
Information in Local Curvature:
Three Papers on Adaptive Methods

in Computational Statistics

by

Berent Ånund Strømnes Lunde

Thesis submitted in fulfilment of
the requirements for the degree of

PHILOSOPHIAE DOCTOR
(PhD)

Faculty of Science and Technology
Department of Mathematics and Physics

2020

University of Stavanger
NO-4036 Stavanger
NORWAY
www.uis.no

©2020 Berent Ånund Strømnes Lunde

ISBN: 978-82-7644-970-9
ISSN: 1890-1387
PhD: Thesis UiS No. 562

Preface

This thesis is submitted in partial fulfilment of the requirements for the
degree of Philosophiae Doctor (PhD) at the University of Stavanger,
Faculty of Science and Technology, Norway. The research has been
carried out at the University of Stavanger from September 2017 to
August 2020.

The thesis consists of an introduction to relevant background theory,
topics and ideas, and the following three papers:

Paper I

Lunde, Berent Ånund Strømnes, Tore Selland Kleppe, and Hans Julius
Skaug (2020). Saddlepoint-adjusted inversion of characteristic
functions. Submitted for publication in Computational Statistics and
Data Analysis.

Paper II

Lunde, Berent Ånund Strømnes, Tore Selland Kleppe, and Hans Julius
Skaug (2020). An information criterion for automatic gradient tree
boosting. Submitted for publication in The Journal of the Royal Statistical
Society, Series B (Statistical Methodology).

Paper III

Lunde, Berent Ånund Strømnes, and Tore Selland Kleppe (2020).
agtboost: Adaptive and Automatic Gradient Tree Boosting
Computations. To be submitted for publication in Journal of Statistical
Software.

iii

iv

Acknowledgements

I would like to thank my supervisor, Professor Tore Selland Kleppe,
for his constant support and invaluable guidance. You have allowed
me to pursue ideas, to fail, and so many times steered me in the right
direction with detailed feedback and questions that would uncover flaws,
but which would eventually lead me closer towards truth. Thank you for
your encouraging words, enthusiasm, and genuine thoughtfulness.

Thanks are also due to my co-supervisors, the professors Hans Julius
Skaug and Jan Terje Kvaløy. Professor Skaug has co-authored two
of the papers in this thesis, introduced me to the statistics community
in Bergen, and always shared of his time and wide experience, for
this I am grateful. Professor Kvaløy has been presence of constant
cheerfulness and inspiration. Thank you for always taking a genuine
interest in people and their ideas. I extend my thanks to my fellow PhD-
students. Utmost appreciation goes out to Kjartan Kloster Osmundsen
and Birthe Aarekol, for the many discussions and several enjoyable
trips to academic conferences and meetings around the world.

Finally, I want to give many thanks to my friends, utmost to Kjetil, for
having accommodated me in Stavanger, and with his companionship
allowed me to escape stress, to Jens for the hundreds of interesting
discussions. And also my family, in particular my mother, Katrin, for
invaluable advice, and my wife, Saeron, which has been a force of
continued support. You have let me dive into hours of silent thoughts,
calculations and coding when it was needed, but have also pulled me
away and forced upon me a more balanced life when I would encounter
a runtime error of the mind, but of the kind which I would not be able
to see or solve by myself.

Berent Ånund Strømnes Lunde
Stavanger, August 2020

v

vi

Abstract

Advanced statistical computations have become increasingly
important, as with the increased flexibility of models capturing
complex relationships in new data and use-cases, comes increased
difficulties of fitting procedures for the models. For example, if the
model is complex, involving multiple sources of randomness, then the
probability density function used in maximum likelihood estimation
typically does not have a closed form. On the other hand, in
regression type problems the closed form of the assumed conditional
distribution of the response is often known. However, the relationship
between features and response can be complex, high dimensional and
is generally unknown, motivating non-parametric procedures that
come with new sets of fitting problems.

This thesis explores techniques utilizing the local curvature of
objective functions, and using the information inherent in this local
curvature, to create more stable and automatic fitting procedures. In
the first paper, a saddlepoint adjusted inverse Fourier transform is
proposed. The method performs accurate numerical inversion, even in
the tails of the distribution. This allow practitioners to specify their
models in terms of the characteristic function which often exists in
closed form. The second paper proposes an information criterion for
the node-splits, after greedy recursive binary splitting, in gradient
boosted trees. This alleviates the need for computationally expensive
cross validation and expert opinions in tuning hyperparameters
associate gradient tree boosting. The third paper focuses on the
implementation of the theory presented in the second paper into the R
package agtboost, and also builds on the information criterion to
suggest an adjustment of ordinary greedy recursive binary splitting,
better suited to gradient tree boosting.

vii

viii

Table of Contents

Preface... iii

Acknowledgements .. iv

Abstract ...vi

1 Introduction .. 1

2 Maximum likelihood and supervised learning 3
2.1 Maximum likelihood estimation 3
2.2 Supervised learning . 3

3 Quadratic approximations in statistics ... 5
3.1 The saddlepoint approximation 6
3.2 Gradient tree boosting 9
3.3 Distribution of estimated parameters 15
3.4 Model selection . 17

4 Computational remarks ..21

5 Summary of the papers...23

References ..25

Appendix

Saddlepoint-adjusted inversion of characteristic functions.......................31

An information criterion for automatic gradient tree boosting53

agtboost: Adaptive and Automatic Gradient Tree Boosting Computations96

ix

x

Introduction 1

1 Introduction

Advanced statistical methods and procedures have seen increased and
widespread usage in later years. This is backed by access to more data
and new use-cases, cheaper computational power, and adoption into
mainstream languages such as Python and R. Underlying this trend is
also the increased usability of said algorithms, in regards to training
on data and putting them into production. The goal of this thesis is to
further the usability of computational methods in statistics with regards
to stability, speed, and automatic functionality.

The main approach of the present work is to, in some loose and wide
sense, approximate some objective function with a local quadratic ap-
proximation to either solve stability issues, create dynamic step-lengths,
or measure the uncertainty of estimators. The hope is that the iterative
methods that the local quadratic approximation is somehow applied to,
will see an increased adaptivity to individual data and problems and
correspondingly decrease the manual tuning performed.

The first part of this thesis will give a brief and informal introduction
to the concepts and techniques that are used in papers I-III. The basis is
the objectives of maximum likelihood and supervised learning, which
are presented in the Section 2. Section 3 introduces the local quadratic
approximation and showcase it in the relevant use-cases for papers I-III,
i.e. maximum likelihood numerical optimization, the saddlepoint ap-
proximation, gradient tree boosting, some asymptotic theory and model
selection. Section 4 gives a summary of the important computational
frameworks for this thesis, while Section 5 summarises the papers of
the thesis.

Introduction

2

Maximum likelihood and supervised learning 3

2 Maximum likelihood and supervised learn-
ing

Maximum likelihood estimation and supervised learning are briefly in-
troduced in an informal manner. This is done to provide motivation
and understanding of the fundamental objectives for the numerical al-
gorithms that are presented and improved upon in this thesis.

2.1 Maximum likelihood estimation

Let y denote an =-dimensional vector of observations from a parametric
distribution, with density denoted ?. (y; \0), where \0 ∈ Θ, Θ ⊆ R? is
a ?-dimensional vector. It is often the case that a reasonable parametric
family of functions, ?. (y; \), \ ∈ Θ, can be inferred from the problem
and from inspection of the data. However, \0 will be unknown, and
it is reasonable to estimate it using the observed data y. To this end,
maximum likelihood estimation is a popular approach. The maximum
likelihood estimate (MLE) is the value of \ in Θ which maximizes the
probability of the data, i.e. the likelihood. Equivalently, the value of \
that minimizes the negative log likelihood

\̂ = arg min
\
{− log ?. (y; \)}. (2.1)

The maximum likelihood estimate, \̂, is under suitable regularity condi-
tions asymptotically unbiased, efficient, and asymptotically normal. See
van der Vaart (1998) for a treatment of asymptotic properties.

2.2 Supervised learning

The supervised learning objective is perhaps easiest stated as a "regres-
sion" type objective, but also bears resemblance to maximum likelihood
estimation. Assume now that there is access to a dataset {H8, x8}=8=1
consisting of = observations of a response H8 ∈ ' and < features (or

Maximum likelihood and supervised learning

covariates) x8 ∈ '< that are indexed by 8. In general, individual re-
sponse observations, H8, could also be multidimensional, but throughout
this thesis they are assumed one-dimensional. Let Ĥ8 be a prediction
for H8 and let the loss function ; (H8, Ĥ8) be a function measuring the
difference between a response and its prediction. The supervised learn-
ing objective is to find the best possible predictive function, 5 (x) = Ĥ,
which takes a feature vector as its argument, and outputs a prediction
Ĥ. "Best possible" is here in reference to the loss, ;, over observations
not part of the "training" dataset {H8, x8}=8=1 used to fit or learn 5 . More
formally, we seek 5 so that

5̂ = arg min
5

{
�

[
; (H0, 5 (x0))

]}
, (2.2)

where the superscripts of (H0, x0) indicate an observation of a response
and feature vector unseen in the training data, and � denotes the ex-
pectation. Notice that, if the search is constrained over a parametric
family of functions indexed by \ ∈ Θ, and the loss function is taken to
be the negative log-likelihood, ; = − log ?, then the supervised learn-
ing objective is closely related to the objective of maximum likelihood
estimation (2.1) in a regression setting. In fact, the objective in (2.1)
scaled with =−1 will then be a sample estimator of the expected value
in (2.2), but biased downwards in expectation, as evaluation is done
over observations in the training set.

4

Quadratic approximations in statistics 5

3 Quadratic approximations in statistics

The maximum likelihood objective (2.1) and supervised learning objec-
tive (2.2) are, except for the most trivial of cases, not straightforward,
and must be solved numerically. This then typically involve some iter-
ative algorithm, which may require substantial manual tuning and trial
and error before successful application. However, a local quadratic
approximation to some otherwise intractable function can often be of
help in making these algorithms more automatic and adaptive to the
relevant data.

When referring to a local quadratic approximation, as is frequently done
in this thesis, it is meant to refer to a 2’nd order Taylor approximation
of a function 5 (G), about some point G0. For example, the quadratic
approximation of the loss function ; about some value of \, say \: ,
gives

; (H8, 5 (x8; \)) ≈ ; (H8, 5 (x8; \:)) + ∇\ ; (H8, 5 (x8; \:)) (\ − \:)

+ 1
2
(\ − \:)ᵀ∇2

\ ; (H8, 5 (x8; \:)) (\ − \:). (3.1)

Example 3.0.1 (Newton-Raphson) Consider the regression setting with
a negative log-likelihood

! (\) =
=∑
8

; (H8, 5 (x8; \)),

where ; is the negative log-probability of H |x and 5 is a predictive func-
tion parametrized by \. The MLE \̂ in (2.1) typically has to be found
numerically, as the score equations, 0 = ∇\! (\), are not possible to
solve analytically for \. Assuming that ! is differentiable and convex in
\, the Newton-Raphson algorithm will converge to the MLE \̂. The iter-
ative Newton-Raphson algorithm is constructed by employing the r.h.s.
of (3.1) iteratively to the current value of \, say \: , the next value in the
iterative algorithm is then given by

\:+1 = \: −
[
∇2
\! (\:)

]−1 ∇\! (\:).

Quadratic approximations in statistics

−15 −10 −5 0 5 10 15

−
10

0
−

60
−

20
0

x

Lo
g−

de
ns

ity

Exact
Direct IFT
Machine precision

Figure 3.1: Figure included from Paper I. Illustrating the dominance of
inaccuracies of the IFT (3.2), calculated with quadrature, at machine
precision at log(1.0 × 10−14) indicated by the dotted horizontal line.

There is an abundance of problems in computational statistics that may
be helped by some application of (3.1). Only a few of these are
however discussed further, namely the ones that are relevant to papers
I-III. The following sections discuss applications of local quadratic
approximations as helpful tools in dealing with some of the numerical
problems associate optimization of (2.1) and (2.2).

3.1 The saddlepoint approximation

It is often the case that the density ?- (G; \) of a random variable
- , is not available in closed form when there are multiple sources
of randomness present in - . Direct optimization of (2.1) is therefore
difficult. However, the characteristic function (the Fourier transform
of the density), i- (B) = � [exp(8B-)] often exist in closed form, even
in situations with more than one source of randomness. The density
can then be retrieved by numerically evaluating the inverse Fourier

6

Quadratic approximations in statistics

transform

?- (G; \) =
1

2c

∫ ∞

−∞
i- (B; \)4−8BG3B =

1
2c

∫ ∞

−∞
4 - (8B;\)−8BG3B, (3.2)

where - (B; \) = log i- (−8B; \) is the cumulative generating function
(CGF) and the last equality holds due to symmetry.

However, consider the case of numerical MLE optimization, for exam-
ple by using the Newton-Raphson algorithm in Example 3.0.1. Here, at
the first iteration, say \1, the initial estimate is likely to start at values
far from the population MLE, \0. Necessarily, observations G will take
place in low-density regions of ?(G; \1), and this will continue to be
the case at subsequent iterations, until \: is close to \0. This consti-
tutes a problem to direct numerical inversion of (3.2) using quadrature
schemes (weighted sum of integrand evaluations), as numerical inaccu-
racies related to the (binary) representation of floating-point numbers
will dominate. More specifically, considering double precision at order
1.0 × 10−16, if G is in a region with log-density log ?(G; \:) smaller
than this value, the inaccuracy of the binary representation is sure to
dominate. Even more is that such unwanted behaviour in practice hap-
pens a few orders of magnitude higher than the theoretical limit given
above. In Figure 3.1, the error dominates already at 1.0 × 10−14.

An inversion technique that does not suffer from erroneous computa-
tions in low-density regions, and in fact is renowned for its tail-accuracy
(under regularity conditions, see Barndorff-Nielsen and Kluppelberg
(1999)), is the saddlepoint approximation (SPA) (Daniels, 1954). It is
developed in paper I through an argument of exponential tilting, which
takes place on the "time-domain" side of the Fourier transform. Com-
plimentary, an argument on the "frequency-domain" side is given here,
that closely follows the derivation in Butler (2007). First, notice that
the value of the integral in (3.2) is unchanged if we integrate through
a line parallel to the imaginary axis, say g,

?- (G; \) =
1

2c

∫ ∞

∞
4 - (g+8B;\)−(g+8B)G3B. (3.3)

7

Quadratic approximations in statistics

Now, apply the quadratic approximation (3.1) to the log-integrand,
 - (g + 8B; \) − (g + 8B)G, locally about the value of g solving the
saddlepoint equations

ĝ = arg min
g
{ - (g; \) − gG}, (3.4)

henceforth called the saddlepoint. This then gives the approximation of
the log-integrand

 - (ĝ + 8B; \) − (ĝ + 8B)G ≈ - (ĝ) − ĝG −
1
2
32

3g2 - (ĝ)B
2. (3.5)

Inserting this into the integral, and performing the transformation D =√
32

3g2 - (ĝ)B gives the ordinary SPA as

?- (G; \) ≈
exp(- (ĝ) − ĝG)

2c
√

32

3g2 - (ĝ)

∫ ∞

−∞
4−

1
2D

2
3D

=
exp(- (ĝ) − ĝG)√

2c 32

3g2 - (ĝ)
= B?0- (G; \). (3.6)

The SPA (3.6) is often accurate, it is asymptotically exact in = if
there is some asymptotic normality underlying - , for example for - =
=−1 ∑

8 -8, and the previously mentioned tail-accuracy is a property that
is highly tractable. Furthermore, computation is very fast if the inner
problem (3.4) can be solved analytically but may also be efficiently
found by numerical optimization. The SPA can be implemented using
automatic differentiation (Griewank and Walther, 2008), so that solving
the inner problem and evaluating (3.6) is automatic for users, which
only needs to implement the characteristic function.

On the downside, the SPA does not integrate to one, except for in a few
special cases. Also, the approximation is often unimodal even if the
target density is multimodal, which could very well be the case when -
consists of multiple sources of randomness. A common technique is to
multiply the SPA with a constant value 2, where 2−1 =

∫
B?0- (G; \)3G,

8

Quadratic approximations in statistics

that ensure 2B?0- (G; \) to be a density. This is immediately more
computationally costly, requires bespoke implementation, and does not
solve the problems of unimodality. These problems are the subject of
Paper I.

3.2 Gradient tree boosting

Algorithm 1 Second-order generic gradient boosting Hastie et al. (2001)

Input:
- A training set {(H8, x8)}=8=1
- A differentiable loss function ; (·, ·)
- A learning rate X ∈ (0, 1]
- Number of boosting iterations
- Type of statistical model F

1. Initialize model with a constant value:
5 (0) (x) ≡ arg min

[

∑=
8=1 ; (H8, [)

2. for : = 1 to :
8) Compute derivatives according to (3.9)
88) Fit a statistical model 5̃ ∈ F to derivatives using (3.10)
888) Scale the model with the learning rate

5: (x) = X 5̃ (x)
8E) Update the model:

5 (:) (x) = 5 (:−1) (x) + 5: (x)
end for
3. Output the model: Return 5 () (x)

The idea behind gradient boosting emerged in Friedman (2001) and
in Mason et al. (1999) as a way to approximate functional gradient
descent for the optimization problem in (2.2). It is conceptually similar
to how the Newton-Raphson algorithm from Example 3.0.1 solves the
optimization problem in (2.1). Given an initial function 5 (:−1) (x), one

9

Quadratic approximations in statistics

Algorithm 2 Greedy recursive binary splitting, from Paper II

Input:
- A training set with derivatives and features {x8, 68,: , ℎ8,: }=8=1

Do:
1. Initialize the tree with a constant value F̂ in a root node:

F̂ = −
∑=
8=1 68,:∑=
8=1 ℎ8,:

2. Choose a leaf node C and let �C: be the index set of observations
falling into node C
For each feature 9 , compute the reduction in training loss

RC (9 , B 9) = 1
2=

[(∑
8∈�! (9 ,B: 9) 68:

)2∑
8∈�! (9 ,B 9) ℎ8:

+
(∑

8∈�' (9 ,B 9) 68:
)2∑

8∈�' (9 ,B 9) ℎ8:
−

(∑
8∈�C : 68:

)2∑
8∈�C : ℎ8:

]
for different split-points B 9 , and where
�! (9 , B 9) = {8 ∈ �C: : G8, 9 ≤ B 9 } and �' (9 , B 9) = {8 ∈ �C: : G8, 9 > B 9 }
The values of 9 and B 9 maximizing RC (9 , B 9) are chosen as
the next split, creating two new leaves from the old leaf C.

3. Continue step 2 iteratively, until some threshold on
tree-complexity is reached.

G8, 9 is the 9’th element of the 8’th feature vector.

ideally seeks a function 5: (x) minimizing

5̂: (x) = arg min
5:
�

[
;

(
H, 5 (:−1) (x) + 5: (x)

)]
. (3.7)

If this optimization problem is difficult (as it usually is), a reasonable
substitute to 5̂: is to find the functional derivative of this objective and
add the negative direction to the model, say 5 (:) = 5 (:−1) + 5: , and
then repeat the procedure until termination at iteration , which would
yield the final model 5 () = 50 + · · · + 5 when starting with an initial
model 50.

Difficulties arise to this procedure, as the joint distribution of (H, x)
is generally unknown. Therefore, the expectation cannot be computed

10

Quadratic approximations in statistics

explicitly, and neither can the functional derivative. The immediate
solution to the unknown distribution and expectation, if there is access
to a dataset D= = {H8, x8}=8=1 of independent observations, is to average
the loss over these observations, and instead, at iteration : , seek

5̂: (x) = arg min
5:

1
=

=∑
8=1

;

(
H8, 5

(:−1) (x8) + 5: (x8)
)
, (3.8)

approximately to second order. This is done by using the current model,
5 (:−1) , to compute predictions Ĥ (:−1)

8
= 50(x8) + · · · + 5:−1(x8), and then

derivatives for observations in the sample as

68,: =
m

mĤ8
; (H8, Ĥ (:−1)

8
), ℎ8,: =

m2

mĤ8
2 ; (H8, Ĥ

(:−1)
8
). (3.9)

These are used in a 2’nd order approximation to the original loss

5̂: (x) = arg min
5:

1
=

=∑
8=1

; (H8, Ĥ (:−1)
8
) + 68,: 5: (x8) +

1
2
ℎ8,: 5: (x8)2

= arg min
5:

1
=

=∑
8=1

68,: 5: (x8) +
1
2
ℎ8,: 5: (x8)2 (3.10)

which is a quadratic-type loss amenable to fast optimization. Again, the
quadratic approximation (3.1) has been of help. Now, a function that
completely minimizes the above sample loss (both the original and/or
the approximate), is likely to adapt to the inherent randomness in the
sample. Furthermore, a search over all possible functions is obviously
infeasible. For these reasons, the search is constrained to a family
of functions that admits fast fitting routines, and that are somehow
constrained and thus less likely to overfit. Typical families include linear
functions, local regression using kernels, or most popularly, trees.

Gradient boosting emerges as the collection of the above-mentioned
ideas: Initially, start with a constant prediction 50(x) = [, then it-
eratively, compute derivative information or pseudo-residuals through
(3.9), and fit a statistical model 5̃: to these observations using (3.10).

11

Quadratic approximations in statistics

−2

0

2

4

6

0 1 2 3 4 5
x

y

Update model

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●
●

●

●
●

●

●
●

● ●

●●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

Compute residuals

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●
●

●

●
●

●

●
●

● ●

●●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

Fit model to residuals

−2

0

2

4

6

0 1 2 3 4 5
x

y

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

−2

0

2

4

6

0 1 2 3 4 5
x

y

●

● ●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

● ●

●

●

●●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

●

● ●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

● ●

●

●

●●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

−2

0

2

4

6

0 1 2 3 4 5
x

y

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

−2

0

2

4

6

0 1 2 3 4 5
x

y

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
● ●

●●

●
●

● ●

●
●

●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
● ●

●●

●
●

● ●

●
●

●

●

−4

−2

0

2

0 1 2 3 4 5
x

re
si

du
al

s

Figure 3.2: Illustration of gradient boosting with linear functions as
base learners and the MSE loss. First column shows the observations
of target H (orange squares) as a function of a one-dimensional feature,
G, and how the ensemble is updated according to 5 (:) (G) = 5 (:−1) (G) +
X 5: (G). The first model is initialized with a constant value. In the
second column, residuals (blue circles) are computed from the model
5 :−1. In the third column, a linear model 5: (G) is fit to the residuals.

The final ingredient of gradient boosting is to shrink the model by some
constant X ∈ (0, 1], 5̂: = X 5̃: to make space for new models, and add

12

Quadratic approximations in statistics

it to the ensemble model 5 (:) = 5 (:−1) + 5̂: . The gradient boosting
pseudo-algorithm is given in Algorithm 1. Note that this is the modern
type gradient boosting algorithm, slightly different from the original
algorithm of Friedman (2001), which is a first-order type algorithm,
that would fit the model using mean-squared-error loss, then scale the
model with an optimized constant value and finally shrink it. A visual
illustration of the steps in gradient boosting with linear functions as the
base learners is given in Figure 3.2. The loss is the mean squared error
(MSE) loss, corresponding to a Gaussian negative log-likelihood. MSE
is especially amenable to visual illustrations, as residuals are equal to
the pseudo-residuals (H8 − Ĥ (:−1)

8
) = −68,:/ℎ8,: .

The choice of statistical model to fit to the pseudo-residuals is not ar-
bitrary. The popular choice is to use classification and regression trees
(CART) (Breiman et al., 1984), which gives gradient tree boosting
(GTB), the boosting type that has dominated in many machine-learning
competitions since the introduction of xgboost (Chen and Guestrin,
2016). Using CART as weak learners can be motivated by first con-
sidering linear functions, Ĥ = Vᵀx used in the illustrations in Figure
3.2. Here only a portion of the full estimate of the V̂ 9 decreasing (3.10)
the most is used. This then resembles a type of shrunken forward
stagewise procedure, which is closely related to computing LASSO so-
lution paths (Hastie et al., 2001). Boosting thus holds the possibility
of efficiently building sparse models in the face of high-dimensional
problems, by excluding individual features G 9 that does not contribute
to significant decreases in (3.10). If a weak learner is used that fits and
use all features simultaneously, this pathology of boosting is likely to
disappear.

If CART is fit using greedy binary splitting (Algorithm 2), then features
are included into the model sequentially by the learning procedure.
Furthermore, in contrast to linear functions, CART can learn non-
linear functions and interaction effects automatically. In essence, GTB
may learn sparse, non-linear models with complex interaction effects
efficiently, while the shrinkage X applied to each tree will smooth out

13

Quadratic approximations in statistics

the piecewise constant functions. Model complexity may range from
the constant model, to high-dimensional non-linear functions, and in
between these two extremes often lie a model that may decrease the
objective in (2.2) more so than other types of models. Figure 3.3
illustrates this. A GTB model is fit to 100 training observations and
tested on 100000 test observations, producing the different types of
loss against boosting iterations in the top plot. This plot indicates that
stopping the boosting procedure at = 30 will give the best of the
possible candidate models. At iteration = 1 the model is too simple
and is almost not adapted to the training data. At the other end of
the spectrum, the model has an almost perfect fit to the training set at
the final iteration = 1000, indicated by the training loss convergence
towards zero and also by visual inspection of the bottom right plot.
Clearly, this complex model has adapted too much to the noise in the
data.

Gradient boosting originally has two hyperparameters, namely the num-
ber of boosting iterations , and shrinkage or the learning rate X, which
is usually set to some "small" value. Using CART as weak learners in-
troduces additional tuning to control the complexity of individual trees.
Friedman et al. (2000) suggests global hyperparameters fixed equally
for all trees, as the greedy recursive binary splitting algorithm is opti-
mized as if the current boosting iteration is the last iteration. Important
hyperparameters are the maximum depth of trees, a maximum number
of leaves or terminal nodes in a tree, and a threshold for minimum
reduction in training loss (3.10) if a split is to be performed. Hy-
perparamters are typically learned using :-fold cross-validation (CV)
(Stone, 1974), which increase computation times significantly.

