advantages of using KNN 

algorithm can be seen in two ways:  

(1) The KNN algorithm itself is intelligible and easy to apply in practice;  

(2) No specific parameter adjustment is required other than choosing numbers of 

neighbors (normally the selection of a number is between 6 and 10) and distance 

between data points (Müller, 2016).  

The KNN algorithm may be optimal to be used in the dataset with many features as the 

speed of calculation can be slow as a result of heavy computing load.  

 

Particle Swarm Optimization 

 

The PSO algorithm is described on a number of individual particles with an original 

population size of 20-50. Each particle is defined by three major parameters: the current 

position 𝑃𝑐𝑢𝑟𝑟𝑖
, the velocity 𝑢𝑖 and the previous best individual position 𝑃𝑏𝑒𝑠𝑡𝑖. The 

term swarm describes all the searching particles. The objective of PSO algorithm is to 

optimize the model parameters and increase model performance. A fitness function is 

evaluated and computed for individual particle with their current location.  

 

By comparing its previous location 𝑃𝑜𝑙𝑑𝑖
, the present location and best location within 

the particles group, each particle can determine its action with iteration algorithm. 

Ultimately, a best fitness function would be found on the conditions that an acceptable 

good fitness result is obtained or a maximum iteration number is met. The whole 

process to find the optimal objective function is like the foraging behavior of birds.   

 

In this method, coordinates are used to describe the current position 𝑃𝑐𝑢𝑟𝑟𝑖
 of the 

particle as a point in the space. The present particle position is treated as a problem 

solution during the iteration process. If the position is better than any that had been 
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discovered so far, it would be assigned to a new vector 𝑝𝑖 and the best function result 

will be stored in a variable that is called 𝑃𝑏𝑒𝑠𝑡𝑖
 among all the iterations. By continuous 

updating the values of better position 𝑝𝑖 and best position 𝑃𝑏𝑒𝑠𝑡𝑖
, the new position value 

will be updated by adding the velocity 𝑢𝑖 to 𝑥𝑖 by Eqs.(35)-(36) (Poli et al., 2007). 

 

𝑢𝑖𝑛𝑒𝑤
= 𝜔𝑖𝑛𝑢𝑖𝑜𝑙𝑑

+ 𝑐𝑐1 × 𝑟𝑎𝑛𝑑( ) × (𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑥𝑖) + 𝑐𝑐2 × 𝑟𝑎𝑛𝑑( ) × (𝐺𝑏𝑒𝑠𝑡𝑖

− 𝑥𝑖) (35) 

 

𝑃𝑖𝑛𝑒𝑤
= 𝑃𝑖𝑜𝑙𝑑

+ 𝑢𝑖𝑛𝑒𝑤
(36) 

 

By introducing 𝜔𝑖𝑛 as inertia weight, the scope of researching ability of particles can 

be managed to obtain the balance of global searching and individual optimization with 

smaller steps and larger steps respectively. With a relatively large value of 𝜔 , the 

particles may be intended to focus more on global searching rather than individual 

optimization and the particles can be stuck into local optimum with a relatively small 

value of 𝜔. In terms of dealing with particles that are falling out of the search scope, 

another study had proved that those particles can be handled by giving a new random 

location within the designed search scope (Bemani et al., 2020) and they can be 

computed with the Eq.(37): 

 

𝑃𝑗𝑖𝑛𝑒𝑤
= (𝑃𝑗,𝑚𝑎𝑥 − 𝑃𝑗,𝑚𝑖𝑛 ) × 𝑟𝑎𝑛𝑑( ) + 𝑃𝑗,𝑚𝑖𝑛 (37) 

 

Here, 𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛 are referred to the vectors with maximum and minimum values among 

the whole particles within the given searching area. A more detailed flow chart for a 

general PSO algorithm is showed in Figure 12.  
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Figure 12 Graphic illustration of PSO algorithm 

 

3.2 Description of Optimization techniques for SVMs 

Regularization parameter and penalty parameter are introduced in the SVM that are 

required to be optimized due to the variance of input database. The performance of 

SVMs can be decided by data size, model running time, accuracy of setting parameters 

and memory ability of constraints (Shawe et al., 2011). Therefore, a proper selection of 

optimization methods can be utilized to improve the SVMs performance in 

classification and regression problems.  

 

Over the past decades, there are some literatures for optimization methods in SVMs 

such as Interior Point Algorithm, Chunking and Sequential minimal optimization 
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(SMO), Coordinate descent etc. (Shawe et al., 2011). Some basics and concepts about 

these optimization methods are reviewed and summarized as follows: 

 

Interior point algorithm 

Interior point algorithm is designed to solve linear and non-linear convex optimization 

problems and it was firstly proposed in the 1950s and widely studied and discussed 

during 1960s (Fiacco & McCormick, 1990). Once a method for solving linear 

programming based on a new polynomial-time algorithm was proposed (Karmarkar, 

1984), the usages of interior point algorithm became a great option for investigating 

convex optimization and programming problems. Another advantage of interior point 

algorithm is that it shows high reliability and competence when dealing with small or 

moderate datasets containing less 5000 examples, so interior point algorithm may not 

be an ideal option for large dataset due to the notably expensive cost for computing 

large scale data (Shawe et al., 2011). A possible solution for applying interior point 

algorithm in large scale dataset was suggested (Schölkopf & Smola, 2002) and their 

study indicates that a satisfying reverse matrix can be computed by applying a hybrid 

methodology of interior point algorithm and sparse greedy matrix estimation.  

 

Chunking and Sequential Minimal Optimization 

Chunking algorithm is described as a method that a sequence is divided into several 

blocks to maintain the information. In order to guarantee a certain time complexity, 

normally an array of n elements is divided into √𝑛 subsets, and each subset also has √𝑛 

elements. Therefore, the complexity of the general subset algorithm is combined with 

a root sign and each subset is set by the solutions from the previous subset. An improved 

decomposition algorithm to solve quadratic programming(QP) problem by dividing the 

large quadratic programming problems into subproblems was presented (Osuna et al., 

1997), the contribution of Osuna’s work shows that quadratic programming problems 

can be subdivided into subsets to gain a better convergence result without making 

assumption of the support vector numbers. As for Sequential minimal optimization 

(SMO), it was firstly described by Platt (Platt, 1998) and it is a well-developed 

algorithm solving QP issues by computing two examples with analytical solutions, 

which is significantly more efficient than solving QP problem with numerical solutions. 
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(Vapnik, 1982). Nevertheless, the process of running SMO for convergence with high 

accurate solution requirement can be slow (Platt, 1998).  

 

 

Coordinate descent 

Coordinate descent is described as a simple and efficient non-gradient optimization 

algorithm in solving optimization problems. Compared with the gradient optimization 

algorithm that searches the minimum value of the function along the direction of the 

steepest gradient descent, the coordinate descent algorithm sequentially minimizes the 

objective function value along the coordinate axis. a dual coordinate descent method 

for large scale linear SVM was conducted (Hsieh et al., 2008) and the primary 

methodology of coordinate descent is to solve a series of simple optimization problems 

rather than computing a complex optimization problem.  

 

3.3 Application of Machine Learning in Petroleum Industry  

Recently, the evolution and application of artificial intelligence (AI) has enabled an 

optional way to obtain accurate prediction result by utilizing different machine learning 

methods. Four primary Machine learning methods are now being widely used in 

petroleum industry: Evolutionary Algorithms (EA), Swarm Intelligence (SI), Fuzzy 

Logic (FL) and Artificial Neural Networks (ANN) (Donaselaar et al.,2005; Kadkhodaie 

et al., 2017; Onalo et al., 2018).  

For lithofacies classification, Dell'Aversana (2019) compared six different machine 

learning methods and Random Forest and Adaptive Boosting were regarded slightly 

more reliable than Naïve Bayes, Decision Tree and CN2 Rule Induction in lithofacies 

classification problems, SVM has a good classification performance. Another study 

further investigated the application of SVM in lithology classification and it is noted 

that SVM performs poor classification result in crystalline rocks when the training 

samples are imbalanced (Deng et al., 2017). Another case study for the Appalachian 

basin in the USA indicated that accurate prediction of facies and fractures in 

sedimentary rocks can be performed by using Bayesian Network and Random Forest 

methods based on petrophysical logs (Bhattacharya & Mishra, 2018). 
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Some researchers have successfully initialized the application of artificial intelligence 

for petrophysical analysis, petroleum exploration and field production. An automatic 

identification approach by using support vector machine for depositional microfacies 

based on well logs is possible (Dahai et al, 2019) and it can be limited by applying it to 

tight sandstone gas reservoirs. The ANN method is applied to predict compressional 

wave transit time and shear wave transit time with real gamma ray and formation 

density log (Dang et al., 2017) and it is also applicable to the correction and 

supplementing of well log curves (Salmachi et al., 2013). Also, some studies are more 

focused on the estimation of rock properties by machine learning approaches. A 

combination method, ADA-SVR, is proposed to predict rock porosity with good 

robustness performance (Li, et al., 2019). A case study in the South Pars gas field 

utilizes a hybrid algorithm of ANN and imperialist competitive algorithm has 

successfully made an estimation of porosity and permeability (Jamshidian et al., 2015).  

In other areas of petroleum industry, proficient prediction of water versus gas ratio, 

cycle time and injection rates can be obtained by evolutionary algorithm in Chen et al. 

(2010). In the work of Salmachi et al. (2013), a reservoir simulator with optimization 

method and economic objective function is developed to find the optimal locations of 

infill wells for coal bed methane reservoirs. In the Norne field in the Norwegian Sea, 

hydrocarbon WAG performance evaluation can be performed by using hybrid GA-PSO 

machine learning methods to enhance oil recovery (Mohagheghian 2016). Fuzzy logic 

is an intelligent tool in evaluating the uncertainties by implementing fuzzy variables. 

Zhou (2016) proposed an estimated model for corrosion failure likelihood of oil and 

gas pipeline based on the fuzzy local approach. Shahabi (2016) established the selection 

of water reservoirs in Malyasia by fuzzy logic methods. 
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4 Methodology 

4.1 LSSVR-PSO Algorithm 

LSSVR is an advanced regression analysis technique, which is improved based on 

SVMs (Suykens,1999).  Comparing with the SVMs technique, LSSVR approaches a 

new optimization problem by reforming the inequality constrains in SVM into equality 

constraints and introducing Lagrangian multipliers and RBF kernel functions.  

 

Here, the difference between LSSVR algorithm and SVR algorithm is that LSSVR 

algorithm is established to gain a satisfying regression model by only solving equations 

under linear constraints rather than solving quadratic programing equations under non-

linear constraints in SVR. 

min 𝐽(𝜔, 𝜀) =
1

2
|𝜔|2 +

1

2
𝐶𝑝 ∑ 𝜀2

𝑛

𝑖=1

(38) 

 

Subject to:  

𝑦𝑖[𝜔′𝜙(𝑥𝑖) + 𝑏] = 1 − 𝜀𝑖, 𝑖 = 1,2, … , 𝑛 (39) 

 

Where,  𝐶𝑝 is introduced as penalty parameter to balance the trade-off between the 

flatness of the function and the amount up to which deviations larger than 𝜀  are 

tolerated. Then, introducing the Lagrangian multipliers: 

𝐿 = 𝐽 − ∑ 𝛼𝑖[𝑦𝑖(𝜔𝑇𝑔(𝑥𝑖) + 𝑏) + 𝜀𝑖 − 1]

𝑛

𝑖=1

, 𝑖 = 1,2, … , 𝑛 (40) 

 

The partial derivatives of Eq.(40):  

𝜕𝐿

𝜕𝜔
= 0 → 𝜔 = ∑ 𝛼𝑖𝑦𝑖𝜙(𝑥𝑖)

𝑛

𝑖=1

(41) 

 

𝜕𝐿

𝜕𝜀𝑖
= 0  →  𝜀𝑖 =

𝛼𝑖

𝐶𝑝
(42) 
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𝜕𝐿

𝜕𝑏
= 0 →  ∑ 𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

(43) 

 

𝜕𝐿

𝜕𝛼𝑖
= 0 →  ∑ 𝑦𝑖[𝜔′𝜙(𝑥𝑖) + 𝑏] + 𝜀𝑖 − 1 = 0

𝑛

𝑖=1

(44) 

 

By substituting 𝜔 and 𝜀𝑖, Eq.(40) could be simplified as follow: 

 

[
0 𝐼𝛼

𝑇

𝐼𝛼 𝜏 + 𝐶𝑝
−1𝐼

] [
𝑏
𝛼

] = [
0
𝑌

] (45) 

 

Where: 

𝑌 = [𝑦1𝜙(𝑥1), 𝑦2𝜙(𝑥2), … , 𝑦𝑛𝜙(𝑥𝑛)] (46) 

 

𝐼𝛼 = [1,1, … , 1]𝑇 (47) 

 

𝛼 = [𝛼1, 𝛼2, … , 𝛼𝑛]𝑇 (48) 

 

𝜏 = [𝑦𝑖𝑦𝑖𝜙(𝑥𝑖)
′𝜙(𝑥𝑗)]

𝑛×𝑛
(49) 

 

Therefore, the objective function is written as: 

 

𝑦(𝑥) = ∑ 𝑎𝑗𝑦𝑗𝐾(𝑥, 𝑥𝑖) + 𝑏

𝑛

𝑖=1

(50) 

 

For nonlinear dataset, normally it could be tough to directly find the appropriate 

mapping for computation. Thus, the introduction of a kernel function in LSSVR is to 

map the input dataset into a higher dimensional space where the computed results are 

displayed. Depending on the dataset, there are several types of kernel functions to be 

applied like linear, polynomial and radial basis function (RBF) as Table 4 shows. 
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Table 4 Kernel function Categories 

Kernel Type Kernel Expression 

Linear 𝐾(𝑥, 𝑥𝑖) = 𝑥 ∙ 𝑥𝑖 

Polynomial 𝐾(𝑥, 𝑥𝑖) = (𝑥 ∙ 𝑥𝑖 + 1)𝑚 

Gaussian RBF 𝐾(𝑥, 𝑥𝑖) = exp (−
‖𝑥 − 𝑥𝑖‖2

2𝜎2
) 

 

Among all the kernel functions, RBF is proved to have excellent generalization 

performance and low computational cost in nonlinear regression problem (Suykens et 

al., 1999). In this case, RBF kernel function is applied due to the complicated and 

nonlinear dataset obtained by well logging. Once the vector values of 𝛼 and b are solved, 

the estimate result 𝑦(𝑥) could be expressed with new dataset with known 𝛼 and b by 

using Eq.(51): 

 

𝑦(𝑥) = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏

𝑛

𝑖=1

(51) 

 

Here, 𝑥𝑛𝑒𝑤 and 𝑥𝑖 are vectors of size m (m is the number of parameters) 

 

𝑥𝑛𝑒𝑤 = [

𝑥1

⋮

𝑥𝑚

] , 𝑥𝑖 = [

𝑥1,𝑖

⋮

𝑥𝑚,𝑖

] , ‖𝑥 − 𝑥𝑖‖2 = ∑(𝑥𝑞 − 𝑥𝑞,𝑚  )
2

𝑚

𝑞=1

 (52) 

 

𝑦(𝑥) = ∑ 𝛼𝑖 exp (
∑ (𝑥𝑞 − 𝑥𝑞,𝑚 )

2𝑚
𝑞=1

2𝜎2
) + 𝑏

𝑛

𝑖=1

(53) 

  

Furthermore, an appropriate setting of kernel parameter 𝜎 and regularization parameter 

𝐶𝑝 would lead to a better outcome of generalization performance. With the purpose of 

a better prediction outcome, optimization techniques are chosen to optimize these 

parameters. 
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4.2 LSSVR-PSO Model Design 

The LSSVR-PSO model is established by utilizing Python and this model is 

programmed and trained to search for the prediction value of porosity with well logging 

dataset from the Varg field. Therefore, Figure 13 illustrates the flow chart of applying 

the LSSVR-PSO model and the specific procedure of model implement using LSSVR 

and PSO algorithm are as follows: 

 

 

Figure 13 Flow chart of LSSVR-PSO model 

 

(1) Load pre-proceed well logging dataset. 

(2) Initialize PSO and create random kernel parameter 𝜎  and regularization 

parameter 𝐶𝑝. 
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(3) With the initial values of 𝜎 and 𝐶𝑝, proceed the LSSVR model and calculate the 

RMSE for the training data and make RMSE as validate error. 

(4) The validate error is set as fitness value. Pbest and Gbest in PSO will be update 

based on the fitness value, then use equation in PSO to update particle position 

and velocity to get the new values of 𝜎 and 𝐶𝑝 of LSSVR. 

(5) Once the maximum iteration number is satisfied, the optimal values of 𝜎 and 𝐶𝑝 

are obtained. 

(6) Retrain the LSSVR with the optimal 𝜎  and 𝐶𝑝 , then establish LSSVR-PSO 

model. 

(7) With the established LSSVR-PSO model, run the test dataset and evaluate the 

model performance. 

 

4.3 Data Preparation 

The accuracy, performance and quality of any suggested model can be highly affected 

by the consistency of the original dataset and appropriate model parameter settings. 

Thus, data pre-processing and outlier handling can be necessary and essential to make 

the dataset become representative. a total of series of 1260 data samples from four wells 

in Varg Field (well 15/12-5, well 15/12-6S, well 15/12-9S, well 15/12-20S) have been 

collected to form the comprehensive database. 

All the data points employed in this thesis contain actual well logging recordings or 

RCAL data for Sonic Transit Time (DT), Caliper (CA), Gamma Ray (GR), Deep 

Resistivity (DR), Bulk Density (RHOB), Compensated Neutron Log (CNC), and Total 

Porosity (POR).  

It is necessary to outline the statistical index of all the data points fed to the LSSVR-

PSO model. In order to fit and tune the parameters in machine learning model, the 

database can be randomly divided into training dataset and validation dataset with given 

percentage. All the datapoints from well 15/12-5, well 15/12-6S, well 15/12-9S are 

divided randomly into two groups respectively as training dataset and validation dataset 

by a total series of 1100 data points with the percentage of 80% and 20% respectively. 

It is worthy to set another 160 sets of data samples from well 15/12-20S were chosen 

as blind well for pure prediction. 
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In the practice of data pre-processing, the prediction accuracy can be enhanced by 

scaling the novel data with mathematic approaches, which would eliminate the 

unbalance between great numerical ranges and smaller numerical ranges or other 

implicit numerical issues (Liu et al., 2018). Some studies suggest that it is applicable 

for SVMs to normalize the dataset into the different range [0.1,0.9] or [0.15, 0.85] 

(Kalanaki et al., 2013; Liu et al., 2018) to have a better performance.   

