Ingo Schöwandt

Achieving carbon neutrality in Germany by 2050

Leveraging an explorative system dynamics modelling approach to determine suitable policy options for the German energy transition in the sectors housing and personal transportation Guidelines for Master thesis in Energy, Environment and Society

UNIVERSITY OF STAVANGER

MASTER DEGREE IN Energy, Environment and Society

MASTER THESIS				
CANDIDATE NUMBER:	5622			
SEMESTER:	6			
AUTHOR:	Ingo Schönwandt			
SUPERVISOR:	Thomas Sattich			
MASTER THESIS TITLE: dyna	ieving carbon neutrality by 2050 - Leveraging an explorative system amics modelling approach to determine suitable policy options for the man energy transition in the sectors housing and personal transportation			
SUBJECT WORDS/KEY WOR	energy transition, system dynamics, peronal transportation, RDS: housing, Germany, carbon neutrality, integrated modelling, robust decision making, policy analysis			
PAGE				
NUMBERS: 59				
STAVANGER				

Achieving carbon neutrality in Germany by 2050:

Leveraging an explorative system dynamics modelling approach to determine suitable policy options for the German energy transition in the sectors housing and personal transportation

Master thesis submitted to the University of Stavanger in partial fulfillment of the requirements for the degree of

Master of Science

in Energy, Environment and Society

by

Ingo Schönwandt

August 2020

Associated code, models and data are available at:

https://github.com/ingoswdt/SDEnergyTransitionGermany

Ingo Schönwandt: Achieving carbon neutrality in Germany by 2050: Leveraging an explorative system dynamics modelling approach to determine suitable policy options for the German energy transition in the sectors housing and personal transportation (2020)

This work is licensed under a Creative Commons Attribution 4.0 International License.

Supervisor: Thomas Sattich (University of Stavanger)

Supported by Erik Prout (TU Delft), Mikhail Sirenko (TU Delft)

Thanks!

Special thanks go to Thomas Sattich, made the exchange to TUDelft possible and is the reason why I went into this field of research at all. He therefore enabled me to discover the great world of engineering and policy analysis. Furthermore, I am also thankful for the support of my professors at UiS and TUDelft alike.

Special thanks go also to the great fellows in MEES and EPA, for their spirit, dedication and motivation they constantly bring to the table that made those many long working hours some of the best I have had so far!

Table of Content

- 1 Introduction: Facing the energy transition with simulation modelling 8
- 1.1 Problem definition 8
- 1.1.1 The Grand Challenge of the Energy Transition 9

1.1.2 Case study: The German energy transition focusing on transportation and housing 12

1.1.3 Opportunities: systems thinking, simulation modelling, robust and adaptive policy-making 15

- 1.2 Research Gap 17
- 1.3 Research Approach 18
- 2 Research context 21
- 2.1 German energy transition policy strategy 21
- 2.1.1 Energy transition: Energy 22
- 2.1.2 Energy transition: Housing 23
- 2.1.3 Energy transition: Personal transportation 25
- 2.1.4 Interdependencies between the focal sectors 28
- 2.2 Policy dimensions and implications on modelling 28
- 2.2.1 Financial and non-monetary resources 29
- 2.2.2 Social factor of choice 30
- 2.2.3 Radical policy approaches 30
- 2.2.4 Implications for an energy transition model 31
- 2.3 System boundary definition 31
- 2.4 Political decision making under deep uncertainty 32
- 2.4.1 Deep uncertainty in political decision making 32
- 2.4.2 Robust decision making 33
- 2.4.3 Exploratory Modelling and Analysis 34
- 3 Methodology 36
- 3.1 Choosing the modelling formalism 36
- 3.1.1 System Dynamics (SD) 36
- 3.1.2 Agent-based modelling (ABM) 37
- 3.1.3 Choice of the modelling formalism 37
- 3.2 Data 38
- 3.2.1 Input data selection 38
- 3.2.2 Input uncertainty handling 42
- 3.2.3 Policies specification data 43
- 3.2.4 Conclusion on Data use 43
- 3.3 Model conceptualization 43
- 3.3.1 Conceptualizing the Energy Sector 43

- 3.3.2 Conceptualizing the Housing Sector 46
- 3.3.3 Conceptualizing the Personal Transportation Sector 50
- 3.3 Verification and Validation 51
- 3.4 The Energy Transition Model 53
- 3.5 Evaluation methods 53
- 3.5.1 Reference Scenario 53
- 3.5.2 Four extreme scenarios 54
- 3.5.3 Experimentation designs 54
- 4 Experimentation and Results 55
- 4.1 Outcomes of the extreme scenarios55
- 4.2 Outcomes of the Sensitivity Analysis 56
- 4.2.1 Experiment 1 (BAU) 56
- 4.2.2 Experiment 2 56
- 5 Discussion 58
- 6 Conclusion 59
- Bibliography60
- Appendices 76

1 Introduction: Facing the energy transition with simulation modelling

The earth is in turmoil, societies and ecosystems alike are facing various threats that may or may not be interlinked and share similar root causes. Aside from persisting disputes over dominions, resources, and religious conviction, climate change is one of the international grand challenges of today. Global temperature rise is responsible for local draughts causing famine and insecurity, leading to further conflict and increased emigration in affected regions (Lustgarten, 2020; McCormick, 2018). Simultaneously, coastal regions and island states face the threat from rising sea levels resulting from the expansion of the earth's water bodies, as the volume of water molecules increases with temperature, and the melting of glaciers and the land-based ice shield in the polar regions (Carrington, 2017, 2020; Quaile, 2012). The UN Refugee Agency¹ counted about 79,5 million refugees in 2019. Of these about 8 million people moved due to climate change in 2019 (Lustgarten, 2020), which the latest Groundswell report by the World Bank estimates could become over 140 million by 2050 (Rigaud et al., 2018). In consequence, many fear that vast areas of the earth could become uninhabitable before the year 2100 and future generations would greatly have to suffer should the temperature trend continue unhalted, including huge losses of flora and fauna around the globe that form habitats to a vast number of species and together guarantee our life on earth (McCormick, 2018; Rigaud et al., 2018). Such a future must be prevented and one critical corner stone in this conquest is the energy transition of our society. But how to best evaluate which policies are best suited to achieve change as profound and complex as the energy transition?

This master thesis presents a deep-dive into the complexity of political decision making in the context of the energy transition as a climate protection mitigation approach by applying simulation modelling and quantitative methods. This work focuses specifically on the climate protection strategy chosen by the German government following its sectoral scope, in order to better understand the policies' potential network effects in between the sectors and the role of society in executing the German energy transition strategy. While already keeping the geographical focus in mind, the following sections will delimit the specific positioning of this thesis and give an overview over the research structure. The first section with more detail discusses the problem posed by climate change and the challenge of the energy transition as a means to fight climate change. Subsequently, suitable research approaches, and depicting the case of Germany as the scope of this study (1.1). This problem formulation is used to highlight the research gap in section two (1.2). On this basis the main research question and its four sub-questions are developed (1.3) that serve to structure this research. Furthermore, the research flow presents a detailed and visual outline of this research (1.4). Finally, this introductory chapter will be concluded to hand over to the literature review (1.5).

1.1 Problem definition

This section sets off with a brief outline of the severity of climate change and need for an energy transition, while paying special attention the aspects that define the inherent dilemma of the matter (section 1.1.1). This part concludes with a summary on the complexity and uncertainty of the energy transition. Subsequently, systems thinking is introduced in combination with modelling and simulation techniques as a suitable strategy for structuring the challenge of the energy transition and thus mitigating the problem of complexity (section 1.1.2). Additionally, the concepts of robust and adaptive policy-making are introduced as an opportunity to approach the uncertainty in political

https://www.unhcr.org/refugee-statistics/

decision making. Finally, the case study is introduced by outlining the properties and status quo of the German energy transition (section 1.1.3). Hence the subsequent section will define the research gap.

1.1.1 The Grand Challenge of the Energy Transition

Scientists and institutions agree that climate change is to a large extent caused by our global society and gives evidence to what some call "the Anthropocene", expressing that human behavior has begun to dominate the natural cycles of the earth's systems (Lenton, 2016; Nordhaus, Shellenberger, & Blomqvist, 2012; van Sluisveld and Harmsen et al., 2018). Excessive greenhouse gas (GHG) emissions through the burning of fossil fuels from human societies thereby change the composition of the gas that constitutes the earth's atmosphere, which leads to a greenhouse-like warming effect on our planet (Watts, 2019). Researchers, governments and international organizations agree that GHG emissions have to be limited to net zero as soon as possible but the latest by 2050 in order to keep the planet's surface temperature increase below 2°C and prevent irreversible effects. The major sources of GHG emissions are fossil energy resources such as coal, oil and natural gas that are burned in societal processes. By far the largest amount of human-made GHG emissions is emitted from energy conversion processes in various sectors. The transportation sector requires oil derivatives to power combustion engines and turbines, citizens fire their homes with fossil fuel for heating rooms and drinking water or use fossil sources for cooking, similarly the commercial and services sector as well as the industry sector use fossil fuels for heating, and the energy sector burns fossil fuels to power generators and produce electricity. Collectively adapting society and technologies to a different energy use behavior free of GHG emissions is the ultimate goal of the "energy transition".

Fossil fuels present a cheap and highly potent energy source, easily stored and transported, available and accessible in large quantities, and thus suitable to fulfil the energy hunger of developing and developed countries alike. They were once the enablers and drivers in the industrial revolution, a milestone for mankind, and are still today the foundation of wealth for many countries. Despite readily available alternative energy sources, fossil fuels remain nigh indispensable for our society. At least since the 1980s, however, they have been known to hold the potential for our own demise (Franta, 2018; Climate Files a; Climate Files b). Yet the dilemma of climate change is even more profound.

Pointing towards a state of uncertainty

Climate change is an international grand challenge just the same as a large number of people living under inhumane conditions, facing poverty, hunger and inequality among others. These problems are incorporated in the 17 sustainable development goals (SDGs) defined by the UNFCCC as an agenda to achieve and ensure dignified living conditions and equal opportunities for future generations². Additionally, small island states and less developed countries, many of which are located in warmer climate areas, are those expected to be affected first and strongest by climate change impacts. At the same time, corresponding to their level of development and economic output, these societies tend to contribute the least to the climate change problem and thus have little influence on making a change. On top of GHG emissions accelerating the atmospherical green house effect, also other interferences in other spheres of the earth are affecting the climate change, such as deforestation, impact on the soil from intensive agriculture, and a change in the earth's albedo effect due to diminishing bright reflective ice and snow surfaces around the globe (United Nations, 2018). Following the technological development and globalization, all these factors became deeply intertwined with the human society.

as well as peoples' prosperity in the face of the aforementioned poverty and hunger, climate change brings us in a quandary and state of great uncertainty: both action and inaction to reduce GHG emissions pose a potential threat to societies.

An argument for energy transition

Nonetheless, since, despite brave efforts by Climeworks³ (Tsanova, 2020) and others⁴, there is little hope for industrial plants to absorb GHG emissions from the atmosphere equal to the amounts that they are being emitted or feasible solutions that capture GHG emissions right at their source⁵, there is no way around the energy transition as a means to fight climate change (Rueter, 2014). Thus the use of fossil fuels in the aforementioned sectors needs to be replaced by other energy carriers. For many applications electricity is considered a valid and feasible alternative as it is a versatile form of energy and is already in wide use. Additionally, electricity can easily be generated with environmentally friendly technologies from renewable energy sources like the wind and solar radiation. However its properties require different handling and infrastructure compared to fossil fuels, such as a form of battery or electricity grid (power lines). Even though renewable energy sources are abundant and basically accessible everywhere around the globe, the energy content that can be captured from wind and solar radiation per square meter is limited and not scalable as compared to fossil fuel mining and drilling sites and fossil fuel power plants. Thus the infrastructure requirements for the use of electricity are significantly higher and the electricity production capacity is dependent on the dedicated surface area, which are the main points of criticism in the energy transition, not considering the specific technical challenges regarding electricity balance and grid stability. To overcome these shortcomings, a lot of research is being done to find suitable intermediate energy carriers to facilitate the storage and transportation of electricity, such as hydrogen and sustainably produced methane, however, so far to no avail for large-scale rollouts ("Power-to-Gas", n.d.). Additionally, the energy transition is also a call to drastically increase energy efficiency throughout society. First, this can directly reduce GHG emissions simply from less energy demand. Second, this also aims to mitigate the mismatch between replacing potent fossil power plants with space-intensive renewable power plants and increasing the demand for electricity by connecting also the energy intensive processes to the electricity grid, such as transportation, household heating and industrial process heat. Such undertaking obviously entails profound infrastructure changes as well as adapting different habits in handling and conserving energy in our society.

A state of paralysis

The political track record on executing the energy transition> As stated above, the double-edged aspects of fossil energy resources and their connection to climate change have been uncovered about 40 years ago. In the year 1992 the United Nations Framework Convention on Climate Change (UNFCCC) was formed to mark the initiation of a unified attempt of the world's countries to take action against climate change by means of an energy transition. However, the lack of will, generous targets and loose regulations, and a strong opposition produced poor results and so global GHG emissions continued to grow, along with the problem of climate change. In 2015 the matter became pressing enough so that a total of 197 UN member states signed the so-called Paris Agreement (further also referred to as 'the Paris goals'), acknowledging the urgency of and committing to significantly reducing GHG emissions by 2050, leaving the development specific strategies to the states (Crippa et al., 2019; IPCC, 2018; United Nations, 2015).

³ https://www.climeworks.com

⁴ https://www.ccsnorway.com

⁵ https://www.forbes.com/sites/energyinnovation/2017/05/03/carbon-capture-and-storage-an-expensive-option-for-reducing-u-s-co2-emissions/

Despite the unified demonstration of will in 2015, five years later the struggle to act on the Paris Agreement continues globally as well as nationally and locally. Many leaders are hesitant because a global energy transition could potentially threaten the wealth and development of many countries and individuals. On the one hand, the "multi-level perspective" (MLP) developed by F.W. Geels (2002, 2011) finds confirmation in current events, where incumbents in politics, business and industry are trying hard to defend their position, opposing vital change and stricter regulations, downplaying the risks of climate change compared to economic losses (DeFries et al., 2019; Holden, 2020; Rosenthal, 2018). Many nations have been built and optimized to run on fossil fuels and many others are following, so the vested interests are enormously powerful just as the transition to new technologies can potentially make decades of substantial investments and work obsolete, not to mention that it questions many peoples' habits and ideas of how the world works. On the other hand citizens worldwide are mobilizing and demand action. Civil protests and movements such as 'Fridays for Future', 'Global Climate Strike' and 'Extinction Rebellion' keep fiercely calling to leaders worldwide to increase efforts to reach the climate targets and stop climate change (Farand & Russo, 2019; Pinzler, 2019; Sauer, 2019). As a result, the latest United Nations Climate Action Summit 2019, organized with great care by the UN Secretary General António Guterres, produced a mirror image of the global state of paralysis on this matter. Despite the strong consensus and high risk potential, "around the Summit the question has become: if [alternative] solutions are cheaper, public opinion is mobilized and [adverse] impacts much clearer why is political action not following?", summarizes Mabey (2019), co-founder and CEO of the independent think tank "Third Generation Environmentalism" (E3G).

Complexity and uncertainty in the energy transition

Needless to say, just as climate change, the energy transition is characterized by high levels of complexity and uncertainty. This extends to the inter-temporality of the problem, including the natural human weakness of making long term choices, and the fact that societies are highly diverse and interconnected. The latter implies great interdependence with citizens' environment and thus societies typically simultaneously benefit and suffer from the properties of their surroundings. The balance of both determines whether they thrive or wither in the short and the long term. In this regard, policy choices face the uncertainty of adequately evaluating the short and long term drivers. In consequence, climate change policies may require short term sacrifices in order to obtain long term gains, which may require decision that demand sacrifices in the short term effects to those in the far future. Since climate change is an intergenerational threat that is expected to affect future generations a lot more than today's population, who is the only one able to prevent or mitigate the adverse effects. This compromise is naturally difficult to accept for many people.

Additionally, the problem of complexity implies that the actual effectiveness (a policy's impact) and efficiency (a policy's ratio of intended to unintended effects) of policies are uncertain and difficult to accurately assess beforehand. While citizens' characteristics, beliefs, needs, and preferences are very diverse, their individual behavior and actions are to the most part unpredictable. Yet policies always target collectives of citizens and thus are prone to unjustly affect some individuals, which negatively impacts the outcome of a policy as a whole.

Understanding climate change as an issue of high complexity and uncertainty outlines the extent of the problem at hand. Before going into solution finding, the case of the German energy transition is introduced in the next section, which links the challenge to the real world. This allows to pin-point specific problem areas.

1.1.2 Case study: The German energy transition focusing on transportation and housing

Germany is a predestined object of research to explore the challenge presented by the energy transition in well developed and economically strong countries, which are the largest contributors to climate change. The Germany government is a strong advocate of the Paris Agreement and climate action but finds itself caught in the middle of opposing stakeholders just the same as many other countries (Crippa et al., 2019). Furthermore, Germany is among the most developed countries with sophisticated political and social systems, a strong economy with international ties, advanced industries, and a high level of research and development. It is the largest EU-28 member state in many regards, accommodating about 16% of the population, almost 21% of economic output, and accounting for 20% of the GHG emissions, the largest contribution to climate change among the EU-28 countries (EEA, 2018). One could argue for less emissions per capita and economic performance compared to other member states but the European reduction targets to achieve near or net zero GHG emissions by 2050 apply just the same. Despite its economic strength, the country is struggling to achieve its Paris goals and self-set targets, which prompted harsh protests (Germany to fall short of 2020 climate goals: report, 2019; "Große Koalition einigt sich auf Klimaschutzpaket", 2019; "Kanzleramtschef verteidigt CO2-Preis-Pläne", 2019; Pinzler, 2019; Sauer, 2019; The cost of climate inaction, 2018; United Nations, 2018).

Energy transition ambitions in Germany

In that regard, the Paris Agreement, similar to most international agreements, suffers from being a merely voluntary pact calling upon the self-responsibility of its signatories. Regardless, the German government has repeatedly demonstrated its determination to achieve its Paris goals by implementing national policies even though the several opposing parties and environmental activists have repeatedly questioned the policies' effectiveness (Bovermann, 2020; Haak, 2020; Helberger, 2019; Záboji, 2019). Being a full member of the European Union (EU), which has implemented the Paris goals in its own policies and has made corresponding legislation, however, partially fills this void and increases the pressure on its member states to meet their targets, as shown by the ensuing law suits pending at the European Court of Justice (ECJ) regarding air pollution infringement of

Field of action	1990 (mio tons of CO2 equivalents)	2014 (mio tons of CO2 equivalents)	2030 target (mio tons of CO2 equivalents)	2030 target (reduction in % compared to 1990)
Energy sector	466	358	175-183	62-61%
Building sector	209	119	70-72	67-66%
Transportation sector	163	160	95-98	42-40%
Industry sector	283	181	140-143	51-49%
Agriculture sector	88	72	58-61	34-31%
Others	39	12	5	87 %
Sum	1248	902	543-562	56-55%

Table 1.1.2: Emission targets per field of action

source: KfW Bank, n.d. b

several member states (European Commission, 2018; Osterath, 2018). Certainly, Germany's federal and democratic foundation also plays a role as it systemically tends to strengthen permanence and slow down change, making radical and urgent projects like the energy transition a specific challenge.

Undeterred by the German government's courageous performances on recent climate conferences, according to the German climate protection report 2018 (BMU, 2019: Klimaschutzbericht 2018), is not meeting its current targets and is thereby also critically endangering meeting its 2030 and even 2050 targets. To date, the German primary energy consumption over all sectors relies over 78,3% on fossil fuels (35,3% oil, 24,9% natural gas, and 17,9% coal derivatives) (AG Energiebilanzen (AGEB), 2020b) with a contribution to final energy consumption from transportation of 30%, households of up to 25%, industry of 29%, and the commerce, trade and services sector of 15% (AG Energiebilanzen (AGEB), 2019b).

Overall there are three milestones from the initiation of the climate protection strategy on the road to achieving a net zero GHG emissions society. The first milestone is hit this year in 2020 with a target of a total GHG emissions reduction of 40% compared to 1990. The second milestone is set for 2030 targeting a reduction of 55% of total emissions compared to 1990. The effort is strategically distributed among the sectors (see table 1).

In 2050 the last milestone marks the German "near zero GHG emissions" target, referring to an 80%-95% emissions reduction with respect to the baseline year. Figure 1 depicts the historic GHG emissions per sector, a total emissions estimate for the year 2020 as well as detailed emissions targets per sector for the year 2030 and a rough trajectory for the year 2050. Two different approaches apply to address the GHG emission targets: (1) use less energy through reduced use of service and/or improved energy efficiency and (2) use energy from sources with less GHG emissions by transitioning

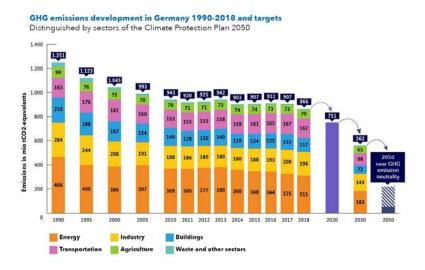


Figure 1.1.2: GHG emissions development in Germany 1990-2018 and targets. Based on: Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU, 2019b)

to alternative technologies.

Germany's two problem sectors

However, Germany has two problem sectors in the quest of reducing GHG emissions: "Traffic and Transport" (transportation) and "Building and Living" (housing) (BMU, 2016, 2019e). Compared to 1990 levels, the emissions from transportation remained at about the same levels because while the efficiency of automobiles greatly increased, so did the number and use of cars – a rebound-

effect. In contrast, the emissions from the "Building and Living" sector were following a promising trajectory until 2014 when the trend reversed and emissions started to increase again (BMU, 2019: Klimaschutzbericht 2018). Subsequently, the gap towards Germany's 2030 and 2050 climate protection targets for both sectors is larger than planned.

Considering that the macro-trends of increased globalization and technological advances will continue to making it easier and cheaper to travel, it can be assumed that the demand for transportation will stay the same or even increase in the long term. As mentioned before, at the same time the efficiency of existing transportation technologies is already very far developed. Thus a suitable strategy for the transportation sector should focus on a transition to alternative fuels, which can include hybrid or battery electric and (in the medium future) hydrogen vehicles and also other modes of transportation like cycling, public transport and railways, for example.

With regard to the housing sector, the German government opted for a combined approach of reducing energy consumption and switching to more environmentally friendly energy sources (Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU), 2016, 2019e). Until now new standards and technologies in the housing sector found implementation mostly through new constructions. Therefore the energetic quality of the German housing stock is very diverse and similar to the large range of construction year and style, the insulation levels range from nearly none to ultra high-efficiency insulation that allows households to produce more energy than they consume within a year (so-called "energy-plus-houses"). According to the Umweltbundesamt (UBA) (2020), in 2018 households used on average 67,6% of their total energy consumption for heating, over 15,9% for warm water heating, and 16,5% for electricity (not considering energy for motor vehicles). The main sources of heating in Germany are natural gas (45%) and heating oil (20%) (Statistisches Bundesamt, 2018). Key measures for the energy transition in the housing sector therefore are insulation improvements to reduce the heating energy consumption, solar thermal and photo voltaic add-on installations as renewable sources of energy, turning households into so-called prosumers and reducing their energy demand from external sources, and replacing old fossil heating systems, especially those based on heating oil (BMU, 2016, 2019e; BMWi, 2015, 2019a, 2019b, 2019c).

At the same time, the energy sector is undergoing a series of significant changes. First, the last nuclear-fired power plants are set to phase-out by the end of 2022 as a consequence of the 2011 Fukushima incident (Presse- und Informationsamt der Bundesregierung, 2011). Second, as a measure to reduce GHG emissions the German government recently sealed the phase-out of coal-fired power plants the latest by 2038 with the option of an early phase-out in 2035 (Presse- und Informationsamt der Bundesregierung, 2020). Fortunately, the electricity production capacity from off-shore wind power shall be expanded drastically in order to reach four times its current capacity by the year 2030 (Deutscher Bundesrat, 2020a). Recent discussions also demanded appropriate adjustments of regulations and support relating to on-shore wind and solar energy (Deutscher Bundesrat, 2020a). The overarching question is if the capacity falling away from fossil power plants can be replaced in time to meet the electricity demand, not even considering technical challenges regarding electricity grid stability (Enkhardt, 2017).

As previously discussed, the production factors of finance, natural resources and labor force also play a significant role in the energy transition. The available budget of households in combination with governmental subsidies in Germany set natural limits in the factor endowment just as limitations presented by maximum extraction and production capacities for natural resources and products and the maximum available labor force to execute the required changes and maintain future infrastructure. So far the German government is specifically applying monetary incentives to stimulate households to make efficiency improvements and buy more electric vehicles. Such demand-side policies strengthen

the market-pull effect, hoping that supply of materials, products, and workers follows suit.

In summary, the German government is simultaneously applying supply- and demand-side measures in order to master the energy transition. Critics of the current strategy are very concerned with the balance of energy supply and demand. Not only are major electricity capacities planned for phaseout in the near future while the construction of volatile wind and solar power plants have kept a slow pace. The government also pursues the goal to convert significant amounts of personal individual transportation from fossil fuel to electricity powered automobiles, as outlined in the Klimaschutzplan 2050 (BMU, 2016, 209d). Thus the German strategy takes into consideration that a temporary reduction in electricity supply may be accompanied by a potential increase in electricity demand. The consumer-side transition efforts are supported by various financial aid schemes by the German government. However, can financial incentives as demand-side measures be effective enough to achieve the energy transition goals? Subsequently, this research is not solely about the balance between supply and demand, also the influence of finance, workforce, and consumers' choices play a critical role. The energy transition is a social challenge and therefore multiple times more complex than "maintaining the balance". These circumstances are only adding to the already high difficulty of the matter, underlining the question: "How promising is the current strategy to achieve net zero emissions in the transportation and housing sectors by 2050 in Germany and what else needs to be done?"

With these concepts and features in mind, a number of approaches become apparent as an opportunity to tackle the German energy transition as a contribution to climate change mitigation.

1.1.3 Opportunities: systems thinking, simulation modelling, robust and adaptive policy-making

Of course there is not one simple answer to this complex problem, as is the nature of societal challenges such as climate change and the energy transition. Li, Trutnevyte and Strachan (2015) summarize that "any transition of today's energy system to a state with dramatically lower greenhouse gas emissions is not only a technical matter. The behavior, values and strategies of individual actors as well as policies, regulations and markets also shape energy system transitions. Understanding how such sociotechnical energy transitions might be brought about is a major interdisciplinary research challenge." (p.290). Li, Trutnevyte and Strachan (2015) highlight the embeddedness and interdependence of the use of energy in today's society, stressing that the endeavour to pursue radical change of a society's energy consumption behavior may on the one hand also be dependent on properties not directly related to and on the other simultaneously have an affect on societal spheres not directly linked to the energy consumption itself. These complexity characteristics make political decision making towards a GHG emissions-free society particularly challenging because the total range of effects is difficult to assess. However, several approaches can be combined to reduce said complexity. Breaking down the problem into a set of sub-systems and applying simulation models in order to explore their behavior and develop robust policy strategies can bridge this gap.

Systems of the energy transition

Similar to a large machine with many components as sub-systems, also society can be conceptualized with a systems approach and perceived as many interconnected sub-systems. With regard to the energy transition problem, it is expedient to distinguish the sub-systems based on the use-cases and technologies of energy consumption because these shall be efficiently targeted. Accordingly the German Federal Ministry for Economic Affairs and Energy (BMWi) distinguishes the final energy

consumption in five sub-systems:

- **Housing and living** (by form and purpose of energy use): Living space heating, Warm water heating, Process energy (cooking, cooling, washing, electric appliances), and Lighting
- **Transportation** (by type of propulsion technology): for each personal and cargo transportation: over land (road-based, rail-based), on water, air
- Industry (by form and purpose of energy use): Mining & drilling, Processing, Finishing
- Trade, commerce and services (by form and purpose of energy use): Process energy, Space heating, Power for ICT components
- **Energy sector** (by energy resource and conversion technology): Coal, Gas, Oil, Nuclear, Hydro power (flow turbines, dams, pumped storage), Wind (on-shore, off-shore), Solar (thermic, photo voltaic), Biomass (Wood, Pallets, Waste, etc)

As depicted in the case study outline, the this research specifically focuses on the housing and transportation sectors in combination with the energy sector.

Additionally, Li, Trutnevyte and Strachan (2015) highlight the necessity in taking an interdisciplinary research approach because the energy transition is deeply anchored in society. Cherp, Vinichenko, Jewell, Brutschin, & Sovacool (2018) criticize that simple techno-economic perspectives have difficulties accounting for aspects of system inertia, technological innovation, multiple actors and path dependence, often assuming policies to be external normative targets. Therefore Cherp et al. (2018) propose to broadening the approach by including socio-technical and political perspectives. Which societal aspects would thus be relevant to the energy transition?

Economic theory has produced various methods of looking at transformation in society. The idea of the production-possibility curve (PPC) is very versatile and can be applied to individuals and collectives alike in order to portray that actors have options between either the consumption of different goods, the investment in different sectors, the production of different products and many more. Furthermore, the concept of factor endowment in economics commonly describes the how well a country is equipped in terms of capital, labor, and land, whereby land refers to the area of land as well as access to natural resources, agriculture and forestry. As a result the core societal systems involved in the energy transition include available capital, natural resources and the labor force, where instead of "natural resources" in this case "raw materials" and "finished products" are better linked to the energy transition. Consequently, analyzing the German energy transition must take into account the financial endowment of households in combination with governmental support schemes, the production capacity of the required materials and products as well as the available labor force to undertake efficiency improvements and make the change happen. Subsequently, this systems approach can be operationalized using computer-based modelling techniques.

Simulation models

As an interdisciplinary policy challenge numerous policies will have to address many different issues to achieve the energy transition, while every aspect about it is plagued with uncertainty (Lempert, Popper, & Bankes, 2003). Policymakers therefore apply various tools in order to further reduce this complexity and mitigate the lack of comprehensive understanding.

Next to information gathering, debating, campaigning for advocacy coalitions and negotiations, models collectively called 'integrated assessment models' (IAMs) are essential instruments in the creation of policies such as the guiding EU Energy Roadmap 2050 (EC COM, 2011) or the German

"Climate Protection Plan 2050" (Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU), 2016) together with its various addendums as well as other policies (Schwanitz, 2013). Whereas information gathering and making commitments in negotiations only add to the problem of complexity in the political decision making process, by applying systems thinking models are vital in structuring the policy problem, making it tangible and thereby reducing its complexity. With the help of links and formulas, models establish relationships between the gathered facts, actors, targets, and resources, which enables assumptions about the collective behavior and impacts of policies. In combination with advanced analysis methods simulation models allow to explore, assess and refine the properties of envisioned policies in safe environments. Models are therefore essential tools not only in policy making but also in other disciplines, such as economics, engineering, and the natural sciences.

Exploratory modelling and analysis

It is impossible to evaluate policies by predicting their outcomes and effects using simulation models, due to the inherent uncertainty they would not yield useful information. Nonetheless, Pfenninger (2014) and Verburg (2016) argue that simulation models are well suited to highlight potential challenges and uncertainties. Furthermore, scholars suggest to incorporate exploratory modelling and robust optimization analysis approaches in order to deal with the problems of complexity and uncertainty (Bankes, 1993; Kwakkel and Pruyt, 2013). The Exploratory Modelling and Analysis method (EMA) was explicitly developed to overcome the high level of uncertainty in complex policy problems by exploring the full range of available scenarios. Furthermore, Lempert, Groves, Popper, and Bankes (2006) recommend to evaluate policies by their robustness. Translated for the energy transition, a robust policy would perform better over a variety of scenarios in achieving GHG emission targets while at the same time keeping the balance between energy demand and supply and minimizing the burden for society, for example in terms of cumulated costs. Therefore the approach leverages what is known for certain in order to determine which measures could best achieve and maintain desired states. Even though the future will remain a mystery, choosing the most robust strategy represents 'the best we can do' considering the expected gains and sacrifices.

1.2 Research Gap

In consequence there are several research challenges concerning modelling the energy transition in Germany as well as finding a suitable policy strategy to fulfil Germany's climate protection targets. Overall this research pursues the question about how Germany's GHG emissions can be reduced to net zero by 2050 because this is the objective of the energy transition. Numerous problem areas could be identified that present potential drivers and hurdles in the energy transition and need to be better understood. At the same time, grasping the energy transition as social challenge unavoidably also presents a modelling challenge as things become less quantifiable and relationships more obscure.

In the case of the German energy transition, governing the transportation, housing, and energy sectors has shown to face the greatest challenge. The German government is determined to tackle these sectors with a high priority and thus set the focus of this research. Furthermore, it appears adequate to limit the "transportation sector" further to consider only personal transportation that has a direct link to household behavior, goods transport will be excluded from analysis.

In the open-market economy, the energy transition stands to succeed or fail with the societal participation and capabilities. Therefore, finding adequate policies demands to equally account for financial capabilities, available resources and products, and the labor force aside from the core energy

transition sectors. Additionally, the problem that the energy transition is embedded into a complex social system is further stressed by the uncertainty of citizens' behavior as a reaction to policies.

Furthermore, simulation modelling was proposed to systematically capture the problem of the German energy transition and enable quantitative analysis methods. Integrating the technical and societal dimensions to achieve a reduction on the environmental dimension presents the core challenge in modelling the energy transition. The key societal aspects to consider the financial capabilities, materials and products, the labor force, and mechanisms of making consumption choices. Each of the aspects potentially opens up complex new dimensions so that the boundaries must be set carefully.

Even though such analysis only really thrives under an encompassing system-wide approach, unfortunately this thesis can only handle a very narrow scope that is limited to a limited number of sectors in an isolated geographical sphere. Therefore, the results of this research will inevitably disregard any, potentially significant, interaction with other countries as well as other sectors within the country of investigation, which presents a major flaw in this undertaking but cannot be avoided.

Finally, specific approaches are well suited to leverage the simulation model for evaluating the policy options and determine a robust strategy. This will allow to answer the main research question:

"What could a suitable set of policy measures look like to achieve net zero GHG emissions by 2050 in the sectors housing and personal transportation as part of the German energy transition?"

1.3 Research Approach

The identified research gap addresses a number of specific problems, which are formulated into XX (enter number of SQ) sub-questions (SQ) below. Answering each SQ shall enable new insights for practitioners in model-based decision-making approaches as well as policy-makers on the energy transition in Germany.

In order to begin with designing the simulation model, more scoping is necessary to fully understand the approach the German government is taking, which serves as a good starting point. This step requires a thorough examination of the communiqués and decisions the German government published on its various websites. As policies are constantly evolving, all publications until 01 July 2020 will be considered. The investigation aims to capture both the direct policies on the energy system as well as indirect measures that take the societal approach:

SQ1: What are the direct and indirect policy measures the German government is taking at present to achieve the energy transition targets in the focal sectors?

This review holds two vital insights for the next steps. First, it reveals a collection of specific measures aiming for an energy transition in the German context, which are immediately relevant to include in the model. Clustering the measures by sector and topic may facilitate to identify the relevant societal mechanisms to include in the model. As discussed an interdisciplinary on the energy transition is recommended. The review insights are subsequently combined with the common concept of factor endowment from economic theory in order to understand societal drivers and dependencies in the context of the energy transition. Additionally, Verburg et al. (2016) claims that modelling outcomes are often restricted by high levels of aggregation. Next to refining core principles of modelling the energy transition, also the modelling detail shall be expanded to capture regional properties. The specific data availability is a key driver of the final model resolution. With regard to transition modelling, it seems especially insightful to opt for high resolution modelling in order better understand the dynamics of the transition processes.

The modelling process takes place in multiple steps and is an iterative process of repetitive modelling and testing. Moreover, whenever data availability and quality is uncertain it is common practice to first scout for data points and then develop the model structure based on the data that can be found, socalled data-informed modelling practice. Following this approach, the next research question focuses on developing a comprehensive model representation of the German energy transition:

SQ2: How can a simulation model on the energy transition in the German housing, transportation, and energy sectors adequately represent the technical, societal, and economic mechanisms?

Several steps are implied in this question:

- How can the existing system of energy consumption in the focal sectors in Germany be conceptualized while also including the societal factors that govern the development of the society and its energy consumption over time?
- Which data is available to fuel and calibrate a model for this task?
- How to best transform this concept of the energy transition into a comprehensive simulation model and where to set the research time frame?
- Which input variables and dependencies present potential uncertainties that need to be considered in the German energy transition?
- Where, at which variables, do current and potential policies in the German energy transition connect to the simulation model?

Based on these findings, the model will be developed. Keping in mind that there is no perfect model to represent the real world, the previous considerations are supposed to facilitate the development of a good model for the purpose in answering the main research question.

So the main research question is determined to find suitable sets of policies. The next subquestion is aimed to qualify 'suitable sets of policies' by answering:

SQ3: Which evaluation approach can help to determine a suitable set of policies in combination with the quantitative modelling approach?

Based on the three perparatory steps, we can approach the final two research questions. First of all, the current set of policies is targeted for scrutiny. Several doubts have been raised regarding the existing policy measures, which will be used as a starting point. Arguments were made whether the simultaneous phase-out of major electricity capacity and the push for significantly increasing the share of electric vehicles could bring the electricity sector into trouble. Additionally, the potentially limiting factor of resources in its broader sense was discussed. So the fourth subquestionis:

SQ4: To what extend are the given policy measures in the focal sectors promising to achieve the energy transition targets in Germany?

It will be accompanied by two supporting questions:

- Could the transition to purely electric vehicles threaten to push the cumulated electricity demand significantly over available electricity supply capacities while complying with designated phase-out plans in the energy sector?
- Could the household budgets, the workforce, and other resources play a limiting role in achieving Germany's energy transition targets in the focal sectors?

Subsequently shifting the gaze to the future, we need to understand the drivers of the system in order to find a suitable set of policies to achieve the energy transition:

SQ4: What could be the strongest limiting external factors and the most enabling policy measures in the energy transition between the three focal sectors?

In that regard, since the pricing of GHG emissions by levying a CO2 tax was fiercely debated. There is specific interest in analyzing the potential of CO2 pricing as a policy lever for achieving the German energy transition targets in the focal sectors. Concluding these four subquestions, hopefully the main research question can be presented with a clear strategy:

"What could a suitable set of policy measures look like to achieve net zero GHG emissions by 2050 in the sectors housing and personal transportation as part of the German energy transition?"

Following these research questions, this work's contribution is two-fold. First it aims to contribute to the knowledge base on energy transition data and specifications by an extensive review of data sources in the fields of housing and personal transportation and creating a comprehensive database. Second, this research seeks to add to the existing knowledge pool on the German energy transition by examining potential external effects and explore possible policy adjustments. Additionally, this research also tries to assume a more societal perspective on the energy transition, which may be of interest to the modelling and simulation community. It is an attempt to integrate system components from the spheres of society, technology, and economy.

2 Research context

This chapter contains 4 sections addressing two aspects of this research. The first part attends to the energy transition case of Germany. As the status quo of the problem at hand is already captured well in the previous chapter (section 1.1.2), the first section jumps right into the specific energy transition policy strategy of the German government and the targets it has set itself to achieve the energy transition by 2050 (section 2.1). Following, the policy dimensions of the German energy transition case are discussed with a focus on the implications these dimensions signify for the modelling process (section 2.2). Finally this leads to the system boundary definition (2.3). The second part is concerned with presenting a suitable method for political decision making under deep uncertainty as in the case of the energy transition (section 2.4.1), for which robust decision making is introduced as a suitable concept (2.4.2), resulting in the final modelling and evaluation approach (section 2.4.3).

2.1 German energy transition policy strategy

The German energy transition strategy was conceived in multiple steps. Due to its long timeframe it combines long-term goals with short-term measures and intermediate re-adjustment stages. The overall strategy is anchored in the Climate Protection Plan 2050 (CPP2050), which recognizes the international context of climate action and outlines the German climate protection approach (Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU), 2016). The CPP2050 is further accompanied by intermediate climate action programs that set the detailed targets and measures for short to medium-term milestones. Each of those programs is then executed with a series of acts and decrees. In this case, the CPP2050 in combination with the Climate Protection Program 2030 (CPP2030) is guiding the German energy transition and all relating political debates (Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU), 2019e). The full collection of energy transition policies outlined in the CPP2030 can be found in Appendix A. The relevant policy actions are summarized by focal sectors in the table 2.1, giving numbered references to the full table found in Appendix A, which also includes the assumed direct and indirect effects as well as the respective component or mechanism to include in an energy transition model.

First of all, as a result of various negotiations in preparation of the UN Paris Climate Conference 2015, the EU launched an emissions trading system (EU-ETS) on GHG emissions for the energy sector and a majority of the industrial sector in Europe (Bundesministerium für Umwelt Naturschutz Bau und Reaktorsicherheit (BMUB), 2014). Following an open-market approach, the EU-ETS was supposed to impose a price on and thereby lead to the reduction of GHG emissions in Europe, which are measured by their warming effect equal to that of the respective amount of CO2 emissions (tCO2equ). However, its effectiveness was strongly criticized as the instruments suffers from an ongoing oversupply of certificates since its introduction, keeping the price per ton of CO2 equivalents well below effective levels even though the number of certificates issued was constantly reduced.

Subsequently, with the CPP2030 the German government begins with a series of overarching measures addressing GHG emissions and the affordability of measures for households and businesses. Thereby the government recognizes the importance of consistent and effective GHG emissions pricing to internalize their effects (measures #1-3). This calls for a model implementation that represents a GHG emissions price mechanism that is linked to fossil fuel consumption in households, transportation, and electricity production. The price mechanism is governed extrinsically due to the limited scope

Table 2.1: Germany's energy transition policies in the focal sectors

#	GHG emissions	#	building sector	
1	CO2 pricing relating to heating and transportation	17	tax relief program for energetic renovation of buildings	
2	ETS as instrument in sectors heat and transportation	18	financial support program for efficient buildings including replacement bonus for oil heating	
3	minimum price in ETS	24	new constructions energy standard by GEG2020	
		25	renewal of GEG in 2024	
#	relief of citizens and economy			
4	reduce electricity costs	#	transportation sector	
5	increase fixed-rate allowance for long distance commuters	29	increase utility of rail passenger traffic	
		30	increase utility of public transport	
#	energy sector	31	expansion of cycle-tracks, bike parking space, and improving framework conditions	
8	stepwise reduction until termination of coal-power in 2038	32	development of electricity-based fuels (alternative fuels)	
9	expansion of renewable energy to 65% share of the gross electricity consumption by 2030	33	supporting advanced bio-fuels (alternative fuels)	
10	development and modernizing of CHP plants	36	increase low-CO2 passenger cars on roads	
11	convert heat-grids to renewable energy and unavoidable waste heat	39	expansion of refueling, charging and overhead wiring infrastructure	
16	investment program: energy efficiency and process heat from renewable energy in the economy	40	automating, connecting, liquifying traffic. enable innovative modes of transport	
		41	tax relief program for electric vehicles	

source: Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU). (2019e). Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans 2050.

of the model but could be influenced by the share of fossil fuels of total energy consumption. It must also be inline with politically set lower and upper bounds of 25-55 EUR/tCO2equ and 65 EUR/tCO2equ respectively according to the decision of the Bundesministerium für Wirtschaft und Energie (BMWi) (2020).

Additionally, policy makers attempt to relieve consumers of fears that potential steep energy price increases could threaten their existence by granting various subsidies (measures #4 and #5), thus the model must avoid rapid significant price changes.

2.1.1 Energy transition: Energy

The energy sector in Germany is meant to transition from coal and nuclear power based electricity

production to wind and solar energy while the consumption of fossil fuels in the transport sector is also reduced and replaced by electricity of alternative energy carriers. First, it is undergoing a phaseout of nuclear energy by 2022 brought about by the Fukushima incident in March 2011 (Presse- und Informationsamt der Bundesregierung, 2011). Nuclear energy sources produced 1178 PJ of electricity, equal to 22,7% of the country's electricity production in 2011 (AGEB_auswertungstabellen_2018) and amounted to 829 PJ and 17,8% of electricity contribution in 2018 according to the AGEB (2019). Therefore the remaining reduction amount until 2022 may still be significant.

Second, the urgency of climate protection strategies forced the government to also set a phase-out date for coal-fired power plants, which was decided upon in July 2020 (Presse- und Informationsamt der Bundesregierung, 2020). Electricity production from hard coal and lignite sources will therefore be abolished in a step-wise process by 2038 with the option to move out of coal derivatives already by 2035 if possible (measure #8) (Presse- und Informationsamt der Bundesregierung, 2020). In 1990 about 3066 PJ (56,7%) of energy from coal derivatives was used for electricity production, which reduced to 2673 (50,9%) in 2018 according to AGEB (2019). This is a significant amount, which requires an adequate replacement strategy.

Third, the CPP2030 therefore sets the intermediate goal to simultaneously raise the contribution of renewable energy to 65% share of electricity consumption by 2030 (measure #9). Thus a transition model should account for the synchronous reduction of coal and nuclear power and increase of renewable energies like wind and solar power. In this regard, the Federal Council of Germany passed an addendum to the wind on sea act (WindSeeG) to increase offshore wind energy capacity by 2030 (Deutscher Bundesrat, 2020a and 2020b). Additionally, the German Federal Council recognizes further need to support the expansion of solar parks for electricity production (Deutscher Bundesrat, 2020a).

Fourth, the energy transition shall be backed up by efficient use of fossil energy. The CPP2030 aims to further improve and develop combined heat and power plants, which mainly applies to gas fired power plants. Additionally, some amount of waste heat in industrial processes is unavoidable. The energy transition should specifically target to capture and direct this unavoidable heat energy emissions to district heating grids according to the CPP2030. (measures #10, #11)

In summary, the energy sector is planned to phase-out over 68% of its nuclear and fossil-based electricity production by 2018 standards and to replace that capacity with renewable sources by 2038.

2.1.2 Energy transition: Housing

Shifting the view on the housing sector, the CPP2030 aims to leverage incentives for households to take an active part in the energy transition by becoming so-called "prosumers", consumers who participate in the energy production. The efforts in the housing sector are mostly anchored in the motion of the new "Gebäudeenergiegesetz" (GEG) conceived by the Bundesministerium für Wirtschaft und Energie (BMWi) (2019a). First, this strategy implies a ban on oil and coal based heating systems in newly constructed homes in combination with strict regulations of replacing old heating systems (measure #18). Thus, eventually oil and coal heating systems are also phasing-out. Simultaneously, the GEG implements new energy efficiency standards for new buildings that are at about 37% lower than the current average energy consumption of households (measure #24) (BMWi, 2019a). The CPP2030 further suggests that the GEG should experience an overhaul in 2023 with respect to the energy standards for buildings as required by European law (measure #25) (BMU, 2019e). This could imply further lowering the characteristic energy consumption value for new buildings. In

Energy standard after renovation	Financial benefit share	Financial benefit amount
KfW-Effizienzhaus 55	40% of max. EUR 120.000 loan	up to EUR 48.000
KfW-Effizienzhaus 70	35% of max. EUR 120.000 loan	up to EUR 42.000
KfW-Effizienzhaus 85	30% of max. EUR 120.000 loan	up to EUR 36.000
KfW-Effizienzhaus 100	27,5% of max. EUR 120.000 loan	up to EUR 33.000
KfW-Effizienzhaus 115	25% of max. EUR 120.000 loan	up to EUR 30.000
KfW-Effizienzhaus Denkmal	25% of max. EUR 120.000 loan	up to EUR 30.000
Individual improvements	20% of max. EUR 50.000 loan	up to EUR 10.000

Table 2.1.2: Government subsidies on building energy improvements

source: KfW Bank, n.d. b

contrast, the GEG states that the energetic requirements for new buildings and renovations will not be increased further (BMWi, 2019a). At the same time, the GEG provides substantial financial support for energy efficiency improvements on existing dwelling houses, which aims to reduce total heating energy consumption from households (measure #17). Moreover, the support program also includes energetic installations at households, such as photovoltaic (solar PV) or solar thermal systems, that produce heat or electricity for the respective households and further reduce the energy demand from common suppliers. Especially with regard to solar PV, which typically includes electricity feedin to the public grid, the households are targeted to become prosumers. However, this transition is rather based on household participation than on regulation. The chosen policy approaches suggest that the government perceives the main hurdle and driver in this case to be the households' financial capabilities and spending preferences. Financial support schemes expand the available budget with regard to specific spending behavior. The subsidy structure by the governmental KfW Bank is illustrated in table 2.1.2.

The subsidies are awarded by the KfW Bank depending on the achieved efficiency value from improvement in comparison to the so-called KfW reference building. However, the KfW Bank only defines the KfW reference building to comply with the "Energieeinsparverordnung" (2007), which has been updated continuously in 2009, 2013, 2014, 2016, and 2020 and there is no fixed reference value of energy consumption per square meter attached to it (KfW Bank, n.d. a). Although different sources estimate the energy demand performance between 70 kWh/m2 and 100 kWh/m2 (Energie Wissen, n.d.; Energiesparen-im-Haushalt.de, n.d.; Niedrig-Energie-Institut, n.d.). The KfW Bank generally supports all sorts of investments. However, as portrayed in table 2.1.2 actual financial benefits only overs renovation measures that increase the insulation value of the floor, glazing, roof, and walls. Heating system installations as well as other energy production installations, such as solar panels, are only supported by means of loans. For insulation measures the amount of financial support is tied to the achieved efficiency efficiency level after improvement and capped at a maximum of 40% of the investment costs or EUR 48.000 for extensive building renovations and a maximum of 20% of the investment costs or EUR 10.000 for individual improvement measures (KfW, n.d. b). Due to the aggregated point of view instead of looking at the individual investment decisions in the modelling process, it should be assumed that households spending on upgrade and add-on projects amounts to a medium amount of the possible price range to be eligible for financial support. The governmental aid then extends the total spending on the improvement. However, as the conditions for the financial support are quite complex, in order to implement this support program accurately more insights on the typical energy efficiency improvement level from renovation processes are necessary. Appendix F shows that the required data could not be obtained, which makes this implementation difficult.

Nonetheless, installing improvements over time must then reflect a change in the yearly energy consumption characteristic of households, which should benefit the governmental energy transition targets. Additionally, as of 2021 the GHG emissions price discussed at the beginning of section 2.1 will also apply to the housing sector.

In summary, the energy transition in the housing sector is to a large extent being approached by giving financial incentives to households to lower their net energy consumption through energy efficiency improvements of buildings or renewable energy production installations as add-ons to buildings.

