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The Shapley value of coalitions to other coalitions
Kjell Hausken 1✉

The Shapley value for an n-person game is decomposed into a 2n × 2n value matrix giving the

value of every coalition to every other coalition. The cell ϕIJ(v, N) in the symmetric matrix is

positive, zero, or negative, dependent on whether row coalition I is beneficial, neutral, or

unbeneficial to column coalition J. This enables viewing the values of coalitions from multiple

perspectives. The n × 1 Shapley vector, replicated in the bottom row and right column of the

2n × 2n matrix, follows from summing the elements in all columns or all rows in the n × n

player value matrix replicated in the upper left part of the 2n × 2n matrix. A proposition is

developed, illustrated with an example, revealing desirable matrix properties, and applicable

for weighted Shapley values. For example, the Shapley value of a coalition to another coalition

equals the sum of the Shapley values of each player in the first coalition to each player in the

second coalition.
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Introduction

L loyd Shapley (1923–2016) is perhaps best known for his so-
called Shapley value (Shapley, 1953b), interpreted by Roth
(1988b, p. 6) as “player i’s ‘fair share’ in the game.” Three

other interpretations are a player’s expected marginal contribu-
tion, the weighted average of his marginal contributions to the
coalition of all n players involved, and what player i can “rea-
sonably” command to himself. The Shapley value influenced
Shapley’s subsequent thinking causing the 2012 Nobel Memorial
Prize in Economic Sciences (with Alvin E. Roth), “for the theory
of stable allocations and the practice of market design.” See
Weber (1988) for the well known Shapley value axioms and
definitions, Serrano (2018) for a bibliography of Shapley’s con-
tributions, and Yokote et al. (2017) for work relating the Shapley
value to other solutions.

Hausken and Mohr (2001) decomposed the Shapley value into
a value matrix. The sum of the elements of any row or column in
the n × n matrix equals the Shapley value of the respective player
in an n-person game. Towards the end of his work on multilinear
extensions of games, as an aside at the end of the section labeled
“Possible Further Applications,” Owen (1972, p. 76) proposed
second order cross-derivatives which “can be thought of as
measuring, in some sense, the value of player j to player i,” as
discussed by Hausken and Mohr (2001, p. 469). Owen (1972, pp.
77–78) thereafter presented three game examples. In the first
three-person majority game he writes that players “1 and 2 are
valuable to each other if” player “3 is unlikely to join,” “but get
rather in each other’s way” otherwise.

Aside from Hausken and Mohr’s (2001) and Owen’s (1972)
contributions, the authors are unaware of other work considering
the value of a player or coalition to another player or coalition.
The literature has not used this language, and has not approached
the phenomenon from this angle. Whereas Hausken and Mohr
(2001) present the value of a player to another player, this article
generalizes to determine the value of row coalition I to column
coalition J in a 2n × 2n value matrix. The matrix is shown to have
a variety of desirable properties. The usefulness of the new matrix
is that any coalition can value any other coalition regardless of
whether the coalitions are disjoint, overlap partly, or coincide.
The values of coalitions can thus be conceptualized relative to
each other from any imaginable perspective.

Two non-overlapping coalitions in a game may find it useful to
know their values to each other. The values are shown to be equal
due to symmetry. For example, if the value is negative, both
coalitions may have an interest in excluding the other from the
game, or ensuring that alternative coalitions are formed. Coali-
tions may or may not have formed in order to determine their
value to each other. If two coalitions overlap, one may have been
formed, and may consider its value to another coalition which
may form by including or excluding members. Alternatively, a
hypothetical coalition, i.e., not yet formed, may consider its value
to another already formed coalition. Knowing this value may
enable both the potential members of the hypothetical coalition
and the members of the already formed coalition to determine
whether the already formed coalition should alter its member
structure.

Two natural settings for the application of the concept of the
value of a coalition to another coalition are as follows. The first is
a coalition formation environment, when in the status quo coa-
litions are already formed. Examples of coalition formation
environments are changes and fluctuations in technology, econ-
omy, culture, laws, and players’ preferences and beliefs. The
second is when there are restrictions in the set of feasible coali-
tions. Then each formed coalition might contemplate whether to
merge with another in line with the concept developed in this
article.

The section “Literature review” reviews the literature. The
section “Basic definitions” presents basic definitions. The section
“The Shapley value of coalition I to coalition J” presents the
Shapley value of a coalition to another coalition. The section
“Example” illustrates with an example. The section “Interpreting
ϕIJ N; vð Þ” interprets the various Shapley values. The section
“Usefulness, future research and applications” considers useful-
ness, future research and applications. The section “Applying the
weighted Shapley value” applies the weighted Shapley value. The
section “Conclusion” concludes.

Literature review
We suggest that the symmetry in the value of a coalition to
another coalition has a weak indirect linkage to Myerson’s (1980)
work on balanced contributions and Hart and Mas-Colell’s
(1989) work on the preservation of differences for the potential
function. Myerson (1977) adapted Shapley’s (1953b) axioms to
games in partition function form. Myerson (1980) generalized to
conferences of more than two players, and removed the side-
payments assumptions. He showed that any characteristic func-
tion game has a unique fair allocation rule which satisfies a
balanced contributions formula, related to Harsanyi’s (1963)
generalized Shapley value. Hart and Mas-Colell (1989) showed
that the potential, i.e., “a real-valued function defined on the
space of cooperative games with transferable utility,” satisfying
that the marginal contributions of all players are efficient, is
unique, and that “the resulting payoff vector coincides with the
Shapley value.” The potential yields a new internal consistency
property. See Kongo (2018) for further work on balanced
contributions.

An indirect linkage also exists between this article and Casajus
and Huettner’s (2017) assignment to any player the difference
between the worth of the grand coalition and its worth after this
player leaves the game. They show that the Shapley value is a
unique decomposable decomposer of this assignment.

Earlier work on coalitions has not considered the value of
one coalition to another coalition. Maschler (1963) considered
the power of a coalition, accounting for the players’ psychology,
bargaining abilities, morality, etc., agreeing with Shapley that
the Shapley value constitutes an a priori assessment. Aumann
and Dreze (1974) developed theorems for the Shapley
value, kernel, nucleolus, bargaining set, core, and the von
Neumann–Morgenstern solution, “that connect a given solu-
tion notion, defined for a coalition structure B with the same
solution notion applied to appropriately defined games on each
of the coalitions in B.” Shenoy (1979) suggested two models of
coalition formation, using only information in the character-
istic function, and illustrating with the Shapley value, the core,
the bargaining set, and individually rational payoffs. Kurz
(1988) considered some ways in which the Shapley value may
be used to determine how various coalition structures impact
each player’s payoff. Aumann and Myerson (1988) used an
extension of the Shapley value to specify how cooperation
between players can be organized, where players choose whe-
ther and with whom to establish bilateral links. Hu and Li
(2018) axiomatize the Shapley-solidarity value for games with a
coalition structure. Skibski et al. (2018) consider the stochastic
Shapley value for coalitional games with externalities.