In summary, GTB is a powerful approach to solving regression-type
problems in supervised learning (2.2), practically made possible by
iterative quadratic approximations of the loss about the predictions of
the current model. There are, however, multiple hyperparameters that
must be tuned for each separate dataset. This is computationally costly
when done with CV, bothersome, and not always straight-forward. The

14

Quadratic approximations in statistics

0

2

4

6

1 4 16 64 256 1024
Boosting iterations

L
o

ss

Generalization loss

Training loss

0

2

4

6

0 1 2 3 4 5
x

y

First iteration: K=1

0

2

4

6

0 1 2 3 4 5
x

y

Best iteration: K=30

0

2

4

6

0 1 2 3 4 5
x

y

Last iteration: K=1000

Figure 3.3: Top: Training and test (generalization) loss versus the
number of boosting iterations for a GTB model. Notice the logarithmic
horizontal axis. The training set consists of 100 observations and the
test set of 100000. All observations are i.i.d. sampled - ∼ * (0, 5) . ∼
(-, 1). Bottom: The fit at iterations ∈ {1, 30, 1000} of the GTB
model to the training data.

removal of GTB hyperparameters is the subject of Paper II.

3.3 Distribution of estimated parameters

A key to solving problems of the type in (2.1), which there are multiple
of in the boosting solution to (2.2), is to use the distribution of esti-
mated parameters to evaluate the significance of the model. This can
for example be used to control complexity of the model, or to reject
alternative hypothesis.

There are multiple ways of approximating the distribution of estimated
quantities. The perhaps most straight-forward method if observations

15

Quadratic approximations in statistics

are independent, is the bootstrap (Efron, 1992). The idea is that if
the distribution, %.,X(H, x), behind the true data-generating process is
known, then a large number, say �, of size-= datasets, i.i.d. of the
training data {H8, x8}=8=1, could be sampled. Then the fitting procedure
could be performed for each sampled-dataset, and finally statistical
methods could be used to investigate the sampled quantities. However,
the true distribution %.,X is of course generally unknown. The idea
of the bootstrap is to exchange %.,X with the empirical distribution,
%∗
.,X(H, x) = =−1 ∑=

8=1 1(H8 ≤ H, x8,1 ≤ G1, · · · , x8,< ≤ G<), and then
perform the above-mentioned procedure.

Sampling procedures are in general quite expensive, and this is no dif-
ferent for the bootstrap. At early experimental stages of this work, the
SPA was used together with the idea of the empirical distribution, to re-
trieve necessary density approximations while avoiding costly sampling.
The idea is to use the empirical CGF, ∗

.
(B) = log

(∑=
8=1 4

BH8
)
− log =

for = observations of a one-dimensional random variable . , in the SPA
(3.6), from which desired results can be drawn. This is explained in
Butler (2007, Chapter 14), and Chapter 12.2 of the same book for
the ratio estimators appearing in Algorithm 2. The goal was a com-
putationally efficient version of the Efron Information Criterion (EIC)
(Ishiguro et al., 1997), but was abandoned due to concerns regard-
ing stability and speed of computations, in comparison to analytical
asymptotic results.

Often the most computationally efficient procedures are analytical re-
sults, which may be obtained for estimated quantities through asymp-
totics. Hence, again, it will seem that the quadratic approximation of
some objective function about some local point of optimality is use-
ful: The central limit theorem may be applied to the score equations,
0 = =−1 ∑=

8=1 ∇\ ; (H8, 5 (x8; \̂)), to obtain asymptotic normality, and from
this, asymptotic normality of estimated parameters (under certain reg-
ularity conditions, see van der Vaart (1998)) can be obtained through

16

Quadratic approximations in statistics

the delta method as
√
=
−1(\̂ − \0) ∼ #

(
0, � (\0)−1� (\0)

[
� (\0)−1]ᵀ) , (3.11)

� (\) = � [∇2
\ ; (H, x; \))],

� (\) = � [∇\ ; (H, 5 (x); \))∇\ ; (H, 5 (x); \))ᵀ] .

Estimates of � and � can be obtained through averaging and by using
\̂ in place of \0, computation is usually highly efficient, and stability
is a non-issue. Again, the quadratic approximation of some objective
function about some local point of optimality is seen to be useful.
Furthermore, Gaussian results are highly tractable, as a Gaussian em-
pirical process often converge asymptotically to known and well-studied
continuous-time stochastic processes. As such, using asymptotic nor-
mality emerged as the preferred solution in Paper II and III. Much more
can be said about different asymptotic results in statistics, conditions
under which normality emerge, and its applications. For an overview
see van der Vaart (1998).

3.4 Model selection

Denote the true distribution of some random variable - as �- (G) with
corresponding density 6- (G). Further, let ?- (G; \̂) denote the density
with fitted parameters \̂ used to model - , which can be seen as an
approximation to 6. Then, the Kullback-Leibler divergence (KLD)
(Kullback and Leibler, 1951), denoted � is given by

� (6, ?) :=
∫

6- (G) log 6- (G)3G −
∫

6- (G) log ?- (G; \̂)3G. (3.12)

Since the first integral in (3.12) is constant w.r.t. different choices of
models ?- (G; \), only the negative remaining integral is relevant, and
is commonly referred to as relative KLD. The negative log-likelihood
objective of the optimization problem in (2.1) is a sample version of the
relative KLD and appears as the natural objective for optimization over
different values of \, when the overarching goal is the minimization of
KLD.

17

Quadratic approximations in statistics

Selection between models is more difficult when candidate models are
of different functional form and complexity. This becomes clear if we
rewrite the fitted sample negative log-likelihood as the expectation with
respect to the empirical empirical distribution �∗

-
,

−=−1 log ?- (x; \̂) = −
∫

log ?- (G; \̂)3�∗- (G). (3.13)

The empirical distribution �∗
-
corresponds more closely towards fitted

models ?- (G; \̂) with higher complexity, than does true �- (Kon-
ishi and Kitagawa, 1996). Therefore, naively using the negative log-
likelihood as the basis for model selection will result in unfairly consis-
tent choices of models with high complexity over parsimonious models.
This is termed the "optimism" of the training loss (Hastie et al., 2001).
This is taken into consideration in the supervised-learning optimization
objective (2.2). If the loss function ; appearing in (2.2) is a negative
log-likelihood, then the objective of (2.2) is exactly equal to the relative
KLD in (3.12), as evaluation is over data (H0, x0) unseen in the fitting
of \̂.

In the coming discussion, consider the loss-based regression setting
; (H, 5 (x; \)). The idea of generalization-based information criteria is to
adjust for the bias induced by integrating the model w.r.t. the empirical
distribution instead of the true distribution �- in (3.13). Denote this
bias or the optimism by � (\̂), making the dependence upon fitted
parameters \̂ explicit. Then � (\̂) is given by

� (\̂) = �
[
; (H0, 5 (x0; \̂))

]
− �

[
; (H, 5 (x; \̂))

]
, (3.14)

where in the first expectation, (H0, x0) is independent of data using in
fitting of \̂, while in the second expectation (H, x) is part of the training
set. Information criteria like the celebrated Akaike Information Crite-
rion (commonly known as AIC) (Akaike, 1974), Takeuchi Information
Criterion (TIC) (Takeuchi, 1976) and Network Information Criterion
(NIC) (Murata et al., 1994) targets this bias � (\̂). A detailed develop-
ment of AIC and TIC is found in Burnham and Anderson (2003), and
the case for NIC is almost completely analogous.

18

Quadratic approximations in statistics

Common for all three information criteria mentioned above, is that they
rely on the asymptotic approximation

� (\̂) ≈ tr
(
�

[
∇2
\ ; (H, 5 (x; \0))

]
�>E(\̂)

)
, (3.15)

which is developed from two quadratic approximations (3.1) of the loss
; about \0 and \̂. The approximation is applicable when the loss is
appropriately differentiable in \, and \̂ is a consistent estimator. In
the case of AIC, the true model 6 is assumed as an interior point in
the space of \. Under this assumption, the covariance in (3.15) is the
inverse of the expected hessian. Thus, the right hand side of (3.15)
reduces to the number of dimensions of \, say ?. If 6 is not assumed to
be an interior point, the Sandwich-estimator due to Huber (Huber et al.,
1967) can be used for the covariance. Then the r.h.s. of (3.15) becomes
� (\̂) ≈ tr(� (\0)−1� (\0)), and estimation of � and � as discussed in
Section 3.3 results in TIC and NIC.

Notice that (3.15) is not directly applicable to the optimism seen in Fig-
ure 3.3 for GTB models. This is because ; is generally not differentiable
in the different split points being profiled over to maximize reduction in
loss. A fast (but valid) approximation of the optimism (3.14) associate
gradient boosted trees is however tractable. From the Algorithms 1 and
2 it is seen that the functional complexity is constantly increasing for
every split and every tree that is added to the model. The state-of-
the-art implementations of GTB employs CV-based tuning of several
hyperparameters to control this complexity. Development of a valid
information criterion applicable to the splits of gradient boosted trees
is the subject of Paper III.

Finally, note the existence of many other information criteria, that may
seek to improve on the above-mentioned criteria, or that targets other
objectives than relative KLD and expected generalization loss. Both the
Corrected Akaike Information Criterion (also known as AICc) (Sugiura,
1978), and the Bayesian information criterion (known as BIC) (Schwarz
et al., 1978) are well known. Interestingly, the BIC can be developed
using a quadratic approximation together with a close cousin of the SPA

19

Quadratic approximations in statistics

called the Laplace approximation. A different information criterion
that does not target relative KLD for the overall fit of the model, but
rather models for individual parameters, say the mean `, is the Focused
Information Criterion (FIC) (Claeskens and Hjort, 2003). Finally, also
note the existence of the cross-validation Copula Information Criterion,
developed from theoretical results in relation to =-fold CV (Grønneberg
and Hjort, 2014). See Claeskens et al. (2008) for an overview of model
selection.

20

Computational remarks 21

4 Computational remarks

The previous chapters have focused on the theoretical basis for the pa-
pers I-III. A large part of the concluded research has been of a computa-
tional nature, and hence, certain key components of these computations
deserve a mention. Also, reproducing the research without knowledge
of these (or related) components may seem a Herculean task to the
author.

For the most part, the theory of papers I-III has been implemented in the
programming languages R (R Core Team, 2018) and C++ (Stroustrup,
2000). Typically, early exploration and treatment of data has been done
in R, while the heavy lifting has been done by C++. Interplay between
C++ and R is seamless due to the R package Rcpp (Eddelbuettel and
François, 2011) and the amazing functionality of Rcpp modules. The
R package TMB (Kristensen et al., 2016), similarly as Rcpp, allow
for the evaluation of C++ functions in R, but also comes with the
powerful tools of automatic differentiation, to the delight of users.
On the C++ side, the research has made extensive use of the linear
algebra library Eigen (Guennebaud et al., 2010), and the automatic
differentiation library Adept (Hogan, 2014). The functionality of the R
package ggplot2 (Wickham, 2016) in combination with the R packages
tidyverse (Wickham, 2017) and data.table (Dowle and Srinivasan, 2019)
has been taken advantage of to create figures for papers I-III.

Computational remarks

22

Summary of the papers 23

5 Summary of the papers

The first paper of the thesis, "Saddlepoint adjusted inversion of char-
acteristic functions", written in collaboration with the professors Tore
Selland Kleppe and Hans Julius Skaug, develops the SPA through ex-
ponential tilting in the time-domain side of the Fourier transform. This
development admits a deconstruction of the density of some random
variable - as the SPA and the density of a standardized random vari-
able / evaluated at zero. The variable / is specified through its CGF
 / (B), a function of the CGF of - . The representation of ?- is ex-
act, and necessarily takes care of issues regarding renormalization and
unimodality of the SPA. Furthermore, as evaluation of the density of /
is only necessary at the, by-design, high-density point zero, inversion
using quadrature is accurate and does not suffer from the numerical
issues illustrated in Figure 3.1. This is true also at low-density regions
of - where the SPA typically will dominate. The methodology is il-
lustrated using the Negative Inverse Gaussian distribution, and applied
to financial data through the Merton Jump Diffusion model.

In the second paper, "An information criterion for automatic gradient
tree boosting", written in collaboration with the professors Tore Selland
Kleppe and Hans Julius Skaug, an information criterion is constructed
that takes into consideration the optimism induced into the training loss
by the greedy recursive binary splitting in Algorithm 2. The bias (3.14)
is found by relating the asymptotic dynamics of the loss under split-
profiling, to that of a Cox-Ingersoll-Ross process (CIR). The asymptotic
normality (3.11) of estimators is key to establish a familiar continuous-
time stochastic process, and eventually the CIR, that makes it possible to
build upon the approximate equation (3.15) for generalization-loss based
information criteria. Finally, to take into consideration the optimism
induced by selecting the maximum reduction in loss over features 9

in Algorithm 2, extreme-value theory is employed. The criterion is
built into an algorithm for gradient tree boosting which is automatic,
removing hyperparameters such as the number of boosting iterations

Summary of the papers

 and constraints regularizing trees. The underlying assumptions are
tested on simulated data, and the algorithm is validated on a collection
of real data by measuring both speed and accuracy versus comparative
methodologies.

The third paper, "agtboost: Adaptive and Automatic Gradient Tree
Boosting Computations", written in collaboration with professor Tore
Selland Kleppe, focuses on the implementation of the theory in Paper
II in an R-package named agtboost. In addition, the paper proposes
a modification of the splitting procedure in Algorithm 2, to be more
adept to gradient boosting by taking into consideration the possible
root-split produced in the coming boosting iteration. Usage of agtboost
is illustrated, and its behaviour on the large Higgs dataset is measured.
The agtboost package lowers the theoretical and practical threshold
for users to employ gradient tree boosting, as detailed knowledge on
hyperparameter tuning and setting up :−fold CV in code no longer is
a necessity.

24

References 25

References

Akaike, H. (1974). A new look at the statistical model identification.
IEEE Transactions on Automatic Control 19(6), 716–723.

Barndorff-Nielsen, O. E. and C. Kluppelberg (1999). Tail exactness
of multivariate saddlepoint approximations. Scandinavian journal of
statistics 26(2), 253–264.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen (1984). Clas-
sification and Regression Trees. CRC Press.

Burnham, K. P. and D. R. Anderson (2003). Model Selection and
Multimodel Inference: A Practical Information-Theoretic Approach.
Springer Science & Business Media.

Butler, R. W. (2007). Saddlepoint approximations with applications.
Cambridge University Press.

Chen, T. and C. Guestrin (2016). Xgboost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining, pp. 785–794.

Claeskens, G. and N. L. Hjort (2003). The focused information crite-
rion. Journal of the American Statistical Association 98(464), 900–
916.

Claeskens, G., N. L. Hjort, et al. (2008). Model selection and model
averaging. Cambridge Books.

Daniels, H. E. (1954). Saddlepoint approximations in statistics. The
Annals of Mathematical Statistics, 631–650.

Dowle, M. and A. Srinivasan (2019). data.table: Extension of
‘data.frame‘. R package version 1.12.8.

Eddelbuettel, D. and R. François (2011). Rcpp: Seamless R and C++
integration. Journal of Statistical Software 40(8), 1–18.

References

Efron, B. (1992). Bootstrap methods: another look at the jackknife. In
Breakthroughs in statistics, pp. 569–593. Springer.

Friedman, J., T. Hastie, R. Tibshirani, et al. (2000). Additive logistic
regression: A statistical view of boosting (with discussion and a
rejoinder by the authors). The Annals of Statistics 28(2), 337–407.

Friedman, J. H. (2001). Greedy function approximation: a gradient
boosting machine. Annals of Statistics, 1189–1232.

Griewank, A. and A. Walther (2008). Evaluating derivatives: principles
and techniques of algorithmic differentiation. Siam.

Grønneberg, S. and N. L. Hjort (2014). The copula information criteria.
Scandinavian Journal of Statistics 41(2), 436–459.

Guennebaud, G., B. Jacob, et al. (2010). Eigen v3.
http://eigen.tuxfamily.org.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of
Statistical Learning. Springer Series in Statistics New York, NY,
USA:.

Hogan, R. J. (2014). Fast reverse-mode automatic differentiation using
expression templates in C++. ACM Transactions on Mathematical
Software (TOMS) 40(4), 26.

Huber, P. J. et al. (1967). The behavior of maximum likelihood es-
timates under nonstandard conditions. In Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability, Vol-
ume 1, pp. 221–233. University of California Press.

Ishiguro, M., Y. Sakamoto, and G. Kitagawa (1997). Bootstrapping
log likelihood and eic, an extension of aic. Annals of the Institute of
Statistical Mathematics 49(3), 411–434.

Konishi, S. and G. Kitagawa (1996). Generalised information criteria
in model selection. Biometrika 83(4), 875–890.

26

References

Kristensen, K., A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell
(2016). TMB: Automatic differentiation and Laplace approximation.
Journal of Statistical Software 70(i05).

Kullback, S. and R. A. Leibler (1951). On information and sufficiency.
The annals of mathematical statistics 22(1), 79–86.

Mason, L., J. Baxter, P. Bartlett, and M. Frean (1999). Boosting
algorithms as gradient descent in function space (technical report).
RSISE, Australian National University.

Murata, N., S. Yoshizawa, and S.-i. Amari (1994). Network information
criterion-determining the number of hidden units for an artificial
neural network model. IEEE Transactions on Neural Networks 5(6),
865–872.

R Core Team (2018). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The
annals of statistics 6(2), 461–464.

Stone, M. (1974). Cross-validatory choice and assessment of statis-
tical predictions. Journal of the Royal Statistical Society. Series B
(Methodological), 111–147.

Stroustrup, B. (2000). The C++ programming language. Pearson Edu-
cation India.

Sugiura, N. (1978). Further analysts of the data by akaike’s information
criterion and the finite corrections: Further analysts of the data by
akaike’s. Communications in Statistics-Theory and Methods 7(1), 13–
26.

Takeuchi, K. (1976). Distribution of information statistics and validity
criteria of models. Mathematical Science 153, 12–18.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University
Press, New York.

27

References

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York.

Wickham, H. (2017). tidyverse: Easily Install and Load the ’Tidyverse’.
R package version 1.2.1.

28

Appendix 29

Appendix
Saddlepoint-adjusted inversion of characteristic functions.......................31

An information criterion for automatic gradient tree boosting53

agtboost: Adaptive and Automatic Gradient Tree Boosting Computations96

30 Appendix

Paper I

Paper I

Saddlepoint-adjusted inversion
of characteristic functions

31

32 Paper I

Saddlepoint-adjusted inversion of characteristic
functions

Berent Å. S. Lunde
Department of Mathematics and Physics, University of Stavanger

and
Tore S. Kleppe

Department of Mathematics and Physics, University of Stavanger
and

Hans J. Skaug
Department of Mathematics, University of Bergen

August 19, 2020

Abstract

For certain types of statistical models, the characteristic function (Fourier transform) is
available in closed form, whereas the probability density function has an intractable form, typ-
ically as an infinite sum of probability weighted densities. Important such examples include
solutions of stochastic differential equations with jumps, the Tweedie model, and Poisson mix-
ture models. We propose a novel and general numerical method for retrieving the probability
density function from the characteristic function, conditioned on the existence of the moment
generating function. Unlike methods based on direct application of quadrature to the inverse
Fourier transform, the proposed method allows accurate evaluation of the log-probability den-
sity function arbitrarily far out in the tail. Moreover, unlike ordinary saddlepoint approxima-
tions, the proposed methodology is in principle exact modulus discretization and truncation
error of quadrature applied to inversion in a high-density region. Owing to these properties,
the proposed method is computationally stable and very accurate under log-likelihood optimi-
sation. The method is illustrated for a normal variance-mean mixture, and in an application
of maximum likelihood estimation to a jump diffusion model for financial data.

Keywords: Likelihood estimation, Inverse Fourier transform, Exact saddlepoint approximation,
Numerical integration, Jump diffusions, Mixture models

1

Paper I 33

1 Introduction

This paper is motivated by the problem of making inference about parameters of statistical models,

in which the probability density function is not readily available, but the characteristic function

(CF) is. Such models appear frequently when there are more than one source of randomness, which

is usually the case in the real world;

(1) The compounded Poisson process and Tweedie model (Tweedie, 1984; Jorgensen, 1987), has

a closed form characteristic function, which is usually applied when doing inference.

(2) The transition distributions of the class of affine jump diffusion models (Duffie et al., 2000)

admit characteristic functions given in terms of the solution of certain ordinary differential

equations, whereas the transition densities are typically not tractable.

(3) The solution of non-linear stochastic differential equations (SDE) can be approximated well

using Itô-Taylor expansions, for which the characteristic function can be derived (Preston

and Wood, 2012). A further extension to the SDE is to add independent stochastic jumps

that occur with an intensity at the given time. The new sources of randomness, the counting

process and the jump size, can then be easily added to the characteristic function of the

approximate solution to the SDE (Zhang and Schmidt, 2016).

(4) Other important examples include the non-central χ2, other Poisson mixtures, Normal mix-

tures and so on.

Estimation methods based on the CF (or more generally, when the density/mass function is

unavailable) can roughly be classified in two groups, based on whether or not the inverse Fourier

transform (IFT) is used to compute likelihoods. Popular methods in the latter group include (Gen-

eralized) Method of Moments (MM), which seeks to match a finite number of empirical moments

with those from the model (see e.g. Hansen, 1982, and subsequent literature). A somewhat similar

approach is that of using the empirical characteristic function (ECF), where the idea is to minimize

a measure of the difference between the model-implied and empirical characteristic functions (see

e.g. Yu, 2004, and references therein).

The MM is computationally very efficient, but as only a finite number of moment conditions are

considered, these methods may discard important information from the data. Such information

2

34 Paper I

−15 −10 −5 0 5 10 15

−
10

0
−

60
−

20
0

x

Lo
g−

de
ns

ity

Exact
Direct IFT
Machine precision

Figure 1: Logarithm of the N(0, 1) density calculated using quadrature-based direct inversion
(Direct IFT), along with the exact log-density. Also indicated is log(1.0× 10−14).

loss does not in theory occur for ECF, but in practice ECF estimators often turn out to have

asymptotic inefficiencies (see e.g. Knight et al. (2002, Section 4)).

The former group of methods, e.g. fully likelihood-based methods such as maximum likelihood

estimation and Bayesian methods, approximates densities by evaluating IFTs numerically. Direct

integration techniques, such as quadrature, will, as illustrated in Figure 1, suffer from numerical

inaccuracies that are non-trivial on log-scale in low-density regions. Such problems typically occur

when the value of the true density is smaller than around 1.0×10−14, when using double numerics.

This is related to the fact that the integrand of the IFT integral takes values O(1). Consequently

the weighted sum of integrand evaluations constituting the quadrature approximation will be rep-

resented by a floating point number with integer exponent close to 0 (see e.g. Press et al., 1992,

Section 1.3, for a discussion of how floating point numbers are represented). The spacing between

representable numbers in such a floating point representation (typically on the order 1.0×10−16 for

exponent close to 0) produces a theoretical lower bound on the magnitude of density values that

can be accurately represented. However, from experience, accurate calculation of log-densities via

quadrature approximations to the IFT typically fails when the density takes values a few orders of

magnitude higher than this bound.

For likelihood-based estimation purposes, it is typically very important that log-densities can be

evaluated in a stable manner, even far out in the tails. Therefore, density retrieval for estimation

purposes will often involve rescaling properties of the density, such that the IFT is done in a

high-density region and then scaled to the point of evaluation. For example, for the mentioned

3

Paper I 35

Tweedie model, Dunn and Smyth (2008) elaborate on density retrieval by the IFT using numerical

integration. To bypass the problems in the tail, an analytically tractable rescaling property is stated

and applied. Moreover, it is commented that satisfactory accuracy is only attained by utilizing

this property. Unfortunately, such rescaling properties are not always evident for a general model.

An alternative to direct inversion is the saddlepoint approximation (SPA) (Daniels, 1954;

Barndorff-Nielsen and Cox, 1979; Butler, 2007). The SPA often admits fast computation, is highly

automatic and allows for well-scaled numerics when evaluating log-density approximations. In ad-

dition, the SPA has been shown to be accurate in the tails of the distribution (see Butler, 2007).

However, the SPA suffers some drawbacks in the context of likelihood estimation. Most notably

is that it in general does not integrate to 1 for non-Gaussian models, with values often < 1 and

thus, as a given parameter space may hold points that give Gaussian models where the SPA is

exact, may bias SPA-based estimation towards regions of the parameter space where the integral

over the SPA is highest. Further, the SPA is often unimodal, and may thus produce an inaccurate

approximation of e.g. mixtures, which is a typical case in which the characteristic function is readily

available but the density is not.

To bypass some of these problems, the SPA can be improved upon by employing a non-Gaussian

base (Wood et al., 1993). Ait-Sahalia and Yu (2006) considers this approach for Markov processes,

including jump diffusions. However, non-Gaussian based SPA requires the user to select a base-

distribution with a density that in some sense is similar to the target density, and therefore may

require bespoke implementations in each instance. Kleppe and Skaug (2008) introduce a method for

choosing this base-distribution automatically for the purpose of high-dimensional inversion under

a latent-variable framework.

In this paper, we propose to precondition the integrand in univariate inversion problems so

that quadrature-based inversion is as numerically stable as possible. This is done by inverting

a standardised and exponentially tilted (Barndorff-Nielsen and Cox, 1979) version of the target

density, so that the inversion is done in a high-density region. The method is in large parts

automatic, and in particular does not rely on known rescaling properties of the target density

or the elicitation of a non-Gaussian base distribution. Tilting is equivalent to deforming the

contour of the inversion integral, and is a known technique in the applied mathematics literature

for this type of problem (Cohen, 2007), so is rescaling. Our approach is similar to that taken

4

36 Paper I

of Strawderman (2004), which develops an automatic algorithm for inversion to the cumulative

density function, albeit the saddlepoint is different than the saddlepoint employed as the tilt in

this paper. Strawderman (2004) gives much attention to the numerical evaluation of the resulting

inversion integral, and these considerations apply equally to the method we propose.

The rest of the paper is laid out as follows: the proposed method and its implementation are

outlined in section 2. In section 3, the proposed methodology is illustrated and contrasted to

alternatives using the normal inverse Gaussian distribution and the Merton jump diffusion models

as example models. Conclusion and comments follow in section 4.

2 Methodology

This section provides some background and subsequently derives the saddlepoint adjusted IFT

method proposed here.

2.1 Background

Suppose that the strictly continuous random variable X ∈ R has probability density function

pX(x) and CF ϕX(s) = EX(exp(isX)), where i =
√
−1. As the CF may be considered as a Fourier

transform of pX(x), the density can be recovered from ϕX(s) via an IFT:

pX(x) =
1

2π

∫ ∞

−∞
ϕX(s)e−isxds. (1)

For numerical evaluation, (1) can be simplified by utilizing the Hermitian property of ϕX(s):

pX(x) =
1

π

∫ ∞

0

Re
[
ϕX(s)e−isx

]
ds. (2)

As explained in the introduction and illustrated in Figure 1, computing the log-density log pX(x)

by taking the logarithm of the output of a quadrature method applied to either (1) or (2) is

problematic when the value of pX(x) is small. Indeed, from Figure 1 it is seen that evaluation of

the N(0, 1) log-density based on direct inversion fails around pX = log(1.0× 10−14) (indicated by

the horizontal line).