2.1.3 Energy transition: Personal transportation

As mentioned before, the transportation sector has achieved almost no GHG emission reductions since 1990 and has a great challenge ahead. According to the National Trend Tables for the German Atmospheric Emission Reporting provided by the Umweltbundesamt (UBA) (Gniffke, 2019), total transportation emissions were up by 3 million tons of CO2 equivalents in 2017 compared to 1990 levels and total emissions from road transportation were even up 7 million tons of CO2 equivalents. The sector for personal transportation covers a broad spectrum of transportation modes, including traveling by car, railway, airplane, public transport, which includes busses, trams, and metro systems, and cycling. For the purpose of this research walking is regarded as a means of connecting transportation modes and a local or recreational activity and will not be considered. Also personal waterway transportation in Germany is mostly a recreational or touristic activity and will thus be excluded as well. All other modes can be attributed with a purpose and utility value for the passengers and are thus meaningful to this research. Energy consumption in personal transportation is measured in energy used per passenger kilometer (Pkm), similarly the GHG emissions are measured in amount per Pkm. Thus increasing the occupation rate for any mode of transport is very effective for increasing the efficiency rating.

Railways, Public Transportation, and Cycling

The CPP2030 recognizes that immense transition efforts in the transportation sector are easier achieved with a distributed approach. Therefore the CPP2030 aims at simultaneously reducing the use of fossil fuels while incentivizing a shift to substitute fossil fuel intensive car travel with already more efficient public, collective transportation options. Consequently, the strategy involves multiple measures to increase the utility of railways and public transport systems. Improving the infrastructure and its maintenance as well as the service of railways and public transport providers can increase their connectivity and utility (measures #29, #30). Where the German railway infrastructure is only about 61% electrified with a target of 70% according to Deutscher Bundestag (2019a), the personal railway transportation is assumed to be almost fully electrified according to FIS data¹. Public transportation has an electrification ratio of roughly 33% according to Destatis (46100-0021), which results mainly from the large diesel fueled bus fleet next to electrified tram and metro systems. However, many public transport operators have started to transition their bus fleet to electric busses (Lieb, 2019). At the present occupation rate of 19% diesel busses produce about 37% more GHG emissions than local trains (Umweltbundesamt, 2020). Nonetheless, with the current GHG emission characteristic of the electricity production also rail-based public transportation still produces almost 60g of GHG emissions per Pkm at a similar occupation rate (Umweltbundesamt, 2020). The public collective transportation modes share the common flaw of being limited to fixed routes and stops, which presents a significant drawback in accessibility, traveling time, and convenience for passengers as opposed to using the car. For most passengers there is a geographic gap between the starting point and the location of boarding a collective transport vehicle and between the location of disembarking and the final destination point. This gap can significantly be reduced by complementary infrastructure and transportation modes such as cycling. In consequence there is a complementary effect of improving the cycling infrastructure on the use of public transport (measure #31). Furthermore assuming that public transport also includes regional train lines due to similar function and emission characteristics (UBA, 2020), most people will use public transport to access railway stations. Thus there is also a complementary effect of improving the public transport infrastructure on railway utility. With regard to cycling, especially expanding and improving the network of cycle paths and bicycle stands and storage facilities at public transport stops and stations could greatly improve the utility and attractiveness of cycling with spillover effects on public transport and railway utility. Also cycling is experiencing rapid electrification in Germany. According to Fahrradportal (2019) and Statista (2020), the market share of E-Bikes was 23,5% in 2018 and even 29% in 2019, when a total of 4,18 Mio bicycles were sold in 2018. E-Bikes, of which most are sold as pedelecs, consume on average 7 Wh/km electricity (Rauch, 2011).

Airtravel

Further, personal transportation within the scope of this research also includes national air travel, which amounts to roughly 14% of the total air travel in Germany according to the report by Radke (2019). All commercial passenger air travel is thus far purely fossil fuel based. However, several conglomerates have launched research projects on electrifying commercial aviation, with several projects undergoing late stage testing² also including the two leading manufacturers for commercial air planes Airbus³ and Boeing⁴ (Alcock, 2020; Electric Aircraft, n.d.). Therefore this research assumes a slow commercialization of electric aviation solutions by 2040 followed by a sector wide transition until 2100. In the meantime efficiency improvements through more sustainable production methods, such as bio-fuels or electricity-based fuels can be expected (measures #32, #33).

Personal road transportation

The greatest contributor to GHG emissions from transportation is personal road transport by car (Wuttke, Junker, & Winkler, 2017). Road transportation is recorded and regulated by the Kraftfahrt-Bundesamt (KBA) in Germany. However, with the infrastructure and technological lock-in in mind, car transport is also the most difficult to transform to climate friendly technology. More than 47 Mio cars are registered in Germany, of which on average 90% are privately owned (Kraftfahrt-Bundesamt, 2020). Similar to household insulation, transitioning the car fleet is greatly determined by the consumption decision of car owners, the households. Therefore the German government maintains

Table 2.13: Government subsidies on electric vehicles

type of car eligible for government subsidies	limit (list price)	maximum funding	end of program
plug-in hybrid vehicles (PHEV)	up to EUR 40.000	EUR 7.500	31.12.21
plug-in hybrid vehicles (PHEV)	EUR 40.000 - EUR 65.000	EUR 5.625	31.12.21
battery electric vehicles (BEV)	EUR 40.000	EUR 9.000	31.12.21
battery electric vehicles (BEV)	EUR 40.000 - EUR 65.000	EUR 6.750	31.12.21

source: KfW Bank and "https://www.meinauto.de/lp-abwrackpraemie"

² https://en.wikipedia.org/wiki/List_of_electric_aircraft

³ https://www.airbus.com/innovation/zero-emission/electric-flight.html

⁴ https://www.popularmechanics.com/flight/news/a28540/boeing-backed-electric-plane-fly-2020s/

a financial support program for electric vehicles (EV), which considers battery electric vehicles (BEV) and plugin hybrid vehicles (PHEV) as depicted in table 2.1.3 (measure #41).

The financial support is conditioned to the sales price and capped at a maximum price of EUR 40.000, aimin rather at the lower to medium income households. At the same time, the implementation of GHG emission pricing, mentioned at the beginning of section 2.1, is a lever to increase the operating costs of combustion engine vehicles (CEV) by increasing the levies on fossil fuels.

Several points have been raised against the planned effort regarding personal transportation. The limited term of the support program is strongly criticized for being too short and too little of an incentive to spur an industry-spanning transition to environmentally friendly transportation. At the same time a total of 1 Mio electric vehicles (EV) are supposed to be registered by 2022 (BMWi, n.d.) but by 2020 barely 150 thousand EVs were achieved of which about 64 thousand (43% of the total) were newly registered only in 2019 according to KBA data. The government aims to have 7 to 10 Mio registered EVs by 2030 according to the CPP2030. However, Kungel (2019, November) and Heiman (2019, May) strongly criticize the low effort of the government to achieve its goals. Introducing the case of Norway where roughly 50% of new registrations are EVs, Kungel (2019, November) proclaims that the incentives on EVs are far too low to make significant change. He further argues that the households occupying about 16 Mio single family houses in Germany should easily be able to maintain EVs, charging them at home most of the time except for vacations a few times a year. In that case the public charging infrastructure would already be sophisticated enough to recharge for long distance travel, he continues (Kugler, 2019, November). Assuming the average annual driving performance is 15.000 km and two or three long distance trips per year cover between 3.000 and 5.000 km, leaves an average driving distance of 27 to 33 km per day, which even small batteries can cover and could easily be recharged in a few hours during the night with the standard house connection to the electricity grid (Fraunhofer ISE, 2020; Kungel, 2019, Nov). Also the planned GHG emission pricing may turn out to be a mere flash in the pan. At a proposed starting minimum price of EUR 25 per tCO2equ the GHG emissions tax would increase petrol fuel prices by about EUR 0,07 per liter, an equivalent of roughly EUR 0,50 per 100km. Záboji (2019, Sep 21) strongly criticizes the effectiveness of such low prices. Even with the planned minimum price increase to EUR 55 per tCO2equ by 2025, resulting in additional EUR 0,145 per liter and EUR 1,05 per 100km to the base operation costs of petrol cars, is not expected to have significant effects, according to Záboki (2019, Sep 21) and Kungel (2019, Nov). Considering that the resulting expected damages from GHG emissions in health and environment are estimated at a price of EUR 180, the in the CPP2030 intended pricing levels may remain inconsequential to consumer behavior (Umweltbundesamt (UBA), 2018, Nov 20).

Further expansion of the charging infrastructure and of refueling stations for alternative fuels is still an important lever to increase the utility and attractiveness of EVs and other technologies (measure #39). At the same time, traffic in itself produces significant inefficiencies that could be alleviated with increased automation of traffic by fully leveraging newest communication and control technology (measure #40).

Admitting that not all cars are suitable to run on present battery electric technology and to increase the efficiency of remaining CEV, the government simultaneously seeks to increase the sustainability of petrol and diesel fuel by supporting the development of advanced bio-fuels. Additionally, the government is equally determined to further expanding the public charging infrastructure with special consideration also of fast charging stations for long distance travellers. The planned infrastructure measures also extend to other alternative fuels and technologies, such as bio fuel, bio gas and hydrogen.

In summary, the approach concerning a transition in the personal transportation sector follows an

integrated approach with the intention of spreading the effort and thus reducing strain on the system and the citizens. Personal road transportation is further influenced by the implementation of GHG emission prices. However, criticism arose regarding the effectiveness of this broad approach.

2.1.4 Interdependencies between the focal sectors

All three discussed sectors share similar policy approaches and can be expected to influence each other in the long run. The relationship of the energy sector to transportation and housing is obvious, nothing works without energy. Yet also the transportation and housing sectors share a significant connection. In both sectors the government plays on the households' ability to finance the transition. In combination this implies a potential double burden for households. However, assuming that individual households focus their efforts, they will choose to invest in one improvement at a time among the specific housing improvements and car upgrades. And since such investments are voluntary and households will only commit if they perceive it worthwhile, the given measures are not a burden at all. In consequence, the policy strategy's great obstacle is the problem of consumer preferences that drives the transition in both the housing and the personal transportation sector. The government applies incentive measures that from a household's point of view present alternatives and could thus cannibalize each others effects. This problem is further discussed in section 2.2 on policy dimensions.

Additionally, household heating and transportation use similar fuel sources, where both sectors have been using fossil fuel derivatives in parallel for a while without issues. Present policy measures, however, suggest a simultaneous move into bio-fuels and electricity (or hydrogen in the future), which could have stronger implications on the transition speed.

Furthermore, moving out of fossil fuel transportation into electric propulsion significantly implies a drop of fossil fuel consumption and could therefore result in a price drop for fossil fuels. Since multiple countries have vowed similar transition efforts according to the Paris Agreement (United Nations, 2015) similar price drops could well be expected in the medium to long term. However, fossil fuels are traded internationally and this research only considers one small to medium sized country, which has virtually no price-setting power. Therefore the international mechanism of energy prices would attenuate the proposed price effect.

Considering the set of policy measures and the implied interdependencies highlights four dimensions in which the government can act to achieve the energy transition. Thus far the government appeals to (a) financial capabilities and (b) the attractiveness and utility of behavior change as components of consumption preferences. Additionally, the third dimension concerns (c) the freedom of choice as opposed to limiting specific services or behavior. In contrast, the fourth dimension involves (d) publicly providing free services in order to spur collective behavior change.

2.2 Policy dimensions and implications on modelling

The four dimensions of policy measures can be distinguished in direct and indirect measures. Direct measures immediately address the issue at hand, like imposing limits and quotas on vehicle sales or publicly providing a specific service. Instead, indirect measures address the value system of consumers, which are the foundation for consumption preferences and behavior. In this case, a policy aims to encourage or discourage a specific behavior, such as achieving lower vehicle sales by raising the price on vehicles. In summary, policy making can apply various different means to achieve its goals. However, especially direct restrictive measures that limit the freedom of choice are not only

criticized as a strong intervention in the open market economy but also clash with the autonomy of citizens and their freedom of choice. The EU-wide ban of conventional light-bulbs in 2012 was not well received by the public and businesses (EU bans old-fashioned light bulbs, 2009). Even more controversial are recent bans on diesel cars in several city centers in Germany (ADAC, 2020, February; Wo "Diesel-Fahrverbote gelten oder drohen", 2019). Both measures were implemented in the name of climate change and both but especially diesel car bans were a measure of last resort of cities to mitigate fines for exceeding pollution levels. Thus direct approaches have the advantage of being time sensitive whereas indirect approaches take as long as citizens need to adapt their behavior.

As stated above, indirect policy strategies leverage the incentive mechanisms that respect the open market's spirit of freedom of choice while addressing the consumption preferences of citizens and are thus much more socially compatible and acceptable as direct measures. Such instruments commonly include policies setting financial incentives through subsidies on favored and taxation on unfavored consumption but can also policies that grant other public benefits as can be achieved by executing infrastructure projects that are aimed to improve the relative utility of targeted behavior and technologies and thus can evoke change. Such can be a dedicated cycling path that is built to connect two frequently visited locations, which improves the utility of bicycles so that more people may refrain from taking the car and burning fossil fuels. How many people will follow this incentive depends on many factors, including the surrounding plans for the day that visitors have made in combination with a trip to one of the locations. This example therefore highlights the policy's dependence on the choices of individuals and how well this policy manages to address the "pain points" of people in this environment. If there is no interest of people visiting both locations in combination, for example because they house the same shops and therefore are considered to be substitutes instead of complements, the new bike path will have little effect on the utility in this regard and the initial infrastructure investment deflagrates into thin air. These examples also illustrate the complexity and uncertainty that is inherent to such indirect policy levers. Therefore it is worth taking a closer look at the societal areas that have the greatest potential to influence the energy transition.

2.2.1 Financial and non-monetary resources

First and foremost, the financial capabilities play a major role in our society and thus also determine the yearly budget of public institutions and households to invest in new infrastructure, vehicles, and upgrades. Therefore, household budgets and supplementary income and spending mechanisms with respect to the designated energy transition focal areas form additional vital sub-systems. The financial capability is further accompanied by spending preferences and everybody's will to accept possible changes. Such are flanked by governmental support schemes on environmentally friendly upgrades and vehicles and the taxation of GHG emissions (carbon tax), both potential policy levers. Additionally, the price development of internationally traded goods, such as fossil fuels and electricity but also upgrade materials and cars, present external factors that influence effectively available financial budget for the energy transition. Second, a comprehensive transition out of fossil fuel power into renewable energy inevitably requires a significant change in demand of non-monetary resources. The need for natural resources like coal and oil turns into a demand for metals and concrete. The types of finished products change from combustion engines to batteries for electric vehicles, and heating and cooling system parts of power plants to wind turbine elements. Additionally, the demand for insulation materials or solar installations for every household gains in importance. Workers are needed more to accomplish various upgrades and installations on buildings or build and maintain wind and solar power plants, rather than work coal mines and power plants. Similar to the available budget, these resources also present a potentially limiting factor for the energy transition. Obviously, the limiting potential of any of the mentioned resources further increases with the limited time frame

of the energy transition. It is unclear whether the financial budget, production capacities and available labor force can achieve the yearly transition efforts necessary to finish by 2050.

2.2.2 Social factor of choice

This generally captures the actors and factors that will determine the outcome and speed of the energy transition. Yet again, the social factor needs a bit more emphasis. In summary, the depicted internal and external factors present again a problem of balance between the demand for the (production) factors of money, materials and labor and their supply by the people, industries and the government. However, with the urgent need to reduce GHG emissions, the consumers turn out to be the deciding factor in what is a typical "chicken and egg" problem revolving around the economy (demand-driven vs. supply-driven market). Thus in case of the energy transition it is the consumers that must act to request the products, materials, and workers in order to perform the energy transition. Most countries, follow an open-market economy in which economic values play a significant role in structuring society, in which the market is a nexus in society that determines what is produced, consumed and invested in. In abstract terms, the market is a clash of personal values and the relative cost of utility from which result consumption decisions, which, in the greater picture, do not naturally align with ethical norms and what is right or needs to be done. People act neither rational with regard to market prices nor with regard to their personal conviction and values and thus the collective behavior of a society is considered unpredictable. Take the measures intended to spur EV sales for example. The governmental subsidies significantly reduced EV sales prices and the automobile club ADAC e.V. prognosticates significant operating cost benefits for EVs, not to mention the short and long term environmental benefits (ADAC, 2019). These advantages are opposed by inconveniences regarding the range and recharging behavior of EVs in combination with the slow progress in infrastructure expansion. In essence, certain, quantifiable financial benefits stand against uncertain, less quantifiable behavioral objections.

Hereto, Storm (2017), a renowned scholar of economics, stresses that the required change in an open-market economy is not trivial and countries are working hard to find adequate strategies for transitioning to carbon-neutral societies as the track record shows. He underlines that consumers cannot be expected to do what is necessary just through economic incentives and suggests that stricter governmental interventions, such as quotas and limits, may be necessary to bring about fast and radical change in order to mitigate climate change. Kungel (2019, November) also argues that the present financial incentives on EVs are not enough to initiate the transition in the transport sector. However, in contrast to strict regulation of CEV, he introduces the example of Norway, where today about 50% of the country's car fleet are EVs without the Norwegian government ever imposing restrictions on CEV. Kungel (2019, Nov) rather points out that intensity of indirect measures is important to achieve the energy transition. This is highly relevant for the undertaking of this research as it suggests to consider a wider range of policy levers including those restricting the choices for consumers.

2.2.3 Radical policy approaches

The Norwegian case demonstrates how radical yet socially compatible approaches are possible to achieve the energy transition. The extraordinary number of new EV registrations in Norway results mainly from import tax exemptions on EVs, where typically roughly half the sales price of cars are import taxes (Lambert, 2016; Norsk elbil forening, n.d.). This significantly counteracts the otherwise significantly higher base sales price of EVs. As a result buying an electric vehicle in many cases turns out to be cheaper than buying a conventional car, even more so when the electricity and fuel costs

are considered. At the same time, Norway is investing significantly in charging infrastructure and is granting other benefits to EVs, further raising the overall utility of EVs according to the Norsk elbil forening⁵.

However, other examples also show effective and accepted restrictive measures on car use. Depending on a day's air quality, Mexico City for example is restricting the use of cars with even and uneven license plate numbers in an alternating fashion in order to reduce air pollutio. Implementing restrictive measures is more common in the business sector though. Policy-making more readily considers stricter approaches that resort to restrictions of specific technologies, processes and materials for businesses as demonstrated by phase-out policies for nuclear and coal fired power plants, for example (Presse- und Informationsamt der Bundesregierung, 2011 & 2020).

Additionally, several politicians and public leaders proposed to make public transport in cities freely available to every citizen as an option to reduce traffic and inspire behavior change. Thus far the idea met strong opposition and remained limited to individual short term trials (Conrad, 2020; Parth, 2019; Theiding, 2019).

2.2.4 Implications for an energy transition model

Following this deep-dive, the subject's complexity becomes palpable. Additionally, the sectors or subsystems in question could become even more intertwined as a result of the energy transition, which may suggest the merging of systems or require a redefinition of their boundaries. With a transition from the internal combustion engine (ICE) to battery electric vehicles (BEV), for example, vehicles can be expected to no longer be refueled at external gas stations but to a large extent at home via the household's connection to the electricity grid. Would that be an indicator to conceptualize the use of cars and household consumption in one combined sub-system in the future? Additionally, households may be encouraged to install solar energy collectors through which they would take part in a country's total energy production in terms of heat energy and electricity. How would that affect the conceptualization for useful policy-making in the energy transition? Thus policies may or are meant to cause change and therefore should undergo regular revision. Of course, every policy must respect its country's individual properties and weigh the policy options accordingly.<<

In conclusion, there are various systems directly and indirectly linked to the use of energy that are crucial in considering during policy formulation. Structuring the problem in systems and subsystems with the policy goal in mind enables to account for the individuality of the problem per area, thereby reducing the complexity and increasing effectiveness and efficiency in policy-making. The approach requires to identify the key actors and stakeholders of the problem at hand and more importantly to understand their relationships and individual levers of influence within the system. The understanding and detailed knowledge about how the world works therefore increases the quality of policies. However, systems thinking alone is not the salvation because the world is just too complex.

2.3 System boundary definition

The system boundary can be captured by following several modelling dimensions. The dimensional choices may on the one hand be limited by restricted data availability but are on the other hand a determinant for the modelling resolution, where "model resolution is the level of structural and behavioral detail that events, mechanisms, processes, etc are described in" (Nicolic et al., 2019a:9). The relevant dimensions in this context are:

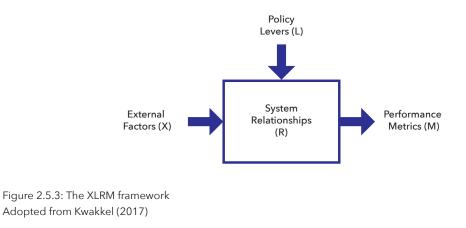
5 https://elbil.no/english/norwegian-ev-policy/

- geographical level
- time horizon
- energy units
- societal detail
- technological detail

Aggregating the outcomes of a high-resolution model is by far easier than disaggregating outcomes of low-resolution models. Additionally, lower level insights promise to be more useful for operational decision making, such as on municipal level (Verburg et al., 2016). The down-side of higher resolutions, however, obviously lies in the computational cost, as mentioned before. The system boundaries are derived from the case description in combination with the present policy approaches in the German energy transition. The full overview of the limits is outlined in the Appendix B.

jsaid, Criqui, & Trutnevyte and 2.4 Political decision making under deep uncertainty et al. 2015)–>

Quantitative modelling and simulation techniques are commonly used for informing political decision making on interdisciplinary, complex problems (IPCC, 2014; United Nations, 2018; United Nations, 2015). The Dynamic Integrated Model of Climate and the Economy (DICE) for example was developed by Dr. William Nordhaus (2008) in order to estimate the social cost of carbon, which represents "the cumulative economic impact of the global warming caused by (or attributed to) each tonne of the pollutant sent into the atmosphere" (The cost of climate inaction, 2018). As mentioned before, complex problems come with high levels of uncertainty. The levels of uncertainty are presented in this section followed by the proposition to use robust decision making to mitigate uncertainty in decision making problems. Finally, the exploratory modelling and analysis approach is introduced to find robust policies in the context of the simulation modelling.


2.4.1 Deep uncertainty in political decision making

The energy transition is an interdisciplinary research challenge (Li, Trutnevyte and Strachan, 2015). Supposing that there is a clear political goal, such as to reduce GHG emissions to zero by year 2050, a political strategy entails a profound comprehension of the problem. Yet, it is so complex that capturing every aspect of it is nearly impossible. Additionally, the energy transition involves not only switching from coal-fired power plants to solar and wind power plants but also assimilating new societal behavior patterns. Considering the implications and directly as well as indirectly affected people of such changes illustrates the vastness of the challenge. Definitively defining the problem is highly complex and finding the one optimal solution is basically impossible. Rittel and Webber (1973) called these "wicked" social problems as opposed to "tame" scientific problems, signifying the super-complexity of societal issues.

Lempert, Popper and Bankes (2003) coined the phrase "decision making under deep uncertainty", describing planning problems like the energy transition that are further made under unavoidable and irreducible uncertainty. As opposed to traditional uncertainty, deep uncertainty implies that involved parties to a decision can neither agree on nor exactly know the system and its boundaries, the desired outcomes and their comparable importance, or the prior probability distribution for the uncertain inputs to the system (Lempert et al., 2003). Under deep uncertainty even the problem definition is subject to change. Haasnoot, Kwakkel, Walker, and ter Maat (2013) illustrate that there are many

plausible alternative models with "alternative sets of weights to assign to the different outcomes of interest, different sets of inputs for the uncertain model parameters, and different (sequences of) candidate solutions" to such problems (Kwakkel, Walker, & Haasnoot, 2016:1). Subsequently, decision making under deep uncertainty is classified a specific form of wicked problems (Rittel and Webber 1973). Lempert, Groves, Popper, & Bankes (2006) briefly summarize deep uncertainty to be circumstances in which parties involved in a decision making process do not know or cannot agree upon:

- how interaction takes place between system variables and their appropriate model

representation,

- which probability distribution best represents the uncertainty of key parameters, or
- how to value the preferences of alternative outcomes

Simulation modelling scholars propose to apply a combination of advanced stochastic methods for systemic uncertainty in political decision making. However, deep uncertainty in complex adaptive systems "is the result of pragmatic limitations in our ability to use the representational formalisms of statistical decision theory to express all that we know about complex adaptive systems and their associated policy problems", according to the understanding of Bankes (2002). In consequence, supporting the line of argumentation of Rittel and Webber (1973), Lempert, Groves, Popper, & Bankes (2006) express that in political decision making optimal solutions do not exist and that under deep uncertainty rather "robustness may be preferable (...) as a criterion for evaluating decisions" (p. 514).

2.4.2 Robust decision making

As pointed out in chapter one, policy making is severely impaired by uncertainty and complexity, so that there is no perfect solution to a problem that makes everyone happy. The classical understanding of optimization refers to single strategy with a specific distribution of probability over the uncertainties produces a single best outcome, according to Lempert et al. (2006). However, traditional decision analysis approaches are unsuitable for political decision making problems as the number of stakeholders per definition is not able to agree on a desired outcome (Walker et al., 2013). In consequence, the scientific community and practitioners agree that robustness of policies is the favorable benchmark in political decision making.

The definition of robustness varies from field to field but the essential understanding is the same. Robustness characterizes a set of policies that produces the most favorable outcomes for all stakeholders while causing the least pain. In other words, when policies perform well in a multitude of different future states. (Kasprzyk, 2013; Kwakkel, Haasnoot, & Walker, 2016). Defining reference values for good and bad outcomes, the robustness can be made measurable in a systems approach.

2.4.3 Exploratory Modelling and Analysis

Specifically useful in societal decision making problems, simulation models evaluate how systems evolve over time and can thereby raise awareness of possible future challenges and determine potential impact of individual uncertainties on future outcomes (Pfenninger, 2014; Verburg 2016). Simulation models, just as the one conceived here, are made to generate vast numbers of possible pathways that the respective system could take. Each pathway or scenario presents a possible future state of the system it represents. Simulation models are predestined to integrate various sources of uncertainty, which further add to the range of scenarios (Better et al., 2008). Finally, evaluating different policy options over this large ensemble of scenarios allows to determine robust policies by applying Exploratory Modelling and Analysis (EMA) techniques as proposed by Bankes et al. (2002). By means of computational experiments the EMA approach systematically explores the behavioral response to different policy settings of complex systems under a set of predefined uncertainties. Lempert et al. (2003) thought of the XLRM framework as the first step in the robust decision making (RDM) methodology, which represents the EMA approach.

Considering that models are created to support the decision making process of a client or so-call principal, the XLRM framework distinguishes external inputs to the model (X), policy levers (L), the system relationships (R) and the model outcomes (M), which are defined as follows:

- X: The external factors represent influences that are not under the control of the principal and potentially carry great uncertainty and risk; things that are, can or will happen
- L: The (policy) levers describe actions that the principal controls, such as alternative decisions
- R: The system relationships explicitly describe the relations between elements within the system boundary; the causal relations between external factors (X), levers (L) and outcomes (M)
- M: The performance metrics describe the outcomes of interest, which are the expressions of impact of actions; what is measured; how it is measured

With the XLRM framework in mind, follows an iterative process in which can involve expert opinion or sensitivity analysis in order to identify candid policy strategies. The framework presents a structural approach the policy problem. With a keen eye on the performance metrics, the policy levers and external factors can be combined systematically to find policy combinations that are comparatively more robust to others with respect to the external factors. This approach in essence relies on brute force trial and error in the first steps. After obtaining the first insights the next steps become more methodical, leveraging the new insights. An optimal approach was presented by several scholars as outlined in the follwing.

Specifically useful in societal decision making problems, simulation models evaluate how systems evolve over time and can thereby raise awareness of possible future challenges and determine potential impact of individual uncertainties on future outcomes (Pfenninger, 2014; Verburg 2016). Incorporating multiple approaches, scholars suggests to combine exploratory modelling and analysis (EMA, Bankes, 1993; Kwakkel and Pruyt, 2013) and many-objective robust decision making methodologies (MORDM, Kasprzyk, Nataraj, Reed, & Lempert, 2013; Watson, & Kasprzyk, 2017) for evaluating political decision making problems (Kwakkel, 2017; Kwakkel, Walker, & Haasnoot, 2016; Lingeswaran, 2019; Moallemi, Elsawah, & Ryan, 2018; Nicolic et al., 2019; . Watson & Kasprzyk, 2017). This combined approach further integrates the objectives and strengths of previous research on

robust decision making (RDM, Lempert, Groves, Popper, & Bankes, 2006; Gabrel, Murat, & Thiele, 2013), multi-objective evolutionary algorithms (MOEA, Coello Coello, Lamont, van Veldhuizen, 2007), multi-objective robust optimization (MORO, Gabrel, Murat, & Thiele, 2013; Hamarat, Kwakkel, Pruyt, & Loonen, 2014), and dynamic adaptive policy pathways (DAPP, Haasnoot, Kwakkel, Walker, and ter Maat, 2013).

These different methodologies are dealing with the key issues found in decision making under deep uncertainty and wicked problems. In summary, applying EMA in combination with MORDM frameworks focuses on (1) developing robust strategies as the maxim of perfection (RDM, MORO, MORDM), as well as (2) adaptive strategies that are able to follow changes in the system as well as in the problem definition, which are dynamic in wicked problems under deep uncertainty, (MOEA, DAPP, MORDM, EMA), (3) optimizing over multiple objectives simultaneously that reflect the diversity of societal and wicked problems respectively (MOEA, MORO, MORDM), (4) exploring potential scenarios as a tool to look into possible futures of a system and enable better ex ante evaluations and decision making thereby moderating deep uncertainty characteristics (DAPP, MORDM, EMA). A serious concern of combining a number of different stochastic methods in one framework is the computational cost that was addressed before. Hamarat et al. (2014) notes that "multi-objective optimization and robust optimization in isolation are already computationally intensive" (p.36), further expanding the approach with exploratory modelling and evolutionary algorithms could exponentially increase the computational cost. The technological progress, advances in hardware capacity as well as modelling methods, is enabling higher levels of complexity in models but the trade-off modelling time and computational cost versus model-accuracy remains important (Flato et al., 2013; Nicolic et al., 2019; Pietzcker et al., 2017; Yilmaz, Taylor, Fujimoto, & Darema, 2014). However,...

... quantitative methods only work well with extremely large numbers of experiments, optimally multiple thousands, because the method benefits from simulating as many possible outcomes as possible. This in turn, though very informative is also very computational expensive. As a baseline to indulge in applying the EMA approach in combination with MORDM, the standard model should be able to complete one simulation run within a matter of seconds to be able to complete on a standard laptop. As an alternative, a manual approach is chosen, which includes basic sensitivity analysis and visual evaluation.

3 Methodology

The previous chapter illustrated the case of the German energy transition challenge and especially pin-pointed the challenges in transitioning housing and personal transportation to a sustainable pathway. Furthermore, section 2.4 presented modelling and simulation techniques as recommendable approaches to complex decision making problems such as this. Now it is time to initiate the modelling process by first deciding on a suitable modelling approach (section 3.1), conceptualizing the model components to describe the research problem (section 3.2), and defining the elements of the XLRM framework to enable exploratory modelling and analysis (section 3.3). Additionally, the data collection process and structure of the used data are elaborated (section 3.4), followed by summarizing the core assumptions of the model (section 3.5).

3.1 Choosing the modelling formalism

Different modelling techniques have been developed to tackle policy problems. The so-called modelling formalism refers to the modelling technique that is used. It is chosen dependent on the point of view and the kind of system and mechanisms the model shall represent. Initially, the point from which the modeller views a system determines the choice in modelling formalism, e.g. whether taking a high-level, top-down perspective or rather a grassroots, bottom-up perspective favors a different approach, as illustrated by Crespo del Granado, van Nieuwkoop, Kardakos, and Schaffner (2018). This section is dedicated to determining a suitable modelling formalism to answer the research questions.

As outlined in the problem definition (section 1.1), this research aims to evaluate how different political alternatives and measures may play out in the three focal sectors and how suitable they are to achieve the GHG emissions reduction targets by 2050. Among the different modelling approaches, the features of the energy transition as a societal problem can best be represented by system dynamics (SD) and agent-based modelling (ABM) (Filatova, Polhill, & van Ewijk, 2016).

3.1.1 System Dynamics (SD)

SD models take a top-down point of view, looking at the greater picture of a system, concerned with analyzing the dynamics between the system elements, characterized by asymmetric and transitive relationship that form reinforcing or balancing feedback loops, and that run over long periods of time applying differential or difference equations. Forrester (1990) developed the system dynamics approach in the 1950s as a quantitative tool to evaluated feedback loops in abstract systems in a short amount of time. Filatova, Polhill, and van Ewijk (2016) see the strength of SD modelling in the ability to easily describe and qualitatively analyze a system's behavior with causal loop diagrams. They further argue that while SD models are also strong in representing feedbacks, macro-level processes and complexity, they have difficulty to evolve. Similarly, Verburg et al. (2016) call for the development of "novel system representations that focus on the representation of feedbacks between socio-ecological systems across different scales and the representation of human processes" (p.338) in order to advance in solution-oriented research for Anthropocene challenges. SD models have been applied to disease spread and intervention (Pruyt, Auping, & Kwakkel, 2015), ecosystem and population dynamics (Auping, Pruyt, & Kwakkel, 2015; Filatova et al., 2016), energy systems and transition (Bhattacharyya & Timilsina, 2010; Crespo del Granado et al., 2018; Li, Trutnevyte, & Strachan, 2015), as well as resource flow problems (Kwakkel & Pruyt, 2013).

However, this abstract approach is limited in its ability to represent detailed, complex relationships. SD modelling is severely impaired to simulate individual decision making processes and individual behavior of actors. The SD formalism cannot represent individual actors, only aggregated action by implied individual actors, which makes it unsuitable for analyzing decision-problems on an individual level.

3.1.2 Agent-based modelling (ABM)

As opposed to SD modelling, ABM assumes a bottom-up view and investigates complex systems defined by heterogeneity, feedbacks and adaptation. Actors that make individual adaptive decisions are typical for societal systems. Verburg et al. (2016) summarize that despite IAMs dominating the model-based research on the Anthropocene dynamics "(...) they are not fully equipped to represent emergent patterns, regime shifts and cross-scale dynamics." (p.338). ABM presents a valid option to solve said deficits as it is specifically useful to study endogenous feedbacks and the emergence of regime shifts. The ABM formalism is predestined to model systems of individual, spatially distributed, heterogenous actors, such as citizens in a town or country, who can move and interact and thereby produce a vast range of emerging patterns of behavior that need not be conceived by the modeller (Eppstein, 1999; Gotts et al., 2019). In consequence, ABM can be utilized to evaluate adaptive behavior as a response to environmental changes can be realized through individual or social learning, for which also machine learning algorithms may be applied (Filatova et al., 2016). However, comprehensive ABM models over many scenarios require large-scale simulations wherefore Filatova et al. (2016) argue that they are typically focused to a small number of scenarios or to compare specific scenarios as opposed to covering a whole system state space. ABM has so far been applied to specific problems in energy transition and infrastructure problems (Kwakkel & Pruyt, 2013; Kwakkel & Yücel, 2014; Li, Trutnevyte, & Strachan, 2015), ecosystem, land use and population dynamics (Filatova et al., 2016).

Due to its high level of detail, simulating individual actors with dedicated choice algorithms can become very resource intensive very quickly. ABM benefits greatly from large numbers of actors but in consequence can handle only a limited number of choices and assumptions. Additionally, Fontaine and Rounsevell (2009) criticize that ABM assumes that choice algorithms and preferences remain constant over the simulation time, which may be in contrast to today's fast-paced society. Furthermore, accurately capturing the possible choice mechanisms to implement in actors remains a core challenge in ABM (Zhang et al., 2016; Fontaine and Rounsevell, 2009).

3.1.3 Choice of the modelling formalism

Consequently, system dynamics modelling is the preferred modelling formalism for this research. SD assumes the desired bird-view-perspective on the system as a whole. With SD modelling, the focal sectors' energy transition systems are described as aggregated stocks and flows, summarized on the chosen level of aggregation. These core qualities are key to gain insights about the energy transition dynamics and evaluate the different policy options for Germany as a whole or its political sub-entities, such as states and administration districts.

Zeigler (2000) notes that different modelling approaches can also be combined and used as hybrid models considering the modelling goal. Verburg et al. (2016) agree that "a pluralistic approach that tests different alternative model structures is required" (p.338) in order to combine the individual strengths and address the different challenges posed by the Anthropocene. However, such undertaking, even though very interesting, lies far outside the scope of and means available for this

research.

3.2 Data

This section briefly covers the sources and accuracy of the data in use. The specific datasets used in this research are a result of the need of specific data points, fulfilling the desired aggregation level and data format, and the availability of data points that match this need as good as possible. In the course of data collection, a master dataset is created, which collects and prepares the different datasets in one file under a uniform structure in order to improve its application in the simulation. The file also notes the data sources. Furthermore, it is outlined how the inevitable gap of missing data was overcome, how the model was parametrized and how data is being used. Finally, the handling of uncertainty is outlined with respect to affected data points.

3.2.1 Input data selection

In order to enable an evaluation of energy transition policies in Germany, datasets on the societal structure are needed as well as specific data points that further define the energy consumption and GHG emission properties of the societal structure. Generally, the federal data services including Destatis¹ and Genisis-Online² databases are the starting point for all societal data searches. Below, the data structure and the sources are presented for each of the focal sectors.

Wherever possible original data is used, however, some data is not available in the chosen resolution. In such cases the closest available data points are used to bridge this gab and spread or infer the available distribution onto the desired resolution.

Data selection: Energy sector

Energy consumption related data is also found on the aforementioned databases, however, the Working Group on Energy Balances (short AGEB for Arbeitsgemeinschaft Energiebilanzen e.V.) is a society dedicated to preparing and publishing various energy-related statistics for Germany. Therefore, the initial data to represent the relevant parts of the energy sector, such as the composition of the electricity mix and the electricity demand of non-focal sectors, is found in the AGEB datasets. All energy data in this sector is aggregated to the national level.

Additionally, several data points are required to calibrate the model, which could be found in different reports and online tools. The Deutsche WindGuard (2018a, 2018b), for example, provided valuable insights into the dynamics in the on- and off-shore wind sector. The Bayrisches Landesamt für Umwelt (LfU) (2018) published a tool and summary on the energy value and emission characteristics of different fuels.

The three price-setting mechanisms for electricity, fossil fuels and GHG emissions are informed by historic values, taken from different online sources. As these prices change daily by a few cents, a rough estimate is enough for this study so that virtually source is sufficient. Specifically Fluessiggas1³, Strom-Report⁴, and Wikipedia⁵ provide useful information. Additionally, the GHG emissions price policy decision from the BMWi (2020) is included. Valuable data points on solar pv energy is also provided by Fraunhofer ISE (2020).

1 www.destatis.de

5 www.wikipedia.org

38

² www-genisis.destatis.de

³ www.fluessiggas1.de4 www.strom-report.de

Data selection: Housing sector

The housing sector is founded on disaggregated datasets provided by Destatis. The initial amounts of buildings, dwellings, and living space are integrated on the level of administration districts. However, most recent dataset available with such high resolution originates in the census of 2011 (further referred to as "census11"). Since the census11 did not cover all necessary data points, such as living space distribution, household income, and types of heating systems, the micro census of 2018 (further referred to as "mc18") is used to estimate the missing data. The mc18 is based on a 1% sample of the population and extrapolated to represent the whole society. In contrast, detailed data on a broader range is collected with the micro census. Due to the small sample size, the mc18 data is aggregated on national and state level. Thus upon extracting the desired data points, the mc18 data distribution is mapped over the higher resolution census11 data, which in the following will be treated as the master dataset.

In order to estimate the energy efficiency performance and upgradability of buildings and living space, specific data is needed. However, buildings and living space are different from case to case, whereas this modelling attempt operates on a rather aggregated level by applying average values. Thus multiple online-sources are searched through in order to get a feeling for the best estimates on building specifications. Such include Westermann & Richter (2018) for application-specific energy consumption in households, Heizung.de⁶ for electricity consumption per household size, Niedrig-Energie-Institut⁷ for the energy efficiency characteristics of new constructions, Energie-Fachberater⁸ and other insulation and energy installation providers for data on insulation improvements and energy production, and Walberg (2012) and Bigalke et al. (2016) on energy efficiency performance per square-meter, building size, and construction year in addition to Destatis data. These data sources provide only very selected and specific data points. Thus some may turn out to be useless in the course of modelling as the structure of one set may not fit to the structure of other data.

Walberg (2012) structure	10-year structure (census 2011)	Micro Census structure (census 2011)	Bigalke et al. (2016) structure	Micro Census 2018 structure	Final data structure (own estimate)
pre 1918	pre 1919	pre 1919	pre 1919	-	pre 1919
1918-1948	1919-1949	1919-1948	1919-1948	pre 1948	1919-1948
1949-1957	1950-1959				
1958-1968	1960-1969	1949-1978	1949-1978	1949-1978	1949-1978
1969-1978	1970-1979				
		1979-1986	1979-1986 1987-1990	1979-1990	1979-1990
1979-1987	1980-1989	1987-1990			
1988-1993		1991-1995	1991-2000	1991-2010	1991-2000
	1990-1999	1996-2000			
	2000-2005	2001-2004			2001-2008
	2006 and later	2005-2008	2001-2008		
		2009 and later	2009 and later		
				2011 and later	2009-2020
					2021 and later

Table 3.2.1-a: Different housing data structures

8 www.energie-fachberater.de

https://heizung.de/heizung/tipps/der-durchschnittliche-energiebedarf-im-haus/ 6 7

https://nei-dt.de/fachinformationen/neubau-standards/enev-referenzgebaeude/

One example incompatible data structures is the different ways of clustering the building construction year groups as illustrated in table 3.2.1-a. The census 2011 data (yellow) collection provides building data in two alternative forms of aggregation, by 10-year groups and by so-called micro census groups. Although bearing similar names, the micro census 2018 data (purple) does not fully correspond to this format. The structure of Bigalke et al. (2016) (blue) resembles an aggregated version of the micro census data presented in the census 2011 dataset. However, Walberg (2012) (red) provide data on building standards and efficiencies that is for once limited to the year 1993 and presents many differences to the other structuring formats. Since its content is similar to that of Bigalke et al. (2016) yet has less data quality, the data from Walberg (2012) is disregarded. Despite the differences, all three datasets contain valuable information and need to be combined. The final data structure (green) is thus created with the intention to most efficiently and with as little intervention as possible join the three datasets. It resembles an extended version of the structure used by Bigalke et al. (2016) and the "micro census" structure used in census11. In contrast, the mc18 uses a starting year 29 years later (1948) than the other two (1919) and ends two years later (2011 instead of 2009). In order to fill these gaps, the datasets are extrapolated where needed to make them fit. Additionally, the data in mc18 is clustered in slightly different intervals. These differences are corrected by assigning the overlapping portion of the interval to the designated time frame in the final data structure. Additionally, annual mean values of the most recent years are applied to further extrapolate the available data to fill also the recent time frame between 2011 and 2020. The final interval "2021 and later" is created as placeholder for future values and thus filled with null values. This step is mainly necessary to correctly initiate the model.

From a statistician's point of view, the chosen clustering is unfavorable. Supposedly there is a reason for clustering logic used by Bigalke et al. (2016) and the "micro census structure" applied in census11. Possibly these clusters link to construction standards or energy efficiency standards. However, considering that this data structure in a way reflects the distribution of the building data over a time scale, the logic of aggregation can be very misleading when comparing the individual construction year groups. From a statistical standpoint the 10-year structure applied in census11 would be preferable because each group represented the same amount of time. The chosen final data structure, in contrast, contains clusters of different sizes: 7 years, 9 years, 11 years, 29 years. Consequently, there is little statistical insight in comparing one of the 29 years spanning cluster with the 7 years spanning cluster. This downside must be considered when handling and interpreting this data.

Another point of criticism is the considerable age of census11, which presents the core data set in the housing sector. However, it is the most recent dataset available with such high resolution in this sector. Fortunately, the housing sector is changing fairly slowly so that its age does not void the dataset and possible gaps can be filled without risking significant distortion.

Finally, the data on the available workforce is obtained from Destatis⁹. However, in the field of building constructions and renovation work are many different professions with overlapping skills and thus it is extremely difficult to attribute the individual professions to the different types of upgrade and addon installation work that is to be considered in the model. Researching different carpentry websites, for example, suggested that carpenters are also capable to complete various insulation work, even installing windows and roof tiling. Thus multiple professions are pooled to perform similar tasks. Since neither the data nor other reports hint at realistic distributions, the following table 3.2.1-b depicts the chosen professions, their attribution to the specific installation work and their assumed time dedication to the specific tasks. A full overview of all main construction and finishing trades is given in Appendix C.5. These assumptions lead to an estimate on the potential available working hours each profession can dedicate to the individual improvement installations. For this estimate, examining the report on the building industry by Statistisches Bundesamt (Destatis) (2020) revealed that construction workers on average work for 1230 hours per year.

Craftsman professions	Workforce	Improvements expertise	Assumed dedication	Residual working hours per profession and improvement
Carpenters	89038	Insulation work	5 %	5475837 h/a
Roofers	94631	Insulation work	10 %	11639613 h/a
Heat cold and sound insulation workers	13105	Insulation work	50 %	8059575 h/a
Plumbers and heating engineers	327340	Heating system installations	40 %	161051280 h/a
Plumbers and heating engineers	327340	Solar thermic installations	5 %	20131410 h/a
Electrical engineers	445803	Solar PV installations	5 %	27416884,5 h/a

Table 3.2.1-b: Workforce allocation

Due to profound assumptions underlying these estimates, the final available working hours per improvement work are each affected by an uncertainty variable that can be set to reduce the working hours between 0% and 100%.

Data selection: Personal transportation sector

The data on road-based transportation topics is collected and hosted by the Kraftfahrt-Bundesamt (KBA) in Germany. The main dataset that is used to initialize the distribution of cars by fuel type across the administration districts needs to be compiled from three different datasets of the KBA¹⁰. In order to obtain a dataset that allocates the existing car stock and new registrations segregated by ownership (private and non-private) and fuel type (petrol, diesel, HEV, PHEV, BEV) to the administration districts, the data needs to be compiled from different datasets provided by the KBA (see Appendix D).

Additional information on personal transportation performance is derived from the report authored by Radke (2019) from the KBA. Supplementary data is also found directly on the KBA¹¹ website, including data on national driving performance.

Additionally, the report by Fraunhofer ISE (2020) conveys various information that is relevant to the personal transportation sector. It suggests that about 15% of charging losses occur during EV charging, which is added to EV electricity consumption. Furthermore, the Fraunhofer ISE (2020) report gives detailed insights about the complexity and relationships between electricity production, housing, and personal transportation, which provided valuable background information.

Furthermore, data on public transportation, railway use and air travel statistics can be found at Destatis¹² and in the reporting of the German railway company Deutsche Bahn¹³.

https://www.kba.de/DE/Statistik/Verzeichnisse/verzeichnisse_node.html;jsessionid=E7F58906F6E54025D826F4AB501141D0. live21301

¹¹ https://www.kba.de/DE/Statistik/statistik_node.html

¹² destatis-46100

¹³ https://ir.deutschebahn.com/de/berichte/

3.2.2 Input uncertainty handling

The data quality and availability for this research quest is unexpectedly poor. As pointed out above, several data points need to be inferred, others imply even higher uncertainty.

Least known unknowns

Typically, societal behavior is most difficult to quantify as is the societal diversity most difficult to capture accurately. This is also the case here. The least known unknowns include consumption behavior that drive the transition, namely the preferences of buying electric vehicles, including the price elasticity of households regarding fuel price changes, and the propensity of buying housing upgrades and if so, which ones. The decision process in these three cases virtually represents a black box without indicators and extremely broad ranges of uncertainty. These uncertainties can best be represented with uncertainty variables that allow to significantly boost or limit the uncertain consumption behavior. This also implies, however, that there may be unknown unknowns that drive this behavior in the real world but are not represented in the model. Their potential existence must thus also be covered by the envisioned uncertainty variables.

Systemic unknowns

Further known unknowns, yet less profound, are linked to a systemic lack of data that unnecessarily increases the uncertainty of this study. Among others, this is the case for the improvement status of the building stock in Germany. Even though it is mandatory to evaluate energy efficiency metrics of buildings for the sale and renting of living space, it is unknown whether this data is systematically collected or not, at least it is not published. Table F in Appendix F gives an overview over a number of data inquiries made to governmental agencies and research organizations. However, the Destatis response suggests that the German authorities do not collect more specific energy efficiency data. Also the organization CO2online could not help resolve this data gap. Thus an approximation solution was sought that uses other indicators to get similar insights. The data gap was finally overcome by, instead of using data on installed upgrades and add-ons and their performance, accepting that the initial data already accounts for unknown improvements hidden in the average energy consumption and approximating the outstanding gap to the average energy consumption of a fully improved building stock. This assumption infers that improvement benefits are shared between all building units of the same type in the same geographical area and does not clearly distinguish between buildings with and without improvement. Consequently, in the model also all buildings must pass through the improvement process. As each living space unit has five upgrade and two add-on options to improve, each improvement slightly increases the average building performance until all units are improved in all seven options.

Similarly with housing improvements, the KBA data also lacks information on the battery capacity and characteristic electricity consumption of electric vehicles. The cumulated battery capacity finally determines the upper limit of potential charging demand and presents a potential burden on the electricity sector. However, the effective energy consumption is more important in this case. Fortunately, an estimate on the average energy efficiency of EVs could be found in a report by ADAC¹⁴.

Another case of uncertainty due to an unnecessary lack of data revolves around the available construction workforce and its specific allocation of working hours by type of work. As depicted above in table 3.2.1-b, the amount of working hours that can be attributed to the individual improvement work that is performed during construction and renovation required careful appraising. Hereto, for <u>each profession</u> the different possible tasks are considered and their assumed occurrence based on https://www.adac.de/rund-ums-fahrzeug/tests/elektromobilitaet/stromverbrauch-elektroautos-adac-test/

the assumed time each task consumes. Lacking reliable data, the values are only a rough estimate. Assuming that the estimates are rather optimistic, uncertainty variables are implemented through which the available working hours per field of improvement (insulation, heating system, electricity system) can be assigned a handicap.