Basic definitions
A cooperative game (N, v) is defined by a finite set of players N,
called the grand coalition, and a characteristic function v : 2N !
R from the set of all possible coalitions of players to a set of
payments that satisfies v ;ð Þ ¼ 0. The function v describes how
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much collective payoff a set of players can gain by forming a
coalition. Shapley (1953b) assigns a value

ϕi N; vð Þ ¼
X
S�N;
i2S

s� 1ð Þ! n� sð Þ!
n!

v Sð Þ � v S n if gð Þð Þ; ϕi S n if g; vð Þ � 0

ð1Þ
where s= |S| is the number of players in S, for each game (N, v)
for each player i, i 2 N � U .

Definition 1. The Shapley value of coalition I, I � N , equals the
sum of the Shapley values for each player i in coalition I, i 2 I,
i.e.,

ϕI N; vð Þ �
X
i2I

ϕi N; vð Þ ð2Þ

Hausken and Mohr (2001, p. 469) assign a value ϕijðN; vÞ for
each game (N, v) for any two players i and j within the universe U
of all possible players, i.e., i 2 N � U , j 2 N � U ,
i; j ¼ 0; 1; 2; ¼ ; N .

Lemma 1. The Shapley value ϕiðN; vÞ for player i 2 N in a
game of n= |N| players, where s= |S| is the number of players in
S, is decomposed into n different values ϕij N; vð Þ, j 2 N , satis-
fying

ϕi N; vð Þ ¼
Xn
j¼1

ϕij N; vð Þ ð3Þ

where

ϕij N; vð Þ ¼
X
S�N;
i; j2S

s� 1ð Þ! n� sð Þ!
n!

ϕj S; vð Þ � ϕj S n if g; vð Þ
� �

; ϕi S n if g; vð Þ � 0 ð4Þ

and s= |S| is the number of players in S.
Proof. See Hausken and Mohr’s (2001) Theorem 2.1. □
ϕij N; vð Þ in Eq. (4) has the same structure as ϕiðN; vÞ in

Eq. (1), though replacing v(S) with ϕj S; vð Þ and replacing
v S n if gð Þ with ϕj S n if g; vð Þ, and summing over S � N so that
i; j 2 S in Eq. (4), while only i 2 S in ϕiðS; vÞ.

Definition 2. For all i 2 N , j 2 N ,

ϕ if g jf g N; vð Þ � ϕ if gj N; vð Þ � ϕi jf g N; vð Þ � ϕij N; vð Þ ð5Þ
Lemma 2. For all i 2 N , j 2 N , the following holds

ϕij N; vð Þ ¼ ϕji N; vð Þ ð6Þ
Proof. Hausken and Mohr (2001) showed in Appendix 1 that

ϕij N; vð Þ ¼ P
R�N

r�1ð Þ! n�rð Þ!
n!

´ v Rð Þ � v R n jf gð Þf g � v R n if gð Þ � v R n i; jf gð Þf g½ �Pn
s¼r

1
s

ð7Þ
Interchanging i and j does not impact Eq. (7), which implies

Eq. (6). Lemma 2 also follows from Myerson’s (1980) axiom of
balanced contributions. Segal (2003) refers to term within square
brackets in Eq. (7) as “the second-order difference operator.” □

That the value of player i to player j is symmetric was also
observed by Owen (1972, p. 76), due to continuity. The symmetry
in Lemma 2 is indirectly linked to two earlier contributions,
though without conceptualizing the phenomenon as the value of
one player to another player. The first is Myerson’s (1980) notion
of “balanced contributions,” mathematically related to the Fro-
benius integrability condition which involves symmetry of the
cross partial derivatives. Myerson (1980, p. 173) stated that an
allocation rule “has balanced contributions if j’s contribution to i
always equals i’s contribution to j, in any conference structure.”
The second is Hart and Mas-Colell’s (1989) section 3 labeled

“Preservation of Differences.” Hart and Mas-Colell (1989, p. 594)
determined the difference to be preserved as “the difference
between what i would get if j was not around and what j would
get if i was not around.”

Lemma 3. The Shapley value ϕjðN; vÞ for player j 2 N in a
game of n= |N| players is decomposed into n different values
ϕij N; vð Þ, i 2 N , satisfying

ϕj N; vð Þ ¼
Xn
i¼1

ϕij N; vð Þ ð8Þ

Proof. Inserting ϕij N; vð Þ ¼ ϕji N; vð Þ in Eq. (6) into the
expression inside the summation sign in Lemma 1 gives

ϕi N; vð Þ ¼
Xn
j¼1

ϕji N; vð Þ ð9Þ

Interchanging i and j in Eq. (9) gives Eq. (8). □

The Shapley value of coalition I to coalition J
Analogously to the section “Basic definitions”, let us assign a
value ϕIJðN; vÞ for each game (N, v) for any two coalitions I and J
within the universe U of all possible players, i.e., I � N � U ,
J � N � U , where U is finite or infinite. We posit three axioms
following Shapley’s (1953b, p. 33) language on p. 33. For axiom 1
Shapley (1953b, p. 32) defines a function πv by πv πSð Þ ¼ vðSÞ
where S � N � U and πS is “the image of S under π.”

Axiom 1. Symmetry. For each π in ΠðUÞ, where ΠðUÞ is the set
of permutations of the universe U of all possible players, and
πv πSð Þ ¼ vðSÞ for all S � N � U ,

ϕπIJ πS; πvð Þ ¼ ϕIJ S; vð Þ ð10Þ
For axiom 2 Shapley (1953b, p. 32) defines a carrier of v as any

set S � N � U with vðSÞ ¼ vðN \ SÞ for all S � U . The Shapley
value ϕiðN; vÞ of a null player i in a game (N, v) is zero. A player i
is null in (N, v) if v S∪ if gð Þ ¼ v Sð Þ for all coalitions S that do not
contain i. In accordance with e.g., Roth (1988a, p. 5), axiom 2 has
two parts.

Axiom 2a. Efficiency carrier. For each carrier S � N � U of v
and any partitions pI and pJ of N,X

I2pI ;J2pJ
ϕIJ N; vð Þ ¼ v Nð Þ ð11Þ

Axiom 2b. Null coalition carrier. If I is a null coalition in v
defined as v S∪ Ið Þ ¼ v Sð Þ for all coalitions S � N , and/or J is a
null coalition in v defined as v S∪ Jð Þ ¼ v Sð Þ for all coalitions
S � N ,

ϕIJ N; vð Þ ¼ 0 ð12Þ
Axiom 3. Additivity or law of aggregation. For any two games

(N, v) and (N, w) with support equal to N,

ϕIJ N; vð Þ þ ϕIJ N;wð Þ ¼ ϕIJ N; v þ wð Þ8I � N � U and

8J � N � U ; i:e: ϕ N; vð Þ þ ϕ N;wð Þ ¼ ϕ N; v þ wð Þ ð13Þ

Axiom 1 states that coalition names or identities are irrelevant
when determining the value ϕ N; vð Þ. Axiom 2a states that the
value ϕ N; vð Þ fully distributes the yield of the game, thus
excluding e.g., ϕIJ N; vð Þ ¼ v I ∪ Jð Þ where any two coalitions I and
J assume that all other players and coalitions cooperate against
them. A partition pI of a set N, and partition pJ of N, is a grouping
of the set’s elements into non-empty subsets so that every element
is included in one and only one of the subsets. Applying parti-
tioning preserves the spirit of Shapley’s (1953b) efficiency axiom
by ensuring that every individual player is included once
(regardless of which subset the player is partitioned into), and
also ensuring that no player is included twice (prevents double
counting). Axiom 2b states that if at least one of the coalitions I
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and J is a null coalition, then the value ϕIJ N; vð Þ is zero. A null
player or null coalition is a player or coalition which is null in
every game (Casajus and Huettner, 2014; van Den Brink, 2007).
Axiom 3 states that the values of independent games are added by
considering only coalitions I and J in the two games.