Therefore, each of the dataset is scaled and two scaling methods are employed in this 

thesis. The first way is to scale the datapoint into the range of [-1,1] with the following 

steps: Calculate the maximum value (MaxVal) and minimum value (MinVal) of the 

parameters on the complete training dataset and compute the middle point value 

(MidVal) and scale with equations. Then, calculate the scaled value (ScalVal) and this 

method scales all the parameters into [-1,1] with Eqs.(54)-(56): 

𝑀𝑖𝑑𝑉𝑎𝑙 =
𝑀𝑎𝑥𝑉𝑎𝑙 + 𝑀𝑖𝑛𝑉𝑎𝑙

2
(54) 

 

𝑆𝑐𝑎𝑙𝑒 =
𝑀𝑎𝑥𝑉𝑎𝑙 − 𝑀𝑖𝑛𝑉𝑎𝑙

2
(55) 

  

𝑆𝑐𝑎𝑙𝑉𝑎𝑙 =
𝑦𝑖 − 𝑀𝑖𝑑𝑉𝑎𝑙

𝑆𝑐𝑎𝑙𝑒
(56) 

 

The other way of scaling method is to apply logarithmic transformation on data points 

related with resistivity logs, which includes significant difference in magnitudes. 

Logarithmic transformation is utilized in basic research studies to enable the normal 

distribution of the data points and eliminate or reduce the skewness.  

Outlier handling normally contains outlier identification and outlier modification to 

maintain the data features especially when it comes to the small-scale database. In terms 

of outlier identification, Tukey’s test is introduced where the outlier identification is 

explained (Tukey, 1949) and the main idea of Tukey’s test is to identify a specific range 

where the upper and lower bounds are defined in Eq.(57)-(58): 

𝑅𝐿𝑜𝑤𝑒𝑟 = 𝑄1 − 1.5(𝑄3 − 𝑄1) (57) 

 

𝑅𝑈𝑝𝑝𝑒𝑟 = 𝑄3 + 1.5(𝑄3 − 𝑄1) (58) 
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A data sample that is out of the range of [𝑅𝐿𝑜𝑤𝑒𝑟 , 𝑅𝑈𝑝𝑝𝑒𝑟] can be dimed as an outlier. 

When the outliers in data sets are clarified and the number of outliers is notable 

compared with the scale of the datasets, three common ways of outlier modification are:  

(1) Delete the outlier data samples;  

(2) Replace the outlier data samples with average value; 

(3) Substitute the outlier data samples with the average value of the data points 

before and after the outliers. 

 

Figure 14 Data statistical analysis: (a) DT (b) CA (c) GR (d) DR (e) RHOB (f) CNC logs 

The statistical distribution analysis for each log is conducted as Figure 14 shows, 

outliers in each log are marked as black and few outliers appear in DT, CA, GR, RHOB 

logs and these data points may not have a significant influence on the model 

performance, thus all the data samples in those four logs are included. A larger number 

of outliers is filtered out in DR and CNC logs, but outliers in DR and CNC logs are 

caused by the detection of hydrocarbon components during the well logging, therefore 

the outliers in DR and CNC shall be kept and no modification is needed. 
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Additionally, it is beneficial to have a glimpse of the data distribution of all the related 

datasets, Table 5-7 display the statistical indexes of the database used in this thesis and 

machine learning models. 

 

Table 5 Statistical index of all petrophysical logging data in this thesis 

Parameter Min Max Average P10 P90 

DT (𝜇𝑠/𝑓) 44.08 124.06 83.75 70.09 98.36 

CA (inch) 6.00 21.00 12.20 9.00 15.50 

GR (API) 21.45 70.27 37.38 25.89 51.37 

DR (OHMM) 0.69 36.82 4.465 0.96 10.53 

RHOB (gm/cc) 1.98 2.92 2.36 2.14 2.55 

CNC (%) 3.81 54.27 20.12 15.89 24.78 

POR 0.02 0.38 0.17 0.08 0.29 

 

Table 6 Statistical index of petrophysical logging data used for training and validation 

Parameter Min Max Average P10 P90 

DT (𝜇𝑠/𝑓) 44.08 124.06 87.15 77.97 98.80 

CA (inch) 6.00 21.00 9.75 8.46 13.00 

GR (API) 21.45 108.29 53.23 30.19 86.17 

DR (OHMM) 0.19 36.82 3.74 0.31 9.88 

RHOB (gm/cc) 1.98 2.92 2.29 2.13 2.46 

CNC (%) 3.81 54.27 20.12 15.90 24.78 

POR 0.02 0.38 0.20 0.10 0.31 
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Table 7 Statistical index of all petrophysical logging data used for blind well prediction 

Parameter Min Max Average P10 P90 

DT (𝜇𝑠/𝑓) 65.46 87.42 78.94 70.22 85.34 

CA (inch) 8.40 8.80 8.51 8.42 8.64 

GR (API) 5.15 163.59 53.54 9.85 97.37 

DR (OHMM) 0.26 24.21 3.60 0.54 12.15 

RHOB (gm/cc) 2.21 2.66 2.44 2.28 2.59 

CNC (%) 5.73 30.34 18.92 13.38 25.53 

POR 0.03 0.24 0.14 0.07 0.21 

 

4.4 Feature Selection 

Feature selection is described as a primary process in machine learning and its primary 

purpose is to select input features for the machine learning model based on the 

relevance between features and model output. A good feature selection can increase the 

model performance with lower error rate, and it can also enhance the model 

generalization and avoid overfitting problem at the same time. Pearson correlation and 

distance correlation are two frequently used methods in feature selection, so some 

concepts of those two methods are illustrated in the following content. 

4.4.1 Pearson Correlation 

In terms of Pearson correlation, pj represents a value in the range of +1 and -1 

considering with the given dataset {(x1, y1), …, (xn, yn) )} by using Eq. (59) and it can 

reveal the correlations between x and y, where +1 refers to total positive correlation and 

-1 refers to total negative correlation. Therefore, the absolute value of correlation 

coefficient is closer to 1, it indicates higher correlation relationship between variables. 

For Pearson Correlation, the correlation relationship is measured by the absolute values 

of 𝑝𝑗 , which means a higher absolute value suggests higher correlation between the 

dependent variable y and x. The different sign of 𝑝𝑗 shows that whether the dependent 
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variable y would follow the changes of the increase or decrease of x. Table 8 lists out 

the interpretation of Pearson correlation coefficient value.  

 

𝑝𝑗 =
∑ (𝑥

𝑗,𝑖
− 𝑥�̅�)(𝑦

𝑖
− �̅�)𝑛

𝑖=1

√∑ (𝑥𝑗,𝑖 −𝑛
𝑖=1 𝑥�̅�)

2
∑ (𝑦

𝑖
− �̅�)

2𝑛
𝑖=1

 , 𝑗 = 1, … 𝑛 (59)
 

 

Table 8 Interpretation of Correlation coefficient values 

Correlation coefficient value Interpretation 

±1 Perfect positive/negative relationship 

±0.8 Fairly strong positive/negative relationship 

±0.6 Moderate strong positive/negative relationship 

0 No relationship 

 

4.4.2 Distance Correlation  

Székely et al., (2007) proposed Distance Correlation as a new approach to evaluate the 

all categories of dependence between random vectors. The definition and properties of 

Distance Correlation are reviewed as follows: 

Distance Correlation (Dcorr) is defined to evaluate the correlation between two random 

vectors P and Q: 

(1) Dcorr (P, Q) is characterized for P and Q with arbitrary dimensions, P and Q 

are not compulsorily required to be in the same dimensions. 

(2) P and Q are identified as independent only when Dcorr (P, Q) = 0. 

(3) Dcorr (P, Q) ∈ [0,1]. 

Meanwhile, Distance covariance (Dcov) is defined as a calculation distance between 

the joint characteristic equation 𝜙𝑃,𝑄 of P and Q. the marginal characteristic equations 

of P and Q are introduced as the product metrics 𝜙𝑃𝜙𝑄 (Székely et al., 2007) 

𝐷𝑐𝑜𝑣2(𝑃, 𝑄) =  ‖𝜙𝑃,𝑄(𝑡, 𝑠) −  𝜙𝑃(𝑡)𝜙𝑄(𝑠)‖
𝜔

2
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= ∫ |𝜙𝑃,𝑄(𝑡, 𝑠) − 𝜙𝑃(𝑡)𝜙𝑄(𝑠)|
2

𝜔(𝑡, 𝑠)𝑑𝑡𝑑𝑠
𝑅𝑋+𝑌

(60) 

A detailed study provides the detailed proof steps of Lemma 1 (Székely & Rizzo, 2005) 

and the simplified form of Lemma 1 is described as follows: 

𝜔(𝑡, 𝑠) = (𝑐𝑋𝑐𝑌|𝑡|𝑋
1+𝑋|𝑠|𝑌

1+𝑌)−1 (61) 

𝑐𝑑 =
𝜋

1+𝑑
2  

𝛤 (
1 + 𝑑

2
)

(62) 

 

Combine Eqs.(61)-(62), then the standardized form of Distance correlation is expressed 

as Eq.(63): 

𝐷𝑐𝑜𝑟𝑟(𝑃, 𝑄) =
𝐷𝑐𝑜𝑣2(𝑃, 𝑄)

√𝐷𝑐𝑜𝑣2(𝑃, 𝑄)
(63) 

 

For Distance Correlation, the distance correlation is evaluated by the absolute values of 

𝐷𝑐𝑜𝑟𝑟 , which indicates that a higher absolute value means higher correlation 

relationship between the dependent variable P and Q. 

 

4.5 Porosity Estimation by well logs 

In this thesis, the neutron log, the sonic log and the density log are the three main logs 

employed to make a prediction of porosity based on the calibrated model with true 

porosity. Therefore, some prerequisites and assumptions are made in the employment 

of conventional approaches as follows: 

(1) Matrix density and fluid density in the logged interval for density logging are 

assumed to be constant (Glover, 2002). 

(2) Matrix transit time and fluid transit time in the logged interval for sonic logging 

are assumed to be constant (Glover, 2002). 

(3) The same linear calibration is applied for neutron log, density log and sonic log 

and calibrated with true porosity from RCAL for the dataset of  well 15/12-5, 
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well 15/12-6S and well 15/12-9S to make a porosity prediction on well 15/12-

20S. 

As for sonic log and density log, once the related variables are dimed as constant in 

Eqs.(6)-(7) and the matrix density, fluid density in density log and matrix transit time, 

fluid transit time can be recomputed by calibrating with the true porosity from RCAL. 

Due to difference in dataset quality in the practical well logging operations, the actual 

measurements from these three logs may not be equally evaluated and utilized for 

porosity estimation. Thus, specific weights are assigned to each log porosity estimation 

to balance the quality of data samples and prediction accuracy as Eq.(64) shows. The 

exacta values for weights can be aligned with regression r square results in each log and 

the weights shall be added to one. 

 

𝑍(𝑃𝑂𝑅𝐷𝑇 , 𝑃𝑂𝑅𝑅𝐻𝑂𝐵, 𝑃𝑂𝑅𝐶𝑁𝐶) = 𝑇1 × 𝑃𝑂𝑅𝐷𝑇 + 𝑇2 × 𝑃𝑂𝑅𝑅𝐻𝑂𝐵 + 𝑇3 × 𝑃𝑂𝑅𝐶𝑁𝐶(64) 

 

4.6 Statistical Evaluation  

Several statistical evaluation methods are listed to assess the derivation between the 

observation data and predicted data and performance of the model:  

 

(1) Root Mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑(𝑥0 − 𝑥)2

𝑛
(65) 

 

 

(2) Average absolute error (MAE): 

𝑀𝐴𝐸 =
∑|𝑥0 − 𝑥|

𝑛
(66) 

 

 

(3) Pearson Coefficient of determination (R2): 

𝑅2 = 1 −  
∑(𝑦𝑖 − 𝑦𝑖

𝑝𝑟𝑒𝑑)
2

∑(𝑦𝑖 − �̅�)2
(67) 
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(4) Distance Correlation: 

𝐷𝑐𝑜𝑟𝑟(𝑃, 𝑄) =
𝐷𝑐𝑜𝑣2(𝑃, 𝑄)

√𝐷𝑐𝑜𝑣2(𝑃, 𝑄)
(68) 

4.7 Varg Field Overview 

 

The Varg field is in the central area of the North Sea, situated about 230km southwest 

of Stavanger. The discovery and filed production started in 1984 and 1998 respectively, 

the well 15/12-5 and the well 15/12-6S were drilled as two appraisal wells to confirm 

the discovery of the Varg field. The production of the Varg field had already been 

stopped and new decommissioning operation was approved in 2015 and the 

decommissioning operation shall be completed by the end of 2021 per schedule. 

  

Figure 15 Location of Varg Field (Norwegian Petroleum Directorate,2020) 

Table 9 Summary of Varg field wells 

 

 

15/12-5 15/12-6S 15/12-9S 15/12-20S

Well type Appraisal Wildcat Appraisal Wildcat

Water depth (m) 84 84 84 84

Total depth(MD) [m RKB] 3150 3050 3848 4192

Final vertical depth(TVD) [m RKB] 3149 3034 3213 3141.5

1st level with HC,age Late Jurassic Late Jurassic Late Jurassic Late Jurassic

1st level with HC,formaiton Ula FM Intra Heather FM SS Intra Heather FM SS Sleipner FM

Oldest penetrated age Late Triassic Triassic Triassic Late Triassic

Oldest penetrated formation Skagerrak FM Skagerrak FM Skagerrak FM Skagerrak FM

Target upper depth (m) 2895.75 2855.75 3389 3815

Target lower depth (m) 2942 2964 3554.75 3897.5
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With the available and comparable well logging data samples in well 15/12-5, well 

15/12-6S, well 15/12-9S and well 15/12-20S, Table 4 presents a summary of basic well 

information for these four wells used in the thesis.  The target upper depth and target 

lower depth define the target zone where core samples are taken during RCAL. 

Therefore, more focus will be on the sections within the target zone for lithological 

description for well 15/12-5, well 15/12-6S, well 15/12-9S whereas no completion well 

report for 15/12-20S is provided, so 15/12-20S lithology description is not included 

here. 

For  well 15/12-5, the target zone is located between 2895.75m and 2942m depth, which 

can be divided into two sections. The first section from 2895.75m – 2918m depth 

belongs to the Heather Formation of the Viking Group. Siltstone, claystone and shale 

are the primary lithologies in the Heather Formation and its age is middle Oxfordian to 

early Kimmeridgian(Upper Jurassic). 

Table 10 Well 15/12-5 Lithology Summary 

Lithology Color Hardness Description 

Siltstone Dark grey Firm – Hard 
Locally weakly laminated siltstone 

with very find sand 

Claystone Medium grey Hard 
Massive silty in parts and non-

calcareous 

Shale Dark grey Hard - Brittle 
Fissile, slightly carbonaceous and non-

calcareous 
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Figure 16 Gamma Ray log, SP log, Deep resistivity log and medium resistivity log for well 15/12-5 

 

Figure 17 Gamma ray log, neutron log, density log for well 15/12-5 
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A series of high gamma ray readings shall be noted between 2895m and 2915m  from 

the Figure 16 and 17 and some key lithological information can be gained from Statoil 

(1986) and described in Table 10. The other section from 2918m – 2942m depth 

belongs to the Vestland Group with Oxfordian Sandstone Unit.   

For well 15/12-6S, the target zone is located between 2855.75m and 2964m depth, 

which can be divided into two sections. The first section from 2855.75m – 2933m depth 

belongs to the Oxfordian Sandstone of the Vestland Group. Sandstone is the primary 

lithology in the Oxfordian Sandstone and its age is early to late Oxfordian (Late 

Jurassic). Pale to dark yellow brown oil stained sandstone, coal fragments and mica are 

common in the formation. The grains  in the sandstone vary from very fine to very 

coarse sand.  

The other section from 2933m – 2964m depth belongs to the Sleipner Formation, where 

the age is Middle Jurassic with terrestrial / deltaic depositional environment from 

Statoil (1990). This section is mainly composed of layers of sandstone, claystone and 

coal. Additionally, some key lithological information can be obtained from Statoil 

(1990) as showed in Table 11.  

Table 11 Well 15/12-6S Lithology Summary 

Lithology Color Hardness Description 

Sandstone Light grey Very hard  
Cemented with silica and no 

visible porosity 

Claystone 
Moderate brown to 

greyish red 
Soft - Firm 

Very silty and sandy in some 

parts 

Coal 
Black to brownish 

black 
Hard 

Slightly micaceous and no 

visible porosity 
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Figure 18 Gamma Ray log, SP log, Deep resistivity log and medium resistivity log for well 15/12-6S 

 

Figure 19 Gamma ray log, neutron log, density log for well 15/12-6S 
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For well 15/12-9S, the target zone is located between 3389m and 3554.75m depth, 

which belongs to the Oxfordian Sandstone of the Vestland Group. Sandstone is the 

primary lithology in the Oxfordian Sandstone with a narrow layer of dolomite between 

3440m and 3444m. The formation age is Lower Oxfordian to Lower Kimmeridgian 

with Marine shelf depositional environment.  

The sandstone in the Oxfordian Sandstone formation varies by depth, relatively pure 

and clean sandstone exist in the upper layer of the formation, which can be seen from 

Fig.(8)-(9) and the well completion report (Statoil, 1993). The sandstone in the lower 

layers is composed of clean sandstone with stingers of limestone. Additionally, some 

key lithological information can be obtained from the well completion report (Statoil, 

1990), Figure (20)-(21) and showed in Table 12. 

Table 12 Well 15/12-9S Lithology Summary 

Lithology Color Hardness Description 

Sandstone Grey Hard - Very hard  
Silty, argillaceous and cemented 

with silica 

Sand 
Light brown, 

brownish grey 
Soft 

Slightly bioturbated with poor 

visible porosity 

Dolomite 
Yellow grey to 

brownish grey 
Hard 

Sandy and calcareous in some 

parts 
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Figure 20 Gamma Ray log, Deep resistivity log and medium resistivity log for well 15/12-9S 

 

 

Figure 21 Gamma ray log, neutron log and density log for well 15/12-9S 
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4.8 Model Parameter Setting 

After the optimization of applying PSO for initial LSSVR, the model parameters 

employed in LSSVR (regularization parameter  𝐶𝑝  and kernel parameter 𝜎 ) are 

optimized before feeding the training and validation datasets again to have an ideal 

LSSVR-PSO model as Table 13 shows. Here, the range of some parameters are defined 

as: 𝐶𝑝 ∈ [2, 210], 𝜎∈ [2-6, 2]. The optimization parameter setting for PSO (population 

of particles, maximum iteration time, cognitive weight 𝑐𝑐1 , social weight 𝑐𝑐2  and 

inertia weight 𝜔) are listed in Table 14. Additionally, the parameter setting of another 

two machine learning models SVR and KNN for comparison are listed in Table 15.  

