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Abstract: In a two-period game, Player 1 produces zero-day exploits for immediate deployment or
stockpiles for future deployment. In Period 2, Player 1 produces zero-day exploits for immediate
deployment, supplemented by stockpiled zero-day exploits from Period 1. Player 2 defends in both
periods. The article illuminates how players strike balances between how to exert efforts in the
two periods, depending on asset valuations, asset growth, time discounting, and contest intensities,
and when it is worthwhile for Player 1 to stockpile. Eighteen parameter values are altered to illustrate
sensitivity. Player 1 stockpiles when its unit effort cost of developing zero-day capabilities is lower in
Period 1 than in Period 2, in which case it may accept negative expected utility in Period 1 and when
its zero-day appreciation factor of stockpiled zero-day exploits from Period 1 to Period 2 increases
above one. When the contest intensity in Period 2 increases, the players compete more fiercely with
each other in both periods, but the players only compete more fiercely in Period 1 if the contest
intensity in Period 1 increases.
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1. Introduction

1.1. Background

Zero-day attacks are becoming increasingly common. The most well-known attack, utilizing the
Stuxnet worm to exploit four zero-day vulnerabilities, is probably the 2010 attack on the Natanz nuclear
facility in Iran [1]. A so-called zero-day vulnerability means that a defender’s vulnerability in its
computer system is known to the defender for zero days before it is discovered, most commonly through
an attack. Zero-day attacks require resources and are challenging to produce. Once produced, the next
challenge is whether to deploy them immediately or stockpile them for deployment at some suitable
future point in time. Stockpiling can be useful for a player in providing security in the knowledge
that threats posed by an opposing player can be ameliorated or eliminated. A more recent zero-day
attack targeted Microsoft Windows in Eastern Europe in June 2019 [2]. The exploit abused a local
privilege escalation vulnerability in Microsoft Windows pertaining to the NULL pointer dereference
in the win32k.sys component (a NULL pointer dereference is an error causing a segmentation fault,
which occurs when a program tries to read or write to memory with a NULL pointer). For other recent
zero-day attacks, see PhishProtection [3].
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1.2. Contribution

This article intends to capture the general aspects of this phenomenon, which are that a defender
has an asset it seeks to defend, while the attacker seeks to attack the asset over two periods—by
attacking and stockpiling in Period 1, and attacking and utilizing the stockpile in Period 2. A variety of
reasons and justifications for stockpiling are illustrated. A two-player two-period game is analyzed.
Player 1 is equipped with resources in Period 1, which can be utilized for producing zero-day exploits
for immediate deployment in Period 1 or stockpiled for future deployment in Period 2. Player 2 defends
against the attack in Period 1. Zero-day exploits may become more valuable if the stakes involved
in their deployment increase, but this also entails the risk of becoming obsolete, e.g., if knowledge
of their content leaks. We thus assume that Player 1′s stockpiled zero-day exploits may appreciate
or depreciate in value from Period 1 to Period 2, i.e., the stockpiled zero-day exploits may become
more or less valuable. Such changes in value may be due to technological, economic, or societal factors,
market conditions, or the players’ preferences. In Period 2, Player 1 produces new zero-day exploits
for immediate deployment in Period 2 and also deploys its stockpiled zero-day exploits. In Period 2,
the defender defends against the attack, i.e., against both the zero-day exploits produced by Player 1 in
Period 2 and the appreciated or depreciated zero-day exploits stockpiled from Period 1 to Period 2.
The presence of Period 2 enables Player 1 to strike a balance between whether or not to stockpile in
Period 1, and both players strike balances between how to exert efforts in both periods.

The research questions are how the attacking Player 1 allocates its resources between immediate
zero-day attack in Period 1 and stockpiling for attack in Period 2, how the defender defends in both
periods, and how the players’ strategic choices in both periods depend on the model characteristics,
i.e., Player 1′s available resources, the contest intensities in both periods, the zero-day appreciation
factor from Period 1 to Period 2, and both players’ unit costs of effort, asset valuations, and time
discount factors. Players in a cyberwar are always in a contest, regardless of the extent to which
they understand the particulars of the contest, which justifies the use of the widely applied contest
success function. The model in this article is applicable beyond zero-day vulnerabilities, assuming one
attacking player and one defending player over two periods, where the attacking player can stockpile
its capabilities from Period 1 to Period 2.

1.3. Literature

Aside from Hausken and Welburn [4] and, in part, Chen et al. [5], considered in Section 1.3.1,
the literature has not directly considered the research questions in this article but has instead focused
on various indirectly linked research questions, as shown in the subsequent subsections below.
The literature on zero-day attacks is mostly concerned with detecting, mitigating, understanding,
and simulating zero-day attacks. Most of the articles below have been identified by searching for the
two words “zero-day” on the Web of Science database for the most recent years. Regarding zero-day
vulnerabilities and their exploits, see Ablon and Bogart [6].

1.3.1. Game Theoretic Analyses

In earlier research, Hausken and Welburn [4] considered a one-period game theoretic model
of zero-day cyber exploits, incorporating the benefit of stockpiling into the same period as when
production and zero-day attack are determined. They found, for example, that decreasing Cobb
Douglas output elasticity for a player’s stockpiling causes its attack to increase and its expected utility
to eventually reach a maximum, while the opposing player’s expected utility reaches a minimum.
Chen et al. [5] analyzed whether two countries should disclose or not disclose to the vendor the
hardware/software vulnerabilities they discover in a repeated game. Disclosing may benefit the country
if it gets exposed by the vulnerability. Not disclosing may benefit the country’s defense given that the
other country does not discover the vulnerability and is exposed by it. They develop an algorithm and
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find that countries benefit from discovering vulnerabilities quickly and from incurring low costs of
developing exploits.

1.3.2. Detection, Prioritization, Ranking, and Classification

Singh et al. [7] realized the challenge in defending against zero-day attacks. They proposed a
framework for detection and prioritization based on likelihood by identifying the zero-day attack path
and ranking the severity of the vulnerability. [8] developed a detection model for crypto-ransomware
zero-day attacks. The model is based on an anomaly-based estimator, which suffers from high rates of
false alarms, supplemented by behaviorally-based classifiers. Venkatraman and Alazab [9] reviewed
existing visualization techniques for zero-day malware and designed a visualization using a similarity
matrix method for classifying malware.

1.3.3. Detection and Identification by Applying Probability Theory and Statistics

Sun et al. [10] acknowledged the information asymmetry between attackers and defenders and
applied Bayesian networks for identifying zero-day attack paths probabilistically; this is intended to
be superior to targeting individual zero-day exploits. Parrend et al. [11] presented a framework for
characterizing zero-day attacks and multistep attacks and relevant countermeasures. They applied
rule-based and outlier-detection-based statistical solutions and machine learning, which detects behavioral
anomalies and tracks event sequences. Singh et al. [12] proposed a hybrid layered architecture framework
for real-time zero-day attack detection based on statistics, signatures, and behavior techniques.

1.3.4. Detection Applying Learning

Kim et al. [13] proposed a method to detect zero-day malware. The method generates fake malware
and learns to distinguish it from real malware. A deep autoencoder extracts appropriate features and
stabilizes the generative adversarial network training. Gupta and Rani [14] observed that zero-day malware
grows exponentially in terms of volume, variety, and velocity. They proposed a big data framework with
scalable architecture and machine learning for detection.