These axioms, as formulated by Shapley (1953b, p. 32) for
player i, gives a unique solution for player i, which Shapley
(1953b, p. 33) finds remarkable. Determining how Lemmas 1–3
for coalitions follow from the axioms is similar to Shapley’s
(1953b, p. 33) proof for individual players. However, the axioms
for coalitions do not give a unique solution for the value of
coalition I to coalition J. Hausken and Mohr (2001, p. 469) do not
address the issue of uniqueness for the value of player i to player j.
Let us illustrate with an example.

Example. Assume two real parameters a and b such that, for
each i 2 S � N and j 2 S � N , i≠ j, ϕij S; vð Þ ¼ a, ϕii S; vð Þ ¼ b,
where S is a carrier of v, I is a null coalition in v defined as
v S∪ Ið Þ ¼ v Sð Þ, and v Nð Þ ¼ 1. According to the efficiency Axiom
2a for s= |S| players, we must have

s s� 1ð Þaþ sb ¼ 1 ð14Þ

As alternative 1, a ¼ 0 and b ¼ 1=s cause ϕii N; vð Þ ¼ ϕi N; vð Þ
and ϕij N; vð Þ ¼ 0 for i≠ j which satisfy the axioms. As alternative
2, a ¼ 1= s s� 1ð Þð Þ and b ¼ 0 cause ϕii N; vð Þ ¼ 0 and ϕij N; vð Þ ¼
ϕi N; vð Þ= n� 1ð Þ for i≠ j. Both these two alternatives satisfy the
axioms.1 This contrasts with Shapley’s (1953b, p. 33) proof, where
only one parameter is needed. That is, for each i 2 S � N ,
ϕi N; vð Þ ¼ a, which can be computed from efficiency, causing a
unique solution for player i. In other words, the Shapley value of
coalitions assuming Axiom 1, Axiom 2a, Axiom 2b, and Axiom 3,
is not unique, whereas the Shapley value of players is unique. To
understand the phenomenon more thoroughly, Tables 1 and 2
present the Shapley value of row coalition I to column coalition J
for the two alternatives assuming n ¼ Nj j ¼ 3 players.

Based on the axioms it cannot be determined whether Tables 1
or 2 is correct. The bottom row where I ¼ 1; 2; 3f g ¼ N , and
right column where J ¼ 1; 2; 3f g ¼ N , are equivalent in Tables 1
and 2. This suggests that an axiom that merely focuses on the set
N of players may be insufficient to cause uniqueness. For exam-
ple, an axiom such as ϕIN N; vð Þ ¼ ϕI N; vð Þ is insufficient, in
addition to assuming the result in the Proposition developed
below. An alternative axiom such as ϕiJ N; vð Þ ¼Pj2Jϕij N; vð Þ
may be needed, but that also assumes the Proposition developed
below. Since both Tables 1 and 2 seem realistic and plausible, it
may also be possible that uniqueness is not desirable. That is, why
would one choose axioms that might dictate either Tables 1 or 2
as correct, when both may be desirable? Because of these chal-
lenges, we leave the issue of one or several additional axioms to
ensure uniqueness, or whether uniqueness may not be desirable,

as an open research question, and proceed with developing
results. □

Definition 3. For all I � N , J � N ,

ϕIfjg N; vð Þ � ϕIj N; vð Þ; ϕ if gJ N; vð Þ � ϕiJ N; vð Þ ð15Þ
Proposition. The Shapley value of coalition I to coalition J,

I � N , J � N , in an n-person game is

ϕIJ N; vð Þ ¼
X
i2I;
j2J

ϕij N; vð Þ ¼ ϕJI N; vð Þ ð16Þ

Proof. If I ¼ i; k; ¼ ; mf g ¼ if g∪ kf g∪ � � � ∪ mf g,
if g \ kf g ¼ � � � ¼ if g \ mf g ¼ kf g \ mf g ¼ � � � ¼ ;,

J ¼ j; q; ¼ ; uf g ¼ jf g∪ qf g∪ � � � ∪ uf g,
jf g \ qf g ¼ � � � ¼ jf g \ uf g ¼ qf g \ uf g ¼ � � � ¼ ;,

i; k; ¼ ; m; j; q; ¼ ; u ¼ 0; 1; ¼ ; n, Eq. (16) becomes

ϕIJ N; vð Þ ¼ ϕij N; vð Þ þ ϕkj N; vð Þ þ � � � þ ϕmj N; vð Þ
þ ϕiq N; vð Þ þ ϕkq N; vð Þ þ � � � þ ϕmq N; vð Þ
þ � � � þ ϕiu N; vð Þ þ ϕku N; vð Þ þ � � � þ ϕmu N; vð Þ

ð17Þ
To illustrate consistency, for the three events u ¼ n, m ¼ n,

m ¼ u ¼ n, Eq. (17) becomes ϕIN N; vð Þ ¼ ϕI N; vð Þ,
ϕNJ N; vð Þ ¼ ϕJ N; vð Þ,
ϕNN N; vð Þ ¼ ϕ N; vð Þ ¼ v Nð Þ ¼ vð1; 2; ¼ ; nÞ, respectively.
Proving that ϕIJ N; vð Þ in Eq. (16) satisfies Axiom 1, Axiom 2a,
Axiom 2b, and Axiom 3, follows the same logic as Shapley’s
(1953b) proof for ϕiðN; vÞ, and for ϕij N; vð Þ in Eq. (4) in Lemma
1. To prove that ϕIJ N; vð Þ ¼ ϕJI N; vð Þ, inserting Lemma 2, i.e.,
ϕij N; vð Þ ¼ ϕji N; vð Þ for all i 2 N , j 2 N , into each term in Eq.
(17) gives

ϕIJ N; vð Þ ¼ ϕji N; vð Þ þ ϕjk N; vð Þ þ � � � þ ϕjm N; vð Þ
þ ϕqi N; vð Þ þ ϕqk N; vð Þ þ � � � þ ϕqm N; vð Þ
þ � � � þ ϕui N; vð Þ þ ϕuk N; vð Þ þ � � � þ ϕum N; vð Þ

¼P
j2J;
i2I

ϕji N; vð Þ ¼ ϕJI N; vð Þ

ð18Þ
First, the Proposition determines the value of coalition I (to a

player or coalition) by summing up the values of each player i in
coalition I, i 2 I. Second, the Proposition determines the value (of
a player or coalition) to coalition J by summing up the values to
each player j in coalition J, j 2 J . Third, summing the value of
coalition I and the value to coalition J gives the value of coalition I
to coalition J. Fourth, the Proposition applies regardless of whe-
ther coalitions I and J overlap or not. Fifth, since an n-person
game has 2n possible coalitions, including the null coalition {0}
and the set N ¼ f1; 2; ¼ ; ng of all players, the Shapley value of

Table 1 The Shapley value of row coalition I to column
coalition j when ϕii N; vð Þ ¼ ϕi N; vð Þ and ϕij N; vð Þ ¼ 0 for i ≠ j
(alternative 1).