Educated guesses

Similarly, the costs attributed to building improvements and car sales represent estimate average values, which may very well and with equal likelihood under- or overvalue the outstanding work. In this case, however, several indicators found during the literature and web search permit to assign price ranges to the individual options, which significantly lowers their uncertainty. The Appendix on Data Collection is a collection of all single data points that are collected and that help setting these ranges. Even though uncertainty variables are also attached to the cost variables, they are only secondary to the more impactful uncertainty on consumption decisions.

3.2.3 Policies specification data

The policies affecting the individual sectors were already presented during the literature review in chapter 2. The individual policy specifications are thus obtained from the publications of the responsible ministries. Most policies fall into the area of responsibility of the Federal Ministry of Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie, BMWi) and are thus published in its reports. This includes the overarching energy efficiency strategy 2050 (BMWi, 2019b), a summary of the building energy act (Gebäudeenergiegesetz, GEG) (BMWi, 2019a), the revision of GHG emission prices (BMWi, 2020), electric mobility (BMWi, n.d.). However, also other ministries publish relevant policy information, such as the Ministry for Environment, Nature Conservation and Nuclear Safety (BMU).

3.2.4 Conclusion on Data use

In summary, the used data is not at all fit to make predictions with this model. However, with the intention to assess system and policy robustness the data does not need to be perfectly accurate. On the contrary, the evaluation method is specifically designed to apply broad value ranges for such an assessment. The only requirement is that the data represents reality close enough so that the model can simulate the relative behavior as good as possible.

3.3 Model conceptualization

The three focal sectors are composed of several building blocks, thematic collections of variables that describe a sub-system. This section aims to outline each block in its essential characteristics, functions and underlying assumptions. These model aspects are derived from the case study outline, given the status quo and existing policies and strategies. Finally this conceptualization serves to specify the XLRM framework for further analysis in the next section.

3.3.1 Conceptualizing the Energy Sector

The energy sector is central for measuring the policy effects because the energy use from all focal sectors is collected here and converted into a GHG emissions estimate. The sector consists of four blocks, namely: electricity production composition, electricity demand aggregation, GHG emissions

accounts, and energy and emissions prices.

Electricity demand aggregation

The main block collects all energy consumption from within the model as well as from selected complementary external energy consumption values referring to the electricity need of non-focal sectors. Complementing the internal electricity consumption with these external values completes the picture on the total electricity use and environmental footprint, under the assumption that the external electricity consumption remains constant.

Electricity production composition

Whereas other energy carriers are commonly burnt at the time and place their energy is needed (primary energy consumption), electricity is an intermediate carrier that is produced from primary energy sources mostly in a centralized fashion up to today. The second block handles the electricity production. It deals with the energy transition by incorporating decisions on technology phase-out, such as nuclear and coal power, and capacity building programs as well as balancing out the electricity demand on a macro level. This block is initiated from the last available distribution on the electricity mix in 2019 (AGEB, 2020a) and it takes as an input estimates on additions and reductions to the electricity mix as well as existing energy transition policies. The electricity production is complemented with an internal repowering meachanism for solar pv and wind power plants, replacing old units with newer and more powerful ones, based on reports by WindGuard (2018a), Rolink (2014) and Fraunhofer ISE (2020). The share of repowering activities has changed between 10% and 25% in the recent years. However, potentially it holds great value in the long term if existing sites will constantly be reused after the specific installation has reached the end of its lifetime. While currently each repowering iteration is accompanied by a significant increase in power output, this factor most likely gradually subsides over time as physical limits are reached (Deutsche WindGuard, 2018a, 2018b). Additionally, it is uncertain which fraction of old facilities is effectively replaced with new ones as this is up to a market mechanism. Simultaneously, the runtime of energy transition policies is very limited and their effectiveness more than questionable so that wind power capacity expansion can be derived from construction plans (Deutsche WindGuard, n.d.) but also these could still change as discussed by Modrakowski (2020) and Agora Energiewende and Wattsight (2020). For the medium term, the government published various targets for wind and solar pv power expansions up to the year 2050 but there is no evidence that these will be met, leading to another uncertainty in this building block.

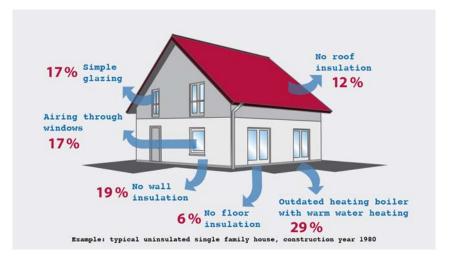


Figure 3.3.2-a: Energy loss potential per building component. Based on BDEW, n.d.

Furthermore, this block is connected to the demand of electricity and takes any supply deficit to add new electricity capacity to the production stock. The type of production technology to be added is based on a most recent historic distribution average excluding nuclear and coal power based on AGEB (2019a) data. The data shows extraordinarily high geothermal energy installations, which could possibly not be maintained but were not compensated due to the lack of better indicators.

GHG emissions accounts

Third, the GHG emissions block estimates the GHG emissions from the actual consumption per energy source in the model. Therefore the sectoral energy consumption is multiplied by the respective emissions characteristics based on the CO2-Calculator by the Bayrisches Landesamt für Umwelt (LfU) (2018) and then aggregated per sector. Further, all emissions are summed in the core outcome value "GHG emissions from selected sectors combined" and are also presented as a relative improvement compared to the respective benchmark emissions in 1990, found in the UBA trends table by Gniffke (2019) and estimated from the Kraftfahrt-Bundesamt (2020) and Statistisches Landesamt Baden-Württemberg (2020) data.

Energy and emissions prices

Finally, the fourth block concerns energy and emissions prices that are relevant factors in other building blocks on the model. The prices for electricity and car fuels are based on historic prices

Figure 3.3.2-b: Energy improvement potential per building component. Based on BDEW, n.d.

(Fluessiggas1, n.d.; Strom-Report, 2020; "Elektroauto", n.d.; "Erdgas", n.d.) and simulate simple gains over time, where the electricity price is also influenced by the electricity supply balance. The GHG emissions price is a bit more complex and is initiated at the proposed starting price by the BMWi (2020). To some extent it accounts for the share of renewable energies of the total electricity production and follows the upper and lower boundary conditions set by the BMWi (2020).

Buildings stock	Building construction
Dwellings stock	Improvement demand from dwelling constructions
Households formation	Household electricity consumption
Living space stock	Living space energy consumption

Table 3.3.2-a: Elements of "Households stock"

3.3.2 Conceptualizing the Housing Sector

The housing sector aims to represent the development of the housing stock and households as the key determinants for the energy consumption of the housing sector. In its core all its elements revolve around the propagation of living space and households and their relevant characteristics to derive the necessary energy metrics. Therefore it can be separated in three parts: the stock of buildings, dwellings, living space and households, the budget available to households and the improvement households can make to their buildings and dwellings.

Modelling the housing sector follows the basic idea that buildings, depending on the way they are constructed and which materials are used, have a specific heating energy demand characteristic. The characteristic is corellated to the construction years as the construction period determined the standards under which buildings were built. Additionally, the size of the house is an indicator for the average energy efficiency of a building. Especially living space built on top of each other, like in a large multi-family apartment complex, shows synergy effects neighboring dwellings have an insulating effect that reduces each others heating energy demand.

Furthermore, buildings have five main components that drive the demand for heating energy, as depicted in figure 3.3.2-a The four insulation components of floor, glazing, roof, and wall insulation determine how much heat dissipates to the outside. The fifth component, the heating system techology, determines which amount of the energy content that is contained in the energy source (fuel) can actually be used for heating the living space and drinking water and which amount is emitted and lost through the chimney. Additionally, also the airing behavior plays a role in energy losses as seen in figure 3.3.2-a but for now only the building structure is important. With this in mind,

Construction year	l dwelling in kWh/(m2*a)	2 dwellings in kWh/(m2*a)	3-6 dwellings in kWh/(m2*a)	7-12 dwellings in kWh/(m2*a)	13plus dwellings in kWh/(m2*a)
pre 1919	247	238	212	182	169
1919-1948	254	236	211	178	153
1949-1978	236	219	192	166	140
1979-1990	175	168	155	152	118
1991-2000	131	127	127	114	101
2001-2008	83	88	80	76	69
2009-2020	48	46	46	53	54
2021 and later	24	24	24	24	24
average	190	198	179	155	131

Table 3.3.2-b: Heating energy demand characteristic value by building size and construction year

Own estimate

the BDEW (n.d.) developed a reference house model that depicts the base energy consumption with low insulation in comparison to high insulation as illustrated in figure 3.3.2-b.

Households stock

The household stock aims to keep track of and improve the estimation of the housing stock and its properties, such as the number and size of buildings and dwellings, in order to obtain the governing values to connect to the available data on energy consumption and efficiency improvements. It is the

foundation of all computations in the housing sector. The input data for the housing and dwelling stocks and households formation is obtained from different data services by the Statistisches Bundesamt (Destatis), including census data from 2011 (Statistisches Bundesamt, 2011) and 2018 (Statistisches Bundesamt, 2019) as well as complementary data from Genisis-Online¹⁵ and Destatis¹⁶ (Statistisches Bundesamt). Several external data points further help to estimate the consumption of insulation materials and working hours that are allocated to new building constructions. Finally, connecting also to estimates of electricity consumption per household by size and heating energy consumption per living space area of dwellings, the housing stock produces values on the final electricity and energy consumption per household and square-meter respectively, which are forwarded to the energy building block.

However, the energy characteristics of the housing sector are dynamic and change with the energy efficiency performance over time. The electricity consumption per household is difficult to reduce, instead it is expected that electricity consumption increases in the long term due to further electrification of household appliances and processes (Agora Energiewende and Wattsight, 2020; Bundesnetzagentur, 2020; Bundesverband Erneuerbare Energie, 2019). The estimates for 2030

Construction year	l dwelling in kWh/(m2*a)	2 dwellings in kWh/(m2*a)	3-6 dwellings in kWh/(m2*a)	7-12 dwellings in kWh/(m2*a)	13plus dwellings in kWh/(m2*a)
pre 1919	80	76	71	64	57
1919-1948	66	60	54	48	46
1949-1978	64	60	55	54	48
1979-1990	84	80	75	91	64
1991-2000	71	69	70	67	62
2001-2008	59	57	60	60	59
2009-2020	31	31	31	37	42
2021 and later	24	24	24	24	24
average	59,88	57,13	55	55,63	50,25

Table 3.3.2-c: Residual energy characteristic values after improvements

Own estimate, see appendix C.2

electricity consumptions vary greatly, however, so that the long term outlook bears great uncertainty. Aside the generic electricity consumption increase, household electricity demand is further connected to and influenced by household solar pv installations and the charging of electric vehicles from the personal transportation building block. Where solar pv installations reduce the households final electricity demand, EV charging increases the demand.

Additionally, households heating energy consumption is determined essentially by the insulation performance of the buildings, which is reflected in the average annual energy need per squaremeter of living space. Starting off with an initial distribution of energy consumption per squaremeter dependent on the construction year (age) and number of dwellings (size) of a building (table 3.3.2-b), the heating energy demand performance can be improved by upgrading the five building components: floor, glazing, roof, and wall insulation as well as the efficiency of the heating systems (Appendix C.1). The heating energy demand characteristic values in table X are estimated based on based on Bigalke et al. (2016) and insights from the European Energy performance of buildings directive (EU-EPBD)¹⁷ as well as the Niedrig-Energie-Institut¹⁸.

18 https://nei-dt.de/fachinformationen/neubau-standards/enev-referenzgebaeude/

¹⁵ www-genisis.destatis.de

¹⁶ www.destatis.de

 $^{17 \\} https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_energy-efficient-buildings/energy-performance-buildings-directive_energy-efficient-buildings/energy-performance-buildings-directive_energy-efficient-buildings-energy-performance-buildings-directive_energy-efficient-buildings-energy-performance-buildings-directive_energy-efficient-buildings-energy-ef$

Based on the initial energy characteristic, the output shows the business-as-usual (BAU) values of heating energy consumption and in a second step adds the upgrade improvements to show the final energy consumption from household heating based on the improvement ratio per building component (Appendix C.2). Upon completely upgrading a building, the final energy characteristics of buildings could be reduced significantly as shown in table 3.3.2-c.

Additionally, the heating energy demand can further be reduced by solar thermic add-on installations, which is further subtracted in the variable "total energy consumption from household heating after improvements".

The households stock building block also contains sub-blocks concerning building construction, living space stock, and improvement demand from dwelling constructions. These are perform intermediate functions bridging the initial data input and the needed data points to link the housing stock values with the specific energy consumption data points and preparing the dataset to be run through the household improvements building block.

Household budget

The household budget aims to determine the spending propensity of households on possible energy efficiency improvements and therefore takes as an input the average yearly income per income group multiplied by the number of households per income group and maps budget restrictions and spending preferences over the available budget. Therefore it is assumed that the households that are able to save money for investments (whose monthly income is greater than EUR 1.500) on average are willing to spend 2,5% of their yearly income on long term improvement investments ("UNC base fraction of household income dedicated to improvement investments"). The detailed estimation of the household budget and the available income for non-essential spending is laid out in Appendix C.3.

Three types of possible energy efficiency improvements are distinguished, which are further explained below. Households can invest in building upgrades to increase the insulation performance, in building add-ons to produce their own energy, and in more efficient cars to reduce GHG emissions from transportation activities. The investment preferences of the three types are determined in relation to each other. Thus each type is assigned an assumed base preference value and an assumed value gain, which is complemented by the overall upgrade status of each type, considering that increasing shares of completed improvements decrease the remaining amount of outstanding improvement needs. Finally, the resulting relative preference distribution is applied to the "final disposable yearly income for improvement investments" resulting in the yearly available budget per improvement type from which the maximum achievable amount per year is derived. The outcomes are then forwarded as inputs to the household improvement building block and the new car registrations building block as part of the transportation sector, which are presented below.

NOTE shortcoming/limitation: The improvement mechanism takes the total available budget from all income groups combined. This missing distinction between the budgets allows the disproportionately large budget for investments of high income households to also be treated as an assumed budget available to lower income households. It makes a significant difference if all households share a common budget as opposed to each income group being limited to its own budget due to the asymmetric distribution of available means (finances) and obligations (the work needed to be done). The uneven distribution of income (Appendix C.3, Table C.3.2) is further amplified by similarly uneven distribution of the share of available net income that the income groups are assumed to be able to spend on non-essential consumption (Appendix C.3, Table C.3.3). As a result, over 82% of the budget

estimated to be available for improvements is earned by the highest income group (Appendix C.3, Table C.3.4) In contrast, the need to improve a household's energy consumption seems to be rather evenly distributed as the rich and the poor alike occupy energy efficient and energy intensive living space.<<<

Household improvements

The residual cumulative available household budget per annum is combined with an estimate of the total living space area that needs improving in the household improvements building block. The household improvements considered here are upgrades and add-ons to buildings. Upgrades indicate improvements to the essential structure of buildings that increase their passive efficiency, namely floor insulation, glazing, roof insulation, and wall insulation as well as heating system upgrades. Add-ons on the other hand refer to additions that can be made to the buildings' structure and more actively improve its efficiency. A variety of possible add-ons can be thought of, yet the most common in private households are photovoltaic (solar pv) and solar thermic installations that use solar power as well as environmental heat installations that use near-surface environmental heat. However, data on add-on installations in Germany is very scarce so that only solar power add-ons can be considered; the data on geothermal installations is not sufficient ->limitation.

The household improvements building block is further divided into four elements. First, there are a few intermediate supporting elements, such as improvement prices development and the very rough conversion estimate of living space area to improvement amount potential per improvement component. The prices of upgrades and add-ons follow the basic idea that learning-by-doing and economies of scale will lead to price reductions over time. The reduction was set to 0,2% p.a. of the actual price, whereas the used initial upgrade and add-on prices are shown in **Table 2 - household improvement prices.** In order to fit into the model structure, each price needed to be estimated in relation to square-meters of living space, which is the model's basic calculative unit in the housing sector. Such conversion undoubtedly produce estimation errors but for the sake of simplicity could not be avoided. The price estimates are joined with the previous budget estimates in order to obtain an upper limit on the amount of improvements per year. (see Appendix C.2 Upgrades / C.4 Add-ons on Improvements)

Second, aside from the limiting price to budget ratio, also the workforce sets a limit on the maximum amount of upgrades that can be achieved per year. Hereto the active workforce with the right qualifications is considered and distributed to the different upgrade and add-on installation activities. The available amount of working hours for improvement activity is initially reduced by an estimate of the working hours consumed by building constructions. Equally to the financial side, also the available working hours are divided by the time needed per installed square-meter and type of improvement, which returns an estimate of the maximum possible area that can be covered with the available working hours. The underlying assumptions and intermediate estimates that led to the final available working hours are outlined in the Appendix C.5.

Finally, these estimates are fed into the core improvement mechanisms in the housing sector. The process of improving households is separated for upgrades and add-ons but the structure and function is the same. Both take as inputs the initial total area that needs improvements and transfers it at the rate determined by an improvement function to the collection of completed improvements, which presents to output for further use. As mentioned before, the improvement function is mainly driven by the limits set by the annual budget and working hours per improvement type. The output values are then used to estimate the effective efficiency contribution with regard to housing upgrades as outlined in Appendix C.2 and the energy production capacity (electricity or heat) with regard to the

housing add-ons as outlined in Appendix C.4. The housing upgrades also include heating systems, which vary significantly in energy efficiency and GHG emissions depending on the technology used. Therefore, the upgrades element also includes a process of replacing the existing distribution of heating system technology with a new, more sustainable distribution. The transition function in this case mirrors the transition amount of heating system upgrades processed in the general upgrades element. Also the budget and workforce factors are not considered in this step because they were already accounted for previously. However, the output of the heating systems element is essential for estimating the "household heating system current net consumption per fuel type", which allows the GHG emissions of the household sector to be estimated in combination with the actual heating energy consumption performance. The actual heating energy consumption performance is the result of the initial household energy performance combined with the efficiency improvements from upgrade installations. Additionally, also the solar thermic add-on installations reduce the final heating energy consumption. The solar pv add-on installations on the other hand reduce the electricity consumption of households, as mentioned above.

3.3.3 Conceptualizing the Personal Transportation Sector

The personal transportation sector finally aims to determine the energy consumption of personal transportation by linking personal mobility statistics to transportation modes in combination with fuel prices and consumption. The output of this sector not only accumulates energy consumption values of transportation means for the final GHG emissions estimate but also contributes to the accuracy of the electricity consumption of the housing sector. In order to achieve the desired output, the sector is structured in three blocks.

The starting point is set by the building block "Personal transportation demand and mode preferences", which is used to take the initial data on personal transportation demand, estimate its development over time and further apply a distribution of transportation mode preferences in order to determine the personal transportation demand for the different transportation modes. Derived from the system boundary definition, valid personal transportation modes include cars, public transportation (combining local and regional rail and road-based transportation), railways (referring to national railway transportation), national air travel, and bicycle transportation. The transportation mode preference are initiated with the last known distribution of passenger kilometer (pkm) but a mechanism is implemented that allows policies to affect the utility of the different transportation modes and thus alter the distribution over time.

The outcome of the "Personal transportation demand and mode preferences" block is then split up. Since this study focuses on household behavior change with the car as the bogeyman in the energy transition, the demand for car transportation is separated and prepared for more detailed simulation in the building block "Personal transportation by car". The outcome for other modes of transportation are immediately forwarded to the building block "Energy consumption from personal transportation", where their energy consumption characteristic is determined. Hereto their transportation performance statistics are transformed into general energy consumption. Aside from the transportation by car also public transportation, which includes a large autobus fleet, and air travel produce direct GHG emissions. However, recognizing the increased trend towards electrification in both sectors as presented during the literature review (2.1.3), they are additionally influenced by an electrification mechanism.

The "Personal transportation by car" building block is slightly more elaborate. The goal here is to look into different approaches to reduce the GHG emissions of the car fleet. The car fleet, distinguished by fuel type, is recorded in a general stock value. Petrol, diesel, gas, hybrid electric vehicles (HEV), plug-

in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) are considered under different fuel types, even though the last three technically refer to entire drive systems. The fossil fuel based fuel types (petrol, diesel, gas and HEV) can also collectively be called combustion engine vehicles (CEV), whereas PHEV and BEV are summarized as electric vehicles (EV). HEV and PHEV are further assumed to be fueled with petrol for their non-electric part. Furthermore, the car fleet stock is filled by a logic propagating new car registrations and their distribution to the different fuel types. The "new car technology preferences" logic determines the final distribution of fuel types among new car registrations.

The preference logic itself is essentially driven by economic calculation as this was identified as the main driver of consumer behavior in chapter 2.2 (policy dimensions). However, several scholars also highlighted that consumers frequently act irrational and that purely economic incentives are insufficient (Storm, 2017). Nonetheless, the economic component is easily to quantify and implement in the model structure and therefore presents the foundation of this mechanism. The economic rationale is presented by the "car technology lifetime cost factor", which estimates the preferences of the car technologies (fuel types) by their respective lifetime cost. Additionally, the economic preference setting is complemented by an uncertainty factor that represents the consumers' irrational behavior. The variable "UNC new car pref objection against new technologies" therefore represents any divergent attitude towards the suggested change by reducing the preference value of any of the new technologies (gas, HEV, PHEV, BEV).

The lifetime costs of the technologies considers operation and maintenance costs as well as acquisition costs. Based on KBA¹⁹ insights cars reach an average age of 18 years in Germany. Combining the expected age, yearly mileage, maintenance costs and fuel prices results an estimate on the lifetime costs per fuel type. The fuel prices refer to the price mechanisms previously introduced in the energy sector and also consider electricity prices for PHEV and BEV as well as GHG emissions prices in addition to fossil fuel prices for CEV. Aside from the uncertainties in fuel price development, equally the future acquisition costs and yearly mileage are linked to uncertainty factors. At the same time, policy levers representing the ongoing governmental support program for EVs are connected to the acquisition costs of EVs.

Finally, also the EV stock is linked to the aforementioned building block collecting the energy consumption from personal transportation. However, electricity use from charging EVs is handled separately. First, the ownership structure of the car fleet stock is taken into account in the previous step. This distinction enables to determine which the amount of EVs charging at home and at non-household charging stations. Again, there is uncertainty of which fraction of the electricity demand of privately owned EVs is actually charged at home. The amount of electricity demand from charging at home is then fed into the housing sector's household electricity demand as presented above. At last, the energy demand from non-household charging, the remaining fuel types, and the other modes of transportation is forwarded to the energy sector in order to sum up the total energy demand and GHG emissions from housing and personal transportation.

Additionally, a few more potential policy levers were identified. Considering the model structure, policies can influence either the overall personal transportation demand or more specifically alter the utility of the different modes of transportation.

3.3 Verification and Validation

Simulation models in the context of political decision making are targeted to help answer significant

questions and the insights drawn from such models can have severe consequences. Thus decisionmakers are deeply concerned with the "correctness" and reliability of such models. Therefore verification and validation is a valuable step to ensure that the relationship between the model and its purpose are meaningful.

Verification commonly refers to ensuring the correct implementation of the computerized model. Validation further addresses the applicability of the model and seeks to confirm whether the model's accuracy corresponds to its intended range of application. Oreskes et al. (1994) underline that validity establishes a sense of legitimacy of and confidence in the model at hand. Typically, Sargent (2009) explains, "(...) performing model verification and validation, is generally considered to be a process and is usually part of the (total) model development process" (p.162). However, model verification and validation is a difficult undertaking.

This research applies a causal-descriptive model to evaluate its behavior. Barlas (1996) states that for such model "generating an 'accurate' output behavior is not sufficient model validity; what is crucial is the validity for of the internal structure of the model" (p. 185). Besides reproducing the real system's behavior the model structure must also serve to explain the generated behavior and suggest how the existing behavior could be changed (Barles, 1996). Yet, Barlas (1996) further notes that validating the internal structure of SD models is generally problematic due to the lack of formal tests for determining the consistent accuracy of the model to the real world counterpart structure with regard to the modelling purpose. Useful methods in such cases include validation through literature, experts, and historic data, among others as outlined by Sargent (2009).

Model concept validation is typically conducted through face validation during the modelling process, according to Sargent (2009). The previous section developed a model concept based on the findings during the review on the German energy transition. The concept is summarized in a flowchart to facilitate the concept validation.

Subsequently the computerized model needs to be tested if its structure and behavior are consistent with the reference system. Throughout the modelling process different techniques are applied to continuously verify the accurate model behavior. However, there is no benchmark for future behavior and in times like these on a topic that evaluates radical change, it seems paradoxical to apply historic data for verification and validation purposes other than for initiating the model. Nonetheless, historic data can be useful as a proxy for event validation in case of a "business-as-usual" (BAU) or no-change scenario. Significant indicators for the verification process are especially variables that produce outcome values for which comparable real world data could be found. Such include energy consumption and GHG emission values for housing and transportation.

Additionally, fairly reliable indicators can be found for electricity use from households by 2030 and installed wind energy production capacity by 2030, which are used as a benchmark. Furthermore, the trends found in historic data are used to verify the remaining model behavior. The verification and validation indicators are depicted in Appendix E.1.

However, validating a transition model by testing its ability to "hold the current course" does not test its ability to accurately simulate change. Therefore, its ability to "get off course" in either possible direction is equally tested. This concludes the operational validity testing, the last step for verification and validation according to Sargent (2009).

Finally the model is set to be applied for policy analysis. In order to do so the framework under which the analysis is supposed to take place needs to be defined as well. The so-called XLRM-framework is useful in this case.

3.4 The Energy Transition Model

Block	Outcome indicators	optimization target
ENERGY SECTOR	GHG emissions from selected sectors combined	minimize
HOUSING SECTOR	Net electricity consumption households	maximize
HOUSING SECTOR	Final disposable yearly income for improvement investments	minimize
PERSONAL TRANSPORTATION SECTOR	Yearly pkm transportation demand total	maximize

Table 3.4: Performance metrics / model outcomes

These model outcomes represent the core qualities that govern the energy transition (table 3.4). They stand for deeper desires that can be attributed to citizens. The main priority for policy-makers and citizens alike is obviously to bring down GHG emissions. At the same time, however, other societal trends and desires stand may oppose this goal's trajectory.

Energy consumption has increased significantly over the last decades as Germany became an industrialized country and thus different sources expect household electricity consumption to increase between 10% to 20% over the next decade due to the ongoing digitalization trend, not to mention the expected side-effects of the energy transition (Agora Energiewende & Wattsight, 2020; Bundesnetzagentur, 2020; Bundesverband Erneuerbare Energie, 2019). An increase in electricity demand under the current electricity production regime, however, adversely effects the GHG emissions target.

Next, in parallel to the energy consumption trend increasing, so is citizens' general consumption of goods and services, as reflected in the trend of Germany's gross domestic product for example. Such consumer society may drive the economy but also reduces the amount that households decide to spend on long term investments such as building improvements or environmentally friendly cars. Investments like these directly compete with short term consumption desires and thus citizens are expected to minimize their spending on any kind of improvements.

Another one of those luxuries of life that citizens likely want to maintain or even expand is mobility. The globalization trend has become invaluable to society, not only in economic terms, and citizens greatly benefit from the ability to move and travel. Therefore, this analysis assumes the goal of maximizing mobility.

Additionally, the definition of levers and uncertainties can be found in Appendix E.2.

3.5 Evaluation methods

As pointed out in section 2.4.3, the evaluation will be based on a manual evaluation of the model behavior based on standard outcomes of reference scenarios.

3.5.1 Reference Scenario

The business-as-usual (BAU) scenario is the first of five reference points. It is characterized by applying no more policies as are already in place and assuming uncertainty values at either known historic

estimate values or, if none are available, at 50% their possible setting. Since no one knows whether they will rather hit mild or strong, assuming the middle will cover a bit of both effects. The BAU scenario best reflects the situation today and therefore represents the status quo as reference to the other scenarios. The BAU scenario settings are listed in Appendix E.2.

3.5.2 Four extreme scenarios

After the BAU scenario, four combinations of applying levers and uncertainties come to mind in order to demarcate the possible best and worst outcomes.

- 1. All-off-scenario: X=0%, L=0%
- 2. All-on-scenario: X=100%, L=100%
- 3. Worst-case-scenario: X=100%, L=0%
- 4. Best-case-scenario: X=0%, L=100%

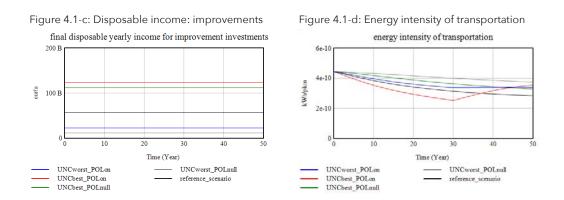
3.5.3 Experimentation designs

The experimentation designs are detailed in Appendix E.3. Two experiments are used to evaluate the policy options, characterized by the levers. The first is the base line experiment that was defined before (BAU). The second experiment is set to portray a strong effort by the government. In the energy sector, the levers are set to a repowering target of 90%, and there is high motivation to only build new renewable energy power plants instead of gas. Further the government levies a high price on fossil fuels for cars and sets no limit on GHG emission prices. EV-sales are also being supported with substantial subsidies of above EUR 10.000. At the same time policies are set to incourage spending on investments and increase the utility of alternative transportation services like public transportation and railways.

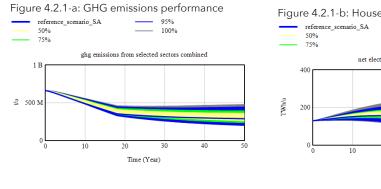
These two experiments are implemented in the simulation software for sensitivity analysis. This will take the specified levers/policies as fixed values in a number of simulation runs against changing values in the uncertainty ranges. The results then yield insight into the robustness of these policy sets.

Finally the outcomes of the extreme scenarios and the two experiment scenarios can be compared and evaluated for a final conclusion.

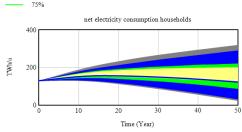
4 Experimentation and Results

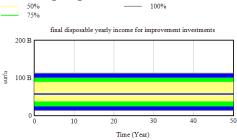

4.1 Outcomes of the extreme scenarios

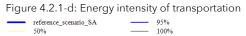
This chaper is dedicated to portray the outcomes of the simulation runs and experiment outcomes, preparing the final discussion. The four defined outcome variables are applied to evaluate the policy performances as these are best equipped to qualify the performance as discussed above.

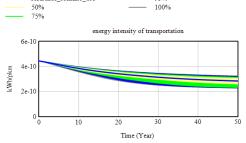

Figure 4.1-a: GHG emissions performance Figure 4.1-b: Household electricity consumption ghg emissions from selected sectors combined net electricity consumption households 400 800 N 600 1 200 TWh/a ťa 400 N 200 N -200 20 30 40 10 20 40Time (Year) Time (Year) UNCworst_POLon UNCworst_POLnull UNCworst POLon UNCworst POLnull UNCbest_POLon UNCbest_POLnull UNCbest_POLon UNCbest_POLnull reference_scenario reference so


The scenario names indicate the qualities of settings. "UNCworst" in the graph name refers to the uncertainty variables being set to the worst values with regard to the outcomes. "UNCbest" means that uncertainties will behave most favorably. The policy levers are distinguished by "POLnull" for no policies implemented and "POLon" for policies active. For each of the outcome variables the for scenarios are displayed next to each other.


Figure 4.1 refers to the most important variable in the model and directly relates to the goal of reaching net zero carbon emissions by 2050.


55





4.2 Outcomes of the Sensitivity Analysis

4.2.1 Experiment 1 (BAU)

4.2.2 Experiment 2

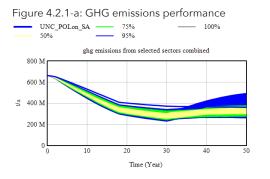


Figure 4.2.1-b: Household electricity consumption 100% 100% 100%

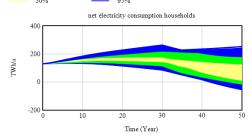


Figure 4.2.1-c: Disposable income: improvements

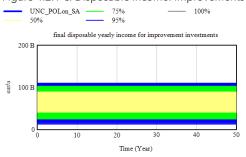
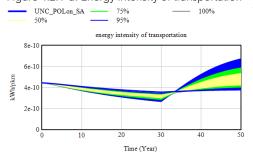



Figure 4.2.1-d: Energy intensity of transportation

Discussion

The energy transition, just as climate change or any of the other 17 Sustainable Development Goals (SDG) (UNFCCC, n.d.), poses a problem that cannot be satisfied with a simple straight answer as illustrated at the beginning of this work (Radosavljevic, 2019). Subsequently, systematically capturing the problem in a model is equally difficult. This section reviews the current state of the literature to first summarize the approaches to decision making in an uncertain environment, second portray the dimensions and choices involved related to modelling the energy transition and third discuss the available modelling formalisms for such a task.

6 Conclusion

First of all, the insights are very limited. Not only is the modelling approach in general only an abstraction of the real world and can only statistically approximate what could happen but also the lack of sufficient simulation capacity severely crippled this research's undertaking.

With regard to the main research question, the model outcomes suggest that there is a tough change to bring the Housing and Transportation sectors in Germany down to desired GHG emission levels. However, the phase-out of heavy emissions technologies such as coal fired power plants do a great deal to reducing the carbon footprint of electricity consumption. Also the move to electric vehicles has this potential. However, the effort seems a lot more demanding with today over 47 million registered fossil fuel powered personal vehicles. The financial incentive on EVs seems very important, especially the direct subsidies on sales prices play a major role in this modelling concept. Comparing fuel prices on the other hand does not seem to make a great difference, unless the premium on fossil fuels should rise significantly, either through emissions taxation or other levies. Further more, the renovation efforts in the housing sector have the potential of making a significant impact as well. How households spend their income seems to be the driving factor here, as the workforce appears to have by far enough capacities. However, capturing the decision mechanism of household income spending in the model turned out to be very difficult. The lack of data for verification and validation on this issue further complicated the modelling process. All in all however, the outcomes also show that a combined effort strategy is favored over very selective policy measures. This reflects that all the sectors are strongly connected with each other and every element has its significant contribution to the problem. Only letting the government do the heavy lifting by investing in new energy sources without the citizens adjusting their behavior to alternative modes of transportation will not lead to a favorable outcome.

Moreover, this work presents an abundent collection of specifications, relationships and datapoints that enabled this thesis to come alive. Some contributed during the modelling process, others were crucial pieces of information during the conceptualization, and then a few were indispensible to initiate the model. The Appendix G hold an overview over the data points sorted by sector.

The remaining "unknowns" that the future holds could further be approached with dynamically adapting policy strategies as proposed by Haasnoot, Kwakkel, Walker, & ter Maat (2013). Societies constantly evolve and radical, unforeseeable changes happen all the time as propagated by Geels (2002, 2011). In consequence, policies' effectiveness and efficiency decreases over time. Some policies are also meant to become obsolete. The energy transition, however, is expected to take a long time and the underlying threat of climate change will undoubtedly occupy society and policy-makers for generations to come. Examples for adaptive policy-making are, among others, presented by the nuclear power policies following Fukushima incident or the government support program for EV deadline adjusted with Corona crisis. Translated to the energy transition, an adaptive strategy could include further investments into gas infrastructure for the short term followed by resolute divestments at a later stage. Thus further combining the approach at hand with dynamic adaptive policy making methods would be another future research prospect.

Bibliography

Appendices

Bibliography

- ADAC. (2010). Mobilität in Deutschland. Fakten & Argumente Kompakt. München: ADAC e.V. Retrieved from www.adac.de/verkehrs-experten
- ADAC. (2016a). Freizeitverkehr. Fachinformation Ressort Verkehr. Retrieved from www.adac.de
- ADAC. (2016b). Zahlen, Fakten, Wissen. Aktuelles aus dem Verkehr. München: ADAC e.V. Retrieved from www.adac.de
- ADAC. (2019). Elektroautos brauchen die Energiewende: Die Klimabilanz. Retrieved May 25, 2020, from www.adac.de
- ADAC. (2020, January). Auf Autogas umrüsten? Der ADAC-Armortisationsvergleich. Retrieved from www.adac.de
- ADAC. (2020, February 3). Dieselfahrverbot: Alle Fragen und Antworten. Retrieved July 1, 2020, from https://www.adac.de/verkehr/abgas-diesel-fahrverbote/fahrverbote/dieselfahrverbot-faq/
- AG Energiebilanzen (AGEB). (2019a). Auswertungstabellen zur Energiebilanz Deutschland Daten für die Jahre von 1990 bis 2018. Retrieved from www.ag-energiebilanzen.de
- AG Energiebilanzen (AGEB). (2019b). Energy Flow Chart for the Federal Republic of Germany in 2018. Available from www.ag-energiebilanzen.de
- AG Energiebilanzen (AGEB). (2020a). Bruttostromerzeugung. Berlin. Available from www.agenergiebilanzen.de
- AG Energiebilanzen (AGEB). (2020b). Energieverbrauch in Deutschland im Jahr 2019. Berlin. Available from www.ag-energiebilanzen.de
- Agora Energiewende & Wattsight. (2020). Die Ökostromlücke, ihre Strommarkteffekte und wie sie gestopft werden kann. Effekte der Windenergiekrise auf Strompreise und CO₂-Emissionen sowie Optionen, um das 65-Prozent-Erneuerbare-Ziel 2030 noch zu erreichen. Studie im Auftrag von Agora Energiewende.
- Alcock, C. (2020, July 20). EAG Launches 70-Seat Hybrid-electric Regional Aircraft. AIN Online. Retrieved from https://www.ainonline.com/aviation-news/air-transport/2020-07-20/eaglaunches-70-seat-hybrid-electric-regional-aircraft
- Anderson, K., Peters, G., 2016. The trouble with negative emissions. Science 354, 182-183.
- Auping, W. L., Pruyt, E., de Jong, S., & Kwakkel, J. H. (2016). The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states. Energy Policy, 98, 390-399. <u>https://doi.org/10.1016/j.enpol.2016.08.032</u>
- Auping, W. L., Pruyt, E., & Kwakkel, J. H. (2015). Societal Ageing in the Netherlands: A Robust System Dynamics Approach. Systems Research and Behavioral Science, 32(4), 485–501. https://doi.org/ 10.1002/sres.2340
- Bankes, S. C. (1993). Exploratory Modeling for Policy Analysis. Operations Research, 41(3), 435–449. https://www.jstor.org/stable/171847
- Bankes, S. C. (2002). Tools and techniques for developing policies for complex and uncertain systems. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 7263-7266. https://doi.org/10.1073/pnas.092081399

- Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183-210. https://doi.org/10.1002/(sici)1099-1727(199623)12:3<183::aid-sdr103>3.0.co;2-4
- Barton, R. R. (2010). Simulation experiment design. In Proceedings of the 2010 Winter Simulation Conference (pp. 75-86).
- Bayrisches Landesamt für Umwelt (LfU). (2018). Excel-Tabelle zur Berechnung der CO2-Äquivalent-Emissionen (CO2-Rechner). Bayrisches Staatsministerium für Umwelt und Verbraucherschutz. Retrieved from https://www.umweltpakt.bayern.de/energie_klima/fachwissen/217/berechnungco2-emissionen
- Better, M., Glover, F., Kochenberger, G., & Wang, H. (2008). Simulation optimization: Application in risk management. International Journal of Information Technology & Decision Making, 7(4), 571– 587.
- BDEW. (2020). Energiemarkt Deutschland 2019. Retrieved from www.bdew.de/service/ publikationen/bdew-energiemarkt-deutschland-2019/
- BDEW. (n.d.). Infografiken Gebäudetechnik. Retrieved July 1, 2020, from www.bdew.de/service/ daten-und-grafiken/infografiken-gebaeudetechnik/
- Bhattacharyya, S. C., & Timilsina, G. R. (2010). A review of energy system models. International Journal of Energy Sector Management, 4(4), 494-518. <u>https://doi.org/10.1108/17506221011092742</u>
- Bigalke, U., Armbruster, A., Lukas, F., Krieger, O., Schuch, C., & Kunde, J. (2016). dena Gebäudereport 2016: Statistiken und Analysen zur Energieeffizienz im Gebäudebestand. Berlin. Retrieved from www.dena.com
- Bloch, R., Ehlers, K., Hofmeier, M., Nabel, M., Pfeffer, H., Scholz, S., & Wittenberg, J. (2019). Nachhaltigkeit im Ackerbau: Eckpunkte f
 ür eine Ackerbaustrategie. Bonn: Bundesministeriums f
 ür Umwelt Naturschutz und nukleare Sicherheit (BMU). Retrieved from <u>www.bmu.de/downloads</u>
- BMU Arbeitsgruppe IK III 1. (2018). Klimaschutzbericht 2017: Zum Aktionsprogramm Klimaschutz 2020 der Bundesregierung. Berlin: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Retrieved from www.bmu.de/publikationen
- BMU-Division IK III 1, Welke, M., Weiß, M., & Tibbe, T. (2018). Climate Action in Figures: Facts, Trends and Incentives for German Climate Policy 2018 edition. Berlin: Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU). Retrieved from www.bmu.de/publikationen
- Bovermann, P. (2020, July 3). Vergoldete Dreckschleudern. Süddeutsche Zeitung. Retrieved 2020-07-13 from https://www.sueddeutsche.de/
- Bundesministerium für Umwelt, Naturschutz Bau und Reaktorsicherheit (BMUB). (2014). Aktionsprogramm Klimaschutz 2020: Kabinettsbeschluss vom 3. Dezember 2014. Berlin. Retrieved from http://www.bmub.bund.de/service/publikationen/downloads/details/artikel/ aktionsprogramm-klimaschutz-2020/
- Bundesministerium für Umwelt, Naturschutz Bau und Reaktorsicherheit (BMUB). (n.d.). Begonnene und beschlossene Klimaschutzaktivitäten von gesellschaftlichen Akteuren. Retrieved from www.bmu.de/aktionsprogramm-klimaschutz
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (n.d. a). Eckpunkte für das Klimaschutzprogramm 2030. Retrieved from www.bmu.de/downloads

- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (n.d. b). Leitlinien für die Wiederbewaldung in Deutschland. Retrieved from www.bmu.de/downloads
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (2007). Eckpunkte für ein integriertes Energie- und Klimaprogramm. Retrieved from http://www.bmu.de/klimaschutz/ downloads/doc/39875.php
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (2016). Klimaschutzplan 2050 - Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung (2nd ed.). Berlin: Publikationsversand der Bundesregierung. Retrieved from www.bmu.de/publikationen
- Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU). (2019a). Eckpunkte zur Ausgestaltung eines nationalen Emissionshandels für Wärme und Verkehr. Retrieved from www.bmu.de/downloads
- Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU). (2019b). Klimabilanz 2018: 4,5 Prozent weniger Treibhausgasemissionen.
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (2019c). Klimaschutz in Zahlen: CO2-Bepreisung. Retrieved from www.bmu.de/publikationen
- Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU). (2019d). Klimaschutzbericht 2018 zum Aktionsprogramm Klimaschutz 2020 der Bundesregierung. Retrieved from https://www.bmu.de/download/
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (2019e). Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans 2050. Retrieved from https://www.bundesregierung.de/breg-de/themen/klimaschutz/ klimaschutzprogramm-2030-1673578
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (2019f). Projektionsbericht 2019 für Deutschland gemäß Verordnung (EU) Nr. 525/2013. Retrieved from https://cdr.eionet.europa.eu/de/eu/mmr/art04-13-14_lcds_pams_projections/projections/ envxnw7wq/Projektionsbericht-der-Bundesregierung-2019.pdf
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (2019g). Umwelt in die Algorithmen! Eckpunkte für eine umweltpolitische Digitalagenda des BMU. Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU). Retrieved from www.bmu.de/downloads
- Bundesministerium für Wirtschaft und Energie (BMWi). (n.d.). Elektromobilität. Berlin. Retrieved on 2020-07-01 from https://www.bmwi.de/Redaktion/DE/Dossier/elektromobilitaet.html
- Bundesministerium für Wirtschaft und Energie (BMWi). (2014). Nationaler Aktionsplan Energieeffizienz (NAPE): Mehr aus Energie machen: Ein gutes Stück Arbeit. Berlin. Retrieved from http://www.bmwi.de/BMWi/Redaktion/PDF/M-O/nationaler-aktionsplan-energieeffizienz
- Bundesministerium für Wirtschaft und Energie (BMWi). (2014). Sanierungsbedarf im Gebäudebestand: Ein Beitrag zur Energieeffizienzstrategie Gebäude. Berlin. Retrieved from www.bmwi.de
- Bundesministerium für Wirtschaft und Energie (BMWi). (2015). Energieeffizienzstrategie Gebäude: Wege zu einem nahezu klimaneutralen Gebäudebestand. Berlin. Retrieved from www.bmwi.de
- Bundesministerium für Wirtschaft und Energie (BMWi). (2019a). Das neue Gebäudeenergiegesetz kurz zusammen gefasst. Berlin. Retrieved from https://www.bmwi.de/Redaktion/DE/Downloads/ G/gebaeudeenergiegesetz-zusammen-gefasst.pdf

- Bundesministerium für Wirtschaft und Energie (BMWi). (2019b). Energieeffizienzsstrategie 2050. Berlin: BMWi. Retrieved from www.bmwi.de
- Bundesministerium für Wirtschaft und Energie (BMWi). (2019c). Neues Energielabel für alte Heizungen. Berlin. Retrieved from www.bmwi.de
- Bundesministerium für Wirtschaft und Energie (BMWi). (2020). Bundeskabinett beschließt höheren CO2-Preis, Entlastungen bei Strompreisen und für Pendler. Berlin. Retrieved from https://www.bmu.de/pressemitteilung/bundeskabinett-beschliesst-hoeheren-co2-preis-entlastungen-bei-strompreisen-und-fuer-pendle/
- Bundesministerium für Wirtschaft und Technologie (BMWi). (2010). Energiekonzept: für eine umwelt schonende, zuverlässige und bezahlbare Energieversorgung. Berlin: Bundesministerium für Wirtschaft und Technologie (BMWi). Retrieved from www.bmwi.de
- Bundesnetzagentur. (2020, June 26). Genehmigung des Szenariorahmens 2021-2035. Bonn: Bundesnetzagentur.
- Bundesverband Erneuerbare Energie (BEE). (2019). Das "BEE-Szenario 2030" 65%. Berlin.
- Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799. https://doi.org/10.1080/01621459.1976.10480949
- Brouwer, F., Avgerinopoulos, G., Fazekas, D., Laspidou, C., Mercure, J. F., Pollitt, H., Ramos, E. P., Howells, M. (2018). Energy modelling and the Nexus concept. Energy Strategy Reviews, 19, 1-6. https://doi.org/10.1016/j.esr.2017.10.005
- Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: A participatory, computer-assisted approach to scenario discovery. Technological Forecasting and Social Change, 77(1), 34-49. https://doi.org/10.1016/j.techfore.2009.08.002
- Buttermann, H. G. (2020). Energieverbrauch in Deutschland im Jahr 2019. Berlin. Available from www.ag energiebilanzen.de
- Cariboni, J., Gatelli, D., Liska, R., & Saltelli, A. (2007). The role of sensitivity analysis in ecological modelling. Ecological Modelling, 203(1-2), 167-182. <u>https://doi.org/10.1016/j.ecolmodel.</u> 2005.10.045
- Carrington, D. (2017, September 20). Melting Arctic ice cap falls to well below average. The Guardian. Retrieved from https://www.theguardian.com/environment/2017/sep/20/melting-arctic-ice-cap-falls-to-well-below-average
- Carrington, D. (2020, March 11). Polar ice caps melting six times faster than in 1990s. The Guardian. Retrieved from https://www.theguardian.com/environment/2020/mar/11/polar-ice-capsmelting-six-times-faster-than-in-1990s
- Cherp, A., Vinichenko, V., Jewell, J., Brutschin, E., & Sovacool, B. (2018). Integrating technoeconomic, socio-technical and political perspectives on national energy transitions: A metatheoretical framework. Energy Research and Social Science, 37 (March 2018), 175–190. https:// doi.org/10.1016/j.erss.2017.09.015
- Climate Files (a). 1982 Memo to Exxon Management about CO2 Greenhouse Effect. Climate Files. Retrieved 2019-09-03 from www.climatefiles.com
- Climate Files (b). 1988 Shell Confidential Report "The Greenhouse Effect". Climate Files. Retrieved 2019-09-03 from <u>www.climatefiles.com</u>

- Coello Coello, C. A., Lamont, G. B., & van Veldhuizen, D. A. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Evolutionary Algorithms for Solving Multi-Objective Problems (2nd ed.). New York, NY: Springer. <u>https://doi.org/10.1007/978-0-387-36797-2</u>
- Conrad, B. (2020, January 3). Hier gibt es kostenlosen Nahverkehr. Auto Motor Und Sport. Retrieved from https://www.auto-motor-und-sport.de/verkehr/kostenloser-nahverkehr-uebersicht/
- Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J.G.J., Vignati, E., (2019). Fossil CO2 and GHG emissions of all world countries - 2019 Report, EUR 29849 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-11100-9, doi:10.2760/687800, JRC117610.
- Crespo del Granado, P., van Nieuwkoop, R. H., Kardakos, E. G., & Schaffner, C. (2018). Modelling the energy transition: A nexus of energy system and economic models. Energy Strategy Reviews, 20, 229-235. https://doi.org/10.1016/j.esr.2018.03.004
- Crotty, J. (2017). Are Keynesian Uncertainty and Macrotheory Compatible? Conventional Decision Making, Institutional Structures and Conditional Stability in Keynesian Macromodels. Capitalism, Macroeconomics and Reality, 39-71. https://doi.org/10.4337/9781784719029.00009
- De Cian, E., Dasgupta, S., Hof, A.F., van Sluisveld, M.A.E., K.hler, J., Pfluger, B., van Vuuren, D.P.,
 2018. Actors, Decision-making, and Institutions in Quantitative System Modelling_Technological
 Forecasting and Social Change. 2018, 119480
- DeFries, R., Edenhofer, O., Halliday, A., Heal, G., Lenton, T., Puma, M., ... Ward, B. (2019). The missing economic risks in assessments of climate change impacts, (September), 1–15. Retrieved from www.pik-potsdam.de/
- Després, J., Hadjsaid, N., Criqui, P., & Noirot, I. (2015). Modelling the impacts of variable renewable sources on the power sector : Reconsidering the typology of energy modelling tools. Energy, 80, 486-495. https://doi.org/10.1016/j.energy.2014.12.005
- Deutsche WindGuard. (n.d.). Publications wind energy statistics. Retrieved July 1, 2020, from https:// www.windguard.com/publications-wind-energy-statistics.html
- Deutsche WindGuard. (2018a). Status of Land-based Wind Energy Development in Germany: Year 2018. Varel. Retrieved from www.windguard.com
- Deutsche WindGuard. (2018b). Status of Offshore Wind Energy Development in Germany: Year 2018. Varel. Retrieved from www.windguard.com
- Deutscher Bundesrat. (2020a). Entschließung des Bundesrates zur EEG-Reform: Ausbau der Erneuerbaren Energien voranbringen. Drucksache 212/20 (Beschluss). Köln: Bundesanzeiger. Available from https://www.bundesrat.de/DE/dokumente/dokumente-node.html
- Deutscher Bundesrat. (2020b). Entwurf eines Gesetzes zur Änderung des Windenergie-auf-See-Gesetzes und anderer Vorschriften. Drucksache 314/20. Deutscher Bundesrat. Available from https://www.bundesrat.de/DE/dokumente/dokumente-node.html
- Deutscher Bundestag. (2019a). Erhöhung des Elektrifizierungsgrads im deutschen Eisenbahnnetz. Drucksache 19/16019. Berlin. Retrieved from https://dipbt.bundestag.de/doc/btd/ 19/160/1916019.pdf
- Deutscher Bundestag. (2019b). Gesetz über einen nationalen Zertifikatehandel für Brennstoffemissionen (Brennstoffemissionshandelsgesetz - BEHG). Bundesgesetzblatt Jahrgang 2019 Teil I Nr. 50. Retrieved from www.bmu.de/GE877