1.3.5. Mitigation, Robustness, Recovery, and Simulation

Sharma et al. [15] presented a consensus framework for mitigating zero-day attacks, incorporating
context behavior, an alert message protocol, and critical data-sharing protocol for reliable communication.
Haider et al. [16] applied data sets based on the Windows Operating System to evaluate the robustness
of host-based intrusion detection systems to zero-day and stealth attacks. Tran et al. [17] implemented
an epidemiological model to combat zero-day attacks. They proposed a dynamic recovery model to
combat the simulated attack and minimize disruptions. Tidy et al. [18] simulate previous and hypothetical
zero-day worm epidemiology scenarios, accounting for susceptible populous and stealth-like behavior on
the dynamic, heterogeneous internet.

1.3.6. Filtering, Protocol Context, Honeypots, and Signatures

Chowdhury et al. [19] proposed a multilayer hybrid strategy for zero-day filtering of phishing
emails by using training data collected during an earlier time span. Duessel et al. [20] incorporated
protocol context into payload-based anomaly detection of zero-day attacks, integrating syntactic
and sequential features of payloads, thus proceeding beyond analyzing plain byte sequences.
Chamotra et al. [21] suggested baselining high-interaction honeypots, i.e., identifying and whitelisting
legitimate system activities in the honeypot attack surface. Subsequently, captured zero-day attacks are
mapped to the vulnerabilities exposed by the honeypot. Afek et al. [22] presented a tool for extracting
zero-day signatures for high-volume attacks, intended to detect and stop unknown attacks.
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1.3.7. Cyber Security

More generally, for cybersecurity, Baliga et al. [23] identified opportunities for cyber deterrence with
detection and the potential to undermine deterrence. Edwards et al. [24] considered a game theoretic
model of blame, with an attacker and a defender, involving attribution, attack tolerance, and peace
stability. Welburn et al. [25] found that although a cybersecurity defender prefers not to signal truthfully,
the defender can enhance deterrence through signaling, which has implications for cyber deterrence
policies. Nagurney and Shukla [26] considered three models for cybersecurity investment involving
noncooperation, the Nash bargaining theory with information sharing, and system optimization
with cooperation.

1.3.8. Information Security

Within information security, game theoretic research has focused on data survivability versus
security in information systems [27], substitution and interdependence [28–30], returns on information
security investment [31,32], and information sharing to prevent attacks [33–37]. See Do et al. [38],
Hausken and Levitin [39], and Roy et al. [40] for reviews on game theoretic cybersecurity research.

1.4. Article Organization

Section 2 presents the model. Section 3 analyzes the model. Section 4 illustrates the solution.
Section 5 discusses the results. Section 6 concludes.

2. The Model

Consider two players in a simultaneous move two-period game.

2.1. Period 1

Assume that Player 1 in Period 1 gets cyber resources R11 (e.g., capital, manpower, competence)
from a national budget, which is allocated to develop zero-day exploits (zero-days, for short) Z11

deployed in Period 1 to exploit zero-day vulnerabilities for Player 2 at unit cost b11 and develop
zero-day exploits S1 stockpiled for use in Period 2 at unit cost b11. The Nomenclature is shown before
the reference list. Player 1′s upper constraint R11 for resource allocation in Period 1 is

R11 ≥ b11Z11 + b11S1 = R11b (1)

where R11b is the actual amount of resources used by Player 1 in Period 1. Player 2 exerts defense effort
D21 in Period 1 at unit cost a21 to defend its asset, which it values as V2 and Player 1 values as V1.
Figure 1 illustrates Period 1.

We apply the widely used ratio form contest success function [41], which is a plausible and widely
used method for assessing two opposing players’ success. See Hausken and Levitin [42], Hausken [43],
and Congleton et al. [44] for the use of the contest success function. In Period 1, Player 1′s expected
contest success is p11 and Player 2′s expected contest success is p21, i.e.,

p11 =
Zv

11

Zv
11 + Dv

21
, p21 =

Dv
21

Zv
11 + Dv

21
(2)

where v, v ≥ 0, is the contest intensity in Period 1. Expected contest success is usually interpreted
as a probability between 0 and 1. It can also be interpreted as a guaranteed fraction of an asset one
competes to obtain, which presumes that the asset is divisible. When v = 0, the contest is egalitarian,
and efforts do not matter. When v = 1, efforts matter proportionally. When v = ∞, “winner-takes-all,”
so that exerting slightly more effort than one’s opponent guarantees contest success. When 0 < v < 1,
a disproportional advantage exists of investing less than one’s opponent. When v > 1, a disproportional
advantage exists of investing more than one’s opponent. In Equation (2), the ratios have a sum of two
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efforts in the denominator and one of the efforts in the numerator. That gives a number between zero
and one, which specifies contest success.

With these assumptions, Player i’s expected utility in Period 1 is

U11 = p11V1 − b11Z11 − b11S1 =
Zv

11
Zv

11+Dv
21

V1 − b11Z11 − b11S1,

U21 = p21V2 − a21D21 =
Dv

21
Zv

11+Dv
21

V2 − a21D21

(3)

where Equations (1) and (2) have been inserted. Player 1′s two free-choice variables in Period 1 are
Z11 and S1, constrained by Equation (1). Player 1 obtains no utility in Period 1 for allocating S1 to
stockpiling. Player 2′s one free-choice variable in Period 1 is D21, constrained by D21 ≥ 0.
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In Period 2, Player 1 applies its stockpiled zero-day exploits S1 from Period 1, if it has stockpiled.
Additionally, in Period 2, Player 1 exerts effort Z12 at unit cost b12 to develop zero-day exploits,
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against which Player 2 exerts defense effort D22 at unit cost a22. More specifically, assume that Player 1
in Period 2 applies its stockpiled zero-day exploits S1 from Period 1, either keeping its same value
with no appreciation if δ1 = 1, appreciating in value if δ1 > 1, or depreciating in value if 0 ≤ δ1 ≤ 1.
Appreciation of zero-day exploits over time occurs if technical, economic, or cultural circumstances
change, making zero-day exploits more useful. In contrast, depreciation occurs if some aspects of the
zero-day exploits leak or somehow becomes known or if technological or other developments make
zero-day exploits less valuable over time. For example, increased competence may enable defenders
against zero-day exploits to defend better, even though the nature of the zero-day exploit is unknown.
100% depreciation is expressed as δ1 = 0.

Player 1 in Period 2 exerts effort Z12 at unit cost b12 to develop zero-day exploits deployed in Period
2 to exploit zero-day vulnerabilities for Player 2. Player 2 exerts defense effort D22 in Period 2 at unit

cost a22 to defend its asset, which it values as V′2 =
Dv

21
Zv

11+Dv
21

V2 and Player 1 values as V1
′ =

Zv
11

Zv
11+Dv

21
V1.

In Period 2, Player 1′s expected contest success is p21 and Player 2′s expected contest success is p22, i.e.,

p12 =
(Z12 + δ1S1)

w

(Z12 + δ1S1)
w + Dw

22

, p22 =
Dw

22

(Z12 + δ1S1)
w + Dw

22

(4)

where w, w ≥ 0, is the contest intensity in Period 2, with the same interpretation as v for Period 1,
and S1 is determined by (1).