{0} {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

{0} 0 0 0 0 0 0 0 0
{1} 0 1/3 0 0 1/3 1/3 0 1/3
{2} 0 0 1/3 0 1/3 0 1/3 1/3
{3} 0 0 0 1/3 0 1/3 1/3 1/3
{1,2} 0 1/3 1/3 0 2/3 1/3 1/3 2/3
{1,3} 0 1/3 0 1/3 1/3 2/3 1/3 2/3
{2,3} 0 0 1/3 1/3 1/3 1/3 2/3 2/3
{1,2,3} 0 1/3 1/3 1/3 2/3 2/3 2/3 1

Table 2 The Shapley value of row coalition I to column
coalition J when ϕii N; vð Þ ¼ 0 and ϕij N; vð Þ ¼ ϕi N; vð Þ= n� 1ð Þ
for i ≠ j (alternative 2).

{0} {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

{0} 0 0 0 0 0 0 0 0
{1} 0 0 1/6 1/6 1/6 1/6 1/3 1/3
{2} 0 1/6 0 1/6 1/6 1/3 1/6 1/3
{3} 0 1/6 1/6 0 1/3 1/6 1/6 1/3
{1,2} 0 1/6 1/6 1/3 1/3 1/2 1/2 2/3
{1,3} 0 1/6 1/3 1/6 1/2 1/3 1/2 2/3
{2,3} 0 1/3 1/6 1/6 1/2 1/2 1/3 2/3
{1,2,3} 0 1/3 1/3 1/3 2/3 2/3 2/3 1
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row coalition I to column coalition J is exhaustively expressed
by a 2n ´ 2n matrix. Sixth, the symmetry ϕIJ N; vð Þ ¼ ϕJI N; vð Þ in
the Proposition corresponds to the symmetry in Lemma 2.
The nature of the summation in the Proposition is such that the
value is symmetric in the sense that the value of coalition I to
coalition J equals the value of coalition J to coalition I. □

Corollary 1. The Shapley value of coalition I to itself, I � N , in
an n-person game equals the sum of the Shapley values of each
player i, i 2 I, in coalition I to itself and, due to symmetry, twice
the Shapley values of player i to player j given that either i < j or
i > j, j 2 I, i.e.,

ϕII N; vð Þ ¼
X
i2I

ϕii N; vð Þ þ 2
X
i2I;
j2J;
i<j

ϕij N; vð Þ ¼
X
i2I

ϕii N; vð Þ þ 2
X
i2I;
j2J;
i>j

ϕij N; vð Þ

ð19Þ
Proof. Inserting J ¼ I into Eq. (17) while replacing J ¼

j; q; ¼ ; uf g with I ¼ i; k; ¼ ;mf g gives

ϕII N; vð Þ ¼ ϕii N; vð Þ þ ϕki N; vð Þ þ � � � þ ϕmi N; vð Þ
þ ϕik N; vð Þ þ ϕkk N; vð Þ þ � � � þ ϕmk N; vð Þ
þ � � � þ ϕim N; vð Þ þ ϕkm N; vð Þ þ � � � þ ϕmm N; vð Þ

ð20Þ
Equation (20) contains the symmetric terms ϕki N; vð Þ and

ϕik N; vð Þ, …, ϕmi N; vð Þ and ϕim N; vð Þ, …, and ϕmk N; vð Þ and
ϕkm N; vð Þ. Using Lemma 2, we write these symmetric terms as
2ϕik N; vð Þ, …, 2ϕim N; vð Þ, …, and 2ϕkm N; vð Þ. Inserting into Eq.
(20) gives

ϕII N; vð Þ ¼ ϕii N; vð Þ þ ϕkk N; vð Þ þ � � � þ ϕmm N; vð Þ þ 2ϕik N; vð Þ
þ � � � þ 2ϕim N; vð Þ þ 2ϕkm N; vð Þ þ � � �

ð21Þ
which is rewritten as Eq. (19). □

Corollary 2. The Shapley value of coalition I to coalition J, the
Shapley value of coalition I to the set N of all players, and the
Shapley value of the set N of all players to coalition J, where I and
J are both strict subsets of N, I � N , J � N , are all less than or
equal to the characteristic function v Nð Þ of the set N of all
players, i.e.,

ϕIJ N; vð Þ≤ v Nð Þ; ϕIN N; vð Þ≤ v Nð Þ;ϕNJ N; vð Þ≤ v Nð Þ; I � N; J � N

ð22Þ
Proof. Follows from the summations in the Proposition, which

are all constrained from above by ϕNN N; vð Þ ¼ v Nð Þ. □
Corollary 3. For any partition p of N:X

I2p
ϕIj N; vð Þ ¼ ϕj N; vð Þ; I � N; j 2 N ð23Þ

Proof. Follows from the Proposition. □
Corollary 3 states that summing up the Shapley value of coa-

lition I to player j, for any partition p of N, equals the Shapley
value of player j.

Corollary 4. For any partition p of N:X
J2p

ϕiJ N; vð Þ ¼ ϕi N; vð Þ; J � N; i 2 N ð24Þ

Proof. Follows from the Proposition. □
Corollary 4 states that summing up the Shapley value of player

i to coalition J, for any partition p of N, equals the Shapley value
of player i.

Example
Assume that S � N � U is a carrier of v, and I is a null coalition in
v defined as v S∪ Ið Þ ¼ v Sð Þ. Hausken and Mohr (2001, p. 468ff)

considered the game N ¼ f1; 2; 3g, v 1ð Þ ¼ 180, v 2ð Þ ¼ v 3ð Þ ¼
v 2; 3ð Þ ¼ 0, v 1; 2ð Þ ¼ 360, v 1; 3ð Þ ¼ v 1; 2; 3ð Þ ¼ 540. Inserting
into the definition of ϕiðv; SÞ gives the Shapley values ϕðS; vÞ ¼
ϕ1 N; vð Þ ϕ2 N; vð Þ½ ϕ3 N; vð Þ�T ¼ 390 30 120½ �T , where T
means transposed. The Shapley value of the eight coalitions of the
three elements in ϕðS; vÞ is given by Definition 1. The 3 × 3 value
matrix ϕij N; vð Þ giving the Shapley value of row player i to column
player j is

ϕij N; vð Þ ¼
295 25 70

25 25 �20

70 �20 70

2
64

3
75 ð25Þ

The 23 × 23 matrix in Table 3 gives the Shapley value of all
possible coalitions I to all possible coalitions J according to the
Proposition, I � N , J � N . The 3 × 3 matrix in Eq. (25) is
replicated in the upper left part of Table 3, to the right of the 8 × 1
column of 0’s giving the value of coalition I to the null coalition or
null player {0}, and below the 1 × 8 row of 0’s giving the value of the
null coalition {0} to coalition J. The lower right cell in Table 3 gives
the value v 1; 2; 3ð Þ ¼ 540 according to the Proposition, which is
the Shapley value of the set of all players to the set of all players,
which equals the Shapley value of the set of all players, which
equals the characteristic function v Nð Þ of the set N of all players.2

The Proposition for I ¼ f2; 3g and j= 3 gives ϕIj N; vð Þ ¼ 50
(row 2 from the bottom and column 5 from the right). The
Proposition gives ϕiJ N; vð Þ ¼ 50 for i ¼ 3 and J ¼ f2; 3g (col-
umn 2 from the right and row 5 from the bottom). The Propo-
sition for I ¼ f1; 3g and J ¼ f2; 3g gives ϕIJ N; vð Þ ¼ 145
(column 2 from the right and row 3 from the bottom). The
symmetry across the diagonal from top-left to bottom-right
according to the Proposition is such that ϕJI N; vð Þ ¼ 145. The
value 145 is found by summing four cells determined by the
intersection of rows 1 and 3 and columns 2 and 3 in Eq. (25), i.e.,
25� 20þ 70þ 70 ¼ 145.