- Deutscher Bundestag. (2019c). Gesetz zur Einführung eines Bundes-Klimaschutzgesetzes und zur Änderung weiterer Vorschriften (2019). Bundesgesetzblatt Jahrgang 2019 Teil I Nr. 48. Bonn: Bundesanzeiger. Retrieved from http://www.bgbl.de/xaver/bgbl/start.xav? startbk=Bundesanzeiger_BGBl&jumpTo=bgbl119s2513.pdf
- Die Bundesregierung der Bundesrepublik Deutschland. (2019). Unterrichtung durch die Bundesregierung: Umweltbericht 2019 - Umwelt und Natur als Fundament des sozialen Zusammenhalts. Drucksache 19/13400. Berlin. Retrieved from www.bmu.de/downloads/ umweltberichte
- EC COM, 2011. Energy Road Map 2050. Technical Report. COM (2011) 885 final. Available at: http://ec.europa.eu/energy/energy2020/roadmap/index_en.htm.
- E-Auto Kaufprämie Corona (2020): 9.000€ Förderung. (2020). Retrieved July 1, 2020, from https:// www.meinauto.de/lp-abwrackpraemie

Electric aircraft. (n.d.). Retrieved July 1, 2020, from https://en.wikipedia.org/wiki/Electric_aircraft

Elektroauto. (n.d.). Wikipedia. Retrieved from https://de.wikipedia.org/wiki/ Elektroauto#Deutschland

- Elsawah, S., Pierce, S. A., Hamilton, S. H., van Delden, H., Haase, D., Elmahdi, A., & Jakeman, A. J. (2017). An overview of the system dynamics process for integrated modelling of socioecological systems: Lessons on good modelling practice from five case studies. Environmental Modelling and Software, 93, 127-145. https://doi.org/10.1016/j.envsoft.2017.03.001
- Energie Wissen. (n.d.). KfW Effizienzhaus 100. Retrieved July 1, 2020, from https://www.energiewissen.info/energiesparhaeuser/kfw-effizienzhaus-100.html
- Energieeinsparverordnung (EnEV) vom 24. Juli 2007 (BGBl. I S. 1519), die zuletzt durch Artikel 257 der Verordnung vom 19. Juni 2020 (BGBl. I S. 1328) geändert worden ist (2007). Retrieved from https://www.bmwi.de/Redaktion/DE/Gesetze/Energie/EnEV.html
- Energiesparen-im-Haushalt.de. (n.d.). KfW Effizienzhaus 100. Retrieved July 1, 2020, from https:// www.energiesparen-im-haushalt.de/energie/bauen-und-modernisieren/hausbau-regenerativeenergie/energieverbrauch/kfw-effizienzhaus-100.html
- Enkhardt, S. (2017, November 6). BEE: Kohlestrom mit Erneuerbaren ersetzen. Pv Magazine. Retrieved from https://www.pv-magazine.de/2017/11/06/bee-kohlestrom-mit-erneuerbarenersetzen/
- Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41-60. https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5<41::AID-CPLX9>3.0.CO;2-F
- Erdgas. (n.d.). Wikipedia. Retrieved from https://de.wikipedia.org/wiki/Erdgas
- EU bans old-fashioned light bulbs. (2009, September 1). BBC News. Retrieved from http:// news.bbc.co.uk/2/hi/europe/8230961.stm
- European Commission. (2018). Air quality: Commission takes action to protect citizens from air pollution. European Commission Press Release, (May), 30-32. Retrieved from http://europa.eu/rapid/press-release_IP-18-3450_en.htm
- Evans, S., & Hausfather, Z. (2018, October 2). Q&A: How "integrated assessment models" are used to study climate change. CarbonBrief. Retrieved on 02.10.2019 from https:// www.carbonbrief.org/

- Fahrradportal. (2019). Marktanteil von Elektrofahrrädern wächst auf 23,5 Prozent. Retrieved June 23, 2020, from www.nationaler-radverkehrsplan.de
- Farand, C., & Russo, J. (2019, September 20). ' Four million ' join students in climate marches , building pressure on leaders. Retrieved from https://www.climatechangenews.com/2019/09/20/ three-million-join-students-global-strike-climate-action/
- Filatova, T., Polhill, J. G., & van Ewijk, S. (2016). Regime shifts in coupled socio-environmental systems: Review of modelling challenges and approaches. Environmental Modelling and Software, 75, 333-347. https://doi.org/10.1016/j.envsoft.2015.04.003
- Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., ... Rummukainen, M. (2013). Evaluation of Climate Models. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, ... P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 741-866). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
- Fluessiggas1. (n.d.). Flüssiggasumrechnung. Retrieved July 1, 2020, from https:// www.fluessiggas1.de/fluessiggas_umrechnung_kwh_m3_liter_kg/
- Fontaine, C. M., & Rounsevell, M. D. A. (2009). An Agent-based approach to model future residential pressure on a regional landscape. Landscape Ecology, 24(9), 1237–1254. https://doi.org/10.1007/s10980-009-9378-0
- Forrester, J. W. (1990). Models and the Real World. D4171. MIT System Dynamics Group Literature Collection.
- Franta, B. (2018, September). Shell and Exxon's secret 1980s climate change warnings. *Guardian*. Retrieved 2019-09-03 from: <u>www.theguardian.com</u>
- Fraunhofer ISE. (2020). Aktuelle Fakten zur Photovoltaik in Deutschland. Retrieved from https:// www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-undkonzeptpapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf
- Fuss, S., Canadell, J.G., Peters, G.P., Tavoni, M., Andrew, R.M., Ciais, P., Jackson, R.B., Jones, C.D.,Kraxner, F., Nakicenovic, N., Le Quere, C., Raupach, M.R., Sharifi, A., Smith, P., Yamagata, Y., 2014.Betting on negative emissions. Nat. Clim. Chang. 4, 850–853.
- Gabrel, V., Murat, C., & Thiele, A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research, 235(3), 471-483. https://doi.org/10.1016/j.ejor. 2013.09.036
- Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: A multilevel perspective and a case-study. Research Policy, 31(8-9), 1257-1274. https://doi.org/ 10.1016/S0048-7333(02)00062-8
- Geels, F. W. (2011). The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environmental Innovation and Societal Transitions, 1(1), 24–40. https://doi.org/10.1016/j.eist.2011.02.002
- Geels, F.W., Sovacool, B.K., Schwanen, T., & Sorrell, S., (2017a). Sociotechnical transitions for deep decarbonization. Science 357, 1242.
- Geels, F. W., Sovacool, B. K., Schwanen, T., & Sorrell, S. (2017b). The Socio-Technical Dynamics of Low-Carbon Transitions. Joule, 1(3), 463-479. https://doi.org/10.1016/j.joule.2017.09.018

Germany to fall short of 2020 climate goals: report. (2019, February 6). Retrieved September 23, 2019, from https://p.dw.com/p/3CrIF

Gniffke, P. (2019). National Trend Tables for the German Atmospheric Emission Reporting 1990-2017. Dessau: Umweltbundesamt (UBA). Retrieved from http://www.umweltbundesamt.de/emissionen

Gotts, N. M., van Voorn, G. A. K., Polhill, J. G., Jong, E. de, Edmonds, B., Hofstede, G. J., & Meyer, R. (2019). Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecological Complexity, 40(July 2017), 100728. https://doi.org/10.1016/j.ecocom.2018.07.007

Große Koalition einigt sich auf Klimaschutzpaket. (2019, September 20). Spiegel Online. Retrieved 20.09.2019 from www.spiegel.de

Haak, J. (2020, January 16). Kohleausstieg : Zu lange, zu zaghaft. Berliner Zeitung. Retrieved 2020-07-13 from https://www.berliner-zeitung.de/

Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23(2), 485-498. https://doi.org/10.1016/j.gloenvcha.2012.12.006

Hackett, S. B., Moxnes, E., 2015. Natural capital in integrated assessment models of climate change. Ecological Economics 116 (2015) 354-361.

Halim, R. A., Kwakkel, J. H., & Tavasszy, L. A. (2016). A scenario discovery study of the impact of uncertainties in the global container transport system on European ports. Futures, 81, 148–160. https://doi.org/10.1016/j.futures.2015.09.004

Hamarat, C., Kwakkel, J. H., Pruyt, E., & Loonen, E. T. (2014). An exploratory approach for adaptive policymaking by using multi-objective robust optimization. Simulation Modelling Practice and Theory, 46, 25–39. https://doi.org/10.1016/j.simpat.2014.02.008

Heiman, S. (2019, May 21). CO2-Ausstoß und Klimabilanz von Pkw Inhaltsverzeichnis. Retrieved from https://www.co2online.de/klima-schuetzen/mobilitaet/auto-co2-ausstoss/

Heiman, S. (2019, August 16). Bahn oder Flugzeug? CO2-Emissionen im Vergleich. Retrieved from https://www.co2online.de/klima-schuetzen/mobilitaet/bahn-oder-flugzeug-der-vergleich/

Heizung.de. (n.d.). Der durchschnittliche Energiebedarf im Haus. Retrieved July 1, 2020, from https://heizung.de/heizung/tipps/der-durchschnittliche-energiebedarf-im-haus/

Helgenberger, S. (2019, October 7). Mut zur Umsetzung. Zeit Online. Retrieved 2019-10-10 from www.zeit.de

Holden, E. (2020, April 25). Climate science deniers at forefront of downplaying coronavirus pandemic. The Guardian. Retrieved from https://www.theguardian.com/world/2020/apr/25/ climate-science-deniers-downplaying-coronavirus-pandemic

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

IPCC. (2018). Summary for Policymakers. (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, ... T. Waterfield, Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. Geneva, Switzerland: World Meteorological Organization. https://doi.org/10.1017/CBO9781107415324

- Jacobsson, S., Bergek, A., & Sandén, B. (2017). Improving the European Commission's analytical base for designing instrument mixes in the energy sector: Market failures versus system weaknesses. Energy Research and Social Science, 33(September), 11-20. https://doi.org/ 10.1016/j.erss.2017.09.009
- Kanzleramtschef verteidigt CO2-Preis-Pläne. (2019, September 21). Retrieved on 21.09.2019 from www.faz.net
- Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling and Software, 42(April), 55-71. https://doi.org/10.1016/j.envsoft.2012.12.007
- Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., Elsawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., Rizzoli, A. E., van Delden, H., Voinov, A. A. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling and Software, 47, 159-181. https://doi.org/10.1016/j.envsoft. 2013.05.005
- KfW Bank. (n.d. a). Der KfW-Effizienzhaus-Standard für einen Neubau. Retrieved July 1, 2020, from https://www.kfw.de/inlandsfoerderung/Privatpersonen/Neubau/Das-KfW-Effizienzhaus/
- KfW Bank. (n.d. b). Förderkredite und Zuschüsse für bestehende Immobilien. Retrieved July 1, 2020, from https://www.kfw.de/inlandsfoerderung/Privatpersonen/Bestandsimmobilie/ Förderprodukte/Förderprodukte-für-Bestandsimmobilien.html
- Kraftfahrt-Bundesamt (KBA). (2020). Verkehr in Kilometern Inländerfahrleistung. Kurzbericht: Entwicklungen der Fahrleistungen nach Fahrzeugarten seit 2015. Retrieved August 11, 2020, from https://www.kba.de/DE/Statistik/Kraftverkehr/VerkehrKilometer/vk_inlaenderfahrleistung/ vk_inlaenderfahrleistung_inhalt.html?nn=2351604
- Kruger, T., Geden, O., Rayner, S., 2016. Abandon hype in climate models. Guardian. (http://refhub.elsevier.com/S0040-1625(18)30059-3/rf0150);
- Kunkel, C. (2019, November 6). Beerdigt endlich den Verbrennungsmotor. Süddeutsche Zeitung. Retrieved on 2020-07-07 from www.sz.de/1.4668332
- Kwakkel, J. H. (2017). The Exploratory Modeling Workbench: An open source toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust decision making. Environmental Modelling and Software, 96, 239-250. https://doi.org/10.1016/j.envsoft.2017.06.054
- Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environmental Modelling and Software, 86, 168-183. https://doi.org/10.1016/j.envsoft. 2016.09.017
- Kwakkel, J. H., & Pruyt, E. (2013). Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty. Technological Forecasting and Social Change, 80(3), 419-431. https://doi.org/10.1016/j.techfore.2012.10.005
- Kwakkel, J. H., & Pruyt, E. (2015). Using System Dynamics for Grand Challenges: The ESDMA Approach. Systems Research and Behavioral Science, 32(3), 358–375. https://doi.org/10.1002/ sres.2225
- Kwakkel, J. H., & Yücel, G. (2014). An exploratory analysis of the dutch electricity system in transition. Journal of the Knowledge Economy, 5(4), 670-685. https://doi.org/10.1007/s13132-012-0128-1

- Lambert, F. (2016, November 9). Norway keeps electric vehicle tax exemption until 2020, positions itself to stay EV leader. Electrek. Retrieved from https://electrek.co/2016/11/09/norway-keeps-electric-vehicle-tax-exemption-until-2020-positions-itself-to-stay-ev-leader/
- Langhelle, O. (1999). Sustainable development: Exploring the ethics of our common future. International Political Science Review, 20(2), 129-149. https://doi.org/ 10.1177/0192512199202002
- Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C. (2006). A general, analytic method for generating robust strategies and narrative scenarios. Management Science, 52(4), 514-528. https://doi.org/10.1287/mnsc.1050.0472
- Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003). Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis. Academy of Management Learning & Education. Santa Monica, CA: RAND. https://doi.org/10.5465/amle.2005.19086797
- Lenton, T. (2016). 5 Anthropocene. In Earth System Science (pp. 74-90).
- Li, F. G. N., Trutnevyte, E., & Strachan, N. (2015). A review of socio-technical energy transition (STET) models. Technological Forecasting and Social Change, 100, 290–305. https://doi.org/10.1016/j.techfore.2015.07.017
- Lieb, S. (2019, January). Elektrifizierung des städtischen Busverkehrs: Hier fahren E-Busse. Aio Das Magazin Für Die Mobilität Der Zukunft. Retrieved on 2020-06-23 from www.aiomag.de
- Lingeswaran, S., (2019). Redefining Integrated Assessment Models: An Exploratory Approach Towards Robust Climate-Economic Policies. Retrieved from: <u>http://resolver.tudelft.nl/uuid:</u> <u>812be430-79fb-4900-a0e2-b0bc9c3d804b</u>.
- Lustgarten, A. (2020, July 23). The great climate migration. New York Times. Retrieved from https:// www.nytimes.com/interactive/2020/07/23/magazine/climate-migration.html
- Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research Policy, 41(6), 955-967. https://doi.org/10.1016/j.respol.2012.02.013
- McCormick, J. (2018). Environmental Politics and Policy. Palgrave.
- Meadows, D., Randers, J., & Meadows, D. (2004). 2-3 The driving force: exponential growth. In Limits to Growth: The 30-year update (pp. 17-26-51-57).
- Modrakowski, E. V. (2020). Economic Robustness of the On-Shore German Wind Energy Industry under Deep Uncertainty. Delft University of Technology.
- Müller, H.-S. (2020). Gebäudeenergiegesetz (GEG 2020) beschlossen. Retrieved August 5, 2020, from https://energie-m.de/info/geg-2020.html
- Müller, H.-S. (2020). Niedrigstenergiegebäude (nZEB nearly zero-energy buildings) Umsetzung in Deutschland. Retrieved August 5, 2020, from https://energie-m.de/info/ niedrigstenergiegebaeude.html
- Nance, R. E. (1981). The Time and State Relationships in Simulation Modeling. Communications of the ACM, 24(4), 173-179. https://doi.org/10.1145/358598.358601
- Niedrig-Energie-Institut. (n.d.). Das EnEV-Referenzgebäude. Retrieved July 1, 2020, from https://neidt.de/fachinformationen/neubau-standards/enev-referenzgebaeude/
- Nikolic, I., Lukszo, Z., Chappin, E., Warnier, M., Kwakkel, J., Bots, P., & Brazier, F. (2019). Guide for Good Modelling Practice in policy support. https://doi.org/10.4233/uuid
- Nikolic, I., Warnier, M., Kwakkel, J., Chappin, E., Lukszo, Z., Brazier, F., ... Palensky, P. (2019). Principles , challenges and guidelines ecology. https://doi.org/10.4233/uuid

- Nordhaus, W. (2008). A Question of Balance: Weighing the Options on Global Warming Policies. Yale University Press, New Haven & London.
- Nordhaus, W. (2014). Estimates of the social cost of carbon: concepts and results from the dice-2013r model and alternative approaches. Journal of the Association of Environmental and Resource Economists , 1 (1/2), 273-312.
- Nordhaus, T., Shellenberger, M., & Blomqvist, L. (2012). The Planetary Boundaries Hypothesis. A Review of the Evidence, (June), 1-43. https://doi.org/10.13140/RG.2.1.2149.2649
- Norsk elbil forening. (n.d.). Norwegian EV policy. Norsk Elbil Foreningforening. Retrieved from https://elbil.no/english/norwegian-ev-policy/
- Mabey, N. (2019, September 24). Decoding the UN Climate Action Summit. Retrieved from https:// www.e3g.org/library/decoding-the-un-climate-action-summit-unga
- Oreskes, N., Shrader-Frechette, K., & Kenneth, B. (1994). Verification , validation , and confirmation of numerical mode. Science, 263(February), 641-646.
- Osgood, N. (2009). Lightening the Performance Burden of Individual Based Models through Dimensional Analysis and Scale Modeling. System Dynamics Review, 25, 101-134.
- Osterath, B. (2018, May 17). EU takes Germany to court over air pollution. Deutsche Welle. Retrieved 2020-07-10 from https://p.dw.com/p/2rhZY
- Parth, C. (2019, August 9). Kostenloser Nahverkehr Ohne Ticket wird nicht alles gut. Zeit Online. Retrieved from https://www.zeit.de/mobilitaet/2019-08/kostenloser-nahverkehr-oepnvfinanzierung-nachhaltigkeit-stadtverkehr/
- Peters, G.P., 2016. The 'best available science' to inform 1.5°C policy choices. Nat. Clim. Chang. 6, 646-649. (http://refhub.elsevier.com/S0040-1625(18)30059-3/rf0190)
- Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74-86. https://doi.org/ 10.1016/j.rser.2014.02.003
- Pfenninger, S., Hirth, L., Schlecht, I., Schmid, E., Wiese, F., Brown, T., ... Wingenbach, C. (2018). Opening the black box of energy modelling: Strategies and lessons learned. Energy Strategy Reviews, 19, 63-71. https://doi.org/10.1016/j.esr.2017.12.002
- Pietzcker, R. C., Ueckerdt, F., Carrara, S., Sytze, H., Boer, D., Després, J., Fujimori, S., Johnson, N., Kitous, A., Scholz, Y., Sullivan, P., Luderer, G. (2017). System integration of wind and solar power in integrated assessment models : A cross-model evaluation of new approaches. Energy Economics, 64, 583-599. https://doi.org/10.1016/j.eneco.2016.11.018
- Pindyck, R. S. (2013, September). Climate Change Policy: What Do the Models Tell Us? Journal of Economic Literature , 51 (3), 860-872. Retrieved 2019-02-01, from http://pubs.aeaweb.org/doi/ 10.1257/jel.51.3.860 doi: 10.1257/jel.51.3.860
- Pinzler, P. (2019, October 7). Die Regierung duckt sich weg. Retrieved on 07.10.2019 from www.zeit.de
- Power-to-gas. (n.d.). Wikipedia. Retrieved July 1, 2020, from https://en.wikipedia.org/wiki/Power-to-gas
- Presse- und Informationsamt der Bundesregierung. (2011). Bundesregierung beschließt Ausstieg aus der Kernkraft bis 2022. Retrieved 2020-07-13 from https://www.bundesregierung.de/ Content/DE/StatischeSeiten/Breg/Energiekonzept/05-kernenergie.html

- Presse- und Informationsamt der Bundesregierung. (2020). Von der Kohle hin zur Zukunft. Berlin. Retrieved 2020-07-13 from https://www.bundesregierung.de/breg-de/bundesregierung/ bundeskanzleramt/kohleausstieg-1664496
- Pruyt, E., Auping, W. L., & Kwakkel, J. H. (2015). Ebola in West Africa: Model-Based Exploration of Social Psychological Effects and Interventions. Systems Research and Behavioral Science, 32(1), 2-14. <u>https://doi.org/10.1002/sres.2329</u>
- Quaile, I. (2012, December 6). Klimawandel lässt das Polareis schmelzen. Deutsche Welle. Retrieved from https://www.dw.com/de/klimawandel-lässt-das-polareis-schmelzen/a-16429185
- Radke, S. (2019). Verkehr in Zahlen 2019/2020. Flensburg: Bundesministerium für Verkehr und digitale Infrastruktur. Retrieved from www.bmvi.de/viz
- Radosavljevic, Z. (2019, August 23). Merkel speaks in favour of increasing EU's 2030 climate target to 55%. Retrieved on 23.09.2019 from https://www.euractiv.com/
- Rauch, W. von. (2011, February 25). Wie viel Energie verbraucht ein E-Bike (Pedelec), was ist die CO2 Bilanz? Retrieved from www.eradhafen.de
- Rigaud, K. K., de Sherbinin, A., Jones, B., Bergmann, J., Clement, V., Ober, K., ... Midgley, A. (2018). Groundswell. The World Bank. Retrieved from https://openknowledge.worldbank.org/handle/ 10986/29461
- Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a General Theory of Planning. Policy Sciences, 4, 155–169.
- Rogge, K. S., & Johnstone, P. (2017). Exploring the role of phase-out policies for low-carbon energy transitions: The case of the German Energiewende. Energy Research and Social Science, 33(September), 128-137. https://doi.org/10.1016/j.erss.2017.10.004
- Rolink, D. (2014, May 30). Windkraft : Nach 20 Jahren Laufzeit ist noch lange nicht Schluss. Top Agrar Online. Retrieved from https://www.topagrar.com/energie/news/windkraft-nach-20jahren-laufzeit-ist-noch-lange-nicht-schluss-9372151.html
- Rosenthal, M. J. (2018, December 11). The United States isn't the only country downplaying climate change. The Washington Post, pp. 11-13. Retrieved from https://www.washingtonpost.com/energy-environment/2018/12/11/united-states-isnt-only-country-downplaying-climate-change/?utm_term=.7b7e53222e99
- Rotmans, J., 2006. Tools for integrated sustainability assessment: a two-track approach. Integ. Assess. Int. J. 6, 35–57
- RP-Online. (2020, August 25). Bundesregierung räumt Windrad-Hürden aus dem Weg. RP-Online. Retrieved from https://rp-online.de/politik/deutschland/windenergie-bundesregierung-raeumtwindrad-huerden-aus-dem-weg_aid-52969213
- Rueter, G. (2014, July 15). Aus für CO2-Abscheidung als Klimaretter ? Deutsche Welle. Retrieved from https://www.dw.com/de/aus-für-co2-abscheidung-als-klimaretter/a-16992345
- Salter, J., Robinson, J., Wiek, A., (2010). Participatory methods of integrated assessment–a review. Wiley Interdiscip. Rev. Clim. Chang. 1, 697-717.
- Sargent, R. G. (2009). Verification and validation of simulation models. In Proceedings of the 2009 Winter Simulation Conference (pp. 162-176). https://doi.org/10.4018/978-1-60566-774-4.ch004
- Sauer, N. (2019, September 20). Germany announces host of new measures to bring down CO2. Retrieved September 23, 2019, from https://www.climatechangenews.com/

Schultz, S. (2019, October 6). Regierung schwächt Klimaschutzziele ab. Spiegel Online. Retrieved 2019-10-10 from www.spiegel.de

- Schwanitz, V. J. (2013). Evaluating integrated assessment models of global climate change. Environmental Modelling and Software, 50, 120-131. https://doi.org/10.1016/j.envsoft. 2013.09.005
- Sorrell, S., & Dimitropoulos, J. (2008). The rebound effect: Microeconomic definitions, limitations and extensions. Ecological Economics, 65(3), 636-649. https://doi.org/10.1016/j.ecolecon. 2007.08.013
- Statista. (2020). Anteil der Pelec/E-Bike-Nutzer an deutschen Radreisenden von 2014 bis 2019. Statista. Retrieved from www.statista.de

Statistisches Bundesamt. (2011). Zensus 2011. Available from https://ergebnisse.zensus2011.de

- Statistisches Bundesamt. (2019). Wohnen in Deutschland: Zusatzprogramm zum Mikrozensus 2018. (Statistische Ämter des Bundes und der Länder, Ed.). Wiesbaden: Statistisches Bundesamt (Destatis). Retrieved on 2020-07-01 from www.statistikportal.de
- Statistisches Bundesamt (Destatis) (Ed.). Genesis-Online. Accessed_on 2020-07-01. **Datenlizenz by-2-0**. Retrieved from www-genisis.destatis.de
- Statistisches Bundesamt (Destatis) (Ed.). Destatis. Wiesbaden: Statistisches Bundesamt (Destatis). Retrieved from www.destatis.de
- Statistisches Bundesamt (Destatis). (2020). Ausgewählte Zahlen für die Bauwirtschaft Januar 2020. Retrieved from www.destatis.de
- Statistisches Landesamt Baden-Württemberg (Ed.). (2020). Fahrleistungen im Straßenverkehr. Retrieved on 2020-07-01 from https://www.statistik-bw.de/Verkehr/KFZBelastung/v5c01.jsp
- Stephan, B., Lee, I., & Kim, J. (2019). Crashing the Climate: How the Car Industry Is Driving The Climate Crisis. (C. Roberts, Ed.). Seoul, SK and Hamburg, DE: Greenpeace East Asia and Greenpeace Germany. Retrieved from www.greenpeace.org
- Stern, N., 2016. Economics: current climate models are grossly misleading. Nature 407-409.
- Storm, S. (2017). How the Invisible Hand is Supposed to Adjust the Natural Thermostat : A Guide for the Perplexed. Science and Engineering Ethics, 23(5), 1307–1331. https://doi.org/10.1007/s11948-016-9780-3
- Strom-Report. (2020). Strompreiszusammensetzung 2019. Retrieved July 1, 2020, from https://www.strom-report.de/strompreise/strompreis-zusammensetzung/
- Taleb, N. N. (2007). The Black Swan. New York, NY: Random House.
- The costs of climate inaction. (2018). Nature, 561(7724), 433. https://doi.org/doi:http://dx.doi.org.ezproxy.uis.no/10.1038/d41586-018-06827-x
- Theiding, L., & Landwald, E. (2019, April 18). Pro und Contra kostenloser ÖPNV Sollte der Nahverkehr kostenlos sein? TAZ. Retrieved from https://taz.de/Pro-und-Contra-kostenloser-OePNV/!5589087/
- Thiele, P. (2020, July 14). Top-Gehälter der deutschen Wirtschaft: Vorstände der DAX-Unternehmen verdienen etwas weniger. SWR Aktuell. Retrieved from www.swr.de/swraktuell/gehaelter-vorstandsvorsitzende-vorstaende-dax-100.html
- Tsanova, T. (2020, August 27). Climeworks goes to Iceland for geothermal-powered CCS project. Renewables Now. Retrieved from https://renewablesnow.com/news/climeworks-goes-toiceland-for-geothermal-powered-ccs-project-711431/

Übertragungsverlust. (n.d.). Retrieved July 1, 2020, from https://de.m.wikipedia.org/wiki/ Übertragungsverlust

- Umweltbundesamt (UBA) (Ed.). (2018, November 20). Hohe Kosten durch unterlassenen Umweltschutz: Eine Tonne CO2 verursacht Schäden von 180 Euro – Umweltbundesamt legt aktualisierte Kostensätze vor. Retrieved from https://www.umweltbundesamt.de/presse/ pressemitteilungen/hohe-kosten-durch-unterlassenen-umweltschutz
- Umweltbundesamt (UBA). (2020a). Energieverbrauch privater Haushalte. Retrieved July 14, 2020, from http://www.umweltbundesamt.de/daten/private-haushalte-konsum/energieverbrauch-privater-haushalte
- Umweltbundesamt (UBA). (2020b). Vergleich der durchschnittlichen Emissionen einzelner Verkehrsmittel im Personenverkehr in Deutschland - Bezugsjahr 2018. Retrieved from http:// www.umweltbundesamt.de/
- Umweltbundesamt (UBA), & Bundesministerium für Wirtschaft und Energie (BMWi). (2018). Energieeffizienz in Zahlen: Entwicklungen und Trends in Deutschland 2018. (Umweltbundesamt (UBA), Fachgebiet I 2.4, & BMWi, Eds.). Berlin: Bundesministerium für Wirtschaft und Energie (BMWi). Retrieved from www.bmwi.de
- United Nations. (2015). The Paris Agreement. https://doi.org/FCCC/CP/2015/L.9
- United Nations. (2018). World 'Nearing Critical Point of No Return' on Climate Change, Delegate Warns, as Second Committee Debates Sustainable Development. Retrieved 2018-01-09, from <u>https://www.un.org/press/en/2018/gaef3500.doc.htm</u>
- Victor, D., 2015. Climate change: embed the social sciences in climate policy. Nature 520 (7545), 27-29. (http://refhub.elsevier.com/S0040-1625(18)30059-3/rf0265)
- van Dam, K. H., Nikolic, I., & Lukszo, Z. (2013). Agent-Based Modelling of Socio-Technical Systems. (K. H. van Dam, I. Nikolic, & Z. Lukszo, Eds.), Agent-Based Modelling of Socio-Technical Systems. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-4933-7

van Rüth, P., Schönthaler, K., von Andrian-Werburg, S., & Buth, M. (Eds.). (2019). Monitoringbericht 2019 zur Deutschen Anpassungsstrategie an den Klimawandel: Bericht der Interministeriellen Arbeitsgruppe Anpassungsstrategie der Bundesregierung. Dessau-Roßlau: Umweltbundesamt.

- van Sluisveld, M. A. E., Harmsen, M. J. H. M., van Vuuren, D. P., Bosetti, V., Wilson, C., & van der Zwaan, B. (2018). Comparing future patterns of energy system change in 2 °C scenarios to expert projections. Global Environmental Change, 50(April), 201-211. https://doi.org/10.1016/ j.gloenvcha.2018.03.009
- van Sluisveld, M. A. E., Hof, A. F., Carrara, S., Geels, F. W., Nilsson, M., Rogge, K., Turnheim, B., van Vuuren, D. P. (2018). Aligning integrated assessment modelling with socio-technical transition insights : An application to low-carbon energy scenario analysis in Europe. Technological Forecasting & Social Change, (October 2017). <u>https://doi.org/10.1016/j.techfore.2017.10.024</u>
- van Vuuren, D.P., Lowe, J., Stehfest, E., Gohar, L., Hof, A. F., Hope, C., Warren, R., Meinshausen, M., Plattner, G-K., 2009. How well do integrated assessment models simulate climate change? Climatic Change (2011) 104:255-285 DOI 10.1007/s10584-009-9764-2
- Verburg, P. H., Dearing, J. A., Dyke, J. G., Leeuw, S. van der, Seitzinger, S., Steffen, W., & Syvitski, J. (2016). Methods and approaches to modelling the Anthropocene. Global Environmental Change, 39, 328-340. <u>https://doi.org/10.1016/j.gloenvcha.2015.08.007</u>

Volkswagen AG. (2020). Bezüge des Vorstands. Wolfsburg. Retrieved from https:// geschaeftsbericht2019.volkswagenag.com

Walberg, D. (2012). Typische Energieverbrauchskennwerte deutscher Wohngebäude. Kiel: Arbeitsgemeinschaft für zeitgemäßes Bauen e.V. Retrieved from https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/IWU-

Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwerte.pdf

- Walker, W. E., Lempert, R. J., & Kwakkel, J. H. (2013). Deep Uncertainty. (S. I. Gass & M. C. Fu, Eds.), Encyclopedia of Operations Research and Management Science. Boston, MA: Springer. https:// doi.org/https://doi.org/10.1007/978-1-4419-1153-7_1140
- Watson, A. A., & Kasprzyk, J. R. (2017). Incorporating deeply uncertain factors into the many objective search process. Environmental Modelling and Software, 89, 159–171. <u>https://doi.org/10.1016/j.envsoft.2016.12.001</u>
- Watts, J. (2019, July). 'No doubt left' about scientific consensus on global warming, say experts. *The Guardian*. Retrieved on 03.09.2019 from www.theguardian.com
- Westermann, R., & Richter, C. (2018). dena Concise 2018 Building Report: Energy efficiency in the building stock statistics and analyses. Berlin. Retrieved from https://www.dena.de/
- White Jr., K. P., & Ingalls, R. G. (2009). Introduction To Simulation. In Proceedings of the 2009 Winter Simulation Conference (pp. 12-23). Retrieved from http://www.informs-sim.org/wsc11papers/ 124.pdf
- Wo Diesel-Fahrverbote gelten oder drohen. (2019, July 23). Süddeutsche Zeitung. Retrieved from https://www.sueddeutsche.de/wirtschaft/fahrverbote-deutschland-ueberblick-1.4220563
- Wuttke, S., Junker, S., & Winkler, S. (2017). Umsteuern erforderlich: Klimaschutz im Verkehrssektor -Sondergutachten November 2017. Berlin: Sachverständigenrat für Umweltfragen (SRU). Retrieved from www.umweltrat.de
- Yilmaz, L., Taylor, S. J. E., Fujimoto, R., & Darema, F. (2014). PANEL: THE FUTURE OF RESEARCH IN MODELING & SIMULATION. In A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, & J. A. Miller (Eds.), Proceedings of the 2014 Winter Simulation Conference (pp. 2797-2811). IEEE.
- Záboji, N. (2019, September 21). Ist das Klimapaket eine Mogelpackung? Frankfurter Allgemeine Zeitung. Retrieved 2020-07-13 from https://www.faz.net/-gqe-9rf7v
- Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Introduction to Systems Modeling Concepts. In B. P. Zeigler, H. Praehofer, & T. G. Kim (Eds.), Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems (2nd ed., pp. 1-21). New York: Academic Press. https://doi.org/10.1016/b978-0-12-813370-5.00009-2
- Zhang, M., Verbraeck, A., Meng, R., Chen, B., & Qiu, X. (2016). Modeling spatial contacts for epidemic prediction in a large-scale artificial city. Jasss, 19(4). https://doi.org/10.18564/jasss. 3148

Appendix A

Collection of German energy transition policies

Торіс	#	Policy action	Direct effect	Potential side effects	Resulting model component
GHG emissions	1	CO2 pricing relating to heating and transportation	making the use of fossil fuels more expansive	switch to less GHG intensive fuels	assume a price on GHG emissions that links to fossil fuel use
GHG emissions	2	ETS as instrument in sectors heat and transportation	can increase the price of burning fossil fuels. may need minimum price setting	governments may need to drastically limit total certificates on the market over time	track fossil and REN technology share in system
GHG emissions	3	minimum price in ETS	limits supply of GHG certificates, lower bound on emissions price	may significantly increase fossil fuel prices and harm consumers	set minimum price for GHG emissions
relief of citizens and economy	4	reduce electricity costs	incentive to use electricity	 supplementing other energy source reboundeffect 	incentivize electric appliances
relief of citizens and economy	5	increase fixed- rate allowance for long distance commuters	incentivize long- distance car- commuting	 less switch to public transport less incentive for public transport to improve service relief financial burden on those relying on long- distance car travel 	dampening switch from fossil cars to EV and from car to alternative transport modes
relief of citizens and economy	6	change housing subsidies in tenant law	?	?	not relevant
relief of citizens and economy	7	transfer efforts	?	?	not relevant
energy sector	8	stepwise reduction until termination of coal-power in 2038	decrease share of coal in electricity mix, GHG and particle emissions reduction	 need to replace electricity production capacity electricity grid stability loss of labor force expertise and location minor coal price effect electricity price effect 	 linear reduction of electricity produced with coal until termination date replacement of energy capacity with alternative sources
energy sector	9	expansion of renewable energy to 65% share of the gross electricity consumption by 2030	increasing renewable energy technology by 2030	 GHG emissions reduction electricity grid instability labor force and material demand shift 	 adding new and repowering existing renewable energy capacity link electricity production characteristic to GHG emissions footprint

energy sector	10	development and modernizing of CHP plants	increased efficiency of gas/CHP plants	 prolongued lifetime CHP limited GHG emissions reduction continued gas infrastructure investments extends technology lock- in duration 	maintain gas power plants as a viable alternative
energy sector	11	convert heat-grids to renewable energy and unavoidable waste heat	efficiency increase, GHG emissions reduction	?	maintain district heating as a viable alternative
energy sector	12	reality laboratories of the energy transition	?	?	not relevant
energy sector	13	energy efficiency strategy 2050	?	?	not relevant
energy sector	14	supporting measures for the energy transition	?	?	not relevant
energy sector	15	EU-cooperation	?	?	not relevant
energy sector	16	investment program: energy efficiency and process heat from renewable energy in the economy	energy efficiency gains	GHG emissions	not relevant
building sector	17	tax relief program for energetic renovation of buildings	building efficiency gain, consumer incentive	 demand for insulation materials (roof, glass, walls, floor) demand for insulation installers potential rebound effect 	 renovation mechanism (roof, glass, wall, floor) financial support for renovations energy efficiency effect of household heating material demand labor demand
building sector	18	financial support program for efficient buildings including replacement bonus for oil heating	new building efficiency standard, replacing oil heating systems	demolition and reconstruction can decrease GHG emissions	 renovation vs new construction choice replacement of oil heaters
building sector	19	financial support for serial renovations	building efficiency	GHG emissions	not relevant
building sector	20	energetic renovation of cities	none	none	not relevant
building sector	21	energy consulting and PR	awareness raising	?	not relevant
building sector	22	examplary function of federal buildings	renovating governmental buildings as soon as possible	?	not relevant
building sector	23	continuous development of energy standards	increase energy standards continually until near carbon neutrality and minimum energy use		not relevant

building sector	24	new constructions energy standard by GEG2020	average of 45-60 kWh/m2 energy characteristic consumption of new constructions from 2021	GHG emissions	<pre>implement change in characteristic energy consumption value for new buildings from 2021</pre>
building sector	25	renewal of GEG in 2024	unknown. possible further decrease of energy characteristic consumption from 2026	GHG emissions	<pre>implement change in characteristic energy consumption value for new buildings from 2026</pre>
building sector	26	climate protection through urban development	?	?	not relevant
building sector	27	development of the innovation program Future Building	?	?	not relevant
building sector	28	energy efficiency strategy 2050	?	?	not relevant
transport ation sector	29	increase utility of rail passenger traffic	 increased reliability, capacity increasing passenger numbers 	 improved image reducing car and air travel 	 utility gain of railways linking railway gains to public transport, biking and walking switch from car/ air travel to rail passenger transport
transport ation sector	30	increase utility of public transport	 increased reliability, capacity increasing passenger numbers 	 improved image reducing car and air travel 	 utility gain of public transport linking railway gains to public transport, biking and walking switch from car travel to public transport
transport ation sector	31	expansion of cycle-tracks, bike parking space, and improving framework conditions	 decreased travel time for cycling improved connectivity 	 improved image potential adverse effects for car travel and for public transport positive effect for public transport if it increases connectivity (link to public transport stations) 	 utility gain of cycling switch car to cycling switch public transport to cycling or increase public transport in combination with cycling
transport ation sector	32	development of electricity-based fuels (alternative fuels)	"green hydrogen"	new infrastructure demand	long term alternative
transport ation sector	33	supporting advanced bio-fuels (alternative fuels)	increase of bio- fuel supply	 biofuels are competing for landuse with food-land benefit of reusing of existing infrastructure potential incentive to cheat 	 reducing GHG footprint of CEV extends lifetime of existing infrastructure land-use change food-crops vs energy-crops

transport ation sector	34	strengthening rail cargo traffic	 increased reliability, capacity increasing rail_cargo numbers 	 increase image reducing cargo via road/air transport GHG emissions 	not relevant
transport ation sector	35	modernizing inland waterway transport and utilizing land-based electricity in harbors	increasing efficiency of water transport	 increase image GHG emissions 	not relevant
transport ation sector	36	increase low-CO2 passenger cars on roads	1. tighten emission targets (95g/ km)	 GHG emissions fleet efficiency increase shift to non-CO2 emissions shadow- registrations to squeeze fleet emissions development of EV and HEV/PHEV market 	 increased new registrations of efficient cars increased upgrading of inefficient cars
transport ation sector	37	expansion of refueling and charging infrastructure	infrastructure improvement and attractiveness	 increased utility of EV drives EV sales electricity demand 	increased utility and sales of EV
transport ation sector	38	increase low-CO2 trucks on roads	<pre>1. tighten emission targets (95g/ km)</pre>	 GHG emissions fleet efficiency increase shift to non-CO2 emissions shadow- registrations to squeeze fleet emissions development of EV and HEV/PHEV market 	not relevant
transport ation sector	39	expansion of refueling, charging and overhead wiring infrastructure	infrastructure improvement and attractiveness	 increased utility of EV drives EV sales electricity demand 	increased utility and sales of EV
transport ation sector	40	automating, connecting, liquifying traffic. enable innovative modes of transport	 increase efficiency of traffic behavior less GHG emissions 	higher total energy consumption through implementing digital infrastructure	general efficiency gain for all cars
transport ation sector	41	tax relief program for electric vehicles	incentive to by EV	 electronic waste increase special materials demand increase (Li, Si, REM) 	 EV sales driver GHG emissions reductions electronic waste special materials demand for manufacturing electricity demand increase fuel demand decrease
industry sector	42	investment program: energy efficiency and process heat from renewable energy in the economy	energy efficiency gains	none	not relevant

industry		competitive tender for energy			
sector	43	efficiency: subsidy program	?	?	not relevant
industry sector	44	resource efficiency and substitution	 increased recycling energy efficiency 	GHG emissions	not relevant
industry sector	45	new construction techniques and materials for low- emission industry	 increased recycling energy efficiency 	GHG emissions	not relevant
industry sector	46	accelerated implementation of measures from the energy-audit and energy management systems (EMS) and effective updating of accepted pairing	?	?	not relevant
industry sector	47	EU-ecological- design-guide-line: expansion of minimum requirements	none	none	not relevant
industry sector	48	EU-ETS innovation fund: upgrading the NER300-program	?	?	not relevant
industry sector	49	national decarbonization program	energy efficiency gains	GHG emissions	not relevant
industry sector	50	program for CO2- avoidance and utilization in primary industries	energy efficiency gains	GHG emissions, emissions of other chemicals	not relevant
industry sector	51	automobile industry: industrial manufacturing of mobile and stationary energy storage (battery cells manufacturing)	energy efficiency gains	 electronic (hazardous) waste increase special materials demand increase (Li, Si, REM) 	not relevant
agricultu re sector	52	reducing nitrogen surpluses, ammonia emissions, and laughing gas emissions as well as increasing nitrogen efficiency	left out	none	not relevant
agricultu re sector	53	strengthening the fermentation of economic fertalizers of animal origin and agricultural recycling material	?	?	not relevant
agricultu re sector	54	expansion of ecological agriculture	left out	none	not relevant
agricultu re sector	55	reducing greenhouse gas emissions from animal husbandry	left out	none	not relevant
agricultu re sector	56	energy efficiency in agriculture	left out	none	not relevant

other measures	57	subsidy program for expanding landfill ventilation and optimizing gas abstraction	?	?	not relevant
land-use land-use change and forestry sector	58	maintenance and building up of topsoil of arable farm land	left out	none	not relevant
land-use land-use change and forestry sector	59	maintaining permanent grassland	left out	none	not relevant
land-use land-use change and forestry sector	60	protecting peaty soil including reducing the use of peat in substrates	left out	none	not relevant
land-use land-use change and forestry sector	61	maintainance and sustainable management of forests and lumber utilization	left out	none	not relevant
overarchi ng measures	62	climate neutral federal administration until 2030	?	?	policy target
overarchi ng measures	63	sustainable finance	?	?	not relevant
overarchi ng measures	64	research and innovation	?	?	not relevant
overarchi ng measures	65	climate protection and society	?	?	not relevant

source: Bundesministerium für Umwelt Naturschutz und nukleare Sicherheit (BMU). (2019d). Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans 2050.

Appendix B System Boundary Definition

The system boundary definition is further outlined in more detail with regard to individual characteristics.

Spatial limits

In order to find a balance between high resolution and high simulation performance, administration districts in Germany were chosen as the smallest geographical elements, the country as a whole as the largest. Administration districts can also be summarized by states as an intermediate level. Other supraand international relationships, such as the European Union and neighboring countries, are considered as the rest of the world, which is not connected to the model.

Temporal limits

The energy transition will stretch over a very long time frame. The government set its immediate targets ten years ahead (CPP2030), formulated the CPP2050 for the next 30 years, and important dates in the overarching issue of climate change frequently include the year 2100 and beyond. Similarly, this research considers a short term time frame referring to the next 10 years, a medium time horizon to cover the next 30 years and the long term to go until 2100. Simultaneously, processes are happening slowly and thus the smallest time unit to consider is one year.

Energy limits

Dealing with an aggregated view, relevant characteristic values are in "kW" or "kWh", often in relation to square meters and year, and aggregated consumption values in "TW" or "TWh", often as a yearly consumption value "TWh/a". For simplicity reasons, whereas installed capacity (often in "MW" or "GW") is the typical unit of comparing power plants but which says little about the final energy output, this model deals in annual energy output units (TWh/a) based on average load factors.

Social limits

Considering the scope of the research, important model components are aggregated forms of households, building population, the labor force in specific sectors, the different transportation sectors and specifically the population of cars in Germany, as well as the electricity production sector. Every aspect is part of the model where these parts logically connect due to their direct or indirect relationship to the energy transition and climate change. Energy consumption by non household and transportation sectors is part of the rest of world with the exception of electricity consumption. However, electricity consumption from non-focal sectors will be kept constant throughout the model. Additionally, anything related to cargo transport lies outside the scope of this research and is therefore part of the rest of the world.

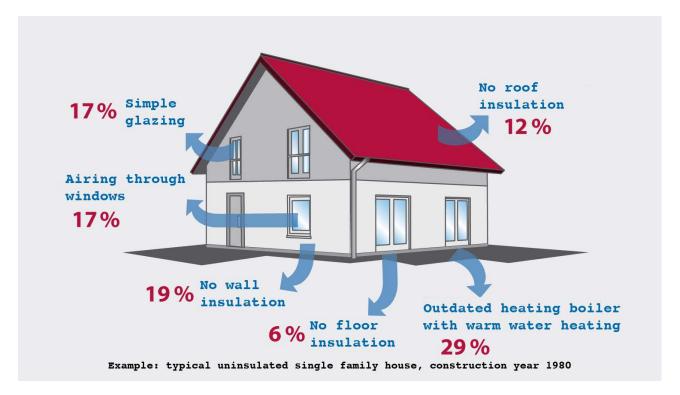
Individual societal behavior is not in the scope of this research in contrast to aggregated behavior trends that may be affected by relative changes between incentive factors such as dedicated budget, costs, utility and availability. Since the workings of the choice mechanism of citizens is a black box, behavioral changes are derived from the relative changes in incentive factors.

Technological limits

The energy transition is all about consumption, production and preservation of energy and climate change is driven by GHG emissions. However, our society today and the society of the future are and will

rely on a multitude of technologies that reflect the unique distribution of resources, geographical conditions, cultural differences, and other attributes. Locations, regions, provinces and states all have their own governmental institutions and rules, not to mention citizens' individual preferences. Consequently there is a variety of technologies in use to fulfil very similar tasks with regard to household heating, building energy efficiency, electricity production and mobility services. Each of these areas comprise their own set of technologies with different energy properties and GHG emissions. The technologies by themselves are considered blackboxes in this modelling project, their workings are not important, only their input and output streams of energy, emissions, and related resources. Consequently, the different technology types are made explicit in the model by accounting for their different energy and emissions behavior. In the case of housing insulation, this translates to considering the heating energy efficiency improvement effect per each area of living space transformed. This effect is attributed by an estimated value rather than the specific U-value (heat transfer coefficient) and its functioning.

Similarly, individual institutions and other actors or legal bodies are not represented in the model structure, only their possible actions are implemented by means of external policy levers or uncertainties that limit, boost or hinder the model behavior.


Appendix C - The Housing Sector

This section contains more detailed thoughts and information on the housing sector.

C.1 - Energy loss potential of building components

source: www.bdew.de/service/daten-und-grafiken/infografiken-gebaeudetechnik/

C.2 Energy efficiency potential from upgrades

Based on the initial energy consumption characteristic of living space per construction year (**Table 1** - **Heating energy demand characteristic value by building size and construction year**), the energy efficiency gain potential per building component is derived by the following logic. Each construction year is assigned a general potential of being improved by upgrading (**table X constr age upgrd potential**), which is multiplied with the individual improvement potential of the components (**table X component upgrd potential**) and finally multiplied with the initial energy demand characteristic (**Table 1 - Heating energy demand characteristic value by building size and construction year**).