Assume that Player 2′s asset, valued as Vi by Player i, i = 1, 2, grows with a growth factor gi from
Period 1 to Period 2; gi ≥ 0, with an interpretation similar to that of δ1 for Player 1′s stockpiling S1.
That is, an asset with value Vi grows if gi > 1, keeps its value if gi = 1, and loses value if 0 ≤ gi < 1.
Furthermore, assume that Player 2 in Period 2 gets injected with a new fresh asset valued as Wi by
Player i, i = 1, 2. With these assumptions, Player i’s expected utility in Period 2 is

U12 = p12
(
g1V′1 + W1

)
− b12Z12 =

(Z12+δ1S1)
w

(Z12+δ1S1)
w+Dw

22

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)
− b12Z12,

U22 = p22(g2V2
′ + W2) − a22D22 =

Dw
22

(Z12+δ1S1)
w+Dw

22

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
− a22D22

(5)

Player 1′s one free-choice variable in Period 2 is Z12, constrained by Z12 ≥ 0. Player 2′s one
free-choice variable in Period 2 is D22, constrained by D21 ≥ 0.

For the two-period game as a whole, with time discount factor βi, 0 ≤ βi ≤ 1, Player i’s expected
utility over the two periods is

U1 = Max(0, U11 + β1U12), U2 = U21 + β2U22 (6)

The Max function is used for Player 1 since Player 1 will not use its entire budget R11 if that causes
negative expected utility U1.

3. Solving the Model

In Section 3.1.1, the game is solved with backward induction starting in Period 2. In Section 3.1.1,
Period 1 is solved. Thereafter, various corner solutions have been determined. The 11 solutions
in Table 1 have been identified for the game. All the solutions except Solution 9 have positive
efforts Z11 ≥ 0 and D21 ≥ 0 in Period 1, which is the nature of the ratio form contest success
function in (2) and (3), with simultaneous moves in Period 1. That is, a player may decrease its effort
arbitrarily close to zero, but not to zero. In Solution 9, Player 1 withdraws to avoid negative expected
utility, i.e., to ensure U1 ≥ 0.
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Table 1. Characteristics of the 11 solutions. Z11 ≥ 0 and D21 ≥ 0 in Period 1 in all the solutions.

Sol.
Stockpiling Budget Constraint Period 2 Description Section

1 S1 = 0 R11 ≥ R11b Z12 ≥ 0, D22 ≥ 0 Player 1 neither stockpiles nor utilizes
entire budget Section 3.1.2

2 S1 ≥ 0 R11b = R11 Z12 ≥ 0, D22 ≥ 0 Player 1 stockpiles and utilizes
entire budget Section 3.1.2

3 S1 = 0 R11b = R11 Z12 ≥ 0, D22 ≥ 0 Player 1 does not stockpile and utilizes
entire budget Section 3.1.3

4 S1 ≥ 0 R11 ≥ R11b Z12 = D22 = 0 Player 2 is deterred; Player 1
is superior Section 3.2.1

5 S1 ≥ 0 R11b = R11 Z12 = D22 = 0 Player 2 is deterred; Player 1 utilizes
entire budget Section 3.2.2

6 S1 ≥ 0 R11b = R11 Z12 = 0, D22 ≥ 0
∂U1
∂S1

= 0,Z11 =
R11−b11S1

b11
, Player 2 is

not deterred
Section 3.2.3

7 S1 ≥ 0 R11b = R11 Z12 = 0, D22 ≥ 0
∂U1
∂Z11

= 0,S1 =
R11−b11Z11

b11
, Player 2 is

not deterred
Section 3.2.3

8 S1 ≥ 0 R11b ≥ R11 Z12 = 0, D22 ≥ 0 Player 2 is not deterred, though Player
1 is superior Section 3.2.3

9 S1 = 0 R11 ≥ R11b Z11 = 0, D22 ≥ 0 Player 1 withdraws to ensure U1 ≥ 0 Section 3.3

10 S1 = 0 R11 = R11b Z11 = D21, Z12 = D22
Equally matched players;

U1 = U2 = 0 Section 3.4

11 S1 = 0 R11b ≥ R11 Z12 = D22 = 0 Player 2 is deterred; Player 1 does
not stockpile Section 3.5

3.1. Solutions 1, 2, 3 (Z12 ≥ 0, D22 ≥ 0, S1 ≥ 0)

3.1.1. Solving Period 2

Differentiating Player i’s expected utility Ui2 in (5) in Period 2 with respect to its one free-choice
variable, i.e., Z12 for Player 1 and D22 for Player 2, and equating it with zero, gives the first-order conditions

∂U12
∂Z12

=
wDw

22P11(Z12+δ1S1)
w−1

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
2 − b12 = 0,

∂U22
∂D22

=
wDw−1

22 Q21(Z12+δ1S1)
w

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
2 − a22 = 0,

P11 ≡W1Dv
21 + (g1V1 + W1)Zv

11, Q21 ≡W2Zv
11 + (g2V2 + W2)Dv

21

(7)

which are solved to yield

Z12 =
a22/Q21

b12/P11
D22 − δ1S1, D22 =

wQ21A

a22
(
Zv

11 + Dv
21

)
(1 + A)2

, A ≡
(

a22/Q21

b12/P11

)w

(8)

The second-order conditions are

∂2U12
∂Z2

12
= −

wDw
22P11(Z12+δ1S1)

w−2((1+w)(Z12+δ1S1)+(1−w)Dw
22)

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
3 ,

∂2U22
∂D2

22
= −

wDw−2
22 Q21(Z12+δ1S1)

w((1−w)(Z12+δ1S1)+(1+w)Dw
22)

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
3

(9)

which are satisfied as negative when

(1 + w)(Z12 + δ1S1) + (1−w)Dw
22 ≥ 0,

(1−w)(Z12 + δ1S1) + (1 + w)Dw
22 ≥ 0

(10)
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3.1.2. Solving Period 1

Inserting Equations (8) and (3) into Player i’s expected utility in Equation (6) over the two
periods gives

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 − b11S1 +

β1A
1+A

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)
−

β1wP11A

(Zv
11+Dv

21)(1+A)2 + β1b12δ1S1,

U2 =
Dv

21V2

Zv
11+Dv

21
− a21D21 +

β2
1+A

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
−

β2wQ21A

(Zv
11+Dv

21)(1+A)2

(11)

which is rewritten as

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 +

β1P11(A+1−w)A

(Zv
11+Dv

21)(1+A)2 − (b11 − β1b12δ1)S1,

U2 =
Dv

21V2

Zv
11+Dv

21
− a21D21 +

β2Q21(1+(1−w)A)

(Zv
11+Dv

21)(1+A)2

(12)

which has three unknown variables: S1, Z11, and D21. Using (12), Player 1′s optimal stockpiling is

S1 =

 Min
(D22 a22/Q21
δ1 b12/P11

, R11−b11Z11
b11

)
i f b11 ≤ β1b12δ1

0 otherwise,
(13)

where D22a22/Q21
δ1b12/P11

according to (8) is the amount of stockpiling S1 that causes zero effort Z12 for Player

1 in Period 2, and R11−b11Z11
b11

according to (1) is the maximum stockpiling S1 permitted by Player 1′s
budget constraint R11. Player 1 chooses the lowest of these two values since excessive stockpiling
S1 in Period 1, which cannot be utilized in Period 2, is not preferable, since Player 1 cannot exceed
its budget constraint R11. We refer to S1 = 0 in (13) when b11 > β1b12δ1 and R11 ≥ R11b as Solution 1.
If b11 > β1b12δ1, Player 1 does not stockpile in Period 1, i.e., S1 = 0, since its unit cost b11 of stockpiling
exceeds the product of Player 1′s unit cost b12 of exerting effort Z12 in Period 2, Player 1′s time
discount factor β1, and Player 1′s zero-day appreciation factor δ1 from Period 1 to Period 2. We refer to
S1 = R11−b11Z11

b11
in (13) when b11 ≤ β1b12δ1 and R11 = R11b as Solution 2. Then, Player 1 chooses Z11,

optimally, and applies its remaining budget to stockpile S1 ≥ 0.
Differentiating each player’s expected utility in (12) with respect to the two remaining free-choice

variables, i.e., Z11 for Player 1 and D21 for Player 2, and equating it with zero, gives the first-order conditions