Interpreting ϕIJ N; vð Þ
So far ϕij N; vð Þ and ϕIJ N; vð Þ are mathematical expressions
satisfying the Proposition, Lemmas 1–3, and Corollaries 1–4. We
can think of the Shapley value ϕiðN; vÞ of player i as an element
within an n-tuple, the Shapley value ϕij N; vð Þ of player i to player
j as an element within an n × n matrix, and the Shapley value
ϕIJ N; vð Þ of coalition I to coalition J as an element within an
2n ´ 2n matrix.

Hausken and Mohr (2001, p. 465) identified four interpreta-
tions of ϕiðN; vÞ, i.e., player i’s expected marginal contribution to
all n players, the weighted average of player i’s marginal con-
tribution to all n players, what player i can reasonably command
to himself, or player i’s fair share. See e.g., Roth (1988a) for some
similar interpretations. Analogously, ϕij N; vð Þ is interpreted as
player i’s expected marginal contribution to player j in a game of

Table 3 The Shapley value of row coalition I to column
coalition J.

{0} {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

{0} 0 0 0 0 0 0 0 0
{1} 0 295 25 70 320 365 95 390
{2} 0 25 25 −20 50 5 5 30
{3} 0 70 −20 70 50 140 50 120
{1,2} 0 320 50 50 370 370 100 420
{1,3} 0 365 5 140 370 505 145 510
{2,3} 0 95 5 50 100 145 55 150
{1,2,3} 0 390 30 120 420 510 150 540
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n players, the weighted average of player i’s marginal contribution
to player j in a game of n players, what player i can reasonably
command to himself when considering only players i and j in a
game of n players, or player i’s fair share when considering only
players i and j in a game of n players. Also analogously, ϕIJ N; vð Þ is
interpreted as coalition I’s expected marginal contribution to coa-
lition J in a game of n players, the weighted average of coalition I’s
marginal contribution to coalition J in a game of n players, what
coalition I can reasonably command to itself when considering only
coalitions I and J in a game of n players, or coalition I’s fair share
when considering only coalitions I and J in a game of n players.

Furthermore, Hausken and Mohr (2001, p. 466) interpreted
ϕij N; vð Þ as player i’s power over player j, since player i con-
tributes something player j values highly or is interested in. To the
extent player i contributes something player j is interested in,
player i has power over player j. This can also be interpreted so
that player j depends on player i, since player i contributes
something player j desires. Accordingly, ϕij N; vð Þ can be inter-
preted as a matrix for the value of player i to player j, as a power
matrix for player i’s power over player j, and as an interest matrix
for player j’s interest in player i, and as a dependence matrix for
how player j depends on player i.3

Disjoint coalitions I and J, I \ J ¼ ;. Since one player exists,
obviously two or n players also exist. That is, a team or group or
collection of players, referred to as a coalition, exists. Hence
mathematically, since ϕiðN; vÞ exists, ϕIðN; vÞ also exists, I � N .
We proceed with ϕIj N; vð Þ, first assuming I \ jf g ¼ ;, I � N . If
I ¼ i; kf g, the Proposition gives

ϕIj N; vð Þ ¼ ϕij N; vð Þ þ ϕkj N; vð Þ ð26Þ
Hence, since ϕijðN; vÞ and ϕkj N; vð Þ exist, ϕIjðN; vÞ exists. That

is, since player i and player k individually have values ϕij N; vð Þ
and ϕkj N; vð Þ to player j, coalition I ¼ i; kf g, which exists, has a
value ϕIj N; vð Þ to player j. This argument applies so that ϕIjðN; vÞ
exists as coalition I expands to I ¼ i; k; ¼ ;mf g, which means
that coalition I has maximally n− 1 members (players) since
I \ jf g ¼ ;.

We proceed with ϕiJ N; vð Þ, first assuming J \ if g ¼ ;, J � N . If
J ¼ j; kf g, the Proposition gives ϕiJ N; vð Þ ¼ ϕij N; vð Þ þ ϕik N; vð Þ.
Hence, since ϕijðN; vÞ and ϕik N; vð Þ exist, ϕiJðN; vÞ exists. That is,
since player i has a value ϕij N; vð Þ to player j, and player i has a
value ϕik N; vð Þ to player k, player i has a value ϕiJ N; vð Þ to
coalition J, which exists. This argument applies so that ϕiJ N; vð Þ
exists as coalition J expands to J ¼ j; k; ¼ ;mf g, which means
that coalition J has maximally n−1 members (players) since
J \ if g ¼ ;.

We proceed with ϕIJ N; vð Þ, first assuming I \ J ¼ ;, I � N ,
J � N . If I ¼ i; kf g and J ¼ j; qf g, the Proposition gives

ϕIJ N; vð Þ ¼ ϕij N; vð Þ þ ϕiq N; vð Þ þ ϕkj N; vð Þ þ ϕkq N; vð Þ ð27Þ
Hence, since ϕijðN; vÞ, ϕiq N; vð Þ, ϕkj N; vð Þ, and ϕkq N; vð Þ exist,

ϕIJ N; vð Þ exists. That is, since player i has a value ϕij N; vð Þ to
player j, player i has a value ϕiq N; vð Þ to player q, player k has a
value ϕkj N; vð Þ to player j, and player k has a value ϕkq N; vð Þ to
player q, coalition I, which exists, has a value ϕIJ N; vð Þ to coalition
J, which also exists. This argument applies so that ϕIJ N; vð Þ exists
as coalition I expands to I ¼ i; k; ¼ ;mf g, and coalition J
expands to J ¼ j; q; ¼ ; uf g, where I \ J ¼ ; means that the sum
of the number of members (players) in coalitions I and J is equal
to or less than n. This completes the interpretation of ϕIJ N; vð Þ
for disjoint coalitions I and J, I \ J ¼ ;.

One coalition is a subset of another coalition, I ∪ J ¼ I or
I ∪ J ¼ J. When one coalition is a subset of another coalition,
I ∪ J ¼ I or I ∪ J ¼ J , i.e., I \ J ¼ I if I � J , and I \ J ¼ J if J � I.
Starting with I ¼ J , ϕii N; vð Þ is the value of player i to itself,
which exists since ϕijðN; vÞ exists. The extension from ϕiðN; vÞ to
ϕIðN; vÞ and subsequent discussion above means that ϕII N; vð Þ is
the value of coalition I to itself, which exists, I � N .

If i 2 I, ϕIi N; vð Þ is the value of coalition I to player i which is a
member of coalition I. If I ¼ i; k; ¼ ;mf g � N , the Proposition
implies

ϕIi N; vð Þ ¼ ϕii N; vð Þ þ ϕki N; vð Þ þ � � � þ ϕmi N; vð Þ ð28Þ
where ϕii N; vð Þ, ϕki N; vð Þ,…, ϕmi N; vð Þ exist as discussed above,
and thus ϕIi N; vð Þ exists for i 2 I � N .