Construction year	1 dwelling in kWh/(m2*a)	<pre>2 dwellings in kWh/(m2*a)</pre>	3-6 dwellings in kWh/(m2*a)	7-12 dwellings in kWh/(m2*a)	13plus dwellings in kWh/(m2*a)
pre 1919	3	3	3	3	2
1919-1948	5	4	4	4	3
1949-1978	5	5	4	4	4
1979-1990	3	3	3	4	3
1991-2000	3	2	3	2	2
2001-2008	2	2	2	2	2
2009-2020	1	1	1	2	2
2021 and later	0	0	0	0	0

Table C.2.1 - Floor upgrade energy consumption improvement

Table C.2.2 - Glazing upgrade energy consumption improvement

Construction year	1 dwelling in kWh/(m2*a)	2 dwellings in kWh/(m2*a)	3-6 dwellings in kWh/(m2*a)	7-12 dwellings in kWh/(m2*a)	13plus dwellings in kWh/(m2*a)
pre 1919	10	9	8	8	7
1919-1948	13	12	11	10	9
1949-1978	12	12	11	11	10
1979-1990	8	8	8	9	7
1991-2000	7	6	7	6	6
2001-2008	4	4	4	4	4
2009-2020	4	4	4	5	5
2021 and later	0	0	0	0	0

Table C.2.3 - Roof upgrade energy consumption improvement

Construction year	1 dwelling in kWh/(m2*a)	2 dwellings in kWh/(m2*a)	3-6 dwellings in kWh/(m2*a)	7-12 dwellings in kWh/(m2*a)	13plus dwellings in kWh/(m2*a)
pre 1919	23	22	20	19	17
1919-1948	27	25	23	20	19
1949-1978	26	25	22	22	20
1979-1990	14	13	13	15	11
1991-2000	10	10	10	9	9
2001-2008	6	6	6	6	6
2009-2020	4	5	5	6	6
2021 and later	0	0	0	0	0

Construction year	1 dwelling in kWh/(m2*a)	<pre>2 dwellings in kWh/(m2*a)</pre>	3-6 dwellings in kWh/(m2*a)	7-12 dwellings in kWh/(m2*a)	13plus dwellings in kWh/(m2*a)
pre 1919	20	19	18	16	14
1919-1948	23	21	20	18	16
1949-1978	23	22	20	19	18
1979-1990	13	12	12	14	10
1991-2000	10	9	10	9	8
2001-2008	6	5	6	6	6
2009-2020	4	4	4	5	6
2021 and later	0	0	0	0	0

Table C.2.4 - Wall upgrade energy consumption improvement

Table C.2.5 Heating system upgrade energy consumption improvement

Construction year	1 dwelling in kWh/(m2*a)	2 dwellings in kWh/(m2*a)	3-6 dwellings in kWh/(m2*a)	7-12 dwellings in kWh/(m2*a)	13plus dwellings in kWh/(m2*a)
pre 1919	24	23	21	19	17
1919-1948	29	27	24	22	20
1949-1978	30	28	25	25	23
1979-1990	17	16	16	19	14
1991-2000	13	13	13	12	11
2001-2008	8	8	8	8	8
2009-2020	6	7	7	8	9
2021 and later	0	0	0	0	0

C.3 Household budget

Household net income

Table C.3.1 illustrates the initially assumed average monthly net income per household and income group. For the group with income below EUR 900 an average of EUR 700 was assumed, considering this group includes students, minimum wage workers, trainees and career entrants. The income groups distinguished by an upper and lower bound were assigned the respective mean value. Finally, great uncertainty lies in the average income of households earning more than EUR 10.000 per month because there is no real upper limit as this is the realm of so-called "extremistan" as Taleb (2007) described it in "The Black Swan". First it is assumed that a plausible mean could lie around 10% of the total benefits of the best earning citizens in Germany. According to Wikipedia¹ about 17.400 people with an income over EUR 1 million were counted in 2013. In an SWR Aktuell article Thiele (2020) reports highest earnings by managers from the Volkswagen group with an average of EUR 5,7 million per year and of close to EUR 10 million per year for the Volkswagen AG CEO, which is supported by the company's annual report (Volkswagen AG, 2020). Thus initially an average annual income of EUR 1 million was assigned to the last

¹ de.wikipedia.org/wiki/Einkommensmillion%C3%A4r

income group. However, a quick validation test suggested significant adjustment needs as illustrated in **Table C.3.1**.

Income groups	Initial assumed average monthly net income per household	Initial assumed average annual net income per household	Number of households per group	Cumulated annual income per group in EUR
below EUR 900	EUR 700	EUR 8.400	2.940.000	24.696.000.000
EUR 900-1500	EUR 1200	EUR 14.400	7.117.000	102.484.800.000
EUR 1500-2000	EUR 1750	EUR 21.000	6.367.000	133.707.000.000
EUR 2000-3200	EUR 2600	EUR 31.200	10.835.000	338.052.000.000
EUR 3200-4500	EUR 3850	EUR 46.200	6.777.000	313.097.400.000
EUR 4500-6000	EUR 5250	EUR 63.000	3.407.000	214.641.000.000
EUR 6000-10000	EUR 8000	EUR 96.000	2.587.000	248.352.000.000
EUR 10000 plus	EUR 83000	EUR 1.000.000	515.000	515.000.000.000
Sum	-	_	40.545.000	1.890.030.200.000
Residual annual pe	EUR 23.625			

Table C.3.1 - Validation test of initial income assumption

The test was done by multiplying the average income values by the number of households per group and dividing the total by 80 million German citizens in order to obtain the average annual per capita income of Germany. The residual annual per capita income for Germany amounts to EUR 23.625, which is about EUR 20.000 short of the actual amount of about EUR 43.000 in 2018².

Subsequently the average income for last income group was raised four times to EUR 332.000 per month so that an approximately realistic per capita income of EUR 42.835 was achieved. The final income configuration is outlined in **Table C.3.2** below. Of course also different mean values for the other income groups could have been chosen, focusing on adjusting the highest income group was perceived to involve less uncertainty, however.

Income groups	Initial assumed average monthly net income per household	Initial assumed average annual net income per household	Number of households per group	Cumulated annual income per group in EUR
below EUR 900	EUR 700	EUR 8.400	2.940.000	24.696.000.000
EUR 900-1500	EUR 1200	EUR 14.400	7.117.000	102.484.800.000
EUR 1500-2000	EUR 1750	EUR 21.000	6.367.000	133.707.000.000
EUR 2000-3200	EUR 2600	EUR 31.200	10.835.000	338.052.000.000
EUR 3200-4500	EUR 3850	EUR 46.200	6.777.000	313.097.400.000
EUR 4500-6000	EUR 5250	EUR 63.000	3.407.000	214.641.000.000
EUR 6000-10000	EUR 8000	EUR 96.000	2.587.000	248.352.000.000
EUR 10000 plus	EUR 332000	EUR 3.984.000	515.000	2.051.760.000.000
Sum	-	_	40.545.000	3.426.790.200.000
Residual annual per	42.835			

Table C.3.2 - Final income configuration

Household available income

Depending on the household's income level, the share of net income a household can spend on improvements varies greatly. Due to lack of data, it is assumed that households earning up to EUR 1.500

² de.wikipedia.org/wiki/Deutschland

per month need all they have to cover their basic needs, such as rent, food, clothing and other necessities. The income group EUR 1.500-2.000 is assumed to be earning just enough to be able to spend 5% of income on non-essential things. The **Table C.3.3** shows the assumptions for each income group.

Table C.3.3 - household share of net income available for non essential spending

Income groups	Assumed share of net income available for non essential spending
below EUR 900	0 %
EUR 900-1500	0 %
EUR 1500-2000	5 %
EUR 2000-3200	10 %
EUR 3200-4500	25 %
EUR 4500-6000	50 %
EUR 6000-10000	70 %
EUR 10000 plus	90 %

Finally, multiplying the total available income per income group with the assumed share of income that each group can spare for investments underlines the "extremistanian" nature of income (Taleb, 2007). More than 82% of the total available budget for (sustainability) improvements is supposedly earned by the very rich. This strongly calls for policy measures that have a redistributive effect.

Income groups	Residual budget available for improvement investments per income group in EUR	Fraction of cumulated budget
below EUR 900	0	0,00 %
EUR 900-1500	0	0,00 %
EUR 1500-2000	6.685.350.000	0,30 %
EUR 2000-3200	33.805.200.000	1,50 %
EUR 3200-4500	78.274.350.000	3,48 %
EUR 4500-6000	107.320.500.000	4,78 %
EUR 6000-10000	173.846.400.000	7,74 %
EUR 10000 plus	1.846.584.000.000	82,20 %
Sum	2.246.515.800.000	100,00 %

C.5 Household improvements workforce

Obtained from Destatis data, the workforce of construction and finishing trades in Germany is displayed in the following the **Table 1: Workforce overview: Main construction trades** and **Table 1: Workforce overview: Finishing trades**. Next to the number of workers per profession it is also highlighted which professions are assumed to be able to carry out specific improvement works, which indicates their relevance to this research.

Professions	Workforce	Improvements expertise
Masons and concrete workers	372028	-
Carpenters	89038	Insulation work
Roofers	94631	Insulation work

Table 1: Workforce overview: Main construction trades

Road builders	123020	-
Heat cold and sound insulation workers	13105	Insulation work
Well builders	4953	-
Scafforders	27766	-
Concrete block and terrazzo builders	3388	-

source: destatis-53111

Table 1: Workforce overview: Finishing trades

Professions	Workforce	Improvements expertise
Stove and air heating builders	7722	-
Plasterers	30886	-
Painters and varnishers	207575	-
Tinsmiths	23999	-
Plumbers and heating engineers	327340	Heating system installations, Solar thermic installations
Electrical engineers	445803	Solar PV installations
Joiners	200352	-
Glaziers	23390	-
Floor tilers	98892	-
Composition floor layers	17467	-
Parquet layers	15175	-
Roller blinds and sun shutter technicians	17477	-
Interior decorators	49838	-

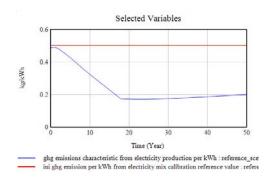
source: destatis-53111

Appendix D - The Personal Transportation Sector

Data cleaning and preparation

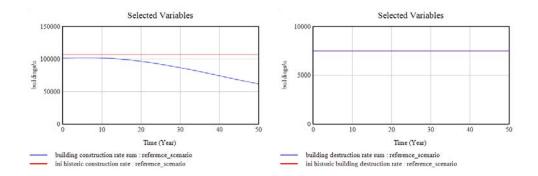
The KBA collects its data on community level and includes all intermediate aggregation levels so that one and the same table reveals highly aggregated and disaggregated data at the same time. For this research only data on administration district level is extracted from this dataset. Additionally, the naming convention of the KBA dataset and the master dataset, derived from the census 2011 data, is not exactly the same and need to be harmonized. This includes accounting for several mergers of administration districts since 2011 that need to be reverse engineered to match the data accurately. Finally, the KBA data on the car stock of 2019 and the new car registrations in 2019 needs to match the structure of the master dataset. In both cases python programming is used to handle the large datasets efficiently. Reverse engineering the merged communities and administration districts is the only case that required manual data input to make the data fit.

The reorganization of regional governments in Germany is summarized on Wikipedia³. The relevant changes after 2011 affected the administration districts in the states of Mecklenburg-Vorpommern, Niedersachsen, and Rheinland-Pfalz.

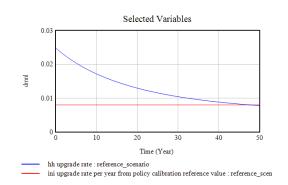

³ https://de.wikipedia.org/wiki/Kreisreformen_in_Deutschland_nach_1990

Appendix E - Model-based decision-making

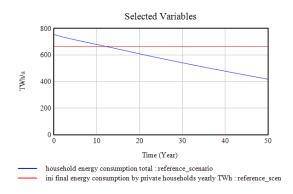
E.1 Verification and Validation indicators

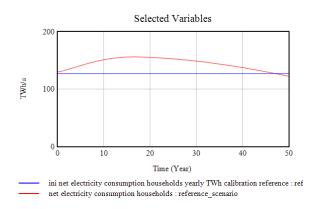

E.1.1 Energy

The initial ghg emissions characteristic from electricity production per kWh (blue) values come very close to the data reference point (red). This is an important indicator because it will be multiplied with the final electricity consumption and could cause severe misinterpretation:

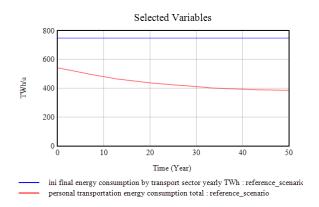


E.1.2 Housing


Whereas the building construction rate (blue) diverges over time from the reference (red), the modelled building destruction rate has exactly the same behavior as the reference data:


Housing upgrade rate (blue) starts of slightly above the historic reference (red):

The total energy consumption of households (blue) starts in the area of the reference data (red):



The net energy consumption of households (red) starts off very close to the historic data point (blue), follows the expected energy trend and then meets the modelled system effect of other factors and declines:

E.1.3 Transportation

The total energy consumption from personal transportation (red) does not include international trips and water way transportation. Especially international air travel is very energy intensive and causes the reference data (blue) to signal a slight mismatch to the model behavior:

E.2 XLRM Framework

Block	Uncertainties (UNC)	UNC value range	UNC initi al value	Type of uncertainty	Reasoning
ENERGY SECTOR					
Electricity production	UNC intrinsic repowering share	-0,22 - 0,78	0	deep	Repowering is almost as expensive as new construction, small synergy effects
Electricity production	UNC effective wind solar implementation rate	0 - 100	90	stochastic removed from eval.	Construction permissions have been granted, high historic fallout rates from protests and lawsuits, new legislation reduces risks of lawsuits (RP- Online, 2020)
Electricity production	UNC coal and oil transfer to gas boom factor	0 - 0,5	0	deep	Lost capacity in coal, oil and nuclear could be replaced quickly by gas turbines, increased gas supply from Nord Stream 2
Electricity price	UNC base gain electricity price	-15 - 15	7,5	deep	historic energy price trend indicates constantly rising prices, potentially higher grid stability costs from energy transition
Fossil fuel prices	UNC transportation fossil fuel price gain	-15 - 15	0	deep	historic energy price trend indicates constantly rising prices, potentially higher grid stability costs from energy transition
GHG emissions prices	UNC co2equ price development	-10 - 10	0	deep	currently price increase relies on governmental intervention, functioning of future price setting mechanism is uncertain
HOUSING SECTOR					
Household electricity use	UNC expected electricity consumption increase	0 - 20	12	stochastic	expected increase (Agora Energiewende & Wattseight, 2020; Bundesverband Erneuerbare Energie, 2020; Bundesnetzagentur, 2020)
Household budget	UNC base fraction of household income dedicated to improvement investments	0,005 - 0,05	0,025	deep	depending on economic development and citizens spending priorities in the future
Household budget	UNC housig upgrades over car preference assumtion	0 - 1	0,5	deep	depending on the relative utility change between cars and housing improvements
Improvements	UNC global handicap improvement working hours	0 - 1	0,2	deep	uncertainty of allocation mechanism of work hours for housing improvements and future development
Improvements	UNC global handicap improvement funding	0 - 1	0,2	deep	uncertainty of allocation mechanism of funding for housing improvements and future development
Household heating system upgrades	UNC factor on gas heating	0 - 10	1	deep	<pre>coal/oil heating households could switch to gas boilers or alternative technologies. preferences are uncertain</pre>
PERSONAL TRANSPORTATION SECTOR					

Table E.1 - XRLM Uncertainties

New car registrations technology preference	UNC car reductions on avg base sales price per type	0,0005 - 0,01	0,005	stochastic removed from eval.	infant technology becomes cheaper over time, starting with more upper-class models the future adds more smaller/cheaper models dropping the average base sales price for EV
New car registrations technology preference	UNC historic base gain yearly mileage avg	-100 - 100	-60	stochastic removed from eval.	historic data shows slight decrease in mileage/year
New car registrations technology preference	UNC new car pref objection against new technologies	0 - 50	20	deep	car technology preference influenced by non-monetary and personal utility factors
Mode of transportation preferences	UNC relative utility of public transportation and railway change	-50 - 50	0	deep	public transportation and railway preference influenced by non-monetary and personal utility factors
New car registrations	UNC relative change in transport mode effect on car owning factor	0,1 - 0,666	0,333	deep	concers the potential causal link between demand for transportation services and demand for cars
Energy consumption from personal transportation	UNC EV base share capacity charged at home	0 - 1	0,8	stochastic removed from eval.	if drivers charge at home or not has no impact on the model outcomes
Energy consumption from personal transportation	UNC alternative transprotation electrification rate handicap	0 - 1	0	deep	the optimism of public transportation providers are to upgrade to electric busses could be short lived or could have a domino-effect and bring swift change

Table E.2 - XLRM Levers

Block	Levers	Levers value range	Levers BAU value
ENERGY SECTOR			
Electricity production	lever policy target total repowering share	0 – 1	0
Electricity production	lever policy pref new electricity technology gas	0 - 0,4	0,2
Electricity production	lever policy pref new electricity technology solar	0 - 0,4	0,3
Electricity production	lever policy pref new electricity technology wind	0 - 0,4	0,3
Electricity production	lever policy pref new electricity technology geothermal	0 – 0,4	0,01
Electricity price	lever gov incentive on electricity price	0 - 0,2	0
Fossil fuel prices	lever policy transport fuel surcharges	0 - 0,5	0
GHG emissions prices	lever policy szenario maximum limit following 2030	0 - 1000	100
HOUSING SECTOR			
Household electricity use	lever electricity use policies	-1000 - 1000	0
Household budget	lever policy on willingness to invest in upgrades addons car upgrds	0-0,05	0,0005
Improvements workforce	lever policy training of insulation installers	0 - 50000	0
Improvements workforce	lever policy training of heating system installers	0 - 100000	0

Improvements workforce	lever policy training of solar pv installers	0 - 50000	0
Improvements workforce	lever policy training of solar thermal installers	0 - 50000	0
PERSONAL TRANSPORTATION SECTOR			
New car registrations technology preference	lever gov financial support for PHEV extension	0 - 25000	0
New car registrations technology preference	lever gov financial support for BEV extension	0 - 30000	0
New car registrations technology preference	lever relative policy incentive EV over CEV	0 - 1000	0
Personal transportation demand	lever policy trend effects on personal mobility demand	-150 - 150	0
Mode of transportation preferences	lever gov policy increasing the utility of cars	0 - 100	0
Mode of transportation preferences	lever gov policy increasing the utility of public transportation	0 - 100	0
Mode of transportation preferences	lever gov policy increasing the utility of railways	0 - 100	0
Mode of transportation preferences	lever gov policy increasing the utility of air travel	0 - 100	0
Mode of transportation preferences	lever gov policy increasing the utility of cycling	0 - 100	0

Table E.1 - XRLM Outcome indicators

Block	Outcome indicators	optimization target
ENERGY SECTOR	GHG emissions from selected sectors combined	minimize
HOUSING SECTOR	Net electricity consumption households	maximize
HOUSING SECTOR	Final disposable yearly income for improvement investments	minimize
PERSONAL TRANSPORTATION SECTOR	Yearly pkm transportation demand total	maximize

E.3 - Experiment Design

The experiments are design assigns different sets of values to the levers, which are then run against the uncertainty ranges in a sensitivity analysis. Experiments 1 and 2 are defined in the table below.

Table E.3 - Experiments

Block	Levers	Levers value range	Experiment 1 (BAU)	Experiment 2
ENERGY SECTOR				
Electricity production	lever policy target total repowering share	0 - 1	0	0,9
Electricity production	lever policy pref new electricity technology gas	0 - 0,4	0,2	0
Electricity production	lever policy pref new electricity technology solar	0 - 0,4	0,3	0,4
Electricity production	lever policy pref new electricity technology wind	0 - 0,4	0,3	0,4
Electricity production	lever policy pref new electricity technology geothermal	0 - 0,4	0,01	0,4
Electricity price	lever gov incentive on electricity price	0 - 0,2	0	0,1
Fossil fuel prices	lever policy transport fuel surcharges	0 - 0,5	0	1
GHG emissions prices	lever policy szenario maximum limit following 2030	0 - 1000	100	1000
HOUSING SECTOR	lever electricity use	-1000 -		
Household electricity use	policies	1000	0	0
Household budget	lever policy on willingness to invest in upgrades addons car upgrds	0-0,05	0,0005	0,001
Improvements workforce	lever policy training of insulation installers	0 - 50000	0	50000
Improvements workforce	lever policy training of heating system installers	0 - 100000	0	100000
Improvements workforce	lever policy training of solar pv installers	0 - 50000	0	50000
Improvements workforce	lever policy training of solar thermal installers	0 - 50000	0	50000
PERSONAL TRANSPORTATION SECTOR				
New car registrations technology preference	lever gov financial support for PHEV extension	0 - 25000	0	10000
New car registrations technology preference	lever gov financial support for BEV extension	0 - 30000	0	15000
New car registrations technology preference	lever relative policy incentive EV over CEV	0 - 1000	0	50
Personal transportation demand	lever policy trend effects on personal mobility demand	-150 - 150	0	-50
Mode of transportation preferences	lever gov policy increasing the utility of cars	0 - 100	0	0
Mode of transportation preferences	lever gov policy increasing the utility of public transportation	0 - 100	0	20
Mode of transportation preferences	lever gov policy increasing the utility of railways	0 - 100	0	20
Mode of transportation preferences	lever gov policy increasing the utility of air travel	0 - 100	0	0
Mode of transportation preferences	lever gov policy increasing the utility of cycling	0 - 100	0	0

Appendix F - Correspondence

The attached copies of correspondence show inquiries about data and data sources on specific datasets that could have benefited the data quality underlying the model. The correspondence includes:

#	Correspodent	Inquiry summary	Response summary
1	Energie Effizienz Experten (www.energie- effizienz- experten.de)	data on household energy consumption on level of administration districts	referral to Destatis
2	Destatis (www.destatis.de)	data on administration district level on: building stock by construction year, energy source, household size, building type	various links to data sets: regionalstatistik, micro census 2018 data, and census 2011 data
3	Destatis (www.destatis.de)	<pre>data linking different aspects: 1. living space/building type, energy label, 2. living space/building type, renovation work with insulation installations, 3. living space/building type, energy consumption by source, 4. buildings with renewable energy installations by number, 5. buildings with renewable energy installations by installed capacity, 6. by households produced energy behind the meter</pre>	Destatis does not collect these data points, estimates are in micro census 2018. Of further interest could be data from: AG Energiebilanzen (www.ag-energiebilanzen.de), CO2online (www.co2online.de)
4	CO2-online (<u>www.co2online.de</u>)	data points linking aspects of the building stock at high resolution: living space, energy consumption, energy sources, renewable energy installations	referral to associated web- service: www.wohngebaeude.info
5	Kraftfahrt- Bundesamt (www.kba.de)	data on charging capacity of battery electric vehicles and plug-in hybrid electric vehicles	not available

Table F - Correspondence overview

From: Energieeffizienz-Expertenliste info@energie-effizienz-experten.de

- Subject: RE: WG: Energieverbrauch Haushalte Date: 04. February 2020 at 11:24
 - To: i.schonwandt@stud.uis.no

Sehr geehrter Herr Schönwandt,

vielen Dank für Ihre Nachricht.

Allerdings sind wir nicht die richtige Anlaufstelle. Mein persönlicher Vorschlag ist, dass Sie direkt beim Statistischen Bundesamt (Destatis) nachfragen.

Bei Fragen sind wir gerne für Sie da.

Mit freundlichen Grüßen Ihr Energieeffizienz-Experten-Team i. A. Carolin Müller

Deutsche Energie-Agentur GmbH (dena) Energieeffizienz-Expertenliste für Förderprogramme des Bundes

Chausseestr. 128 a 10115 Berlin Tel: +49 (0)30 66 777 - 222 Fax: +49 (0)30 66 777 - 799 info@energie-effizienz-experten.de www.energie-effizienz-experten.de www.dena.de

Twitter: twitter.com/dena_news

Vertretungsberechtigte Geschäftsführung: Andreas Kuhlmann, Kristina Haverkamp Aufsichtsratsvorsitzender: Thomas Bareiß Registergericht: Amtsgericht Charlottenburg Registernummer: HRB 78 448

Von: "Susever, Soley" (susever@dena.de) Gesendet: 03.02.2020 08:24 An: 'Energieeffizienz-Expertenliste' (info@energie-effizienz-experten.de) Cc: info (info@dena.de) Betreff: WG: Energieverbrauch Haushalte

⁻⁻⁻⁻⁻Ursprüngliche Nachricht----- Von: Ingo Schönwandt [mailto:i.schonwandt@stud.uis.no] Gesendet: Freitag, 31. Januar 2020 18:20 An: info Betreff: Energieverbrauch Haushalte Sehr geehrte Damen und Herren, wo findet man Daten zum Energieverbrauch von Haushalten nach Energieträger auf Kreis- oder Gemeindeebene? Genesis Online stellt keine Daten mit Bezug auf Energie zur Verfügung, sind Sie dafür die richtige Anlaufstelle? Mit freundlichen Grüßen, Ingo Schönwandt

From: Ingo Schönwandt i.schonwandt@stud.uis.no

Subject: Re: Verschiedene Angaben auf regionaler Ebene, Statistisches Bundesamt, GZ 453502 / 648535

Date: 24. February 2020 at 17:06 To: info@destatis.de

Sehr geehrte Frau Haider,

vielen Dank für Ihre Unterstützung! Besonders Ihr letzter Link zur Seite vom Zensus2011 war sehr hilfreich, wenn auch die Daten extrem alt sind.

Die Daten vom Mikrozensus 2018 helfen aufgrund der sehr groben Auflösung da nur bedingt weiter. Eine Hochrechnung auf kleinere geografische Einheiten gibt es nicht, sofern ich Sie richtig verstehe?

Zudem fehlen mir wichtige Anhaltspunkte, die den Gebäudebestand mit dem Energieverbrauch verbinden, wie:

- Gebäudetyp/Wohnungsfläche <-> Energie-Label je Gebäude (gem. europäischer Energy Performance of Buildings Directive (EU/2018/844))
- 2. Gebäudetyp/Wohnungsfläche <-> Nachträgliche Isolationsarbeiten (Fenster, Außenwand, Dachboden, Kellerdecke)
- 3. Gebäudetyp/Wohnungsfläche <-> Energieverbrauch je Energiequelle in kWh/m2
- 4. Gebäude mit erneuerbaren Energieanlagen (Solar PV, Solarthermie, Geothermie, Wärmepumpe, Wind) in Anzahl ~
- 5. Gebäude mit erneuerbaren Energieanlagen (Solar PV, Solarthermie, Geothermie, Wärmepumpe, Wind) in kWpeak
- 6. Produzierte erneuerbare Energie hinterm Zähler in kWh

(Gebäudetyp = Einfamilien-, Reihen-, mehrstöckiges Mehrfamilienhaus, Doppenhaushälfte)

Wissen Sie, ob es Daten in dieser Richtung gibt?

Mit freundlichen Grüßen,

Ingo Schönwandt

On 20. Feb 2020, at 14:23, info@destatis.de wrote:

Statistisches Bundesamt Zentraler Auskunftsdienst

Tel. +49 (0) 611 75 2405 https://www.destatis.de/kontakt

Sehr geehrter Herr Schönwandt,

vielen Dank für Ihre Anfrage vom 4. Februar 2020.

Zunächst möchten wir uns für die verspätete Rückmeldung entschuldigen.

Gerne unterstützen wir Sie bei Ihrer Recherche mit folgenden Informationen:

A) Gebäudebestand auf Landkreisebene

In der "Regionaldatenbank Deutschland" werden im Rahmen der Fortschreibung des Wohngebäude- u. Wohnungsbestandes Angaben zum Bestand an Wohngebäuden und Wohnungen in Wohn- und Nichtwohngebäuden auf Ebene der Kreise und kreisfreien Städte gemacht:

https://www.regionalstatistik.de/genesis/online/logon

Bitte geben Sie in der Suche den Code 31231 ein und wählen die vierte Tabelle aus. Im Tabellenaufbau können Sie nach Jahren und einzelnen Kreisen und kreisfreien Städten auswählen. Bitte bestätigen Sie Ihre Eingaben mit "übernehmen" und rufen anschließend die ausgewählten Daten mit dem Button "Werteabruf" ab. Die angezeigte Datentabelle können Sie sich u.a. im Excel-Format abspeichern.

B) Baujahr, Energiequelle, Größe von Haushalten und Gebäudetyp/Bauart
 In unserer Publikation "Wohnen in Deutschland - Zusatzprogramm des Mikrozensus 2018" finden Sie Angaben zu Baujahr,
 Energieart/Beheizung, der Größe von Haushalten und zu Gebäudetypen bis auf Ebene der Regierungsbezirke:

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/_inhalt.html#sprg233558

Unter 'Publikationen'/'Wohnsituation' finden Sie die Veröffentlichung.

Bitte beachten Sie:

Der Mikrozensus ist eine 1%-Stichprobe der Bevölkerung. Aus Datenschutzgründen (Geheimhaltung) können die Daten jedoch nur bis auf Ebene der sogenannten 'Regionalen Anpassungsschichten' (s. Anlagen) ausgewertet werden.

Des Weiteren finden wir Ihnen die Ergebnisse des Zensus 2011 mit Angaben in tiefer regionaler Gliederung: https://ergebnisse.zensus2011.de/#StaticContent:00,,, https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html?nn=3065474

Bei weiteren Fragen stehen wir Ihnen gern zur Verfügung. Bitte nutzen Sie dafür unser Kontaktformular https://www.destatis.de/kontakt/

Mit freundlichen Grüßen Im Auftrag

Marie-Louise Haider

Zur Beantwortung Ihrer Anfrage haben wir die von Ihnen mitgeteilten personenbezogenen Daten gespeichert. Die Informationen und Hinweise zum Datenschutz nach Art. 13 der Datenschutzgrundverordnung (DS-GVO) finden Sie unter: https://www.destatis.de/DE/Service/Datenschutz/_inhalt.html.

From: Ingo Schönwandt i.schonwandt@stud.uis.no

Subject: Re: Angaben zum Gebäudebestand mit Energieverbrauch, Statistisches Bundesamt, GZ 453502 / 648535 Date: 11. March 2020 at 16:26

To: info@destatis.de

Sehr geehrte Frau Haider,

ganz herzlichen Dank für Ihre Nachforschungen! Auf die AG Energiebilanz und CO2Online war ich auch schon gestoßen, ja. CO2Online hat eventuell Schätzwerte zum Thema Isolierungsstand und Energieeffizienz, konnten mir aber auch noch nichts konkretes schicken.

Vor dem Hintergrund des Klimawandels, der uns ja wohl noch einige Jahrzehnte beschäftigen wird, und aus Sicht der Public Governance, wäre es sicherlich interessant die genannten Indikatoren auch im Zensus mit abzufragen. Besteht das zur Diskussion ähnliche Punkte mit in den Zensus aufzunehmen?

Viele Grüße,

Ingo Schönwandt

On 11. Mar 2020, at 15:34, info@destatis.de wrote:

Statistisches Bundesamt Zentraler Auskunftsdienst

Tel. +49 (0) 611 75 2405 https://www.destatis.de/kontakt

Sehr geehrter Herr Schönwandt,

vielen Dank für Ihre Rückfrage vom 24. Februar 2020.

Bitte beachten Sie im Folgenden unsere Rückmeldungen zu den von Ihnen genannten Fragepunkten:

- Daten des Mikrozensus 2018:

Eine tiefer regionalisierte Auswertung des Mikrozensus als die der regionalen Anpassungsschichten ist aus Datenschutzgründen (Geheimhaltung) leider nicht möglich.

1. Gebäudetyp/Wohnungsfläche <-> Energie-Label je Gebäude (gem. europäischer Energy Performance of Buildings Directive (EU/2018/844))

Die von Ihnen gewünschten Daten liegen im Informationsangebot der amtlichen Statistik nicht vor.

2. Gebäudetyp/Wohnungsfläche <-> Nachträgliche Isolationsarbeiten (Fenster, Außenwand, Dachboden, Kellerdecke)

Die von Ihnen gewünschten Daten liegen im Informationsangebot der amtlichen Statistik nicht vor.

3. Gebäudetyp/Wohnungsfläche <-> Energieverbrauch je Energiequelle in kWh/m2

Die von Ihnen gewünschten Daten liegen im Informationsangebot der amtlichen Statistik nicht vor.

4. Gebäude mit erneuerbaren Energieanlagen (Solar PV, Solarthermie, Geothermie, Wärmepumpe, Wind) in Anzahl ~

In unserer Antwort vom 20. Februar 2020 haben wir auf unsere Publikation des Mikrozensus "Wohnen in Deutschland -Zusatzprogramm des Mikrozensus 2018" verwiesen:

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/_inhalt.html#sprg233558

Hier finden Sie Daten zu verwendeten Energiearten der Beheizung und Warmwasserversorgung.

Weitere Daten hierzu liegen im Informationsangebot der amtlichen Statistik nicht vor.

5. Gebäude mit erneuerbaren Energieanlagen (Solar PV, Solarthermie, Geothermie, Wärmepumpe, Wind) in kWpeak

Die von Ihnen gewünschten Daten liegen im Informationsangebot der amtlichen Statistik nicht vor.

6. Produzierte erneuerbare Energie hinterm Zähler in kWh

Die von Ihnen gewünschten Daten liegen im Informationsangebot der amtlichen Statistik nicht vor.

Gerne möchten wir Sie auf folgende Seiten verweisen:

- AG Energiebilanzen https://ag-energiebilanzen.de/

- co2online https://www.co2online.de/

Bei weiteren Fragen stehen wir Ihnen gern zur Verfügung. Bitte nutzen Sie dafür unser Kontaktformular https://www.destatis.de/kontakt/

Mit freundlichen Grüßen Im Auftrag

.....

Marie-Louise Haider

Zur Beantwortung Ihrer Anfrage haben wir die von Ihnen mitgeteilten personenbezogenen Daten gespeichert. Die Informationen und Hinweise zum Datenschutz nach Art. 13 der Datenschutzgrundverordnung (DS-GVO) finden Sie unter: https://www.destatis.de/DE/Service/Datenschutz/_inhalt.html.

From: Nadine Walikewitz nadine.walikewitz@co2online.de

- Subject: Masterarbeit Energiewende Deutschland Date: 11. February 2020 at 08:30 To: i.schonwandt@stud.uis.no Cc: Sebastian Metzger Sebastian.metzger@CO2Online.de

Sehr geehrter Herr Schönwandt,

vielen Dank für Ihre Anfrage. Wir freuen uns über Ihr Interesse an unseren Daten. Auf der Webseite <u>www.wohngebaeude.info</u> haben wir einen Großteil unserer Datenbank dargestellt. Ich denke Sie können hier einen guten Überblick bekommen, welche Daten wir haben. Unsere Daten stehen leider nur auf PLZ-Ebene zur Verfügung. Bei Rückfragen stehe ich Ihnen gerne zur Verfügung.

Ihre Anfrage:

Sehr geehrter Herr Metzger,

auf Empfehlung von Danny Püschel von der Gebäude-Allianz bzw. dem NABU schreibe ich Ihnen bzgl. meiner Masterarbeit zum Thema Energiewende in Deutschland.

Ich bin Masterstudent an den Universitäten von Stavanger (NO) und Delft (NL) und möchte in meiner Abschlussarbeit untersuchen, welche externen Effekte und systemischen Hindernisse beim Umsetzen der Klimapolitik der Bundesregierung auftreten könnten, um so zu evaluieren in wie weit ihr Maßnahmenpaket robust ist, um die Klimaziele zu erreichen. Die Untersuchung befasst sich speziell mit den Sektoren Personenverkehr und Transport und basiert auf dem Erstellen eines Simulationsmodells der relevanten gesellschaftlichen Aspekte.

Bei diesem Ansatz bin ich auf eine relativ gute Datenlage angewiesen, damit das Gesellschaftssystem auch möglichst getreu nachgebildet werden kann. Bisher verlief meine Datenerhebung jedoch sehr schlecht. Ich suche besonders Daten zum Gebäudebestand auf Landkreisebene (wenn möglich), die Auskunft geben über Aspekte, wie u.a. Energieeffizienz, Baujahr, Energiequelle, Größe von Haushalten, Gebäudetyp/Bauart.

Wären Sie an Findungen von so einer Untersuchung interessiert und hätten Sie eventuell Zugang zu solchen Datensätzen? Alternativ wäre ich auch sehr Dankbar über Hinweise an wen ich mich diesbezüglich noch wenden könnte.

Viele Grüße aus Deft,

Ingo Schönwandt

Viele Grüße,

Nadine Walikewitz

Dr. Nadine Walikewitz Managerin Research

Energiesparmeister – die besten Klimaschutzprojekte an Schulen gesucht! Jetzt bewerben. Gewinnen. Klima schützen. <u>www.energiesparmeister.de</u>

co2online gemeinnützige GmbH Hochkirchstr. 9 10829 Berlin

Geschäftsführerin: Tanja Loitz Amtsgericht Berlin Charlottenburg: HRB 91249 | UStIDNr.: DE233964948

Tel.: +49 (30) 210 21 86- 18 | Fax: +49 (30) 76 76 85 – 11 | E-Mail: nadine.walikewitz@co2online.de

<u>www.co2online.de</u> | <u>www.mein-klimaschutz.de</u> | <u>www.energiesparkonto.de</u> <u>Twitter</u> | <u>Facebook</u> | <u>Instagram</u> | <u>Xing</u> | <u>Newsletter</u> Sehr geehrter Herr Schönwandt,

anbei übersende ich Ihnen mein Antwortschreiben.

Mit freundlichen Grüßen Im Auftrag

Berenice Pickardt

Kraftfahrt-Bundesamt Fahrzeugstatistik 24932 Flensburg

Telefon: 0461 316-1133 Telefax: 0461 316-2833 E-Mail: fahrzeugstatistik@kba.de Internet: www.kba.de

Von: no-reply@kba.de Gesendet: Mittwoch, 11. September 2019 02:48:01 (UTC+01:00) Amsterdam, Berlin, Bern, Rom, Stockholm, Wien An: INFO Betreff: Statistiken_Kraftfahrzeuge

Anrede: Herr Vorname: Ingo Nachname: Schönwandt Firma: PLZ: Wohnort: Strasse und Nr.: Telefon: Telefon: Telefax: E-Mail: i.schonwandt@stud.uis.no Betreff_Text: Statistiken_Kraftfahrzeuge Anliegen: Anregung: Liebes KBA, gerne möchte ich anregen der

Liebes KBA, gerne möchte ich anregen demnächst die Ladekapazität von Elektroautos und relevanten Hybridautos mit in die Bestandsdatenbank aufzunehmen. Elektrisch fahrende Autos haben keinen Hubraum, für ihre Fahrleistung und Attraktivität sind vielmehr die Reichweite ausschlaggebend, repräsentiert durch die Max Ladekapazität. Außerdem sind elektrische Fahrzeuge auch aufgrund ihrer Eigenschaft als mobile Batterien für das Stromnetz relevant. Falls ihr die Ladekapazität bald mit aufnehmt, würde ich mich über eine kurze Benachrichtigung freuen.

Viele Grüße,

Ingo Schönwandt Datenschutz: \$ja

Kraftfahr	t-Bunde	esamt	E-Mail	KBA (D
Kraftfahrt-Bun	de samt • 24932 Fle	i.schonwandt@stud	l.uis.no	
 Herm Ingo Schönwandt			Ihr Zeichen / Ihre Nachr 11.09.2019 Bei Antwort bitte angebe 321-130/8375-19 Ansprechpartner(in): Berenice Pickardt Telefon: 0461 316-1 Telefon: 0461 316-2 E-Mait Fahrzeugstatistik@ Datum: 24. Septem	*n: 133 1833 kba.de
Diesen Kurzbrief üb	ersende ich mit	der Bitte um		
🖾 Kenntnisnahme	🗆 Rückgabe	Preisangebot	🗆 Weiterleitur	ng an:
□ Stellungnahme	Erledigung	weitere Veranlass	ung 🗆	
Prüfung	🗆 Teilnahme	Rücksprache/Ihre	n Anruf 🛛 Anlagen:	
 Kraftfahrt-Bundesa Sie geben Anregur Ich bedanke mich f mit dem Antrieb Ele amtlichen Fahrzeug Zulassungsdokume zur Ladekapazität v derzeit nicht möglic	ich mich für ihre mtes. Für die ve ngen zu den Stat ür Ihre Anregung ektro in den amtl gstatistiken werd enten erstellt, die vird nicht aufgefi h. gen stehe ich Ihr	rzögerte Bearbeitung istiken des Kraftfahrt gen zur Aufnahme de ichen Veröffentlichun len vor allem aufgrun e im Zentralen Fahrze ührt. Aus diesem Gru	gtes Interesse an den S I Ihrer Anfrage bitte ich -Bundesamtes. er Ladekapazität von Pe igen des Kraftfahrt-Bun d der Angaben in den eugregister gespeichert ind ist eine Aufnahme o n gerne auch telefonisc	um Verständnis. ersonenkraftwagen desamtes. Die sind. Die Angabe der Ladekapazität

Dienstsitz: Fördestraße 16 24944 Rensburg

Telefon: 0461 316-0

Telefax: E-Mail: Internet: 0461 316-1650 oder - 1495 kba@kba.de www.kba.de

Konto: Deutsche Bundesbank, Filiale Hamburg IBAN: DE18 2000 0000 0020 0010 96 BIC: MARKDEF 1200

Appendix G - Data collection and sources extract

The following tables constitute a consecutive collection of individual data points and sources index ordered by sector containing a broad overview about data related to energy transition topics. Some data points are more, some less specific to Germany, but some also indicate generally applicable characteristics, such as technology specific energy consumption characteristic values. Highlighted in green are those data points that are actually used to calibrate and validate the model.

Table 1: Building sector

no	sector	data	value	units	source	notes
1	buildings	building stock by age group per building type 1 or 2 family houses constructed before 1918	2200656	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
2	buildings	building stock by age group per building type 1 or 2 family houses constructed before 1918 share of total	0,148	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
3	buildings	building stock by age group per building type 1 or 2 family houses constructed 1918-1948	2045435	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
4	buildings	building stock by age group per building type 1 or 2 family houses constructed 1918-1948 share of total	0,138	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
5	buildings	building stock by age group per building type 1 or 2 family houses constructed 1949-1957	1476720	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
6	buildings	building stock by age group per building type 1 or 2 family houses constructed 1949-1957 share of total	0,099	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
7	buildings	building stock by age group per building type 1 or 2 family houses constructed 1958-1968	2357250	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
8	buildings	building stock by age group per building type 1 or 2 family houses constructed 1958-1968 share of total	0,158	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
9	buildings	building stock by age group per building type 1 or 2 family houses constructed 1969-1978	1940167	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
10	buildings	building stock by age group per building type 1 or 2 family houses constructed 1969-1978 share of total	0,13	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
11	buildings	building stock by age group per building type 1 or 2 family houses constructed 1979-1987	1585337	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
12	buildings	building stock by age group per building type 1 or 2 family houses constructed 1979-1987 share of total	0,107	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
13	buildings	building stock by age group per building type 1 or 2 family houses constructed 1988-1993	777809	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
14	buildings	building stock by age group per building type 1 or 2 family houses constructed 1988-1993 share of total	0,052	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
15	buildings	building stock by age group per building type 1 or 2 family houses constructed 1994-2001	1456447	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
16	buildings	building stock by age group per building type 1 or 2 family houses constructed 1994-2001 share of total	0,098	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
17	buildings	building stock by age group per building type 1 or 2 family houses constructed 2002-2008	1044512	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
18	buildings	building stock by age group per building type 1 or 2 family houses constructed 2002-2008 share of total	0,07	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data

19	buildings	building stock by age group per building type 1 or 2 family houses constructed total	14884333	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
20	buildings	building stock by age group per building type 1 or 2 family houses constructed total share of total	1	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
21	buildings	building stock by age group per building type multifamily houses constructed before 1918	501102	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
22	buildings	building stock by age group per building type multifamily houses constructed before 1918 share of total	0,185	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
23	buildings	building stock by age group per building type multifamily houses constructed 1918-1948	329602	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
24	buildings	building stock by age group per building type multifamily houses constructed 1918-1948 share of total	0,122	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ	better: see Mikrozensus2018! Tabelle_14 data
25	buildings	building stock by age group per building type multifamily houses constructed 1949-1957	318743	amount	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieuerbrauchskenwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
26	buildings	building stock by age group per building type multifamily houses constructed 1949-1957 share of total	0,118	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ isuvrbrauphskenworte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
27	buildings	building stock by age group per building type multifamily houses constructed 1958-1968	455859	amount	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
28	buildings	building stock by age group per building type multifamily houses constructed 1958-1968 share of total	0,168	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
29	buildings	building stock by age group per building type multifamily houses constructed 1969-1978	340280	amount	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
30	buildings	building stock by age group per building type multifamily houses constructed 1969-1978 share of total	0,126	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
31	buildings	building stock by age group per building type multifamily houses constructed 1979-1987	292086	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ	better: see Mikrozensus2018! Tabelle_14 data
32	buildings	building stock by age group per building type multifamily houses constructed 1979-1987 share of total	0,108	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	better: see Mikrozensus2018! Tabelle_14 data
33	buildings	building stock by age group per building type multifamily houses constructed 1988-1993	131304	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
34	buildings	building stock by age group per building type multifamily houses constructed 1988-1993 share of total	0,049	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
35	buildings	building stock by age group per building type multifamily houses constructed 1994-2001	245208	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
36	buildings	building stock by age group per building type multifamily houses constructed 1994-2001 share of total	0,09	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
37	buildings	building stock by age group per building type multifamily houses constructed 2002-2008	92664	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data
38	buildings	building stock by age group per building type multifamily houses constructed 2002-2008 share of total	0,034	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	better: see Mikrozensus2018! Tabelle_14 data

39	buildings	building stock by age group per building type multifamily houses	2706848	amount	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU-	better: see Mikrozensus2018!
		constructed total building stock by age group per			Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/	Tabelle_14 data
40	buildings	building type multifamily houses constructed total share of total	1	1/100	<pre>IWU_ Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/</pre>	Mikrozensus2018! Tabelle_14 data
41	buildings	building stock constructed before 1918 multifamily houses share	0,19	1/100	user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	generated / better: see Mikrozensus2018! Tabelle_14 data
42	buildings	building stock constructed before 1918 1 or 2 family houses share	0,81	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	generated / better: see Mikrozensus2018! Tabelle_14 data
43	buildings	building stock constructed 1918-1948 multifamily houses share	0,14	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ	generated / better: see Mikrozensus2018! Tabelle_14 data
44	buildings	building stock constructed 1918-1948 1 or 2 family houses share	0,86	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
45	buildings	building stock constructed 1949-1957 multifamily houses share	0,18	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
46	buildings	building stock constructed 1949-1957 1 or 2 family houses share	0,82	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ</pre>	generated / better: see Mikrozensus2018! Tabelle 14 data
47	buildings	building stock constructed 1958-1968 multifamily houses share	0,16	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
48	buildings	building stock constructed 1958-1968 1 or 2 family houses share	0,84	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
49	buildings	building stock constructed 1969-1978 multifamily houses share	0,15	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
50	buildings	building stock constructed 1969–1978 1 or 2 family houses share	0,85	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
51	buildings	building stock constructed 1979–1987 multifamily houses share	0,16	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ	generated / better: see Mikrozensus2018! Tabelle_14 data
52	buildings	building stock constructed 1979-1987 1 or 2 family houses share	0,84	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
53	buildings	building stock constructed 1988–1993 multifamily houses share	0,14	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
54	buildings	building stock constructed 1988–1993 1 or 2 family houses share	0,86	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
55	buildings	building stock constructed 1994-2001 multifamily houses share	0,14	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
56	buildings	building stock constructed 1994–2001 1 or 2 family houses share	0,86	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
57	buildings	building stock constructed 2002-2008 multifamily houses share	0,08	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data
58	buildings	building stock constructed 2002-2008 1 or 2 family houses share	0,92	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	generated / better: see Mikrozensus2018! Tabelle_14 data

59	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses before 1918 not modernized energy consumption characteristic value	226,6	kWh/ (m2*a)	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	energy consumption incl. warm water heating
60	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses before 1918 not modernized share of total	0,03	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskens te.pdf</pre>	
61	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses before 1918 little modernized energy consumption characteristic value	197,1	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
62	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses before 1918 little modernized share of total	0,64	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
63	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses before 1918 medium to well modernized energy consumption characteristic value	167,4	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
64	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses before 1918 medium to well modernized share of total	0,33	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energio te.pdf	
65	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1918-1948 not modernized energy consumption characteristic value	237,5	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
66	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1918-1948 not modernized share of total	0,02	1/100	https://www.iwu.de/fileadmin/user_uple energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
67	buildings	modernized share of modernization 2010 by age group 1 or 2 family houses 1918-1948 little modernized energy consumption characteristic value	208,8	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
68	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1918-1948 little modernized share of total	0,67	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energio te.pdf	
69	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1918-1948 medium to well modernized energy consumption characteristic value	175,3	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
70	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1918-1948 medium to well modernized share of total	0,31	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energio te.pdf	
71	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1949-1957 not modernized energy consumption characteristic value	235,2	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
72	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1949-1957 not modernized share of total	0,03	1/100	https://www.iwu.de/fileadmin/user_uple energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
73	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1949-1957 little modernized energy consumption characteristic value	209,8	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
74	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1949-1957 little modernized share of total	0,73	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energio te.pdf	
75	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1949-1957 medium to well modernized energy consumption characteristic value	175,4	k₩h/ (m2*a)	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	energy consumption incl. warm water heating
76	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1949-1957 medium to well modernized share of total	0,24	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energio te.pdf	
77	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1958-1968 not modernized energy consumption characteristic value	231,9	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
78	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1958-1968 not modernized share of total	0,05	1/100	https://www.iwu.de/fileadmin/user_uple energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
79	buildings	modernization share of modernization 2010 by age group 1 or 2 family houses 1958-1968 little modernized energy consumption characteristic value	203,1	kWh/ (m2*a)	<pre>terpui https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	energy consumption incl. warm water heating
80	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1958-1968 little modernized share of total	0,74	1/100	https://www.iwu.de/fileadmin/user_uple energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	