∂U1
∂Z11

=
Dv

21vZv−1
11 (Ag2P11V2w(B−Cw)β1+Q21V1(B3+Ag1(B2

−Cw2)β1))

B3Q21(Zv
11+Dv

21)
2 − b11 = 0,

∂U2
∂D21

=
Dv−1

21 vZv
11(Ag1Q21V1w(B+Cw)β2+P11V2(B3+g2(B2+CAw2)β2))

B3P11(Zv
11+Dv

21)
2 − a21 = 0,

B ≡ 1 + A, C ≡ 1−A

(14)

which are cumbersome to analyze analytically. Hence, we solve (14) numerically for Z11 and D21 and
use (13) to determine S1, which are both inserted into (8) to determine the free-choice variables Z12 and
D22 in Period 2. We finally insert the result into (12) to determine the players’ expected utilities U1 and
U2 over the two time periods.

3.1.3. Solution 3 (Z11 = R11/b11)

Inserting Z11 = R11/b11 into (1) causes zero stockpiling, S1 = 0. Thus, Player 1 in Period 1 allocates
all its resources to exploit zero-day vulnerabilities for Player 2 and has no resources to stockpile
zero-day exploits for use in Period 2. The solution follows from solving the second first-order condition
in (14) when Z11 = R11/b11 and applying Z11 = R11/b11 instead of the first first-order condition in (14).
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3.2. Solutions 4–8 (Z12 = 0, D22 ≥ 0, R11 ≥ R11b)

When Z12 = 0, Player 1 exerts no effort to develop zero-day capabilities in Period 2; instead, it relies
on the stockpiling S1 from Period 1 to attack Player 2. Solving Player 2′s first-order condition in (7)
when Z12 = 0 gives

Dw
22 −

√
Dw−1

22

√√
wQ21(δ1S1)

w

a22
(
Zv

11 + Dv
21

) + (δ1S1)
w = 0 (15)

which is not analytically solvable for general w (since w appears multiplicatively under a root sign, appears
as an exponent with two different bases, appears as an exponent under a root sign and without a root
sign, and appears as an exponent w− 1 under a root sign), but is, for w = 1, conveniently solved to

D22 =


(√

Q21
a22(Zv

11+Dv
21)
−
√
δ1S1

)
√
δ1S1 i f Q21

a22(Zv
11+Dv

21)
> δ1S1

0 otherwise.
(16)

Inserting Z12 = 0, w = 1, and (3) into Player i’s expected utility in (6) gives

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 − b11S1 + β1

δ1S1
δ1S1+D22

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)
U2 =

Dv
21V2

Zv
11+Dv

21
− a21D21 + β2

(
D22

δ1S1+D22

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
− a22D22

) (17)

where D22 follows from (16). Differentiating U1 in (17) with respect to S1 and equating with zero gives

∂U1

∂S1
=

β1
√
δ1
√

a22P11

2
√

S1

√
Zv

11 + Dv
21

√
Q21

− b11 = 0⇒ S1 =
β2

1δ1a22P2
11

4b2
11

(
Zv

11 + Dv
21

)
Q21

(18)

The two remaining unknown variables Z11 and D21 in (17) are determined by solving ∂U1
∂Z11

= 0

and ∂U2
∂D21

= 0 together with (18) for Period 1.

3.2.1. Solution 4 (Z12 = D22 = 0, R11 ≥ R11b)

When Q21
a22(Zv

11+Dv
21)
≤ δ1S1 in (16), Player 2 is deterred from exerting effort in Period 2, i.e., D22 = 0.

Then, Player 1 wins the Period 2 contest since S1 > 0. Inserting Z12 = D22 = 0, w = 1, and (3) into
Player i’s expected utility in (6) gives

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 − b11S1 + β1

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)
,

U2 =
Dv

21V2

Zv
11+Dv

21
− a21D21

(19)

Differentiating (19) to determine the optimal efforts Z11 and D21 for Players 1 and 2, respectively,
and equating with 0 gives

∂U1
∂Z11

=
vV1Zv−1

11 Dv
21(1+β1 g1)

(Zv
11+Dv

21)
2 − b11 = 0,

∂U2
∂D21

=
vDv−1

21 Zv
11V2

(Zv
11+Dv

21)
2 − a21 = 0

(20)

which are solved to yield
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Z11 =
a21/V2

b11/V1(1 + β1g1)
D21, D21 =

vV2

(
a21/V2

b11/V1(1+β1 g1)

)v

a21

(
1 +

(
a21/V2

b11/V1(1+β1 g1)

)v)2 (21)

The second-order conditions are

∂2U1
∂Z2

11
= −

vV1Dv
21Zv−2

11 (1+β1 g1)((1+v)Zv
11+(1−v)Dv

21)

(Zv
11+Dv

21)
3 ,

∂2U2
∂D2

21
= −

vV2Dv−2
21 Zv

11((1−v)Zv
11+(1+v)Dv

21)

(Zv
11+Dv

21)
3

(22)

which are satisfied as negative when

(1 + v)Zv
11 + (1− v)Dv

21 ≥ 0,
(1− v)Zv

11 + (1 + v)Dv
21 ≥ 0

(23)

To deter Player 2 in Period 2, Player 1 must choose sufficiently large stockpiling S1 to make Player
2 indifferent between exerting and not exerting effort D22 in Period 2. Inserting Z12 = D22 = 0 and
w = 1 into (3), that implies

D22
δ1S1+D22

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
− a22D22 = 0 when D22 = 0

⇔ S1 = 1
δ1a22

(
Dv

21 g2V2

Zv
11+Dv

21
+ W2

) (24)

where Z11 and D21 in (17) are determined in (21).

3.2.2. Solution 5 (Z12 = D22 = 0, R11 = R11b)

The solution for Z11, D21, and S1 in (17) and (24) presupposes that the budget constraint
R11 ≥ b11Z11 + b11S1 = R11b in (1) is not exceeded. If it is exceeded, Player 1 must decrease either the
effort Z11 or the stockpiling S1 that deters Player 2 in Period 2. Let us analyze the event that Player 1
chooses stockpiling S1 to deter, as in (24), and uses the budget constraint R11 in (1) to determine Z11

(which is then lower than the optimal Z11 with no budget constraint in (17)). Applying ∂U2
∂D21

= 0 in
(20), S1 in (24), and the budget constraint in (1) gives the three equations

vDv−1
21 Zv

11V2(
Zv

11 + Dv
21

)2 = a21, S1 =
1

δ1a22

( Dv
21g2V2

Zv
11 + Dv

21
+ W2

)
, b11Z11 + b11S1 = R11, (25)

which are numerically solvable for Z11, D21, and S1.