Table 13 Parameter setting for LSSVR algorithm 

Model Item Value / Type 

LSSVR-PSO 

Number of input features 6 

Kernel function RBF 

Kernel parameter (𝜎) 0.571 

Regularization parameter (𝐶𝑝) 13.105 

Number of training data samples 880 

Number of validation data samples 220 

Total data samples 1100 

 

Table 14 Parameters employed in PSO algorithm 

Model Item Value 

PSO 

Population of particles 50 

Maximum iteration time 100 

Cognitive weight 𝑐𝑐1, 2.05 

Social weight 𝑐𝑐2 2.05 

Inertia weight 𝜔𝑖𝑛 0.9 
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Table 15 Model parameter settings for SVR and KNN algorithms 

Model Item Value 

SVR 

Regularization parameter (𝐶𝑝) 10 

Kernel parameter (𝜎) 0.5 

KNN Number of Neighbor 5 
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5 Model Results and Sensitivity analysis 

5.1 Model Feature Selection  

Normally, the model performance is highly affected by the input features for training 

and validation, because excessive input features will lead to information redundancy 

and reduced interpretability of the model, so it is necessary to screen the input features. 

In this thesis, the correlation relationship between well logs and porosity needs to be 

measured by correlation co-efficient and higher correlation co-efficient values of the 

well log would be relevant to porosity. Therefore, the well logs with high correlation 

co-efficient values are selected and fed as input features for the prediction LSSVR-PSO 

model. 

 

Unlike other known correlation approaches, as for the Distance Correlation approach, 

the correlation between random vectors would be classified as independent only when 

the distance correlation value equals to zero. Furthermore, the equal dimensions or 

linearity are not required, and no specific constraints or assumption are needed for the 

compared vectors in Distance Correlation approach, which enables more generalization 

than classical Pearson Correlation where normal distribution assumption needs to be 

made. Hence, Pearson Correlation and Distance Correlation methods are utilized for 

the training and validation datasets to figure out the relationship between petrophysical 

logging data and porosity and determine what will be fed to the LSSVR-PSO model.  

 

All the five conventional parameters have different correlation with porosity as Figure 

22 shows. CA and DR are less significant compared with others with p ~-0.21 and p ~ 

0.04 respectively. RHOB dependence shows the most notable correlation p ~ -0.73 and 

the correlation values for DT, GR and CNC are p ~ 0.53, p ~ -0.44, p ~ 0.35.  It is noted 

that GR is in negative correlation with porosity as high GR values always indicate less 

porous rock space for shale where the rock porosity is remarkably low.  
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Figure 22 Pearson correlation result for training and validation datasets 

 

The correlation summary for all five logs is represented in Figure 23 and it can be seen 

that CA is the parameter with lowest correlation values with 𝐷𝑐𝑜𝑟𝑟  ~ 0.26 in the 

correlation with porosity. The highest correlation value is obtained in RHOB with 𝐷𝑐𝑜𝑟𝑟 

~ 0.75 and the correlation values for DT, DR, GR, CNC are 𝐷𝑐𝑜𝑟𝑟 ~ 0.61 , 𝐷𝑐𝑜𝑟𝑟 ~ 0.27 , 

𝐷𝑐𝑜𝑟𝑟 ~ 0.51 and 𝐷𝑐𝑜𝑟𝑟 ~ 0.45 respectively.  

 

Considering the two correlation analysis results from Pearson Correlation and Distance 

Correlation, DT, DR, GR, RHOB, CNC are selected as input features of LSSVR-PSO 

model in the thesis because it is most likely that a relationship among DT, DR, GR, 

RHOB, CNC and porosity exists. 
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Figure 23 Distance correlation result for training and validation datasets 

 

 

5.2 LSSVR-PSO Model Validation and Calibration  

Once the LSSVR model is initialized with training dataset and run the LSSVR model 

for validation dataset to acquire the predicted porosity. The LSSVR-PSO predicted 

porosity can be compared with true porosity from core analysis and demonstrated in 

the Figure 24. The data in validation dataset are marked with red triangle and the blue 

line is described as the fitting line that indicates the accuracy of predicted porosity 

versus true porosity with R2 =0.769. 



 

54 

 

 

Figure 24 Scatter plot of LSSVR predicted porosity versus true porosity for validation dataset 

 

For the next step, the hyper-parameter in the LSSVR model is optimized by employing 

PSO algorithm for the training dataset, the optimized parameters in the optimal LSSVR-

PSO model were found: 𝐶𝑝 = 13.105 and 𝜎 = 0.557. As the Figure 25 represents, a 

comprehensive graphic comparison is conducted between LSSVR-PSO predicted 

porosity and true porosity with high accuracy performance where R2 = 0.979 after 

applying PSO algorithm for the validation dataset. 

Since the calibrated LSSVR-PSO model has addressed high accuracy porosity 

prediction in validation dataset, then this calibrated model can be further utilized in the 

prediction of a blind well to verify the generalization and robustness of the model. As 

Figure 26 depicts, a graphic comparison is represented between the LSSVR-PSO 

predicted porosity and the true porosity with a great fitness with R2 =0.945 for the blind 

well dataset. 
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Figure 25 Regression plot of LSSVR-PSO predicted porosity versus true porosity for validation dataset 

 

 

Figure 26 Regression plot of LSSVR-PSO predicted porosity versus true porosity for blind well dataset 
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Furthermore, a data distribution plot has been drawn for showing the porosity deviation 

percentage between the predicted porosity and true porosity. As showed in Figure 26, 

the prediction deviation is relatively within about 10%-20% when the true porosity is 

larger than 0.15. However, when it comes to tight rock where porosity is lower than 

0.15, the predicted porosity result from LSSVR-PSO model becomes unreliable with 

significantly large error. 

 

 

Figure 27 Relative deviation of LSSVR-PSO predicted porosity versus true porosity for blind well dataset 

 

In order to understand the deviation distribution among all input features in LSSVR-

PSO model, Fig. 27-31 are constructed by performing the LSSVR-PSO model versus 

DT, GR, DR, RHOB and CNC. Most of the recorded data samples from DT, RHOB 

and CNC logs are in good coordination level with the deviation between true porosity 

and predicted LSSVR-PSO porosity. It is worthy to demonstrate that the significant  

deviations occur when the recorded GR is larger than 100 API as Figure 28 shows. 
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Figure 28 LSSVR-PSO Predicted porosity deviation versus petrophysical logs 

 

5.3 Model Performance Comparison 

To compare and evaluate the prediction performance of the LSSVR-PSO model, the 

two machine learning methods KNN and SVR are introduced and employed with the 

same datasets and input features. As Figure 29-30 show, the scatter plots illustrate the 

prediction accuracy of porosity in KNN method with five neighbors and estimation 

deviation between KNN predicted porosity and true porosity from RCAL. The 
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correlation co-efficient between true porosity and predicted porosity for the blind well 

R2 =0.839.  

 

Figure 29 Regression plot of KNN predicted porosity versus true porosity for blind well dataset 

 

Figure 30 Relative deviation of KNN predicted porosity versus true porosity for blind well dataset 

 

Similarly, the porosity estimation and prediction deviation distribution can be 

illustrated from Fig. 31-32 for the SVR machine learning method, the accuracy of this 
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approach is higher than for the KNN method with the correlation co-efficient value R2 

=0.898. 

 

Figure 31 Regression plot of SVR predicted porosity versus true porosity for blind well dataset 

 

Figure 32 Relative deviation of SVR predicted porosity versus true porosity for blind well dataset 



 

60 

 

As it is mentioned in section 4.5, a suggested hybrid porosity estimation based on well 

logs is introduced for comparison, thus four constant variables for density log and sonic 

log can be calculated by plotting the scatter plots of data samples of three logs with true 

porosity from the training database composed of well 15/12-5, well 15/12-6S and well 

15/12-9S. As Figure 36-38 show, the correlation co-efficient R2 are 0.2813, 0.5294 and 

0.1217 for sonic log, density log and neutron log respectively. The recalculated values 

of matrix density, fluid density, interval transit time of matrix and interval transit time 

of fluid are 2.79 gm/cc, 0.36 gm/cc, 41.956 𝜇𝑠/𝑓, and 1.3 𝜇𝑠/𝑓 respectively. 

 

Figure 33 Linear regression plot of DT versus true porosity in training dataset 

 

Figure 34 Linear regression plot of RHOB versus true porosity in training dataset 
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Figure 35 Linear regression plot of CNC versus true porosity in training dataset 

 

Table 16 Constant variables in DT log and Density log obtained by calibrated linear regression by true porosity 

Constant variable Value 

𝜌𝑚𝑎𝑡𝑟𝑖𝑥, Matrix density 2.79 (gm/cc) 

𝜌𝑓𝑙𝑢𝑖𝑑, Fluid density 0.36 (gm/cc) 

∆𝑡𝑚𝑎𝑡𝑟𝑖𝑥, Interval transit time of matrix 41.956 (𝜇𝑠/𝑓) 

∆𝑡𝑓𝑙𝑢𝑖𝑑, Interval transit time of fluid 264.178 (𝜇𝑠/𝑓) 

 

With the given condition, the correlation co-efficient R2 for the three logs are 0.2813, 

0.5294 and 0.1217 for sonic log, density log and neutron log respectively as Table 16 

gives. The value selection of estimated porosity weights for Eq.(67) in this case are T1 

=0.6, T2 =0.3, and T3=0. Thus, the estimated porosity by the hybrid approach with three 

logs can be calculated in Eq.(64) and the prediction result is showed in Figure 36 with 

the correlation co-efficient R2 = 0.5078 
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Figure 36 Regression plot of hybrid approach predicted porosity versus true porosity for blind well dataset 

 

Among the proposed machine learning methods and conventional approach, Table 17 

gives a summary of model prediction performance. It can be demonstrated that LSSVR-

PSO model shows the best performance with highest correlation co-efficient R2 = 0.945 , 

lowest RMSE=0.01341 and MAE=0.01029 for porosity estimation in blind well among 

all the models. 

 

Table 17 Summary of models for the blind well porosity prediction 

Model Type Model R2 RMSE MAE 

Hybrid approach DT+ RHOB + CNC 0.508 0.04332 0.03424 

Machine Learning 

methods 

KNN 0.839 0.02076 0.01475 

SVR 0.898 0.01502 0.01164 

LSSVR-PSO 0.945 0.01341 0.01029 

 

5.4 Sensitivity Analysis 

Sensitivity analysis is defined as a process to show the relationship between a 

mathematical model output and the existing uncertainties in input features under some 
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certain assumptions. Assumptions, input features and regression equations are key 

components of a regression model and the uncertainties can exist in every assumption, 

input parameter and regression equation in practical application, which may highly 

affect the regression performance of the model and cause errors. Hence, there are some 

advantages to employ sensitivity analysis on models as follows: 

(1) Robustness testing. 

(2) Model validation range for input features and output results. 

(3) Accuracy priority on input features. 

(4) Ease the calibration stage with large scale input features (Bahremand,2008). 

(5) Clarify potential relationships between input features, observation and model 

output. 

In this thesis, the sensitivity analysis is conducted in two parts: (a) Single feature 

variation for single data point; (b) A series of feature variations for prediction accuracy. 

Firstly, Table 18-20 represents the sensitivity outcome for a randomly selection of three 

data samples in the blind well dataset by varying a fixed input feature by increasing it 

with 20% and keep the others remain constant. The spread ratio is defined as the value 

difference between true porosity and predicted porosity. It can be observed that the 

variation of RHOB log values can cause a significantly high spread ratio between 

predicted porosity and true porosity. 

Table 18 Sensitivity analysis on single dataset with 20% increase in each feature – Sample A 

 
 

Item DT GR DR RHOB CNC True Porosity
Predicted Porosity

(LSSVR-PSO)
Spread ratio 

Reference 68.49 61.34 5.89 2.52 19.41 0.099 0.096 3.125%

Vary DT 82.18 61.34 5.89 2.52 19.41 0.099 0.101 -1.980%

Vary GR 68.49 73.61 5.89 2.52 19.41 0.099 0.102 -2.941%

Vary DR 68.49 61.34 7.06 2.52 19.41 0.099 0.099 0.000%

Vary RHOB 68.49 61.34 5.89 3.02 19.41 0.099 0.130 -23.846%

Vary CNC 68.49 61.34 5.89 2.52 23.29 0.099 0.096 3.125%



 

64 

 

 

Table 19 Sensitivity analysis on single dataset with 20% increase in each feature – Sample B 

 
 

Table 20 Sensitivity analysis on single dataset with 20% increase in each feature – Sample C 

 

 

In the second part of the sensitivity analysis, this part of sensitivity analysis has been 

employed towards all the input features (DT, GR, DR, RHOB and CNC) with the 

LSSVR-PSO optimal model for blind well database.  The sensitivity method is to fix 

four input features and make a prediction of porosity when the remaining input feature 

increases 10%, 20%, 30% and 50% for the blind well.  Then, the first quartile and third 

quartile of true porosity in the blind well dataset can be computed by using Eq.(57)-(58) 

are: 0.091 and 0.192 and all the blind well data samples are divided into three groups 

in group intervals [0,0.091),  [0.091, 0.192) and [0.192, 1). Hence, a series of 9 data 

samples are randomly selected from these three groups to show how the predicted 

Item DT GR DR RHOB CNC True Porosity
Predicted Porosity

(LSSVR-PSO)
Spread ratio 

Reference 66.15 43.99 7.48 2.57 12.88 0.119 0.124 -4.032%

Vary DT 79.38 43.99 7.48 2.57 12.88 0.119 0.127 -6.299%

Vary GR 66.15 52.79 7.48 2.57 12.88 0.119 0.123 -3.252%

Vary DR 66.15 43.99 8.98 2.57 12.88 0.119 0.127 -6.299%

Vary RHOB 66.15 43.99 7.48 3.08 12.88 0.119 0.153 -22.222%

Vary CNC 66.15 43.99 7.48 2.57 15.46 0.119 0.123 -3.252%

Item DT GR DR RHOB CNC True Porosity
Predicted Porosity

(LSSVR-PSO)
Spread ratio 

Reference 80.08 16.36 12.13 2.35 14.25 0.069 0.078 -11.538%

Vary DT 96.09 16.36 12.13 2.35 14.25 0.069 0.082 -15.854%

Vary GR 80.08 19.63 12.13 2.35 14.25 0.069 0.076 -9.211%

Vary DR 80.08 16.36 14.56 2.35 14.25 0.069 0.08 -13.750%

Vary RHOB 80.08 16.36 12.13 2.82 14.25 0.069 0.113 -38.938%

Vary CNC 80.08 16.36 12.13 2.35 17.10 0.069 0.078 -11.538%



 

65 

 

porosity varies when the input features increases 10%, 20%, 30% and 50% for the blind 

well dataset. 

In this way, a better illustration of relationship between input features and predicted 

porosity by scatter plots and the graphic sensitivity analysis results are showed in Figure 

37-41 for DT, GR, DR, RHOB and CNC respectively.  

 

Figure 37 DT sensitivity analysis: (a) 10% (b) 20% (c)30% (d) 50% 

 

Figure 38 GR sensitivity analysis: (a) 10% (b) 20% (c)30% (d) 50% 
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Figure 39 DR sensitivity analysis: (a) 10% (b) 20% (c)30% (d) 50% 

 

Figure 40 RHOB sensitivity analysis: (a) 10% (b) 20% (c)30% (d) 50% 
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Figure 41 CNC sensitivity analysis: (a) 10% (b) 20% (c)30% (d) 50% 

Meanwhile, a series of input feature variations versus LSSVR-PSO predicted porosity 

is illustrated in Figure 42. The data points marked with same color represents the 

original value of plotted log with the value increasing in 0%, 10%, 20%, 30% and 50%. 

Additionally, Table 21 provides a summary of sensitivity results by measurement of 

RMSE and R2 for all the data samples in the blind well.  

 

(a) (b) 
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(c) (d) 

 

(e)  

Figure 42 LSSVR-PSO predicted porosity with (a)DT, (b)GR, (c)DR, (d)RHOB and (e)CNC log variation 

 

Table 21 Summary of LSSVR-PSO model accuracy of input feature for the blind well dataset 

Input feature Vary  RMSE R2 

DT 

10% 0.107 0.932 

20% 0.113 0.912 

30% 0.121 0.882 

50% 0.136 0.782 

GR 

10% 0.114 0.896 

20% 0.127 0.815 

30% 0.141 0.697 

50% 0.164 0.381 

DR 

10% 0.102 0.943 

20% 0.104 0.939 

30% 0.106 0.934 

50% 0.111 0.911 

RHOB 

10% 0.129 0.849 

20% 0.160 0.577 

30% 0.175 0.023 

50% 0.187 -2.611 
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CNC 

10% 0.103 0.943 

20% 0.103 0.942 

30% 0.104 0.940 

50% 0.105 0.936 

 

According to the sensitivity analysis results, some conclusions can be observed that 

how the uncertainties affect LSSVM-PSO model prediction performance and the 

relationships between different parameters and porosity: 

(1) Porosity estimation is highly affected by the fluctuation in RHOB and the model 

may not be applicable with low R2 value when the values changes in RHOB is 

varying over 30%. 

(2) Porosity prediction is slightly influenced by the uncertainties in DT and GR and 

the model can maintain about 70%-80% prediction accuracy. 

(3) Significant predicted porosity variation in high GR log values than those in low 

GR log values. 

(4) CNC and DR are two input features that are stagnant and stable for the porosity 

prediction. 
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6 Discussion  

In this chapter, more interpretation of the LSSVR-PSO model is discussed based on the 

porosity estimation results from the LSSVR-PSO model. Furthermore, the advantages 

and limitations of the LSSVR-PSO model are addressed as well. 

For the interpretation of model results, the porosity estimation result of the LSSVR-

PSO model has showed that accurate reservoir porosity estimation can be achieved only 

based on the well logging data from selected petrophysical logs with R2 = 0.945. In this 

thesis, estimation results from KNN, SVR and the hybrid approach are utilized for 

comparison, the LSSVR-PSO model has the highest R2 and lowest MSE and MAE 

among those comparison methods. However, the prediction performance of the 

LSSVR-PSO model is worse than the outcome of ADA-SVR model with R2 = 0.963 

(Li et al., 2019) or the prediction of HGAPSO-LSSVM model with R2 = 0.975 (Ahmadi 

and Chen, 2019). The number of data points may not lead to the worse performance as 

1260 data points are applied in the LSSVR-PSO model while 739 and 1000 data points 

are utilized in Li and Ahmadi ‘s work. Therefore, feature selection and data range may 

be the causes of lower estimation accuracy of the LSSVR-PSO in this thesis. 

After the conduction of feature selection of the LSSVR-PSO model, the LSSVR-PSO 

model porosity estimation results are built on five petrophysical logs: DT, GR, DR, 

RHOB and CNC. However, only DT, CNC and RHOB are chosen as input features for 

ADA-SVR model (Li et al., 2019). Reduce the number of input features may increase 

the prediction accuracy, but the generalizability of model can be limited because the 

model performance would only rely on the data from few petrophysical logs.  