81	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1958-1968 medium to well modernized energy consumption characteristic value	165,3	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
82	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1958-1968 medium to well modernized share of total	0,21	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
83	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1969-1978 not modernized energy consumption characteristic value	213,5	kWh/ (m2*a)	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	energy consumption incl. warm water heating
84	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1969-1978 not modernized share of total	0,11	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi	
85	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1969-1978 little modernized energy consumption	187,6	kWh/ (m2*a)	te.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ	energy consumption incl. warm water heating
86	buildings	characteristic value building stock level of modernization 2010 by age group 1 or 2 family houses 1969-1978 little modernized share of total	0,74	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/user_upl- energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi- te.pdf</pre>	pad/dateien/
87	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1969-1978 medium to well modernized energy consumption characteristic value	154,7	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
88	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1969-1978 medium to well modernized share of total	0,15	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
89	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1979-1987 not modernized energy consumption characteristic value	168,9	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
90	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1979-1987 not modernized share of total	0,29	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
91	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1979-1987 little modernized energy consumption characteristic value	152,9	k₩h/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
92	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1979-1987 little modernized share of total	0,64	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
93	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1979-1987 medium to well modernized energy consumption characteristic value	127,1	kWh/ (m2*a)	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	energy consumption incl. warm water heating
94	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1979-1987 medium to well modernized share of total	0,07	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
95	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1988-1993 not modernized energy consumption characteristic value	148,5	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
96	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1988-1993 not modernized share of total	0,75	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
97	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1988-1993 little modernized energy consumption characteristic value	135,7	kWh/ (m2*a)	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	energy consumption incl. warm water heating
98	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1988-1993 little modernized share of total	0,2	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
99	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1988-1993 medium to well modernized energy consumption characteristic value	111,1	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
100	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1988-1993 medium to well modernized share of total	0,05	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	
101	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1994-2001 not modernized energy consumption characteristic value	116	kWh/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	energy consumption incl. warm water heating
102	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1994-2001 not modernized share of total	0,85	1/100	https://www.iwu.de/fileadmin/user_upl energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energi te.pdf	

103	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1994-2001 little modernized energy consumption	105,8	k₩h/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ	energy consumption incl. warm water heating
104	buildings	characteristic value building stock level of modernization 2010 by age group 1 or 2 family houses 1994-2001 little	0,15	1/100	<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung 2012-05-31 Walberg ARGE Energie</pre>	pad/dateien/
		modernized share of total building stock level of			te.pdf https://www.iwu.de/fileadmin/	energy
105	buildings	modernization 2010 by age group 1 or 2 family houses 1994-2001 medium to well modernized energy consumption characteristic value	0,4242	k₩h/ (m2*a)	user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	consumption incl. warm water heating
106	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 1994-2001 medium	0,004242	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie	
		to well modernized share of total building stock level of modernization 2010 by age group 1		kWh/	<pre>te.pdf https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/</pre>	energy
107	buildings	or 2 family houses 2002-2008 not modernized energy consumption characteristic value	91,8	(m2*a)	IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	consumption incl. warm water heating
108	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 2002-2008 not modernized share of total	0,95	1/100	<pre>https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf</pre>	
109	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 2002-2008 little modernized energy consumption	84,9	k₩h/ (m2*a)	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ	energy consumption incl. warm water heating
		characteristic value building stock level of			<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/user_uplo</pre>	
110	buildings	modernization 2010 by age group 1 or 2 family houses 2002-2008 little modernized share of total	0,05	1/100	<pre>energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf</pre>	
111	buildings	building stock level of modernization 2010 by age group 1 or 2 family houses 2002-2008 medium to well modernized energy	0,4242	kWh/ (m2*a)	<pre>https://www.ivu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ</pre>	energy consumption incl. warm water heating
		consumption characteristic value building stock level of			<pre>ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/user_uplo</pre>	
112	buildings	modernization 2010 by age group 1 or 2 family houses 2002-2008 medium to well modernized share of total	0,004242	1/100	<pre>nttps://www.lwu.de/fileadmin/user_upic energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf</pre>	
113	buildings	building stock insulation standard of 1 or 2 family houses by age group before 1918 wall insulation pre WSchV 1977 share	0,815	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
		building stock insulation standard			https://www.iwu.de/fileadmin/user_uplo	ad/dateien/
114	buildings	of 1 or 2 family houses by age group before 1918 wall insulation post WSchV 1977 1984 share	0,053	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
115	buildings	building stock insulation standard of 1 or 2 family houses by age group before 1918 wall insulation post WSchV 1995 share	0,132	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
116	buildings	building stock insulation standard of 1 or 2 family houses by age group 1918-1948 wall insulation pre WSchV 1977 share	0,789	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
117	buildings	building stock insulation standard of 1 or 2 family houses by age group 1918-1948 wall insulation	0,111	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie	
118	buildings	post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1918-1948 wall insulation	0,1	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung 2012-05-31 Walberg ARGE Energie</pre>	
119	buildings	<pre>post WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age</pre>	0,866	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU-</pre>	
117	Sarrariide	group 1949-1957 wall insulation pre WSchV 1977 share building stock insulation standard	0,000	1,100	Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf https://www.iwu.de/fileadmin/user_uplo	
120	buildings	of 1 or 2 family houses by age group 1949-1957 wall insulation post WSchV 1977 1984 share	0,012	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
121	buildings	building stock insulation standard of 1 or 2 family houses by age group 1949-1957 wall insulation post WSchV 1995 share	0,122	1/100	<pre>https://www.ivu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf</pre>	everbrauchskennwer
122	buildings	building stock insulation standard of 1 or 2 family houses by age group 1958-1968 wall insulation pre WSchV 1977 share	0,876	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
123	buildings	building stock insulation standard of 1 or 2 family houses by age group 1958-1968 wall insulation post WSchV 1977 1984 share	0,022	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf	
124	buildings	building stock insulation standard of 1 or 2 family houses by age group 1958-1968 wall insulation post WSchV 1995 share	0,102	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie	
125	buildings	building stock insulation standard of 1 or 2 family houses by age group 1969-1978 wall insulation pre WSchV 1977 share	0,898	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie te.pdf</pre>	
126	buildings	building stock insulation standard of 1 or 2 family houses by age group 1969-1978 wall insulation	0,021	1/100	https://www.iwu.de/fileadmin/user_uplo energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energie	

		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
127	buildings	of 1 or 2 family houses by age group 1969-1978 wall insulation post WSchV 1995 share	0,081	1/100	energie/Ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
128	buildings	building stock insulation standard of 1 or 2 family houses by age group 1979-1987 wall insulation pre	0	1/100	https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
129	buildings	WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age group 1979-1987 wall insulation	0,95	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
130	buildings	post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1979-1987 wall insulation	0,05	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31 Walberg ARGE Energieverbrauchskennwer
131	buildings	<pre>post WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age</pre>	0	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-</pre>
132	buildings	group 1988-1993 wall insulation pre WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age	0.061	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
132	burrarings	group 1988-1993 wall insulation post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age	0,961		Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
133	buildings	group 1988-1993 wall insulation post WSchV 1995 share building stock insulation standard	0,039	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/
134	buildings	of 1 or 2 family houses by age group before 1918 roof insulation pre WSchV 1977 share building stock insulation standard	0,342	1/100	<pre>energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/</pre>
135	buildings	of 1 or 2 family houses by age group before 1918 roof insulation post WSchV 1977 1984 share	0,434	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
136	buildings	building stock insulation standard of 1 or 2 family houses by age group before 1918 roof insulation post WSchV 1995 share	0,224	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
137	buildings	building stock insulation standard of 1 or 2 family houses by age group 1918-1948 roof insulation pre WSchV 1977 share	0,311	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
138	buildings	building stock insulation standard of 1 or 2 family houses by age group 1918-1948 roof insulation	0,522	1/100	https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
139	buildings	post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1918-1948 roof insulation	0,167	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
140	buildings	<pre>post WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group 1949-1957 roof insulation pre</pre>	0,427	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer</pre>
141	buildings	WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age group 1949-1957 roof insulation	0,427	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31 Walberg ARGE Energieverbrauchskennwer
142	buildings	post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1949-1957 roof insulation	0,146	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
143	buildings	<pre>post WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age</pre>	0,462	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-</pre>
		group 1958-1968 roof insulation pre WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age			Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
144	buildings	group 1958-1968 roof insulation post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family bouces by age	0,402	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ cnergie/aked8/IWU
145	buildings	of 1 or 2 family houses by age group 1958-1968 roof insulation post WSchV 1995 share building stock insulation standard	0,136	1/100	<pre>energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/</pre>
146	buildings	of 1 or 2 family houses by age group 1969-1978 roof insulation pre WSchV 1977 share building stock insulation standard	0,53	1/100	<pre>energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/</pre>
147	buildings	of 1 or 2 family houses by age group 1969-1978 roof insulation post WSchV 1977 1984 share	0,343	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
148	buildings	building stock insulation standard of 1 or 2 family houses by age group 1969-1978 roof insulation post WSchV 1995 share	0,127	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
149	buildings	building stock insulation standard of 1 or 2 family houses by age group 1979-1987 roof insulation pre WSchV 1977 share	0	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
150	buildings	building stock insulation standard of 1 or 2 family houses by age group 1979-1987 roof insulation post WSchV 1977 1984 share	0,825	1/100	https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
151	buildings	building stock insulation standard of 1 or 2 family houses by age group 1979-1987 roof insulation	0,175	1/100	https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1995 share			te.pdf

152	buildings	building stock insulation standard of 1 or 2 family houses by age group 1988-1993 roof insulation pre WSchV 1977 share	0	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.odf</pre>
153	buildings	building stock insulation standard of 1 or 2 family houses by age group 1988-1993 roof insulation	0,874	1/100	https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
154	buildings	post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1988-1993 roof insulation	0,126	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer</pre>
155	buildings	post WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group before 1918 window glazing	0,164	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31 Walberg ARGE Energieverbrauchskennwer
156	buildings	pre WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age	0,678	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
157	-	group before 1918 window glazing post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age		1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
157	buildings	group before 1918 window glazing post WSchV 1995 share building stock insulation standard	0,158	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/
158	buildings	of 1 or 2 family houses by age group 1918-1948 window glazing pre WSchV 1977 share building stock insulation standard	0,183	1/100	<pre>energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/</pre>
159	buildings	of 1 or 2 family houses by age group 1918-1948 window glazing post WSchV 1977 1984 share	0,656	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
160	buildings	building stock insulation standard of 1 or 2 family houses by age group 1918-1948 window glazing post WSchV 1995 share	0,161	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
161	buildings	building stock insulation standard of 1 or 2 family houses by age group 1949-1957 window glazing pre WSchV 1977 share	0,267	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
162	buildings	building stock insulation standard of 1 or 2 family houses by age group 1949-1957 window glazing post WSchV 1977 1984 share	0,604	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
163	buildings	building stock insulation standard of 1 or 2 family houses by age group 1949-1957 window glazing post	0,129	1/100	https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
164	buildings	WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group 1958-1968 window glazing pre	0,355	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
165	buildings	WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age group 1958-1968 window glazing post	0,501	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
166	buildings	WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1958-1968 window glazing post	0,144	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer</pre>
167	buildings	WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group 1969-1978 window glazing pre	0,531	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
168	buildings	WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age group 1969-1978 window glazing post	0,345	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31 Walberg ARGE Energieverbrauchskennwer</pre>
169	buildings	WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1969-1978 window glazing post	0,124	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31 Walberg ARGE Energieverbrauchskennwer</pre>
170	buildings	WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age	0	1/100	te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
	-	group 1979-1987 window glazing pre WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age			Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
171	buildings	group 1979-1987 window glazing post WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age	0,912	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
172	buildings	group 1979-1987 window glazing post WSchV 1995 share building stock insulation standard	0,088	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/
173	buildings	of 1 or 2 family houses by age group 1988-1993 window glazing pre WSchV 1977 share building stock insulation standard	0	1/100	<pre>energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf https://www.iwu.de/fileadmin/user_upload/dateien/</pre>
174	buildings	of 1 or 2 family houses by age group 1988-1993 window glazing post WSchV 1977 1984 share	0,931	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
175	buildings	building stock insulation standard of 1 or 2 family houses by age group 1988-1993 window glazing post WSchV 1995 share	0,069	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>
176	buildings	building stock insulation standard of 1 or 2 family houses by age group before 1918 basement ceiling pre WSchV 1977 share	0,934	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf</pre>

		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
177	buildings	of 1 or 2 family houses by age group before 1918 basement ceiling	0,014	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1977 1984 share			te.pdf
		building stock insulation standard of 1 or 2 family houses by age			https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
178	buildings	group before 1918 basement ceiling	0,052	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1995 share			te.pdf
		building stock insulation standard of 1 or 2 family houses by age			https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
179	buildings	group 1918-1948 basement ceiling	0,944	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		pre WSchV 1977 share			te.pdf
		building stock insulation standard of 1 or 2 family houses by age			https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
180	buildings	group 1918-1948 basement ceiling	0,012	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1977 1984 share			te.pdf
		building stock insulation standard of 1 or 2 family houses by age			https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
181	buildings	group 1918-1948 basement ceiling	0,044	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1995 share			te.pdf
		building stock insulation standard of 1 or 2 family houses by age			https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-
182	buildings	group 1949-1957 basement ceiling	0,951	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		pre WSchV 1977 share			te.pdf
		building stock insulation standard of 1 or 2 family houses by age			<pre>https://www.iwu.de/fileadmin/user_upload/dateien/ energie/ake48/IWU-</pre>
183	buildings	group 1949-1957 basement ceiling	0,01	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1977 1984 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
184	buildings	of 1 or 2 family houses by age group 1949-1957 basement ceiling	0,039	1/100	energie/ake48/IWU- Tagung 2012-05-31 Walberg ARGE Energieverbrauchskennwer
		post WSchV 1995 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
185	buildings	of 1 or 2 family houses by age group 1958-1968 basement ceiling	0,957	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		pre WSchV 1977 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
186	buildings	of 1 or 2 family houses by age group 1958-1968 basement ceiling	0,009	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1977 1984 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
187	buildings	of 1 or 2 family houses by age group 1958-1968 basement ceiling	0,034	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1995 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
188	buildings	of 1 or 2 family houses by age group 1969-1978 basement ceiling	0,969	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		pre WSchV 1977 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
189	buildings	of 1 or 2 family houses by age	0,007	1/100	energie/ake48/IWU-
		group 1969-1978 basement ceiling post WSchV 1977 1984 share			Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
190	buildings	of 1 or 2 family houses by age	0,024	1/100	energie/ake48/IWU-
		group 1969-1978 basement ceiling post WSchV 1995 share			Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
191	buildings	of 1 or 2 family houses by age	0	1/100	energie/ake48/IWU-
		group 1979-1987 basement ceiling pre WSchV 1977 share			Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
192	buildings	of 1 or 2 family houses by age	0,98	1/100	energie/ake48/IWU-
		group 1979-1987 basement ceiling post WSchV 1977 1984 share			Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
193	buildings	of 1 or 2 family houses by age group 1979-1987 basement ceiling	0,02	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		post WSchV 1995 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
194	buildings	of 1 or 2 family houses by age group 1988-1993 basement ceiling	0	1/100	energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer
		pre WSchV 1977 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
195	buildings	of 1 or 2 family houses by age group 1988-1993 basement ceiling	0,985	1/100	energie/ake48/IWU- Tagung 2012-05-31 Walberg ARGE Energieverbrauchskennwer
	-	post WSchV 1977 1984 share			te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
196	buildings	of 1 or 2 family houses by age	0,015	1/100	energie/ake48/IWU-
		group 1988-1993 basement ceiling post WSchV 1995 share			Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
197	buildings	of 1 or 2 family houses by age	0,119	1/100	energie/ake48/IWU-
		group before 1918 heating system pre WSchV 1977 share	.,		Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
198	buildings	of 1 or 2 family houses by age	0,155	1/100	energie/ake48/IWU-
		group before 1918 heating system post WSchV 1977 1984 share	-,100		Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
199	buildings	of 1 or 2 family houses by age	0,726	1/100	energie/ake48/IWU-
		group before 1918 heating system post WSchV 1995 share	0,720	_, 100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
200	buildings	of 1 or 2 family houses by age	0,114	1/100	energie/ake48/IWU-
200	~~~~~	group 1918-1948 heating system pre WSchV 1977 share	0,117	1/100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
		building stock insulation standard			https://www.iwu.de/fileadmin/user_upload/dateien/
201	buildings	of 1 or 2 family houses by age	0,271	1/100	energie/ake48/IWU-
201	Sarrarnys	group 1918-1948 heating system post WSchV 1977 1984 share	0,2,1	1,100	Tagung_2012-05-31_Walberg_ARGE_Energieverbrauchskennwer te.pdf
					co.par

202	buildings	building stock insulation standard of 1 or 2 family houses by age group 1918-1948 heating system post WSchV 1995 share	0,615	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc te.pdf</pre>	
203	buildings	building stock insulation standard of 1 or 2 family houses by age group 1949-1957 heating system pre WSchV 1977 share	0,146	1/100	https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc te.pdf	
204	buildings	building stock insulation standard of 1 or 2 family houses by age group 1949-1957 heating system post WSchV 1977 1984 share	0,321	1/100	<pre>https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc te.pdf</pre>	
205	buildings	building stock insulation standard of 1 or 2 family houses by age group 1949-1957 heating system post	0,533	1/100	https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc	
206	buildings	WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group 1958-1968 heating system pre WSchV 1977 share	0,126	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc te.e.df</pre>	
207	buildings	building stock insulation standard of 1 or 2 family houses by age group 1958-1968 heating system post	0,329	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
208	buildings	WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1958-1968 heating system post	0,545	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
209	buildings	WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group 1969-1978 heating system pre	0,115	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
210	buildings	WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age group 1969-1978 heating system post	0,357	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
211	buildings	WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1969-1978 heating system post	0,528	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
212	buildings	WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group 1979-1987 heating system pre	0	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
213	buildings	WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age group 1979-1987 heating system post	0,516	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
214	buildings	WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1979-1987 heating system post	0,484	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc</pre>	
215	buildings	WSchV 1995 share building stock insulation standard of 1 or 2 family houses by age group 1988-1993 heating system pre	0	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc interface</pre>	
216	buildings	WSchV 1977 share building stock insulation standard of 1 or 2 family houses by age group 1988-1993 heating system post WSchV 1977 1007 charge	0,825	1/100	<pre>te.pdf https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc te.pdf</pre>	
217	buildings	WSchV 1977 1984 share building stock insulation standard of 1 or 2 family houses by age group 1988-1993 heating system post WSchV 1995 share	0,175	1/100	<pre>tepul https://www.iwu.de/fileadmin/user_upload/datei energie/ake48/IWU- Tagung_2012-05-31_Walberg_ARGE_Energieverbrauc te.pdf</pre>	
218	buildings	buildings modernizing activity by owner occupied and private ownership basement ceiling and	0,054	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- equals: moderni	zing min component
219	buildings	walls share of total buildings modernizing activity by owner occupied and private ownership wall insulation share of total	0,099	1/100		zing min component
220	buildings	buildings modernizing activity by owner occupied and private ownership roof insulation share of total	0,201	1/100	https://www.iwu.de/filedmin/ user_upload/dateien/energie/ake48/ equals:	zing 100%
221	buildings	buildings modernizing activity by owner occupied and private ownership window glazing share of total	0,238	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- moderni	zing min component
222	buildings	buildings modernizing activity by owner occupied and private ownership heating system share of total	0,246	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	ng the
223	buildings	buildings modernizing activity by owner occupied and private ownership water heating share of total	0,157	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ heating	ng water system
224	buildings	buildings modernizing activity by owner occupied and private ownership air conditioning share of total	0,005	1/100	ieverbrauchskennwerte.pdf https://www.iwu.de/fileadmin/ equals: user_upload/dateien/energie/ake48/ replaci IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf system	ng or ing air

225	buildings	buildings modernizing activity by commercial housing provider basement ceiling and walls share of total	0,155	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	equals: modernizing min 25% of component
226	buildings	buildings modernizing activity by commercial housing provider wall insulation share of total	0,132	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	equals: modernizing min 25% of component
227	buildings	buildings modernizing activity by commercial housing provider roof insulation share of total	0,274	1/100	<pre>https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf</pre>	equals: modernizing 100% of component
228	buildings	buildings modernizing activity by commercial housing provider window glazing share of total	0,135	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	equals: modernizing min 10% of component
229	buildings	buildings modernizing activity by commercial housing provider heating system share of total	0,164	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWD- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	equals: replacing the heating system
230	buildings	buildings modernizing activity by commercial housing provider water heating share of total	0,119	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWD- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	equals: replacing water heating system
231	buildings	buildings modernizing activity by commercial housing provider air conditioning share of total	0,021	1/100	https://www.iwu.de/fileadmin/ user_upload/dateien/energie/ake48/ IWU- Tagung_2012-05-31_Walberg_ARGE_Energ ieverbrauchskennwerte.pdf	equals: replacing or installing air conditioning system
232	buildings	heating energy demand constructed 1970-1980 yearly avg min	200	kWh/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
233	buildings	heating energy demand constructed 1970-1980 yearly avg max	300	kWh/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
234	buildings	heating energy demand constructed 1980-1990 yearly avg min	125	kWh/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
235	buildings	heating energy demand constructed 1980-1990 yearly avg max	200	k₩h/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
236	buildings	heating energy demand constructed 1990-2000 yearly avg min	90	kWh/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
237	buildings	heating energy demand constructed 1990-2000 yearly avg max	125	k₩h/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
238	buildings	heating energy demand constructed after 2000 yearly avg min	25	kWh/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
239	buildings	heating energy demand constructed after 2000 yearly avg max	90	kWh/ (m2*a)	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
240	buildings	heating energy demand by standard EnEV reference low-energy house max	75	k₩h/ (m2*a)	https://nei-dt.de/fachinformationen/n enev-referenzgebaeude/	eubau-standards/
241	buildings	heating energy demand by standard KfW efficiency house 55 max	58	k₩h/ (m2*a)	https://nei-dt.de/fachinformationen/n enev-referenzgebaeude/	eubau-standards/
242	buildings	heating energy demand by standard 3 liter house max	35	k₩h/ (m2*a)	https://nei-dt.de/fachinformationen/n enev-referenzgebaeude/	eubau-standards/
243	buildings	heating energy demand by standard KfW efficiency house 40 max	24	k₩h/ (m2*a)	https://nei-dt.de/fachinformationen/n enev-referenzgebaeude/	eubau-standards/
244	buildings	heating energy demand by standard passive house max	15	k₩h/ (m2*a)	https://nei-dt.de/fachinformationen/n enev-referenzgebaeude/	eubau-standards/
245	buildings	heating energy demand by standard zero energy house max avg	0	k₩h/ (m2*a)	https://nei-dt.de/fachinformationen/n enev-referenzgebaeude/	eubau-standards/
246	buildings	heating energy demand by standard plus energy house max avg	-1	k₩h/ (m2*a)	https://nei-dt.de/fachinformationen/n enev-referenzgebaeude/	eubau-standards/
247	buildings	EU-EPB directive_NZEB from 1.1.2019 for public buildings	24	k₩h/ (m2*a)	<pre>https://ec.europa.eu/energy/topics/ energy-efficiency/energy-efficient- buildings/energy-performance- buildings-directive_en</pre>	https://energie- m.de/info/ geg-2020.html
248	buildings	EU-EPB directive_NZEB from 1.1.2021 for all	24	kWh/ (m2*a)	https://ec.europa.eu/energy/topics/ energy-efficiency/energy-efficient- buildings/energy-performance- buildings-directive_en	https://energie- m.de/info/ geg-2020.html
249	buildings	housing type relative energy efficiency gallery house	0,4	dml	https://www.effizienzhaus-online.de/w	aermedaemmung
250	buildings	housing type relative energy efficiency townhouse	0,6	dml	https://www.effizienzhaus-online.de/w	aermedaemmung
251	buildings	housing type relative energy efficiency semidetached house	0,8	dml	https://www.effizienzhaus-online.de/w	aermedaemmung
252	buildings	housing type relative energy efficiency detached house	1	dml	https://www.effizienzhaus-online.de/w	aermedaemmung
253	buildings	energy demand characteristic value of buildings 1 dwelling constructed before 1919	247	k₩h/ (m2*a)	Bigalke et al. (2016)	
254	buildings	energy demand characteristic value of buildings 1 dwelling constructed 1919-1948	254	k₩h/ (m2*a)	Bigalke et al. (2016)	

255	buildings	energy demand characteristic value of buildings 1 dwelling constructed	236	kWh/	Bigalke et al. (2016)
256	buildings	1949-1978 energy demand characteristic value of buildings 1 dwelling constructed	175	(m2*a) kWh/	Bigalke et al. (2016)
256	buildings	energy demand characteristic value	1/5	(m2*a)	Bigaike et al. (2010)
257	buildings	of buildings 1 dwelling constructed 1991-2000 energy demand characteristic value	131	kWh/ (m2*a)	Bigalke et al. (2016)
258	buildings	of buildings 1 dwelling constructed 2001-2008	83	kWh/ (m2*a)	Bigalke et al. (2016)
259	buildings	energy demand characteristic value of buildings 1 dwelling constructed 2009-2020	48	k₩h/ (m2*a)	Bigalke et al. (2016)
260	buildings	energy demand characteristic value of buildings 1 dwelling constructed 2021 and later	24	k₩h/ (m2*a)	EU-EPBD + https://nei-dt.de/fachinformationen/neubau- standards/enev-referenzgebaeude/ + https://nei-dt.de/ fachinformationen/neubau-standards/enev- referenzgebaeude/
261	buildings	energy demand characteristic value of buildings 1 dwelling average	190	k₩h/ (m2*a)	Bigalke et al. (2016)
262	buildings	energy demand characteristic value of buildings 2 dwellings constructed before 1919	238	k₩h/ (m2*a)	Bigalke et al. (2016)
263	buildings	energy demand characteristic value of buildings 2 dwellings constructed 1919-1948	236	k₩h/ (m2*a)	Bigalke et al. (2016)
264	buildings	energy demand characteristic value of buildings 2 dwellings constructed 1949-1978	219	kWh/ (m2*a)	Bigalke et al. (2016)
265	buildings	energy demand characteristic value of buildings 2 dwellings constructed 1979-1990	168	kWh/ (m2*a)	Bigalke et al. (2016)
266	buildings	energy demand characteristic value of buildings 2 dwellings constructed 1991-2000	127	k₩h/ (m2*a)	Bigalke et al. (2016)
267	buildings	energy demand characteristic value of buildings 2 dwellings constructed 2001-2008	88	k₩h/ (m2*a)	Bigalke et al. (2016)
268	buildings	energy demand characteristic value of buildings 2 dwellings constructed 2009-2020	46	k₩h/ (m2*a)	Bigalke et al. (2016)
269	buildings	energy demand characteristic value of buildings 2 dwelling constructed 2021 and later	24	k₩h/ (m2*a)	EU-EPBD + https://nei-dt.de/fachinformationen/neubau- standards/enev-referenzgebaeude/ + https://nei-dt.de/ fachinformationen/neubau-standards/enev- referenzgebaeude/
270	buildings	energy demand characteristic value of buildings 2 dwellings average	198	k₩h/ (m2*a)	Bigalke et al. (2016)
271	buildings	energy demand characteristic value of buildings 3-6 dwellings constructed before 1919	212	k₩h/ (m2*a)	Bigalke et al. (2016)
272	buildings	energy demand characteristic value of buildings 3-6 dwellings constructed 1919-1948	211	k₩h/ (m2*a)	Bigalke et al. (2016)
273	buildings	energy demand characteristic value of buildings 3-6 dwellings constructed 1949-1978	192	kWh/ (m2*a)	Bigalke et al. (2016)
274	buildings	energy demand characteristic value of buildings 3-6 dwellings constructed 1979-1990	155	k₩h/ (m2*a)	Bigalke et al. (2016)
275	buildings	energy demand characteristic value of buildings 3-6 dwellings constructed 1991-2000	127	k₩h/ (m2*a)	Bigalke et al. (2016)
276	buildings	energy demand characteristic value of buildings 3-6 dwellings constructed 2001-2008	80	k₩h/ (m2*a)	Bigalke et al. (2016)
277	buildings	energy demand characteristic value of buildings 3-6 dwellings constructed 2009-2020	46	k₩h/ (m2*a)	Bigalke et al. (2016)
278	buildings	energy demand characteristic value of buildings 3-6 dwelling constructed 2021 and later	24	k₩h/ (m2*a)	EU-EPBD + https://nei-dt.de/fachinformationen/neubau- standards/enev-referenzgebaeude/ + https://nei-dt.de/ fachinformationen/neubau-standards/enev- referenzgebaeude/
279	buildings	energy demand characteristic value of buildings 3-6 dwellings average	179	k₩h/ (m2*a)	Bigalke et al. (2016)
280	buildings	energy demand characteristic value of buildings 7-12 dwellings constructed before 1919	182	kWh/ (m2*a)	Bigalke et al. (2016)
281	buildings	energy demand characteristic value of buildings 7-12 dwellings constructed 1919-1948	178	kWh/ (m2*a)	Bigalke et al. (2016)
282	buildings	energy demand characteristic value of buildings 7-12 dwellings constructed 1949-1978	166	k₩h/ (m2*a)	Bigalke et al. (2016)
283	buildings	energy demand characteristic value of buildings 7-12 dwellings constructed 1979-1990	152	kWh/ (m2*a)	Bigalke et al. (2016)
284	buildings	energy demand characteristic value of buildings 7-12 dwellings constructed 1991-2000	114	k₩h/ (m2*a)	Bigalke et al. (2016)
285	buildings	energy demand characteristic value of buildings 7-12 dwellings constructed 2001-2008	76	k₩h/ (m2*a)	Bigalke et al. (2016)
286	buildings	energy demand characteristic value of buildings 7-12 dwellings constructed 2009-2020	53	k₩h/ (m2*a)	Bigalke et al. (2016)

287	buildings	energy demand characteristic value of buildings 7-12 dwelling constructed 2021 and later	24	kWh∕ (m2*a)	EU-EPBD + https://nei-dt.de/fachinform standards/enev-referenzgebaeude/ + htt fachinformationen/neubau-standards/ene referenzgebaeude/	ps://nei-dt.de/
288	buildings	energy demand characteristic value of buildings 7-12 dwellings average	155	k₩h/ (m2*a)	Bigalke et al. (2016)	
289	buildings	energy demand characteristic value of buildings 13 and more dwellings constructed before 1919	169	kWh/ (m2*a)	Bigalke et al. (2016)	
290	buildings	energy demand characteristic value of buildings 13 and more dwellings constructed 1919-1948	153	k₩h/ (m2*a)	Bigalke et al. (2016)	
291	buildings	energy demand characteristic value of buildings 13 and more dwellings constructed 1949-1978	140	k₩h/ (m2*a)	Bigalke et al. (2016)	
292	buildings	energy demand characteristic value of buildings 13 and more dwellings constructed 1979-1990	118	k₩h/ (m2*a)	Bigalke et al. (2016)	
293	buildings	energy demand characteristic value of buildings 13 and more dwellings constructed 1991-2000	101	kWh/ (m2*a)	Bigalke et al. (2016)	
294	buildings	energy demand characteristic value of buildings 13 and more dwellings constructed 2001-2008	69	k₩h/ (m2*a)	Bigalke et al. (2016)	
295	buildings	energy demand characteristic value of buildings 13 and more dwellings	54	kWh/ (m2*a)	Bigalke et al. (2016)	
296	buildings	constructed 2009-2020 energy demand characteristic value of buildings 13 and more dwelling constructed 2021 and later	24	kWh/ (m2*a)	EU-EPBD + https://nei-dt.de/fachinform standards/enev-referenzgebaeude/ + htt fachinformationen/neubau-standards/ene referenzgebaeude/	ps://nei-dt.de/
297	buildings	energy demand characteristic value of buildings 13 and more dwellings average	131	k₩h/ (m2*a)	Bigalke et al. (2016)	
298	buildings	energy demand characteristic value of detached and semidetached houses of heating oil	225	kWh/ (m2*a)	Bigalke et al. (2016)	
299	buildings	energy demand characteristic value of detached and semidetached houses of electricity	198	k₩h/ (m2*a)	Bigalke et al. (2016)	
300	buildings	energy demand characteristic value of detached and semidetached houses of gas	186	k₩h/ (m2*a)	Bigalke et al. (2016)	
301	buildings	energy demand characteristic value of detached and semidetached houses of wood incl pellets	179	k₩h/ (m2*a)	Bigalke et al. (2016)	
302	buildings	energy demand characteristic value of detached and semidetached houses of district heating	142	k₩h/ (m2*a)	Bigalke et al. (2016)	
303	buildings	energy demand characteristic value of detached and semidetached houses of heat pumps	28	k₩h/ (m2*a)	Bigalke et al. (2016)	
304	buildings	energy demand characteristic value of townhouses and gallery flats houses of heating oil	194	k₩h/ (m2*a)	Bigalke et al. (2016)	
305	buildings	energy demand characteristic value of townhouses and gallery flats houses of electricity	145	k₩h/ (m2*a)	Bigalke et al. (2016)	
306	buildings	energy demand characteristic value of townhouses and gallery flats houses of gas	163	k₩h/ (m2*a)	Bigalke et al. (2016)	
307	buildings	energy demand characteristic value of townhouses and gallery flats houses of wood incl pellets	141	kWh/ (m2*a)	Bigalke et al. (2016)	
308	buildings	energy demand characteristic value of townhouses and gallery flats houses of district heating	124	k₩h/ (m2*a)	Bigalke et al. (2016)	
309	buildings	energy demand characteristic value of townhouses and gallery flats houses of heat pumps	30	k₩h/ (m2*a)	Bigalke et al. (2016)	
310	buildings	nouses of neat pumps energy demand actual value of buildings 1 dwelling constructed before 1919	160	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
311	buildings	energy demand actual value of buildings 1 dwelling constructed 1919-1948	163	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
312	buildings	energy demand actual value of buildings 1 dwelling constructed 1949-1978	160	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
313	buildings	energy demand actual value of buildings 1 dwelling constructed 1979-1990	139	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
314	buildings	energy demand actual value of buildings 1 dwelling constructed 1991-2000	114	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
315	buildings	energy demand actual value of buildings 1 dwelling constructed 2001-2008	85	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
316	buildings	energy demand actual value of buildings 1 dwelling constructed	50	kWh/ (m2*a)	Bigalke et al. (2016)	assumption
317	buildings	2009-2020 energy demand actual value of buildings 1 dwelling constructed 2021Later	24	kWh/ (m2*a)	Bigalke et al. (2016)	as per EU directive
318	buildings	2021later energy demand actual value of buildings 1 dwelling average	141	(m2*a)	Bigalke et al. (2016)	IMPORTED
319	buildings	energy demand actual value of buildings 2 dwellings constructed before 1919	152	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED

320	buildings	energy demand actual value of buildings 2 dwellings constructed 1919-1948	149	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
321	buildings	energy demand actual value of buildings 2 dwellings constructed 1949-1978	152	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
322	buildings	energy demand actual value of buildings 2 dwellings constructed 1979-1990	132	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
323	buildings	energy demand actual value of buildings 2 dwellings constructed 1991-2000	109	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
324	buildings	energy demand actual value of buildings 2 dwellings constructed 2001-2008	82	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
325	buildings	energy demand actual value of buildings 2 dwellings constructed 2009-2020	52	k₩h/ (m2*a)	Bigalke et al. (2016)	assumption
326	buildings	energy demand actual value of buildings 2 dwellings constructed 2021later	24	kWh/ (m2*a)	Bigalke et al. (2016)	as per EU directive
327	buildings	energy demand actual value of buildings 2 dwellings average	141	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
328	buildings	energy demand actual value of buildings 3-6 dwellings constructed before 1919	141	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
329	buildings	energy demand actual value of buildings 3-6 dwellings constructed 1919-1948	136	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
330	buildings	energy demand actual value of buildings 3-6 dwellings constructed 1949-1978	137	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
331	buildings	energy demand actual value of buildings 3-6 dwellings constructed 1979-1990	127	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
332	buildings	energy demand actual value of buildings 3-6 dwellings constructed 1991-2000	113	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
333	buildings	energy demand actual value of buildings 3-6 dwellings constructed 2001-2008	86	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
334	buildings	energy demand actual value of buildings 3-6 dwellings constructed 2009-2020	52	k₩h/ (m2*a)	Bigalke et al. (2016)	assumption
335	buildings	energy demand actual value of buildings 3-6 dwellings constructed 2021later	24	k₩h/ (m2*a)	Bigalke et al. (2016)	as per EU directive
336	buildings	energy demand actual value of buildings 3-6 dwellings average	132	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
337	buildings	energy demand actual value of buildings 7-12 dwellings constructed before 1919	129	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
338	buildings	energy demand actual value of buildings 7-12 dwellings constructed 1919-1948	122	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
339	buildings	energy demand actual value of buildings 7-12 dwellings constructed 1949-1978	135	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
340	buildings	energy demand actual value of buildings 7-12 dwellings constructed 1979-1990	152	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
341	buildings	energy demand actual value of buildings 7-12 dwellings constructed 1991-2000	105	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
342	buildings	energy demand actual value of buildings 7-12 dwellings constructed 2001-2008	86	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
343	buildings	energy demand actual value of buildings 7-12 dwellings constructed 2009-2020	63	kWh∕ (m2*a)	Bigalke et al. (2016)	assumption
344	buildings	energy demand actual value of buildings 7-12 dwellings constructed 2021later	24	kWh/ (m2*a)	Bigalke et al. (2016)	as per EU directive
345	buildings	energy demand actual value of buildings 7-12 dwellings average energy demand actual value of	130	kWh∕ (m2*a)	Bigalke et al. (2016)	IMPORTED
346	buildings	buildings 13 and more dwellings constructed before 1919	114	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
347	buildings	energy demand actual value of buildings 13 and more dwellings constructed 1919-1948	113	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
348	buildings	energy demand actual value of buildings 13 and more dwellings constructed 1949-1978	123	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
349	buildings	energy demand actual value of buildings 13 and more dwellings constructed 1979-1990	109	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
350	buildings	energy demand actual value of buildings 13 and more dwellings constructed 1991-2000	98	kWh∕ (m2*a)	Bigalke et al. (2016)	IMPORTED
351	buildings	energy demand actual value of buildings 13 and more dwellings constructed 2001-2008	85	k₩h/ (m2*a)	Bigalke et al. (2016)	IMPORTED
352	buildings	energy demand actual value of buildings 13 and more dwellings constructed 2009-2020	70	k₩h/ (m2*a)	Bigalke et al. (2016)	assumption
353	buildings	energy demand actual value of buildings 13 and more dwellings constructed 2021later	24	k₩h/ (m2*a)	Bigalke et al. (2016)	as per EU directive

354	buildings	energy demand actual value of buildings 13 and more dwellings average	115	kWh/ (m2*a)	Bigalke et al. (2016)	IMPORTED
355	buildings	energy costs 2016 private households space heating	29,6	bn€	Bigalke et al. (2016)	
356	buildings	energy costs 2016 private households hot water	9,4	bn€	Bigalke et al. (2016)	
357	buildings	energy costs 2016 private households lighting	3,2	bn€	Bigalke et al. (2016)	
358	buildings	energy costs 2016 private households air conditioning	0,4242	bn€	Bigalke et al. (2016)	
359	buildings	energy costs 2016 industry space heating	1,9	bn€	Bigalke et al. (2016)	
360	buildings	energy costs 2016 industry hot water	0,6	bn€	Bigalke et al. (2016)	
361	buildings	energy costs 2016 industry lighting	1,4	bn€	Bigalke et al. (2016)	
362	buildings	energy costs 2016 industry air conditioning	0,7	bn€	Bigalke et al. (2016)	
363	buildings	energy costs 2016 trade commerce services space heating	10	bn€	Bigalke et al. (2016)	
364	buildings	energy costs 2016 trade commerce services hot water	1,4	bn€	Bigalke et al. (2016)	
365	buildings	energy costs 2016 trade commerce services lighting	7,4	bn€	Bigalke et al. (2016)	
366	buildings	energy costs 2016 trade commerce services air conditioning	0,5	bn€	Bigalke et al. (2016)	
367	buildings	heating sources of existing buildings with gas share	0,8	1/100	Bigalke et al. (2016)	
368	buildings	heating sources of existing buildings with heating oil share	0,11	1/100	Bigalke et al. (2016)	
369	buildings	heating sources of existing buildings with solar share	0	1/100	Bigalke et al. (2016)	
370	buildings	heating sources of existing buildings with electricity share	0	1/100	Bigalke et al. (2016)	
371	buildings	heating sources of existing buildings with district heating share	0	1/100	Bigalke et al. (2016)	
372	buildings	heating sources of existing buildings with heat pumps share	0,04	1/100	Bigalke et al. (2016)	
373	buildings	heating sources of existing buildings with biomass and others share	0,05	1/100	Bigalke et al. (2016)	
374	buildings	heating sources of new buildings with gas share	0,51	1/100	Bigalke et al. (2016)	
375	buildings	heating sources of new buildings with heating oil share	0,02	1/100	Bigalke et al. (2016)	
376	buildings	heating sources of new buildings with solar share	0,01	1/100	Bigalke et al. (2016)	
377	buildings	heating sources of new buildings with electricity share	0,01	1/100	Bigalke et al. (2016)	
378	buildings	heating sources of new buildings with district heating share	0,08	1/100	Bigalke et al. (2016)	
379	buildings	heating sources of new buildings with heat pumps share	0,3	1/100	Bigalke et al. (2016)	
380	buildings	heating sources of new buildings with biomass and others share	0,07	1/100	Bigalke et al. (2016)	
381	buildings	energy carrier primary source in dwellings gas share	0,49	1/100	Bigalke et al. (2016)	
382	buildings	energy carrier primary source in dwellings heating oil share	0,27	1/100	Bigalke et al. (2016)	
383	buildings	energy carrier primary source in dwellings electricity share	0,03	1/100	Bigalke et al. (2016)	
384	buildings	energy carrier primary source in dwellings district heating share	0,14	1/100	Bigalke et al. (2016)	
385	buildings	energy carrier primary source in dwellings heat pump share	0,02	1/100	Bigalke et al. (2016)	
386	buildings	energy carrier primary source in dwellings others share	0,06	1/100	Bigalke et al. (2016)	
387	buildings	energy efficiency improvement rate average 2005-2008 pa	0,008	1/100	Bigalke et al. (2016)	
388	buildings	energy efficiency improvement target rate pa	0,02	1/100	Bigalke et al. (2016)	
389	buildings	energy efficiency improvement rate 2005-2008 pa detached and semidetached houses wall insulation	0,008	1/100	Bigalke et al. (2016)	
						112/1/0

390	buildings	energy efficiency improvement rate 2005-2008 pa detached and semidetached houses roof insulation	0,015	1/100	Bigalke et al. (2016)
391	buildings	energy efficiency improvement rate 2005-2008 pa detached and semidetached houses floor insulation	0,003	1/100	Bigalke et al. (2016)
392	buildings	energy efficiency improvement rate 2005-2008 pa townhouses and gallery flats wall insulation	0,008	1/100	Bigalke et al. (2016)
393	buildings	energy efficiency improvement rate 2005-2008 pa townhouses and gallery flats roof insulation	0,015	1/100	Bigalke et al. (2016)
394	buildings	energy efficiency improvement rate 2005-2008 pa townhouses and gallery flats floor insulation	0,003	1/100	Bigalke et al. (2016)
395	buildings	window glazing stock 2015 total estimate	605	mio	Bigalke et al. (2016)
396	buildings	window glazing stock 2015 single glazing estimate	19,6	mio	Bigalke et al. (2016)
397	buildings	window glazing stock 2015 single glazing estimate share	0,03	1/100	Bigalke et al. (2016)
398	buildings	window glazing stock 2015 laminated and box windows estimate	44,8	mio	Bigalke et al. (2016)
399	buildings	window glazing stock 2015 laminated and box windows estimate share	0,07	1/100	Bigalke et al. (2016)
400	buildings	window glazing stock 2015 uncoated insulating glas estimate	207,3	mio	Bigalke et al. (2016)
401	buildings	window glazing stock 2015 uncoated insulating glas estimate share	0,34	1/100	Bigalke et al. (2016)
402	buildings	window glazing stock 2015 double glazing low e estimate	284,2	mio	Bigalke et al. (2016)
403	buildings	window glazing stock 2015 double glazing low e estimate share	0,47	1/100	Bigalke et al. (2016)
404	buildings	window glazing stock 2015 triple glazing low e estimate	48,9	mio	Bigalke et al. (2016)
405	buildings	window glazing stock 2015 triple glazing low e estimate share	0,08	1/100	Bigalke et al. (2016)
406	buildings	energy label by consumption classification Aplus min	-9999	k₩h/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
407	buildings	energy label by consumption classification Aplus max	29,99	kWh/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
408	buildings	energy label by consumption classification A min	30	k₩h/ (m2*a)	<pre>https://www.effizienzhaus-online.de/ energieeffizienzklasse</pre>
409	buildings	energy label by consumption classification A max	49,99	k₩h/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
410	buildings	energy label by consumption classification B min	50	k₩h/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
411	buildings	energy label by consumption classification B max	74,99	k₩h/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
412	buildings	energy label by consumption classification C min	75	k₩h/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
413	buildings	energy label by consumption classification C max	99,99	kWh/ (m2*a)	<pre>https://www.effizienzhaus-online.de/ energieeffizienzklasse</pre>
414	buildings	energy label by consumption classification D min	100	kWh/ (m2*a)	<pre>https://www.effizienzhaus-online.de/ energieeffizienzklasse</pre>
415	buildings	energy label by consumption classification D max	129,99	kWh/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
416	buildings	energy label by consumption classification E min	130	kWh/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
417	buildings	energy label by consumption classification E max	159,99	kWh/ (m2*a)	<pre>https://www.effizienzhaus-online.de/ energieeffizienzklasse</pre>
418	buildings	energy label by consumption classification F min	160	kWh/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
419	buildings	energy label by consumption classification F max	199,99	kWh/ (m2*a)	<pre>https://www.effizienzhaus-online.de/ energieeffizienzklasse</pre>
420	buildings	energy label by consumption classification G min	200	kWh/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
421	buildings	energy label by consumption classification G max	249,99	kWh/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
422	buildings	energy label by consumption classification H min	250	k₩h/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
423	buildings	energy label by consumption classification H max	9999	k₩h/ (m2*a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse
424	buildings	energy label by energy costs classification Aplus min	-2	€/ (m2a)	<pre>https://www.effizienzhaus-online.de/ energieeffizienzklasse</pre>

				1		
425	buildings	energy label by energy costs classification Aplus max	2	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
426	buildings	energy label by energy costs classification A	2	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
427	buildings	energy label by energy costs classification B	3	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
428	buildings	energy label by energy costs classification C	4	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
429	buildings	energy label by energy costs classification D	6	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
430	buildings	energy label by energy costs classification E	7	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
431	buildings	energy label by energy costs classification F	9	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
432	buildings	energy label by energy costs classification G	11	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
433	buildings	energy label by energy costs classification H	13	€/ (m2a)	https://www.effizienzhaus-online.de/ energieeffizienzklasse	
434	buildings	window glazing sales volume for new buildings 2015	5,3	mio	Bigalke et al. (2016)	
435	buildings	window glazing sales volume for improving buildings 2015	8,6	mio	Bigalke et al. (2016)	
436	buildings	insulation materials sales volume 2015 total	37402	1000m3	Bigalke et al. (2016)	
437	buildings	insulation materials sales volume 2015 nonresidential buildings	13951	1000m3	Bigalke et al. (2016)	
438	buildings	insulation materials sales volume 2015 residential buildings	23451	1000m3	Bigalke et al. (2016)	
439	buildings	insulation materials sales volume 2015 new buildings	21506	1000m3	Bigalke et al. (2016)	
440	buildings	insulation materials sales volume 2015 existing buildings	15896	1000m3	Bigalke et al. (2016)	
441	buildings	insulation materials sales volume 2015 roof insulation	12492	1000m3	Bigalke et al. (2016)	
442	buildings	insulation materials sales volume 2015 outer wall insulation	12231	1000m3	Bigalke et al. (2016)	
443	buildings	insulation materials sales volume 2015 inner wall insulation	3142	1000m3	Bigalke et al. (2016)	
444	buildings	insulation materials sales volume 2015 floor insulation	4825	1000m3	Bigalke et al. (2016)	
445	buildings	insulation materials sales volume 2015 other insulation	4713	1000m3	Bigalke et al. (2016)	
446	buildings	insulation materials sales volume 2015 fiberglass	6052	1000m3	Bigalke et al. (2016)	
447	buildings	insulation materials sales volume 2015 rockwool	9852	1000m3	Bigalke et al. (2016)	
448	buildings	insulation materials sales volume 2015 expanding polystyrol eps	12156	1000m3	Bigalke et al. (2016)	
449	buildings	insulation materials sales volume 2015 estruding polystyrol xps	3553	1000m3	Bigalke et al. (2016)	
450	buildings	insulation materials sales volume 2015 polyurethan polyisocyanurate pur pir	1608	1000m3	Bigalke et al. (2016)	
451	buildings	insulation materials sales volume 2015 wood	1676	1000m3	Bigalke et al. (2016)	
452	buildings	insulation materials sales volume 2015 others	2506	1000m3	Bigalke et al. (2016)	
453	buildings	dwellings owned by private persons total share	0,585	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
454	buildings	dwellings owned by private persons of which owneroccupied share	0,571	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
455	buildings	dwellings owned by private persons of which rented out share	0,387	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
456	buildings	dwellings owned by private persons of which vacant share	0,042	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
457	buildings	dwellings owned by community association total share	0,221	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!

						minht he double
458	buildings	dwellings owned by community association of which owneroccupied share	0,418	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
459	buildings	dwellings owned by community association of which rented out share	0,55	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
460	buildings	dwellings owned by community association of which vacant share	0,032	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
461	buildings	dwellings owned by private organizations total share	0,078	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
462	buildings	dwellings owned by private organizations of which owneroccupied share	0	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
463	buildings	dwellings owned by private organizations of which rented out share	0,933	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
464	buildings	dwellings owned by private organizations of which vacant share	0,067	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
465	buildings	dwellings owned by housing cooperative total share	0,051	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
466	buildings	dwellings owned by housing cooperative of which owneroccupied share	0	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
467	buildings	dwellings owned by housing cooperative of which rented out share	0,947	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
468	buildings	dwellings owned by housing cooperative of which vacant share	0,053	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
469	buildings	dwellings owned by public organization total share	0,064	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
470	buildings	dwellings owned by public organizations of which owneroccupied share	0	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
471	buildings	dwellings owned by public organizations of which rented out share	0,917	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
472	buildings	dwellings owned by public organizations of which vacant share	0,083	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
473	buildings	dwellings in detached and semidetached houses total share	0,464	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
474	buildings	dwellings in townhouses and gallery flats total share	0,536	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
475	buildings	dwellings in detached and semidetached houses of which owned by private persons share	0,307	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
476	buildings	dwellings in detached and semidetached houses of which owned by community association share	0,351	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
477	buildings	dwellings in detached and semidetached houses of which owned by private organizations share	0,136	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
478	buildings	dwellings in detached and semidetached houses of which owned by housing cooperative share	0,093	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
479	buildings	dwellings in detached and semidetached houses of which owned by public organization share	0,113	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
480	buildings	dwellings in townhouses and gallery flats of which owned by private persons share	0,907	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
481	buildings	dwellings in townhouses and gallery flats of which owned by community association share	0,07	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
482	buildings	dwellings in townhouses and gallery flats of which owned by private organizations share	0,136	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!