3.2.3. Solutions 6–8 (Z12 = 0, D22 ≥ 0, R11 = R11b)

If Player 1 chooses effort Z12 = 0 in Period 2 and Player 1′s budget constraint R11 = R11b prevents
sufficient stockpiling S1 to deter Player 2 in Period 2, Player 2 will choose positive effort D22 ≥ 0
in Period 2. Then, (16) applies for D22 and (17) applies for U1 and U2. Solution 6 follows from
solving ∂U2

∂D21
= 0 in (17) together with S1 in (18) and the budget constraint Z11 = R11−b11S1

b11
. Solution 7

follows from solving ∂U1
∂Z11

= 0 and ∂U2
∂D21

= 0 in (17) together with the budget constraint S1 = R11−b11Z11
b11

.

Solution 8, in which Player 1 does not utilize its entire budget R11 ≥ R11b, follows from solving ∂U1
∂Z11

= 0

and ∂U2
∂D21

= 0 in (17) together with S1 in (18). Solution 8 has not been demonstrated in practice. It is
distinguished from Solutions 6 and 7 in that Player 1 does not utilize its entire budget R11 ≥ R11b,
while still not deterring Player 2. It is also distinguished from Solutions 4 and 5, where Player 2 is
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indeed deterred, either by the player being superior (Solution 4) or by Player 1 utilizing its entire
budget R11 ≥ R11b.

3.3. Solution 9 (S1 = Z11 = 0)

Player 1′s budget constraint R11 ≥ b11Z11 + b11S1 in (1) may prevent Player 1 from an optimal
exertion of efforts. Hence, we require that Player 1 should always receive positive expected utility
U1 ≥ 0 and otherwise assume that Player 1 chooses zero efforts Z11 = Z12 = 0 in both periods and
that Player 2 keeps its asset by exerting arbitrarily small defense efforts D21 = D22 = ε > 0, where ε is
arbitrarily small but strictly positive. Inserting into (3), (5) and (6), the players’ expected utilities are
thus U1 = U11 = U12 = 0, U21 = V2, U22 = g2V2 + W2, U2 = V2 + β2g2V2 + W2.

3.4. Solution 10 (S1 = 0, Z11 = R11/b11 = D21)

A solution is possible, where the players are equally matched (equally advantaged) and Player 1
chooses Period 1 effort Z11 = R11/b11 = D21, which equals Player 2′s Period 1 effort D21. Furthermore,
if the players are equally matched in Period 2 and exert equal and high Period 2 efforts Z12 = D22,
a solution can emerge where they both receive zero expected utilities since their efforts in both periods
outweigh the benefits they receive from the asset values, i.e., U1 = U11 = U12 = U2 = U21 = U22 = 0.

3.5. Solution 11 (Z12 = D22 = S1 = 0)

When Player 2 is deterred in Period 2, D22 = 0, and Player 1 does not stockpile in Period 1, S1 = 0,
what remains for Period 1 is for Player 1 to choose effort Z11 and Player 2 to choose effort D21. In order
to deter Player 2 in Period 1, so that Player 2 chooses zero effort D21 = 0, (19) for Player 2 implies

U2 =
Dv

21V2

Zv
11 + Dv

21
− a21D21 ≤ 0⇔ Z11 ≥

Dv−1
21 (V2 − a21D21)

a21

1/v

(26)

Equation (26) needs to be analyzed for each combination of parameter values to determine
whether Player 1′s budget R11 enables it to choose Z11/b11 to deter Player 2 so that D21 = 0 or whether
deterrence is impossible. Solution 11 has not been demonstrated in practice. It is distinguished from
Solutions 4 and 5, where Player 2 is also deterred, D22 = 0, in Period 2, but Player 1 stockpiles S1 ≥ 0.

4. Illustrating the Solution

Figure 3 illustrates the solution, i.e., the efforts Z11, D21, Z12, D22, stockpiling S1, the actual
amount R11b (dependent variable) of resources used by Player 1 in Period 1, and the expected
utilities U1, U2, U11, U21, U12, U22 for Players 1 and 2 with the 16 benchmark parameter values
R11 = a2 j = b1 j = gi = v = w = δ1 = βi = 1, Vi = 2, Wi = 0, i, j = 1, 2. We have chosen unitary
parameter values whenever possible. We also plot as functions of a21 = a22 and b11 = b12. In each of
the 16 + 2 = 18 double panels, one parameter value varies, while the other parameter values are kept at
their benchmarks. The upper part of each panel shows which solution is plotted for the various ranges
along the horizontal axis. The benchmark solution (which is Solution 1) is Z11 = D21 = R11b = 0.875,
Z12 = D22 = 0.25, S1 = 0, U1 = U2 = 0.375, U11 = U21 = 0.125, U12 = U22 = 0.25.
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Figure 3. Efforts 𝑍 , 𝐷 , 𝑍 , 𝐷 , stockpiling 𝑆 , used resources 𝑅 , and expected utilities 𝑈 , 𝑈 , 𝑈 ,𝑈 , 𝑈 , 𝑈  for Players 1 and 2 as functions of 𝑅 ,  𝑎 , 𝑏 , 𝑔 , 𝑣, 𝑤, 𝛿 , 𝛽 , 𝑉 , 𝑊 , 𝑖, 𝑗 = 1,2, 
relative to the benchmark parameter values 𝑅 = 𝑎 = 𝑏 = 𝑔 = 𝑣 = 𝑤 = 𝛿 = 𝛽 = 1 , 𝑉 = 2 , 𝑊 = 0, 𝑖, 𝑗 = 1,2. See Table 2 and the text for an explanation of the 18 panels a-a’ to r-r’. 

In Figure 3a,a’, when Player 1′s budget constraint 𝑅  exceeds the amount 𝑅  of resources 
used at benchmark 𝑅 = 0.875, all variables remain at their benchmarks, as functions of 𝑅 , since 
Player 1 is not constrained in any way. In contrast, as 𝑅  decreases below 𝑅 = 0.875, Player 1 is 
constrained in its effort 𝑍 = 𝑅 𝑏⁄ , which decreases linearly to 𝑍 = 0  as 𝑅  decreases to 𝑅 = 0. Player 2′s Period 1 defense effort 𝐷  is inverse U-shaped in 𝑅  since Player 1 first seeks 
to gain competitive advantage against Player 2 by competing more fiercely as 𝑅  decreases below 𝑅 = 0.875. After 𝐷  reaches a maximum, it decreases as Player 2 becomes more advantaged and 
succeeds with lower effort 𝐷  due to Player 1′s decreasing budget 𝑅 . Hence, as 𝑅  decreases, 
Player 1′s expected utilities 𝑈 ,𝑈 ,𝑈  decrease and Player 2′s expected utilities 𝑈 ,𝑈 ,𝑈  increase. 