5

Paper I 37

2.2 Saddlepoint adjusted IFT

In order to avoid such numerical problems when evaluating log-densities, this section introduces

a general method of preconditioning the integration problem. The overarching idea is to ensure

that every numerical IFT approximates the density of a unit variance random variable at its mean.

Modulus strongly pathological cases, this approach should ensure that the value of the numerical

Fourier transform is O(1).

Again, suppose X is the random variable of interest. Provided it exits, the cumulant generating

function (CGF) KX(t) is defined as KX(t) = log{E(exp(tX))}, for values of t ∈ Ω where Ω = {t :

E(exp(tX)) <∞}. In particular, the CGF may be recovered from the CF via

KX(t) = log{ϕX(−it)}.

Suppose one wishes to evaluate pX at some point, say x0. A general and analytically tractable

rescaling of the original density pX is obtained by first introducing an exponentially tilted (see e.g.

Butler, 2007, Section 2.4.5) version of X, say X(τ), where τ ∈ Ω is the tilt parameter. The tilted

random variable X(τ) has density

pX(τ)(x) = exp(τx−KX(τ))pX(x). (3)

Notice in particular that the original random variable X is obtained for τ = 0. Straightforward

calculations yield that the CGF associated with X(τ) is given as

KX(τ)(t) = KX(t+ τ)−KX(τ). (4)

Now, in order for the evaluation of pX(τ) to happen in a high-density region, the tilt parameter

τ = τ̂ is chosen so that E(X(τ̂)) = x0. As E(X(τ)) = K ′X(τ), one obtains the saddlepoint equation

K ′X(τ̂) = x0, (5)

for τ̂ , where K ′X denotes the derivative of KX .

A further standardization is then introduced in order to ensure that the target for the numerical

6

38 Paper I

IFT also has unit variance (and thus under most circumstances has density values O(1) around

the mean). This is achieved by introducing a standardized version of X(τ̂),

X̄(τ̂) =
X(τ̂)− x0√
V ar(X(τ̂))

, (6)

where V ar(X(τ̂)) = K ′′X(τ̂), so that

pX(τ̂)(x0) =
pX̄(τ̂)(0)√
K ′′X(τ̂)

. (7)

Combining (3) and (7) results in the preconditioning formula used throughout this text, namely

pX(x0) = exp(KX(τ̂)− τ̂x0)
pX̄(τ̂)(0)√
K ′′X(τ̂)

. (8)

Since (6) represents an affine transformation of X(τ̂), the CF and CGF of X̄(τ̂) are also easily

found to be

ϕX(τ̂)(s) = exp(KX(τ̂)(is)),

KX(τ̂)(t) = −KX(τ̂)− tx0√
K ′′X(τ̂)

+KX

(
t√

K ′′X(τ̂)
+ τ̂

)
,

and thus density of X̄(τ̂) evaluated at zero can be calculated as

pX̄(τ̂)(0) =
1

π

∫ ∞

0

Re[ϕX(τ̂)(s)]ds. (9)

Before proceeding, notice that the conventional SPA is obtained by substituting pX̄(τ̂)(0) in (8)

with the N(0, 1) density evaluated at 0, namely (2π)−1/2. Thus, it follows from results on tail-

exactness of the SPA for densities that are log-concave (Barndorff-Nielsen and Kluppelberg, 1999)

that also pX̄(τ̂)(0) must converge to (2π)−1/2 in the tails of pX . In the high-density regions of pX on

the other hand, pX̄(τ̂)(0) typically takes values somewhat higher than (2π)−1/2. These properties

are illustrated for a normal inverse Gaussian distribution (to be discussed in more detail shortly)

7

Paper I 39

x0

N
IG

 d
en

si
ty

0

5

10

15

20

25

−0.4 −0.2 0.0 0.2 0.4

Exact
SPA

−0.4 −0.2 0.0 0.2 0.4

0.
40

0.
45

0.
50

0.
55

0.
60

x0

p X
(τ̂

)(0
)

Exact
SPA

Figure 2: The normal inverse Gaussian (NIG) density along with its SPA (left panel). The
right panel shows pX̄(τ̂)(0) (Exact) used in the proposed methodology, together with the asymptote

(2π)−1/2 (SPA). The parameter values χ = 0.0003, ψ = 1000, µ = −0.0003, and γ = 2 in (10) were
applied in both plots.

in Figure 2. Note that pX̄(τ̂)(0) approaches (2π)−1/2 in the tails of the distribution, suggesting that

the SPA has the tail exactness property for the normal inverse Gaussian distribution. Moreover,

notice that pX̄(τ̂)(0) remains well scaled O(1) across the support of the density, and is therefore

easy to approximate using quadrature.

2.3 Implementation

Provided the CGF/CF of some distribution X, equations (8) and (9) form the basis for implement-

ing the proposed saddlepoint adjusted IFT technique for evaluating (log-)densities at say x0. Each

evaluation involves the following steps:

1. Obtain the saddlepoint τ̂ by solving (5). Notice that τ̂ = arg mint∈ΩKX(t)− x0t, where the

objective function is convex on Ω. The convexity ensures both a unique such solution to (5),

and also that Newton’s method of optimization (Press et al., 1992, Chapter 9.4) may be used

to obtain a rapidly- and stably converging solution.

2. Approximate the latter integral of (9) by a quadrature approximation, say p̂X̄(τ̂)(0).

8

40 Paper I

0 10 20 30 40

−
0.

5
0.

0
0.

5
1.

0

s

R
e[

ϕ x
(τ̂

)(s
)]

High density x0

Low density x0

exp(−0.5s2)

Figure 3: Integrands of the latter representation of (9) for the normal inverse Gaussian distribution.
The parameters are the same as in Figure 2. High density x0 correspond to x0 = E(X) and low
density to x0 = E(X) − 8

√
V ar(X). As a reference, also the the CF associated with the X̄(τ̂)

obtained whenever X is Gaussian, i.e. exp(−s2/2) is indicated. It is seen that the integrands
typically take non-negligible values for larger values of s for relative to the Gaussian case.

3. Compute log-density approximation as

log(pX(x0)) ≈KX(τ̂)− τ̂x0 −
1

2
log (K ′′X(τ̂))

+ log(p̂X̄(τ̂)(0)).

The saddlepoint adjusted IFT comes with some extra cost compared to the saddlepiont ap-

proximation and, depending on number of quadrature evaluation, potentially direct IFT. However,

for the normal-inverse Gaussian model considered shortly, the location of a single saddlepoint τ̂

per evaluation is a minor part of the required CPU time. This is typically the case even if the

saddlepoint equation must be solved numerically, as is often the case for non-trivial models. Thus,

of highest importance for good and robust performance is the selection of a quadrature rule for

implementing point 2 above.

Figure 3 displays integrands Re[ϕX(τ̂)(s)] for the normal inverse Gaussian distribution also

considered in Figure 2. For values of x0 in the high-density region of X, the integrand falls

to zero rapidly, and the resulting integral may be accurately approximated using Gauss-Hermite

quadrature (Press et al., 1992, p. 153). On the other hand, is seen that the integrand may take

non-trivial values far from the origin when x0 is in the tails of X (even if the resulting integral

attains values close to (2π)−1/2 (Barndorff-Nielsen and Kluppelberg, 1999)).

9

Paper I 41

In the present work, composite Simpson’s quadrature with a fixed integration range is used

for the integration problem in point 2 above. This choice is made mainly for robustness and in

order to obtain (log-)density approximations that are smooth functions in the parameters. This

works fine for the selected illustrations, but more heavy-tailed distributions that have a slower

convergence of lims→∞Re[ϕX(τ̂)(s)] → 0, might severely suffer from truncation error. Abate and

Whitt (1992) argues for the even simpler Trapezoid method for inversion problems, which’ relation

to the Poison summation formula may be used to control discretization error, in combination

with Euler-summation for convergence acceleration which targets truncation error. Strawderman

(2004) extensively discuss the issues of discretization and truncation error, and suggests Wynn’s

epsilon-method for convergence acceleration over Euler-summation. A more adaptive selection of

integration range that is also smooth in parameters, type of convergence acceleration, and also

choosing integration rules that account for the potentially oscillating nature of the integrand holds

scope for future research. Notice, however, that such adaptive integration would not alone solve

the problems with log-density evaluation for direct IFT as illustrated in Figure 1.

Notice, for comparison, that renormalised (via numerical integration) SPAs require the solution

of many saddlepoint equations, while at the same time, introduce non-vanishing approximation

errors and loses tail exactness. Thus, due both to a higher computational cost and non-vanishing

errors, renormalised SPAs are not considered further here.

Throughout this paper, all methods are implemented in C++ and run in R (R Core Team,

2018) using the RCPP package (Eddelbuettel and François, 2011). Exact gradients of log-likelihood

functions were obtained using the automatic differentiation (AD) library Adept (Hogan, 2014). All

derivatives of the CGF are hand-coded in the present work, but this process may also be automated

using a tool that allows for nested computation of derivatives such as TMB (Kristensen et al., 2016).

3 Illustrations

The focus of this section is to highlight several properties of the saddlepoint adjusted IFT method,

and to contrast these to the SPA and direct IFT. The included target distributions hold Gaussian

solutions as special cases in their respective parameter space, and thus in some part selected for

their illustrative purposes with regards to the Gaussian bias in SPA based estimation.

10

42 Paper I

3.1 The Normal inverse Gaussian distribution

Throughout this section, the normal-inverse Gaussian (NIG) (see e.g. McNeil et al., 2005) is used

as a test case since this distribution admit exact evaluation of the density. The NIG distribution

is defined as a normal-variance mixture,

X = µ+ γW +
√
WZ, Z ∼ N(0, 1), (10)

where W has an inverse Gaussian distribution with a parametrization corresponding to

pW (w) ∝ w−3/2 exp(−(χ/w + ψw)/2),

E(W) =
√
χ/ψ and V ar(W) = (

√
χ/ψ)/ψ.

The marginal density of X is expressible only in terms of the modified Bessel function of the third

kind Kλ:

pX(x) =

√
χ(ψ + γ2)K−1

(√
(χ+ (x− µ)2)(ψ + γ2)

)

π
√
χ+ (x− µ)2

× e
√
χψ+(x−µ)γ.

On the other hand, the CGF is highly tractable:

KX(t) = sµ+
√
χ
(√

ψ −
√
ψ − s2 − 2sγ

)
.

In particular, based on the CGF, one obtains E(X) = µ+γ
√
χ/ψ and V ar(X) =

√
χψ−3/2(γ2−ψ).

In order to implement saddlepoint adjusted IFT, a quadrature scheme must be chosen to ap-

proximate pX̄(τ̂)(0) as given in the latter representation of (9). Here, Simpson’s quadrature based

on 512 equidistant evaluations in the interval s ∈ [0, 100] were used throughout. The interval and

number of evaluations were chosen to be highly robust for a wide range of parameters and evalua-

tion points x0. Notice, that direct IFT on the other hand requires more manual tuning depending

on parametrisation.

To illustrate how the saddlepoint adjusted IFT performs under log-likelihood-based estimation,

11

Paper I 43

0 50 100 150

−
20

0
−

10
0

0
10

0
20

0
30

0

γ

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Saddlepoint adjusted IFT
Bessel implementation
Saddlepoint approximation
Simpson IFT

−0.10 −0.05 0.00 0.05 0.10

−
20

0
−

10
0

0
10

0
20

0

µ
N

eg
at

iv
e

lo
g−

lik
el

ih
oo

d

Figure 4: Approximate (negative) log-likelihood profiles based on 100 observations simulated from
a NIG distribution with parameter χ = 0.0003, ψ = 1000, µ = −0.0003, and γ = 2. The left panel
shows log-likelihoods plotted as a function of γ while keeping the remaining parameters fixed at
their “true” values. The right panel shows a similar plot with varying µ.

100 observations from a NIG distribution with parameters χ = 0.0003, ψ = 1000, µ = −0.0003, and

γ = 2 were simulated. These parameter values correspond to E(X) ≈ 0.0008 and V ar(X) ≈ 0.0232,

which are typical of financial returns. The log-likelihood, approximated by saddlepoint adjusted

IFT, the SPA, the direct IFT, and using the native R Bessel implementation (regarded as being

exact), are plotted in Figure 4 as functions of γ and µ, respectively, while keeping the remaining

parameters fixed at the values used for simulation. In both cases it is seen that the direct IFT

based on Simpson’s method produces unreliable results for parameter settings far from the “true”

parameters. Moreover, the SPA produces a log-likelihood approximation which deviates from the

true log-likelihood (Bessel implementation) with a parameter-dependent amount. Hence, the SPA

based log-likelihood approximation is likely to result in biases relative to the exact maximum

likelihood estimator. Finally, it is seen that the saddlepoint adjusted IFT based approximation is

indistinguishable from the true log-likelihood.

To avoid numerical problems resulting from non-positive density approximations, the direct

IFT log-likelihood was implemented as log(max(1.0e − 14, Î)) where Î is the quadrature-based

approximation of (2). Such non-positive density approximations are obtained as a consequence

of a highly oscillating integrand that takes values far larger than the value of the integral itself.

Simpson’s quadrature, with 512 function evaluations over the integration range s ∈ [0, 150], was

12

44 Paper I

used. Nevertheless, Figure 4 shows that direct IFT produces erratic behaviour for parameters far

from those used in the simulation. When increasing γ (left panel) the distribution of X changes

from being rather symmetric around γ = 2 to being highly skewed with a heavy right tail and a

very thin left tail around γ = 150. Thus, in this latter case, some of the simulated observations will

have very small density values, which is problematic for direct IFT, as demonstrated in Figure 1.

Similar reasoning holds for the right panel, where the location parameter µ is is varied by around

4 standard deviations in either direction from the “true” µ, and in this case the majority of the

simulated data are in the far tails at either extreme of the plot.

As is also seen in Figure 4, the SPA produces approximate log-likelihoods that deviate by a

parameter-dependent offset from the exact log-likelihood. This behaviour is related to the fact that

the SPA typically does not integrate to 1 (typically < 1), and that the appropriate normalisation

factor of the SPA is parameter dependent. However, the SPA is exact in the Gaussian case, and

it is therefore often seen (see e.g. Kleppe and Skaug, 2008) that SPA-based parameter estimates

are biased towards the “Gaussian part” of the parameter space in models that nest Gaussian

distributions. For the NIG distribution, a N(µ + γσ2, σ2) distribution obtains when E(W) → σ2

and V ar(W)→ 0 (e.g. when χ = σ4ψ and ψ →∞).

To illustrate this effect, we fixed parameters µ = γ = 0 and chose χ = ψ so that E[W] = 1.

The remaining free parameter θ = 1/ψ = V ar(W) controls the variance of W , and thus the

deviation from normality, with X → N(0, 1) as θ → 0. We then computed estimators of θ by

numerically minimizing the relative Kullback-Leibler divergence to obtain asymptotic maximum

likelihood estimators,

θ̂(θ0) = arg min
θ

{
−
∫

log{p̃X(x; θ)}pX(x; θ0)dx

}
, (11)

for different settings of the inverse Gaussian variance θ0. Here, p̃ is either the SPA or the saddlepoint

adjusted IFT. The integral in the objective function of (11) was resolved using quadrature with

200 evaluations on an interval centered at the mean and spanning 12 standard deviations. The

results showed that for the SPA we have θ̂(θ0) = 0, i.e. a Gaussian distribution, for all values of

θ0. For the saddlepoint adjusted IFT, on the other hand, θ̂(θ0) is indistinguishable from θ0, i.e. the

estimator is asymptotically unbiased.

13

Paper I 45

3 4 5 6 7 8

−
12

80
0

−
12

70
0

−
12

60
0

−
12

50
0

−
12

40
0

log(λ)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Saddlepoint adjusted IFT
Truncated
Saddlepoint approximation
Gaussian GBM

Figure 5: Profile negative log-likelihoods of the Merton Jump Diffusion model versus fixed logarith-
mic jump-intensities, λ, fitted to DJIA daily stock-market data from 01.01.2000 until 01.01.2018.
The evaluations referred to as “Truncated” are obtained by summing conditional probabilities in
(15), until either the jump probability is less than 1.0 × 10−14 or reaching 20 jumps. Saddlepoint
adjusted IFT uses Simpson’s quadrature with 128 equidistant steps over s ∈ [0, 16]. Direct in-
version was deemed infeasible, as it severely suffers from the numerical problems discussed in this
article.

3.2 Application to real data: Merton jump diffusion

This section considers the application of inversion techniques to likelihood optimisation based

on real data. Specifically, the Merton jump diffusion (MJD) (Merton, 1976) for stock prices is

considered. Under the MJD model, the dynamics of a stock price St are described by the jump

diffusion model

dSt
St−

= (r − λk)dt+ σdWt + (Yt − 1)dNt, (12)

where r > 0 is the instantaneous expected return on the asset, σ > 0 the instantaneous volatility

(if a jump does not occur), and k the expected relative jump size. Nt denotes a Poisson process

with intensity λ > 0, independent of the Brownian motion Wt. Yt is the price jump size, meaning

that, if a jump occurs at time t, the price jumps from St− to YtSt− . The jump sizes Yt are assumed

to be log-normally distributed with log Yt ∼ N(µ, ν2), and thus k = eµ+0.5ν2 − 1.

14

46 Paper I

Methods

SPI Truncated SPA GBM

r 0.0445 (0.045) 0.0445 (0.045) 0.0432 (0.043) 0.0461 (0.047)
log σ -2.41 (0.077) -2.41 (0.076) -2.23 (1.11) -1.67 (0.011)
log λ 4.96 (0.18) 4.96 (0.18) 6.81 (2.36)
µ -0.00114 (0.00039) -0.00114 (0.00039) -0.000703 (0.00065)

log ν -4.32 (0.074) -4.32 (0.074) -5.4 (0.51)

Table 1: Likelihood estimates and standard deviations in parentheses for the MJD fitted to the
DJIA daily stock-market data from 2000 until 2018, applying different methods for likelihood
approximation. SPI refers to saddlepoint adjusted IFT. The settings for the methods are the
same as those described in Figure 5. The inversion methods were implemented using first order
AD data-types with Adept (Hogan, 2014), and Hessian matrices could therefore be retrieved as
finite-difference Jacobians to the exact gradients; these could in turn be used to calculate standard
deviations (see for instance Kristensen et al. (2016) for details on such computations). The Hessian
of the truncation method was retrieved via the optim function in R (R Core Team, 2018).

The SDE (12) can be solved to yield the following representation for logarithmic prices:

Xt = X0 +

(
r − λk − σ2

2

)
t+ σWt +

Nt∑

i=1

log Yi, (13)

and thus the conditional CGF of Xt|X0 is given as a sum of a normal CGF and a normal com-

pounded Poisson CGF:

KXt|X0(s) =sX0 + st

(
r − λk − σ2

2

)
+
s2σ2t

2

+ λt
(
esµ+ ν2s2

2 − 1
)
. (14)

The conditional CGF (14) does not appear to admit a closed form saddlepoint, τ̂ , and thus nu-

merical solution of (5) is required.

Notice that the Geometric Brownian Motion (GBM) processes for St obtains as special cases

either for λ = 0, or when µ = 0, λ → ∞ and ν decays as O(λ−1/2) or faster. Furthermore, Xt|X0

is Gaussian under the GBM model.

Note also that for the MJD, Xt|(X0, Nt) is Gaussian, and thus the exact transition probability

15

Paper I 47

density is available as a Poisson mixture with Gaussian components:

P (Xt|X0) =
∞∑

i=0

P (Nt = i)P (Xt|X0, Nt = i). (15)

Specifically, Xt|(X0, Nt) is Gaussian with mean X0 + t
(
r − λk − σ2

2

)
+ Ntµ and variance σ2t +

Ntν
2. As a reference for the saddlepoint adjusted IFT, we also consider an approximate log-

likelihood function (referred to as “truncated”), based on truncating the Poisson mixture infinite

sum representation either when the Poisson weights become smaller than 1.0e-14 or at 20 jumps

per transition.

The MJD was applied to stock-market data from the Dow Jones Industrial Average index from

01.01.2000 until 01.01.2018. A yearly time scale, and thus observations separated in time with

t = 1/252, was used. Maximum likelihood estimation based on saddlepoint adjusted IFT (using

Simpson’s quadrature with 128 equidistant evaluations over s ∈ [0, 16]), SPA and the truncated

method were considered. Direct IFT was deemed infeasible due to similar problems as discussed

above.

Table 1 provides maximum likelihood estimates. First of all, it is seen that the parameter

estimates obtained using saddlepoint adjusted IFT and the truncated method are close to indis-

tinguishable. This observation suggests that the proposed methodology performs very well in also

this situation, even when using a static integration rule. The parameter estimates suggest rather

frequent jumps at a rate of around 0.6 per day. The jumps have close to zero mean and a standard

deviation that is roughly double that of the diffusive part (i.e. σ
√
t).

Also included in Table 1 are parameter estimates obtained using a SPA-based log-likelihood

approximation. This approximation favours a model with smaller and more frequent jumps, which

as discussed above, suggests a model with closer to Gaussian transition distributions. Still, the

model obtained using SPA-based log-likelihood is well separated from the exactly Gaussian GBM.

Figure 5 presents negative profile log-likelihoods over log(λ) based on the different considered

methods. It is seen that moderate jump intensities, (say below log(λ) < 7, P (Nt = 20| log(λ) =

7) = 3.1e−8), the truncated and saddlepoint adjusted IFT profile log-likelihoods coincide very well,

whereas for higher jump intensities, they diverge as the truncation of jump counts starts taking

effect. Though not particularly relevant for the data and model at hand here, these observations

16

48 Paper I

illustrate the utility of performing the mixing in transform-space, as the computational complexity

remains the same for any jump intensity, whereas summing many jumps in the Gaussian mixture

representation may be become very computationally expensive.

Figure 5 also includes profile likelihoods for SPA-based approximate log-likelihood and the

GBM model (invariant of λ). It is seen that the approximate log-likelihood associated with the

SPA is substantially closer to the GBM. Notice also that for high jump intensities, the saddlepoint

adjusted IFT and SPA approach the GBM as close to Gaussian models are obtained for very high

jump intensities are imposed. The truncated method, on the other hand, fails in representing this

effect for high jump intensities.

4 Discussion

This paper proposes a new method for numerical inversion of characteristic functions, conditioned

on the existence of the CGF. The proposed method is very reliable for obtaining log-density values,

even far out in the tails of the distribution. In particular, the method resolves numerical problems

that may occur using direct inverse Fourier transformation. Moreover, the method may be seen

as a way of substantially improving the accuracy of the classical saddlepoint approximation when

applied in likelihood-based inference.

Further work will involve more automatic rules for choosing integration ranges, under the

constraint of producing smooth (in parameters) log-likelihood functions. A further extension would

be to consider the low- but multi-dimensional analogue of the proposed methodology. However,

more work regarding how to implement the resulting multidimensional integral in point 2 in section

2.3 must be carried out also in this case.

References

Abate, J. and W. Whitt (1992). The fourier-series method for inverting transforms of probability

distributions. Queueing systems 10 (1-2), 5–87.

Ait-Sahalia, Y. and J. Yu (2006). Saddlepoint approximations for continuous-time Markov pro-

cesses. Journal of Econometrics 134 (2), 507–551.

17

Paper I 49

Barndorff-Nielsen, O. and D. R. Cox (1979). Edgeworth and saddle-point approximations with

statistical applications. Journal of the Royal Statistical Society. Series B (Methodological), 279–

312.

Barndorff-Nielsen, O. E. and C. Kluppelberg (1999). Tail exactness of multivariate saddlepoint

approximations. Scandinavian journal of statistics 26 (2), 253–264.

Butler, R. W. (2007). Saddlepoint approximations with applications. Cambridge University Press.

Cohen, A. M. (2007). Numerical methods for Laplace transform inversion, Volume 5. Springer

Science & Business Media.

Daniels, H. E. (1954). Saddlepoint approximations in statistics. The Annals of Mathematical

Statistics , 631–650.

Duffie, D., J. Pan, and K. Singleton (2000). Transform analysis and asset pricing for affine jump-

diffusions. Econometrica 68 (6), 1343–1376.

Dunn, P. K. and G. K. Smyth (2008). Evaluation of Tweedie exponential dispersion model densities

by Fourier inversion. Statistics and Computing 18 (1), 73–86.

Eddelbuettel, D. and R. François (2011). Rcpp: Seamless R and C++ integration. Journal of

Statistical Software 40 (8), 1–18.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators.

Econometrica 50 (4), 1029–1054.

Hogan, R. J. (2014). Fast reverse-mode automatic differentiation using expression templates in

C++. ACM Transactions on Mathematical Software (TOMS) 40 (4), 26.

Jorgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society.

Series B (Methodological), 127–162.

Kleppe, T. S. and H. J. Skaug (2008). Building and fitting non-Gaussian latent variable models

via the moment-generating function. Scandinavian Journal of Statistics 35 (4), 664–676.

18

50 Paper I

Knight, J. L., S. E. Satchell, and J. Yu (2002). Theory & methods: Estimation of the stochastic

volatility model by the empirical characteristic function method. Australian & New Zealand

Journal of Statistics 44 (3), 319–335.

Kristensen, K., A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell (2016). TMB: Automatic

differentiation and Laplace approximation. Journal of Statistical Software 70 (i05).

McNeil, A., R. Frey, and P. Embrechts (2005). Quantitative Risk Management: Concepts, Tech-

niques, and Tools. Princeton University Press: Princeton, NJ.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of

Financial Economics 3 (1), 125–144.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical recipes in

C. Cambridge: Cambridge University .

Preston, S. and A. T. Wood (2012). Approximation of transition densities of stochastic differential

equations by saddlepoint methods applied to small-time Ito–Taylor sample-path expansions.

Statistics and Computing 22 (1), 205–217.

R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing.

Strawderman, R. L. (2004). Computing tail probabilities by numerical fourier inversion: The

absolutely continuous case. Statistica Sinica, 175–201.

Tweedie, M. (1984). An index which distinguishes between some important exponential families.

In Statistics: Applications and new directions: Proc. Indian statistical institute golden Jubilee

International conference, Volume 579, pp. 6o4.

Wood, A. T., J. G. Booth, and R. W. Butler (1993). Saddlepoint approximations to the CDF of

some statistics with nonnormal limit distributions. Journal of the American Statistical Associa-

tion 88 (422), 680–686.

Yu, J. (2004). Empirical characteristic function estimation and its applications. Econometric

reviews 23 (2), 93–123.