If j 2 J , ϕjJ N; vð Þ is the value of player j to coalition J, where
player j is a member of coalition J . If J ¼ j; q; ¼ ; uf g � N , the
Proposition implies

ϕjJ N; vð Þ ¼ ϕjj N; vð Þ þ ϕjq N; vð Þ þ � � � þ ϕju N; vð Þ ð29Þ
where ϕjj N; vð Þ, ϕjq N; vð Þ,…, ϕju N; vð Þ exist as discussed above,
and thus ϕjJ N; vð Þ exists for j 2 J � N .

If I � J , ϕIJ N; vð Þ is the value of coalition I to coalition J, where
coalition I is a subcoalition of coalition J. If I ¼ i; ¼ ; jf g � N
and J ¼ i; ¼ ; j; q; ¼ ; uf g � N , the Proposition implies

ϕIJ N; vð Þ ¼ ϕii N; vð Þ þ � � � þ ϕji N; vð Þ þ � � � þ ϕij N; vð Þ þ � � �
þϕjj N; vð Þ þ ϕiq N; vð Þ
þ � � � þ ϕjq N; vð Þ þ � � � þ ϕiu N; vð Þ þ � � � þ ϕju N; vð Þ

ð30Þ
where ϕii N; vð Þ,…, ϕji N; vð Þ,…, ϕij N; vð Þ,…, ϕjj N; vð Þ, ϕiq N; vð Þ,
…, ϕjq N; vð Þ,…, ϕiu N; vð Þ,…, ϕju N; vð Þ exist as discussed above,
and thus ϕIJ N; vð Þ exists for I � J � N .

If J � I, ϕIJ N; vð Þ is the value of coalition I to coalition J which
is a subcoalition of coalition I. If I ¼ i; ¼ ; j; k; ¼ ;mf g � N and
J ¼ i; ¼ ; jf g � N , the Proposition implies

ϕIJ N; vð Þ ¼ ϕii N; vð Þ þ � � � þ ϕji N; vð Þ þ ϕki N; vð Þ þ � � � þ ϕmi N; vð Þ
þ � � � þ ϕij N; vð Þ
þ � � � þ ϕjj N; vð Þ þ ϕkj N; vð Þ þ � � � þ ϕmj N; vð Þ

ð31Þ
where ϕii N; vð Þ,…, ϕji N; vð Þ, ϕki N; vð Þ,…, ϕmi N; vð Þ,…, ϕij N; vð Þ,
…, ϕjj N; vð Þ, ϕkj N; vð Þ,…, ϕmj N; vð Þ exist as discussed above, and
thus ϕIJ N; vð Þ exists for J � I � N .

Overlapping coalitions I and J, I \ J ≠ ;. We finally consider
I \ J ≠ ; where either I � I ∪ J or J � I ∪ J , which means that
coalition I and coalition J overlap partly. Assume first that I ¼
i; ¼ ; j; k; ¼ ;mf g � N and J ¼ i; ¼ ; j; q; ¼ ; uf g � N , where
k; ¼ ;mf g \ q; ¼ ; uf g ¼ 0. The Proposition implies

ϕIJ N; vð Þ ¼ ϕii N; vð Þ þ � � � þ ϕji N; vð Þ þ ϕki N; vð Þ þ � � � þ ϕmi N; vð Þ
þ � � � þ ϕij N; vð Þ þ � � � þ ϕjj N; vð Þ þ ϕkj N; vð Þ þ � � � þ ϕmj N; vð Þ
þϕiq N; vð Þ þ � � � þ ϕjq N; vð Þ
þϕkq N; vð Þ þ � � � þ ϕmq N; vð Þ þ � � � þ ϕiu N; vð Þ þ � � � þ ϕju N; vð Þ
þ ϕku N; vð Þ þ � � � þ ϕmu N; vð Þ

ð32Þ
where ϕii N; vð Þ,…, ϕji N; vð Þ, ϕki N; vð Þ,…, ϕmi N; vð Þ,…, ϕij N; vð Þ,
…, ϕjj N; vð Þ, ϕkj N; vð Þ,…, ϕmj N; vð Þ, ϕiq N; vð Þ,…, ϕjq N; vð Þ,
ϕkq N; vð Þ,…, ϕmq N; vð Þ,…, ϕiu N; vð Þ,..., ϕju N; vð Þ, ϕku N; vð Þ,…,
ϕmu N; vð Þ exist as discussed above, and thus ϕIJ N; vð Þ exists for
I � N , J � N .
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Whereas two non-overlapping coalitions I and J, I \ J ¼ ;, can
form and coexist, two partly overlapping coalitions I and J,
I \ J ≠ ;, cannot both form and coexist at the same time. Whether
no or one or two coalitions have formed or not is irrelevant in
this article. The Shapley value ϕIJ N; vð Þ of coalition I to coalition J
can always be calculated, even when coalition formation is
hypothetical, i.e., regardless how I � N and J � N . Each player
i 2 N , or any player not involved in the game, considers the
hypothetical possibility that coalitions I and J are formed, and
determines the value of the former to the latter. The section
“Applying the weighted Shapley value” considers how coalitions
emerge by assigning different weights to the players, as assumed
by Shapley (1953a) and formulated by Dragan (2009) and Kalai
and Samet (1987).

Usefulness, future research, and applications
The practical usefulness is especially evident for disjoint coali-
tions, since if two coalitions are both valuable to each other, they
may merge. The conditions for the merger may depend on the
different values they assign to each other. If one coalition values
another coalition positively, while the other coalition values the
first negatively, a merger may not occur, or may occur if external
funding is acquired enabling side payments. If both coalitions
value each other negatively, a merger cannot be expected, and the
coalitions may be able to explain the non-merger to themselves.

If one coalition is contained within another coalition, as a
subset or proper subset, the value of the former to the latter may
help determine salaries and reimbursement, and the value of the
latter to the former may aid the former in determining whether it
should still belong to the latter coalition, e.g., compared against
outside options such as external employment opportunities.

If two coalitions overlap, the issue rises of which coalitions
have formed and which have not. This article provides Shapley
values of coalitions to each other regardless of whether they
overlap, have formed, or are hypothetical. First, if none have
formed, the values may indicate which should form. Second, if
one has formed while the other has not, the values may suggest,
indirectly or through some deeper scrutiny, whether this coalition
should continue to exist, or whether various alternatives should
replace it. Third, two overlapping coalitions may jointly exist
when certain conditions exist. For example, the two coalitions
may be assigned two different tasks, and the overlapping mem-
bers work on both tasks. Alternatively, the two coalitions may
work on the same task, but the overlapping members keep it as a
secret that they also belong to the other coalition. This means
analyzing a game with incomplete information, suggested for
future research.

The article enables interpreting existing results in innovative
ways, recommended for future research. Examples are the various
solution notions in cooperative game theory, and the properties
for the linkages between these (Driessen, 1988), i.e., particularly
the kernel, nucleolus, bargaining set, core, the von
Neumann–Morgenstern solution (also known as the stable set),
the Shapley value (Aumann and Dreze, 1974), the strong epsilon-
core (Shapley and Shubik, 1966), and the core of a simple game
with respect to preferences (Nakamura, 1979). For these known
results, the value of each player and coalition to each other player
and coalition should be determined.