In Figure 3b,b’, as Player 2′s unit effort cost 𝑎  of defense in Period 1 increases above 𝑎 = 1, 
the disadvantaged Player 2′s efforts 𝐷  and 𝐷  in both periods and its expected utilities 𝑈 ,𝑈 ,𝑈  decrease. Player 1′s efforts 𝑍  and 𝑍  in both periods are inverse U-shaped in 𝑎 . 
Initially, as 𝑎  increases above 𝑎 = 1 , Player 1 increases 𝑍  and 𝑍  to compete more 
successfully with Player 2. As 𝑎  increases further, Player 1 decreases its efforts 𝑍  and 𝑍  due 
to strength and being advantaged, as 𝑍  and 𝑍  are less needed to compete successfully with 
Player 2. As 𝑎  increases above 𝑎 = 1, Player 1′s expected utilities 𝑈 ,𝑈 ,𝑈  thus increase. For 
the range 1.07 ≤ 𝑎 ≤ 1.35, Player 1 reaches its budget constraint 𝑅 = 1 due to competing fiercely 
with Player 2 (and being neither strongly advantaged nor strongly disadvantaged), causing 
maximum Period 1 effort 𝑍 = 1, which depresses Player 1′s expected utility 𝑈  and increases 
Player 2′s expected utility 𝑈  slightly, relative to no budget constraint. In contrast, as 𝑎  decreases 
below 𝑎 = 1, the advantaged Player 2 increases its Period 1 defense effort 𝐷 , while Player 1 
decreases its efforts 𝑍  and 𝑍  in both periods. Player 2′s defense effort 𝐷  in period 2 is inverse 
U-shaped for the same reason as above. As 𝑎  approaches 𝑎 = 0 , less need exists for the 
advantaged Player 2 to exert effort 𝐷  in Period 2, and the asset fought over is less valuable since 
most of the value was distributes in Period 1. Hence, as 𝑎  decreases below 𝑎 = 1, Player 2′s 
expected utilities 𝑈 ,𝑈 ,𝑈  increase, and Player 1′s expected utilities 𝑈 ,𝑈 ,𝑈  decrease. Player 1 
does not stockpile 𝑆 = 0 since its efforts 𝑍  and 𝑍  are equally costly in both periods, its zero-
day appreciation factor from Period 1 to Period 2 equals 𝛿 = 1, and its time discount factor equals 𝛽 = 1. 

In Figure 3c,c’, Player 2′s unit defense costs are assumed equal 𝑎 = 𝑎  in both periods. Player 
1 is budget constrained when 1.04 ≤ 𝑎 ≤ 1.28. Panel c-c’ is qualitatively similar to Panel b-b’. The 
main differences are that Player 2 becomes more disadvantaged when 𝑎 = 𝑎  increases above 𝑎 = 𝑎 = 1  and more advantaged when 𝑎 = 𝑎  decreases below 𝑎 = 𝑎 = 1  compared 
with Panel b-b’, where only 𝑎  varies. Hence, for example, when 𝑎 = 𝑎 > 1, the two inverse-U 
shapes for 𝑍  and 𝑍  are narrower in Panel c-c’ than in Panel d-d’. 

In Figure 3d,d’, Player 2′s unit effort cost 𝑎  of defense in Period 2 varies, causing results 
qualitatively similar to Panels b-b’ and c-c’. The main differences are that Player 2 prefers being 

Figure 3. Efforts Z11, D21, Z12, D22, stockpiling S1, used resources R11b, and expected utilities U1, U2,
U11,U21, U12, U22 for Players 1 and 2 as functions of R11, a2 j, b1 j, gi, v, w, δ1, βi, Vi, Wi, i, j = 1, 2,
relative to the benchmark parameter values R11 = a2 j = b1 j = gi = v = w = δ1 = βi = 1, Vi = 2,
Wi = 0, i, j = 1, 2. See Table 2 and the text for an explanation of the 18 panels a,a’ to r,r’.

In Figure 3a,a’, when Player 1′s budget constraint R11 exceeds the amount R11b of resources used
at benchmark R11b = 0.875, all variables remain at their benchmarks, as functions of R11, since Player 1
is not constrained in any way. In contrast, as R11 decreases below R11b = 0.875, Player 1 is constrained
in its effort Z11 = R11/b11, which decreases linearly to Z11 = 0 as R11 decreases to R11 = 0. Player 2′s
Period 1 defense effort D21 is inverse U-shaped in R11 since Player 1 first seeks to gain competitive
advantage against Player 2 by competing more fiercely as R11 decreases below R11b = 0.875. After D21

reaches a maximum, it decreases as Player 2 becomes more advantaged and succeeds with lower effort
D21 due to Player 1′s decreasing budget R11. Hence, as R11 decreases, Player 1′s expected utilities
U1,U11,U12 decrease and Player 2′s expected utilities U2,U21,U22 increase.

In Figure 3b,b’, as Player 2′s unit effort cost a21 of defense in Period 1 increases above a21 = 1,
the disadvantaged Player 2′s efforts D21 and D22 in both periods and its expected utilities U2,U21,U22

decrease. Player 1′s efforts Z11 and Z12 in both periods are inverse U-shaped in a21. Initially, as a21

increases above a21 = 1, Player 1 increases Z11 and Z12 to compete more successfully with Player 2.
As a21 increases further, Player 1 decreases its efforts Z11 and Z12 due to strength and being advantaged,
as Z11 and Z12 are less needed to compete successfully with Player 2. As a21 increases above a21 = 1,
Player 1′s expected utilities U1,U11,U12 thus increase. For the range 1.07 ≤ a21 ≤ 1.35, Player 1 reaches
its budget constraint R11 = 1 due to competing fiercely with Player 2 (and being neither strongly
advantaged nor strongly disadvantaged), causing maximum Period 1 effort Z11 = 1, which depresses
Player 1′s expected utility U1 and increases Player 2′s expected utility U2 slightly, relative to no budget
constraint. In contrast, as a21 decreases below a21 = 1, the advantaged Player 2 increases its Period 1
defense effort D21, while Player 1 decreases its efforts Z11 and Z12 in both periods. Player 2′s defense
effort D22 in period 2 is inverse U-shaped for the same reason as above. As a21 approaches a21 = 0,
less need exists for the advantaged Player 2 to exert effort D22 in Period 2, and the asset fought over
is less valuable since most of the value was distributes in Period 1. Hence, as a21 decreases below
a21 = 1, Player 2′s expected utilities U2,U21,U22 increase, and Player 1′s expected utilities U1,U11,U12

decrease. Player 1 does not stockpile S1 = 0 since its efforts Z11 and Z12 are equally costly in both
periods, its zero-day appreciation factor from Period 1 to Period 2 equals δ1 = 1, and its time discount
factor equals β1 = 1.

In Figure 3c,c’, Player 2′s unit defense costs are assumed equal a21 = a22 in both periods. Player 1
is budget constrained when 1.04 ≤ a21 ≤ 1.28. Panel c,c’ is qualitatively similar to Panel b,b’. The main
differences are that Player 2 becomes more disadvantaged when a21 = a22 increases above a21 = a22 = 1
and more advantaged when a21 = a22 decreases below a21 = a22 = 1 compared with Panel b,b’,
where only a21 varies. Hence, for example, when a21 = a22 > 1, the two inverse-U shapes for Z11 and
Z12 are narrower in Panel c,c’ than in Panel d,d’.

In Figure 3d,d’, Player 2′s unit effort cost a22 of defense in Period 2 varies, causing results
qualitatively similar to Panels b,b’ and c,c’. The main differences are that Player 2 prefers being
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disadvantaged in Period 2, with high a22 in Panel d,d’, rather than being disadvantaged in Period 1,
with high a21 in Panel b,b’, and that Player 2 prefers being advantaged in Period 1 with low a21 in Panel
b,b’ rather than being advantaged in Period 2 with high a22 in Panel b,b’. That is, Player 2 prefers to
be advantaged in the important Period 1. If Player 2 is to be disadvantaged, it prefers to be so in the
less important Period 2, where a less valuable asset is at stake. Player 1 is budget-constrained when
1.10 ≤ a21 ≤ 3.73. The reason for the larger range of being budget-constrained (compared with Panels
b,b’ and c,c’) is that when Player 1 is disadvantaged with a large unit effort cost a21 ≥ 1 = a11 in Period
2, which constrains its Period 2 effort Z12, it becomes more important for Player 1 to compete as fiercely
as possible with Player 2 in Period 1, utilizing the cheaper Period 1 effort Z11.