19

Paper I 51

Zhang, L. and W. M. Schmidt (2016). An approximation of small-time probability density functions

in a general jump diffusion model. Applied Mathematics and Computation 273, 741–758.

20

52 Paper I

Paper II

Paper II

An information criterion for
automatic gradient tree

boosting

53

54 Paper II

An information criterion for automatic gradient tree boosting

Berent Å. S. Lunde * Tore S. Kleppe � Hans J. Skaug �

August 13, 2020

Abstract

An information theoretic approach to learning the complexity of classification and regression trees

and the number of trees in gradient tree boosting is proposed. The optimism (test loss minus training

loss) of the greedy leaf splitting procedure is shown to be the maximum of a Cox-Ingersoll-Ross process,

from which a generalization-error based information criterion is formed. The proposed procedure allows

fast local model selection without cross validation based hyper parameter tuning, and hence efficient

and automatic comparison among the large number of models performed during each boosting iteration.

Relative to xgboost, speedups on numerical experiments ranges from around 10 to about 1400, at similar

predictive-power measured in terms of test-loss.

1 Introduction

This article is motivated by the problem of selecting the functional form of trees and ensemble size in gradient

tree boosting (Friedman, 2001; Mason et al., 2000). Gradient tree boosting (GTB) has become extremely

popular in recent years, both in academia and industry: At present, an increase in the size of datasets, both

in the number of observations and the richness of the data, or number of features, is seen. This, coupled with

an exponential increase in computational power and a growing revelation and acceptance for data-driven

decisions in the industry makes for an increasing interest in statistical learning (Hastie et al., 2001). For

these new datasets, standard statistical methods such as generalized linear models (McCullagh and Nelder,

1989) that have a fixed learning rate due to their constrained functional form with bounded complexity,

struggle in terms of predictive power, as they stop learning at certain information thresholds. The interest

is therefore geared towards more flexible approaches such as ensembles of learners.

*Department of Mathematics and Physics, University of Stavanger, 4036 Stavanger, Norway. Tel.: +47-47258605.
berent.a.lunde@uis.no

�Department of Mathematics and Physics, University of Stavanger, 4036 Stavanger, Norway
�Department of Mathematics, University of Bergen, 5020 Bergen, Norway

1

Paper II 55

GTB has recently risen to prominence for structured or tabular data, and previous to this, the related

random forest algorithm (Ho, 1995; Breiman, 2001) was the “off-the-shelf” machine learning algorithm of

choice for many practitioners. They both perform automatic variable selection, there is a natural measure of

feature importance, they are easy to combine, and simple decision trees are often easy to interpret. In fact,

gradient tree boosting has dominated in machine-learning competitions for structured data since around

2014 when the xgboost implementation (Chen et al., 2018; Chen and Guestrin, 2016) was made popular.

Recent years have seen the introduction of rivalling implementations such as LightGBM (Ke et al., 2017) and

CatBoost (Dorogush et al., 2018).

A difficulty with GTB is that it is prone to overfitting: The functional form changes for every split

in a tree, and for every tree that is added. Hence, it is necessary to constrain the ensemble size and the

complexity of each individual tree. Standard practice is either the use of a validation set, cross-validation

(Stone, 1974), or regularization to target a bias-variance trade-off (Hastie et al., 2001). Friedman (2001)

suggested a constant penalisation of each split, while later implementations have also introduced L2 and L1

regularisation. All the above mentioned GTB implementations have many hyper-parameters, which must be

tuned in a computationally expensive manner, typically involving cross-validation. We will collectively view

these measures to avoid overfitting as solutions to a model selection problem.

In this article we take an information theoretic approach to GTB model selection, as an alternative to

cross-validation. Building on the seminal work of Akaike (1974) and Takeuchi (1976) we approximate the

difference between test and training error for each split in the tree growing process. This difference, known as

the “optimism” (Hastie et al., 2001), is used to formulate new stopping criteria in the GTB algorithm, both

for tree growing and for the boosting algorithm itself. The resulting algorithm selects its model complexity

in a single run, and does not require manual tuning. We show that it is considerable faster than existing

GTB implementations, and we argue that it lowers the bar for applications by non-expert users.

The following section introduces gradient tree boosting. We then discuss model selection and develop

an information theoretic approach to gradient boosted trees, and comment on evaluation using asymptotic

theory together with modifications of the GTB algorithm. Section 4 is concerned with validation through

simulation experiments of the theoretical results in section 3. Section 5 sees applications to real-data and

comparisons with competing methodologies. Proofs of the theoretical results in section 3 may be found in

the Appendix.

2

56 Paper II

1

2

4

w4 = 7.6

5

3

6

8 9

7

R(1) = 3L(1) = 2

R(2) = 5L(2) = 4

R(3) = 7L(3) = 6

R(2) = 9L(6) = 8

L = {4, 5, 8, 9, 7}
Lc = {1, 2, 3, 6}

q(x) = 4; x ∈ I4

q(x) = 5; x ∈ I5

q(x) = 8; x ∈ I8

Figure 1: Example of a CART with T = 5 leaf nodes (L) and 4 internal nodes (Lc). w = (w4, w5, w7, w8, w9)
is the vector of possible predictions. The operator q(x) maps different instance sets (It, t ∈ L) to leaf nodes.
The mappings L(t) and R(t) yield the left and right descendants of each internal node t ∈ Lc.

2 Gradient tree boosting

Let x ∈ Rm be a feature vector and y ∈ R a corresponding response variable. The objective of supervised

learning in general is to determine the function f(x) that minimises the expected loss,

f̂ = arg min
f
Ex,y [l(y, f(x))] , (1)

given a loss function l(·, ·). In practice, the expectation over the joint distribution of x and y must be

replaced by an empirical average over a finite dataset, Dn = {(xi, yi)} , |Dn| = n, xi ∈ Rm, y ∈ R. The

loss, l, is a function that measures the difference between a prediction ŷi = f(xi) and its target yi. We will

assume that l is both differentiable and convex in its second argument.

In GTB, f is taken to be an ensemble model, with ensemble members fk(x) being classification and

regression trees (CARTs; see Figure 1 for notation). A prediction from f has the following form:

ŷi = f (K)(xi) =

K∑

k=1

fk(xi), where fk(xi) = wqk(xi),k. (2)

Here, qk : Rm → Lk (where Lk is the set of leaf nodes) is the feature mapping of the k’th tree, which assigns

every feature vector to a unique leaf node (see Figure 1). The predictions associated with each leaf node

are contained in a vector wk = {wt,k, t ∈ Lk} ∈ RTk , where Tk is the number of leaf nodes in the k-th tree

(i.e. the cardinality of Lk). Moreover, any internal node t (i.e. t ∈ Lck) has exactly two descendants whose

labels are denoted by L(t) (left descendant) and R(t) (right descendant). Figure 1 illustrates these concepts

graphically for three different input feature-vectors.

3

Paper II 57

Suppose an ensemble model with k − 1 trees, f (k−1), has already been selected. In order to sequentially

improve the ensemble prediction by adding another member fk, the theoretical objective Ex,y

[
l(y, f (k)(x))

]

reduces to

Ex,y

[
l
(
y, f (k−1)(x) + fk(x)

)]
, (3)

which should be minimized with respect to the qk and wk associated with fk. To gain analytical tractability

we perform a second order Taylor expansion around ŷ = f (k−1)(x):

l̂(y, ŷ + fk(x)) = l(y, ŷ) + g(y, ŷ)fk(x) +
1

2
h(y, ŷ)f2k (x), (4)

where g(y, ŷ) = ∂
∂ŷ l(y, ŷ) and h(y, ŷ) = ∂2

∂(ŷ)2 l(y, ŷ).

As the joint distribution of (x, y) is generally unknown, the expectation in (3) is approximated by the

training data empirical counterpart:

1

n

n∑

i=1

l
(
yi, ŷ

(k−1)
i + fk(xi)

)
≈ 1

n

n∑

i=1

[
l
(
yi, ŷ

(k−1)
i

)
+ gikfk(xi) +

1

2
hikfk(xi)

2

]

=
1

n

n∑

i=1

l
(
yi, ŷ

(k−1)
i

)
+

1

n

∑

t∈Lk

[∑

i∈Itk
gikwtk +

1

2
hikw

2
tk

]
(5)

=: `k(qk,wk). (6)

where

gik = g(yi, f
(k−1)(xi)) and hik = h(yi, f

(k−1)(xi)). (7)

and Itk is the instance set of leaf t: Itk = {i : qk(xi) = t}, (see Figure 1). Hence, `k is the training loss

approximation of the theoretical objective (3), to be optimized in the k-th boosting iteration. This second

order approximation-based boosting strategy was originally proposed by Friedman et al. (2000) and first

implemented for CARTs in xgboost Chen and Guestrin (2016). Further, notice that for the quadratic loss

l(y, ŷ) = (y − ŷ)2, the Taylor expansion is exact.

For a given feature mapping qk (and hence instance sets Itk, t ∈ Lk), the weight estimates ŵk minimizing

wk 7→ `k(qk,wk) are given by

ŵtk = −Gtk
Htk

, Gtk =
∑

i∈Itk
gik, Htk =

∑

i∈Itk
hik. (8)

4

58 Paper II

Further, the improvement in training loss resulting from using weights (8) is given by

`k(qk, ŵ)− 1

n

n∑

i=1

l(yi, ŷ
(k−1)
i) = − 1

2n

Tk∑

t=1

G2
tk

Htk
. (9)

The explicit expressions for leaf weights (8) and loss reduction (9) allow comparison of a large number of

different candidate feature maps qk. Still, to consider every possible tree structure leads to combinatorial

explosion, and it is therefore customary to do recursive binary splitting in a greedy fashion (p. 307 Hastie

et al., 2001; Chen and Guestrin, 2016):

1. Begin with a constant prediction for all features, i.e. ŵ = −
∑n
i=1 gik∑n
i=1 hik

, in a root node.

2. Choose a leaf node t. For each feature j, compute the training loss reduction

Rt(j, sj) =
1

2n

(∑
i∈IL(j,s:j) gik

)2
∑
i∈IL(j,sj) hik

+

(∑
i∈IR(j,sj)

gik

)2
∑
i∈IR(j,sj)

hik
−
(∑

i∈Itk gik
)2

∑
i∈Itk hik

 , (10)

for different split-points sj , and where IL(j, sj) = {i ∈ Itk : xij ≤ sj} and IR(j, sj) = {i ∈ Itk : xij >

sj}. The values of j and sj maximizing Rt(j, sj) are chosen as the next split, creating two new leaves

from the old leaf t.

3. Continue step 2 iteratively, until some threshold on tree-complexity is reached.

Notice that Rt(j, sj) is the difference in training loss reduction (9) between 1) a tree where t is a leaf node

and 2) otherwise the same tree, but where t is the ancestor to two leaf nodes L(t), R(t) split on the jth

feature. In particular, Rt(j, sj) depends only on the data that are passed to node t.

The measures of tree-complexity in step 3 vary, and multiple criteria can be used at the same time, such

as a maximum depth, maximum terminal nodes, minimum number of instances in node, or a regularized

objective. Also, several alternative strategies for choosing candidate t and proposal sjs in step 2 exist, (see

e.g Chen and Guestrin, 2016; Ke et al., 2017). A typical strategy is to build a very large tree, and then

prune it back to a subtree using cost complexity pruning (Hastie et al., 2001, p. 308).

Algorithm 1 illustrates the full second order gradient tree boosting process with CART trees and several

split-stopping criteria. Note an until now unmentioned hyperparameter, the ”learning rate” δ ∈ (0, 1]. The

learning rate (or shrinkage (Friedman, 2002)) shrinks the effect of each new tree with a constant factor in

step 2.iv), and thereby opens up space for feature trees to learn. This significantly improves the predictive

power of the ensemble, but comes at the cost of more boosting iterations until convergence. Note how the

special case of δ = 1 and K = 1 gives a decision tree, and δ → 0 and K →∞ potentially gives a continuous

5

Paper II 59

model.

Algorithm 1 Original (Hastie et al., 2001; Chen and Guestrin, 2016) and modified second order gradient
tree boosting.

Input:
- A training set Dn = {(xi, yi)}ni=1

- A differentiable loss function l(·, ·)
- A learning rate δ ∈ (0, 1]

- Number of boosting iterations K

- One or more tree-complexity regularization criteria

1. Initialize model with a constant value:
f (0)(x) ≡ arg min

η

∑n
i=1 l(yi, η)

2. for k = 1 to K: while the inequality (29) evaluates to false

i) Compute derivatives (7)
ii) Determine the structure qk by iteratively selecting the binary split that maximizes (10) until

a regularization criterion is reached. the inequality (28) evaluates to true for all leaf nodes t

iii) Determine leaf weights (8), given qk
iv) Scale the tree with the learning rate

fk(x) = δwqk(x)
v) Update the model:

f (k)(x) = f (k−1)(x) + fk(x)

end for while
3. Output the model: Return f (K)

Blue background colour signifies steps unique to the original algorithm, while orange signifies steps unique
to the modified algorithm proposed here.

3 Information theoretic approach to gradient boosted trees

3.1 Model selection problem

In the GTB Algorithm 1, there are two places where decisions are made with respect to the functional form

of f (k):

� in step 2.ii), decisions must be made whether to perform the proposed leaf splits, i.e. sequential decisions

with respect to the feature map qk.

� in step 2.v) a decision must be made whether to add fk to f (k−1), or otherwise to terminate the

algorithm, i.e. selecting the number of boosting iterations K.

The overarching aim of this paper is to develop automatic and computationally fast methodology for

performing such decisions while minimizing the generalization error. Suppose the model f(x; θ) depends on

6

60 Paper II

some parameters θ, and a procedure for fitting θ to the training data, say θ̂ = θ̂(Dn) is given. Further, let

(x0, y0) be a test-data realization with the same distribution as each (xi, yi) ∈ Dn, unseen in the training

phase and hence independent from θ̂. We will use

Err = Eθ̂Ex0,y0

[
l
(
y0, f(x0; θ̂)

)]
. (11)

as our measure of generalization error, as it is well suited for analytical purposes.

In GTB described above, it is not the generalization error that is used when comparing possible splits in

step 2 in the greedy binary splitting procedure. Equations (9,10) are estimators (modulo errors introduced

by the Taylor expansions) of reduction in training loss, where the training loss is given by:

err =
1

n

n∑

i=1

l(yi, f(xi; θ̂)). (12)

As is well known, err as an estimator for Err is biased downwards in expectation, favouring complex models

which leads to overfitting.

The bias of (12) relative to (11) is commonly referred to as the optimism of the estimation procedure

(Hastie et al., 2001). The reminder of this section is devoted to deriving estimators of such optimism in the

GTB context, and subsequently using these to obtain optimism-corrected estimators of err.

3.2 Correcting the training loss for optimism

Define the conditional on feature j reduction in training loss

Rt(j) = max
sj
Rt(j, sj), j = 1, . . . ,m, (13)

and unconditional reduction in training loss

Rt = max
j∈(1,...,m)

Rt(j), (14)

where the reduction in training loss Rt(j, sj) for given ancestor node t, feature j and split point sj is given

in (10). A key part of our approach is to derive estimators of the generalization-loss based counterparts of

Rt(j) and Rt to (12), which we denote by R0
t (j) and R0

t , respectively. In the current section we focus on

R0
t (j), while R0

t will be considered in Section 3.5.

The proposed estimator of R0
t (j), and hence that of R0

t , does not rely on cross validation or bootstrap-

ping, but rather on analytical results adapted from traditional information theory. The approach enables

7

Paper II 61

learning of the feature maps qk, and also suggests a natural stopping criterion for boosting iterations. The

algorithm is terminated when splitting the root node is not beneficial. This is automatic and with minimal

worries of overfitting.

As should be clear from Algorithm 1, only (local) splitting decisions on a single leaf node are performed

in each step. Moreover, the splitting decisions on two distinct leaf nodes do not influence each other as

different subsets of the data are passed to the respective leafs. In the presentation that follows, we therefore

focus on estimating R0
t (j) for a split/no-split decision of a single leaf node. To avoid overly complicated

notation, we consider the root node only, i.e. t = 1, and subsequently suppress the ancestor index t. This

simplification introduces no loss of generality, as the split/no-split decisions at any leaf node are exactly the

same, except that they only operate on the subsets of the original data passed to that leaf node.

With the understanding that j is fixed in this section, we suppress the index j from our notation, except

when strictly needed for future reference. The no-split decision involves a root tree, consisting of a single

node with prediction ŵ1 = −∑n
i=1 gi/

∑n
i=1 hi. The do-split decision involves a stump tree, with two leaf

nodes and parameters θ̂ = {ŝ, ŵl, ŵr}. Here, s is the split point (for the jth feature) and ŵl and ŵr are the

leaf weights of the left and right leaf nodes, respectively, given by (8).

The subsequent theory is derived using the 2nd order Taylor approximation l̂, given by (4), instead of

the original loss l.

In what follows, we seek an adjustment of the training loss reduction R(j) defined in (13) to represent

R0(j) in expectation over the training data. The optimism C for the constant (root) model is defined as

Croot = EŵEy0
[
l̂
(
y0, ŵ

)]
− Ey

[
l̂(y1, ŵ)

]
, (15)

where y = (y1, . . . , yn) and ŵ = ŵ(y) = −∑n
i=1 gi/

∑n
i=1 hi. The use of y1 in the last term above is justified

by the fact that the (yi,xi) are identically distributed for i = 1, . . . , n. Note that Croot does not depend j

as the root model does not utilize any feature information. For the tree-stump (stump) we get

Cstump(j) = Eθ̂Ex0,y0

[
l̂(y0, f(x0; θ̂))

]
− Ex1,...,xn,y

[
l̂(y1, f(x1; θ̂))

]
. (16)

where θ̂ = θ̂(x1, . . . ,xn,y) = {ŝ, ŵl, ŵr}. When interpreting (16) it should be kept in mind that we are

currently only using the jth component of the feature vector x.

Equations (15) and (16) may be combined to get an equivalent representation of R0(j) expressed in terms

8

62 Paper II

of expected reduction in training loss (i.e. (13) in expectation), namely

Ey0,x0 [R0(j)] = Ex,y[R(j)] + Croot − Cstump(j). (17)

Under the assumption that the j-th feature is independent of the response y, each term on the right hand

side of (17) may be estimated efficiently and consequently allows us to correct the training loss reduction.

In practice, Ex,y[R(j)] is estimated using the observed training loss reduction R(j). Hence, similarly to

conventional hypothesis testing, if the estimated version of (17) is negative we retain root model, whereas

if the estimated (17) as a consequence of a large training loss difference is positive, we opt for the stump

model. The next few sections are devoted to derive approximations for the optimisms Croot and Cstump(j),

and constitute the main methodological contribution of the paper.

3.3 Optimism for loss differentiable in parameters

In the standard case where some loss function l is differentiable in its parameters, say η, and adhere to the

regularity conditions in A the optimism may be estimated by (Burnham and Anderson, 2003, Eqn. 7.32):

C̃ = tr
(
Ex,y

[
∇2
η0 l(y, f(x; η0))

]
Cov [η̂]

)
, (18)

where η0 = limn→∞ η̂. If Cov [η̂] is estimated using the Sandwich Estimator (Huber et al., 1967; White,

1982) one obtains the network information criterion (NIC) (Murata et al., 1994). The training loss of the

stump model is discontinuous in sjs for finite n, and hence (18) is not applicable in the sj-direction.

Again taking the local perspective, we omit dependence on being in node t. We start off with considering

an optimism approximation for Croot, say C̃root, which subsequently will be used in (18). Moreover C̃root

constitute a building block for our approximation to Cstump. The root-model does not involve any split-

points, and hence when (18) is applied we obtain:

C̃root = Ex,y

[
1

n

n∑

i=1

hi

]
V ar (ŵ1) . (19)

Turning to the stump-model, suppose momentarily that the split-point sj is given a-priori. Then we may

compute the optimism approximation (19) for the tree-stump model (conditioned on sj), say C̃stump(j|sj),

which is given by

C̃stump(j|sj) = C̃root,LP (xj ≤ sj) + C̃root,RP (xj > sj). (20)

9

Paper II 63

0.990

0.995

1.000

1.005

1.010

0.00 0.25 0.50 0.75 1.00

u =
i

n

Lo
ss

Loss profiling

2

3

4

5

6

0.00 0.25 0.50 0.75 1.00

u =
i

n

L.h
. s

ide
 of

 (2
2)

Loss optimism

2

3

4

5

6

8 10 12 14

τ =
1

2
log

u(1−ε)

ε(1−u)

1+
S(

τ)

Time transform to CIR

Figure 2: Left: Training loss l̂(y, f(x; θ̂)) (black) and generalization loss Ey0,x0

[
l̂(y0, f(x0; θ̂))

]
(blue) as a

function of u = i
n , defined from the sorted order of xj . Green long-dashed line is the expected loss-value at

θ0 = limn→∞ θ̂n if n→∞ for the training data, constant as there is no information in xj for this instance.
Right plot: The transformation of distance between generalization loss and training loss into a CIR process,
with ε = 10−7 which is used throughout. In this case with no information in feature xj , choosing the value
of s giving the smallest value of training loss in the left plot induces an optimism at the value of 1 plus the
expected maximum of the CIR-process, illustrated in the right plot.

Here C̃root,L and C̃root,R are as in (19) but computed from sub-datasets corresponding to the child leaf nodes

L (i.e. i : xi,j ≤ sj) and R (i.e. i : xi,j > sj)) respectively. C̃stump(j|sj), however, cannot be substituted in

(17) directly, since the optimism induced by optimizing over sj is not accounted for in (20). Consequently

C̃stump(j|sj) will be downward biased relative to Cstump(j). The next section attempts to account for this

bias by providing an approximate correction factor.

As a side-note, notice that (18) may be applied more generally to a full tree, if the structure q is given

a-priori. In this case, the optimism of the full tree may be approximated by

T∑

t=1

C̃root,tP (q(x) = t) (21)

Again, C̃root,t is computed as in (19), based on the data that is passed in leaf-node t, i.e. i ∈ It. Of course,

(21) is also biased downward relative to the optimism of the tree when q is learned from training data.

3.4 Optimism from greedy-splitting over one feature

In order to resolve Cstump(j) appearing in (17), this section provides an approximation C̃stump(j) which

in general is biased upward relative to Cstump(j). Consequently, the approximation of R0(j) resulting

from substituting Cstump(j) with C̃stump(j) is biased downward, in practice favouring the constant model.

However, it is illustrated in the simulation experiments in Section 4 that this bias is rather small. In order

to construct C̃stump(j), we first assume that y is independent of xj = x·,j . This assumption appears to be

10

64 Paper II

necessary to get an asymptotic approximation to the joint distribution of the difference in test and training

loss (which in expectation over training data is the conditional optimism) for different values of split points.

This distribution obtains as the limiting distribution of an empirical process. The argument leading to this

limiting distribution has similarities to the one originally presented in Miller and Siegmund (1982) regarding

maximally selected chi-square statistics, and generalized with refinements in Gombay and Horvath (1990).

Suppose the training data (yi, xi,j) has been sorted in ascending order over i according to the j-th feature.

If xj contains repeated values, the ordering (in i) of observations with identical xi,j is arbitrary. Further,

define ui := i/n, and let f(·; ŵl(ui), ŵr(ui)), i = 1, . . . , n−1, be the tree stump with left node containing x1:i,j ,

right node containing x(i+1):n,j (and hence split point s = xi,j). Notice that limn→∞ ui = p(x.,j ≤ xi,j).

Under the independence assumption, the difference between generalization loss and training loss as a function

of i converges in distribution as

n
[
Ey0,x0

[
l̂(y0, f(x0; ŵl(ui), ŵr(ui)))

]
− l̂(y, f(x; ŵl(ui), ŵr(ui)))

]
D−→

n→∞
nĈroot (1 + S(τ(u))) , (22)

where nĈroot = O(1). Here S(τ) is defined through the stochastic differential equation

dS(τ) = 2(1− S(τ))dτ + 2
√

2S(τ)dW (τ). (23)

Moreover, W (τ) is a Wiener process with time τ following τ = 1
2 log u(1−ε)

ε(1−u) , u = min
{

1− ε,max
{
ε, in

}}
and

0 < ε << 1. The diffusion specified by (23) is recognized as a Cox-Ingersoll-Ross process (Cox et al., 1985),

with unconditional mean E[Sτ] = 1. Appendix A gives the details underlying this result.

Figure 2 is included to illustrate this result for a known distribution on (y,x), m = 1, y ⊥ x, and

a simulated training data set of size n = 1000. The left hand side panel displays both the training loss

l̂(y, f(x; ŵl(ui), ŵr(ui))) (black) and the test loss Ey0,x0

[
l̂(y0, f(x0; ŵl(ui), ŵr(ui)))

]
(blue, resolved approx-

imately using 100000 Monte Carlo simulation from the true data generating process) as functions of u = i/n.

Also included in the left panel is the asymptotic limit (green, dashed) which coincides for both types of

loss, and is constant as the feature is uninformative w.r.t. to the response. The paths of the training- and

expected test-loss are almost mirror images about the asymptotic line, and asymptotically they are indeed

exactly that. This becomes clear upon inspection of (22): The only source of randomness in the expected

test-loss, is the estimator based upon the (random) training data – the source of randomness for the training

loss. The middle panel shows the difference in losses (left hand side of (22) scaled with conditional optimism),

also as a function of u = i/n. Finally, the right hand side panel depicts the same curve as the middle panel,

but with transformed horizontal axis conforming with the ”time” τ of (23).

11

Paper II 65

●

●

●

●
●

●
●

●
●

●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●●

●●
●●●●●

●
●

●●●
●

●
●●●●

●●

●●●
●

●●●●

●
●

●●●

●
●●

●

●

●●
●

●●
●●

●
●●

●
●●

●●●●
●●●

●●●●
●

●●●

●

●
●

●●
●

●

●
●

●
●●

●
●

●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●
●

●●●

●
●

●
●●

●

●

●●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●●●●●

●●

●

●●
●

●
●

●

●●

●

●●
●

●

●
●

●
●

●

●
●●●●

●

●

●

●

●●

●
●

●

0.050

0.075

0.100

0.125

0 25 50 75 100
a

O
p

tim
is

m
 o

f
st

u
m

p
−

m
o

d
e

l

●

●

●

C
~

10−fold CV

C

Figure 3: Illustration of Equation (24) by repeatedly simulating n = 100 observations in training data,
for each value of a possible split-points, under the assumption y ⊥ x, y ∼ N(0, 1), for which C̃stump is
asymptotically exact. The feature x is constructed to have the same expected number of observations in
each group, and each group is also guaranteed to have at least one observation. The simulation experiment
is repeated 1000 times, and the average values are reported. The black line shows the value of C̃stump,
which aligns with the intuition that more number of split-points should correspond to increased optimism.
The blue line is the Monte-Carlo estimated generalization loss Cstump, using the average of 1000 test-loss

datasets. It verifies the above intuition and values of C̃stump as it fluctuates mildly about the optimism

approximation. Also included is the 10-fold CV optimism (orange), that retains the shape of C and C̃stump,
but is upward biased, resulting from using 9/10’ths of the data in the estimator fitting procedure.