Similar analyses can be conducted for theories of coalition
formation. Examples are Myerson’s (1980) conference structures
and fair allocation rules, Shenoy’s (1979) models, and work by
Kurz (1988) and Aumann and Myerson (1988). Any theory of
coalition building needs to account, directly or indirectly, for
which values coalitions have to each other. Insights about

coalition formation impact which coalitions are likely to form and
not form, and which coalitions can be expected to survive or not
survive.

Exemplifying practical applications, Hausken and Mohr (2001)
applied the analysis to determine the changing values of the
members of the European Union in the European Union Council
of Ministers during the enlargements in 1973, 1981, 1986, and
1995. The largest players lost voting power. It was shown how the
ϕij matrix is applicable to rank the importance of player i to
player j. More generally, the ϕIJ matrix is applicable to rank the
importance of coalition I to coalition J. The example can be
extended to the subsequent enlargements since 1995, and Brexit
January 31, 2020.

Applying the weighted Shapley value
One method for assuming different probabilities for which coa-
litions emerge is to assign different weights to the players, as
assumed by Shapley (1953a) for the weighted Shapley value. Kalai
and Samet (1987, p. 206) suggested that “bargaining ability,
patience rates, or past experience” may impact weights. In addi-
tion, some players represent larger constituencies, possess more
wealth, have higher competence, etc., which may impact weights.
Kalai and Samet (1987, p. 211) assumed the following Axiom 4,
required in addition to Axiom 1, Axiom 2a, Axiom 2b, and
Axiom 3 for the unique weighted Shapley value ϕw:

Axiom 4. Partnership. If, in the game (N, v), for each T � S
and each R � NnS, v R∪Tð Þ ¼ v Rð Þ, then

ϕi v; Sð Þ ¼ ϕi
X
k2S

ϕk vð ÞuS; S
 !

8i 2 S ð33Þ

Applying Dragan’s (2009) formulation. When λi is the weight
assigned to player i for the unanimity game uS within coalition
S � N , S≠ ;, and λ ¼ ½λ1; ¼ ; λi; ¼ ; λn� 2 Rn

þþ is the vector of
weights across the n players, player i’s weighted Shapley value is

ϕwi uS;N; λð Þ ¼ λiP
k2S λk

08 i =2 S

8i 2 S

8>>><
>>>:

ð34Þ

Among the many formulations of the weighted Shapley value,
Dragan’s (2009, p. 2) Eq. (6) and Radzik’s (2012, p. 409) Eq. (12)
retain v Sð Þ � v S n if gð Þ, which enables proving Lemma 1w below
analogously to proving Lemma 1. Applying Dragan’s (2009) more
compact notation, consistently with Shapley (1953a), the
weighted Shapley value for player i 2 N for the game ðN; vÞ is

ϕwi v;N; λð Þ ¼ λi
X
S�N;
i2S

γS v Sð Þ � v S n if gð Þð Þ ð35Þ

where

γS ¼
X
T�N;
T\S¼;

�1ð ÞtP
k2T ∪ S λk

; 8S � N; S≠ ; ð36Þ

Assuming the unanimity game where uR Sð Þ ¼ 1 if R � S and
uR Sð Þ ¼ 0 otherwise, Axiom 1, Axiom 2a, Axiom 2b, and Axiom
3 imply ϕi uR; Sð Þ ¼ 1= Rj j if i 2 R and ϕi uR; Sð Þ ¼ 0 otherwise.

Lemma 1w. The weighted Shapley value ϕwiðv;N; λÞ for player
i 2 N in a game of n ¼ Nj j players is decomposed into n different
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values ϕwij v;N; λð Þ, j 2 N , satisfying

ϕwi v;N; λð Þ ¼
Xn
j¼1

ϕwij v;N; λð Þ ð37Þ

where

ϕwij v;N; λð Þ ¼ λi
X
S�N;
i2S

γS ϕwj v; S; λð Þ � ϕwj v; S n if g; λð Þ
� �

ð38Þ

Proof. Using Axiom 2a for any subcoalition S � N , we rewrite
Eq. (35) as

ϕwi v;N; λð Þ ¼ λi
X
S�N;
i2S

γS
X
j2S

ϕwj v; S; λð Þ �
X
j2S;
j≠i

ϕwj v; S; λð Þ

0
B@

1
CA
ð39Þ

For any player j outside subcoalition S � N , i.e., j =2 S, but
among the set N of players, i.e., j 2 N , Axiom 2b states that
ϕj v; Sð Þ ¼ 0. Hence Eq. (39) is rewritten as

ϕwi v;N; λð Þ ¼ λi
X
S�N;
i2S

γS
Xn
j¼1

ϕwj v; S; λð Þ �
Xn
j¼1;
j≠i

ϕwj v; S; λð Þ

0
B@

1
CA
ð40Þ

which is rewritten as

ϕwi v;N; λð Þ ¼
Xn
j¼1

λi
X
S�N;
i2S

γS ϕwj v; S; λð Þ � ϕwj v; S n if g; λð Þ
� �

ð41Þ
where λi multiplied by the second summation sign equals

ϕwij v;N; λð Þ in Eq. (38). □
Lemma 2w. For all i 2 N , j 2 N ,

ϕwij v;N; λð Þ ¼ ϕwji v;N; λð Þ ð42Þ
Proof. Analogous to the proof of Lemma 2. □
Lemma 3w. The weighted Shapley value ϕwjðv;N; λÞ for player

j 2 N in a game of n ¼ Nj j players is decomposed into n different
values ϕwij v;N; λð Þ, i 2 N , satisfying

ϕwj v;N; λð Þ ¼
Xn
i¼1

ϕwij v;N; λð Þ ð43Þ

Proof. Analogous to the proof of Lemma 3. □
Proposition w. The weighted Shapley value of coalition I to

coalition J, I � N , J � N , in an n-person game is

ϕwIJ v;N; λð Þ ¼
X
i2I;
j2J

ϕwij v;N; λð Þ ¼ ϕwJI v;N; λð Þ ð44Þ

Proof. Analogous to the proof of the Proposition. □

Applying Kalai and Samet’s (1987) formulation. Kalai and
Samet (1987) allowed players to have zero weight, assuming a
lexicographic weight system. Their notation is as follows (Kalai
and Samet, 1987, pp. 208–209): R Sð Þ is the set of all orders R in
coalition S. BR;i is the set of players preceding i in R in R Nð Þ. For
an ordered partition Σ ¼ ðS1; ¼ ; SmÞ of N, RΣ is the set of
orders for N in which all the players of Si precede those of Si,
i ¼ 1; ¼ ;m� 1. Each R inRΣ is expressed as R ¼ ðR1; ¼ ;RmÞ,
Ri 2 R Sið Þ, i ¼ 1; ¼ ;m. For R ¼ ði1; ¼ ; isÞ in R Sð Þ, Pλ Rð Þ ¼
Qs

j¼1

λijPj

k¼1
λik

is a probability distribution associated with λ over

R Sð Þ, s ¼ Sj j, λ 2 ES
þþ. Pλ Rð Þ is obtainable by arranging the

players of S in an order, starting from the end. The probability of
adding a player to the beginning of a partially created line is the
ratio between the player’s weight and the sum of the weights of
the players of S not yet in the line. A probability distribution Pω
over R Nð Þ is associated with each weight system ω ¼ ðλ;ΣÞ.
Pω Rð Þ ¼Qm

i¼1 PλSi
Rið Þ for R in RΣ, where λSi is the projection of

λ on ESi , and Pω vanishes outside RΣ. Player i’s contribution is
Ci v;Rð Þ ¼ v BR;i ∪ if gð Þ � v BR;ið Þ for game (N, v) and order R in
R Nð Þ. Kalai and Samet (1987) proved that the weighted Shapley
value of player i 2 N equals his expected contribution with
respect to Pω, i.e.,