On the other hand, the data range also have an impact on the model performance. Table 

22 illustrates the data range comparison for petrophysical logs in HGAPSO-LSSVM 

model (Ahmadi and Chen, 2019) and LSSVR-PSO model. Both DT and porosity values 

in LSSVR-PSO is significantly larger than HGAPSO-LSSVM, which indicates that 

LSSVR-PSO model can be applied in a more general well with large applicable data 

range but slightly less accuracy.  
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Table 22 Data range comparison for HGAPSO-LSSVM model and LSSVR-PSO model for all dataset 

Input 

feature 

DT RHOB Porosity 

Model HGAPSO-

LSSVM 

LSSVR-

PSO 

HGAPSO-

LSSVM 

LSSVR-

PSO 

HGAPSO-

LSSVM 

LSSVR-

PSO 

Min 48.39 44.08 2.28 1.98 0.03 0.02 

Max 81.71 124.06 2.75 2.92 0.24 0.38 

Average 57.88 83.75 2.57 2.36 0.08 0.17 

 

The advantages of the LSSVR-PSO model are: (1) Provide a more efficient and 

economical method to obtain reservoir porosity than RCAL; (2) Reduce well logging 

service cost because some irrelevant well logs for porosity estimation can be notified 

during the process of feature selection, so these irrelevant well logging operations can 

be removed. 

As for the limitations, the generalizability of the LSSVR-PSO model is limited by the 

training and validation dataset. The porosity prediction accuracy of the blind well is 

high, but it may not have the same performance for another well from Varg field with 

the same data in training and validation. The generalizability of applying LSSVR-PSO 

model in other fields in Varg field can be enhanced by increasing the number of wells 

used in training and validation dataset. The LSSVR-PSO model can be applied to 

predict reservoir porosity in North Sea by introducing more fields in North Sea. 

Additionally, variables used in the hybrid porosity estimation method are simplified by 

assigning the representative constant values from the perspective of theoretical 

calculation.  However, constant variables may not be applicable for the real rock 

conditions. The performance of the hybrid porosity estimation method can be improved 

by calibrating by more true porosity data from RCAL. Besides, the hyper-parameter in 

KNN and SVR algorithms are not optimized and those parameters can be further 

optimized to achieve a higher prediction accuracy.  
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7 Conclusion  

 

(1) Compared to the unoptimized KNN, SVR and the hybrid porosity estimation 

method, the LSSVR-PSO model have presented  best porosity estimation result 

with R2 = 0.945, RMSE= 0.01341 and MAE= 0.101029. The prediction 

application of LSSVR-PSO model on Varg field data has showed excellent 

performance, which may potentially provide a key method for reservoir rock 

property measurement and exploration. 

 

(2) In the case of porosity estimation, distance correlation can provide a better 

illustration on the correlation relationship between different well logs and 

porosity where the data samples are in non-linear. Deep resistivity shows 

insignificant correlation between porosity in Pearson correlation and it may be 

ignored if only depending on Pearson correlation. On the contrary, relatively 

significant correlation can be observed between deep resistivity in distance 

correlation.  

 

(3) Density log is found to be the most relevant log as input feature in porosity 

estimation by LSSVR-PSO model while Caliper log is discarded as the least 

relevance with porosity. Data quality of the density log can have a great impact 

on the model porosity estimation and the prediction result may not be reliable 

when the values changes in density log is varying over 30%.  

 

(4) Well logging service cost can be reduced by removing some irrelevant well logs 

found during the process of feature selection for porosity estimation in LSSVR-

PSO model. 
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Appendix 

Well logs dataset (Well 15/12-5) 

DT CA GR DR RHOB CNC POR 

81.2153 9.3052 88.8625 1.7826 2.4832 20.297 0.082 

81.6998 9.2371 90.1049 1.7768 2.4732 20.6701 0.07 

82.5162 9.1621 90.986 1.7742 2.4825 21.6049 0.075 

82.2469 9.1285 89.7354 1.7827 2.4848 21.013 0.07 

81.3693 9.0664 88.6989 1.8328 2.4347 21.4587 0.078 

81.6266 9.0454 87.7778 1.8398 2.4216 21.4248 0.072 

81.5932 9.033 88.8979 1.8381 2.4269 21.3466 0.08 

81.4977 9.0292 89.4596 1.8388 2.4531 20.9949 0.073 

81.3992 9.0375 87.018 1.8413 2.4585 20.6543 0.072 

81.4856 9.0434 84.17 1.8439 2.4564 21.0363 0.077 

81.924 9.0405 86.8776 1.8431 2.4459 21.6084 0.078 

82.5582 9.0355 90.3839 1.8419 2.4314 21.7267 0.071 

82.2426 8.862 90.1166 1.9158 2.4633 21.748 0.074 

81.1013 8.8594 90.9492 1.8959 2.4581 21.4412 0.077 

81.2744 8.8571 91.0568 1.8863 2.4611 21.6233 0.073 

81.4863 8.8457 91.0797 1.8706 2.4616 21.0303 0.086 

81.4655 8.8479 90.2372 1.8495 2.4428 20.4283 0.075 

81.4448 8.8592 87.7521 1.8049 2.4169 20.1886 0.078 

81.5385 8.8556 86.6512 1.7713 2.4187 20.533 0.081 

81.6706 8.8489 86.0969 1.738 2.3895 20.52 0.08 

81.4465 8.8496 85.095 1.7258 2.383 19.9895 0.086 

81.1163 8.8447 85.4208 1.7212 2.4424 20.1898 0.097 

81.3283 8.8423 88.2352 1.7267 2.4757 20.966 0.099 

81.6166 8.8368 89.9677 1.7451 2.4667 21.4572 0.072 

81.022 8.8669 87.1616 1.7387 2.3973 20.3133 0.08 

81.0191 8.8713 88.4046 1.7197 2.411 20.2809 0.082 

81.1255 8.8652 88.51 1.7154 2.4377 20.028 0.078 

81.0932 8.8578 84.8589 1.7109 2.4595 19.0967 0.105 

80.8822 8.8555 85.5083 1.7222 2.4535 18.2637 0.091 

81.0614 8.853 87.2752 1.7388 2.4161 18.6288 0.102 

82.0434 8.8338 87.7814 1.7575 2.3945 20.5869 0.085 

82.6952 8.8299 87.8393 1.7636 2.4248 22.2563 0.092 

82.4709 8.8433 88.6685 1.7651 2.4605 22.6234 0.092 

81.9391 8.8221 89.86 1.7613 2.4589 21.2079 0.093 

81.5825 8.7802 91.3703 1.7488 2.467 19.5299 0.085 

81.6968 8.776 91.1501 1.735 2.4811 19.6407 0.095 

82.2392 8.7729 90.2003 1.7121 2.4748 20.2518 0.091 

82.452 8.7587 88.3284 1.6933 2.4297 19.8046 0.095 

82.0751 8.7581 84.0868 1.6738 2.3734 18.9427 0.098 

81.7539 8.7635 82.6781 1.6678 2.3905 19.4734 0.1 

81.6354 8.75 82.5153 1.6674 2.4373 20.195 0.105 
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81.4879 8.7351 81.7564 1.6717 2.4314 19.4358 0.105 

81.3925 8.7282 79.7869 1.6934 2.4204 20.1153 0.097 

81.4379 8.7088 78.8932 1.7184 2.4381 19.6708 0.102 

81.4046 8.6976 78.6662 1.7388 2.4552 19.6048 0.105 

81.2822 8.6828 78.9616 1.754 2.4661 20.0694 0.096 

81.1234 8.6709 80.2364 1.7337 2.4394 20.2844 0.095 

80.8677 8.6504 81.4071 1.6394 2.4045 20.5391 0.095 

80.577 8.6175 79.8648 1.5176 2.398 20.0329 0.077 

80.2065 8.5487 73.1844 1.3286 2.3891 18.1566 0.103 

80.4977 8.4939 66.9379 1.2037 2.3875 17.0316 0.132 

82.4211 8.4548 59.7404 1.0744 2.3844 17.1535 0.158 

84.9536 8.4573 54.8894 1.0173 2.3834 18.5224 0.185 

87.6901 8.4557 52.2188 0.9639 2.3564 20.8129 0.144 

87.563 8.4325 55.6613 0.9359 2.3267 20.9943 0.171 

85.6203 8.4023 58.6538 0.9081 2.3035 20.4308 0.195 

85.0906 8.4027 54.9105 0.8959 2.3075 20.5253 0.204 

86.8995 8.4221 49.1352 0.8915 2.2819 21.1969 0.172 

88.5705 8.4235 48.0837 0.8984 2.2491 21.6364 0.178 

86.9131 8.358 48.9096 1.0298 2.309 21.5034 0.19 

88.5053 8.3316 45.9838 1.1123 2.2776 22.9691 0.166 

88.1855 8.3035 44.3991 1.1842 2.2535 22.6247 0.171 

84.8228 8.2899 41.0182 1.2797 2.2335 20.8149 0.243 

82.4152 8.2863 38.974 1.3342 2.2477 20.1287 0.215 

82.4678 8.2746 39.3202 1.3692 2.2908 20.567 0.227 

84.0398 8.2846 40.8985 1.3551 2.2951 21.3121 0.19 

85.3402 8.3131 43.5492 1.3097 2.2835 21.2578 0.16 

85.3966 8.3092 45.7288 1.2787 2.2722 20.8857 0.231 

85.2712 8.2856 46.9411 1.2607 2.2665 20.9262 0.238 

85.674 8.2768 46.1244 1.274 2.2763 21.2281 0.271 

87.1687 8.2835 44.1411 1.3154 2.2688 22.3684 0.247 

88.6282 8.2998 43.1315 1.3474 2.2467 22.868 0.272 

85.9776 8.2965 40.3213 1.4597 2.2463 21.7799 0.243 

83.7541 8.3264 38.6701 1.4215 2.3212 20.4433 0.251 

85.2752 8.3592 41.2052 1.3533 2.357 21.4642 0.207 

87.8702 8.3455 43.9509 1.3091 2.3075 22.8186 0.287 

89.6494 8.3189 44.2498 1.3006 2.2841 22.8596 0.264 

89.7487 8.3091 42.9095 1.3531 2.2972 22.8488 0.176 

89.7096 8.3241 41.017 1.4628 2.2777 23.9664 0.12 

87.467 8.355 40.1137 1.5195 2.2516 23.9476 0.292 

80.94 8.3803 38.5666 1.5301 2.2487 22.0003 0.244 

79.3221 8.3797 37.418 1.4851 2.2822 21.7877 0.257 

84.1986 8.3672 37.6819 1.376 2.2909 23.4613 0.28 

88.0658 8.3581 39.1537 1.2899 2.2507 24.1987 0.284 

90.403 8.3644 39.4657 1.211 2.1997 25.7574 0.29 

91.7111 8.3778 38.4556 1.1949 2.184 26.3936 0.311 

93.5121 8.3815 38.0609 1.201 2.1858 26.2148 0.296 
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94.2867 8.3852 37.84 1.2003 2.1904 26.4781 0.321 

95.0268 8.4255 37.201 1.177 2.1621 27.0015 0.305 

96.0013 8.5058 35.7702 1.0428 2.129 27.8144 0.225 

94.9074 8.5517 36.887 0.8471 2.1697 26.5165 0.307 

93.5638 8.5483 37.7182 0.8232 2.2135 25.1124 0.296 

92.9794 8.5569 37.1798 0.8261 2.2118 25.183 0.286 

93.5063 8.5793 35.9196 0.8778 2.1569 25.8665 0.117 

91.409 8.5908 38.934 0.8972 2.1741 24.4048 0.249 

86.81 8.575 40.6705 0.8784 2.2205 22.2545 0.264 

81.387 8.5179 43.8274 0.8225 2.3238 20.8842 0.289 

81.8831 8.4865 44.4202 0.776 2.3276 21.7792 0.276 

86.7765 8.467 40.5898 0.7263 2.2344 24.1152 0.287 

90.6019 8.479 38.568 0.7147 2.1825 25.4639 0.166 

93.7318 8.5263 38.1696 0.7374 2.1299 25.9464 0.173 

93.619 8.5344 38.2079 0.7855 2.1232 25.7523 0.274 

90.1791 8.4972 38.5699 0.8911 2.1537 24.076 0.291 

86.7893 8.4823 39.1619 1.001 2.1761 22.8064 0.271 

85.8051 8.472 39.2539 1.177 2.1982 22.4902 0.262 

88.677 8.462 36.5885 1.3329 2.1858 22.0329 0.225 

93.0887 8.4419 30.2455 1.7207 2.1085 21.3412 0.279 

90.8501 8.428 31.876 1.856 2.1179 19.9634 0.307 

89.2854 8.4228 32.8702 1.8209 2.1544 19.6744 0.299 

94.5016 8.379 33.3102 1.4975 2.2042 23.2257 0.204 

99.3743 8.4056 32.8298 1.2884 2.1823 23.8192 0.26 

91.0277 8.4651 37.2691 0.9578 2.2054 22.889 0.306 

91.7656 8.473 37.4442 0.9268 2.1782 23.4244 0.307 

97.2183 8.4882 36.2823 0.8814 2.1124 24.9403 0.3 

100.9357 8.5056 35.2956 0.8466 2.0999 25.3179 0.306 

102.287 8.5359 35.6845 0.7846 2.1174 24.4933 0.301 

102.0598 8.5307 35.8561 0.7266 2.1268 24.0543 0.316 

102.3975 8.4974 34.4574 0.6439 2.1167 23.7428 0.328 

102.62 8.4923 35.3538 0.5876 2.1072 23.8061 0.273 

101.7951 8.5225 36.8547 0.5298 2.1139 24.4101 0.281 

100.0515 8.5414 35.8536 0.5102 2.127 24.0659 0.236 

96.5401 8.5487 35.4521 0.5119 2.166 22.9372 0.26 

93.108 8.5509 36.2453 0.5255 2.1975 21.6539 0.269 

 

Well logs dataset (Well 15/12-6S) 

80.641 10.000 53.261 1.824 2.449 14.662 0.107 

80.469 12.000 59.179 1.845 2.432 16.002 0.109 

79.969 8.000 54.741 1.801 2.539 18.498 0.106 

80.063 8.000 50.302 1.791 2.436 15.763 0.102 

79.836 9.500 56.590 1.777 2.480 15.704 0.106 

80.109 10.000 51.042 1.766 2.450 18.453 0.114 

80.281 11.000 56.220 1.749 2.493 14.775 0.107 
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80.094 10.000 56.960 1.714 2.431 20.127 0.103 

80.266 15.000 60.658 1.680 2.415 16.005 0.102 

80.313 15.000 52.521 1.658 2.471 14.941 0.110 

80.141 11.000 51.782 1.615 2.449 15.170 0.112 

79.766 11.000 54.741 1.601 2.465 14.271 0.114 

80.578 10.000 50.302 1.678 2.438 18.641 0.119 

80.156 11.500 54.371 1.693 2.464 19.587 0.101 

79.063 14.000 60.658 1.727 2.543 17.245 0.127 

79.156 10.000 59.179 1.757 2.480 18.280 0.107 

79.469 9.500 58.069 1.712 2.440 17.336 0.103 

79.500 10.000 56.220 1.670 2.399 20.282 0.101 

78.813 6.000 53.261 1.620 2.397 25.078 0.128 

79.703 6.500 45.864 1.619 2.498 20.186 0.122 

79.313 8.000 51.042 1.626 2.480 16.539 0.128 

77.094 9.000 50.302 1.658 2.507 18.044 0.117 

78.406 12.000 54.001 1.683 2.422 15.629 0.144 

78.250 11.000 56.220 1.713 2.440 17.649 0.134 

78.586 10.000 52.891 1.751 2.494 17.759 0.118 

78.547 11.000 49.562 1.796 2.428 14.636 0.095 

77.086 11.500 53.631 1.828 2.421 19.630 0.129 

83.898 8.500 53.261 2.089 2.378 17.062 0.117 

84.609 7.000 48.823 2.246 2.376 19.086 0.113 

78.195 9.500 44.384 2.384 2.430 21.222 0.136 

79.531 11.000 37.727 2.640 2.327 15.835 0.121 

79.711 11.000 39.576 2.845 2.387 17.802 0.108 

79.250 12.000 39.946 2.908 2.412 16.692 0.119 

79.391 11.000 43.275 2.824 2.340 16.847 0.148 

79.422 12.000 44.384 2.677 2.324 13.945 0.121 

77.852 7.500 45.494 2.462 2.341 19.163 0.171 

76.781 11.000 53.261 2.250 2.438 15.286 0.158 

76.727 9.500 54.371 2.112 2.462 16.760 0.154 

77.438 13.000 58.439 2.053 2.313 15.907 0.159 

77.141 12.000 54.001 2.043 2.516 18.673 0.157 

75.563 11.000 53.261 2.116 2.427 15.980 0.163 

71.250 12.500 54.371 2.264 2.464 14.517 0.110 

70.266 12.000 48.823 2.511 2.537 17.449 0.113 

71.578 14.500 55.850 2.809 2.551 14.484 0.108 

71.750 13.000 70.275 3.174 2.481 14.922 0.133 

70.180 12.500 60.289 3.941 2.513 14.109 0.130 

68.938 15.000 58.439 5.145 2.608 14.943 0.126 

66.680 15.000 51.412 7.344 2.505 14.727 0.093 

60.391 15.000 42.165 10.442 2.587 12.093 0.112 

57.383 13.500 32.548 13.785 2.579 12.440 0.109 

57.281 11.000 28.110 18.673 2.395 7.854 0.119 

57.016 12.000 26.261 21.572 2.643 8.398 0.097 

61.281 11.000 28.110 22.854 2.536 6.415 0.095 
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62.258 10.500 25.521 23.197 2.497 5.684 0.094 