Now suppose xj takes a+ 1 distinct values, then there are a different split-points sk, k = 1, . . . , a, which

are compared in terms of training loss during the greedy profiling procedure. These correspond to the is

such that i/n = uk = P (xj ≤ sk) and τk = τ(uk) for the right hand side. Equation 22 provides the

joint distribution of the differences in test and training loss in terms of the joint distribution of {Ĉroot(1 +

S(τk))}ak=1. Consequently, the expected maximum of {Ĉroot(1 + Sτk)}ak=1 is upward biased relative to

Cstump(j). In the proceeding, we will use this expected maximum, i.e.

C̃stump(j) = Ĉroot

(
1 + E

[
max
1≤k≤a

S(τk)

])
(24)

as the (somewhat conservative in favor of the root model) approximation of Cstump(j). As shown in in

Appendix B, under assumption y ⊥ x, C̃stump(j) converges to Cstump(j) as n → ∞. The corresponding

finite-sample behaviour, for different numbers of split-points a, is illustrated in Figure 3. In the Figure,

the exact value of Cstump(j), estimated using Monte-Carlo simulations of the true data-generating process,

slightly fluctuates (due to being a simulation estimate) about the value of C̃stump(j). The optimism implied

by 10-fold CV has the exact same shape, but is upward biased relative to Cstump(j) and C̃stump(j) as it only

employes 9/10’ths of the data in its fitting procedure.

The scaling factor E [max1≤k≤a S(τk)] depends on the nature of the j-th feature. In particular for a

feature taking only two values, e.g. one-hot encoding, we have C̃stump(j) = C̃root(1 + E(Sτ1)) = 2C̃root

12

66 Paper II

as no optimization over the split point is performed, which agrees with AIC-type criteria when the num-

ber of parameters are doubled. At the other extreme, for a feature with absolutely continuous marginal

distribution, the scaling factor converges to the expected maximum of a CIR process over the ”time”-

interval obtained by applying τ(u) to each u ∈
(
max

{
1
n , ε
}
,min

{
n−1
n , 1− ε

})
. Setting ε = 10−7 gives

E

[
max

0≤τ≤ 1
2 log

(1−ε)2
ε2

S(τ)

]
≈ 7.5 as n → ∞. In general, the expectation is bounded as long as ε > 0, as

the CIR process is positively recurrent. Linetsky (2004) give an exact analytical expression for its distribu-

tion in terms of special functions, but is not applied here as evaluation is computationally costly, generally

not straight forward, and would only apply to continuous features when a = n− 1.

3.5 Optimism over several features

In general, the greedy binary splitting procedure profiles both over features j and within feature split-point

sj . Let Bj = C̃root max1≤k≤aj (1 + Sj(τk)) where {τk} correspond to the potential split points on the j-th

feature with aj possible split-points, so that ESτ (Bj) = C̃stump(j). Following a similar logic as leading to

(24), an upward biased approximation of the unconditional (over feature j) optimism Cstump obtains as

E

[
max

j∈{1,...,m}
Bj

]
(25)

However, for typical values of m >> 1, characterization of the dependence structure among the Bjs appears

difficult. Hence, in order to get a practical approximation to (25), we calculate as if the Bjs are independent,

to get the approximation

C̃stump =

∫ ∞

0

1−
m∏

j=1

P (Bj ≤ z) dz, (26)

where the integral is over a single dimension and hence efficiently calculated numerically. In Section 4.2, the

errors incurred by using the independence simplification on data sets with correlated features are studied.

3.6 Applications to gradient tree boosting

Returning attention to the application of the above theory in the GTB context, the ancestor node subscript

t is re-introduced. All quantities, e.g. Rt and C̃stump,t are calculated as if node t was the root node in the

above theory, and in particular based only on the data passed to node t. The previous sections gives us

the needed approximation to adjust the training loss reduction Rt according to the unconditional (over j)

13

Paper II 67

counterpart to (17), namely

R̃0
t = Rt + C̃root,t − C̃stump,t. (27)

The approximation of generalization loss reduction R̃0
t has at least two important applications to the tree

boosting algorithm. Firstly, it provides a natural criterion on whether to split a node or not, with the

stopping criterion for splitting a leaf node t becomes

R̃0
t < 0. (28)

If no leaf node t in the tree fk has positive R̃0
t , the tree building process in boosting iteration k is stopped.

Note that due to the usage of an upward biased optimism approximation for the stump model, this criterion

will slightly favour less complex models. In principle, (28) can be augmented to read R̃0
t < ρ where ρ is a

tuning parameter controlling individual tree complexity in a coherent manner. However, this option is not

pursued further as the default ρ = 0 produces good results in practice.

Further, the proposed approximate optimism may also be applied within a stopping-rule for the gradient

boosting iteration – often referred to as ”early stopping”. When a tree-stump, scaled by the learning rate

δ, no longer gives a positive reduction in approximate generalization loss relative to the previous boosting

iterate, we terminate the algorithm. Care must be taken as the learning rate δ scales the training loss and

the optimism differently. Recalculating the training loss (9), with δfk as the predictive function, we obtain

that the training loss associated with fk should be scaled with a factor δ (2− δ). The optimism, on the other

hand scales linearly, as is seen from expressing optimism as a covariance, C = 2
n

∑n
i=1 Cov(yi, ŷi), (Hastie

et al., 2001, p. 229) and recalling that ŷi is linear in δ. The boosting stopping criterion hence becomes (with

ancestor index t = 1):

R̃0
δ = δ(2− δ)R1 + δ

(
Croot,1 − C̃stump,1

)
> 0. (29)

When (29) evaluates to true, there is no more information left in data for another member added to the

ensemble f (k−1) to learn, in the generalization error sense, using the boosting iteration of Algorithm 1.

Algorithm 1 with orange markers (and not blue markers) gives the proposed modified algorithm. The

early stopping criterion saves one hyperparameter. The adaptive tree complexity on the other hand alleviate

the need for the multiple hyperparameters typically used to fine-tune the tree complexities. E.g. the popular

xgboost implementation has 4 such hyperparameters: a constant minimum reduction in loss, a maximum

depth, a minimum child weight and a maximum number of leaves. These computational-reductions stemming

14

68 Paper II

from not having to tune the original algorithm are explored and measured in more detail in Section 5.3.

3.7 Implementation

Recall that the basic building block of the above theory is the root optimism approximation (19). However,

this approximation also depends on moments (Expected loss Hessian and parameter variance) which must

be estimated empirically in the numerical implementation. As previously mentioned, (19) is a special case of

theoretical optimism of Murata et al. (1994). Further, Murata et al. (1994) estimated the parameter variance

using the conventional Sandwich Estimator (see e.g. van der Vaart, 1998, Section 5.3), as the estimated leaf

weights (8) are M-estimators. This approach is also taken here, and results in the root optimism estimator:

Ĉroot,t ≈
∑
i∈It (gi + hiŵt)

2

nt
∑
i∈It hi

(30)

where nt = |It| is the number of observations passed to leaf t.

The same estimator is also used for evaluating conditional stump optimisms Ĉstump,t(j|ŝj) in (20), but

of course then based on the on the subsets of data falling into the left and right child nodes of t. The

probabilities in (20) are simply estimated as the corresponding relative frequencies in the training data.

When (19) is evaluated using (30), adding evaluation of R̂0 to the greedy-binary-splitting procedure does

not change the computational complexity of the overall algorithm, as the only cost is to keep track of sum

of squares and cross multiplication among the g and h vectors.

The expected maximums over CIR processes (26) are resolved based on a combination of Monte Carlo

simulations and approximating the Bj-s by a parametric distribution. First of all, (25) is approximated by

assuming independence, obtaining (26). We then only need knowledge of the CDF of the maximum of the

CIR process observed on time-points associated with the split-points of feature j. Linetsky (2004) gives

expressions for the maximum of the CIR on an interval, however, the expressions are not easily calculated

and comes to a non-negligible computational cost, and would also penalize non-continuous features too

much. We therefore consider an alternative approach: For the case with only one possible split, the Gamma

distribution with shape 0.5 and scale 2 is used, which is exact. For the cases with more than one split a

Monte Carlo simulation procedure is used to simulate the expected maximum of the CIR over the split-points

on feature j. In principle we could simulate indefinitely to obtain exact estimates of the CDF. However, this

quickly becomes infeasible when the number of features grows large, and (26) will be concerned with the

tail-behaviour of the CIR maximums. We therefore do an asymptotic approximation, by fitting the CIR to

the Gumbel distribution, which it is in the maximum domain of attraction of, as it has a Gamma stationary

distribution. The approximation is asymptotic in the number of observations-points, and will be expected

15

Paper II 69

DGP y ∼ N(0, 1) y ∼ N(0, 52) y ∼ N(bxe, 1) y ∼ N(bxe, 52) y ∼ N(x, 1) y ∼ N(x, 52)

E P E P E P E P E P E P

a + 1 = 2

R 0.969 1 24.1 1 25.6 1 48.4 1 26 1 47.8 1
R0 -0.966 0.016 -24.1 0.024 24 1 .212 0.684 23.9 1 .47 0.691

R̃0 -1.03 0.154 -25.5 0.157 22.7 0.998 -2.82 0.332 22.9 1 -2.65 0.35
10-fold CV -1.16 0.165 -29.9 0.162 24 0.998 -4.93 0.342 24.3 1 -3.68 0.365
100-fold CV -1.06 0.159 -26.3 0.157 24.1 0.999 -2.17 0.335 24.4 1 -2.03 0.352

a + 1 = 10

R 2.99 1 72.4 1 26.6 1 95 1 12.3 1 84.9 1
R0 -2.99 0 -72.5 0 22.5 0.996 -52.5 0.185 4.86 0.947 -61.9 0.046

R̃0 -2.82 0.086 -75 0.084 17.8 0.992 -53.3 0.164 4.4 0.763 -62.3 0.136
10-fold CV -3.46 0.202 -90.3 0.199 22.7 0.982 -65.7 0.266 4.54 0.682 -73.7 0.243
100-fold CV -3.18 0.316 -81.2 0.286 23.1 0.98 -60.3 0.37 4.77 0.727 -60.6 0.364

a + 1 = 100

R 4.58 1 115 1 28 1 136 1 12.9 1 124 1
R0 -4.58 0 -115 0 20.7 0.995 -96.9 0.052 2.46 0.799 -106 0

R̃0 -4.73 0.048 -116 0.057 14 0.957 -103 0.092 .582 0.489 -112 0.061
10-fold CV -5.41 0.158 -141 0.157 20.3 0.975 -119 0.21 2.14 0.586 -142 0.183
100-fold CV -5.31 0.226 -130 0.233 20.7 0.965 -111 0.301 2.53 0.672 -127 0.258

Table 1: Single feature root versus stump loss reduction simulation study with n = 100 observations. The
contending methods are cross validation (CV) and the proposed test loss reduction estimator R̃0. In addition,
the test loss R0 and training loss R were included for reference. Columns E give the expected loss reduction,
multiplied by a factor 100 for readability, for the different estimators, and columns P give the probability
of a positive loss reduction (i.e. probability of choosing the stump model). In all cases, the feature was
simulated on (0, 1) and with a+ 1 distinct values. The results are based on 1000 simulated data sets in each
case. The test loss R0, was estimated using 1000 simulated test responses for each simulated data set.

to perform increasingly well in the number of split points.

4 Simulation experiments

The theory developed in the previous section involves multiple approximations. This section studies the

performance of the proposed training loss reduction estimator when the data generating process is known

a-priori. All computations involving the proposed methodology were done using the associated R-package

aGTBoost which can be downloaded from https://github.com/Blunde1/aGTBoost, and scripts that re-

create the below results can be found at the same place. aGTBoost is written mainly in C++, and computing

times are therefore directly comparable to those of e.g. xgboost.

4.1 Simulations in the single feature case

In the first batch of simulation experiments, the single feature estimator of the test loss reduction in the

root versus stump situation, developed in Section 3.4 is considered. The results are summarized in Tables

1 and 2 for n = 100 and n = 1000 respectively. In the experiments, the test loss reduction estimator R̃0

16

70 Paper II

DGP y ∼ N(0, 1) y ∼ N(0, 52) y ∼ N(bxe, 1) y ∼ N(bxe, 52) y ∼ N(x, 1) y ∼ N(x, 52)

E P E P E P E P E P E P

a + 1 = 2

R 0.904 1 23.3 1 251 1 280 1 253 1 277 1
R0 -0.903 0.023 -23.3 0.022 249 1 226 1 249 1 222 0.998

R̃0 -1.09 0.138 -26.7 0.15 248 1 229 0.974 250 1 226 0.956
10-fold CV -1.22 0.157 -29.7 0.166 250 1 228 0.962 252 1 225 0.947
100-fold CV -1.1 0.134 -27.3 0.146 250 1 231 0.971 252 1 227 0.957

a + 1 = 10

R 2.89 1 75.3 1 251 1 301 1 84 1 174 1
R0 -2.9 0 -75.3 0 249 1 162 0.935 71.9 1 14.3 0.709

R̃0 -2.94 0.087 -70.6 0.104 242 1 152 0.828 76.1 1 25.8 0.52
10-fold CV -3.4 0.204 -81.4 0.226 250 1 166 0.784 71.7 1 5.04 0.471
100-fold CV -2.97 0.379 -75.1 0.383 250 1 169 0.797 71.4 0.992 15.4 0.608

a + 1 = 100

R 4.58 1 114 1 252 1 328 1 74.6 1 207 1
R0 -4.57 0 -114 0 248 1 137 0.872 58.8 1 -39.9 0.382

R̃0 -4.73 0.051 -119 0.041 238 1 90.9 0.694 62.1 1 -28.7 0.322
10-fold CV -5.52 0.176 -139 0.176 248 1 107 0.675 57.7 0.999 -43.5 0.362
100-fold CV -5.08 0.325 -129 0.33 249 1 120 0.726 58.9 0.982 -28.4 0.542

a + 1 = 1000

R 5.7 1 143 1 254 1 365 1 75.6 1 220 1
R0 -5.71 0 -143 0 246 1 117 0.833 57.4 1 -64.6 0.284

R̃0 -5.78 0.03 -144 0.033 236 1 71.9 0.626 60.3 1 -71.3 0.208
10-fold CV -6.57 0.16 -162 0.149 246 1 109 0.668 57.2 1 -82.9 0.316
100-fold CV -6.1 0.288 -154 0.298 247 1 131 0.732 57.7 0.985 -78.3 0.455

Table 2: Single feature root versus stump loss reduction simulation study with n = 1000 observations.
The contending methods are cross validation (CV) and the proposed test loss reduction estimator R̃0. In
addition, the test loss R0 and training loss R were included for reference. Columns E give the expected
loss reduction, multiplied by a factor 1000 for readability, for the different estimators, and columns P give
the probability of a positive loss reduction (i.e. probability of choosing the stump model). In all cases, the
feature was simulated on (0, 1) and with a+ 1 distinct values. The results are based on 1000 simulated data
sets in each case. The test loss R0, was estimated using 1000 simulated test responses for each simulated
data set.

17

Paper II 71

-0.25 0.00 0.25

Loss reduction

n = 30

-0.10 -0.05 0.00 0.05

Loss reduction

n = 100

-0.010 -0.005 0.000 0.005

Loss reduction

n = 1000

5-fold CV

10-fold CV

n-fold CV

R̃0

R0

R

Figure 4: Histograms of single feature root versus stump loss reduction, with n = {30, 100, 1000}, a = 1 and
the DGP being y ∼ N(0, 1). The results are based on 1000 simulation replica in each case. The two values
taken by the feature were simulated uniformly on (0, 1).

is compared to two fidelities of cross validation, and in addition test loss and training loss are provided as

references. For both sample sizes, a range of numbers of potential split points a are considered, including

binary feature (a = 1) and continuous feature (a+ 1 = n). In the tables, ”E” corresponds to the mean the

loss reductions, and P is the probability of rejecting the root model.

Six data generating process (DGP) cases were considered. For the former two DGPs (y ∼ N(0, σ2) with

σ = 1, 5) the feature is un-informative with respect to y. The rejection rate of the (true) root model for

non-binary features is around 5-10 % for n = 100 observations and around 5 % for n = 1000. It is seen

from Tables 1, 2 the proposed methodology does on par (the a = 1 case) or better (the a > 1 cases) than

cross validation. For binary features (a = 1), the expectation of R̃0 is very close to that of R0, but the root

model rejection rate is higher. To better understand this phenomenon, the a = 1, y ∼ N(0, 1) case is further

explored in Figure 4. As expected in the a = 1 case, the training losses and test losses are close to being

mirror images around the asymptotic loss reduction, which in this independent response case of course is

0. This effect is a consequence of the training- and test loss empirical processes (see left panel of Figure 2)

themselves are close to being symmetric around zero loss reduction. Specifically, in the a = 1 case, these

losses obtains as evaluations of the empirical processes at single point on the horizontal axis, which gives rise

to the symmetry. It is also seen that the shapes of the right hand side tails of R and R̃0 are very similar,

18

72 Paper II

but with R̃0 shifted to have expectation close to that of R0 (see Tables 1 and 2). In this case, the heavy

right hand side tail of R̃0 leads to non-negligible rate of rejection of the (appropriate) root model, even if

the mean is essentially that of R0.

In the next two DGPs (y ∼ N(bxe, σ2) with σ = 1, 5), the stump model with split point s = 0.5 is the

true model. In the high signal-to-noise ratio case σ = 1, both the proposed estimator R̃0 and cross validation

select the true model almost perfectly in both sample sizes. Interestingly, in the σ = 5 case, the test loss

reduction R0 selects the root model rather often, and the proposed test loss reduction estimator and cross

validation largely follow this behavior.

Finally, the last two DGPs (y ∼ N(x, σ2) with σ = 1, 5), the feature is also informative with respect to

the response, but the dependence is linear rather discontinuous. It is seen also in this case that the proposed

test loss reduction estimator and cross validation estimators behaves similarly to the test loss with respect

to rejection probabilities.

Recall that stump optimism estimator (24) was derived based on an independence assumption between

the feature and response. The simulation studies do not provide evidence that optimism estimators calculated

from informative features somehow overwhelms the reduction in training loss. Further, notice in the a = 1

case where no optimization over split-points is performed, it is still not expected that R̃0 is exactly equal to

R0. This is as there is approximation error in (18), and that involved moments are estimated from data in

R̃0.

The initial conclusion to be drawn from from these simulations is that the proposed estimator has small

sample performance at least on par with cross validation in the root vs stump situation with one feature and

mean squared error losses, but at a much lower computational cost.

4.2 Simulations of the multiple feature case

This subsection explores the performance of the proposed methodology in the presense of more than one

feature. Recall from Section 3.5 that R̃0 in this case is derived under the assumption that the (multiple)

features are mutually independent and also independent of the response. Figure 5 depicts average R̃0, along

with simulated test loss reduction R0 for different numbers of uninformative and independent features and

standard normal responses. Also included in the Figure is the corresponding training loss reduction, R.

It is seen that the R̃0 and R0 have very similar behavior. However, small deviations still exist, stemming

both from the deliberate (downward) bias introduced in equations 24, 25 for a > 1, and also the simu-

lation based algorithm used to estimate the expected maxima of (25). Still, it does not seem that these

approximations introduces an undue amount of bias towards the root model in this particular setting.

19

Paper II 73

-0.15

-0.10

-0.05

0.00

0.05

0.10

0 25 50 75 100

m

L
o
ss

re
d

u
ct

io
n

a+ 1 = 2

-0.2

-0.1

0.0

0.1

0 25 50 75 100

m

L
os

s
re

d
u

ct
io

n

a+ 1 = 10

-0.3

-0.2

-0.1

0.0

0.1

0 25 50 75 100

m

L
o
ss

re
d

u
ct

io
n

a+ 1 = 100

R R0 R̃0

Figure 5: Root versus stump loss reduction as a function of the number of features m, when all features are
uninformative. The DGP is yi ∼ N(0, 1), and the m features are simulated conditional on the given number
a of potential split points. Dots give the average loss reductions over 100 simulated data sets of size n = 100
for each considered m, and shaded areas are the averages ± one standard deviation. The test loss R0 was
obtained from a single simulated test set for each simulation replica.

Method Case 1 (m = 1) Case 2 (m = 10000) Case 3 (m = 10000)

Loss K CPU-Time Loss K CPU-Time Loss K CPU-Time

linear model 0.977 0.0293 1.01 16 1.07 43
aGTBoost 1.01 365 0.162 1.05 294 723 1.04 348 821
xgboost: cv 1.11 275 4.28 1.07 357 3447 1.08 370 3908
xgboost: val 1.16 311 0.507 1.16 371 258 1.09 249 171

Table 3: Test losses, (where relevant) number of trees K and associated computing times for the linear model
(31) with the different cases corresponding to different design matrices described in Section 4.2. Single core
CPU-times are measured in seconds. Test losses are evaluated on a test data set of size n = 1000. As a
reference, a constant model corresponds to a test loss of ≈ 2.34.

20

74 Paper II

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−2

0

2

4

0 1 2 3 4
x1

Pr
ed

ic
tio

n

Case 1 (m=1)

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0

1

2

3

4

0 1 2 3 4
x1

Pr
ed

ic
tio

n

Case 2 (m=10000)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

0 1 2 3 4
x1

Pr
ed

ic
tio

n

Case 3 (m=10000)

●●●● ●●●● ●●●● ●●●●agtboost linear model xgboost: cv xgboost: val

Figure 6: Predictions for the linear model (31) with the different cases corresponding to different design
matrices described in Section 4.2. The predictions are evaluated on the test data set features and plotted as
function of x1.

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●●●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●●

Min test lossStopping criterion

1.2

1.6

2.0

2.4

4 32 256 2048
Number of trees in ensemble

Lo
ss

●

●

Test loss

Training loss

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●

●●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●2

4

6

8

0 100 200 300
k'th tree in ensemble

N
um

be
r o

f l
ea

ve
s

Figure 7: (left) Training loss (black) and test loss (orange) plotted versus the number of boosting iterations or
the number of trees in the ensemble (note the log10 axis). Included is a vertical line (orange) representing the
iteration number that the stopping criterion (29) terminates the procedure and another (black) representing
the minimum test-loss. (right) The number of leaves for each tree in the ensemble until termination by
the stopping criterion. The data is simulated with a linear relationship between the response and the first
feature, yi ∼ N(xi,1, 1) and additional 9 noisy Gaussian features. The informative feature x·,i is sampled
uniformly on [0, 4]. Both training and test loss consists of n = 1000 examples, the ensemble had a learning
rate of 0.01.

21

Paper II 75

As more realistic, but still simulated situation, we considered n = 1000 training data observations with

data generating process being

yi ∼ N(xi,1, 1), i = 1, . . . , n, xi,1 ∼ iid U(0, 4). (31)

This situation tests the recursive usage of the proposed methodology in a full application of gradient tree

boosting, including tree building- and boosting iteration termination criteria. Three cases, with appropriate

linear model benchmarks, where considered:

Case 1: m = 1, where x·,1 is the only feature. The benchmark linear model was an un-regularized linear

regression model.

Case 2: m = 10000 with xi,k, i = 1, . . . , n, k = 2, . . . ,m being iid U(0, 4) noise independent of x·,1.

The benchmark linear model was the Lasso regression with regularization determined by 10-fold cross

validation, implemented in the glmnet R-package.

Case 3: m = 10000 with dependent features xi,k = m−k
m xi,k−1 +N(0, (k/m)2), i = 1, . . . , n, k = 2, . . . ,m.

The benchmark linear model was the Ridge regression with regularization determined by 10-fold cross

validation, implemented in the glmnet R-package.

As additional benchmarks, gradient boosted tree ensembles were obtained using xgboost. Default settings

were used, and number of boosting iterations were learned using cross validation (xgboost:CV) and a 30%

validation set (xgboost:VAL).

The linear model (31) constitutes a substantial model selection challenge for tree-based predictors, as

a rather complex tree ensembles are required to faithfully represent the linear functional form. Table 3

provides test losses for the proposed methodology and the benchmarks obtained from test data sets with

1000 observations.

From the Table, it is seen that aGTBoost provides better test losses than the xgboost-based benchmarks,

and also better test loss than for Ridge regression in Case 3. Further, in all cases, the test loss obtained by

aGTBoost is quite close to the benchmark linear models, indicating a close to optimal behavior given that the

linear functional form cannot be represented exactly by finite tree ensembles. Further, aGTBoost produces

marginally better test losses than xgboost:CV, whereas xgboost:Val is not competitive. The computing

time associated with aGTBoost is about an order of magnitude smaller than that of xgboost:CV.

Figure 6 gives a graphical illustration of the predictions made by the contending methods. It is seen

that aGTBoost produces substantially more parsimonious fits than both xgboost methods. In particular in

Case 2, the aGTBoost boosting iterations stop criterion is meet before the algorithm starts utilizing the noise

22

76 Paper II

features x·,k, k = 2, . . . ,m. This is in contrast to the Lasso regression, which as can be seen from the noisy

predictions in the plot, assigns non-zero predictive power to some of the noise features. In Case 3, some of

the dependent noise features x·,k, k = 2, . . . ,m are used by aGTBoost, but the fit is still substantially less

variable than for the contenting tree boosting methods.

The left panel of Figure 7 depicts the test- and training losses of aGTBoost as function of the boosting

iterations in Case 1. Also indicated with an orange vertical line is the boosting iteration where stop criterion

(29) becomes negative. More precisely, the aGTBoost results reported in Table 3 and Figure 6 are based

on the boosting iterate immediately before the vertical line (but more iterations were carried out for the

purpose of Figure 7). It is seen that the stop criterion becomes active very close to the global minimum of

the training loss (also indicated by black vertical line in the Figure).

From the right panel of Figure 7, it is seen that aGTBoost builds deep trees (relative to stumps) at

early iterations. As information is learned by the ensemble, subsequent trees become smaller until they are

stumps, and the algorithm terminates shortly thereafter.

To summarize; the application of the proposed methodology in actual gradient tree boosting results in

highly competitive tree ensemble fits in the example model cases 1-3. This appears to be a consequence of

both the adaptive selection of the number of leaf nodes in each individual tree, and also that such adaptive

features enable the (automatic) selection of quite few (and hence computationally cheap) boosting iterations.