In Figure 3e,e’, as Player 1′s unit effort cost b11 of developing zero-day capabilities in Period 1
increases above b11 = 1, stockpiling S1 = 0 continues not to occur in Solution 1 and exerting effort Z12

in Period 2 at unit cost b12 = 1 is cheaper. Player 1′s efforts Z11 and Z12 in both periods decrease as b11

increases since Player 1 becomes more disadvantaged, cannot justify the costly efforts, and receives
lower expected utilities U1,U11,U12. Player 2′s defense efforts D21 and D22 in the two periods are inverse
U-shaped as b11 increases above b11 = 1, which is common in such situations. That is, for intermediate
b11 above b11 = 1, the players are similarly advantaged and Player 2 exerts high efforts D21 and D22.
As b11 increases, Player 2 becomes more advantaged and decreases D21 and D22 due to strength since
high expected utilities U2,U21,U22 are obtained even with low efforts. As b11 decreases, Player 2
becomes more disadvantaged and decreases D21 and D22 due to weakness, earning lower expected
utilities U2,U21,U22. In contrast, as b11 decreases below b11 = 1, Player 1 stockpiles S1 ≥ 0 when the
budget R11 permits it and it is beneficial. More specifically, decreasing b11 marginally below b11 = 1
causes Player 1 to replace a maximum part of its Period 2 effort Z12 with stockpiling S1 ≥ 0 until
its budget R11 = 1 is reached, causing Z12 and S1 to be discontinuous through b11 = 1 and causing
Solution 2. As b11 decreases below b11 = 0.94, Solution 3 emerges. Player 1′s unit efforts cost b11 is then
so low that it chooses maximum Period 1 effort Z11 = R11/b11, as permitted by the budget R11 = 1,
and zero stockpiling S1 = 0. This continues with increasing expected utilities U1,U11,U12 for Player
1 and decreasing expected utilities U2,U21,U22 for Player 2, until b11 = 0.74, where Solution 2 again
emerges. The reason is that for b11 < 0.74, Player 1 is sufficiently advantaged compared with Player
2, does not need to increase its Period 1 effort Z11 further, and prefers instead to stockpile to become
more competitive in Period 2. Hence, as b11 decreases from b11 = 0.74 to b11 = 0.63, Player 1′s Period 2
effort Z12 decreases as it is cost effectively replaced with stockpiling S1 ≥ 0. As b11 decreases below
b11 = 0.63, Solution 5 emerges, where, interestingly, Player 1 stockpiles sufficiently with S1 ≥ 0 in
Period 1 to deter Player 2 from defending in Period 2, i.e., D22 = 0. Player 1 exerts no effort Z12 = 0
in Period 2 (at unit cost b12) since stockpiling S1 ≥ 0 at unit cost b11 < 0.63 is more cost effective.
To accomplish the substantial stockpiling S1 ≥ 0 required to deter Player 2 in Period 2, Player 1 must
decrease its Period 1 effort Z11 = R11−b11S1

b11
substantially below its effort Z11 chosen when b11 < 0.63,

as required by its budget constraint R11 = 1. As b11 decreases below b11 = 0.63, within Solution 5,
Player 1 can gradually afford to increase its Period 1 effort Z11, enabling more successful competition
with Player 2 in Period 1, and thus less stockpiling S1 ≥ 0 is required to deter Player 2 in Period
2. This process continues until b11 < 0.61, where Solution 4 emerges. In Solution 4, Player 1 is so
superior that it does not need to utilize its entire budget R11 = 1. Its low unit effort cost b11 < 0.61
in Period 1 enables it to stockpile S1 ≥ 0 sufficiently to deter Player 2 in Period 2 and to sufficiently
avoid having to exert effort in Period 2, i.e., Z12 = 0. Furthermore, as b11 decreases below b11 = 0.61,
Player 1 competes increasingly successfully through increasing effort Z11 with Player 2 in Period
1, which enables decreased stockpiling S1 ≥ 0, increased expected utilities U1,U11,U12 for Player 1,
and decreased expected utilities U2,U21,U22 for Player 2.

In Figure 3f,f’, Player 1′s unit effort costs of developing zero-day capabilities are assumed to be
equal b11 = b12 in both periods. Since Player 1′s zero-days do not appreciate, δ1 = 1, and Player 1 does
not discount time, β1 = 0, Player 1 does not need to stockpile, i.e., S1 = 0 throughout. As b11 = b12

increases above b11 = b12 = 1, the players’ Period 1 efforts Z11 and D21 are qualitatively similar to
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Panel e,e’, i.e., decreasing for Player 1 and inverse U-shaped for Player 2. In Period 2, Player 1 is
more disadvantaged in Panel f,f’ than in Panel e,e’ since its unit effort cost b12 is higher (no longer
b12 = 1). Thus Player 1′s Period 2 effort Z12 decreases more quickly towards zero than in Panel e,e’,
enabling the advantaged Player 2 to also decrease its Period 2 defense effort D22 towards zero more
quickly than in Panel e,e’. In contrast, as b11 = b12 decreases below b11 = b12 = 1, Solution 2 with
stockpiling does not arise as in Panel e,e’. Instead, Solution 1 continues to operate with increased
Period 1 and Period 2 efforts Z11 and Z12 for Player 1 and decreased Period 1 and Period 2 efforts D21

and D22 for Player 2. This continues until b11 = b12 = 0.96, when Player 1 reaches its budget constraint
R11 = 1 and Solution 3 emerges, as in Panel e,e’. Solution 3 is maintained, with increasing advantage
for Player 1, until b11 = b12 = 0.78 when Player 1 is so advantaged that it does not need to utilize its
entire budget R11 = 1. Instead, Solution 1 emerges for b11 = b12 < 0.78, where all the four efforts Z11,
Z12, D21, D22 are positive since stockpiling S1 ≥ 0 does not occur, which would deter Player 2 in Period
2, as in Panel e,e’. As b11 = b12 decreases, Player 1′s Period 1 effort Z11 increases since the unit effort
cost decreases, while Player 1′s Period 2 effort Z12 decreases due to Player 1′s advantage and less of
Player 2′s asset left to compete in Period 2.

In Figure 3g,g’, as Player 1′s unit effort cost b12 of developing zero-day capabilities in Period 2
increases above b12 = 1, to the disadvantage of Player 1, stockpiling S1 ≥ 0 emerges in Solution 2 since
Player 1′s Period 2 effort Z12 becomes increasingly expensive and reaches Z12 = 0 when b12 > 1.05.
As b12 increases from b12 = 1 to b12 = 1.05, Player 1 accepts negative expected utility U11 in Period 1 in
order to earn increasing positive expected utility U12 in Period 2. As b12 increases above b12 = 1.05,
Player 1 exerts zero effort Z12 = 0 in Period 2, stockpiles optimally S1 ≥ 0, and chooses its Period 1
effort Z11 = R11−b11S1

b11
in Solution 6 to satisfy the budget constraint R11 = 1. Player 1 thus offsets its