66.281 8.000 24.411 22.585 2.524 7.127 0.091 

72.297 13.000 24.041 23.298 2.439 8.423 0.135 

77.000 13.000 23.672 25.273 2.292 8.938 0.104 

71.844 12.500 22.562 26.554 2.392 13.334 0.075 

57.531 15.000 27.370 27.210 2.433 11.350 0.060 

59.898 14.000 21.452 30.019 2.532 7.864 0.108 

66.125 11.000 21.452 33.868 2.552 6.363 0.120 

56.117 11.000 23.302 36.112 2.527 9.182 0.142 

44.078 12.000 21.452 36.821 2.418 7.575 0.119 

50.203 10.500 23.302 36.075 2.434 11.982 0.075 

54.156 11.000 23.672 33.851 2.478 8.939 0.089 

74.797 12.000 24.041 28.049 2.391 11.836 0.160 

84.219 16.500 23.672 20.760 2.228 14.794 0.076 

89.359 12.000 25.891 17.601 2.299 18.939 0.146 

99.547 14.500 26.261 16.402 2.232 26.058 0.103 

106.141 13.000 25.891 15.749 2.136 17.690 0.136 

100.750 12.000 25.151 15.039 2.041 21.566 0.145 

98.031 11.000 25.151 14.348 2.175 16.286 0.262 

94.773 11.000 25.521 13.552 2.261 16.767 0.141 

98.625 9.000 25.891 11.474 2.121 21.395 0.211 

107.313 13.000 33.288 8.681 2.222 22.634 0.289 

95.633 14.500 28.850 7.596 2.147 24.606 0.229 

84.969 12.000 29.589 7.308 2.187 21.659 0.283 

86.102 13.000 29.959 7.670 2.196 19.494 0.294 

87.359 16.000 31.069 8.499 2.059 21.292 0.303 

95.055 17.500 29.589 9.591 2.319 15.545 0.310 

106.234 16.000 28.850 10.511 2.267 23.773 0.297 

111.375 13.500 25.151 11.498 2.143 16.683 0.228 

110.547 13.000 25.891 12.016 2.108 20.993 0.274 

112.109 14.500 27.370 11.480 2.127 23.745 0.188 

105.125 15.000 28.850 11.065 2.133 25.488 0.209 

102.867 10.500 27.740 10.925 2.050 20.028 0.302 

102.797 11.000 30.329 10.932 2.100 21.893 0.308 

102.328 16.500 25.521 10.831 2.209 22.281 0.291 

103.031 13.000 26.631 10.414 2.185 18.673 0.301 

98.219 12.000 27.000 9.717 2.191 22.210 0.295 

93.891 15.000 28.110 8.873 2.162 19.349 0.315 

93.586 15.500 26.631 7.857 2.196 19.016 0.297 

96.078 14.000 31.069 6.922 2.144 17.635 0.296 

95.695 14.000 30.699 6.496 2.196 19.043 0.282 

93.750 14.000 33.288 6.625 2.208 18.744 0.291 

92.289 11.500 31.439 7.068 2.195 20.230 0.210 

92.109 12.000 31.069 7.647 2.299 20.251 0.255 

92.195 13.500 26.631 8.140 2.217 19.451 0.278 

89.641 11.000 27.370 8.433 2.165 22.543 0.212 
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87.773 13.000 26.631 8.365 2.191 16.704 0.228 

86.594 14.000 30.329 8.390 2.186 20.693 0.233 

83.594 12.500 31.439 8.248 2.262 18.572 0.287 

81.141 12.000 27.370 7.999 2.227 23.549 0.246 

74.852 10.500 27.000 7.660 2.157 19.346 0.229 

70.078 12.000 28.110 7.281 2.126 19.137 0.267 

72.102 9.500 29.220 6.765 2.155 20.898 0.326 

90.891 11.000 29.589 6.307 2.147 18.901 0.304 

89.992 13.000 25.521 6.263 2.239 22.174 0.225 

90.563 11.000 40.686 6.493 2.262 25.290 0.238 

85.055 10.000 34.398 6.932 2.208 22.227 0.241 

86.328 10.000 30.329 7.836 2.266 20.555 0.377 

91.938 10.500 28.480 9.452 2.176 19.357 0.301 

98.563 10.000 26.631 10.536 2.223 22.763 0.295 

94.070 13.000 26.261 11.167 2.107 20.642 0.254 

82.047 15.000 22.192 11.546 2.204 20.159 0.281 

87.906 12.000 23.672 11.556 2.186 19.421 0.275 

91.188 13.000 33.288 10.837 2.165 14.038 0.307 

84.063 14.500 27.740 10.076 2.221 14.993 0.286 

77.875 9.000 28.110 9.973 2.335 17.203 0.293 

93.313 10.000 25.891 10.229 2.180 17.152 0.229 

102.578 10.000 27.370 9.970 2.096 22.325 0.229 

89.508 12.000 22.932 9.487 2.017 21.458 0.322 

90.500 14.000 22.932 9.024 2.286 20.909 0.317 

95.367 12.500 25.521 8.550 2.107 17.674 0.157 

97.594 12.000 26.631 7.938 2.069 23.396 0.261 

95.172 10.500 22.562 7.553 1.999 22.028 0.321 

94.375 10.000 23.672 7.446 1.981 28.975 0.336 

95.242 12.000 21.822 7.113 2.020 23.432 0.122 

89.672 10.000 21.452 6.542 2.107 32.989 0.325 

96.539 11.500 22.562 5.967 2.185 31.268 0.344 

101.203 10.000 26.631 5.525 2.093 19.491 0.194 

104.844 12.000 29.220 5.188 2.076 26.981 0.326 

102.750 10.000 34.028 5.161 2.096 25.327 0.237 

103.680 10.000 29.959 5.381 2.143 24.328 0.099 

104.828 9.000 25.151 5.689 2.032 21.324 0.190 

103.289 9.000 29.589 6.018 2.114 30.108 0.232 

101.930 9.500 29.959 6.138 2.029 27.349 0.319 

98.375 7.000 29.589 6.264 2.005 31.866 0.304 

93.234 11.000 28.480 6.511 2.018 27.754 0.288 

90.266 9.000 28.110 6.536 2.131 21.654 0.334 

81.164 8.000 26.631 6.228 2.154 22.260 0.354 

84.578 8.000 24.411 5.700 2.260 19.603 0.372 

92.711 8.500 26.631 5.485 2.223 21.726 0.381 

97.438 8.000 26.631 5.345 2.090 19.427 0.363 

85.352 8.000 32.918 5.411 2.077 22.051 0.309 
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77.500 12.000 31.809 5.467 2.244 26.226 0.288 

75.375 20.000 27.740 5.467 2.372 15.288 0.253 

77.563 12.000 34.768 5.320 2.302 15.008 0.248 

77.148 10.500 32.918 4.748 2.265 15.779 0.327 

82.641 11.000 37.727 4.088 2.405 11.497 0.304 

85.406 10.500 42.535 3.339 2.306 18.441 0.312 

84.500 11.000 42.165 2.784 2.257 22.159 0.114 

76.211 10.000 39.206 2.493 2.425 18.292 0.191 

73.547 7.000 42.905 2.327 2.511 12.872 0.107 

76.320 9.000 45.864 2.181 2.410 18.281 0.132 

79.813 10.000 49.562 2.012 2.466 10.916 0.203 

83.281 9.500 46.603 1.898 2.416 16.016 0.190 

82.563 9.000 45.864 1.927 2.367 18.301 0.150 

81.078 10.000 50.302 1.919 2.403 21.433 0.127 

81.641 8.500 45.124 2.010 2.342 19.501 0.086 

81.016 9.000 40.686 2.146 2.425 15.902 0.142 

81.813 9.500 45.494 2.241 2.410 18.367 0.180 

84.406 13.000 44.384 2.328 2.404 21.392 0.164 

87.422 10.000 37.727 2.664 2.239 27.517 0.177 

83.297 9.000 33.658 2.934 2.345 25.056 0.242 

81.953 11.000 41.425 3.044 2.292 30.114 0.201 

81.008 12.500 34.398 3.028 2.272 18.520 0.176 

78.672 13.000 31.809 2.840 2.308 29.352 0.160 

92.750 10.000 44.384 2.828 2.351 19.611 0.149 

96.203 10.500 42.165 2.687 2.500 29.823 0.207 

91.922 9.000 32.548 2.705 2.295 20.806 0.248 

90.758 11.000 35.138 2.870 2.196 34.174 0.172 

89.547 11.000 36.247 2.916 2.183 32.452 0.231 

89.711 9.500 37.727 2.773 2.243 24.748 0.099 

90.063 10.000 30.329 2.665 2.231 25.620 0.261 

90.938 10.500 34.398 2.586 2.169 19.095 0.281 

91.219 11.000 31.809 2.528 2.211 27.195 0.259 

90.828 10.000 36.617 2.509 2.176 39.806 0.253 

88.188 8.000 41.425 2.529 2.168 31.330 0.255 

88.016 7.500 38.096 2.589 2.280 21.123 0.286 

86.969 8.000 33.288 2.608 2.192 19.218 0.210 

85.422 8.500 38.466 2.520 2.281 20.324 0.210 

83.109 9.000 41.425 2.464 2.222 24.641 0.231 

82.555 7.000 39.946 2.434 2.360 27.371 0.224 

84.063 9.000 36.987 2.377 2.381 18.861 0.186 

88.250 9.000 38.466 2.332 2.263 16.938 0.257 

90.563 9.000 38.466 2.318 2.289 21.015 0.203 

91.711 7.500 38.096 2.310 2.264 26.456 0.227 

89.313 8.000 39.206 2.317 2.129 25.863 0.234 

77.414 9.500 36.987 2.598 2.357 15.312 0.065 

73.891 10.000 27.370 2.478 2.446 18.110 0.217 
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70.789 6.500 35.877 2.304 2.481 17.688 0.248 

72.297 13.000 42.905 2.184 2.459 15.861 0.227 

76.695 10.500 35.507 2.004 2.466 13.353 0.280 

84.828 10.000 40.686 1.784 2.407 19.470 0.234 

83.789 9.500 39.576 1.740 2.305 19.721 0.194 

78.813 9.000 49.562 1.748 2.363 21.764 0.160 

77.055 10.500 45.124 1.792 2.492 20.429 0.148 

84.594 9.000 39.206 1.854 2.518 20.430 0.140 

90.461 10.500 35.138 1.977 2.301 21.630 0.072 

92.328 13.000 31.069 2.062 2.314 27.573 0.217 

92.695 12.000 27.000 2.099 2.276 18.349 0.230 

89.453 10.000 26.631 2.174 2.338 18.753 0.159 

87.063 7.000 30.329 2.156 2.476 18.858 0.123 

90.453 11.000 32.548 2.087 2.322 17.557 0.100 

97.484 7.500 34.398 2.110 2.223 26.047 0.217 

95.219 8.000 42.905 2.176 2.269 22.125 0.207 

92.156 11.000 45.124 2.203 2.222 26.109 0.241 

90.703 12.000 42.905 2.254 2.271 17.506 0.245 

92.672 11.000 30.329 2.333 2.319 22.956 0.165 

98.031 12.000 30.329 2.381 2.311 21.803 0.197 

100.414 11.500 32.918 2.337 2.154 24.457 0.247 

90.766 16.000 36.987 2.191 2.265 21.306 0.282 

89.211 13.500 32.179 1.975 2.306 13.193 0.228 

91.219 14.000 38.466 1.842 2.263 15.125 0.206 

89.070 14.000 42.905 1.777 2.254 23.897 0.189 

84.578 17.000 39.946 1.816 2.452 17.509 0.141 

90.109 18.500 38.836 1.927 2.418 18.674 0.276 

94.219 14.000 34.768 2.128 2.383 15.353 0.277 

100.086 15.000 31.439 2.347 2.243 16.700 0.179 

96.266 13.000 30.329 2.468 2.246 24.760 0.185 

99.211 9.000 28.850 2.578 2.273 20.316 0.209 

92.234 12.000 34.768 2.911 2.239 28.757 0.116 

89.313 13.000 32.918 3.317 2.335 18.160 0.196 

88.875 13.000 33.288 3.819 2.312 18.963 0.176 

55.398 12.000 28.110 9.304 2.497 11.832 0.296 

52.438 9.000 26.631 12.095 2.634 8.663 0.272 

50.023 10.500 27.000 14.418 2.698 4.936 0.253 

51.938 12.000 22.932 16.410 2.643 3.970 0.161 

51.297 9.000 24.041 17.192 2.721 3.808 0.241 

53.594 9.000 28.850 14.997 2.735 5.126 0.035 

55.508 13.000 26.631 9.764 2.767 6.965 0.077 

56.484 16.000 25.891 6.327 2.756 8.358 0.033 

64.125 16.500 25.891 4.753 2.773 7.544 0.035 

85.641 16.000 27.370 3.520 2.379 11.793 0.030 

101.344 17.000 28.850 2.942 2.321 18.063 0.029 

102.906 15.000 30.329 2.604 2.246 24.175 0.034 
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104.602 16.000 31.439 2.463 2.216 17.616 0.067 

101.656 17.000 31.069 2.374 2.250 23.739 0.039 

101.305 14.500 33.288 2.289 2.162 16.050 0.047 

98.781 11.000 34.028 2.166 2.185 25.131 0.151 

87.172 18.000 42.165 2.116 2.310 20.361 0.272 

77.391 17.500 37.357 2.077 2.440 17.486 0.299 

77.266 15.000 37.727 2.044 2.514 20.730 0.280 

86.984 16.000 33.288 2.068 2.321 15.378 0.253 

95.203 16.500 36.247 2.125 2.298 17.419 0.171 

96.188 14.000 31.809 2.088 2.172 22.329 0.229 

93.398 14.000 33.288 1.991 2.286 18.993 0.243 

91.531 13.000 32.548 1.955 2.128 19.746 0.260 

88.648 14.000 36.617 1.892 2.275 19.514 0.234 

87.375 15.000 36.987 1.815 2.322 22.701 0.269 

88.430 15.000 36.617 1.849 2.350 22.029 0.266 

83.469 15.000 41.425 2.002 2.284 22.026 0.256 

76.297 13.000 38.836 2.184 2.380 17.958 0.266 

71.547 15.000 36.987 2.270 2.519 14.295 0.272 

77.328 15.500 30.699 2.256 2.468 12.640 0.260 

85.672 21.000 29.589 2.148 2.299 15.345 0.197 

91.469 17.500 33.288 1.946 2.269 17.062 0.204 

92.031 14.000 31.809 1.713 2.293 19.193 0.200 

88.344 16.500 34.028 1.542 2.254 17.287 0.111 

85.844 10.000 41.425 1.494 2.309 29.168 0.170 

85.664 14.000 36.987 1.563 2.246 22.701 0.217 

86.172 8.000 35.507 1.868 2.200 23.783 0.222 

80.836 14.500 38.466 2.279 2.690 19.400 0.230 

67.906 16.000 34.028 2.803 2.454 15.554 0.235 

57.234 13.500 25.151 3.450 2.557 13.209 0.250 

59.266 11.000 25.151 3.918 2.525 10.618 0.201 

62.555 10.000 27.370 3.671 2.666 8.825 0.204 

64.250 17.000 25.891 2.818 2.585 9.010 0.185 

63.820 13.500 27.370 2.315 2.501 14.853 0.166 

69.969 14.000 29.589 1.982 2.443 12.177 0.102 

83.234 13.000 30.329 1.601 2.411 13.874 0.039 

93.516 10.000 34.028 1.398 2.312 22.079 0.045 

97.883 10.500 30.329 1.290 2.162 21.560 0.075 

98.406 12.000 31.809 1.190 2.140 19.471 0.095 

96.898 13.500 36.247 1.108 2.219 17.195 0.072 

94.891 13.000 33.288 1.036 2.211 28.642 0.082 

91.047 14.500 37.727 0.933 2.330 25.942 0.273 

89.016 11.000 38.466 0.829 2.307 27.365 0.220 

88.453 15.000 44.754 0.795 2.377 26.409 0.249 

88.922 16.000 41.425 0.772 2.362 30.766 0.266 

90.453 11.000 34.028 0.790 2.342 29.863 0.241 

92.289 11.000 36.247 0.846 2.269 24.226 0.213 
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91.703 12.000 35.507 0.932 2.267 19.911 0.192 

88.313 12.500 38.466 1.036 2.340 18.295 0.209 

88.438 10.000 45.124 1.124 2.331 30.183 0.178 

89.086 11.500 38.096 1.254 2.255 19.974 0.193 

82.984 10.000 36.247 1.362 2.354 18.295 0.200 

70.500 11.500 32.179 1.325 2.471 18.504 0.225 

66.438 11.000 34.028 1.182 2.634 14.672 0.210 

77.461 8.500 35.507 1.011 2.349 11.969 0.182 

88.625 12.000 34.028 0.849 2.292 17.369 0.205 

90.430 14.500 38.836 0.770 2.265 22.626 0.194 

90.188 9.000 39.946 0.759 2.355 19.668 0.199 

88.906 9.500 37.727 0.801 2.343 17.033 0.161 

81.922 11.000 39.946 0.833 2.528 28.332 0.078 

79.914 14.000 38.466 0.866 2.503 24.220 0.073 

83.953 16.000 42.165 0.907 2.398 24.813 0.181 

83.391 15.000 42.905 0.871 2.464 21.431 0.187 

82.688 13.000 40.316 0.857 2.470 22.454 0.189 

82.609 16.000 38.466 0.822 2.445 31.317 0.177 

86.625 14.500 37.727 0.757 2.364 24.191 0.158 

83.344 15.000 36.987 0.733 2.431 20.573 0.068 

81.805 15.000 35.877 0.733 2.588 16.230 0.165 

82.172 15.000 39.946 0.731 2.308 17.747 0.124 

87.234 15.500 45.864 0.694 2.421 23.066 0.143 

88.813 12.000 41.425 0.723 2.336 25.532 0.181 

91.734 12.500 42.165 0.744 2.308 22.323 0.192 

93.078 11.000 41.425 0.770 2.215 16.194 0.167 

92.359 11.500 38.836 0.768 2.181 25.919 0.151 

85.414 13.500 35.877 0.793 2.336 22.865 0.180 

83.891 13.000 34.768 0.848 2.371 16.877 0.171 

85.531 12.000 34.768 0.978 2.280 19.339 0.190 

82.703 13.000 39.206 1.118 2.398 19.623 0.170 

74.016 13.000 35.877 1.163 2.550 16.723 0.211 

70.406 10.000 34.768 1.194 2.485 16.042 0.194 

78.695 14.000 40.686 1.161 2.376 24.882 0.178 

84.227 11.000 39.576 0.960 2.378 21.129 0.154 

81.797 11.000 40.686 0.980 2.503 18.734 0.154 

81.016 12.000 41.055 1.064 2.534 12.306 0.169 

82.781 14.000 45.124 1.205 2.367 22.145 0.084 

83.633 13.000 52.151 1.317 2.447 24.405 0.051 

81.344 14.000 42.905 1.394 2.437 25.930 0.130 

78.727 14.500 44.014 1.446 2.463 21.799 0.149 

78.984 11.000 41.425 1.455 2.447 18.169 0.146 

83.391 12.000 42.165 1.328 2.480 19.729 0.130 

83.648 12.000 44.014 1.279 2.547 26.255 0.119 

82.656 14.000 42.905 1.279 2.443 21.707 0.125 

82.320 14.500 49.562 1.298 2.450 46.889 0.099 
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82.813 13.000 47.343 1.321 2.490 33.233 0.094 