ϕωi v;N;ωð Þ ¼ EPω Ci v; �ð Þð Þ ¼ EPω v B�;i ∪ if g� �� v B�;i� �� � ð45Þ
Lemma 1ω. The weighted Shapley value ϕωiðv;N;ωÞ for player

i 2 N in a game of n ¼ Nj j players is decomposed into n different
values ϕωij v;N;ωð Þ, j 2 N , satisfying

ϕωi v;N;ωð Þ ¼
Xn
j¼1

ϕωij v;N;ωð Þ ð46Þ

where

ϕωij v;N;ωð Þ ¼ EPω ϕωj v; �;ωð Þ � ϕωj v; � n if g;ωð Þ
� �

ð47Þ

Proof. Since Kalai and Samet (1987) in Eq. (45) use · in B�;i to
denote an order, we do the same. Since B�;i is the set of players
preceding i in ·, i is not included in B·,i, whereas i is included in
B�;i ∪ if g. Thus, using Axiom 2a for any subcoalition � � N , we
rewrite Eq. (45) as

ϕωi v;N;ωð Þ ¼ EPω
X
j2�

ϕωj v; �;ωð Þ �
X
j2�;
j≠i

ϕωj v; �;ωð Þ

0
B@

1
CA ð48Þ

For any player j outside order � � N , i.e., j =2 �, but among the
set N of players, i.e., j 2 N , Axiom 2b states that ϕωj v; �;ωð Þ ¼ 0.
Hence Eq. (48) is rewritten as

ϕωi v;N;ωð Þ ¼ EPω
Xn
j¼1

ϕωj v; �;ωð Þ �
Xn
j¼1;
j≠i

ϕωj v; �;ωð Þ

0
B@

1
CA ð49Þ

which, since the summation can be placed outside the expected
value, is rewritten as

ϕωi v;N;ωð Þ ¼
Xn
j¼1

EPω ϕωj v; �;ωð Þ � ϕωj v; � n if g;ωð Þ
� �

ð50Þ

where the expression inside the summation sign equals
ϕωi v;N;ωð Þ in Eq. (47). □

Lemma 2ω. For all i 2 N , j 2 N ,

ϕωij v;N;ωð Þ ¼ ϕωji v;N;ωð Þ ð51Þ
Proof. Analogous to the proof of Lemma 2. □
Lemma 3ω. The weighted Shapley value ϕωj v;N;ωð Þ for player

j 2 N in a game of n ¼ Nj j players is decomposed into n different
values ϕωij v;N;ωð Þ, i 2 N , satisfying

ϕωj v;N;ωð Þ ¼
Xn
i¼1

ϕωij v;N;ωð Þ ð52Þ

Proof. Analogous to the proof of Lemma 3. □
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Proposition ω. The weighted Shapley value of coalition I to
coalition J, I � N , J � N , in an n-person game is

ϕωIJ v;N;ωð Þ ¼
X
i2I;
j2J

ϕωij v;N;ωð Þ ¼ ϕωJI v;N;ωð Þ ð53Þ

Proof. Analogous to the proof of the Proposition. □

Conclusion
Shapley’s (1953b) value has set its mark on science. Hausken and
Mohr (2001) decomposed the value to a symmetric n × n matrix
giving the value ϕijðN; vÞ of row player i to column player j in a
game (N,v) of a set N of players, n= |N|. This article generalizes
to a symmetric 2n × 2n matrix giving the value ϕIJðN; vÞ of row
coalition I to column coalition J, observing that an n-person game
has 2n coalitions including the empty coalition and the coalition
of all n players. Values of coalitions to other coalitions can be
positive, zero, or negative. The results also apply for weighted
Shapley values.

The Shapley values for an n-person game are usually repre-
sented with an n × 1 vector replicated in the bottom row of the
2n × 2n matrix comprising only the columns of individual players
numbered from 1 to n, and due to symmetry also replicated in the
rightmost column of the 2n × 2n matrix comprising only the rows
of individual players numbered from 1 to n. The n × 1 vector is
determined by summing the elements in all columns or all rows
in the n × n matrix which is replicated in the upper left part of the
2n × 2n matrix comprising rows and columns for the n individual
players.

The article presents results, illustrated with an example,
demonstrating desirable properties of the matrix. First, the
Shapley value of a coalition to a player equals the sum of the
Shapley values of all players in the coalition to the given player.
Due to symmetry, this equals the value of the given player to the
coalition. Second, the Shapley value of a coalition to another
coalition equals the sum of the Shapley values of each player in
the first coalition to each player in the second coalition, regardless
of whether the coalitions are disjoint, overlap partly, or coincide.
Third, the Shapley value of a coalition to all players equals the
Shapley value of the coalition, which equals the sum of the
Shapley values of all players in the coalition. Fourth, the sum of
the Shapley values to a player of disjoint coalitions comprising all
players equals the Shapley value of the player. Fifth, the sum of
the Shapley values of a player to a coalition, among multiple
disjoint coalitions comprising all players, equals the Shapley value
of the player. All these five values are specified in the corre-
sponding cell in the 2n × 2n matrix. These five values are not
provided by specifying the characteristic function for the different
coalitions, which merely gives a number for the collective payoff a
set of players receives by forming a coalition. Hence the 2n × 2n

matrix provides substantially more information than merely
calculating the characteristic function. In particular, the value of
every player and coalition to every other player and coalition is
specified for all possible coalitions. The advantages of the 2n × 2n

matrix outweigh the costs of developing it, which is low with
today’s computers.

Received: 5 March 2020; Accepted: 25 August 2020;

Notes
1 According to Shapley’s (1953b, p. 33) proof, for each coalition S � N , the symmetry
Axiom 1 implies that for each i 2 S; j 2 S; k 2 S; l 2 S; i≠ j; k≠ l, ϕij N; vð Þ ¼ ϕkl N; vð Þ
and ϕii N; vð Þ ¼ ϕjj N; vð Þ.

2 Table 3 illustrates that some players or coalitions may be a threat or no threat to the
existence of various coalitions. If such players or coalitions make good on their latent
threats, coalitions may dissolve. Then the issue arises which alternative coalitions
emerge, and which players or coalitions may be a threat or no threat to the existence of
these alternative coalitions.

3 Emerson (1962, p. 32) defined “The power of actor A over actor B <as> the amount of
resistance on the part of B which can be potentially overcome by A,” and “The
dependence of actor A upon actor B <as> (1) directly proportional to A’s motivational
investment in goals mediated by B, and (2) inversely proportional to the availability of
those goals to A outside of the A-B relation.” Cook and Emerson (1978) generalized
from dyads to exchange networks.
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