483	buildings	dwellings in townhouses and gallery flats of which owned by housing cooperative share	0,003	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
484	buildings	dwellings in townhouses and gallery flats of which owned by public organization share	0,007	1/100	Bigalke et al. (2016)	might be double. see census 2011 and microcensus 2018 data!
485	buildings	energy loss distribution share airing min	0,1	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
486	buildings	energy loss distribution share airing max	0,2	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
487	buildings	energy loss distribution share windows min	0,2	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
488	buildings	energy loss distribution share windows max	0,25	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
489	buildings	energy loss distribution share chimney and heating system min	0,3	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
490	buildings	energy loss distribution share chimney and heating system max	0,35	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
491	buildings	energy loss distribution share floor min	0,05	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
492	buildings	energy loss distribution share floor max	0,1	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
493	buildings	energy loss distribution share roof min	0,15	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
494	buildings	energy loss distribution share roof max	0,2	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
495	buildings	energy loss distribution share wall min	0,2	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
496	buildings	energy loss distribution share wall max	0,25	1/100	BINE Informationsdienst / Energiesparen im Haushalt	FIZ Karlsruhe
497	buildings	energy improvement example single family house potential roof	0,75	1/100	www.bdew.de ("Infografiken Gebäudeted	chnik")
498	buildings	energy improvement example single family house potential wall	0,71	1/100	www.bdew.de ("Infografiken Gebäudeted	chnik")
499	buildings	energy improvement example single family house potential floor	0,59	1/100	www.bdew.de ("Infografiken Gebäudeted	chnik")
500	buildings	energy improvement example single family house potential window	0,47	1/100	www.bdew.de ("Infografiken Gebäudeted	chnik")
501	buildings	glazing completed construction dwelling houses total amount	18649	1	destatis-31121	Anzahl Wohngebäude 2018
502	buildings	completed construction dwelling houses cumulated living area+useful area	32324	1000 m2	destatis-31121	Nutzfläche in Wohngebäuden 2018
503	buildings	completed construction dwelling houses cumulated costs total amount	5374526	1000 EUR	destatis-31121	Veranschlagte Kosten des Bauwerks Wohngebäude 2018
504	buildings	completed construction non- residential buildings total amount	8768	1	destatis-31121	Anzahl Nichtwohngebäude 2018
505	buildings	completed construction non- residential buildings cumulated	26220	1000 m2	destatis-31121	Nutzfläche in Nichtwohngebäude
506	buildings	useful area+living area completed construction non- residential buildings cumulated costs total amount	7938028	1000 EUR	destatis-31121	n 2018 Veranschlagte Kosten des Bauwerks Nichtwohngebäude 2018
507	buildings	completed construction share of dwelling houses by useful area	0,552131	1/100	destatis-31121	2010
508	buildings	wage in main construction trade per hour	21	EUR	destatis: 1020210201015 / Punkt 13.1	
509	buildings	working hours main construction trade per week rounded	40	hours	destatis: 1020210201015 / Punkt 13.1	
510	buildings	main construction trade workforce total	871928	person s	destatis: 1020210201015 / Punkt 15.1	
511	buildings	main construction trade workforce concerned with construction of buildings total	276316	person s	destatis: 1020210201015 / Punkt 15.1	
512	buildings	buildings total main construction trade workforce concerned with construction of	116064	person s	destatis: 1020210201015 / Punkt 15.1	
513	buildings	roads and railways main construction trade workforce concerned with construction of pipeo and purification plants	72106	person s	destatis: 1020210201015 / Punkt 15.1	
514	buildings	pipes and purification plants main construction trade workforce concerned with construction of other civil engineering facilities total	54352	person s	destatis: 1020210201015 / Punkt 15.1	
515	buildings	main construction trade workforce concerned with construction of other civil engineering facilities share watersupply network	1932	person s	destatis: 1020210201015 / Punkt 15.1	
						11//14

516	buildings	main construction trade workforce concerned with demolition works and construction site preparation	39923	person s	destatis: 1020210201015 / Punkt 15.1	
517	buildings	main construction trade workforce concerned with other specialized construction total	313167	person s	destatis: 1020210201015 / Punkt 15.1	
518	buildings	main construction trade workforce concerned with other specialized construction share roofing and carpentry	170466	person s	destatis: 1020210201015 / Punkt 15.1	
519	buildings	main construction trade workforce concerned with other specialized construction share scaffolding	34160	person s	destatis: 1020210201015 / Punkt 15.1	
520	buildings	main construction trade workforce total	1	1/100	destatis: 1020210201015 / Punkt 15.1	
521	buildings	main construction trade workforce concerned with construction of buildings total share	0,317	1/100	destatis: 1020210201015 / Punkt 15.1	
522	buildings	main construction trade workforce concerned with construction of roads and railways share	0,133	1/100	destatis: 1020210201015 / Punkt 15.1	
523	buildings	main construction trade workforce concerned with construction of pipes and purification plants share	0,083	1/100	destatis: 1020210201015 / Punkt 15.1	
524	buildings	main construction trade workforce concerned with construction of other civil engineering facilities total share	0,062	1/100	destatis: 1020210201015 / Punkt 15.1	
525	buildings	main construction trade workforce concerned with demolition works and construction site preparation share	0,046	1/100	destatis: 1020210201015 / Punkt 15.1	
526	buildings	main construction trade workforce concerned with other specialized construction total share	0,359	1/100	destatis: 1020210201015 / Punkt 15.1	
527	buildings	construction work on existing dwelling houses 2018 in sqm of total area	5655	m2	destatis-53111	
528	buildings	upgrade cost roof min	30	EUR/m2	www.energie-fachberater.de	considering the different methods and roof types, mean should be around 70 EUR/m2
529	buildings	upgrade cost roof max	250	EUR/m2	www.energie-fachberater.de	
530	buildings	upgrade cost wall min	80	EUR/m2	www.energie-fachberater.de	
531	buildings	upgrade cost wall max	200	EUR/m2	www.energie-fachberater.de	
532	buildings	upgrade cost glazing min	417	EUR/m2	www.energie-fachberater.de	500 EUR/Stk -> at roughly 1,2sqm for a normal window
533	buildings	upgrade cost glazing max	650	EUR/m2	www.energie-fachberater.de	780 EUR/Stk -> at roughly 1,2sqm for a normal window
534	buildings	upgrade cost floor - basement ceiling insulation min	15	EUR/m2	www.energie-fachberater.de	
535	buildings	upgrade cost floor - basement ceiling insulation max	50	EUR/m2	www.energie-fachberater.de	
536	buildings	upgrade cost heating system old to new gas min	46	EUR/m2	www.energie-fachberater.de	Stückpreis min ca. 6400 inkl. Rohr und Arbeitskosten. avg Preis auf 140sgm angesetzt
537	buildings	upgrade cost heating system old to new gas max	64	EUR/m2	www.energie-fachberater.de	Stückpreis max ca. 9000 inkl. Rohr und Arbeitskosten. avg Preis auf 140sqm angesetzt
538	buildings	upgrade cost electricity storage per kWh	1000	EUR	www.energie-fachberater.de	
539	buildings	upgrade cost electricity storage for 4p hh min	43	EUR/m2	www.energie-fachberater.de	Stückpreis min ca. 6000 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt
540	buildings	upgrade cost electricity storage for 4p hh max	107	EUR/m2	www.energie-fachberater.de	Stückpreis max ca. 15000 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt
541	buildings	addon cost solar thermal system complete for 4p hh min	74	EUR/m2	www.energie-fachberater.de	Stückpreis min ca. 10400 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt
542	buildings	addon cost solar thermal system complete for 4p hh max	93	EUR/m2	www.energie-fachberater.de	Stückpreis max ca. 13000 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt

543	buildings	addon cost solar pv system without storage for 4p hh min	37	EUR/m2	www.energie-fachberater.de	Stückpreis min ca. 5200 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt
544	buildings	addon cost solar pv system without storage for 4p hh max	62	EUR/m2	www.energie-fachberater.de	Stückpreis max ca. 8700 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt
545	buildings	addon cost solar pv system with storage for 4p hh min	57	EUR/m2	www.energie-fachberater.de	Stückpreis min ca. 8000 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt
546	buildings	addon cost solar pv system with storage for 4p hh max	134	EUR/m2	www.energie-fachberater.de	Stückpreis max ca. 18700 inkl. Arbeitskosten. avg Preis auf 140sqm angesetzt
547	buildings	addon solar pv avg energy production factor per sqm	0,11	kWp/m2	http://www.inbalance-energy.co.uk/ar solar_panels_pv_calculator.html and www.solaranlagen-portal.com/photovol	ticles/ https://
548	buildings	addon solar pv fraction of total roof size min	0,1	1/100	own estimate	
549	buildings	addon solar pv fraction of total roof size max	0,3	1/100	own estimate	
550	buildings	addon solar thermal avg potential share of yearly heat water consumption	0,6	1/100	www.energie-fachberater.de	
551	buildings	addon solar thermal avg collector size per 4p hh sqm	6	m2	www.energie-fachberater.de	
552	buildings	upgrade armortization time roof upgrade	7	years	www.energie-fachberater.de	considering armortization of top ceiling is 2-5yrs, pointed roof is 6-16 yrs, flat roof is 5-13yrs
553	buildings	upgrade armortization time wall upgrade	11	years	www.energie-fachberater.de	pre 1978 houses: 4-10yrs with mean 6yrs, 1978-1995 houses: 9-22yrs with mean 15yrs
554	buildings	upgrade armortization time glazing upgrade		years	www.energie-fachberater.de	
555	buildings	upgrade armortization time floor upgrade	6	years	www.energie-fachberater.de	
556	buildings	upgrade armortization time heating system upgrade		years	www.energie-fachberater.de	

Table 1: GHG emissions sector

no	sector	data	value	units	source	notes
557	co2	pellet boiler co2equ emissions	23	g/kWh	https://www.effizienzhaus-online.de/heizung- energietraeger-und-klimabilanz	
558	co2	pellet boiler particles emissions	73	mg/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
559	co2	pellet furnace co2equ emissions	22	g/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
560	co2	pellet furnace particles emissions	116	mg/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
561	co2	woodchips boiler co2equ emissions	28	g/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
562	co2	woodchips boiler particles emissions	76	mg/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
563	co2	firewood boiler co2equ emissions	17	g/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
564	co2	firewood boiler particles emissions	144	mg/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
565	co2	firewood furnace co2equ emissions	26	g/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
566	co2	firewood furnace particles emissions	382	mg/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
567	co2	air heat pump co2equ emissions	201	g/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
568	co2	air heat pump particles emissions	20	mg/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-
569	co2	natural gas boiler co2equ emissions	247	g/kWh	https://www.effizienzhaus-online.de/he energietraeger-und-klimabilanz	eizung-

570	co2	natural gas boiler particles emissions	6	mg/kWh	https://www.effizienzhaus-online.de/h energietraeger-und-klimabilanz	eizung-
571	co2	heating oil co2equ emissions	318	g/kWh	https://www.effizienzhaus-online.de/h energietraeger-und-klimabilanz	eizung-
572	co2	heating oil particles emissions	22	mg/kWh	https://www.effizienzhaus-online.de/heizung- energietraeger-und-klimabilanz	
573	co2	district heating co2equ emissions	311	g/kWh	https://www.effizienzhaus-online.de/heizung- energietraeger-und-klimabilanz	
574	co2	district heating particles emissions	73	mg/kWh	https://www.effizienzhaus-online.de/h energietraeger-und-klimabilanz	eizung-
575	co2	heating energy demand 120m2 living space pa	15000	kWh/a	https://www.polarstern-energie.de/mag heizen-co2-vergleich-von-brennstoffen	
576	co2	electricity mix co2equ emissions	474	g/kWh	https://www.energie-lexikon.info/warm	
577	co2	heating energy demand constructed 1900-1960 yearly mean	160	kWh/ (m2*a)	https://www.enbausa.de/heizung/ aktuelles/artikel/altbauten- brauchen-weniger-energie-als- angenommen-1056.html	note: claim heating energy consumption per m2/construction year is significantly lower than posted by heizung.de
578	co2	heating energy demand constructed 1900-1960 yearly top 10% min	240	kWh/ (m2*a)	https://www.enbausa.de/heizung/ aktuelles/artikel/altbauten- brauchen-weniger-energie-als- angenommen-1056.html	note: claim heating energy consumption per m2/construction year is significantly lower than posted by heizung.de
579	co2	heating energy demand constructed until 1977 small multi-family buildings avg min	140	kWh/ (m2*a)	https://www.enbausa.de/heizung/ aktuelles/artikel/altbauten- brauchen-weniger-energie-als- angenommen-1056.html	note: claim heating energy consumption per m2/construction year is significantly lower than posted by heizung.de
580	co2	heating energy demand constructed until 1977 small multi-family buildings avg max	157	kWh/ (m2*a)	https://www.enbausa.de/heizung/ aktuelles/artikel/altbauten- brauchen-weniger-energie-als- angenommen-1056.html	note: claim heating energy consumption per m2/construction year is significantly lower than posted by heizung.de
581	co2	buildings construction carbon emissions	to complete		https://constructech.com/carbon-emiss construction-materials/	
582	co2	CO2 emissions from plastic production (example UK)	to complete		https://www.statista.com/statistics/4 emissions-from-the-manufacture-of-pla	
583	co2	CEV avg CO2 emissions per km at 4kg CNG/100km	109	g/km	https://www.audi.de/de/brand/de/neuwa	gen/a4/a4-avant-g-
584	co2	ghg emissions public transport (combined direct emissions) per pkm	0,053489	kg/pkm	https://www.umweltbundesamt.de/ themen/verkehr-laerm/ emissionsdaten#verkehrsmittelverglei ch_personenverkehr and https:// www.forschungsinformationssystem.de/ servlet/is/345756/ and https:// www.mobi-wissen.de/Nachhaltigkeit- und-Umweltschutz/Klimaschutz	2018
585	co2	ghg emissions public transport (metro, tram, emissions from energy mix) per pkm	0,058	kg/pkm	https://www.umweltbundesamt.de/ themen/verkehr-laerm/ emissionsdaten#verkehrsmittelverglei ch_personenverkehr	2018
586	co2	ghg emissions public transport (omnibus) per pkm	0,08	kg/pkm	<pre>https://www.umweltbundesamt.de/ themen/verkehr-laerm/ emissionsdaten#verkehrsmittelverglei ch personenverkehr</pre>	2018
587	co2	ghg emissions regional rail (energy mix) per pkm	0,057	kg/pkm	<pre>https://www.umweltbundesamt.de/ themen/verkehr-laerm/ emissionsdaten#verkehrsmittelverglei</pre>	2018
588	co2	ghg emissions long distance coach (omnibus) per pkm	0,029	kg/pkm	<pre>ch_personenverkehr https://www.umweltbundesamt.de/ themen/verkehr-laerm/ emissionsdaten#verkehrsmittelverglei ch_personenverkehr</pre>	2018
589	co2	ghg emissions rail passenger transport (energy mix) per pkm	0,032	kg/pkm	https://www.umweltbundesamt.de/ themen/verkehr-laerm/ emissionsdaten#verkehrsmittelverglei cl_personenverkehr	2018
590	co2	ghg emissions rail passenger transport (long distance 100%REN)	0	kg/pkm	https://inside.bahn.de/bahn-umwelt-gr	ien/
591	co2	per pkm ghg emissions air passenger transport (kerosene) per pkm	0,23	kg/pkm	https://www.umweltbundesamt.de/ themen/verkehr-laerm/ emissionsdaten#verkehrsmittelverglei ch personenverkehr	2018
		CO2 factor direct and indirect			on_personenverkent	

500		CO2 factor direct and indirect	2 150	h= (1	https://www.umweltpakt.bayern.de/energie klima/	
593	co2	emissions upon combustion of 1 liter diesel to kg CO2equ CO2 factor direct and indirect	3,156	kg/l	fachwissen/217/berechnung-co2-emissionen	
594	co2	emissions upon combustion of 1 m3 natural gas (CNG) to kg CO2equ	2,42	kg/m3	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
595	co2	CO2 factor direct and indirect emissions upon combustion of 1 liter auto gas (LPG) to kg CO2equ	1,809	kg/l	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
596	co2	CO2 factor direct and indirect emissions upon combustion of 1 kWh petrol to kg CO2equ	0,33453	kg/kWh	own estimate	
597	co2	CO2 factor direct and indirect emissions upon combustion of 1 kWh diesel to kg CO2equ	0,31879	kg/kWh	own estimate	
598	co2	CO2 factor direct and indirect emissions upon combustion of 1 kWh natural gas (CNG) to kg CO2equ	0,24683	kg/kWh	own estimate	
599	co2	CO2 factor direct and indirect emissions upon combustion of 1 kWh auto gas (LPG) to kg CO2equ	0,26603	kg/kWh	own estimate	
600	co2	CO2 factor gross emissions average from 1 kWh LPG and CNG to kg CO2equ	0,25643	kg/kWh	own estimate	
601	co2	CO2 factor direct and indirect emissions from using 1 kWh of Strom-Mix Deutschland for electricity production	0,501538	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
602	co2	CO2 factor direct and indirect emissions from using 1 kWh of Braunkohle for electricity production	1,059358	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
603	co2	CO2 factor direct and indirect emissions from using 1 kWh of Steinkohle for electricity production	0,953341	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
604	co2	CO2 factor direct and indirect emissions from using 1 kWh of Erdgas for electricity production	0,427771	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
605	co2	CO2 factor direct and indirect emissions from using 1 kWh of Öl for electricity production	0,830026	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
606	co2	CO2 factor direct and indirect emissions from using 1 kWh of Kernenergie for electricity production	0,067787	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
607	co2	CO2 factor direct and indirect emissions from using 1 kWh of Photovoltaik for electricity production	0,06781	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
608	co2	CO2 factor direct and indirect emissions from using 1 kWh of Wind_onshore for electricity production	0,01069	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
609	co2	CO2 factor direct and indirect emissions from using 1 kWh of Wind_offshore for electricity production	0,00618	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
610	co2	CO2 factor direct and indirect emissions from using 1 kWh of Laufwasserkraftwerk for electricity production	0,0027	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
611	co2	CO2 factor direct and indirect emissions from using 1 kWh of Speicherwasserkraftwerk for electricity production	0,02614	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
612	co2	CO2 factor direct and indirect emissions from using 1 kWh of Pumpspeicherkraftwerk for electricity production	0,02614	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
613	co2	CO2 factor direct and indirect emissions from using 1 kWh of Geothermie for electricity production	0,19992	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
614	co2	CO2 factor direct and indirect emissions from using 1 kWh of Biogas average for electricity production	0,292	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
615	co2	CO2 factor direct and indirect emissions from using 1 kWh of Biomethan average for electricity production	0,244	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
616	co2	CO2 factor direct and indirect emissions from using 1 kWh of liquid biomass for electricity production	0,174	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
617	co2	CO2 factor direct and indirect emissions from using 1 kWh of gas from purification plants for electricity production	0,131211	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
618	co2	CO2 factor direct and indirect emissions from using 1 kWh of landfill gas for electricity production	0,131108	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
619	co2	CO2 factor direct and indirect emissions from using 1 kWh of biogenic portion of waste for electricity production	0,00475	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
620	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from coal and oil	0,947575	kg/kWh	own estimate groups made fr above data	:om

						i
621	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from natural gas	0,427771	kg/kWh	own estimate	groups made from above data
622	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from nuclear	0,067787	kg/kWh	own estimate	groups made from above data
623	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from solar PV	0,06781	kg/kWh	own estimate	groups made from above data
624	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from on and offshore wind	0,008435	kg/kWh	own estimate	groups made from above data
625	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from flowing and pumped hydropower	0,018326	kg/kWh	own estimate	groups made from above data
626	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from geothermal	0,19992	kg/kWh	own estimate	groups made from above data
627	co2	CO2 factor summary categories gross emissions from 1 kWh of electricity produced from waste landfill liquid and hard source biogas	0,162844	kg/kWh	own estimate	groups made from above data
628	co2	CO2 factor direct and indirect emissions from using 1 kWh of Wärme-Mix Deutschland for heating	0,28218	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
629	co2	CO2 factor direct and indirect emissions from using 1 kWh of Heizöl for heating	0,31793	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
630	co2	CO2 factor direct and indirect emissions from using 1 kWh of Erdgas for heating	0,24683	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
631	co2	CO2 factor direct and indirect emissions from using 1 kWh of Steinkohle for heating	0,40101	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
632	co2	CO2 factor direct and indirect emissions from using 1 kWh of Braunkohle for heating	0,42791	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
633	co2	CO2 factor direct and indirect emissions from using 1 kWh of Fernwärme for heating	0,3145	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
634	co2	CO2 factor direct and indirect emissions from using 1 kWh of Stromheizung for heating CO2 factor direct and indirect	0,60497	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
635	co2	emissions from using 1 kWh of Scheitholz Holzpellets Hackschnitzel average for heating	0,021	kg/kWh	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
636	co2	CO2 factor direct and indirect emissions from using 1 kWh of solid biomass industry average for heating	0,022	kg∕k₩h	https://www.umweltpakt.bayern.de/energie_klima/ fachwissen/217/berechnung-co2-emissionen	
637	co2	CO2 factor direct and indirect emissions from using 1 kWh of solid biomass heizkraftwerk average for heating	0,032	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
638	co2	CO2 factor direct and indirect emissions from using 1 kWh of liquid biomass average for heating	0,099	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
639	co2	CO2 factor direct and indirect emissions from using 1 kWh of biogas average for heating	0,119	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
640	co2	CO2 factor direct and indirect emissions from using 1 kWh of biomethane average for heating	0,113	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
641	co2	CO2 factor direct and indirect emissions from using 1 kWh of gas from purification plants for heating	0,035	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
642	co2	CO2 factor direct and indirect emissions from using 1 kWh of ladfill gas for heating	0,037	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
643	co2	CO2 factor direct and indirect emissions from using 1 kWh of biogenic portion of waste for heating	0,001	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
644	co2	CO2 factor direct and indirect emissions from using 1 kWh of solarthermal energy average for heating	0,023	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
645	co2	CO2 factor direct and indirect emissions from using 1 kWh of heat pumps average for heating	0,195	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
646	co2	CO2 factor direct and indirect emissions from using 1 kWh of deep geothermal energy for heating	0,037	kg/kWh	https://www.umweltpakt.bayern.de/ener fachwissen/217/berechnung-co2-emissio	
647	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from heating oil	0,31793	kg/kWh	own estimate	groups made from above data
648	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from natural gas	0,24683	kg/kWh	own estimate	groups made from above data
649	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from hard coal and lignite	0,41446	kg/kWh	own estimate	groups made from above data

650	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from district heating	0,3145	kg/kWh	own estimate	groups made from above data
651	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from electricity heating	0,60497	kg/kWh	own estimate	groups made from above data
652	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from wood types	0,021	kg/kWh	own estimate	groups made from above data
653	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from biomass and biogas non wood	0,05725	kg/kWh	own estimate	groups made from above data
654	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from solarthermal	0,023	kg/kWh	own estimate	groups made from above data
655	co2	CO2 factor summary categories gross emissions from 1 kWh of heat produced from geothermal and heat pumps	0,116	kg/kWh	own estimate	groups made from above data
656	co2	CO2 emissions from local bus and rail transport in kg CO2equ per passenger km	0,08	kg/pkm	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
657	co2	CO2 emissions from national bus transport in kg CO2equ per passenger km	0,03	kg/pkm	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
658	co2	CO2 emissions from national rail transport in kg CO2equ per passenger km	0,05	kg/pkm	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
659	co2	CO2 emissions from air transport in kg CO2equ per passenger km	0,27	kg/pkm	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
660	co2	CO2 emissions from cruise ship transport in kg CO2equ per passenger days at sea	280	kg/d	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
661	co2	CO2 emissions from cruise ship transport in kg CO2equ per passenger days at the port	190	kg/d	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
662	co2	CO2 emissions from electricity production given the "Energiemix"	0,401	kg/kWh	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
663	co2	CO2 factor EV emissions from electric charging	0,508	kg/kWh	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
664	co2	CO2 factor heating with wood in kg CO2 equ	0,39	kg/kWh	http://www.klimaneutral-handeln.de/php/kompens- berechnen.php	
665	co2	CO2 factor heating with heating oil in kg CO2 equ	3,17	kg/l	http://www.klimaneutral-handeln.de/php/kompens- berechnen.php	
666	co2	CO2 factor heating with natural gas from m3 in kg CO2 equ	2	kg/m3	http://www.klimaneutral-handeln.de/php/kompens- berechnen.php	
667	co2	CO2 factor heating with natural gas from kWh in kg CO2 equ	0,22	kg/kWh	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
668	co2	CO2 factor heating with hard coal from kg in kg CO2 equ	2,83	kg/kg	http://www.klimaneutral-handeln.de/ph berechnen.php	p/kompens-
669	co2	CO2 factor heating with natural gas from kWh in kg CO2 equ	0,34	kg/kWh	http://www.klimaneutral-handeln.de/ph berechnen.php	
670	co2	CO2 factor heating with lignite briquettes in kg CO2 equ	2,65	kg/kg	http://www.klimaneutral-handeln.de/ph berechnen.php	-
671	co2	CO2 factor heating with district heating in kg CO2 equ	0,12	kg/kWh EUR/	<pre>http://www.klimaneutral-handeln.de/ph berechnen.php https://www.bmwi.de/Redaktion/DE/Pres</pre>	
672	co2	co2 starting price 2021	25	tCO2eq u	2020/20200520-bundeskabinett-beschlie preis.html	sst-hoeheren-co2-
673	co2	co2 price linear increase until 2025	55	EUR/ tCO2eq u	https://www.bmwi.de/Redaktion/DE/Pres 2020/20200520-bundeskabinett-beschlie preis.html	sst-hoeheren-co2-
674	co2	co2 price post 2026 min	55	EUR/ tCO2eq u	https://www.bmwi.de/Redaktion/DE/Pres 2020/20200520-bundeskabinett-beschlie preis.html	sst-hoeheren-co2-
675	co2	co2 price post 2026 max	65	EUR/ tCO2eq u	https://www.bmwi.de/Redaktion/DE/Pres 2020/20200520-bundeskabinett-beschlie preis.html	sst-hoeheren-co2-
676	co2	EU-28 ghg emissions proxy 2018	4.236.27	kt co2 equiva lents	https://www.eea.europa.eu/data-and- maps/data/approximated-estimates- for-greenhouse-gas-emissions-1	https:// www.eea.europa.e u/ds_resolveuid/ 0b654c6dbdd44ed6 a6d07142bd73f275
677	co2	Germany ghg emissions proxy 2018	850.381,	kt co2 equiva lents	https://www.eea.europa.eu/data-and- maps/data/approximated-estimates- for-greenhouse-gas-emissions-1	https:// www.eea.europa.e u/ds_resolveuid/ 0b654c6dbdd44ed6 a6d07142bd73f275
678	co2	EU-27 without UK ghg emissions proxy 2018	3.771.52	kt co2 equiva lents	https://www.eea.europa.eu/data-and- maps/data/approximated-estimates- for-greenhouse-gas-emissions-1	https:// www.eea.europa.e u/ds_resolveuid/ 0b654c6dbdd44ed6 a6d07142bd73f275
679	co2	ghg emissions contribution of Germany to EU-28	0,20	1/100	own estimate	
680	co2	ghg emissions contribution of Germany to EU-27	0,23	1/100	own estimate	

Table 1: Economics data

no	sector	data	value	units	source	notes
681	economics	GDP (PPP) Germany 2019	3435210	millio n EUR	https://appsso.eurostat.ec.europa.eu/nui/show.do? dataset=nama_10_gdp⟨=en	
682	economics	GDP (PPP) EU-28 2019	16452065	millio n EUR	https://appsso.eurostat.ec.europa.eu/nui/show.do? dataset=nama_10_gdp⟨=en	
683	economics	GDP (PPP) EU-27 2019	13928753	millio n EUR	https://appsso.eurostat.ec.europa.eu/r dataset=nama_10_gdp⟨=en	nui/show.do?
684	economics	GDP (PPP) contribution of Germany to EU-28	0,208801	1/100	own estimate	
685	economics	GDP (PPP) contribution of Germany to EU-27	0,246627	1/100	own estimate	

Table 1: Energy data

no	sector	data	value	units	source	notes
686	energy	employment in renewable energy 2016	338600	р	Westermann & Richter (2018)	
687	energy	employment in renewable energy 2015 estimate	328600	р	Westermann & Richter (2018)	
688	energy	employment in renewable energy 2000 estimate	110500	р	Westermann & Richter (2018)	
689	energy	employment in wind energy 2016	160200	р	Westermann & Richter (2018)	
690	energy	employment in wind energy 2016 offshore wind	27000	р	Westermann & Richter (2018)	
691	energy	employment in coal mining 2000	100000	р	Westermann & Richter (2018)	
692	energy	employment in coal mining 2016	10000	р	Westermann & Richter (2018)	
693	energy	energy hard coal primary consumption total	1301	PJ	AGEB annual report 2018	
694	energy	energy hard coal primary consumption power plants	765	РЈ	AGEB annual report 2018	
695	energy	energy hard coal primary consumption steel industry	507	PJ	AGEB annual report 2018	
696	energy	energy hard coal primary consumption heating market	29	PJ	AGEB annual report 2018	
697	energy	energy hard coal net import volume	1266	PJ	AGEB annual report 2018	
698	energy	energy hard coal domestic production volume	76	PJ	AGEB annual report 2018	
699	energy	energy natural gas net import volume	884	TWh	AGEB annual report 2018	total imports less exports and bunkering
700	energy	energy natural gas domestic production volume	61	TWh	AGEB annual report 2018	
701	energy	energy natural gas primary consumption total	945	TWh	AGEB annual report 2018	
702	energy	energy natural gas primary consumption industry	369	TWh	AGEB annual report 2018	
703	energy	energy natural gas primary consumption electricity production	110	TWh	AGEB annual report 2018	supply to power plants incl. CHP
704	energy	energy natural gas primary consumption district heating	67	TWh	AGEB annual report 2018	
705	energy	energy natural gas primary consumption private households	265	TWh	AGEB annual report 2018	
706	energy	energy natural gas primary consumption trade commerce services	114	TWh	AGEB annual report 2018	
707	energy	energy natural gas primary consumption transportation	2	TWh	AGEB annual report 2018	
708	energy	energy natural gas primary consumption selfconsumption losses	18	TWh	AGEB annual report 2018	
709	energy	energy mineral oil primary consumption total	103,3	Mt	AGEB annual report 2018	in million tons
710	energy	energy mineral oil primary consumption total	4443	PJ	AGEB annual report 2018	equals: 103,3 Mt co2 equivalets
711	energy	energy mineral oil primary consumption selfconsumption losses	5,7	Mt	AGEB annual report 2018	in million tons

712	energy	energy mineral oil primary consumption gasoline	18	Mt	AGEB annual report 2018	in million tons
713	energy	energy mineral oil primary consumption diesel fuel	37,5	Mt	AGEB annual report 2018	in million tons
714	energy	energy mineral oil primary consumption aviation fuels	10,2	Mt	AGEB annual report 2018	in million tons
715	energy	energy mineral oil primary consumption fuel oil light	13,3	Mt	AGEB annual report 2018	in million tons
716	energy	energy mineral oil primary consumption fuel oil heavy	2	Mt	AGEB annual report 2018	in million tons
717	energy	energy mineral oil primary consumption naphtha	10,8	Mt	AGEB annual report 2018	in million tons
718	energy	energy mineral oil primary consumption liquid gas	3,6	Mt	AGEB annual report 2018	in million tons
719	energy	energy mineral oil primary consumption lubricants	1	Mt	AGEB annual report 2018	in million tons
720	energy	energy mineral oil primary consumption other products	10,2	Mt	AGEB annual report 2018	in million tons
721	energy	energy lignite domestic production	166,3	Mt	AGEB annual report 2018	in million tons
722	energy	energy lignite domestic production	1495	РЈ	AGEB annual report 2018	
723	energy	energy lignite primary consumption total	1465	PJ	AGEB annual report 2018	
724	energy	energy gross electricity production lignite	114	TWh	ageb-strerz2019_18122019.pdf	
725	energy	energy gross electricity production nuclear energy	75,2	TWh	ageb-strerz2019_18122019.pdf	
726	energy	energy gross electricity production hard coal	56,9	TWh	ageb-strerz2019_18122019.pdf	
727	energy	energy gross electricity production natural gas	91,3	TWh	ageb-strerz2019_18122019.pdf	
728	energy	energy gross electricity production mineral oil	5,2	TWh	ageb-strerz2019_18122019.pdf	
729	energy	energy gross electricity production renewables total	242,6	TWh	ageb-strerz2019_18122019.pdf	
730	energy	energy gross electricity production renewables wind onshore	101,8	TWh	ageb-strerz2019_18122019.pdf	
731	energy	energy gross electricity production renewables wind offshore	24,6	TWh	ageb-strerz2019_18122019.pdf	
732	energy	energy gross electricity production renewables hydropower	18,8	TWh	ageb-strerz2019_18122019.pdf	
733	energy	energy gross electricity production renewables biomass	44,8	TWh	ageb-strerz2019_18122019.pdf	
734	energy	energy gross electricity production renewables photovoltaik	46,7	TWh	ageb-strerz2019_18122019.pdf	
735	energy	energy gross electricity production renewables household waste	5,7	TWh	ageb-strerz2019_18122019.pdf	
736	energy	energy gross electricity production renewables geothermics	0,2	TWh	ageb-strerz2019_18122019.pdf	
737	energy	energy gross electricity production other total	26,3	TWh	ageb-strerz2019_18122019.pdf	
738	energy	energy gross electricity production other pumped hydro storage	5,9	TWh	ageb-strerz2019_18122019.pdf	
739	energy	energy gross electricity production other household waste	6	TWh	ageb-strerz2019_18122019.pdf	
740	energy	energy gross electricity production other industrial waste	0,8	TWh	ageb-strerz2019_18122019.pdf	
741	energy	energy gross electricity production total	611,5	TWh	ageb-strerz2019_18122019.pdf	
742	energy	energy gross electricity production net imports	-36,6	TWh	ageb-strerz2019_18122019.pdf	
743	energy	energy gross electricity production selfconsumption losses	33,5	TWh	AGEB annual report 2018	
744	energy	energy gross electricity production selfconsumption losses share	5,1	1/100	AGEB annual report 2018	
745	energy	energy net domestic electricity volume grid losses	27	TWh	AGEB annual report 2018	
746	energy	energy net electricity consumption total	526	TWh	AGEB annual report 2018	
747	energy	energy net electricity consumption mining manufacturing industries	247,5	TWh	AGEB annual report 2018	
L		1			1	124/140

748	energy	energy net electricity consumption households	127,2	TWh	AGEB annual report 2018	
749	energy	energy net electricity consumption trade commerce services public	140	TWh	AGEB annual report 2018	
750	energy	institutions energy net electricity consumption transportation	11,3	TWh	AGEB annual report 2018	
751	energy	energy renewable energy sources structure waste	6,6	1/100	AGEB annual report 2018	also see countrydata
752	energy	energy renewable energy sources structure biomass	53,6	1/100	AGEB annual report 2018	also see countrydata
753	energy	energy renewable energy sources structure geothermal	3,3	1/100	AGEB annual report 2018	also see countrydata
754	energy	energy renewable energy sources structure solar all	11	1/100	AGEB annual report 2018	also see countrydata
755	energy	energy renewable energy sources structure wind all	22,2	1/100	AGEB annual report 2018	also see countrydata
756	energy	energy renewable energy sources structure hydropower	3,3	1/100	AGEB annual report 2018	also see countrydata
757	energy	biogas (1m3) equals liters of gasfuel	0,6	1/m3	https://www.bio-power.ch/Fachwissen/W steckt-im-BioabfallIJ/PiKne/	ieviel-Energie-
758	energy	biogas (1m3) equals liters of heating oil min	0,6	1/m3	https://www.bio-power.ch/Fachwissen/W steckt-im-BioabfallIJ/PiKne/	ieviel-Energie-
759	energy	biogas (1m3) equals liters of heating oil max	0,65	1/m3	https://www.bio-power.ch/Fachwissen/W steckt-im-BioabfallIJ/PiKne/	ieviel-Energie-
760	energy	biogas energy content	5,8	kWh/m3	https://www.bio-power.ch/Fachwissen/W steckt-im-BioabfallIJ/PiKne/	ieviel-Energie-
761	energy	biogas per ton of liquid manure from cattle and pigs	20	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
762	energy	biogas from liquid manure from cattle and pigs CO2 content	14	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
763	energy	biogas per ton of fruit pomace	130	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	X/
764	energy	biogas from fruit pomace CO2 content	91	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	X/
765	energy	biogas per ton of vegetable waste	55	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	X/
766	energy	biogas from vegetable waste CO2 content	38	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	X/
767	energy	biogas per ton of grass silage	170	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	X/
768	energy	biogas from grass silage CO2 content	119	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	X/
769	energy	biogas per ton of straw from maize and barley	310	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
770	energy	biogas from straw from maize and barley CO2 content	217	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
771	energy	biogas per ton of organic household waste	100	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
772	energy	biogas from organic household waste CO2 content	70	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
773	energy	biogas per ton of fresh pure grass clippings	80	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
774	energy	biogas from fresh pure grass clippings CO2 content	77	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	x/
775	energy	biogas per ton of food waste	150	m3/t	https://www.bio-power.ch/files/4GQ89D biogasertrag_und_co2_anteil.pdf	x/
776	energy	biogas from food waste CO2 content	105	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	х/
777	energy	biogas per ton of old bread	480	m3/t	https://www.bio-power.ch/files/4GQ89D biogasertrag_und_co2_anteil.pdf	x/
778	energy	biogas from old bread CO2 content	336	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	х/
779	energy	biogas per ton of whey	40	m3/t	https://www.bio-power.ch/files/4GQ89D biogasertrag_und_co2_anteil.pdf	x/
780	energy	biogas from whey CO2 content	28	kg/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	х/
781	energy	biogas per ton of cheese waste	670	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	х/
782	energy	biogas from cheese waste CO2 content	469	kg/t	https://www.bio-power.ch/files/4GQ89D biogasertrag_und_co2_anteil.pdf	х/
783	energy	biogas per ton of beer rape	75	m3/t	https://www.bio-power.ch/files/4GQ89E biogasertrag_und_co2_anteil.pdf	X/

784	energy	biogas from beer rape CO2 content	60	kg/t	https://www.bio-power.ch/files/4GQ89DX/ biogasertrag_und_co2_anteil.pdf
785	energy	biogas per ton of baking waste	650	m3/t	https://www.bio-power.ch/files/4GQ89DX/ biogasertrag_und_co2_anteil.pdf
786	energy	biogas from baking waste CO2 content	455	kg/t	https://www.bio-power.ch/files/4GQ89DX/ biogasertrag_und_co2_anteil.pdf
787	energy	biogas per ton of material from grease seperator drained	390	m3/t	https://www.bio-power.ch/files/4GQ89DX/ biogasertrag_und_co2_anteil.pdf
788	energy	biogas from material from grease seperator drained CO2 content	273	kg/t	https://www.bio-power.ch/files/4GQ89DX/ biogasertrag_und_co2_anteil.pdf
789	energy	biogas per ton of old deep-frying fat	870	m3/t	https://www.bio-power.ch/files/4GQ89DX/ biogasertrag_und_co2_anteil.pdf
790	energy	biogas from old deep-frying fat CO2 content	609	kg/t	https://www.bio-power.ch/files/4GQ89DX/ biogasertrag_und_co2_anteil.pdf
791	energy	<pre>solar energy technical potential on buildings (all types but only considering areas with 500kWh/ (m2a) solar exposure)</pre>	800	GWp	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
792	energy	<pre>solar energy feasible potential on buildings (all types but only considering areas with 500kWh/ (m2a) solar exposure) fraction</pre>	0,333	1/100	own estimate
793	energy	solar energy housing buildings fraction of all building types	0,333	1/100	own estimate
794	energy	solar energy feasible potential on housing buildings estimate capacity	88,7112	GWp	own estimate
795	energy	solar energy feasible potential on housing buildings estimate output energy	79,13039	TWh/a	own estimate
796	energy	upgrade solar pv potential on housing buildings in sqm conversion	52753593	m2	own estimate
797	energy	upgrade solar pv expected full load hours per year	892	h/a	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
798	energy	upgrade solar pv avg yearly yield per kWp	950	k₩h/ k₩p	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
799	energy	solar pv energy avg yearly output per sqm	104,5	kWh/m2	own estimate
800	energy	solar pv efficiency over year incl. inverter	0,833	1/100	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
801	energy	solar pv energy output per sqm 2020	150	kWh/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
802	energy	solar pv estimated lifetime	30	a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
803	energy	CO2 equivalents / kWh from solar PV over lifetime	67	g/kWh	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
804	energy	CO2 equivalents / kWh from German electricity mix 2018	474	g/kWh	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
805	energy	electricity consumer price 2019 avg	30,22	ct/kWh	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
806	energy	CO2 certificate price 2015-2019 min	7,5	EUR/ tCO2eq	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur-
807	energy	CO2 certificate price 2015-2019 max	27,5	u EUR/ tCO2eq	<pre>photovoltaik-in-deutschland.pdf https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- beiendischlached.pdf</pre>
808	energy	CO2 certificate price 2019 last	22,5	u EUR/ tCO2eq	photovoltaik-in-deutschland.pdf https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur-
809	energy	GHG estimated real costs (CO2 equ)	180	u EUR/ tCO2eq	<pre>photovoltaik-in-deutschland.pdf https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur-</pre>
810	energy	EEG electricity supply fixed rate payment until end 2020	9,87	u ct/kWh	photovoltaik-in-deutschland.pdf https://www.ise.fraunhofer.de/ content/dam/ise/de/documents/ publications/studies/aktuelle- vereinfacht
811	energy	solar pv yearly required installation rate to reach 400 GWp	12	GWp/a	fakten-zur-photovoltaik-in- deutschland.pdf https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur-
		by 2050 solar pv yearly required installation rate to reach 400 GWp			photovoltaik-in-deutschland.pdf https://www.ise.fraunhofer.de/content/dam/ise/de/
812	energy	by 2050 including replacing 30yr old units solar pv yearly required	13	GWp/a	<pre>documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
813	energy	installation rate to reach 65% REN by 2030 (Koalitionsvertrag2018) min	5	GWp/a	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
814	energy	solar pv yearly required installation rate to reach 65% REN by 2030 (Koalitionsvertrag2018) max	10	GWp/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
	energy	solar pv yearly required installation rate to reach 95GWp	4,5	GWp/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur-

816	energy	solar pv yearly average installation rate 2013-2018	1,8	GWp/a	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
817	energy	solar pv installation rate 2019	3,9	GWp/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
818	energy	solar pv yearly required installation rate to reach 400 GWp by 2050 in energy output	8,916432	TWh/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
819	energy	solar pv yearly required installation rate to reach 400 GWp by 2050 including replacing 30yr old units energy output	9,659468	TWh/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
820	energy	solar pv yearly required installation rate to reach 65% REN by 2030 (Koalitionsvertrag2018) min energy output	3,71518	TWh/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
821	energy	solar pv yearly required installation rate to reach 65% REN by 2030 (Koalitionsvertrag2018) max energy output	7,43036	TWh/a	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
822	energy	solar pv yearly required installation rate to reach 95GWp REN by 2030 (Klimaschutzprogramm2019) min concerne cutout	3,343662	TWh/a	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
823	energy	energy output solar pv yearly average installation rate 2013-2018 energy output	1,337464	TWh/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
824	energy	solar pv installation rate 2019 energy output	2,897840	TWh/a	https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf
825	energy	CEV energy content CNG per kg	13,3	kWh/kg	https://www.fluessiggasl.de/ fluessiggas_umrechnung_kwh_m3_liter_kg/
826	energy	energy consumption public transport total avg per pkm	0,316796	k₩h/ pkm	https://www.forschungsinformationssystem.de/servlet/is/ 343659/ and https://www.sileo-ebus.com/
827	energy	energy consumption public transport bus avg per pkm	0,338888	kWh/ pkm	https://www.forschungsinformationssystem.de/servlet/is/ 343659/
828	energy	energy consumption public transport rail avg per pkm	0,272222	kWh/ pkm	https://www.forschungsinformationssystem.de/servlet/is 343659/
829	energy	energy consumption rail avg per pkm	0,105555	kWh/ pkm	https://www.forschungsinformationssystem.de/servlet/is 342234/ and https:// www.forschungsinformationssystem.de/servlet/is/343659/
830	energy	energy consumption air passenger transport total avg per pkm	0,520504	kWh/ pkm	https://www.forschungsinformationssystem.de/servlet/is 342234/ and https:// www.forschungsinformationssystem.de/servlet/is/343659/
831	energy	energy consumption air passenger transport international avg per pkm	0,4785	kWh/ pkm	https://www.forschungsinformationssystem.de/servlet/is 342234/ and https:// www.forschungsinformationssystem.de/servlet/is/343659/
832	energy	energy consumption air passenger transport inland avg per pkm	0,7656	kWh/ pkm	https://www.forschungsinformationssystem.de/servlet/is, 342234/ and https:// www.forschungsinformationssystem.de/servlet/is/343659/
833	energy	energy consumption bycicle (ebike) avg per pkm	0,007	k₩h/ pkm	<pre>https://www.eradhafen.de/2011/02/wie-viel-energie- verbraucht-ein-elektrofahrrad-was-fur-eine-co2-bilanz- hat-das-fahren/</pre>
834	energy	energy content LPG in calorific value per m3	28,14	k₩h	https://www.fluessiggasl.de/ fluessiggas_umrechnung_kwh_m3_liter_kg/
835	energy	energy content LPG in calorific value kWh/l	7,17	kWh/l	https://www.fluessiggasl.de/ fluessiggas_umrechnung_kwh_m3_liter_kg/
836	energy	energy content of 1 liter petrol fuel	8,6	kWh/l	<pre>https://www.erdgas.info/erdgas-mobil/erdgas-als- kraftstoff/reichweite-von-gas-autos/</pre>
837	energy	energy content of 1 liter diesel fuel	9,9	kWh/l	<pre>https://www.erdgas.info/erdgas-mobil/erdgas-als- kraftstoff/reichweite-von-gas-autos/</pre>
838	energy	energy content of 1 kg CNG fuel	13,3	kWh/kg	<pre>https://www.erdgas.info/erdgas-mobil/erdgas-als- kraftstoff/reichweite-von-gas-autos/</pre>
839	energy	energy content of 1 liter LPG fuel	6,8	kWh/l	https://www.erdgas.info/erdgas-mobil/erdgas-als- kraftstoff/reichweite-von-gas-autos/
840	energy	energy content of 1 liter kerosene Jet A-1	9,57	kWh/l	https://de.wikipedia.org/wiki/Kerosin
841	energy	solar pv installation share of total capacity on prive roof tops max	0,15	1/100	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
842	energy	solar pv installed capacity 2019	49	GWp	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
843	energy	solar pv energy output 2019	46,7	TWh	BSW-Solar
844	energy	solar pv installed systems 2019	1700000	1	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>
845	energy	solar pv installed capacity on private roof tops max estimate	7,35	GWp	own estimate
846	energy	energy consumption private household share heating energy total	0,61	1/100	https://de.wikipedia.org/wiki/Thermische_Solaranlage
847	energy	energy consumption private household share heating energy for warm drinkable water	0,08	1/100	https://de.wikipedia.org/wiki/Thermische_Solaranlage
848	energy	energy consumption private household share heating energy for heating water	0,53	1/100	https://de.wikipedia.org/wiki/Thermische_Solaranlage

849	energy	energy consumption private household share motor vehicles	0,31	1/100	https://de.wikipedia.org/wiki/Thermis	che_Solaranlage
850	energy	energy consumption private household share electricity	0,08	1/100	https://de.wikipedia.org/wiki/Thermis	che_Solaranlage
851	energy	energy consumption private household share heating energy total 2018	0,835	1/100	https://www.umweltbundesamt.de/daten/ konsum/wohnen/energieverbrauch-privat haushalte#hochster-anteil-am-energiev heizen	er-
852	energy	energy consumption private household share heating energy for warm drinkable water 2018	0,159	1/100	https://www.umweltbundesamt.de/daten/ konsum/wohnen/energieverbrauch-privat haushalte#hochster-anteil-am-energiev heizen	er-
853	energy	energy consumption private household share heating energy for heating water 2018	0,676	1/100	<pre>https://www.umweltbundesamt.de/daten/ konsum/wohnen/energieverbrauch-privat haushalte#hochster-anteil-am-energiev heizen</pre>	er-
854	energy	energy consumption private household share electricity 2018	0,165	1/100	<pre>https://www.umweltbundesamt.de/daten/ konsum/wohnen/energieverbrauch-privat haushalte#hochster-anteil-am-energiev heizen</pre>	er-
855	energy	energy for warm water heating of total heating demand fraction	0,131147	1/100	own estimate	
856	energy	energy for household heating of total heating demand fraction	0,868852	1/100	own estimate	
857	energy	energy savings potential of total heating energy of solar thermal for warm water heating	0,078688	1/100	own estimate	
858	energy	solar thermal availability over year min	0,6	1/100	own estimate	
859	energy	solar thermal availability over year max	0,8	1/100	own estimate	
860	energy	solar thermal availability not useful during fraction of the year	0,2	1/100	own estimate	20% summertime no heating need
861	energy	solar thermal coverage intensity during available time	0,8	1/100	own estimate	
862	energy	solar thermal effective use of energy produced fraction min	0,32	1/100	own estimate	
863	energy	solar thermal effective use of energy produced fraction max	0,48	1/100	own estimate	
864	energy	solar thermal effective household heating energy use avg of total production capacity fraction	0,4	1/100	own estimate	most heating need in winter, solar capacity covers 80-60% =70% of the year, 20% of which when no heating need =40-60%. for these assuming an available coverage of 70-80% solar capacity =>30-50% effective use of total available solar thermal energy for heating
865	energy	energy savings potential of total heating energy of solar thermal for household heating	0,347540	1/100	own estimate	
866	energy	total average energy savings potential of total heating energy from solar thermal capacity	0,213114	1/100	own estimate	assuming 50/50 installed systems for warm water and household heating
867	energy	solar thermal avg existing energy reduction potential of total heating energy demand min	0,04	1/100	https://de.wikipedia.org/wiki/Thermis	
868	energy	solar thermal avg possible energy reduction potential of total heating energy demand max	0,4	1/100	https://de.wikipedia.org/wiki/Thermis	che_Solaranlage
869	energy	solar thermal energy contribution 2013	6,8	TWh	https://www.solaranlagen-portal.com/s waerme	olar/solarenergie/
870	energy	solar thermal avg energy yield per sqm installed estimate Germany	566,72	k₩h/ (m2*a)	https://www.paradigma.de/produkte/sol solarkollektoren/	arheizung/
871	energy	solar thermal avg effectively useable energy per sqm installed for heating systems estimate Germany	350,4	k₩h/ (m2*a)	http://hahn-solar.com/solarthermie/	
872	energy	solar thermal heating system avg collector size min	8	m2	https://www.solaranlagen-portal.com/s	olarthermie
873	energy	solar thermal heating system avg collector size max	15	m2	https://www.solaranlagen-portal.com/s	olarthermie
874	energy	solar thermal heating system avg price min	7106	EUR	https://www.solaranlagen-portal.com/s	olarthermie