82.102 13.500 42.165 1.346 2.501 18.184 0.167 

82.453 12.000 51.042 1.380 2.448 27.380 0.116 

100.828 12.000 45.864 1.866 2.496 25.759 0.111 

101.492 11.500 45.864 2.254 2.453 34.578 0.114 

98.016 16.000 43.644 2.877 2.522 24.171 0.121 

99.445 18.000 40.316 3.797 2.066 25.258 0.119 

85.563 16.000 27.370 6.921 2.230 31.907 0.122 

80.922 14.500 29.220 6.770 2.406 22.765 0.126 

70.227 14.000 29.220 3.309 2.579 12.191 0.035 

77.359 16.000 26.631 3.588 2.563 11.287 0.081 

75.109 18.000 33.288 3.862 2.634 21.165 0.124 

83.531 16.000 31.809 3.658 2.433 17.846 0.050 

87.109 13.000 43.644 3.372 2.256 54.266 0.053 

77.828 15.000 65.837 2.393 2.298 47.526 0.094 

86.375 12.000 51.412 2.117 2.918 21.138 0.078 

124.063 15.000 44.384 1.838 2.061 29.312 0.047 

59.703 14.000 38.096 3.409 2.809 16.230 0.049 

57.781 11.500 38.096 3.272 2.774 14.338 0.034 

56.234 13.000 37.727 2.936 2.666 17.299 0.021 

56.344 13.000 44.014 2.524 2.405 15.515 0.037 

75.688 10.000 54.371 2.329 2.543 19.073 0.078 

76.906 10.000 49.562 2.140 2.577 20.591 0.070 

75.813 12.000 51.412 1.978 2.512 24.884 0.085 

77.344 15.000 43.644 1.821 2.528 20.171 0.087 

77.000 12.000 45.864 1.717 2.557 12.303 0.086 

76.266 12.000 48.083 1.700 2.413 22.155 0.110 

 

Well logs dataset (Well 15/12-9S) 

DT CA GR DR RHOB CNC POR 

87.698 8.771 61.666 2.649 2.340 19.387 0.174 

87.803 8.755 60.079 2.668 2.332 19.673 0.191 

88.219 8.754 59.949 2.680 2.310 20.450 0.176 

88.253 8.754 60.308 2.704 2.287 20.531 0.202 

87.615 8.754 60.851 2.744 2.298 20.222 0.179 

87.137 8.753 61.166 2.779 2.321 20.360 0.177 

87.572 8.738 60.731 2.813 2.321 20.686 0.183 

88.365 8.698 61.124 2.875 2.302 20.932 0.172 

88.595 8.665 61.764 2.990 2.286 20.908 0.236 

87.961 8.656 60.283 3.125 2.290 20.419 0.221 

86.719 8.656 57.822 3.217 2.297 20.084 0.159 

86.222 8.656 56.818 3.307 2.288 20.507 0.213 

86.678 8.654 56.356 3.434 2.296 20.768 0.231 

87.171 8.640 54.801 3.523 2.311 20.452 0.186 

87.593 8.608 54.572 3.553 2.299 20.439 0.158 
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88.412 8.575 55.698 3.584 2.281 21.240 0.237 

88.772 8.560 55.862 3.624 2.270 22.059 0.232 

88.346 8.557 55.884 3.594 2.267 22.119 0.233 

87.889 8.559 57.411 3.528 2.265 22.402 0.190 

87.757 8.581 59.571 3.519 2.258 23.221 0.192 

87.741 8.622 59.329 3.553 2.275 23.201 0.241 

87.363 8.646 58.093 3.603 2.303 22.398 0.198 

86.473 8.625 58.391 3.675 2.299 22.303 0.193 

85.950 8.583 57.872 3.806 2.261 23.023 0.204 

86.552 8.561 55.134 4.029 2.221 23.545 0.198 

87.943 8.557 52.160 4.275 2.205 23.944 0.181 

89.627 8.556 51.184 4.482 2.217 24.629 0.257 

90.538 8.534 52.854 4.625 2.239 24.849 0.197 

91.731 8.493 54.005 4.705 2.245 24.032 0.235 

95.103 8.464 53.765 4.740 2.244 23.177 0.217 

97.785 8.459 54.372 4.807 2.254 22.685 0.238 

99.613 8.459 54.689 4.892 2.259 21.929 0.231 

104.341 8.466 53.623 4.953 2.245 21.724 0.226 

109.552 8.501 53.847 5.037 2.237 21.953 0.239 

111.535 8.552 55.163 5.102 2.242 21.630 0.241 

111.427 8.572 55.081 5.004 2.239 21.387 0.208 

110.093 8.564 54.180 4.775 2.234 21.571 0.229 

104.035 8.568 53.578 4.576 2.264 21.232 0.251 

91.525 8.605 55.198 4.542 2.317 20.086 0.269 

81.431 8.642 58.836 4.659 2.314 19.748 0.149 

78.463 8.653 59.529 5.006 2.258 20.948 0.165 

81.871 8.632 56.534 5.924 2.213 22.185 0.252 

87.715 8.585 55.026 7.706 2.180 23.039 0.236 

93.092 8.524 54.054 10.275 2.168 23.497 0.314 

99.915 8.481 51.490 12.360 2.180 22.914 0.269 

103.395 8.472 49.223 13.318 2.215 20.962 0.250 

95.001 8.476 46.955 13.508 2.290 18.068 0.259 

84.831 8.467 45.183 13.585 2.336 17.587 0.079 

84.482 8.459 45.135 13.720 2.270 18.394 0.236 

91.656 8.459 45.743 13.688 2.192 22.099 0.315 

97.361 8.459 46.971 13.406 2.157 23.971 0.301 

99.001 8.459 48.680 13.190 2.143 24.458 0.283 

95.557 8.459 50.833 13.403 2.139 24.474 0.296 

87.925 8.459 51.373 13.830 2.134 24.173 0.292 

80.440 8.459 50.027 14.091 2.129 23.819 0.297 

76.321 8.459 50.216 13.847 2.126 23.601 0.276 

77.903 8.459 49.649 13.028 2.119 23.891 0.275 

88.565 8.459 47.629 11.633 2.109 24.401 0.269 

97.757 8.459 47.762 10.181 2.105 24.629 0.307 

100.300 8.459 50.214 9.104 2.110 24.892 0.286 

99.990 8.459 52.801 8.313 2.137 24.639 0.299 
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98.316 8.459 52.439 7.603 2.192 23.192 0.250 

94.770 8.459 50.362 7.038 2.240 21.873 0.236 

90.586 8.459 50.180 6.717 2.250 21.320 0.259 

88.276 8.459 52.854 6.546 2.238 21.131 0.215 

88.438 8.460 56.796 6.446 2.227 21.142 0.251 

89.736 8.474 58.238 6.488 2.221 21.067 0.258 

90.730 8.493 57.126 6.747 2.195 21.166 0.225 

91.545 8.500 55.646 7.314 2.156 22.044 0.284 

92.407 8.520 53.562 8.457 2.128 23.211 0.288 

93.868 8.557 46.078 12.110 2.127 22.338 0.334 

94.540 8.557 44.730 13.279 2.124 20.960 0.288 

94.414 8.557 44.908 13.562 2.125 20.198 0.262 

93.724 8.557 44.680 13.364 2.136 20.159 0.265 

93.952 8.557 44.348 13.576 2.150 20.290 0.297 

95.320 8.557 43.732 14.830 2.165 20.045 0.273 

98.158 8.557 30.881 33.965 2.157 18.276 0.253 

97.581 8.557 31.398 35.438 2.162 18.819 0.251 

96.949 8.557 33.179 33.979 2.174 18.584 0.264 

95.135 8.554 33.986 32.418 2.219 16.729 0.234 

90.905 8.544 33.637 31.339 2.296 13.679 0.218 

83.561 8.541 33.526 29.111 2.385 10.799 0.213 

74.807 8.551 33.665 24.985 2.462 8.769 0.114 

67.190 8.557 35.578 20.243 2.466 8.827 0.082 

66.099 8.557 40.600 16.023 2.416 10.955 0.174 

71.516 8.557 43.878 12.755 2.381 12.787 0.144 

76.871 8.557 43.352 10.647 2.342 14.436 0.133 

79.041 8.557 44.225 9.681 2.278 16.570 0.198 

81.494 8.557 47.706 9.369 2.219 18.346 0.226 

85.049 8.557 50.620 9.488 2.174 19.704 0.257 

89.125 8.557 50.309 9.769 2.141 20.940 0.254 

93.158 8.557 47.872 9.849 2.131 21.467 0.289 

97.734 8.557 48.318 9.579 2.155 20.648 0.296 

103.493 8.557 51.557 9.155 2.207 18.849 0.274 

106.803 8.557 52.922 8.836 2.256 17.540 0.186 

106.445 8.557 52.149 8.790 2.244 18.139 0.122 

107.030 8.557 51.004 9.063 2.173 20.507 0.122 

104.448 8.517 44.510 11.277 2.106 23.721 0.305 

103.854 8.548 44.370 11.412 2.109 23.490 0.325 

99.864 8.557 46.711 11.495 2.122 23.342 0.280 

91.603 8.557 45.478 10.894 2.181 22.203 0.282 

90.255 8.557 45.489 10.409 2.190 21.848 0.228 

89.542 8.557 48.040 9.865 2.189 22.198 0.285 

89.854 8.557 50.980 9.158 2.182 22.336 0.235 

91.080 8.557 52.997 8.351 2.179 22.637 0.283 

92.170 8.557 53.866 7.693 2.193 21.883 0.258 

91.884 8.557 57.142 7.309 2.215 20.516 0.242 
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90.593 8.557 60.477 7.179 2.230 20.378 0.206 

89.914 8.557 60.132 7.477 2.234 20.847 0.237 

89.438 8.557 57.314 8.522 2.242 19.212 0.231 

86.303 8.557 51.512 10.615 2.287 14.001 0.212 

77.564 8.557 43.587 13.823 2.362 9.303 0.153 

67.686 8.557 36.939 17.406 2.407 6.463 0.118 

63.750 8.557 34.963 19.338 2.374 6.243 0.067 

67.728 8.557 38.002 17.555 2.289 9.362 0.136 

76.915 8.557 44.180 13.698 2.229 15.693 0.251 

86.339 8.557 51.505 10.370 2.224 20.209 0.248 

89.918 8.557 56.617 8.437 2.241 19.536 0.221 

88.623 8.558 56.562 7.617 2.231 19.148 0.218 

87.110 8.569 53.790 7.632 2.192 20.426 0.258 

87.853 8.604 52.993 8.028 2.163 21.631 0.278 

89.894 8.644 52.093 8.718 2.159 21.944 0.299 

90.813 8.655 49.606 10.212 2.184 21.411 0.304 

90.044 8.667 47.823 12.971 2.277 18.738 0.293 

85.774 8.703 45.618 17.298 2.457 14.270 0.260 

83.132 8.532 54.094 8.687 2.209 20.617 0.257 

88.216 8.528 52.968 7.509 2.199 20.954 0.244 

89.788 8.525 52.885 7.076 2.189 20.819 0.253 

90.141 8.530 54.559 6.847 2.184 20.884 0.246 

90.466 8.544 54.999 6.513 2.191 20.973 0.254 

88.943 8.557 55.147 5.192 2.243 20.100 0.243 

88.472 8.557 56.045 4.960 2.271 19.607 0.222 

87.621 8.557 59.724 4.686 2.297 19.264 0.208 

86.743 8.546 62.010 4.487 2.300 18.865 0.214 

86.413 8.510 62.349 4.525 2.291 18.696 0.208 

86.620 8.473 60.302 5.096 2.271 19.023 0.199 

86.885 8.460 54.992 6.281 2.248 17.880 0.221 

85.817 8.470 46.564 7.957 2.266 13.858 0.226 

80.463 8.506 38.631 9.403 2.329 9.880 0.145 

72.551 8.544 34.981 9.723 2.390 8.187 0.100 

72.949 8.557 49.444 6.689 2.337 14.501 0.193 

80.439 8.557 57.527 5.133 2.307 17.547 0.224 

84.948 8.557 58.166 4.250 2.294 18.535 0.195 

86.369 8.557 58.279 3.834 2.273 19.793 0.226 

87.403 8.557 59.288 3.664 2.249 20.513 0.243 

88.678 8.557 59.095 3.624 2.243 20.231 0.251 

88.822 8.557 58.636 3.656 2.247 20.119 0.190 

88.481 8.557 59.005 3.733 2.239 20.477 0.268 

88.950 8.557 60.768 3.824 2.229 21.012 0.258 

89.908 8.557 61.519 3.904 2.227 21.429 0.251 

90.926 8.557 59.494 3.945 2.228 21.378 0.255 

91.555 8.557 57.249 3.979 2.233 20.674 0.241 

91.334 8.557 56.724 4.046 2.243 19.889 0.221 
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90.320 8.557 56.486 4.086 2.249 19.410 0.216 

89.375 8.557 55.961 4.021 2.232 19.468 0.250 

88.940 8.557 57.238 3.865 2.213 20.067 0.220 

88.853 8.557 61.773 3.623 2.225 20.435 0.250 

88.456 8.557 66.436 3.327 2.266 19.976 0.201 

87.441 8.557 67.656 3.058 2.300 19.545 0.175 

86.196 8.557 63.582 2.907 2.317 19.567 0.238 

85.568 8.557 61.082 2.855 2.316 19.301 0.167 

85.811 8.557 62.629 2.910 2.294 19.018 0.199 

86.703 8.557 63.700 3.156 2.261 19.686 0.183 

88.180 8.560 61.907 3.685 2.210 21.629 0.255 

91.206 8.580 57.302 4.643 2.128 23.962 0.216 

96.379 8.622 51.956 6.278 2.057 24.810 0.340 

105.832 8.656 45.864 11.807 2.044 22.114 0.322 

105.195 8.656 42.065 14.451 2.076 20.064 0.321 

101.759 8.656 38.124 15.382 2.108 18.374 0.277 

98.020 8.660 36.591 13.001 2.141 17.553 0.271 

95.567 8.693 37.152 8.713 2.203 17.442 0.274 

94.106 8.767 41.349 5.005 2.288 17.738 0.292 

91.750 8.830 53.339 3.270 2.353 18.439 0.171 

88.497 8.850 65.960 2.485 2.373 19.080 0.146 

85.985 8.838 73.623 2.157 2.364 19.757 0.154 

85.069 8.815 76.773 2.133 2.357 20.295 0.174 

84.860 8.795 75.860 2.371 2.358 20.661 0.161 

84.865 8.745 71.085 2.892 2.315 21.548 0.130 

86.942 8.677 62.562 3.758 2.182 22.546 0.361 

105.673 8.640 40.879 13.155 2.027 21.181 0.328 

104.975 8.652 34.896 19.241 2.043 20.763 0.321 

104.294 8.656 32.284 19.042 2.052 20.590 0.335 

103.599 8.656 30.221 18.448 2.057 19.969 0.327 

104.057 8.656 29.349 18.050 2.049 19.244 0.311 

104.998 8.656 28.685 18.629 2.050 19.522 0.345 

105.227 8.660 28.184 18.609 2.059 19.526 0.339 

104.504 8.686 29.230 16.349 2.083 19.080 0.327 

103.506 8.739 35.851 11.769 2.153 18.738 0.329 

98.007 8.878 90.454 4.474 2.368 19.311 0.144 

92.045 8.924 97.977 3.044 2.399 19.314 0.130 

87.467 8.911 85.906 2.292 2.399 19.221 0.122 

85.442 8.864 76.033 1.957 2.391 19.487 0.135 

84.926 8.805 72.271 1.885 2.373 19.484 0.131 

84.803 8.738 70.879 1.911 2.353 19.034 0.186 

84.740 8.710 70.898 1.983 2.344 18.780 0.129 

84.419 8.729 71.604 2.167 2.341 19.170 0.176 

84.172 8.728 71.480 2.490 2.310 20.551 0.151 

86.061 8.690 67.606 2.895 2.224 22.400 0.159 

91.640 8.678 60.957 3.224 2.164 22.640 0.277 
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97.906 8.728 57.665 3.361 2.214 20.912 0.335 

99.049 8.797 62.626 3.258 2.336 19.200 0.305 

94.002 8.834 72.210 2.987 2.405 18.316 0.118 

86.830 8.849 80.758 2.608 2.413 18.500 0.112 

83.726 8.852 85.688 2.257 2.404 19.354 0.117 

85.050 8.853 91.646 2.056 2.404 19.347 0.079 

86.988 8.853 95.200 2.001 2.414 18.402 0.116 

85.694 8.853 92.560 1.993 2.416 17.885 0.099 

83.028 8.853 90.798 1.970 2.415 17.883 0.097 

82.201 8.853 91.639 1.925 2.415 17.784 0.104 

82.675 8.853 90.075 1.862 2.408 17.559 0.097 

82.905 8.853 86.559 1.791 2.407 17.474 0.105 

83.087 8.853 84.410 1.724 2.413 17.589 0.111 

82.996 8.853 84.047 1.654 2.417 17.708 0.122 

82.538 8.853 84.473 1.577 2.412 17.790 0.118 

82.350 8.852 85.882 1.509 2.404 17.908 0.129 

82.801 8.848 87.470 1.460 2.406 18.117 0.116 

83.548 8.836 89.392 1.429 2.405 18.281 0.136 

84.030 8.838 89.663 1.413 2.393 18.143 0.140 

84.171 8.845 87.011 1.409 2.384 18.023 0.136 

84.141 8.838 85.259 1.418 2.391 18.204 0.145 

84.144 8.836 87.377 1.444 2.405 18.059 0.117 

83.947 8.847 87.791 1.485 2.392 17.618 0.120 

83.501 8.852 82.867 1.517 2.371 17.374 0.142 

83.397 8.853 80.062 1.519 2.378 17.066 0.157 

83.303 8.853 83.113 1.507 2.392 16.991 0.192 

82.790 8.853 87.091 1.498 2.393 17.004 0.133 

82.467 8.853 87.827 1.472 2.395 16.848 0.165 

82.608 8.853 86.113 1.426 2.383 17.071 0.145 

83.421 8.853 83.849 1.388 2.368 17.621 0.149 

84.441 8.853 82.307 1.379 2.371 18.193 0.179 

84.869 8.853 80.253 1.395 2.375 18.576 0.180 

84.793 8.853 79.038 1.411 2.370 18.630 0.156 

85.036 8.853 79.234 1.417 2.376 18.764 0.177 

85.571 8.853 79.501 1.423 2.392 19.244 0.183 

85.868 8.853 81.771 1.440 2.390 19.594 0.143 

85.937 8.853 87.159 1.460 2.377 19.737 0.157 

85.967 8.853 93.532 1.463 2.374 19.746 0.167 

85.678 8.853 97.209 1.460 2.381 19.168 0.169 

85.594 8.852 94.529 1.480 2.393 18.257 0.142 

85.809 8.834 88.108 1.556 2.395 17.811 0.140 

85.629 8.774 84.953 1.713 2.366 18.106 0.141 

85.397 8.698 81.987 1.936 2.307 18.265 0.155 

85.174 8.675 72.251 2.131 2.278 18.042 0.188 

84.767 8.719 66.062 2.245 2.321 17.903 0.259 

84.123 8.798 75.104 2.273 2.398 17.777 0.253 
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82.881 8.837 89.890 2.174 2.444 17.798 0.122 