5 Comparisons on benchmark datasets

To further illustrate the validity of the modified boosting algorithm implemented in aGTBoost, we test it

on all regression and classification datasets in Hastie et al. (2001) and James et al. (2013). These datasets

represent a relatively broad spectrum of model-types (Table 4).

5.1 Algorithms

Our algorithm is compared against the xgboost implementation. Our hypothesis is that the two algorithms

will give similar predictions, but will differ in computation time and ease of use. To ensure comparability,

we avoid L1 and L2 regularization of the loss and stochastic sampling in xgboost. In addition, we include

random forest and generalized linear models in the comparisons. Lastly, we include a version of our proposed

algorithm restricted to a single (K = 1) unscaled (δ = 1) tree, and a CART tree learned with CV and cost

complexity pruning. This gives additional validation of the root-stump criterion (28).

23

Paper II 77

Dataset n×m Loss function train vs test Source packages

Boston 506× 14 MSE 50− 50 MASS
Ozone 111× 4 MSE 50− 50 ElemStatLearn
Auto 392× 311 MSE 70− 30 ISLR
Carseats 400× 12 MSE 70− 30 ISLR
College 777× 18 MSE 70− 30 ISLR
Hitters 263× 20 MSE 70− 30 ISLR
Wage 3000× 26 MSE 70− 30 ISLR
Caravan 5822× 86 Logloss 70− 30 ISLR
Default 10000× 4 Logloss 70− 30 ISLR
OJ 1070× 18 Logloss 70− 30 ISLR
Smarket 1250× 7 Logloss 70− 30 ISLR
Weekly 1089× 7 Logloss 70− 30 ISLR

Table 4: All regression and classification datasets from the books Hastie et al. (2001); James et al. (2013),
their dimensions, loss functions (MSE corresponds to regression, Logloss to classification), the percentage
split to training and test, and source. Dimensions are after using the R function model.matrix(), which
performs one-hot encoding on the data, and remove NA values. See Table 1.1 in James et al. (2013) for
further descriptions of the datasets.

5.2 Computation

Computations are done in R version 3.6.1 on a Dell XPS-15 computer running 64-bit Windows 10, utilizing

only a single core for comparability of algorithms. We run xgboost 0.90.0.2, randomForest 4.6-14 and tree

1.0-40 which contain the CART algorithm. GLM algorithms are found in the base-R stats library, through

the functions lm() for linear regression, and glm() with specified family=binomial for logistic regression.

For randomForest we use the default parameter values. The same is the case for lm and glm, while tree is

trained using pruning on a potentially deep tree.

For the results in Table 5, xgboost is trained with a learning rate of δ = 0.1, the same as aGTBoost, and

importantly, L2 regularization are removed from the boosting objective by setting the (by-default non-zero)

lambda parameter to zero. The number of trees, K, for xgboost models are found by 10-fold CV, where we

check if the 10 consecutive trees improve overall CV-loss, selected by setting early stopping rounds=10.

The configuration of xgboost in Table 6 is identical to Table 5, except for the learning rate set to δ = 0.01

(same as for aGTBoost). The different variants of xgboost in Table 6 differ in the CV profiling over the

hyperparameters max depth and gamma. Also, a variant using 30% of the training data as a validation set

for selecting K is included.

Each dataset is split randomly into a training set and a test set (see Table 4). All algorithms train on the

same training set, and report the loss over the test set. This is done for 100 different splits, and the mean

and standard deviation of relative test loss (to xgboost) is calculated across these 100 datasets.

24

78 Paper II

Dataset xgboost aGTBoost random forest glm CART gbtree

Boston 1 (0.173) 1.02 (0.144) 0.877 (0.15) 1.3 (0.179) 1.55 (0.179) 1.64 (0.215)
Ozone 1 (0.202) 0.816 (0.2) 0.675 (0.183) 0.672 (0.132) 0.945 (0.225) 1.13 (0.216)
Auto 1 (0.188) 0.99 (0.119) 0.895 (0.134) 11.1 (14.6) 1.45 (0.185) 1.45 (0.201)
Carseats 1 (0.112) 0.956 (0.126) 1.16 (0.141) 0.414 (0.0433) 1.84 (0.212) 1.9 (0.195)
College 1 (0.818) 1.27 (0.917) 1.07 (0.909) 0.552 (0.155) 1.46 (0.881) 1.71 (1.08)
Hitters 1 (0.323) 0.977 (0.366) 0.798 (0.311) 1.21 (0.348) 1.23 (0.338) 1.21 (0.408)
Wage 1 (1.01) 1.39 (1.64) 82.5 (21.4) 290 (35.5) 109 (6.78) 2.41 (1.91)
Caravan 1 (0.052) 0.983 (0.0491) 1.3 (0.167) 1.12 (0.115)
Default 1 (0.0803) 0.926 (0.0675) 2.82 (0.508) 0.898 (0.0696)
OJ 1 (0.0705) 0.966 (0.0541) 1.17 (0.183) 0.949 (0.0719)
Smarket 1 (0.00401) 0.997 (0.00311) 1.04 (0.0163) 1 (0.0065)
Weekly 1 (0.00759) 0.992 (0.00829) 1.02 (0.0195) 0.995 (0.0123)

Table 5: Average relative test-loss and standard deviations (parentheses) across 100 random splits of the
full datasets into training and test, for the datasets in 4. The reported values are relative to the average
xgboost test-loss values. aGTBoost is the modified boosting algorithm 1, gbtree is a regression tree stopping
according to (28), CART is from the R package ”tree”, GLM uses a linear regression model for MSE-loss
and logistic regression for classification. Random forest uses the default settings in the ”randomForest” R
package, while xgboost is trained deterministically with CV on the number of trees with maximum depth 6
but no L1 or L2 regularisation. The learning rate, δ, is set to 0.1 for both aGTBoost and xgboost.

aGTBoost xgboost

Variant 30% Validation K K, gamma K, max depth K, gamma, max depth

Runtime (seconds) 1.46 1.3 8.55 190 90.6 2033
Test loss 0.3792 0.4229 0.3985 0.3839 0.3743 0.3983

Table 6: CPU computations time in seconds for the training of aGTBoost versus different variants (Section
5.2) of xgboost for the ”OJ” dataset. gamma takes values on integers from 0-9, and max depth takes values
on integers 1-10. Also reported is the loss on 30% test data. The naive test loss (constant prediction) is
0.662.

25

Paper II 79

5.3 Results

Consider first the two rightmost columns in Table 5, reporting the results from the CART and gbtree

single-tree models. These constitute the building blocks of xgboost and aGTBoost, respectively, and might

therefore indicate an explanation for potential differences in the results of xgboost and aGTBoost. Overall,

the results are fairly similar with a slight advantage for CART, but well within the standard deviations

of Table 5, except for the Wage data. The fundamental difference of the CART trees and gbtree lies in

the tree-building method of CART which performs consecutive splitting, also after encountering the first

split giving a negative reduction in loss, until a pre-defined depth is reached and then a pruning process is

initiated. The gbtree method, on the other hand, and by extension aGTBoost, stops splitting immediately

when encountering the first split giving a negative loss reduction in approximate generalization loss. Most

of the results favour slightly the cost-complexity pruning done by CART. However, the wage data strongly

favour gbtree, showing that the adaptiveness of gbtree has other advantages than just speed and ease-of-use.

The CART trees are constrained by their default setting for tree-depth, which is likely to cause the inferior

performance for this dataset. The adaptive gbtrees, on the other hand, are able to build rather deep trees.

Overall, the results are so similar that we would be hard pressed to attribute potential large differences in

xgboost and aGTBoost to their individual tree building algorithms.

We then turn to the comparison of xgboost and aGTBoost in Table 5. aGTBoost outperforms xgboost on

9 out of 12 datasets, although the average test losses are within the Monte-Carlo (permutation) uncertainty

of each other. The results for the other methods, random forest and GLM, gives an additional perspective

on difference between xgboost and aGTBoost. For some datasets the GLM and random forest have slightly

lower test-loss, but for other significantly higher test-loss.

Having demonstrated similar performance as regularized un-penalized xgboost, the vantage point of

aGTBoost is its automatic properties and as a consequence, speed. Table 6 tells a story of computational

benefits to this adaptivity: What took 1.46 seconds for aGTBoost took a regularized xgboost (K, gamma,

max depth variant) 2033 seconds. Furthermore, this adaptivity does not only have computational benefits,

but also decreases the threshold for users that are new to tree-boosting: By eliminating the need to set up

a search grid for the gamma and the max depth hyperparameters in xgboost, aGTBoost lowers the bar to

employ gradient tree boosting as an off-the-shelf method for practitioners. Notice also that of all the different

variants of xgboost, only one (tuning K and maximum depth), slightly outperformed aGTBoost in terms of

test-loss. A final observation is that simultaneously tuning K, gamma and max depth, gives higher test-loss

than only tuning K and max depth in xgboost. This is likely due to the high variation inherent in CV.

26

80 Paper II

6 Discussion

This paper proposes an information criterion for the individual node splits in gradient boosted trees, which

allows for a modified and more automatic gradient tree boosting procedure as described in Algorithm 1. The

proposed method (aGTBoost), and its underlying assumptions, were tested on both simulated and real data,

and were seen to perform well under all testing regimes. In particular, the modifications allow for significant

improvements in computational speed for all variants of xgboost involving hyperparameters. Additionally,

aGTBoost lowers the bar for employing GTB as an off-the-shelf algorithm, as there is no need to specify a

search grid and set up k-fold CV for hyperparameters.

One potential problem with aGTBoost is the tendency of early trees being too deep in complex datasets, as

illustrated in Figure 7. This is because aGTBoost does not have a global hyperparameter for the maximum

complexity of trees (max depth as in xgboost, or a maximum number of leaves hyperparameter). The

problem of too deep trees in GTB was first noted in Friedman et al. (2000), who suggested to put a bound

on the number of terminal nodes for all trees in the ensemble.

The leading implementations of GTB come with options to modify the algorithm with stochastic sampling

and L1 and L2 regularization of the loss, modifications that often improve generalization scores. This differ

from the deterministic un-penalized GTB flavour discussed in this paper, and which the theory behind the

information criterion assumes. Further work will try to accommodate these features, and allow for automatic

tuning of sampling-rates and severity of loss-penalization.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic

control 19 (6), 716–723.

Breiman, L. (2001). Random forests. Machine learning 45 (1), 5–32.

Burnham, K. P. and D. R. Anderson (2003). Model selection and multimodel inference: a practical

information-theoretic approach. Springer Science & Business Media.

Chen, T. and C. Guestrin (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and data mining, pp. 785–794. ACM.

Chen, T., T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou,

M. Li, J. Xie, M. Lin, Y. Geng, and Y. Li (2018). xgboost: Extreme Gradient Boosting. R package version

0.71.2.

27

Paper II 81

Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985). A theory of the term structure of interest rates. Econo-

metrica 53 (2), 385–407.

Dorogush, A. V., V. Ershov, and A. Gulin (2018). Catboost: gradient boosting with categorical features

support. arXiv preprint arXiv:1810.11363 .

Friedman, J., T. Hastie, R. Tibshirani, et al. (2000). Additive logistic regression: a statistical view of

boosting (with discussion and a rejoinder by the authors). The annals of statistics 28 (2), 337–407.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics,

1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis 38 (4),

367–378.

Gombay, E. and L. Horvath (1990). Asymptotic distributions of maximum likelihood tests for change in the

mean. Biometrika 77 (2), 411–414.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The elements of statistical learning. Springer series in

statistics New York, NY, USA:.

Ho, T. K. (1995). Random decision forests. In Document analysis and recognition, 1995., proceedings of the

third international conference on, Volume 1, pp. 278–282. IEEE.

Huber, P. J. et al. (1967). The behavior of maximum likelihood estimates under nonstandard conditions.

In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Volume 1, pp.

221–233. University of California Press.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2013). An introduction to statistical learning, Volume

112. Springer.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu (2017). Lightgbm: A

highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems,

pp. 3146–3154.

Linetsky, V. (2004). Computing hitting time densities for CIR and OU diffusions: Applications to mean-

reverting models. Journal of Computational Finance 7.

Mason, L., J. Baxter, P. L. Bartlett, and M. R. Frean (2000). Boosting algorithms as gradient descent. In

Advances in neural information processing systems, pp. 512–518.

28

82 Paper II

McCullagh, P. and J. A. Nelder (1989). Generalized linear models, Volume 37. CRC press.

Miller, R. and D. Siegmund (1982). Maximally selected chi square statistics. Biometrics, 1011–1016.

Murata, N., S. Yoshizawa, and S.-i. Amari (1994). Network information criterion-determining the number of

hidden units for an artificial neural network model. IEEE Transactions on Neural Networks 5 (6), 865–872.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the royal

statistical society. Series B (Methodological), 111–147.

Takeuchi, K. (1976). Distribution of information statistics and validity criteria of models. Mathematical

Science 153, 12–18.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University Press, New York.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica: Journal of the

Econometric Society , 1–25.

29

Paper II 83

Online Appendix to ”An information criterion for
automatic gradient tree boosting” by Lunde, Kleppe

and Skaug

A Derivation of Equation 22

This section derives the CIR limit of stump optimism, as function of split point s. All equation references

< 32 are for equations in the main paper.

The derivation relies on results for M-estimators. These results rely on certain regularity conditions, which

may be found in van der Vaart (1998) for Theorem 4.21 page 52, but are restated here for convenience. The

parameter vector θ is assumed finite-dimensional and to take values in an open subset of Euclidian space, θ ∈

Θ ⊂ Rd, further, assume z1, . . . , zn to be a sample from some distribution P . The loss function l(z, θ) needs

to be twice continuously differentiable, and we denote its first derivative, the score, as ψθ(zi) = ∇θl(zi, θ).

Parameter estimates, θ̂, are assumed to solve the following estimating equations

1

n

n∑

i=1

ψθ̂(zi) = 0

and further consistency with θ̂n →
p
θ0, where θ0 is the population minimizer, i.e. E [ψθ0(Z)] = 0. Finally we

impose conditions on the score. First a Lipschitz condition: For all θ1 and θ2 in a neighbourhood of θ0 and

a measurable function H with E[H2] ≤ ∞, we assume

‖ψθ1(z)− ψθ2(z)‖ ≤ H ‖θ1 − θ2‖ .

Lastly that E[‖ψθ0‖2] <∞, and that the map θ 7→ E[ψθ] is differentiable at θ0 with a nonsingular derivative

matrix (van der Vaart, 1998).

Note that it is possible to loosen these conditions and still obtain asymptotic normality (needed in Section

A.3 and A.4), for example with regards to the differentiability of the score function, the estimating equation

need not be exactly zero, but op(n
− 1

2), the Lipschitz condition is too stringent, and θ need not be finite

dimensional.

However, the gradient boosting approximate loss function we work with, l̂, is appropriately differentiable,

and allows solutions ŵ that are exact zeroes of the estimating equations. While the set of score functions

{ψθ0(z), −∞ < s <∞} can be established to be a Donsker class (van der Vaart, 1998).

1

84 Paper II

A.1 Insights behind AIC/TIC/NIC

When parameter estimates θ̂ satisfy the regularity conditions in Section A, importantly, the loss l is differ-

entiable in θ and estimates are found by minimizing the loss over data

θ̂ = arg min
θ

n∑

i=1

l(yi, f(xi; θ)),

then the Akaike Information Criterion (AIC) (Akaike, 1974), Takeuchi Information Criterion (TIC) (Takeuchi,

1976) or Network Information Criterion (NIC) (Murata et al., 1994) all result in the optimism estimate (18),

for convenience given again here:

Ĉ = tr
(
E[∇2

θl(y1, f(x1; θ0))]Cov(θ̂)
)
. (32)

In the case of TIC and NIC, using the asymptotic normality of θ̂ (see e.g. van der Vaart (1998, Eq. 5.20,

p.52)) and the empirical estimator of the Hessian.

AIC follows from assuming that the true data-generating-process is in the family of models being opti-

mized over, and hence asymptotically the E[∇2
θl(y1, f(x1); θ0)]Cov(θ̂) = n−1I. Finally, this result in estimate

of the optimism being simply n−1d where d is the number of parameters.

A full derivation of (32) found in Burnham and Anderson (2003, Chapter 7), and we refer to AIC/TIC/NIC

for the original articles and derivations. Some insight behind this result is however needed. First, the deriva-

tion of (32) relies on the following approximation which according to Slutsky’s theorem is valid for large

n:

n∇2
θl(y, f(x; θ̂))(θ̂ − θ0)(θ̂ − θ0)T ≈ n

[
∇2
θl(y1, f(x1; θ0))

]
(θ̂ − θ0)(θ̂ − θ0)T , (33)

Further, an approximation expressing the difference in test- and training loss is also derived in (Burnham

and Anderson, 2003):

l(y0, f(x0; θ̂))− l(y1, f(x1; θ̂)) ≈ (θ̂ − θ0)T∇2
θl(y

0, f(x0; θ0))(θ̂ − θ0). (34)

2

Paper II 85

In the case of a stump CART with fixed split point s, (34) reduces to

l(y0, f(x0; θ̂))− l(y1, f(x1; θ̂)) ≈ 1(x0≤s)
∂2

∂w2
l,0

l(y0, wl,0)(ŵl − wl,0)2 + 1(x0>s)
∂2

∂w2
r,0

l(y0, wr,0)(ŵr − wr,0)2,

(35)

due to the diagonal Hessian of CART in this case.

In order to characterize the distribution of the right hand side of (35) also under optimization over s,

conventional M-estimator asymptotic theory as used in TIC and NIC does not apply directly. This is due

to the multiple-comparison problem for different split-points and subsequent selection of ŵ = (ŵl, ŵr) w.r.t.

the training loss which effectively changes the distributions of ŵ2
l , ŵ

2
r relative to those obtained for fixed s.

The next section discuss the distributional change in squares of ŵ under profiling.

A.2 A loss function for the deviation from the null-model

Recall that, conditioned on being in a region with prediction w, the relevant Taylor expanded loss (4),

modulus unimportant constant terms, is given

l̂(y1, w) = g(y1, ŷ1)w +
1

2
h(y1, ŷ1)w2.

For simplicity we write g(y1, ŷ1) and h(y1, ŷ1), with dependence in y1 and ŷ1 as g1 and h1 respectively. Let

wt be the constant prediction in the root-node and (wl, wr) be the prediction in the left and right descendant

nodes. We then write fstump(x1; θ) for a stump-model, where the parameter θ holds all relevant information

of the tree-stump, namely the split-point, and the left and right weights θ = {s, wl, wr}.

We start off with rewriting l̂(y1, fstump(x1, θ)), such that

ωi := l̂(yi, fstump(xi, θ))− l̂(yi, wt), i = 1, . . . , n, (36)

where l̂(y1, wt) is the loss of the root model with constant prediction wt, and hence ω is a measure of deviation

from the root model. Loosely speaking, the idea is to calculate how much deviation from the root model

we are to expect from pure randomness, and let the split no-split decision calculates w.r.t. this threshold.

Further, it is convenient to introduce deviation from root parameters w̃l = wl − wt and w̃r = wr − wt, and

modified first order derivatives g̃i = gi + hiwt. Then ω might be written

1

n

n∑

i=1

ωi =
1

n

∑

i∈Il

(
g̃iw̃l +

1

2
hiw̃

2
l

)
+

1

n

∑

i∈Ir

(
g̃iw̃r +

1

2
hiw̃

2
r

)
. (37)

3

86 Paper II

Notice importantly, that
∑
i∈It g̃i = 0, which for those familiar with Wiener processes and the functional

convergence of estimators might give immediate associations to the Brownian bridge, which indeed follows

shortly. Viewing ω as a loss function, the estimates of w̃l and w̃r are found directly from the score function

/ estimating equation

0 = ∇w̃
1

n

n∑

i=1

ωi =
1

n

n∑

i=1

ψ̃i(w̃), ψ̃i(w̃) := ∇w̃ωi, (38)

which we for convenience split into the score function for the left and right estimators ψ̃i,l(w) and ψ̃i,r(w).

Direct calculation gives

ˆ̃wl =

∑
i∈Il g̃i∑
i∈Il hi

= ŵl − ŵt, ˆ̃wr =

∑
i∈Ir g̃i∑
i∈Ir hi

= ŵr − ŵt, (39)

which verifies that w̃l = wl − wt, and correspondingly for w̃r.

To directly restate the importance of this specification of the loss: The training loss reduction, R, might

now be written only as a function of ωi’s:

R =
1

n

n∑

i=1

l̂(yi, wt)− l̂(yi, fstump(xi, θ)) = − 1

n

n∑

i=1

ωi, (40)

and therefore, by using the adjustment factor of R given in (35), to obtain an estimate of R0, gives

R̂0 = R− ˆ̃w2
l

∂2ω0

∂w̃2
l

− ˆ̃w2
r

∂2ω0

∂w̃2
r

, (41)

where it is understood that ω0 obtains as (36) but with (y0, x0) in the place of (yi, xi), and with parameters

at the population minimizer. Note that under the true root model, the population minimizers of w̃l and w̃r

are zero.

Now, an estimate of reduction in generalization loss may be obtained by estimating the expected value.

To this end, we need to characterize the joint distribution of the estimator ˆ̃w for any given split-point. This

distribution is obtained in the preceding sections.

A.3 Asymptotic normality of modified score/estimating equation

The asymptotic normality of ˆ̃wl and ˆ̃wr follows from the convergence of M-estimators to an empirical process.

We will make use of the following asymptotic result (van der Vaart, 1998, Theorem 5.21) (Huber, Van der

4

Paper II 87

0

1

2

3

4

−0.2 0.0 0.2
Left node value

de
ns

ity

0

1

2

3

4

−0.2 0.0 0.2
Right node value

de
ns

ity

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●●

●

●

●●

●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−0.2

0.0

0.2

−0.2 0.0 0.2
Left node value

R
ig

ht
 n

od
e

va
lu

e

Asymptotic normality of modified score in left and right node

Figure 8: Simulation of the left side of (48), and comparison to the normal on the right. Simulate n = 100
observations of yi ∼ N(3, 1) and xi ∼ U(0, 1), to compute derivatives gi and hi using the prediction ŷ = 2
with MSE loss. From this, the modified gradients g̃i are computed, and the two (for finite n) quantities on
the left in (48) are calculated, using index sets Il = {i : xi ≤ u} and Ir = {i : xi > u} for u = 0.3. This
experiment is repeated 10000 times to create the observations behind the histogram. Note that the values
are completely dependent, as

∑
i∈Il ψ̃i,l(w̃l,0) +

∑
i∈Ir ψ̃i,r(w̃r,0) = 0.

Vaart): Let θ be a differentiable parameter satisfying the regularity conditions in Section A, then

√
n(θ̂ − θ0)→

p
E[∇2

θl(y, f(x; θ0))]−1E[ψi(w̃0)ψi(w̃0)T]. (42)

The remaining part of this subsection finds the (joint) empirical process the score converges to. Specifi-

cally, the score of ˆ̃wl can be expanded and written as

ψ̃i,l(w̃l,0) = ψi,l(wl,0)− hi∑
hi
ψi,t(wt,0), (43)

where

ψi,l(wl) = (gi + hiwl)1(xi≤s), ψi,t(wt) = gi + hiwt, (44)

and completely analogous for ψi,r. Let u ∈ [0, 1] and define the rescaled partial sum

Su =
1

n

bnuc∑

i=1

ψi,t(wt,0). (45)

The CLT gives asymptotic convergence of
√
nSu to N

(
0, uE[ψi,t(wt,0)2]

)
for any u ∈ [0, 1] However, in our

5

88 Paper II

application we need the distribution of Su for an infinite collection of us. For this purpose, as ψi,t(wt,0)s

are i.i.d. with finite mean and variance, we may apply Donsker’s invariance principle that extends the

convergence uniformly and simultaneous over all u ∈ [0, 1]. This allow us to write

√
nSu →d

√
E[ψi,t(wt,0)2]W (u), (46)

where W (u) is a standard Brownian motion on u ∈ [0, 1]. Now, for the index i sorted by x, and defining

u from u = p(x ≤ s), then n−1
∑
i∈Il ψi,l = Su and n−1

∑
i∈It ψi,t = S1. Furthermore, from the time

reversibility property of the Brownian motion, the same result applies to the right node and ψi,r but with

(1−u) in place of u and perfect negative dependence with that of the left node. Lastly, notice that from the

law of large numbers,
∑
i∈Il

hi∑
i∈I1 hi

→p u. Thus, when inspecting the asymptotic normality of the score of

ω, we might use (43) together with (46) to obtain

√
n
∑

i∈Il
ψ̃i,l(w̃l,0)→d

√
E[ψi,t(wt,0)2](W (u)− uW (1)) =

√
E[ψi,t(wt,0)2]B(u) (47)

where B(u) is a standard Brownian bridge on [0, 1], i.e. B(u) ∼ N(0, u(1 − u)) and Cov(B(u), B(v)) =

min{u, v} − uv. Necessarily, the standardized sum of scores of ω in the left and right nodes has the same

marginal asymptotic distribution

lim
n→∞

√
n
∑

i∈Il
ψ̃i,l(w̃l,0) ∼ lim

n→∞

√
n
∑

i∈Ir
ψ̃i,r(w̃r,0) ∼ N

(
0, u(1− u)E

[
ψi,t(wt,0)2

])
, (48)

and have perfect negative dependence

√
n

∑
i∈Il ψ̃i,l(w̃l,0)

∑
i∈Ir ψ̃i,r(w̃r,0)

→

p

√
E[ψi,t(wt,0)2]

B(t)

−B(t)

 , (49)

as
∑
i∈Il ψ̃i,l(w̃l,0) +

∑
i∈Ir ψ̃i,r(w̃r,0) = 0.

A.4 Asymptotic normality of modified estimator

The remaining part to characterize in (42) is the expected Hessian. This is rather straightforward, as the

population equivalent of (37) might be written using indicator functions. Necessarily, the Hessian is diagonal,

expectations over indicator functions are probabilities, and its inverse a diagonal matrix with the reciprocal

of the diagonal elements of the expected Hessian.