875	energy	solar thermal heating system avg	9133	EUR	https://www.solaranlagen-portal.com/s	olarthermie
876	energy	price max solar thermal heating system gov	2000	EUR	https://www.solaranlagen-portal.com/s	olarthermie
877	energy	support min solar thermal use water heating	4	m2	https://www.solaranlagen-portal.com/s	olarthermie
878	energy	avg collector size min solar thermal use water heating	6	m2	https://www.solaranlagen-portal.com/solarthermie	
879	energy	avg collector size max solar thermal use water heating	3245	EUR	https://www.solaranlagen-portal.com/s	
		avg price min solar thermal use water heating				
880	energy	avg price max solar thermal use water heating	4795	EUR	https://www.solaranlagen-portal.com/s	
881	energy	gov support min	500	EUR	https://www.solaranlagen-portal.com/s	
882	energy	solar thermal avg useable energy from global radiation	0,5	1/100	https://www.solarthermie.net/wissen/g deutschland	lobalstrahlung-
883	energy	solar thermal avg useable energy from global radiation	350,4	kWh/	http://hahn-solar.com/solarthermie/	
884	energy	solar thermal use water heating effective energy saving factor	0,95	1/100	https://www.solarthermie.net/wissen/ globalstrahlung-deutschland	max production is in summer when less warm water is needed
885	energy	solar thermal heating system effective energy saving factor	0,7	1/100	https://www.solarthermie.net/wissen/ globalstrahlung-deutschland	<pre>max production is in summer when heating is not needed, only warm water use</pre>
886	energy	electricity price 2019	0,3045	EUR/ kWh	https://strom-report.de/strompreise/ strompreisentwicklung/	
887	energy	electricity price composition market price	0,0706	EUR/ kWh	https://strom-report.de/strompreise/s zusammensetzung/	trompreis-
888	energy	electricity price composition taxes	0,16	EUR/ kWh	https://strom-report.de/strompreise/s zusammensetzung/	trompreis-
889	energy	electricity price composition grid and operator costs	0,0739	EUR/ kWh	https://strom-report.de/strompreise/s zusammensetzung/	trompreis-
890	energy	solar pv characteristic yearly operating hours	8760	h/a	https://de.wikipedia.org/wiki/Solarpa	rk_Lieberose
891	energy	coal characteristic yearly full load operating hours	7500	h/a	https://de.wikipedia.org/wiki/Kohlekraftwerk_Moorburg	
892	energy	hydro power run-of-the-river characteristic yearly full load operating hours	8760	h/a	https://de.wikipedia.org/wiki/Staustufe_D%C3%B6rverden	
893	energy	waste incineration characteristic yearly full load operating hours	8000	h/a	https://de.wikipedia.org/wiki/ M%C3%BCllheizkraftwerk_Kempten	
894	energy	policy driven yearly reduction of energy production from nuclear	-37,55	TWh/a	own estimate	
895	energy	policy driven yearly reduction of energy production from nuclear deadline	2022	a	https://www.bundesregierung.de/breg-d bundesregierung-beschliesst-ausstieg- bis-2022-457246	
896	energy	policy driven yearly reduction of energy production from coal	-10,889	TWh/a	own estimate	
897	energy	policy driven yearly reduction of energy production from coal deadline	2038	a	<pre>https://www.faz.net/aktuell/ wirtschaft/klima-energie-und-umwelt/ kohleausstieg-soll-naechste-woche- beschlossen- werden-16830633.html#void</pre>	expected
898	energy	electricity supply growth rate 10yr avg	-0,0006	1/100	AGEB_ausdruck_strerz_abgabe_20200217.	pdf
899	energy	Wind-offshore capacity 2018	6,6	GWp	https://www.windguard.com/publication statistics.html	s-wind-energy-
900	energy	Wind-offshore capacity expected 2020	7,7	GWp	https://www.windguard.com/publication statistics.html	s-wind-energy-
901	energy	Wind-offshore total capacity expected 2025	10	GWp	https://www.windguard.com/publication statistics.html	s-wind-energy-
902	energy	Wind-offshore total capacity expected 2030	15	GWp	https://www.windguard.com/publication statistics.html	s-wind-energy-
903	energy	Wind-offshore total capacity policy target 2030	20	GWp	https://www.bundesrat.de/SharedDocs/T blob=publicationFile&v=1	0/992/erl/31.pdf?
904	energy	Wind-offshore total capacity policy target 2035	30	GWp	https://www.bundesrat.de/bv.html?id=0	212-20
905	energy	Wind-offshore total capacity policy target 2040	40	GWp	https://www.bundesrat.de/SharedDocs/T blob=publicationFile&v=1	0/992/erl/31.pdf?
906	energy	Wind-offshore electricity output 2018	19,3	TWh	https://www.windguard.com/publication statistics.html and https://de.wikipe Offshore-Windpark#Deutschland	
907	energy	Wind-offshore estimated load factor	0,333	1/100	own estimate	
908	energy	Wind-offshore electricity output estimate 2020	22,52	TWh/a	own estimate	

909	energy	Wind-offshore total capacity expected 2025	29,24	TWh/a	own estimate
910	energy	Wind-offshore total capacity expected 2030	43,86	TWh/a	own estimate
911	energy	Wind-offshore total capacity policy target 2030	58,48	TWh/a	own estimate
912	energy	Wind-offshore total capacity policy target 2040	116,97	TWh/a	own estimate
913	energy	Wind-offshore capacity to be built until 2040	87,73	TWh/a	own estimate
914	energy	Wind-offshore capacity to be installed per year until 2040	5,848666	TWh/a	own estimate
915	energy	Wind-onshore capacity 2018	52,9	GWp	<pre>https://www.windguard.com/publications-wind-energy- statistics.html and https://de.wikipedia.org/wiki/ Offshore-Windpark#Deutschland</pre>
916	energy	Wind-onshore capacity 2006	20	GWp	<pre>https://www.windguard.com/publications-wind-energy- statistics.html and https://de.wikipedia.org/wiki/ Offshore-Windpark#Deutschland</pre>
917	energy	Wind-onshore capacity growth estimate p.a.	0,13	1/100	own estimate
918	energy	Wind-onshore electricity output 2018	89,5	TWh	<pre>https://www.windguard.com/publications-wind-energy- statistics.html and https://de.wikipedia.org/wiki/ Offshore-Windpark#Deutschland</pre>
919	energy	Wind-onshore estimated load factor	0,193136	1/100	<pre>https://www.windguard.com/publications-wind-energy- statistics.html and https://de.wikipedia.org/wiki/ Offshore-Windpark#Deutschland</pre>
920	energy	Wind-onshore capacity estimate 2020	114,2825	T₩h	own estimate
921	energy	Wind-offshore lifetime estimate	20	a	<pre>https://www.topagrar.com/energie/news/windkraft- nach-20-jahren-laufzeit-ist-noch-lange-nicht- schluss-9372151.html</pre>
922	energy	Wind-onshore lifetime estimate	20	a	<pre>https://www.topagrar.com/energie/news/windkraft- nach-20-jahren-laufzeit-ist-noch-lange-nicht- schluss-9372151.html</pre>

Table 1: Household data

no	sector	data	value	units	source	notes
923	households	electricity consumption 1 person hh yearly avg min	1000	kWh/a	https://heizung.de/heizung/tipps/der-durchschnittlich energiebedarf-im-haus/	
924	households	electricity consumption 1 person hh yearly avg max	2000	kWh/a	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
925	households	electricity consumption 2 person hh yearly avg min	1500	kWh/a	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
926	households	electricity consumption 2 person hh yearly avg max	3000	kWh/a	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
927	households	electricity consumption 3 person hh yearly avg min	2000	kWh/a	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
928	households	electricity consumption 3 person hh yearly avg max	3500	kWh/a	https://heizung.de/heizung/tipps/der- energiebedarf-im-haus/	durchschnittliche-
929	households	electricity consumption 4 person hh yearly avg min	3000	kWh/a	https://heizung.de/heizung/tipps/der-durchschnittlich energiebedarf-im-haus/	
930	households	electricity consumption 4 person hh yearly avg max	4500	kWh/a	https://heizung.de/heizung/tipps/der-durchschnittlic energiebedarf-im-haus/	
931	households	electricity consumption 5 person hh yearly avg min	4000	kWh/a	<pre>https://heizung.de/heizung/tipps/ der-durchschnittliche-energiebedarf- im-haus/</pre>	own estimate
932	households	electricity consumption 5 person hh yearly avg max	5500	kWh/a	<pre>https://heizung.de/heizung/tipps/ der-durchschnittliche-energiebedarf- im-haus/</pre>	own estimate
933	households	electricity consumption 6 or more person hh yearly avg min	4500	kWh/a	<pre>https://heizung.de/heizung/tipps/ der-durchschnittliche-energiebedarf- im-haus/</pre>	own estimate
934	households	electricity consumption 6 or more person hh yearly avg max	10000	kWh/a	<pre>https://heizung.de/heizung/tipps/ der-durchschnittliche-energiebedarf- im-haus/</pre>	own estimate
935	households	energy final consumption in buildings residential space heating	462	TWh	Westermann & Richter (2018)	1
936	households	energy final consumption in buildings residential hot water	96	TWh	Westermann & Richter (2018)	
937	households	energy final consumption in buildings residential lighting	10	TWh	Westermann & Richter (2018)	
938	households	energy final consumption in buildings residential air conditioning	1	TWh	Westermann & Richter (2018)	
939	households	energy final consumption in buildings residential space heating share	0,811950	1/100	Westermann & Richter (2018)	
940	households	energy final consumption in buildings residential hot water share	0,168717	1/100	Westermann & Richter (2018)	

941	households	energy final consumption in buildings residential lighting share	0,017574	1/100	Westermann & Richter (2018)
942	households	energy final consumption in buildings residential air conditioning share	0,001757	1/100	Westermann & Richter (2018)
943	households	energy final consumption in buildings non residential space heating	245	TWh	Westermann & Richter (2018)
944	households	energy final consumption in buildings non residential hot water	23	TWh	Westermann & Richter (2018)
945	households	energy final consumption in buildings non residential lighting	62	TWh	Westermann & Richter (2018)
946	households	energy final consumption in buildings non residential air conditioning	9	TWh	Westermann & Richter (2018)
947	households	energy final consumption in buildings non residential space heating share	0,722713	1/100	Westermann & Richter (2018)
948	households	energy final consumption in buildings non residential hot water share	0,067846	1/100	Westermann & Richter (2018)
949	households	energy final consumption in buildings non residential lighting share	0,182890	1/100	Westermann & Richter (2018)
950	households	energy final consumption in buildings non residential air conditioning share	0,026548	1/100	Westermann & Richter (2018)
951	households	energy final consumption by sector private households	665	TWh	Westermann & Richter (2018)
952	households	energy final consumption by sector trade commerce services	411	TWh	Westermann & Richter (2018)
953	households	energy final consumption by sector transport	749	TWh	Westermann & Richter (2018)
954	households	energy final consumption by sector industry	717	TWh	Westermann & Richter (2018)
955	households	energy final consumption total	2542	TWh	Westermann & Richter (2018)
956	households	energy final consumption by energy source electricity total	0,21	1/100	Westermann & Richter (2018)
957	households	energy final consumption by energy source electricity from coal	0,09	1/100	Westermann & Richter (2018)
958	households	energy final consumption by energy source electricity from renewables	0,06	1/100	Westermann & Richter (2018)
959	households	energy final consumption by energy source electricity from nuclear	0,03	1/100	Westermann & Richter (2018)
960	households	energy final consumption by energy source electricity from gas	0,02	1/100	Westermann & Richter (2018)
961	households	energy final consumption by energy source electricity from oil	0,002	1/100	Westermann & Richter (2018)
962	households	energy final consumption by energy source electricity from others	0,01	1/100	Westermann & Richter (2018)
963	households	energy final consumption by energy source gas total	0,26	1/100	Westermann & Richter (2018)
964	households	energy final consumption by energy source district heating total	0,04	1/100	Westermann & Richter (2018)
965	households	energy final consumption by energy source oil incl fuels total	0,07	1/100	Westermann & Richter (2018)
966	households	energy final consumption by energy source coal total	0,05	1/100	Westermann & Richter (2018)
967	households	energy final consumption by energy source fuel total	0,29	1/100	Westermann & Richter (2018)
968	households	energy final consumption by energy source renewables total	0,07	1/100	Westermann & Richter (2018)
969	households	energy final consumption by energy source other total	0,01	1/100	Westermann & Richter (2018)
970	households	final energy consumption by all private households combined by area of use space heating	464	TWh	ageb_anteile-anwendungsbereiche-am-eev- ph_2019-10-10.xlsx
971	households	final energy consumption by all private households combined by area of use warm water	103	TWh	ageb_anteile-anwendungsbereiche-am-eev- ph_2019-10-10.xlsx
972	households	final energy consumption by all private households combined by area of use other process heat	40	TWh	ageb_anteile-anwendungsbereiche-am-eev- ph_2019-10-10.xlsx
973	households	final energy consumption by all private households combined by area of use climate cooling	1	T₩h	ageb_anteile-anwendungsbereiche-am-eev- ph_2019-10-10.xlsx
974	households	final energy consumption by all private households combined by area of use other process cooling	29	TWh	ageb_anteile-anwendungsbereiche-am-eev- ph_2019-10-10.xlsx
975	households	final energy consumption by all private households combined by area of use mechanical energy	6	TWh	ageb_anteile-anwendungsbereiche-am-eev- ph_2019-10-10.xlsx

976	households	final energy consumption by all private households combined by area of use information and communication technology	22	TWh	ageb_anteile-anwendungsbereiche-am-ee ph_2019-10-10.xlsx	V-
977	households	final energy consumption by all private households combined by area of use lighting	10	TWh	ageb_anteile-anwendungsbereiche-am-eev- ph_2019-10-10.xlsx	
978	households	final energy consumption by all private households combined by area of use total	675	TWh	ageb_anteile-anwendungsbereiche-am-ee ph_2019-10-10.xlsx	v-
979	households	final energy consumption by all private households combined by energy source lignite and hard coal	6	TWh	ageb_entwicklung-eev-ph_2019-10-10.xl	sx
980	households	final energy consumption by all private households combined by energy source mineral oil	132	TWh	ageb_entwicklung-eev-ph_2019-10-10.xlsx	
981	households	final energy consumption by all private households combined by energy source gas	247	TWh	ageb_entwicklung-eev-ph_2019-10-10.xl	sx
982	households	final energy consumption by all private households combined by energy source electricity incl REN	128	TWh	ageb_entwicklung-eev-ph_2019-10-10.xl	sx
983	households	final energy consumption by all private households combined by energy source district heating incl REN	52	TWh	ageb_entwicklung-eev-ph_2019-10-10.xl	sx
984	households	final energy consumption by all private households combined by energy source renewable heat from biomass waste solarthermal and envrironmental heat	86	TWh	ageb_entwicklung-eev-ph_2019-10-10.xl	sx
985	households	final energy consumption by all private households combined by energy source other energy sources	0	TWh	ageb_entwicklung-eev-ph_2019-10-10.xl	sx
986	households	final energy consumption by all private households combined by energy source total	651	TWh	ageb_entwicklung-eev-ph_2019-10-10.xl	sx
987	households	residual household reproduction rate	0,003	1/100	own estimate	
988	households	avg yearly investment share of total income into sustainability improvement on buildings and cars	0,025	1/100	own estimate	source: interviews

Table 1: Workforce data

no	sector	data	value	units	source	notes
989	workforce	labor force craftsmen total number of workers	5218897	1	destatis-53111	Insgesamt
990	workforce	labor force craftsmen in main construction trade total number of workers	727929	1	destatis-53111	Bauhauptgewerbe
991	workforce	labor force craftsmen in main construction trade masons and concrete workers	372028	1	destatis-53111	Maurer und Betonbauer
992	workforce	labor force craftsmen in main construction trade carpenters	89038	1	destatis-53111	Zimmerer
993	workforce	labor force craftsmen in main construction trade roofers	94631	1	destatis-53111	Dachdecker
994	workforce	labor force craftsmen in main construction trade road builders	123020	1	destatis-53111	Straßenbauer
995	workforce	labor force craftsmen in main construction trade heat cold and sound insulation workers	13105	1	destatis-53111	Wärme-, Kälte- und Schallschutzisol ierer
996	workforce	labor force craftsmen in main construction trade well builders	4953	1	destatis-53111	Brunnenbauer
997	workforce	labor force craftsmen in main construction trade scafforders	27766	1	destatis-53111	Gerüstbauer
998	workforce	labor force craftsmen in main construction trade concrete block and terrazzo builders	3388	1	destatis-53111	Betonstein- und Terrazzoherstell er
999	workforce	labor force craftsmen in finishing trade total number of workers	1465916	1	destatis-53111	Ausbaugewerbe
1000	workforce	labor force craftsmen in finishing trade stove and air heating builders	7722	1	destatis-53111	Ofen- und Luftheizungsbaue r
1001	workforce	labor force craftsmen in finishing trade plasterers	30886	1	destatis-53111	Stuckateure
1002	workforce	labor force craftsmen in finishing trade painters and varnishers	207575	1	destatis-53111	Maler und Lackierer
1003	workforce	labor force craftsmen in finishing trade tinsmiths	23999	1	destatis-53111	Klempner
1004	workforce	labor force craftsmen in finishing trade plumbers and heating engineers	327340	1	destatis-53111	Installateur und Heizungsbauer

1005	workforce	labor force craftsmen in finishing trade electrical engineers	445803	1	destatis-53111	Elektrotechniker
1006	workforce	labor force craftsmen in finishing trade joiners	200352	1	destatis-53111	Tischler
1007	workforce	labor force craftsmen in finishing trade glaziers	23390	1	destatis-53111	Glaser
1008	workforce	labor force craftsmen in finishing trade floor tilers	98892	1	destatis-53111	Fliesen-, Platten- und Mosaikleger
1009	workforce	labor force craftsmen in finishing trade composition floor layers	17467	1	destatis-53111	Estrichleger
1010	workforce	labor force craftsmen in finishing trade parquet layers	15175	1	destatis-53111	Parkettleger
1011	workforce	labor force craftsmen in finishing trade roller blinds and sun shutter technicians	17477	1	destatis-53111	Rollladen- und Sonnenschutztech niker
1012	workforce	labor force craftsmen in finishing trade interior decorators	49838	1	destatis-53111	Raumausstatter
1013	workforce	workforce demand for yearly new installed solar PV capacity (10GW)	70000	1	<pre>https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/aktuelle-fakten-zur- photovoltaik-in-deutschland.pdf</pre>	
1014	workforce	workforce solar pv sector 2018	24000	1	https://www.ise.fraunhofer.de/conten documents/publications/studies/aktue photovoltaik-in-deutschland.pdf	
1015	workforce	workforce lignite mining 2015	21000	1	https://www.ise.fraunhofer.de/conten documents/publications/studies/aktue photovoltaik-in-deutschland.pdf	

Table 1: Land-use and land-use change data

no	sector	data	value	units	source	notes
1016	LULUC	landuse total area	35737700	ha	www.bfn.de	2014
1017	LULUC	landuse agriculture incl peat and heath	18460700	ha	www.bfn.de	2014
1018	LULUC	landuse agriculture incl peat and heath share	0,5166	1/100	www.bfn.de	2014
1019	LULUC	landuse forest woodland	10930600	ha	www.bfn.de	2014
1020	LULUC	landuse forest woodland share	0,3059	1/100	www.bfn.de	2014
1021	LULUC	landuse built environment buildings	2502600	ha	www.bfn.de	2014
1022	LULUC	landuse built environment buildings share	0,07	1/100	www.bfn.de	2014
1023	LULUC	landuse built environment infrastructure	1807100	ha	www.bfn.de	2014
1024	LULUC	landuse built environment infrastructure share	0,0506	1/100	www.bfn.de	2014
1025	LULUC	landuse inland waters	847700	ha	www.bfn.de	2014
1026	LULUC	landuse inland waters share	0,0237	1/100	www.bfn.de	2014
1027	LULUC	landuse cemeteries wasteland and other	485000	ha	www.bfn.de	2014
1028	LULUC	landuse cemeteries wasteland and other share	0,0136	1/100	www.bfn.de	2014
1029	LULUC	landuse recreational areas	439700	ha	www.bfn.de	2014
1030	LULUC	landuse recreational areas share	0,0123	1/100	www.bfn.de	2014
1031	LULUC	landuse industrial and mining land	264300	ha	www.bfn.de	2014
1032	LULUC	landuse industrial and mining land share	0,0074	1/100	www.bfn.de	2014
1033	LULUC	landuse change avg p day built environment buildings	23,6	ha/d	www.bfn.de	2010-2013
1034	LULUC	landuse change avg p day recreational areas	22,9	ha/d	www.bfn.de	2010-2013
1035	LULUC	landuse change avg p day built environment infrastructure	16,7	ha/d	www.bfn.de	2010-2013
1036	LULUC	landuse change avg p day industrial land	9,3	ha/d	www.bfn.de	2010-2013
1037	LULUC	landuse marginal costs of land and maintenance for ha of urban green	238000	€/ha	www.bfn.de	2014

1038	LULUC	landuse marginal lost social benefit of living spance for ha of urban green	450000	€/ha	www.bfn.de	2014
1039	LULUC	landuse marginal social value for ha of urban green	1049000	€/ha	www.bfn.de	2014

Table 1: Population data

no	sector	data	value	units	source	notes
1040	population	population Germany 2019	83019213	person s	https://ec.europa.eu/eurostat/databrow tps00001/default/table?lang=en	wser/view/
1041	population	population EU-28 2019	51347167	person s	https://ec.europa.eu/eurostat/databrow tps00001/default/table?lang=en	wser/view/
1042	population	population EU-27 2019	44682456	person s	https://ec.europa.eu/eurostat/databrow tps00001/default/table?lang=en	wser/view/
1043	population	population contribution of Germany to EU-28	0,161682	1/100	own estimate	
1044	population	population contribution of Germany to EU-27	0,185798	1/100	own estimate	
1045	population	birth rates per woman 2018	1,57	1	Destatis	
1046	population	birth rates per woman 2019	1,54	1	Destatis	
1047	population	birth rate absolute 2018	787523	1	Destatis	
1048	population	birth rate absolute 2019	778100	1	Destatis	
1049	population	maturity time until founding household	25	a	own estimate	average age when children leave parents' household

Table 1: Transportation data

no	sector	data	value	units	source	notes
1050	transporta tion	local traffic min	0	km	https://de.wikipedia.org/wiki/G%C3%BC	cerverkehr
1051	transporta tion	local traffic max	50	km	https://de.wikipedia.org/wiki/G%C3%BC	cerverkehr
1052	transporta tion	regional traffic min	51	km	https://de.wikipedia.org/wiki/G%C3%BC	zerverkehr
1053	transporta tion	regional traffic max	150	km	https://de.wikipedia.org/wiki/G%C3%BC	zerverkehr
1054	transporta tion	longdistance traffic min	151	km	https://de.wikipedia.org/wiki/G%C3%BC	zerverkehr
1055	transporta tion	rail cargo volume of goods current max	1800	t	https://de.wikipedia.org/wiki/Schiener	ng%C3%BCterverkehr
1056	transporta tion	rail cargo volume of goods planned max	3600	t	https://de.wikipedia.org/wiki/Schiener	ng%C3%BCterverkehr
1057	transporta tion	inland waterway transport of goods volume min	300	t	https://de.wikipedia.org/wiki/Binnenso	chifffahrt
1058	transporta tion	inland waterway transport of goods volume max	10000	t	https://de.wikipedia.org/wiki/Schubboo	ot
1059	transporta tion	trucking cargo volume current max	40	t	https://de.wikipedia.org/wiki/EuroCom	pi
1060	transporta tion	trucking cargo volume planned max	60	t	https://de.wikipedia.org/wiki/EuroCom	pi
1061	transporta tion	car new registrations 2010-2018 mean	0,021549	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	Likationen/G/
1062	transporta tion	car new registrations 2010-2018 min	-0,042	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1063	transporta tion	car new registrations 2010-2018 max	0,088	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	Likationen/G/
1064	transporta tion	passenger km 2018 total mobility	1,25736E	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	Likationen/G/
1065	transporta tion	passenger km 2018 total assisted mobility (excl. walking)	1,22146E	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	Likationen/G/
1066	transporta tion	passenger km 2018 over land total	1,11176E	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	Likationen/G/

1067	transporta tion	passenger km 2018 over land motorized individual transport	9,348E+1	pkm	https://www.bmvi.de/SharedDocs/DE/ Publikationen/G/verkehr-in- zahlen-2019-pdf.html	page 218
1068	transporta tion	passenger km 2018 over land public transport	78890000	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1069	transporta tion	passenger km 2018 over land rail	98070000	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1070	transporta tion	passenger km 2018 air travel total	70400000	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1071	transporta tion	passenger km 2018 air travel inland	10300000	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1072	transporta tion	passenger km 2018 bycicle	39300000	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1073	transporta tion	passenger km 2018 walking	35900000	pkm	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1074	transporta tion	passenger km 2018 over land total share of assisted mobility	0,910189	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1075	transporta tion	passenger km 2018 over land motorized individual transport share of assisted mobility	0,765313	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1076	transporta tion	passenger km 2018 over land public transport share of assisted mobility	0,064586	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1077	transporta tion	passenger km 2018 over land rail share of assisted mobility	0,080289	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1078	transporta tion	passenger km 2018 air travel total share of assisted mobility	0,057635	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1079	transporta tion	passenger km 2018 air travel inland share of assisted mobility	0,008432	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1080	transporta tion	passenger km 2018 bycicle share of assisted mobility	0,032174	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1081	transporta tion	passenger km mean growth 2010-2018	0,00727	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1082	transporta tion	passenger km min growth 2010-2018	-0,02	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1083	transporta tion	passenger km max growth 2010-2018	0,02	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1084	transporta tion	number of passengers 2018 over land total	66650000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1085	transporta tion	number of passengers 2018 over land motorized individual transport	54160000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1086	transporta tion	number of passengers 2018 over land public transport	96200000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1087	transporta tion	number of passengers 2018 over land rail	28700000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1088	transporta tion	number of passengers 2018 air travel total	22260000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1089	transporta tion	number of passengers 2018 air travel inland	23500000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1090	transporta tion	number of passengers 2018 bycicle	9879000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1091	transporta tion	number of passengers 2018 walking	21590000	person s	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1092	transporta tion	total passenger km 2017	6,30E+11	pkm	<pre>https://www.ise.fraunhofer.de/content documents/publications/studies/aktuel photovoltaik-in-deutschland.pdf</pre>	
1093	transporta tion	total passenger km 2015	9,58E+11	pkm	https://www.adac.de/_mmm/pdf/ statistik_zahlen_fakten_wissen_1016_2	08844.pdf
1094	transporta tion	total vehicle km of automobiles 2015	7,57E+11	vkm	https://www.adac.de/_mmm/pdf/ statistik_zahlen_fakten_wissen_1016_2	08844.pdf
1095	transporta tion	total vehicle km of automobiles 2015	6,19E+11	vkm	<pre>https://www.kba.de/DE/Statistik/ Kraftverkehr/VerkehrKilometer/ vk_inlaenderfahrleistung/ vk_inlaenderfahrleistung_inhalt.html 2nn=2351604</pre>	alternative
1096	transporta tion	total vehicle km of automobiles 2016	6,26E+11	vkm	<pre>?nn=2351604 https://www.kba.de/DE/Statistik/ Kraftverkehr/VerkehrKilometer/ vk_inlaenderfahrleistung/ vk_inlaenderfahrleistung_inhalt.html ?nn=2351604</pre>	alternative
1097	transporta tion	total vehicle km of automobiles 2017	6,31E+11	vkm	<pre>https://www.kba.de/DE/Statistik/ Kraftverkehr/VerkehrKilometer/ vk_inlaenderfahrleistung/ vk_inlaenderfahrleistung_inhalt.html ?nn=2351604</pre>	alternative
1098	transporta tion	total vehicle km of automobiles 2018	6,31E+11	vkm	<pre>https://www.kba.de/DE/Statistik/ Kraftverkehr/VerkehrKilometer/ vk_inlaenderfahrleistung/ vk_inlaenderfahrleistung_inhalt.html ?nn=2351604</pre>	alternative

1099	transporta tion	total vehicle km of automobiles 2019	6,32E+11	vkm	https://www.kba.de/DE/Statistik/ Kraftverkehr/VerkehrKilometer/ vk_inlaenderfahrleistung/	alternative
	transporta	total vehicle km of automobiles			vk_inlaenderfahrleistung_inhalt.html ?nn=2351604	
1100	tion	avg growth 2015-2019	3,29E+09	vkm	own estimate	
1101	transporta tion	avg passengers per vehicle Germany 2015	1,478519	p/v	<pre>www.bmvi.de/viz & https:// www.kba.de/DE/Statistik/ Kraftverkehr/VerkehrKilometer/ vk_inlaenderfahrleistung/ vk_inlaenderfahrleistung_inhalt.html ?nn=2351604</pre>	source: KBA + BMVi
1102	transporta tion	avg age cars Germany	9,6	a	https://www.kba.de/DE/Statistik/Fahrz bestand_node.html	
1103	transporta tion	avg mileage of cars Germany	350000	km	https://www.wer-weiss-was.de/t/gesamt auslegung/2887819/3 and https://www.a lebensdauer-motoren-192983.html	
1104	transporta tion	avg lifetime time of cars per manufacturer	18	a	https://www.kba.de/DE/Statistik/Fahrz bestand_node.html	euge/Bestand/
1105	transporta tion	BEV energy consumption per km avg	0,2115	kWh/km	https://www.adac.de/rund-ums- fahrzeug/tests/elektromobilitaet/ stromverbrauch-elektroautos-adac- test/	min 14,7 kWh max 27,6 kWh per 100km by ADAC test 2020
1106	transporta tion	PHEV energy consumption per km (petrol) fuel based	0,025	l/km	own estimate	reference pick is highest value of current newest models for the average of current fleet: mercedes- benz.de on 10. June 2020 showing a fuel consumption range between 1,4 1/km and 2,6 1/km for their PHEV models
1107	transporta tion	PHEV energy consumption per km (petrol) fuel based	0,2425	kWh/km	own estimate	
1108	transporta tion	PHEV energy consumption per km electric based	0,2115	kWh/km	https://www.adac.de/rund-ums- fahrzeug/tests/elektromobilitaet/ stromverbrauch-elektroautos-adac- test/	min 14,7 kWh max 27,6 kWh per 100km by ADAC test 2020
1109	transporta tion	PHEV share of electricty in total fuel consumption	0,5	1/100	own estimate	
1110	transporta tion	PHEV energy consumption per km combined 50/50	0,227	kWh/km	own estimate	
1111	transporta tion	HEV energy consumption per km avg	0,60528	kWh/km	own estimate	assuming 20% efficiency gain on CEV
1112	transporta tion	EV energy charging losses	0,15	1/100	<pre>https://www.ise.fraunhofer.de/ content/dam/ise/de/documents/ publications/studies/aktuelle- fakten-zur-photovoltaik-in- deutschland.pdf</pre>	add to EV energy consumption
1113	transporta tion	avg annual driving performance	15000	km/a	<pre>https://www.ise.fraunhofer.de/content documents/publications/studies/aktuel photovoltaik-in-deutschland.pdf</pre>	
1114	transporta tion	EV one-time battery related ghg emissions from production in CO2 equivalents 2017	145000	g/kWh	https://www.ise.fraunhofer.de/content documents/publications/studies/aktuel photovoltaik-in-deutschland.pdf	
1115	transporta tion	CEV avg fuel consumption (petrol) per km 2018	0,078	l/km	https://de.statista.com/statistik/dat umfrage/durchschnittsverbrauch-pkw-in haushalten-in-deutschland/	
1116	transporta tion	CEV avg fuel consumption (petrol) per km in kWh	0,7566	kWh/km	own estimate	
1117	transporta tion	CEV energy content (petrol) per liter	9,7	kWh/l	https://de.wikipedia.org/wiki/Motoren	benzin
1118	transporta tion	CEV avg fuel price (petrol) per liter	1,43	EUR/1	https://de.wikipedia.org/wiki/Elektro	auto#Deutschland
1119	transporta tion	CEV avg fuel price (petrol) per kWh	0,1474	EUR/ kWh	own estimate	
1120	transporta tion	CEV avg fuel consumption (diesel) per km 2018	0,07	l/km	<pre>https://de.statista.com/statistik/dat umfrage/durchschnittsverbrauch-pkw-in haushalten-in-deutschland/</pre>	
1121	transporta tion	CEV avg fuel consumption (diesel) per km in kWh	0,728	kWh/km	own estimate	
1122	transporta tion	CEV energy content (diesel) per liter	10,4	kWh/l	https://de.wikipedia.org/wiki/Dieselk	raftstoff
1123	transporta tion	CEV avg fuel price (diesel) per liter	1,26	EUR/1	https://de.wikipedia.org/wiki/Elektro	auto#Deutschland
1124	transporta tion	CEV avg fuel price (diesel) per kWh	0,1212	EUR/ kWh	own estimate	
1125	transporta tion	BEV stock at 01.01.2020	82.767	1	https://www.kba.de/DE/Statistik/Fahrz bestand_node.html	euge/Bestand/
1126	transporta tion	EV share new registrations 1. quarter 2020	0,037	1/100	https://de.wikipedia.org/wiki/Elektro and KBA	auto#Deutschland

1107	transporta		0.010	1 (100		
1127	tion	EV share new registrations 2019	0,018	1/100	KBA	
1128	transporta tion	EV new registrations in 2019	53442	1	https://www.kba.de/DE/Statistik/Fahrzebestand_node.html	euge/Bestand/
1129	transporta tion	total new registrations 2019 private ownership	1249011	1	KBA	fz4_2018_KFZ_Neu zulassungen_Hers teller- Handelsname
1130	transporta tion	total new registrations 2019 total ownership	3435778	1	КВА	fz4_2018_KFZ_Neu zulassungen_Hers teller- Handelsname
1131	transporta tion	total new registrations 2019 total ownership	0,363530	1/100	КВА	fz4_2018_KFZ_Neu zulassungen_Hers teller- Handelsname
1132	transporta tion	avg sales price per new registration 2019	34000	EUR	https://de.statista.com/statistik/dat umfrage/durchschnittliche-neuwagenpre deutschland/	
1133	transporta tion	avg sales price per new registration petrol	31000	EUR	own estimate	due to comparison from: www.mercedes- benz.de www.audi.de www.bmw.de
1134	transporta tion	avg sales price per new registration diesel	34000	EUR	own estimate	due to comparison from: www.mercedes- benz.de www.audi.de www.bmw.de
1135	transporta tion	avg sales price per new registration gas	38000	EUR	own estimate	due to comparison from: www.audi.de
1136	transporta tion	avg sales price per new registration HEV	38000	EUR	own estimate	no source
1137	transporta tion	avg sales price per new registration PHEV	41000	EUR	own estimate	due to comparison from: www.mercedes- benz.de www.audi.de www.bmw.de
1138	transporta tion	avg sales price per new registration BEV	51000	EUR	own estimate	due to comparison from: www.mercedes- benz.de www.audi.de www.bmw.de
1139	transporta tion	avg yearly maintenance cost small car	480	EUR	<pre>https://www.verti.de/blog/auto-kosten www.adac.de/infotestrat/autodatenbank autokosten-rechner/</pre>	
1140	transporta tion	avg yearly maintenance cost medium car	648	EUR	<pre>https://www.verti.de/blog/auto-kosten www.adac.de/infotestrat/autodatenbank autokosten-rechner/</pre>	
1141	transporta tion	avg yearly maintenance cost large car	972	EUR	<pre>https://www.verti.de/blog/auto-kosten www.adac.de/infotestrat/autodatenbank autokosten-rechner/</pre>	/autokosten/
1142	transporta tion	avg yearly fixed cost small car	744	EUR	<pre>https://www.verti.de/blog/auto-kosten www.adac.de/infotestrat/autodatenbank autokosten-rechner/</pre>	/autokosten/
1143	transporta tion	avg yearly fixed cost medium car	1032	EUR	<pre>https://www.verti.de/blog/auto-kosten www.adac.de/infotestrat/autodatenbank autokosten-rechner/</pre>	/autokosten/
1144	transporta tion	avg yearly fixed cost large car	1848	EUR	<pre>https://www.verti.de/blog/auto-kosten www.adac.de/infotestrat/autodatenbank autokosten-rechner/</pre>	
1145	transporta tion	CEV avg fuel price CNG per kg	1,13	EUR/kg	https://de.wikipedia.org/wiki/Erdgas	
1146	transporta tion	CEV avg fuel price CNG per kWh	0,085	EUR/ kWh	own estimate	
1147	transporta tion	CEV avg fuel consumption (CNG) per km	0,043	kg/km	https://www.focus.de/auto/fahrbericht octavia-g-tec-100-kilometer-kosten-vi schlaegt-sich-der-erdgas-skoda-im- dauertest id 7502654.html	
1148	transporta tion	CEV avg fuel consumption (CNG) per km in kWh	0,5719	kWh/km	own estimate	
1149	transporta tion	CEV avg fuel price LPG per liter	0,55	EUR/1	https://www.fluessiggasl.de/ fluessiggas_umrechnung_kwh_m3_liter_k	g/
1150	transporta tion	CEV avg fuel price LPG per kWh	0,0767	EUR/ kWh	own estimate	
1151	transporta tion	CEV avg fuel consumption (LPG) per km	0,0936	l/km	https://www.adac.de/_mmm/pdf/ ADAC%20Kostenvergleich%20Umr%C3%BCst ung%20Gasfahrzeuge_47083.pdf	avg 20% more consumption than in petrol mode
1152	transporta tion	CEV avg fuel consumption (LPG) per km in kWh	0,671112	kWh/km	own estimate	
1153	transporta tion	CEV conversion LPG m3 to liter	3,93	1/m3	https://www.fluessiggasl.de/ fluessiggas_umrechnung_kwh_m3_liter_k	g/
	transporta	CEV conversion LPG m3 to kg	0,4968	kg/m3	https://www.fluessiggasl.de/ fluessiggas_umrechnung_kwh_m3_liter_k	

1155	transporta tion	electrification level of public transport	0,331385	1/100	https://aiomag.de/elektrifizierung- des-staedtischen-busverkehrs-hier- fahren-e-busse-18935	<pre>see 'Z11states_genee rated!ES' + destatis_46100-0 021</pre>
1156	transporta tion	share of omnibus in public transport	0,668614	1/100	https://aiomag.de/elektrifizierung-de busverkehrs-hier-fahren-e-busse-18936	
1157	transporta tion	electrification level of public transport avg growth rate target	0,033430	1/100	https://aiomag.de/elektrifizierung- des-staedtischen-busverkehrs-hier- fahren-e-busse-18935 and own estimate	0 to 100% by 2040
1158	transporta tion	electrification level of railway system	0,609	1/100	https://dipbt.bundestag.de/doc/btd/19	/160/1916019.pdf
1159	transporta tion	electrification level of railway system target	0,7	1/100	https://dipbt.bundestag.de/doc/btd/19	/160/1916019.pdf
1160	transporta tion	electrification level of railway system avg growth rate	0,002	1/100	https://dipbt.bundestag.de/doc/btd/19	/160/1916019.pdf
1161	transporta tion	electrification level of passenger rail	0,98	1/100	? somewhere on forschungsinformations	system.de
1162	transporta tion	electrification level of air	0	1/100	own estimate	
1163	transporta tion	electrification level of bycicle	0,054	1/100	https://nationaler-radverkehrsplan.de	/de/node/21072
1164	transporta tion	electrification level of bycicle avg growth rate	0,01	1/100	https://nationaler-radverkehrsplan.de	/de/node/21072
1165	transporta tion	expected transportation demand growth rate for car avg	0,0164	1/100	https://www.bmvi.de/SharedDocs/DE/Pub verkehr-in-zahlen-2019-pdf.html	likationen/G/
1166	transporta tion	expected transportation demand growth rate for road-based public transport avg	-0,0039	1/100	https://www.bmvi.de/SharedDocs/DE/Pub. verkehr-in-zahlen-2019-pdf.html	likationen/G/
1167	transporta tion	expected transportation demand growth rate for rail passenger transport 2015-2030	0,22	1/100	https://www.forschungsinformationssys 342736/ and https://www.bmvi.de/Share Publikationen/G/verkehr-in-zahlen-201	dDocs/DE/
1168	transporta tion	expected transportation demand growth rate for rail passenger transport yearly rate	0,0167	1/100	https://www.forschungsinformationssys 342736/ and https://www.bmvi.de/Share Publikationen/G/verkehr-in-zahlen-201	tem.de/servlet/is/ dDocs/DE/
1169	transporta tion	expected transportation demand growth rate for air avg	0,0331	1/100	https://www.bmvi.de/SharedDocs/DE/Publikationen/G/ verkehr-in-zahlen-2019-pdf.html	
1170	transporta tion	expected transportation demand growth rate for bicycle avg	0,0379	1/100	https://www.bmvi.de/SharedDocs/DE/Publikationen/G/ verkehr-in-zahlen-2019-pdf.html	
1171	transporta tion	assumed occupancy rate public transport total avg	0,19	1/100	https://www.umweltbundesamt.de/bild/ vergleich-der-durchschnittlichen- emissionen-0	2018
1172	transporta tion	assumed occupancy rate public transport bus avg	0,19	1/100	https://www.umweltbundesamt.de/bild/ vergleich-der-durchschnittlichen- emissionen-0	2018
1173	transporta tion	assumed occupancy rate public transport rail avg	0,19	1/100	https://www.umweltbundesamt.de/bild/ vergleich-der-durchschnittlichen- emissionen-0	2018
1174	transporta tion	assumed occupancy rate rail avg	0,56	1/100	https://www.forschungsinformationssys 343659/ and https://www.sileo-ebus.com	
1175	transporta tion	assumed occupancy rate air total avg	0,752392	1/100	http://www.umweltbundesamt.de/	UBA 2020
1176	transporta tion	assumed occupancy rate air international avg	0,76	1/100	http://www.umweltbundesamt.de/	UBA 2020
1177	transporta tion	air transport energy consumption per pkm international	0,05	1/pkm	https://www.vcd.org/fileadmin/user_up. Themen/Flugverkehr/NGO_Luftverkehrsko	
1178	transporta tion	assumed occupancy rate air inland avg	0,708	1/100	http://www.umweltbundesamt.de/	UBA 2020
1179	transporta tion	air transport energy consumption per pkm inland	0,08	l/pkm	https://www.vcd.org/fileadmin/user_up Themen/Flugverkehr/NGO_Luftverkehrsko	
1180	transporta tion	air transport share inland flights	0,146306	1/100	own estimate	
1181	transporta tion	CEV conversion LPG liter to kg	0,509	kg/l	https://www.fluessiggasl.de/ fluessiggas_umrechnung_kwh_m3_liter_k	g/
1182	transporta tion	car new registrations 2019 target shares	-	-	https://www.kba.de/DE/Presse/Pressemi Fahrzeugzulassungen/pm01_2020_n_12_19 nn=2562684	
1183	transporta tion	car new registrations 2020 Jan share petrol	0,515	1/100	https://www.kba.de/DE/Presse/Pressemi Fahrzeugzulassungen/fahrzeugzulassunge	
1184	transporta tion	car new registrations 2020 Jan share diesel	0,326	1/100	https://www.kba.de/DE/Presse/Pressemi Fahrzeugzulassungen/fahrzeugzulassunge	
1185	transporta tion	car new registrations 2020 Jan share gas	0,0035	1/100	https://www.kba.de/DE/Presse/Pressemi Fahrzeugzulassungen/fahrzeugzulassunge	
1186	transporta tion	car new registrations 2020 Jan share HEV	0,09	1/100	https://www.kba.de/DE/Presse/Pressemi Fahrzeugzulassungen/fahrzeugzulassunge	
1187	transporta tion	car new registrations 2020 Jan share PHEV	0,035	1/100	https://www.kba.de/DE/Presse/Pressemi Fahrzeugzulassungen/fahrzeugzulassunge	
					https://www.kba.de/DE/Presse/Pressemi	

1189	transporta tion	car new registrations 2020 Feb share petrol	0,521	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1190	transporta tion	car new registrations 2020 Feb share diesel	0,316	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1191	transporta tion	car new registrations 2020 Feb share gas	0,003	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1192	transporta tion	car new registrations 2020 Feb share HEV	0,09	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1193	transporta tion	car new registrations 2020 Feb share PHEV	0,035	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1194	transporta tion	car new registrations 2020 Feb share BEV	0,034	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1195	transporta tion	car new registrations 2020 Mar share petrol	0,5	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1196	transporta tion	car new registrations 2020 Mar share diesel	0,316	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1197	transporta tion	car new registrations 2020 Mar share gas	0,002	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1198	transporta tion	car new registrations 2020 Mar share HEV	0,09	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1199	transporta tion	car new registrations 2020 Mar share PHEV	0,044	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1200	transporta tion	car new registrations 2020 Mar share BEV	0,048	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1201	transporta tion	car new registrations 2020 Apr share petrol	0,499	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1202	transporta tion	car new registrations 2020 Apr share diesel	0,321	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1203	transporta tion	car new registrations 2020 Apr share gas	0,004	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1204	transporta tion	car new registrations 2020 Apr share HEV	0,091	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1205	transporta tion	car new registrations 2020 Apr share PHEV	0,046	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1206	transporta tion	car new registrations 2020 Apr share BEV	0,038	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1207	transporta tion	car new registrations 2020 May share petrol	0,511	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1208	transporta tion	car new registrations 2020 May share diesel	0,316	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1209	transporta tion	car new registrations 2020 May share gas	0,003	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1210	transporta tion	car new registrations 2020 May share HEV	0,096	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1211	transporta tion	car new registrations 2020 May share PHEV	0,04	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1212	transporta tion	car new registrations 2020 May share BEV	0,033	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1213	transporta tion	car new registrations 2020 Jun share petrol	0,515	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1214	transporta tion	car new registrations 2020 Jun share diesel	0,306	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1215	transporta tion	car new registrations 2020 Jun share gas	0,005	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1216	transporta tion	car new registrations 2020 Jun share HEV	0,088	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1217	transporta tion	car new registrations 2020 Jun share PHEV	0,049	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1218	transporta tion	car new registrations 2020 Jun share BEV	0,037	1/100	https://www.kba.de/DE/Presse/Pressemitteilungen/2020/ Fahrzeugzulassungen/fahrzeugzulassungen_node.html
1219	transporta tion	buyer's premiums on cars phev min	5625	EUR	<pre>https://www.bundesfinanzministerium.de/Content/DE/ Standardartikel/Themen/Schlaglichter/Konjunkturpaket/ 2020-06-03-konjunkturpaket- beschlossen.html;jsessionid=4856A7FD65852AB1545CDD2C2C1 0011F.delivery2-replication and https:// www.meinauto.de/lp-abwrackpraemie</pre>
1220	transporta tion	buyer's premiums on cars phev max	6750	EUR	https://www.bundesfinanzministerium.de/Content/DE/ Standardartikel/Themen/Schlaglichter/Konjunkturpaket/ 2020-06-03-konjunkturpaket- beschlossen.html;jsessionid=4856A7FD65852AB1545CDD2C2C1 0011F.delivery2-replication and https:// www.meinauto.de/lp-abwrackpraemie
1221	transporta tion	buyer's premiums on cars bev min	7500	EUR	https://www.bundesfinanzministerium.de/Content/DE/ Standardartikel/Themen/Schlaglichter/Konjunkturpaket/ 2020-06-03-konjunkturpaket- beschlossen.html;jsessionid=4856A7FD65852AB1545CDD2C2C1 0011F.delivery2-replication and https:// www.meinauto.de/lp-abwrackpraemie

1222	transporta tion	buyer's premiums on cars bev max	9000	EUR	<pre>https://www.bundesfinanzministerium.de/Content/DE/ Standardartikel/Themen/Schlaglichter/Konjunkturpaket/ 2020-06-03-konjunkturpaket- beschlossen.html;jsessionid=4856A7FD65852AB1545CDD2C2C1 0011F.delivery2-replication and https:// www.meinauto.de/lp-abwrackpraemie</pre>
1223	transporta tion	buyer's premiums on cars deadline	31.12. 21	-	https://www.bundesfinanzministerium.de/Content/DE/ Standardartikel/Themen/Schlaglichter/Konjunkturpaket/ 2020-06-03-konjunkturpaket- beschlossen.html;jsessionid=4856A7FD65852AB1545CDD2C2C1 0011F.delivery2-replication and https:// www.meinauto.de/lp-abwrackpraemie
1224	transporta tion	expected bev amount in total car fleet 2022	1000000	1	https://www.bmwi.de/Redaktion/DE/Dossier/ elektromobilitaet.html
1225	transporta tion	bev stock 2019	82767	1	own estimate
1226	transporta tion	bev new registrations 2019	61829	1	own estimate
1227	transporta tion	outstanding bev registrations to make 2022 target	855404	1	own estimate
1228	transporta tion	bev required share on new registrations per year to make 2022 target	0,124484	1/100	own estimate
1229	transporta tion	bev stock scenario target 2030	10000000	1	<pre>https://www.focus.de/auto/elektroauto/klimaschutz-im- verkehr-scheuer-sieht-gewaltige- herausforderung_id_10442221.html and https:// www.spiegel.de/wirtschaft/soziales/verkehrsministerium- will-zehn-millionen-e-autos-bis-2030-a-1274272.html</pre>
1230	transporta tion	bev new registrations required per year post 2022 target to meet 2030 target	1125000	1	own estimate
1231	transporta tion	bev new registrations required per year post 2022 target to meet 2030 target share of total	0,327436	1/100	own estimate