81.102 8.826 97.709 2.028 2.477 17.623 0.093 

78.974 8.790 93.966 2.015 2.481 17.610 0.118 

77.871 8.752 83.541 2.279 2.412 17.434 0.124 

79.635 8.708 74.870 2.760 2.323 16.473 0.135 

83.588 8.685 67.934 3.193 2.291 15.787 0.163 

86.113 8.741 64.260 3.296 2.339 16.026 0.218 

86.064 8.853 76.415 3.064 2.419 17.210 0.259 

84.525 8.927 96.920 2.652 2.453 18.260 0.116 

83.660 8.949 104.368 2.255 2.461 18.396 0.098 

83.434 8.951 104.727 1.952 2.470 18.313 0.083 

82.976 8.951 106.087 1.767 2.460 18.446 0.126 

82.736 8.951 107.232 1.661 2.449 18.493 0.119 

82.701 8.951 108.287 1.600 2.453 18.222 0.096 

82.164 8.951 106.324 1.559 2.445 17.955 0.121 

81.656 8.951 102.052 1.536 2.439 17.967 0.124 

81.919 8.951 102.467 1.535 2.457 18.240 0.127 

82.605 8.951 105.817 1.547 2.467 18.498 0.126 

83.094 8.951 104.065 1.570 2.458 18.335 0.107 

83.100 8.951 100.231 1.565 2.453 17.890 0.114 

82.920 8.951 100.848 1.472 2.455 17.443 0.129 

82.840 8.951 103.527 1.346 2.455 17.131 0.124 

82.776 8.951 105.528 1.297 2.456 17.208 0.109 

82.600 8.952 105.859 1.288 2.453 17.407 0.106 

82.321 8.965 104.222 1.284 2.449 17.359 0.127 

81.929 8.995 99.896 1.282 2.462 17.165 0.109 

81.596 9.023 95.324 1.280 2.463 17.124 0.125 

81.576 9.041 93.872 1.281 2.441 17.240 0.130 

81.840 9.049 93.295 1.301 2.429 17.129 0.144 

82.019 9.049 92.197 1.350 2.439 16.823 0.133 

81.713 9.049 91.539 1.418 2.454 16.710 0.145 

81.192 9.049 91.411 1.486 2.464 16.774 0.103 

80.792 9.049 91.382 1.539 2.463 16.639 0.115 

80.424 9.049 90.691 1.561 2.455 16.269 0.107 

80.204 9.049 91.167 1.570 2.461 16.109 0.132 

80.372 9.049 92.880 1.577 2.472 16.226 0.131 

80.554 9.049 93.082 1.584 2.478 16.234 0.118 

80.104 9.049 91.843 1.583 2.480 15.917 0.120 

79.304 9.049 90.197 1.574 2.474 15.557 0.105 

79.130 9.049 90.838 1.565 2.470 15.444 0.110 

79.694 9.049 91.934 1.557 2.471 15.433 0.130 

80.485 9.049 91.964 1.546 2.464 15.355 0.138 

80.812 9.049 92.268 1.540 2.449 15.419 0.126 

80.798 9.049 91.843 1.533 2.434 15.744 0.114 

80.844 9.049 91.426 1.509 2.422 16.110 0.132 

81.084 9.049 91.206 1.462 2.421 16.272 0.115 
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81.559 9.049 91.084 1.397 2.426 16.437 0.113 

81.942 9.049 90.930 1.324 2.429 16.812 0.128 

82.043 9.049 88.906 1.256 2.425 17.145 0.119 

82.118 9.049 84.527 1.197 2.407 17.215 0.140 

82.373 9.049 78.874 1.154 2.399 17.139 0.137 

82.565 9.049 77.146 1.133 2.412 17.214 0.151 

82.458 9.049 80.183 1.138 2.430 17.393 0.161 

81.964 9.049 80.931 1.159 2.431 17.263 0.154 

81.432 9.049 79.613 1.191 2.416 16.932 0.133 

81.258 9.049 80.343 1.245 2.413 16.782 0.143 

81.299 9.049 82.511 1.331 2.439 16.880 0.138 

81.380 9.049 84.551 1.445 2.456 17.116 0.169 

80.845 9.049 82.542 1.561 2.452 16.729 0.124 

78.963 9.049 77.829 1.629 2.466 15.801 0.109 

76.808 9.049 75.160 1.626 2.476 15.473 0.146 

77.043 9.049 77.192 1.575 2.470 15.982 0.091 

79.223 9.049 80.437 1.507 2.465 16.691 0.136 

80.762 9.049 80.693 1.427 2.459 17.122 0.136 

80.796 9.049 80.209 1.363 2.448 17.573 0.143 

80.898 9.049 81.445 1.325 2.433 18.171 0.132 

81.441 9.049 81.507 1.307 2.418 18.377 0.124 

81.827 9.049 81.220 1.292 2.415 18.387 0.156 

81.722 9.049 83.205 1.268 2.427 18.355 0.166 

81.472 9.049 84.868 1.243 2.429 18.196 0.147 

81.660 9.049 85.776 1.232 2.410 17.997 0.116 

82.109 9.049 85.885 1.237 2.401 17.660 0.153 

82.207 9.049 84.201 1.267 2.405 17.514 0.164 

81.845 9.049 83.761 1.317 2.410 17.562 0.150 

81.264 9.049 84.541 1.358 2.420 17.487 0.154 

80.846 9.049 85.116 1.371 2.434 17.214 0.121 

80.844 9.049 86.172 1.367 2.445 17.234 0.121 

81.149 9.049 88.019 1.346 2.450 17.395 0.155 

81.349 9.049 88.953 1.307 2.445 17.136 0.139 

81.445 9.049 87.970 1.259 2.424 16.749 0.089 

81.559 9.049 86.887 1.218 2.401 16.602 0.164 

81.890 9.049 81.766 1.233 2.408 16.192 0.145 

82.232 9.049 81.601 1.289 2.435 16.556 0.152 

82.404 9.049 87.221 1.348 2.455 16.985 0.167 

82.285 9.049 91.409 1.393 2.449 17.206 0.154 

82.019 9.049 87.272 1.403 2.435 17.192 0.130 

81.590 9.049 80.948 1.390 2.438 16.914 0.119 

81.104 9.049 78.081 1.368 2.444 16.551 0.140 

80.858 9.048 80.486 1.346 2.439 16.181 0.155 

80.880 9.033 82.997 1.316 2.435 16.321 0.136 

81.108 8.993 81.661 1.270 2.421 16.826 0.150 

81.424 8.960 81.809 1.215 2.408 17.190 0.148 
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81.825 8.951 83.418 1.163 2.405 17.409 0.110 

82.756 8.951 86.367 1.124 2.393 17.163 0.150 

82.468 8.951 87.685 1.132 2.402 17.442 0.165 

81.879 8.951 84.936 1.145 2.417 17.293 0.166 

81.551 8.951 81.636 1.151 2.426 17.487 0.141 

81.437 8.951 80.521 1.138 2.432 17.435 0.143 

81.619 8.951 80.758 1.107 2.430 17.433 0.136 

82.159 8.951 79.444 1.071 2.420 17.896 0.139 

82.769 8.951 78.037 1.044 2.419 18.103 0.143 

82.809 8.951 78.659 1.028 2.431 18.039 0.152 

82.379 8.951 80.299 1.014 2.429 17.694 0.159 

83.044 8.951 80.668 1.000 2.414 17.538 0.137 

84.872 8.951 78.545 0.997 2.414 17.461 0.137 

84.435 8.951 76.112 1.002 2.416 17.563 0.157 

82.283 8.951 75.214 1.009 2.400 18.221 0.154 

81.906 8.952 74.693 1.033 2.400 18.639 0.123 

82.125 8.988 73.457 1.091 2.388 19.299 0.148 

81.063 9.330 71.783 1.177 2.286 18.884 0.136 

80.178 9.837 71.628 1.244 2.216 17.459 0.154 

83.717 9.796 72.372 1.277 2.213 18.495 0.127 

90.097 9.419 78.508 1.299 2.209 21.980 0.161 

94.840 9.170 91.480 1.295 2.243 23.801 0.139 

95.446 8.943 95.946 1.242 2.308 23.014 0.123 

88.992 8.860 86.178 1.181 2.377 19.750 0.129 

81.649 8.868 79.119 1.157 2.416 18.224 0.134 

79.565 8.892 80.789 1.162 2.431 17.687 0.150 

79.808 8.923 82.074 1.156 2.436 17.348 0.151 

80.729 8.946 81.512 1.139 2.435 17.411 0.112 

81.416 8.951 79.468 1.126 2.435 17.670 0.127 

81.598 8.951 78.317 1.121 2.442 17.740 0.136 

81.825 8.951 79.992 1.123 2.444 17.888 0.134 

82.367 8.951 81.733 1.129 2.435 18.307 0.130 

82.990 8.951 81.195 1.136 2.428 18.347 0.115 

83.527 8.951 79.004 1.141 2.420 17.948 0.133 

83.665 8.951 77.104 1.147 2.414 17.760 0.139 

83.423 8.951 76.429 1.158 2.424 17.589 0.140 

83.115 8.951 76.396 1.171 2.432 17.067 0.139 

82.814 8.951 76.884 1.181 2.426 16.796 0.140 

82.745 8.951 76.685 1.189 2.416 17.066 0.146 

83.431 8.951 76.130 1.193 2.407 17.180 0.120 

84.372 8.951 77.074 1.193 2.408 17.050 0.134 

84.976 8.950 76.773 1.188 2.409 17.359 0.140 

85.282 8.941 74.539 1.185 2.403 18.210 0.163 

85.578 8.922 73.496 1.175 2.402 18.922 0.152 

85.703 8.893 74.393 1.171 2.408 19.168 0.153 

85.294 8.864 76.600 1.187 2.418 19.187 0.155 
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84.484 8.835 76.978 1.223 2.437 19.219 0.163 

84.270 8.770 74.651 1.293 2.442 19.761 0.169 

85.196 8.669 74.212 1.433 2.413 20.485 0.135 

85.827 8.588 75.138 1.644 2.386 20.563 0.160 

83.993 8.561 72.938 1.846 2.405 19.446 0.175 

79.946 8.557 66.613 1.937 2.459 17.770 0.171 

77.409 8.557 61.897 1.913 2.470 17.548 0.189 

80.134 8.557 65.872 1.832 2.412 18.759 0.123 

84.658 8.557 73.484 1.762 2.354 19.474 0.127 

87.488 8.557 78.521 1.743 2.320 19.344 0.190 

88.972 8.557 78.723 1.848 2.303 19.158 0.189 

90.881 8.557 75.951 2.115 2.288 19.236 0.198 

93.421 8.557 71.397 2.574 2.255 19.442 0.199 

96.169 8.557 65.084 3.238 2.200 19.864 0.188 

98.803 8.557 58.580 4.024 2.140 20.867 0.216 

100.644 8.557 54.078 4.709 2.098 21.632 0.237 

101.093 8.557 51.340 4.970 2.080 21.685 0.309 

100.712 8.557 49.635 4.791 2.084 21.849 0.294 

100.502 8.557 50.442 4.379 2.087 22.617 0.252 

101.179 8.557 53.646 3.998 2.073 23.376 0.308 

102.077 8.557 56.017 3.757 2.065 23.427 0.356 

101.583 8.557 56.050 3.746 2.079 22.565 0.331 

100.264 8.557 53.948 3.934 2.109 21.096 0.330 

99.757 8.557 46.615 4.704 2.114 19.776 0.307 

100.732 8.559 49.001 5.484 2.074 20.266 0.300 

101.244 8.586 47.632 5.507 2.091 20.052 0.290 

101.417 8.615 48.671 5.524 2.091 19.950 0.312 

101.583 8.644 48.534 5.397 2.074 20.176 0.291 

102.018 8.655 46.775 5.005 2.059 20.779 0.328 

102.420 8.656 45.758 4.441 2.056 21.314 0.331 

102.549 8.656 46.798 3.772 2.064 21.358 0.334 

102.533 8.657 46.868 3.140 2.075 20.778 0.338 

101.944 8.712 45.899 1.920 2.098 20.763 0.321 

101.165 8.745 48.193 1.287 2.126 20.952 0.325 

99.473 8.754 49.961 0.826 2.145 21.276 0.305 

97.043 8.754 50.301 0.625 2.173 21.444 0.298 

94.291 8.754 48.722 0.553 2.222 21.134 0.304 

90.602 8.741 46.097 0.509 2.267 20.285 0.279 

85.319 8.677 45.007 0.468 2.306 19.091 0.285 

80.578 8.597 45.516 0.424 2.325 18.266 0.235 

78.697 8.559 45.719 0.366 2.295 18.424 0.170 

81.770 8.557 46.044 0.299 2.221 19.819 0.133 

87.505 8.557 48.113 0.245 2.155 21.509 0.132 

89.737 8.557 49.700 0.215 2.132 22.155 0.304 

85.583 8.557 48.560 0.216 2.148 21.893 0.304 

82.052 8.557 46.171 0.234 2.181 21.067 0.311 
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83.345 8.557 45.395 0.260 2.205 19.978 0.310 

86.465 8.558 46.259 0.283 2.197 19.369 0.289 

89.253 8.564 46.504 0.292 2.169 19.919 0.265 

92.064 8.581 47.193 0.283 2.148 21.341 0.220 

94.564 8.609 47.933 0.264 2.145 22.695 0.281 

95.973 8.639 47.480 0.249 2.150 23.277 0.294 

96.244 8.654 46.412 0.242 2.149 23.802 0.301 

95.982 8.656 45.656 0.240 2.141 24.312 0.313 

95.784 8.656 45.867 0.239 2.135 24.430 0.321 

96.512 8.672 46.289 0.238 2.133 24.478 0.312 

97.482 8.712 45.896 0.238 2.135 24.530 0.297 

97.800 8.746 44.702 0.242 2.136 24.775 0.307 

97.834 8.754 43.854 0.254 2.128 25.350 0.310 

97.907 8.749 44.784 0.274 2.119 25.960 0.317 

93.206 8.709 46.324 0.306 2.203 22.169 0.302 

87.222 8.678 44.838 0.307 2.224 21.559 0.305 

84.681 8.652 45.845 0.303 2.170 21.988 0.162 

88.529 8.617 47.937 0.285 2.131 23.898 0.156 

94.215 8.576 48.412 0.255 2.128 23.922 0.242 

96.578 8.559 47.379 0.232 2.128 23.917 0.308 

96.821 8.557 46.055 0.221 2.125 25.408 0.311 

96.780 8.557 46.108 0.220 2.127 26.819 0.328 

96.683 8.557 47.118 0.221 2.135 27.194 0.318 

96.356 8.554 46.472 0.223 2.138 27.150 0.308 

95.975 8.543 45.163 0.223 2.137 26.868 0.321 

95.613 8.541 44.937 0.222 2.140 26.480 0.319 

95.327 8.552 45.312 0.219 2.149 26.236 0.312 

95.131 8.557 46.213 0.212 2.156 25.893 0.311 

94.998 8.557 46.985 0.206 2.155 25.799 0.307 

95.239 8.557 46.064 0.210 2.153 26.319 0.306 

94.849 8.550 42.948 0.239 2.173 25.945 0.311 

91.452 8.520 40.337 0.302 2.222 23.225 0.298 

84.881 8.493 40.037 0.405 2.280 19.644 0.294 

78.466 8.517 41.243 0.537 2.306 17.419 0.298 

76.027 8.549 42.682 0.632 2.277 17.613 0.175 

77.973 8.557 43.862 0.612 2.223 19.140 0.238 

82.447 8.557 44.487 0.494 2.180 21.157 0.232 

87.308 8.557 44.262 0.382 2.153 22.597 0.294 

90.264 8.557 43.411 0.318 2.140 23.089 0.301 

90.931 8.557 43.275 0.297 2.144 23.190 0.273 

90.649 8.557 43.522 0.295 2.156 22.810 0.285 

89.918 8.557 44.559 0.288 2.162 22.271 0.318 

89.637 8.557 44.401 0.270 2.156 22.488 0.272 

90.993 8.557 42.039 0.245 2.139 23.326 0.275 

93.844 8.557 41.379 0.223 2.126 24.276 0.314 

96.035 8.557 42.875 0.212 2.125 24.680 0.302 
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96.853 8.557 42.645 0.214 2.139 23.799 0.298 

96.082 8.557 40.968 0.234 2.157 22.844 0.308 

96.014 8.557 42.113 0.242 2.154 23.220 0.306 

96.257 8.560 43.127 0.244 2.154 23.152 0.297 

96.351 8.580 43.359 0.243 2.151 23.165 0.298 

96.086 8.622 43.831 0.240 2.150 23.392 0.303 

95.502 8.650 44.167 0.239 2.146 23.862 0.314 

95.083 8.656 44.497 0.239 2.137 24.374 0.317 

95.412 8.656 45.252 0.236 2.133 24.668 0.292 

96.011 8.656 44.026 0.232 2.134 24.931 0.307 

96.314 8.656 42.449 0.233 2.138 25.102 0.312 

95.843 8.656 42.978 0.245 2.145 25.120 0.301 

94.641 8.655 43.947 0.267 2.151 25.259 0.311 

93.049 8.640 45.067 0.294 2.158 25.431 0.310 

91.290 8.600 45.428 0.316 2.171 24.913 0.306 

89.503 8.566 44.573 0.318 2.173 24.160 0.267 

88.959 8.558 43.809 0.299 2.157 24.173 0.295 

90.624 8.550 45.210 0.268 2.135 24.872 0.281 

93.109 8.519 47.252 0.238 2.116 25.815 0.257 

95.369 8.478 47.674 0.217 2.106 26.677 0.312 

97.191 8.462 47.661 0.206 2.109 27.285 0.296 

98.027 8.473 48.103 0.204 2.118 27.428 0.328 

97.408 8.492 48.940 0.213 2.124 26.945 0.319 

96.323 8.489 49.651 0.230 2.134 26.206 0.326 

95.282 8.480 48.427 0.244 2.149 25.406 0.327 

94.102 8.474 45.627 0.245 2.155 24.846 0.266 

92.914 8.463 44.618 0.238 2.148 24.902 0.312 

92.331 8.459 46.154 0.231 2.134 25.597 0.291 

92.827 8.459 47.669 0.227 2.123 26.128 0.297 

93.977 8.459 47.299 0.229 2.131 25.151 0.290 

95.102 8.459 46.086 0.244 2.154 23.478 0.323 

93.449 8.471 46.628 0.346 2.214 22.079 0.316 

90.460 8.476 47.641 0.398 2.255 21.432 0.255 

87.428 8.467 45.288 0.424 2.267 20.084 0.303 

85.421 8.459 42.306 0.425 2.250 20.316 0.241 

85.697 8.459 44.051 0.408 2.214 20.522 0.235 

87.470 8.459 46.185 0.392 2.176 19.807 0.264 

89.364 8.459 45.918 0.387 2.177 19.667 0.279 

89.076 8.459 45.976 0.380 2.217 18.580 0.269 

87.374 8.459 45.589 0.364 2.192 18.796 0.300 

87.997 8.459 44.741 0.347 2.158 19.844 0.299 

90.734 8.459 43.242 0.334 2.138 20.662 0.189 

92.533 8.459 44.334 0.341 2.154 20.188 0.204 

91.368 8.459 46.509 0.375 2.202 18.508 0.310 

87.683 8.459 45.504 0.417 2.239 16.893 0.315 

84.021 8.459 41.330 0.453 2.249 16.019 0.283 
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82.741 8.459 39.760 0.486 2.244 15.686 0.280 