6

Paper II 89

0

1

2

−0.4 0.0 0.4 0.8
Left estimator

de
ns

ity

0

2

4

6

−0.2 −0.1 0.0 0.1 0.2
Right estimator

de
ns

ity
●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●
●

●●

●●●

●

●●

●

●

●●

●●

●

●

●

●

●
●●
●

●

●
●

●●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

−0.3

−0.2

−0.1

0.0

0.1

0.2

−0.4 0.0 0.4
Left estimator

R
ig

ht
 e

st
im

at
or

Asymptotic normality of modified estimator in left and right node

Figure 9: Simulation of (50), where ˆ̃wl and ˆ̃wr are extracted from the simulation experiment explained in
the caption of Figure 8, and comparisons with the marginal normal distributions in (51) and (52). Right:
Scatter plot of the simulated estimators. Notice that the exact dependence described in (50) is illustrated
with an orange line, and that this is of an asymptotic nature. As n = 100 < ∞ for this experiment, the
scatter plot emits some randomness about the dependence line, but for higher n this deviation from the
dependence line tends to zero.

The expected Hessian of the loss in the left node is

E

[
∂

∂w̃l
ψ̃i,l

]
= uE[h]

and the right node

E

[
∂

∂w̃r
ψ̃i,r

]
= (1− u)E[h].

Further, the off-diagonal elements of the Hessian are zero. The asymptotic distribution therefore may be

characterized by

√
n

ˆ̃wl

ˆ̃wr

→p

√
E[ψi,t(wt,0)2]

uE[h] B(u)

−
√
E[ψi,t(wt,0)2]

(1−u)E[h] B(u)

 , u ∈ [0, 1]. (50)

Notice in particular that (50) implies the marginal limiting distributions

√
n ˆ̃wl →d N

(
0,

1− u
uE[h]2

E
[
ψi,t(wt,0)2

])
(51)

7

90 Paper II

0.0

0.5

1.0

0 2 4 6
Value

de
ns

ity
Comparison of the summed quadratic terms to the Chi−square

Figure 10: Simulation of the steps in (53) using the squares of ˆ̃w in the simulation experiment explained in
the caption of Figure 8, and comparison with a Chi-square distribution with one degree of freedom.

and

√
n ˆ̃wr →d N

(
0,

u

(1− u)E[h]2
E
[
ψi,t(wt,0)2

])
, (52)

but (50) also provides the degenerate dependence structure of (ˆ̃wl, ˆ̃wr).

A.5 Limiting distribution of loss reduction

Returning to taking the expectation w.r.t. (y0, x0) of Equation (41); equipped with the joint distribution

of (ˆ̃wl, ˆ̃wr) (50), the two terms of (41) can be combined and specified in terms of the single Brownian

bridge. To see this, take expectations w.r.t. test data (y0, x0), and multiply with u(1−u)
u(1−u) to obtain a common

denominator.

R− Ey0,x0 [R0] ≈ E(y0,x0)

[
∂2

∂w̃2
l

ω0 ˆ̃w2 +
∂2

∂w̃2
r

ω0 ˆ̃w2

]

=
E
[
ψi,t(wt,0)2

]

nE[h]

(
(1− u)B(u)2 + uB(u)2

)

u(1− u)

=
E
[
ψi,t(wt,0)2

]

nE[h]

B(u)2

u(1− u)
. (53)

The right hand side of (53) gives a convenient asymptotic representation of R−Ey0,x0 [R0]. The subsequent

section shows that B(u)2/(u(1 − u)), subject to a suitable time-transformation τ(u), u ∈ (0, 1), is a Cox-

Ingersoll-Ross process (Cox et al., 1985) which constitutes the right-hand side of (22). To get from (53) to

8

Paper II 91

−0.010

−0.005

0.000

0.005

0.010

0.00 0.25 0.50 0.75 1.00

u =
i

n

Lo
ss

 re
du

cti
on

Loss reduction profiling

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00

u =
i

n

L.h
. s

ide
 of

 (5
3)

Loss reduction optimism

0

1

2

3

4

5

8 10 12 14

τ =
1

2
log

u(1−ε)

ε(1−u)

S(
τ)

Time transform to CIR

Figure 11: The equivalent and same process as in Figure 2, for loss reduction R and R0. Left: Reduction
in training loss R (black) and reduction in generalization loss Ey0,x0

[
R0
]

(blue) as a function of u = i
n ,

defined from the sorted order of xj . Green long-dashed line is the expected loss-value at θ0 = limn→∞ θ̂n,
constant and zero as there is no information in xj for this instance. Right plot: The transformation of
distance between generalization loss and training loss into a CIR process. In this case with no information
in feature xj , choosing the value of s giving the smallest value of training loss in the left plot induces an
optimism at the value of the expected maximum of the CIR-process in the right plot.

(22) (modulus the time-transformation) first observe that

Ĉroot = E[h]V ar(ŵt) = E[h]

(
E
[
ψi,t(wt,0)2

]

nE[h]2

)
=
E
[
ψi,t(wt,0)2

]

nE[h]
, (54)

and thus simply adding the root optimism on both sides of (53) gives

R− Ey0,x0 [R0] + Ĉroot =
[
Ey0,x0

[
l̂(y0, f(x0; ŵl(u), ŵr(u)))

]
− l̂(y, f(x; ŵl(u), ŵr(u)))

]

≈ Ĉroot
(

1 +
B(u)2

u(1− u)

)
. (55)

The final step of the calculations leading to (22) is to show that B(u)2/u(1− u) is indeed equivalent to the

CIR process (23).

A.6 The process B(u)2/(u(1− u)) is a time-transformed CIR process

It was previously mentioned, and used in notation, that B(u)2/(u(1− u)) is a CIR process over time τ(u),

where u ∈ (0, 1). Note that the interval is u ∈ (0, 1) and not [0, 1] as for the functional convergence of ψ.

This is due to the denominator in B2/(u(1−u)) which almost certainly blows up the value at the endpoints.

For this reasons, Miller and Siegmund (1982) approximates the search over [0, 1] by (ε, 1− ε) for εn > 1 and

(1 − ε)n > 1, which is of little practical importance, as it makes sense to at least have a few observations

when estimating each leaf-weight. Gombay and Horvath (1990) relaxes this assumption, and shows that

9

92 Paper II

the supremum of B2/(u(1 − u)) over (0, 1) asymptotically have a Gumbel distribution. This result is in

alignment with the use the Gumbel distribution in the simulation approach discussed in Section 3.7.

We show that the sum of the scaled-squared Brownian bridge is a Cox-Ingersoll-Ross process. As this

paper eventually takes a simulation approach to obtain the distribution of maxY (τ(u)), u ∈ {u1, · · · , ua},

the exact same results would be obtained by simulating max B2

u(1−u) , u ∈ {u1, · · · , ua}. Here u ∈ {u1, · · · , ua}

are the time-points and probabilities on (0, 1), p(x ≤ s), for which we observe the process. The specification of

the scaled-squared Brownian bridge, through a time-transform, as a CIR is therefore not strictly necessary.

However, for completeness, and for the purpose/benefit of working with a time-homogenous stationary

process that is well known and studied, we show that this is indeed the case. Important is also the CIR’s

stationary Gamma distribution, which implies that the CIR is in the maximum domain of attraction of the

Gumbel distribution, and warrants its use as an asymptotic approximation to supremums of the CIR.

Anderson et al. (1952) shows that

|B(u)|√
u(1− u)

= |U(τ(u))|, τ(u) =
1

2
log

u(1− ε)
ε(1− u)

. (56)

where U(τ) is an Ornstein-Uhlenbeck process which solves the stochastic differential equation

dU(τ) = −U(τ)dτ +
√

2dW (τ). (57)

Notice that (56) is the square root of B(u)2/(u(1−u)) appearing in right-hand side of (53). Hence, obtaining

a stochastic differential equation for B(u)2/(u(1− u)) simply amounts to applying Ito’s Lemma (Øksendal,

2003) to obtain the stochastic differential equation for the square of U(τ). More precisely, define S(τ) =

U(τ)2, which gives the stochastic differential equation given in Equation (23), namely

dS(τ) = 2 (1− S(τ)) dτ + 2
√

2S(τ)dW (τ). (58)

This is recognized as a Cox-Ingersoll-Ross (CIR) process (Cox et al., 1985), with speed of adjustment to the

mean a = 2, long-term mean b = 1, and instantaneous rate of volatility 2
√

2.

The profiling over loss reduction R for different split points s, the optimism, and the time-transform

to the CIR process is illustrated in Figure 11. This is the same experiment as in Figure 2, but with loss

reduction profiling instead of stump-loss profiling.

10

Paper II 93

B Maximal CIR as a bound on optimism

Section A shows that R − E[R0] behaves asymptotically as a CIR process, S(τ), when profiling over a

continuous feature. It immediately follows that a bound on this optimism is given as the expected maximal

element of the CIR process

E[R−R0] ≤ ĈrootE[max
u

S(τ(u))]. (59)

If we are comparing maximum reductions of multiple features, then we would instead be interested in the

distribution, p(maxS(τ) ≤ s), for its use in Equation (26), which reduces to the equation above when m = 1.

However, more can be said, namely that this bound is tight when the feature being profiled over is

independent of the response. To see this, Taylor expand ωi about its estimate ˆ̃w and again make use of the

approximation in (33)

0 =
1

n

n∑

i=1

(g̃i + hiw̃0) ≈
[

1

n

n∑

i=1

ωi

]
+

1

2
E[h]

(
u ˆ̃w2

l + (1− u) ˆ̃w2
r

)
(60)

since both w̃0 and
∑n
i=1 g̃i are zero. Rearranging, we may re-express the training loss-reduction

R = − 1

n

n∑

i=1

ωi ≈
1

2
E[h]

(
u ˆ̃w2

l + (1− u) ˆ̃w2
r

)
. (61)

By recognizing that the term on the right is exactly half the value of (53), it is evident that maximizing

R corresponds to selecting split-point and leaf-weights that are at the time-point where the CIR process,

S(τ(u)), attains its maximum. Consequently, we obtain equality in Equation (59), i.e.

E[R̂0] = E[R]−
E
[
ψ̃i,t(w̃t,0)2

]

nE[h]
E
[
max
u

S(τ(u))
]
. (62)

Finally, notice that E[R − R0] might also be expressed in terms of the optimism of the root and stumps

models, so that E[R − R0] = Ĉstump − Ĉroot. Thus, rearranging, we immediately obtain the pure stump

optimism, expressed as an adjustment of the root optimism

Ĉstump = E[R−R0] + Ĉroot =
E
[
ψ̃i,t(w̃t,0)2

]

nE[h]

(
1 + E

[
max
u

S(τ(u))
])
. (63)

A check: In likelihood theory, we would expect one additional degree of freedom, thus R − R0 = 1.

Indeed, if we take the final expectation w.r.t. the training data, we have E[B2] = u(1 − u), multiply with

11

94 Paper II

n to obtain a log-likelihood, and assume the expected Hessian equals the variance of the score, then this

indeed reduces to exactly 1.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic

control 19 (6), 716–723.

Anderson, T. W., D. A. Darling, et al. (1952). Asymptotic theory of certain” goodness of fit” criteria based

on stochastic processes. The annals of mathematical statistics 23 (2), 193–212.

Burnham, K. P. and D. R. Anderson (2003). Model selection and multimodel inference: a practical

information-theoretic approach. Springer Science & Business Media.

Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985). A theory of the term structure of interest rates. Econo-

metrica 53 (2), 385–407.

Gombay, E. and L. Horvath (1990). Asymptotic distributions of maximum likelihood tests for change in the

mean. Biometrika 77 (2), 411–414.

Miller, R. and D. Siegmund (1982). Maximally selected chi square statistics. Biometrics, 1011–1016.

Murata, N., S. Yoshizawa, and S.-i. Amari (1994). Network information criterion-determining the number of

hidden units for an artificial neural network model. IEEE Transactions on Neural Networks 5 (6), 865–872.

Øksendal, B. (2003). Stochastic differential equations. Springer.

Takeuchi, K. (1976). Distribution of information statistics and validity criteria of models. Mathematical

Science 153, 12–18.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University Press, New York.

12

Paper II 95

Paper III

Paper III

agtboost: Adaptive and
Automatic Gradient Tree
Boosting Computations

96

agtboost: Adaptive and Automatic Gradient Tree
Boosting Computations

Berent Ånund Strømnes Lunde
University of Stavanger

Tore Selland Kleppe
University of Stavanger

Abstract

agtboost is an R package implementing fast gradient tree boosting computations in
a manner similar to other established frameworks such as xgboost and LightGBM, but
with significant decreases in computation time and required mathematical and technical
knowledge. The package automatically takes care of split/no-split decisions and selects
the number of trees in the gradient tree boosting ensemble, i.e., agtboost adapts the
complexity of the ensemble automatically to the information in the data. All of this is
done during a single training run, which is made possible by utilizing developments in
information theory for tree algorithms (Lunde, Kleppe, and Skaug 2020). agtboost also
comes with a feature importance function that eliminates the common practice of inserting
noise features. Further, a useful model validation function performs the Kolmogorov-
Smirnov test on the learned distribution.

Keywords: gradient tree boosting, information criterion, automatic function estimation, R.

1. Introduction: Tuning of gradient tree boosting
Gradient tree boosting (GTB) (Friedman 2001; Mason, Baxter, Bartlett, and Frean 1999)
has risen to prominence for regression problems after the introduction of xgboost (Chen and
Guestrin 2016). The GTB model is an ensemble-type model, that consist of classification
and regression trees (CART) (Breiman, Friedman, Stone, and Olshen 1984) that are learned
in an iterative manner. GTB models are very flexible in that they automatically learn non-
linear relationships and interaction effects. However, with the increased flexibility of GTB
models comes substantial worries of overfitting. The top performing gradient tree boosting
libraries, such as xgboost, LightGBM (Ke, Meng, Finley, Wang, Chen, Ma, Ye, and Liu
2017) and catboost (Dorogush, Ershov, and Gulin 2018), all come with a large number of
hyperparameters available for manual tuning to constrain the complexity of the GTB models.
Training of gradient tree boosting models, in general, thus require some familiarity with both
the chosen package, and the data for efficient tuning and application to the problem at hand.
The main focus of the hyperparameters and tuning are to solve the following problems:

• The complexity of trees: What are the topology of all the different trees? Too com-
plex trees overfits, while simple stump-models cannot capture interaction effects. This is
typically solved using a hyperparameter that penalizes (equally) the number of leaves in
the tree. xgboost hyperparameters for this are gamma, max_depth, min_child_weight,
and max_leaves.

Paper III 97

2 agtboost: Automatic Function Estimation

• The number of trees: How many iterations should the tree-boosting algorithm do
before terminating? Too early stopping will leave information unlearned, while too late
stopping will see the last trees adapting mostly to noise. An early-stopping hyperpa-
rameter is usually tuned to obtain ensembles of adequate size. Tuned in xgboost with
nrounds.

• Making space for feature trees to learn: If each tree is optimized alone, early
trees will have a tendency to learn additive relationships and information that subse-
quent trees could learn more efficiently (Friedman, Hastie, Tibshirani et al. 2000). An
additional downside of large early trees is difficult model-interpretability. The hyperpa-
rameter solution typically involves tuning the maximum depth (max_depth in xgboost)
globally for all trees.

The five parameters of xgboost mentioned above are typically selected as the top-performing
parameters found from k-fold cross validation (CV) (Stone 1974). CV, however, increases
computation times extensively, and requires more work through coding and knowledge on the
part of the user.
agtboost is an implementation of the theory in Lunde et al. (2020), which unlocks compu-
tationally fast and automatic solutions to the problems listed above, and as a consequence
removes selection of hyperparameters through CV from the problem. The key is an informa-
tion criterion that can be applied after the greedy binary-splitting profiling procedure used
in learning trees. The theory is built upon maximal selection of chi-squared statistics (White
1982; Gombay and Horvath 1990) and the convergence of an empirical process to a continu-
ous time stochastic process. Lunde et al. (2020) subsequently discuss how both tree-size and
the number of trees then can be chosen automatically. This paper supplements Lunde et al.
(2020) by describing a package built on this theory, i.e., agtboost. Some new innovations
are also introduced, which all have their basis in the information criterion. In general, they
address the problems with feature importance and the optimization of trees alone.
Note that there exist other hyperparameters that may increase accuracy (but that are not
vital) for GTB models. Most notably are parameters for a regularized objective (see e.g., Chen
and Guestrin (2016)) and stochastic sampling of observations during boosting iterations (for
an overview, see Hastie, Tibshirani, and Friedman (2001) and for recent innovations for GTB
see Ke et al. (2017)). These features are not yet implemented, but subject to further research,
as more work is required to adhere to the philosophy of agtboost – that all hyperparameters
should be automatically tuned.
This paper starts by introducing gradient tree boosting in Section 2 and the information
criterion in Section 3, and proceeds with the innovations and software implementation in
Section 4. Section 5 describes agtboost from a user’s perspective. Section 6 studies and
compares the different variants of agtboost models for the large sized Higgs dataset. Finally,
Section 7 discusses and concludes.

2. Gradient tree boosting
This and the following section closely follow the setup of Lunde et al. (2020). The (typical)

98 Paper III

Berent Lunde, Tore Kleppe 3

objective of gradient tree boosting procedures is the supervised learning problem

f(x) = arg min
f
E[l(y, f(x))], (1)

for a response y ∈ R, feature vector x ∈ Rm, and loss function l measuring the difference
between the response and prediction ŷ = f(x). For gradient boosting to work, we require l to
be both differentiable and convex. Then, using training data, say Dn = {(yi, xi)}ni=1, we seek
to approximate (1) by learning f in an iterative manner: Given a function f (k−1), we seek fk
to minimize

fk(x) = arg min
fk

E[l(y, f (k−1)(x) + fk(x))], (2)

approximately to second order. This is done by computing the derivatives

gi,k = ∂

∂ŷ(k−1) l(y, ŷ
(k−1))

∣∣∣∣
ŷ(k−1)=f (k−1)(x)

, hi,k = ∂2

∂(ŷ(k−1))2 l(y, ŷ
(k−1))

∣∣∣∣∣
ŷ(k−1)=f (k−1)(x)

, (3)

for each observation in the training data, and then approximate the expected loss by averaging,

fk(x) = arg min
f

1
n

n∑

i=1
l(y, ŷ(k−1)

i) + gi,kfk(x) + 1
2hi,kfk(x)2. (4)

Terminating this procedure at iteration K, the final model is an additive model of the form

ŷi = ŷ(K) =
K∑

k=1
fk(xi). (5)

Still, (4) is a hard problem, as the search among all possible functions is obviously infeasible.
Therefore, it is necessary to constrain the search over a a family of functions, or "base learners".
While multiple choices exist, agtboost follows the convention of using CART (Breiman et al.
1984).
For a full discussion of decision trees, see (Hastie et al. 2001) for a general treatment, and
Lunde et al. (2020) for details on its use in gradient tree boosting and agtboost. We constrain
ourselves to a brief mention of important aspects. Firstly, decision trees learn constant pre-
dictions (called leaf-weights) in regions of feature space. We let It,k = {i : qk(x) = t} denote
the index-set of training indices that falls into region (or leaf) t, denoted by qk(x) = t, where
qk is the topology of the k’th tree, a function that takes the feature vector and returns the
the node-index or corresponding index of region in feature space, t. The prediction from the
tree is given by

fk(xi) = wqk(xi). (6)

Secondly, the estimated leaf-weights have closed form in the 2’nd order boosting procedure
described above, namely

ŵt,k = −Gt,k
Ht,k

whereGt,k =
∑

i∈It,k

gi,k andHt,k =
∑

i∈It,k

hi,k. (7)

Paper III 99

4 agtboost: Automatic Function Estimation

Thirdly, the regions of feature space are learned by iteratively splitting all leaf-regions (starting
with the full feature space as the only leaf) creating new leaves and regions. The region is
split on the split-point that gives the largest reduction in training loss, say Rt, among all
possible binary splits. This search is fast, as the training loss, modulus unimportant constant
terms, in region t is given as

lt = −
G2
t,k

2nHt,k
, (8)

and enumeration of possible splits can therefore be done in mn logn time.
The above procedure creates the decision tree fk, which is then added to the model f (k−1) by

f (k) = f (k−1) + δfk, δ ∈ (0, 1). (9)

The constant δ, typically called the "learning rate" or "shrinkage", leaves space for feature
models to learn. Values are often taken as "small", but this comes at the added computa-
tional cost of an increase in the number of boosting iterations (infinite when δ → 0) before
convergence. The learning rate is the only hyperparameter of the boosting procedure in agt-
boost that is not tuned automatically. The default value is set at 0.01, which should be
sufficiently small for most applications without incurring too much computational cost.

3. Information criteria
This section introduces generalization loss-based information criteria, which includes types
such as Akaike Information Criterion (AIC) (Akaike 1974), Takeuchi Information Criterion
(TIC) (Takeuchi 1976) and Network Information Criterion (NIC) (Murata, Yoshizawa, and
Amari 1994). Generalization loss is perhaps better known as an instance of test loss, say
l(y0, f(x0)), where (y0, x0) is an observation unseen in the training phase, i.e., not an element
and independent of Dn. This specification is important, as (1) is intended for this quantity,
and using the training loss, in our case (4) as an estimator, care must be taken as the training
loss is biased downwards in expectation. This bias is known as the optimism of the training
loss (Hastie et al. 2001), and denoted C. A generalization loss-based information criterion,
say C̃, is intended to capture the size of the optimism, such that adding C̃ to the training
loss gives an (at least approximately) unbiased estimator of the expected generalization loss.
The equation behind the generalization loss-based information criteria mentioned above is

C̃ = tr
(
E
[
∇2
θl (y, f(x; θ0))

]
Cov(θ̂)

)
, (10)

C̃ ≈ E[l(y0, f(x0; θ̂))]− E[l(y1, f(x1; θ̂))],

where (y1, x1) is a (random) instance of the training dataset, and θ0 is the population mini-
mizer of (1) where optimization is done over a parametric family of functions and θ̂ is not at
the boundary of parameter space (Burnham and Anderson 2003, Eqn. 7.32).
In the GTB training procedure described in section 2, the model selection questions of added
complexity are always at the "local" root (constant prediction) versus stump (a tree with
two leaf-nodes) model. It is always one, and only one, node at a time that is tried split
in this gradient tree boosting procedure. Thus isolate this relevant node by assuming and

100 Paper III

Berent Lunde, Tore Kleppe 5

conditioning on that q(x) = t, then node t may be referenced and treated as a root. Further,
for convenient notation, assume to be at some boosting iteration k, thus dropping notational
dependence on current iteration, and let l and r denote the left and right child nodes of node
t. The idea of Lunde et al. (2020) is to use the optimism of the root (node t, conditioned
on data falling into leaf t, i.e., q(x) = t) and stump model (split of node t, with the same
conditioning as for the root), say Croot and Cstump, to adjust the root and stump training
loss, to see if there is expected a positive reduction in generalization loss,

− 1
2n

[
G2
t

Ht
−
(
G2
l

Hl
+ G2

r

Hr

)]
+ Croot − Cstump > 0, (11)

which would be used to decide if to split further in a tree, and to see if a tree-stump model
fk could be added to the ensemble fk−1. The root and stump training loss combined in
the parenthesis is the loss-reduction, R, that is profiled over for different binary splits. This
profiling, however, complicates evaluation of the above inequality as it induces optimism into
Cstump which (10) cannot handle directly.
We may combine the root and stump optimisms to create a loss-reduction optimism, say
CR = Croot −Cstump. Lunde et al. (2020) derives the following estimator for the optimism of
loss-reduction

C̃R = −C̃rootπtE [B(x)] , (12)

where πt is the probability of being in node t, estimated by the fraction of training data passed
to node t, and C̃root is calculated as (10) conditioned on being in node t, and may be estimated
using the sandwich estimator (Huber et al. 1967) together with the empirical Hessian. The
remaining quantity in (12), B(x) where x is the full design matrix of the training data, is a
maximally chosen random variable

B(x) = max
j≤1≤m

Bj(x·j), Bj(x·j) = max
1≤k≤a

Sj(τk) (13)

defined from a specification of the Cox-Ingersoll-Ross process (CIR) (Cox, Ingersoll, and Ross
1985), S(τ), with speed of adjustment to the mean 2, long term mean 1 and instantaneous
rate of volatility 2

√
2, therefore having dynamics given by the SDE

dS(τ) = 2(1− S(τ))dt+ 2
√

2S(τ)dW (τ), (14)

which is "observed" at time-points τk = 1
2 log uk(1−ε)

ε(1−uk) , ε→ 0 defined from the split-points uk =
p(xij ≤ sk), i = 1 : (n−1) on feature j. To estimate E[B(x)] is, however, not straight forward.
Lunde et al. (2020) discuss a solution using exact simulation of the CIR process using ε = 10−7,
together with the fact that the stationary CIR is in the maximum domain of attraction of the
Gumbel distribution (Gombay and Horvath 1990), an independence assumption on features,
and numerical integration to evaluate the expectation.

4. Software implementation and innovations
agtboost employs the r.h.s. of (12) to solve the list of problems presented in the introduction,
which for other implementations are solved by tuning the hyperparameters using techniques

Paper III 101

6 agtboost: Automatic Function Estimation

0.0

2.5

5.0

0 1 2 3 4 5
x

y

Full model fit

1.0

1.5

2.0

2.5

3.0

0 100 200
Boosting iteration

Te
st

 lo
ss

●●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●●●

●

●●●●●●●●●●●●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●●

●●●

●

●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●

●●

●

●

●●2

3

4

5

6

7

0 100 200
k'th tree in ensemble

N
um

be
r o

f l
ea

ve
s

−2.5

0.0

2.5

0 1 2 3 4 5
x

R
es

id
ua

ls

First tree fit

−3

−2

−1

0

1

2

3

0 1 2 3 4 5
x

R
es

id
ua

ls

100'th tree fit

−2

−1

0

1

2

0 1 2 3 4 5
x

R
es

id
ua

ls

200'th tree fit

Figure 1: Top: [left] Full model fit on training-data, [middle] test loss versus the number of
boosting iterations, with the minimum expected loss possible (true model) included with a
horizontal line, and [right] the number of leaves in the k’th tree. Bottom: The First, 100’th
and 200’th tree fits to the training MSE-residuals, r(k)

i = −gi,k/hi,k = yi− ŷ(k−1) at respective
iterations. The n = 100 training and test observations were i.i.d. generated with a linear
structural relationship and Gaussian noise, x ∼ U(0, 5) and y ∼ N(x, 1).

such as cross-validation (CV) (Stone 1974). The use of (12) alleviates the need for hyper-
parameters tuned with CV, as it allows the base-learner trees fk and the ensemble f (k) to
stop at a given complexity that is adapted to the training data at hand. Thus significantly
increasing the speed of training a gradient tree boosting ensemble. Furthermore, the technical
knowledge imposed on the user, with respect to both gradient tree boosting and the dataset
at hand, is reduced. agtboost is coded in C++ for fast computations, and relies on Eigen
(Guennebaud, Jacob et al. 2010) for linear algebra, the R header files (R Core Team 2018)
for some distributions, and Rcpp (Eddelbuettel and François 2011) for bindings to R. The
remainder of this section goes through the innovations in agtboost that directly attacks the
previously mentioned tuning-problems.