82.961 8.459 41.590 0.492 2.228 16.068 0.176 

83.110 8.459 43.861 0.444 2.203 17.574 0.238 

83.818 8.459 45.224 0.382 2.172 19.352 0.229 

85.819 8.459 45.717 0.340 2.157 19.949 0.240 

87.683 8.459 45.542 0.308 2.151 20.153 0.236 

89.529 8.459 45.666 0.281 2.139 21.504 0.249 

92.296 8.459 46.622 0.270 2.138 23.146 0.326 

94.387 8.459 47.324 0.274 2.143 23.866 0.297 

94.777 8.459 47.116 0.293 2.142 23.948 0.274 

94.030 8.459 46.758 0.330 2.137 23.786 0.253 

92.748 8.459 45.707 0.384 2.135 23.485 0.263 

91.384 8.459 44.661 0.451 2.154 23.032 0.264 

90.440 8.459 45.999 0.528 2.186 22.291 0.321 

89.225 8.470 48.277 0.591 2.202 21.156 0.246 

87.471 8.506 50.900 0.615 2.206 20.426 0.255 

86.607 8.539 53.981 0.586 2.207 20.617 0.265 

87.296 8.527 55.693 0.536 2.208 20.609 0.244 

88.720 8.485 53.594 0.496 2.216 20.158 0.271 

89.259 8.470 49.784 0.468 2.243 19.112 0.193 

87.844 8.497 46.543 0.426 2.257 18.118 0.245 

86.335 8.538 44.100 0.374 2.231 18.631 0.230 

88.442 8.556 44.177 0.341 2.195 20.290 0.031 

92.451 8.557 46.534 0.325 2.174 21.497 0.219 

94.348 8.557 48.626 0.316 2.172 21.278 0.151 

94.254 8.557 49.870 0.320 2.174 20.696 0.275 

93.686 8.557 50.621 0.334 2.171 20.466 0.225 

93.411 8.557 50.570 0.333 2.162 20.269 0.292 

94.032 8.557 50.413 0.327 2.147 20.151 0.226 

95.402 8.557 49.388 0.331 2.142 20.449 0.269 

96.221 8.557 48.026 0.340 2.152 21.075 0.260 

96.439 8.557 49.189 0.346 2.157 21.405 0.246 

96.767 8.557 51.600 0.351 2.149 21.486 0.300 

97.012 8.557 51.558 0.339 2.142 21.701 0.300 

97.106 8.557 48.853 0.304 2.141 22.187 0.294 

97.591 8.557 46.626 0.262 2.132 23.210 0.263 

98.335 8.557 46.725 0.232 2.122 24.157 0.301 

98.809 8.557 47.377 0.217 2.122 24.272 0.278 

99.216 8.557 47.953 0.216 2.119 23.855 0.285 

99.809 8.557 48.547 0.222 2.118 23.359 0.308 

100.023 8.557 50.092 0.232 2.125 23.101 0.306 

99.631 8.557 52.067 0.247 2.129 23.053 0.304 

99.297 8.557 52.498 0.268 2.132 23.068 0.311 

98.972 8.557 52.465 0.291 2.131 22.628 0.310 

98.699 8.557 52.846 0.310 2.122 22.317 0.292 

98.964 8.557 53.144 0.326 2.117 22.436 0.306 
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99.539 8.557 54.463 0.336 2.121 22.158 0.313 

99.936 8.557 55.686 0.339 2.127 21.853 0.301 

100.109 8.557 55.267 0.343 2.130 22.184 0.284 

100.066 8.557 55.574 0.354 2.130 23.077 0.313 

99.938 8.553 59.639 0.371 2.133 23.854 0.297 

99.666 8.528 64.395 0.391 2.144 23.537 0.255 

98.892 8.485 64.583 0.404 2.157 22.612 0.299 

97.926 8.462 61.820 0.404 2.156 21.833 0.273 

97.950 8.459 58.321 0.397 2.140 21.257 0.312 

99.022 8.459 55.470 0.388 2.134 20.706 0.286 

99.552 8.459 53.596 0.381 2.145 20.151 0.276 

98.678 8.459 54.292 0.380 2.158 20.075 0.294 

96.956 8.459 57.059 0.395 2.169 20.316 0.239 

95.463 8.459 59.396 0.427 2.183 20.348 0.314 

94.710 8.459 59.902 0.474 2.208 19.684 0.253 

93.125 8.459 57.574 0.519 2.265 17.724 0.303 

88.378 8.459 54.599 0.543 2.319 16.032 0.284 

82.662 8.459 53.411 0.539 2.299 16.634 0.259 

81.713 8.459 53.613 0.495 2.245 18.123 0.263 

85.694 8.459 53.413 0.401 2.197 18.992 0.257 

90.712 8.459 51.771 0.299 2.150 20.196 0.283 

94.481 8.459 50.901 0.233 2.117 21.607 0.076 

96.700 8.459 50.648 0.202 2.107 22.260 0.244 

97.189 8.459 50.123 0.191 2.114 22.598 0.237 

96.856 8.459 50.948 0.199 2.119 22.911 0.276 

96.346 8.459 53.671 0.219 2.119 22.734 0.301 

95.797 8.459 54.891 0.230 2.123 22.225 0.310 

95.268 8.459 52.757 0.232 2.131 21.854 0.295 

94.908 8.459 50.110 0.230 2.134 22.326 0.304 

95.209 8.459 49.931 0.215 2.135 23.230 0.281 

95.506 8.459 52.232 0.217 2.138 22.962 0.322 

95.495 8.459 53.234 0.220 2.140 22.662 0.297 

95.229 8.459 51.112 0.221 2.139 22.325 0.298 

95.068 8.459 48.357 0.218 2.138 22.367 0.298 

94.942 8.459 48.316 0.213 2.139 22.845 0.313 

94.872 8.459 49.339 0.212 2.138 23.209 0.292 

95.125 8.459 49.722 0.218 2.137 23.304 0.289 

95.529 8.459 50.779 0.225 2.142 22.792 0.288 

95.730 8.459 51.569 0.235 2.158 22.322 0.316 

93.677 8.459 48.674 0.263 2.232 20.399 0.275 

93.947 8.459 45.841 0.265 2.231 20.224 0.305 

94.713 8.459 46.309 0.267 2.204 21.477 0.282 

93.797 8.459 51.228 0.267 2.195 22.098 0.296 

93.229 8.459 55.286 0.264 2.193 21.766 0.224 

93.321 8.459 54.347 0.289 2.203 21.258 0.304 

91.730 8.459 53.713 0.347 2.242 20.172 0.275 
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87.983 8.461 53.978 0.428 2.318 18.474 0.275 

82.742 8.481 54.114 0.509 2.393 16.904 0.244 

78.044 8.514 54.301 0.546 2.397 16.790 0.270 

76.803 8.532 57.036 0.522 2.321 18.331 0.249 

90.611 8.552 65.499 0.361 2.206 20.877 0.150 

90.569 8.557 67.094 0.348 2.224 20.587 0.174 

89.357 8.552 68.691 0.358 2.227 20.604 0.225 

88.663 8.531 68.758 0.380 2.236 20.420 0.207 

 

Well logs dataset (Well 15/12-20S) 

DT CA GR DR RHOB CNC POR 

68.485 8.601 61.344 5.886 2.519 19.410 0.099 

66.146 8.567 43.991 7.483 2.566 12.880 0.119 

65.456 8.476 38.238 8.649 2.581 11.130 0.171 

66.183 8.454 36.687 10.940 2.537 10.130 0.178 

69.931 8.397 8.935 20.865 2.312 9.300 0.136 

75.959 8.397 8.959 12.298 2.331 12.100 0.185 

79.063 8.420 16.579 12.909 2.343 13.960 0.171 

80.076 8.420 16.356 12.130 2.349 14.250 0.069 

76.615 8.420 12.629 19.497 2.342 12.610 0.152 

70.578 8.420 7.256 23.660 2.359 9.570 0.142 

67.801 8.420 9.861 24.205 2.425 8.510 0.055 

66.969 8.408 9.439 23.320 2.446 7.850 0.118 

66.779 8.420 8.428 21.195 2.496 8.070 0.183 

68.514 8.420 9.294 22.060 2.473 10.310 0.154 

74.665 8.420 28.444 9.973 2.380 15.470 0.193 

81.625 8.420 20.433 11.459 2.386 13.440 0.040 

77.293 8.595 46.527 7.838 2.406 21.350 0.042 

74.117 8.567 36.350 5.099 2.492 14.820 0.038 

73.768 8.510 26.244 3.417 2.515 14.200 0.053 

80.263 8.567 45.523 3.705 2.507 25.190 0.031 

87.422 8.567 56.575 10.063 2.350 30.340 0.145 

85.499 8.601 37.032 16.676 2.310 16.330 0.163 

78.826 8.454 26.970 9.321 2.464 14.260 0.141 

77.691 8.420 21.345 9.643 2.341 12.530 0.212 

80.564 8.420 14.452 17.242 2.219 13.950 0.203 

82.731 8.397 14.210 15.960 2.218 15.590 0.221 
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82.455 8.397 15.815 16.658 2.278 14.730 0.205 

82.060 8.397 18.003 15.344 2.298 14.250 0.200 

82.738 8.420 15.056 18.442 2.235 14.010 0.213 

84.333 8.420 14.140 12.886 2.224 15.670 0.193 

85.370 8.420 13.791 11.678 2.221 17.440 0.195 

85.741 8.420 12.156 4.162 2.251 19.300 0.213 

82.509 8.420 14.812 2.700 2.264 18.420 0.214 

82.866 8.437 12.113 1.515 2.273 18.390 0.173 

83.304 8.420 11.534 0.941 2.284 18.420 0.182 

83.878 8.397 10.805 0.623 2.307 19.040 0.216 

82.650 8.420 12.869 0.556 2.283 19.300 0.219 

84.523 8.420 18.484 0.823 2.265 19.430 0.219 

85.057 8.420 18.506 0.540 2.281 18.380 0.233 

83.953 8.397 10.580 0.360 2.265 18.800 0.221 

83.721 8.420 10.065 0.289 2.276 18.800 0.237 

83.281 8.420 9.708 0.259 2.297 19.100 0.219 

82.851 8.420 7.757 0.341 2.269 19.660 0.226 

82.687 8.420 8.625 0.388 2.277 18.730 0.200 

83.323 8.420 13.625 0.602 2.284 18.420 0.214 

84.916 8.454 8.444 0.461 2.239 20.610 0.213 

85.791 8.454 8.505 0.389 2.218 21.340 0.214 

86.174 8.420 9.653 0.350 2.208 21.460 0.174 

84.819 8.397 13.331 0.365 2.279 19.070 0.208 

83.303 8.420 11.905 0.482 2.305 17.840 0.212 

80.211 8.420 7.844 0.547 2.328 16.770 0.235 

79.125 8.420 8.629 0.505 2.315 17.170 0.225 

80.674 8.420 6.483 0.342 2.284 17.890 0.223 

81.046 8.408 5.149 0.360 2.271 18.890 0.202 

77.240 8.397 14.646 1.203 2.357 15.180 0.051 

77.780 8.420 23.542 1.571 2.378 14.970 0.178 

75.479 8.420 24.775 1.644 2.422 10.870 0.148 

68.957 8.420 32.365 1.973 2.516 6.690 0.152 

65.470 8.420 33.396 2.111 2.557 5.730 0.067 

66.517 8.476 28.382 2.031 2.561 7.460 0.042 

71.450 8.454 17.237 1.196 2.475 14.420 0.152 
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74.162 8.454 22.247 0.995 2.463 15.410 0.096 

74.990 8.476 22.208 0.979 2.452 15.940 0.128 

73.906 8.454 23.408 0.970 2.476 16.090 0.119 

74.978 8.454 19.510 0.881 2.434 17.220 0.062 

76.324 8.420 21.560 0.759 2.409 15.610 0.197 

77.700 8.420 19.152 0.658 2.397 16.950 0.130 

77.893 8.454 15.620 0.588 2.382 17.770 0.156 

76.797 8.454 13.474 0.506 2.324 17.790 0.190 

80.105 8.437 12.123 0.417 2.305 19.610 0.170 

79.220 8.476 10.848 0.511 2.289 19.170 0.233 

76.205 8.454 21.073 1.239 2.320 16.480 0.218 

70.724 8.454 42.788 2.679 2.443 15.670 0.216 

69.327 8.476 69.423 2.782 2.566 16.180 0.040 

69.287 8.544 72.745 3.024 2.547 16.870 0.032 

68.975 8.476 90.149 3.324 2.544 18.370 0.088 

67.853 8.510 110.097 3.481 2.582 20.150 0.072 

70.249 8.510 84.331 2.774 2.571 18.460 0.059 

71.414 8.510 72.195 2.521 2.539 18.480 0.047 

75.551 8.567 52.149 1.722 2.492 19.150 0.090 

78.653 8.510 40.578 1.098 2.410 18.150 0.078 

80.363 8.493 34.213 0.963 2.400 16.120 0.167 

78.688 8.544 39.559 0.979 2.465 15.390 0.168 

75.428 8.476 46.442 0.998 2.451 16.710 0.124 

76.383 8.527 34.758 0.982 2.428 16.890 0.072 

77.612 8.544 31.126 1.073 2.423 14.830 0.150 

75.829 8.544 41.059 1.319 2.498 15.280 0.147 

73.457 8.544 44.779 1.336 2.482 16.510 0.097 

74.093 8.544 47.685 1.215 2.465 17.070 0.132 

75.336 8.544 51.982 1.081 2.450 17.310 0.120 

76.191 8.567 75.606 0.990 2.455 19.870 0.132 

78.117 8.544 71.480 0.763 2.356 21.450 0.102 

79.388 8.544 66.883 0.732 2.353 22.630 0.188 

80.865 8.567 74.978 1.064 2.372 19.740 0.202 

77.993 8.510 105.125 1.412 2.475 18.050 0.193 

75.135 8.565 105.067 1.512 2.522 17.030 0.043 
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76.228 8.558 142.719 1.252 2.486 19.470 0.104 

77.248 8.587 105.720 0.954 2.493 20.190 0.107 

79.414 8.493 89.839 0.842 2.408 20.830 0.158 

80.846 8.476 81.578 0.849 2.445 21.650 0.175 

80.157 8.454 68.637 1.048 2.379 19.800 0.171 

78.884 8.510 88.728 1.144 2.445 20.110 0.204 

76.151 8.454 79.567 1.197 2.499 17.990 0.115 

74.836 8.476 71.711 1.163 2.488 19.130 0.108 

74.970 8.420 68.107 1.058 2.455 19.070 0.129 

76.331 8.420 70.451 0.975 2.426 20.400 0.120 

79.862 8.454 75.235 0.893 2.397 21.580 0.168 

81.360 8.420 77.144 0.820 2.392 21.050 0.162 

82.839 8.420 81.387 0.688 2.368 22.160 0.167 

84.616 8.420 74.555 0.601 2.337 20.890 0.188 

85.421 8.420 75.448 0.612 2.319 20.230 0.212 

84.874 8.420 93.801 0.651 2.333 21.100 0.203 

85.334 8.454 118.546 0.833 2.375 20.950 0.211 

85.454 8.510 163.591 1.151 2.550 27.760 0.204 

75.940 8.454 91.994 1.205 2.660 19.860 0.090 

77.939 8.454 88.637 1.140 2.468 18.830 0.073 

78.876 8.476 93.109 1.134 2.513 22.050 0.076 

79.155 8.595 98.569 1.153 2.564 21.360 0.157 

79.564 8.510 97.022 1.170 2.605 21.630 0.145 

79.998 8.584 99.661 1.188 2.580 24.360 0.085 

81.084 8.567 90.822 1.223 2.609 25.830 0.108 

82.635 8.601 91.497 1.318 2.646 29.090 0.099 

81.584 8.748 89.209 1.422 2.614 29.440 0.089 

79.040 8.805 88.087 1.515 2.623 26.120 0.096 

77.958 8.658 86.555 1.554 2.587 23.500 0.098 

79.294 8.641 89.347 1.543 2.567 22.970 0.082 

80.015 8.658 88.807 1.551 2.571 22.980 0.074 

80.977 8.601 89.148 1.558 2.580 21.240 0.091 

83.329 8.624 93.909 1.518 2.587 23.620 0.086 

84.328 8.601 95.630 1.457 2.591 26.330 0.086 

85.358 8.748 99.310 1.383 2.546 27.560 0.087 
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85.392 8.777 99.197 1.333 2.547 29.220 0.088 

85.669 8.703 103.091 1.308 2.553 29.940 0.099 

85.543 8.714 106.285 1.257 2.542 28.410 0.108 

85.532 8.675 102.835 1.233 2.540 28.960 0.100 

86.122 8.641 106.926 1.250 2.534 27.840 0.099 

86.108 8.805 101.360 1.287 2.558 26.230 0.091 

84.980 8.771 95.710 1.365 2.578 26.560 0.093 

83.394 8.714 97.241 1.466 2.594 23.730 0.089 

80.889 8.641 91.538 1.548 2.588 18.680 0.093 

78.677 8.612 86.600 1.611 2.593 19.770 0.101 

79.838 8.601 84.353 1.683 2.590 20.100 0.074 

82.417 8.601 84.345 1.704 2.608 21.790 0.087 

83.274 8.601 86.561 1.696 2.583 21.780 0.092 

82.152 8.646 89.032 1.671 2.598 21.960 0.095 

81.680 8.612 86.655 1.560 2.584 20.340 0.086 

82.833 8.658 78.234 1.449 2.531 20.690 0.091 

82.496 8.658 71.141 1.201 2.508 19.050 0.083 

81.908 8.624 69.195 1.018 2.502 19.140 0.103 

83.941 8.624 61.187 0.889 2.469 19.800 0.109 

85.880 8.601 56.273 0.862 2.433 19.830 0.150 

84.798 8.624 61.490 0.924 2.430 20.190 0.171 

81.760 8.612 75.295 0.981 2.525 23.000 0.160 

80.929 8.692 81.256 1.150 2.545 22.980 0.123 

80.217 8.567 80.533 1.234 2.587 23.520 0.105 

79.615 8.567 83.867 1.291 2.603 24.250 0.125 

79.960 8.601 85.299 1.327 2.599 25.500 0.096 

81.140 8.584 89.167 1.374 2.636 25.260 0.082 

81.697 8.624 93.419 1.406 2.586 26.100 0.087 

81.654 8.567 89.653 1.410 2.579 23.260 0.099 

 

 