4.1. Adaptive tree size
Equipped with an information criterion for loss reduction after greedy-split-profiling, the
necessary adjustments are rather straight-forward, and are also discussed in Lunde et al.
(2020). For completeness, the usage of (12) towards selecting the complexity of trees fk is
restated here: After the split that maximizes training loss reduction R is found, the following
inequality is tested

R+ C̃R > 0, (15)

and if it evaluates to TRUE, then two new leaves (and regions) are created and successive
splitting on them is performed. This continues until (15) evaluates to FALSE. This criterion is
employed for all but the first (root) split, which is forced. This forced split is done to assure

102 Paper III

Berent Lunde, Tore Kleppe 7

some increase in model complexity, as∑i gi = 0 is always true and a root model will therefore
be equivalent to adding zero to the model.
Figure 1 illustrates this adaptivity: Visually, it is seen that trees assign higher leaf-node
predictions to observations with high values of x than to small values of x, thus capturing
the structural relationship y = x in the simulated data. Furthermore, of the trees plotted in
the lower lane together with residuals yi − ŷ(k−1)

i = −gi,k/hi,k at iterations k ∈ {1, 100, 200},
none of them can be seen to be complex enough to adapt to the Gaussian noise in the
training data. Indeed, every subsequent iteration reduces the value of test loss, seen from
the top-middle panel. Further verification of this is given by the decreasing complexity of
trees (measured in terms of number of leaves), corresponding to residuals at early iterations
necessarily containing more information than later ones. Thus, early trees therefore tend to
be more complex than at later stages of the training.

4.2. Automatic early stopping
The natural stopping criterion for the iterative boosting procedure, in the context of super-
vised learning, is to stop when the increase in model complexity no longer gives a reduction in
generalization loss. From Figure 1, the top-right plot shows that the later iterations tend to
be tree-stumps. Indeed, a tree constructed using the method described in Section 4.1 will be
a tree stump at the iteration where the natural stopping criterion terminates the algorithm.
This is because a more complex tree must have passed the "barrier" (i.e., inequality) (15), and
necessarily will have a decrease in generalization loss, as long as δ ∈ (0, 1]. Care must however
be taken, as we are scaling the k’th tree with the learning rate, δ, and 15 might therefore not
be used directly. Lunde et al. (2020) discuss this: The solution lies in the general equation
for Equation (10) (Hastie et al. 2001)

C̃ = 2
n

n∑

i=1
Cov(yi, ŷi), (16)

and the optimism therefore scales linearly. The training loss, on the other hand, does not and
can be seen to scale with the factor δ(2 − δ) from direct computations. Scaling the training
loss and optimism appropriately, agtboost evaluates a similar inequality as (15), namely

δ(2− δ)R+ δC̃R > 0, (17)

which if evaluates to FALSE, indicates that the increased complexity does not decrease gener-
alization loss, and subsequently the boosting procedure is terminated.
The top-left panel of Figure 1 illustrates the fit of a model that converged after K = 255
iterations, and also shows a "convergence plot" (top-middle panel with test loss at different
boosting iterations) that flattens out. Indeed, repetitions of the same experiment with an
increased number of training instances, n (see top row of Figure 2), shows that the test
loss converges on average towards 1, indicated by the horizontal line. This is the expected
minimum value possible due to the standard Gaussian noise. Furthermore, if considering the
lower-right plot with the fit of the 200’th tree to the residuals at that iteration, we can see
that the algorithm still finds information that is hard to see for the naked eye. The algorithm
continues for another 55 iterations, that still manages to decrease test loss.

4.3. The global-subset algorithm

Paper III 103

8 agtboost: Automatic Function Estimation

1.0

1.5

2.0

2.5

3.0

0 200 400
Iteration

Te
st

 lo
ss

Global−subset

Vanilla

n=1000

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800
Iteration

Te
st

 lo
ss

Global−subset

Vanilla

n=10000

1.0

1.5

2.0

2.5

3.0

0 250 500 750 1000
Iteration

Te
st

 lo
ss

Global−subset

Vanilla

n=100000

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●●●

●

●●

●

●●●

●

●

●

●●●●●●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●●●●

●

●●●2

4

6

8

0 200 400
k'th tree in ensemble

N
um

be
r o

f l
ea

ve
s

●

●

Global−subset

Vanilla
●●●●●●

●●●●●●●

●

●

●

●

●

●

●

●●●●

●●

●●●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●●●

●●

●

●

●●

●

●

●●●●●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●●●

●●●●●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●

●●●●●●●●●●●●

●

●●●●

●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●●

●

●●●

●●

●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●●●●●●

●

●●●

●

●●●●

●

●●●

●

●●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●

●●

●●●●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●●

●●

●●●●●

●●

●

●

●

●●

●●●

●

●●●●

●●

●

●

●●

●

●●●●●●●●●

●●

●●●

●

●●●

●

●

●

●●●●●●

●

●●●

●

●

●

●●●●●●

●

●●●

●

●

●

●●●●

●

●●●●

●

●●●

●

●●●●●●

●

●

●

●●●

●

●●●●

●

●●

●

●●●●●●●●

●

●

●

●

●

●●●●

●

●●●●

●

●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

5

10

15

0 200 400 600 800
k'th tree in ensemble

N
um

be
r o

f l
ea

ve
s

●

●

Global−subset

Vanilla

●
●

●

●
●
●
●

●

●

●
●
●
●
●
●●
●●●
●
●

●

●

●●
●
●●

●

●●

●
●
●
●
●

●
●

●
●

●
●

●
●

●●

●●

●
●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●

●●

●●

●

●

●
●
●
●
●
●●
●
●●
●
●
●●

●●
●
●●
●●
●
●

●

●

●

●
●●●●
●●
●

●

●

●
●
●
●●
●
●

●

●
●●●

●

●
●

●

●●

●

●
●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●
●
●
●

●
●●

●

●

●
●

●
●
●
●●

●●●●●
●

●
●●●●●●
●
●
●

●

●
●●●
●
●
●●
●
●●
●
●●●
●
●
●●
●

●

●
●

●

●
●

●●●●●●

●

●●●
●●
●
●
●●

●
●●
●●●●●●●●●●
●●
●
●
●
●
●●●
●

●
●●●●●
●●●
●●●

●

●●
●

●

●

●
●
●

●●

●
●

●●

●

●●
●
●●●●●●●●
●
●●●●●●●●●
●

●
●●●
●
●●
●
●●
●
●
●
●●
●●
●●
●
●
●●●●●
●●
●●
●
●●●●●
●
●
●
●●●●●●●

●

●●●
●
●●●●●
●●●
●
●●●●

●

●
●
●●
●
●●●●

●

●
●
●●●●
●
●●●
●●
●●

●

●●●●●●
●
●●●●●

●

●●●●●
●
●●●●●●
●
●●●●●
●●●●●●●●●●
●
●●●●
●
●●●●
●
●
●
●●●
●
●
●
●
●
●●●●
●
●

●

●●●●

●

●
●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●
●
●●

●
●●●●●●●●●●
●●
●●●●●●●●
●●●●
●
●●
●●●●
●●
●●
●
●
●●
●
●●
●●●●
●●●
●
●
●
●●●
●
●
●
●●●
●
●
●●●●
●
●
●
●
●●●
●
●
●
●●●
●
●●●●●
●
●
●
●
●
●
●
●
●
●●●
●
●
●
●●●●●
●
●
●
●●●
●
●
●
●●●●●
●
●
●
●●●●●●●
●
●●●
●
●●●
●
●
●
●●●●●
●
●●
●
●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●

●
●●●●
●
●●●●●●●
●
●●
●
●●●●
●

●
●●●●●●●
●
●●●●●●●●●●●●●●●●
●

●
●●●●●●●●
●
●●●●
●
●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●
●●●●●●●●●
●●
●●●●
●
●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●
●●●●
●
●●
●●●
●
●

●
●●
●
●●●
●
●●
●●●●
●●
●
●●
●
●●●●
●●●●
●
●

●●
●●●
●
●
●
●●●●
●●●
●
●●
●●
●●●●
●
●
●●
●
●●
●
●●
●
●●
●
●●
●●
●
●●●●
●●
●●
●
●●
●●●
●
●
●●●●●●●
●
●●
●
●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●

●●
●
●●●●●●●●●
●
●●●●●●●●●
●
●●●●

●

●●●●●●
●
●●●●●●●●●●●●●●●
●
●●
●
●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●
●
●●●●●
●
●●●●
●
●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

10

20

30

40

0 250 500 750 1000
k'th tree in ensemble

N
um

be
r o

f l
ea

ve
s

●

●

Global−subset

Vanilla

Figure 2: Top: Test loss at different boosting iterations for the global-subset and vanilla
algorithms training and testing with an increasing number of observations. Lower: The
number of leaves in the k’th tree for the global-subset and vanilla algorithms, also training
and testing with the same number of observations as in the top row. The data generating
process is the same as described in the caption of Figure 1, but with the number of training
and test observations set to n = {1000, 10000, 100000} for the three columns.

Equipped with the information criterion (12), it is possible to construct a solution to the
problem that each tree is optimized alone, mentioned as the third point in the introduction.
For this subsection, denote the reduction in training loss from splitting some node t at the
k’th boosting iteration by kRt. For example, the reduction from the root-node split at the
same k’th iteration is denoted kR1 and the reduction from splitting the root-node at the
(k + 1)’th boosting iteration is denoted k+1R1.

The idea is rather simple, namely to compare the average generalization loss reduction from
a chosen split in the k’th boosting iteration, with that of the average generalization loss
reduction we would obtain from the root-split in the (k+ 1)’th boosting iteration if the afore-
mentioned split was not performed and the recursive splitting at the k’th iteration terminated.
This then allows the tree-boosting algorithm to consider (in a greedy manner) all possible
allowed changes in function complexity of the ensemble, not just a deeper tree. The naive
approach to do this – at each possible split in the k’th iteration, temporarily terminate, and
start on the (k + 1)’th iteration for inspection of the root-split reduction in generalization
loss – is computationally infeasible. Instead, notice that, as δ → 0, the 2’nd order gradient
boosting approximation to the loss is increasingly accurate, and that, at the limit δ → 0, we
have fk = fk+1, as fk is scaled to zero by the learning rate. Necessarily, we have kR1 ≈ k+1R1
and C̃

kR1 ≈ C̃k+1R1 .

The quantities k+1R1 and C̃
k+1R1 may be used to adjust the right-hand-side of (15) with

the expected reduction in generalization loss of the next split, so that the recursive binary
splitting terminates when splitting the next root-node is more beneficial. Using kR1 and C̃

kR1

104 Paper III

Berent Lunde, Tore Kleppe 9

as replacements, the reformulated split-stopping inequality yields

π−1
t

(
kRt + C̃

kRt

)
> max

{
0, kR1 + C̃

kR1

}
. (18)

The probability πt is introduced to adjust for the difference in the number of training obser-
vations, as the root works on the full dataset, while node t necessarily works on some subset
of the data. The inequality (18) is then employed as a replacement for- and in the exact same
manner as (15)
Figure 2 illustrates the practical difference in pathological learning behaviour: The data
exhibits purely additive behaviour. Friedman et al. (2000) argues for a model consisting only
of tree-stumps in this case. Both method converges to a test loss of approximately 1, the
minimum expected test loss possible for a perfect model, for all values of n. The difference
lies in the complexity and number of trees. The vanilla algorithm (using (15)) builds each
tree as if it was the last, and already at the first iteration, several regions of feature space will
be split into sub-regions, seen from the plots in the lower row. The global-subset algorithm,
however, "looks ahead" and often evaluates that terminating the recursive binary splitting
procedure and starting on a new boosting iteration is more beneficial. Subsequently, trees
are rarely complex and thus easier to interpret, but comes to the cost of a higher number of
boosting iterations before terminating by the inequality (17). This cost is decreased, however,
as boosting iterations are overall faster than for the vanilla algorithm since individual trees
are less complex.

5. Using the agtboost package
The goal of the agtboost package is to avoid expert opinions and computationally costly brute
force methods with regards to tuning the functional complexity of GTB models. Usage should
be as simple as possible. As such, the package has only two main functions, gbt.train for
training an agtboost model, and a predict function that overloads the predict function in R.
The main responsibility of the user is to identify a "natural" loss-function and link-function.
To this end, agtboost also comes with a model validation function, gbt.ksval, which per-
forms a Kolmogorov-Smirnov test on supplied data, and a function for feature importance,
gbt.importance, that functions similarly to ordinary feature importance functions (see for
instance Hastie et al. (2001)) but which calculates reduction in loss with respect to (approx-
imate) generalization loss and not the ordinary training loss. Due to implementation using
Rcpp modules, saving and loading of agtboost cannot be done by the ordinary save and load
functions in R, but is made possible through the functions gbt.save and gbt.load. Table 1
gives an overview of the implemented loss functions in agtboost.
Following is a walk-through of the agtboost package, applied to the caravan.train and
caravan.test data (Van Der Putten and van Someren 2000) that comes with the package
and documented there. The caravan dataset has a binary response, indicating purchase of
caravan insurance, and 85 socio-demographic covariates. Due to the nature of the response,
classification using the logloss loss function is natural. To train a GTB model, it is only
needed to specify the loss_function argument in gbt.train

R> mod <- gbt.train(y = caravan.train$y, x = caravan.train$x,
loss_function = "logloss", verbose = 100)

Paper III 105

10 agtboost: Automatic Function Estimation

Type Distribution Link Comment
mse Gaussian µ = f(x) Ordinary regression for continu-

ous response
logloss Bernoulli log

(
µ

1−µ
)

= f(x) Regression for classification
problems

gamma::neginv Gamma − 1
µ = f(x) Gamma regression for positive

continuous response
gamma::log Gamma log(µ) = f(x) regression for positive continu-

ous response
poisson Poisson log(µ) = f(x) Poisson regression for count data

exhibiting V ar(y|x) = E[y|x]
negbinom Negative binomial log(µ) = f(x) For count data exhibiting

overdispersion. dispersion
must be supplied to gbt.train

Table 1: Overview of the loss functions available in agtboost.

it: 1 | n-leaves: 3 | tr loss: 0.2166 | gen loss: 0.2167
it: 100 | n-leaves: 2 | tr loss: 0.1983 | gen loss: 0.2019
it: 200 | n-leaves: 3 | tr loss: 0.1927 | gen loss: 0.1987
it: 300 | n-leaves: 2 | tr loss: 0.1898 | gen loss: 0.1978

Note the verbose=100 argument, which creates output at the first and every 100’th iteration.
The output consists of the iteration number, the number of leaves of the k’th tree, the
training loss and approximate generalization loss. By default, the global-subset algorithm
using inequality (18) is used instead of (15), if the latter is preferred, specify algorithm =
"vanilla" as an argument to gbt.train.
The overloaded predict function may be used to check the fit on the training data, or to
predict new data. To predict data, just pass the model object and the design matrix of data
to be predicted

R> prob_te <- predict(mod, caravan.test$x)

It is often meaningful to do some formal goodness-of-fit test in addition to only visually
inspecting the fit. A quite natural and general way to do this for loss functions associated
negative log-likelihoods, is to use the Kolmogorov-Smirnov test (Kolmogorov 1933). The idea
is to, for a continuous response, perform the CDF transform

ui = p
(
y ≤ yi; θ̂(xi)

)
, (19)

preferably for test-data, and test the ui’s against the standard uniform distribution, which
holds if the model is correctly specified. If the response is discrete, then employ the transform

ui = p
(
y ≤ yi − 1; θ̂(xi)

)
+ V p

(
yi; θ̂(xi)

)
, (20)

where V ∼ U(0, 1), instead of the CDF transform. All of this is implemented in the gbt.ksval
function. To apply it to the caravan data model, simply write

106 Paper III

Berent Lunde, Tore Kleppe 11

CDF transformed observations

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Histogram: Model−CDF transformed observations
One−sample Kolmogorov−Smirnov test: 0.3731602

MSKA
MINK4575

MOPLMIDD
PAANHANG
MGEMOMV

PBESAUT
APLEZIER
MOSTYPE

PZEILPL
MBERMIDD

PINBOED
MGODGE

ALEVEN
MINK7512
PWAPART

MAUT0
MAUT1

MINKGEM
MINKM30

MOPLLAAG
MKOOPKLA

PPLEZIER
PBRAND

PPERSAUT

Importance in percent

0 10 20 30 40

Feature importance

Figure 3: [left] Histogram generated by gbt.ksval, where test-response observations are
transformed using (20). As the histogram closely resembles the histogram of standard uni-
formly distributed random variables, the model should not be discarded, something also
indicated by the formal Kolmogorov-Smirnov test. [right] Feature importance plot generated
by gbt.importance.

R> gbt.ksval(object = mod, y = caravan.test$y, x = caravan.test$x)

Classification
One-sample Kolmogorov-Smirnov test
data: u
D = 0.021877, p-value = 0.3732
alternative hypothesis: two-sided

which produces output of the test-statistic, the p-value and the histogram in Figure 3. Note
that for multi-parameter distributions, such as the Gaussian, gamma and negative binomial,
the remaining parameters are assumed constant and maximum-likelihood estimates are pro-
duced during evaluation of the gbt.ksval function to allow for the transforms (19) and (20).
The estimates will then be produced in the output.
In addition to the gbt.ksval function, the gbt.importance function can be used to inspect
the model. This function produces a traditional feature importance plot (see e.g. Hastie et al.
(2001, Chap. 15.3.2)), but different from other packages, the calculations are with respect to
approximate generalization loss. Formally, for non-leaf nodes t in all trees in the ensemble,
the value

δ(2− δ)Rt + δC̃Rt

is added to the j-th element of a vector, where j is the j-th feature used for the split. The
way in which gbt.importance calculates importance, and due to the sparse models produced
by gbt.train, know-how tricks such as inserting Gaussian noise-features are not necessary

Paper III 107

12 agtboost: Automatic Function Estimation

Algorithm Loss AUC Time #trees #leaves #features
n = 100

vanilla 0.6728 0.5942 0.1417 32 64 1
global-subset 0.6734 0.5942 0.1386 30 60 1

n = 1000
vanilla 0.6483 0.703 2.335 162 422 7

global-subset 0.6437 0.7071 1.623 184 504 8
n = 10000

vanilla 0.5692 0.7796 1.191 684 4976 22
global-subset 0.5708 0.7781 1.201 768 4008 18

n = 100000
vanilla 0.5317 0.8087 32.57 1055 43908 28

global-subset 0.5321 0.8085 34.17 1176 29105 28

Table 2: Results of the two algorithms available in agtboost for different number of training
samples available. The Loss (Logloss) and AUC is computed on the test set with 1 million
observations. The remaining columns are the total number of trees in the models, the total
number of leaves summed up over all trees, and the total number of features used by the
models. Loss metrics and computation times are almost identical, while complexity and
construction differs.

when using agtboost. The right plot in Figure 3 produces the feature importance plot for the
caravan model. Note that only 24 of 85 possible features are used by the model. Re-training
the model with only these relevant features might improve the fit, as the 61 features not
used by the model are noise that mask information and enlarges the absolute value of the
information criterion (12).

6. Higgs big-data case study
The two variants of agtboost is tested across increasing training sizes of a dataset, and
their intrinsic behaviour with regards to reduction in loss, number of trees and leaves of
trees, numbers of features used, and convergence across boosting iterations is studied. We
refer to models using inequality (15) as "vanilla" models, and models using the global-subset
algorithm (18) as "global-subset" models. To this end, the Higgs dataset1 is used. The Higgs
data consists of 11 million observations of a binary response and 28 continuous features.
The first 10 million observations are used for training, and the last million for testing for
which results are reported. The training set is sampled randomly without replacement for
n = {102, 103, 104, 105} observations, and trained on the respective training indices. Tests
and reported results are always done on the one-million sized test-set.
In the "Loss" column of Table 2 it is seen that the test-loss is decreasing in the size of the
training set, as it should. Figure 4 compliments this result: Each model is seen to converge
and values of test loss flatten out as a function of boosting iterations. But, as the training
set increases, more information in the data is present that allow lower points of convergence.
None of the models are seen to overfit in the number of boosting iterations, as the curves

1https://archive.ics.uci.edu/ml/datasets/HIGGS

108 Paper III

Berent Lunde, Tore Kleppe 13

0.55

0.60

0.65

0.70

1 4 16 64 256 1024
Boosting iteration

Te
st

 lo
ss

model

global−subset−100

global−subset−1000

global−subset−10000

global−subset−100000

vanilla−100

vanilla−1000

vanilla−10000

vanilla−100000

Figure 4: Test loss as a function of boosting iterations, for the vanilla and global-subset
models trained on n ∈ {100, 1000, 10000, 100000} training observations. More training obser-
vations imply more information, which allow for lower points of convergence and a greater
number of boosting iterations. The methods stop at different boosting iterations. Notice the
log scale on the horizontal axis.

4

16

64

256

1 4 16 64 256 1024
Boosting iteration

Nu
m

be
r o

f l
ea

ve
s

Method: Vanilla

4

16

64

256

1 4 16 64 256 1024
Boosting iteration

Nu
m

be
r o

f l
ea

ve
s

Method: Global−subset

#Training observations 100 1000 10000 100000

Figure 5: The number of leaves for the k’th tree (boosting iteration k) for different agtboost
models trained on the Higgs data with a varying number of training observations. Notice the
log scale on both the vertical and horizontal axes.

never increase.
While the two variants of agtboost converge to similar results in terms of test-loss, and the
methods take a similar amount of time (column 5 of Table 2), their behaviour during training
and the complexity of the resulting models differ. Figure 5 shows two different ways of learning
the structural signal in the data. The early trees of the vanilla algorithm start with deep trees,
and as the signal is learned, trees become smaller. Trees from the global-subset algorithm,
on the other hand, start out with mere tree stumps, and then increase in size as interaction
effects become more beneficial to learn than additive relationships. Trees do however not
reach the depth of the deepest early trees of the vanilla algorithm. As interaction effects

Paper III 109

14 agtboost: Automatic Function Estimation

are taken into the model, these trees also become smaller before convergence of the boosting
algorithm. The total number of trees and leaves of the models are shown in columns 6 and 7
in Table 2. While the global-subset algorithm produces models with a larger number of trees
than the vanilla algorithm, the total number of leaves is typically smaller, but without a loss
of accuracy. As sparsity is a good defence against the curse of dimensionality, the performance
of the global-subset algorithm might become more evident on big-p small-n datasets.

7. Discussion
This paper describes agtboost, an R package for gradient tree boosting solving regression-
type problems in an automated manner. The package takes advantage of recent innovations
in information theory with regards to the splits in gradient boosted trees Lunde et al. (2020),
implements these in C++ for fast computation and employs RcppEigen for bindings to R
which provides user-friendly application. The package comes with two different utilizations
of the information criterion (12), that vary little in final accuracy and in training time but
vary in terms for individual tree-size and complexity. The package can be used for early
exploratory data analysis for selecting features and an appropriate loss-function, but also for
building a final highly predictive model.

References

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19(6), 716–723.

Breiman L, Friedman J, Stone CJ, Olshen RA (1984). Classification and Regression Trees.
CRC Press.

Burnham KP, Anderson DR (2003). Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Springer Science & Business Media.

Chen T, Guestrin C (2016). “XGBoost: A Scalable Tree Boosting System.” In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pp. 785–794.

Cox JC, Ingersoll JE, Ross SA (1985). “A Theory of the Term Structure of Interest Rates.”
Econometrica, 53(2), 385–407.

Dorogush AV, Ershov V, Gulin A (2018). “CatBoost: Gradient Boosting with Categorical
Features Support.” arXiv preprint arXiv:1810.11363.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal
of Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08. URL http://www.
jstatsoft.org/v40/i08/.

Friedman J, Hastie T, Tibshirani R, et al. (2000). “Additive Logistic Regression: A Statistical
View of Boosting (With Discussion and a Rejoinder by the Authors).” The Annals of
Statistics, 28(2), 337–407.

110 Paper III

Berent Lunde, Tore Kleppe 15

Friedman JH (2001). “Greedy Function Approximation: a Gradient Boosting Machine.”
Annals of Statistics, pp. 1189–1232.

Gombay E, Horvath L (1990). “Asymptotic Distributions of Maximum Likelihood Tests for
Change in the Mean.” Biometrika, 77(2), 411–414.

Guennebaud G, Jacob B, et al. (2010). “Eigen v3.” http://eigen.tuxfamily.org.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning. Springer
Series in Statistics New York, NY, USA:.

Huber PJ, et al. (1967). “The behavior of maximum likelihood estimates under nonstandard
conditions.” In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pp. 221–233. University of California Press.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017). “LightGBM:
A Highly Efficient Gradient Boosting Decision Tree.” In Advances in Neural Information
Processing Systems, pp. 3146–3154.

Kolmogorov A (1933). “Sulla determinazione empirica di una lgge di distribuzione.” Inst.
Ital. Attuari, Giorn., 4, 83–91.

Lunde BÅS, Kleppe TS, Skaug HJ (2020). “An information criterion for automatic gradient
tree boosting.” arXiv preprint arXiv:2008.05926.

Mason L, Baxter J, Bartlett P, Frean M (1999). “Boosting Algorithms as Gradient Descent
in Function Space (Technical Report).” RSISE, Australian National University.

Murata N, Yoshizawa S, Amari Si (1994). “Network Information Criterion-Determining the
Number of Hidden Units for an Artificial Neural Network Model.” IEEE Transactions on
Neural Networks, 5(6), 865–872.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Stone M (1974). “Cross-Validatory Choice and Assessment of Statistical Predictions.” Journal
of the Royal Statistical Society. Series B (Methodological), pp. 111–147.

Takeuchi K (1976). “Distribution of Information Statistics and Validity Criteria of Models.”
Mathematical Science, 153, 12–18.

Van Der Putten P, van Someren M (2000). “CoIL challenge 2000: The insurance company
case.” Technical report, Technical Report 2000–09, Leiden Institute of Advanced Computer
Science

White H (1982). “Maximum likelihood estimation of misspecified models.” Econometrica:
Journal of the Econometric Society, pp. 1–25.

Paper III 111

16 agtboost: Automatic Function Estimation

Affiliation:
Berent Ånund Strømnes Lunde
Department of Mathematics and Physics
Faculty of Science and Technology
University of Stavanger
Kristine Bonnevies vei 22
4021 Stavanger, Norway
E-mail: berent.a.lunde@uis.no

112 Paper III