increasing unit effort cost b12 > 1.05 by stockpiling S1 ≥ 0 in Period 1. In contrast, as b12 decreases
below b12 = 1, stockpiling S1 = 0 continues not to occur in Solution 1 since exerting effort Z12 in Period
2 at unit cost b12 = 1 is cheaper. Player 1′s efforts Z11 and Z12 in both periods increase as b12 decreases
since Player 1 becomes more advantaged and receives higher expected utilities U1, U11,U12. Player 2′s
defense efforts D21 and D22 in the two periods decrease as b12 decreases below b12 = 1 since Player
2 becomes more disadvantaged and receives lower expected utilities U2, U21, U22. This continues
until b12 = 0.91, when Player 1′s Period 1 effort Z11 at unit cost b11 = 1 becomes too costly, Player 1
reaches its budget constraint R11 = 1, and Solution 3 emerges. Solution 3 is maintained as b12 decreases
to b12 = 0.27, enabling Player 1 to increase its Period 2 effort Z12 and earn higher expected utilities
U1,U11,U12. Player 2′s defense efforts D21 and D22 in the two periods decrease as b12 decreases below
b12 = 1, earning lower expected utility U2. As b12 decreases below b12 = 0.27, Player 1′s Period 2
effort Z12 becomes so high and cheap that Player 1 can rely on competing successfully with Player 2
in Period 2. Thus, Player 1 no longer needs to exert high Period 1 effort Z11 and no longer needs to
apply its entire budget R11 = 1. Thus, Solution 1 re-emerges with higher expected utility U1 to Player
1. Interestingly, Player 2 also receives higher expected utility U2 as b12 decreases towards b12 = 0 since
Player 1 still has the unit effort cost b11 = 1 of its Period 1 effort Z11, and, thus, to some extent, Player 2
competes somewhat successfully with Player 1 in Period 1.

In Figure 3h,h’, when Player 1′s valuation V1 of Player 2′s asset increases above the benchmark
V1 = 2, Player 1′s Period 1 effort Z11 increases rapidly from the benchmark Z11 = 0.875 and
reaches the budget constraint Z11 = R11 = 1 when V1 > 2.06. That causes a transition from
Solution 1 to Solution 3. As V1 increases, Player 2′s Period 1 effort D21 decreases, lim

V1−→∞
D21 = 0.41,

determined numerically. That is, although Player 1′s valuation V1 increases arbitrarily, Player 2′s
valuation remains at the benchmark V1 = 2, causing Player 2 to compete to defend its asset in Period
1. In Period 2, this changes. As V1 increases, Player 1 exerts increasing effort Z12, lim

V1−→∞
Z12 = 0.59,

while Player 2 exerts decreasing effort D22, lim
V1−→∞

D22 = 0. As V1 increases, Player 1 receives increasing

expected utilities U1,U11,U12, lim
V1−→∞

U1 = lim
V1−→∞

U11 = lim
V1−→∞

U12 = ∞, while Player 2′s expected

utility U2 decreases, lim
V1−→∞

U2 = lim
V1−→∞

U21 = 0.17, lim
V1−→∞

U22 = 0. In contrast, as V1 decreases below
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the benchmark V1 = 2, the results are qualitatively similar to Player 1′s budget R11, decreasing below
the benchmark R11 = 0.785 in Panel a,a’. That is, Player 1 exerts lower efforts Z11 and Z12 and receives
lower expected utilities U1,U11,U12, while Player 2′s efforts are inverse U-shaped and it receives
increasing expected utilities U2,U21,U22.

In Figure 3i,i’, when Player 2′s valuation V2 of its own asset increases above the benchmark
V2 = 2, Player 2 exerts concavely increasing Period 1 defense effort D21 for its more valuable asset,

lim
V2−→∞

D21 = 2.00. Player 2′s Period 2 defense effort D22 is inverse U-shaped, as it first competes more

fiercely with Player 1 and eventually decreases D22 due to being advantaged lim
V2−→∞

D22 = 0. Player 2′s

expected utilities U2,U21,U22 thus increase, lim
V2−→∞

U2 = lim
V2−→∞

U21 = lim
V2−→∞

U22 = ∞. Player 1 responds

by decreasing its efforts Z11 and Z12 in both periods, lim
V2−→∞

Z11 = lim
V2−→∞

Z12 = 0, receiving decreasing

expected utilities U1,U11,U12, lim
V2−→∞

U1 = lim
V2−→∞

U11 = lim
V2−→∞

U12 = 0. In contrast, as V2 decreases

below the benchmark V2 = 2, Player 1′s Period 1 effort Z11 increases rapidly from the benchmark
Z11 = 0.875 and reaches the budget constraint Z11 = R11 = 1 when V2 < 1.92. That causes a transition
from Solution 1 to Solution 3, but in the opposite direction compared with Panel h,h’. As V2 decreases,
Player 2′s Period 1 effort D21 decreases convexly until V2 < 1.57, causing a transition back to Solution 1
since the advantaged Player 1 no longer needs to utilize its entire budget R11 = 1. Thus, Player 1′s
Period 1 effort Z11 decreases. As V2 decreases below the benchmark V2 = 2, Player 1′s Period 2 effort
Z11 is inverse U-shaped, causing increasing expected utilities U1,U11,U12, while both efforts D21 and
D22 by Player 2 decrease, causing decreasing expected utilities U2,U21,U22.

In Figure 3j,j’, when Player 1′s growth factor g1 of asset V1 from Period 1 to Period 2 increases above
the benchmark g1 = 1, Player 1′s Period 1 effort Z11 increases rapidly from the benchmark Z11 = 0.875,
as in Panel h,h’, and reaches the budget constraint Z11 = R11 = 1 when g1 > 1.04. That causes
a transition from Solution 1 to Solution 3. As g1 increases, the results are qualitatively similar to
V1 increasing in Panel h,h’, since Player 1′s period 1 effort Z11 is locked to the budget constraint
Z11 = R11/b11. The difference is that Player 1′s Period 1 expected utility U11 does not approach infinity,
since the growth factor g1 is confined to Period 2, and, instead, approaches a constant concavely,

lim
g1−→∞

U11 = 0.41. The other limit values are as in Panel h,h’, i.e., lim
g1−→∞

D21 = 0.41, lim
g1−→∞

Z12 = 0.59,

lim
g1−→∞

D22 = 0, lim
g1−→∞

U1 = lim
g1−→∞

U12 = ∞, lim
g1−→∞

U2 = lim
g1−→∞

U21 = 0.17, lim
g1−→∞

U22 = 0. In contrast,

as g1 decreases below the benchmark g1 = 1, Player 1 decreases its Period 2 effort Z12 since the asset
has less value in Period 2, receiving decreasing expected utility U12 in Period 2. Both efforts D21 and
D22 by Player 2 are inverse U-shaped, as in Panel h,h’, when the asset value V1 decreases below the
benchmark V1 = 2. Player 1′s Period 1 effort is slightly U-shaped since the asset still has value V1 for
Player 1 in Period 1. As g1 decreases, Player 2′s expected utilities U2,U21,U22 increase, while Player
1′s expected utilities U1 and U11 are U-shaped. This latter remarkable result is caused by Player 1
focusing more explicitly on Period 1 when the growth factor g1 is very low, while Player 2 focuses on
both periods and strikes a balance between them.

In Figure 3k,k’, when Player 2′s growth factor g2 of asset V2 from Period 1 to Period 2 increases
above the benchmark g2 = 1, Player 2′s Period 1 effort D21 increases rapidly from the benchmark
D21 = 0.875, as in Panel i,i’. Although growth g2 does not manifest until Period 2, Player 2 competes
fiercely in Period 1, knowing that what it can protect in Period 1 grows in Period 2. Thus, Player 2
exerts concavely increasing Period 1 defense effort D21, lim

g2−→∞
D21 = 2.00. As g2 increases, the results

are qualitatively similar to V2 increasing in Panel i,i’. The difference is that Player 2′s Period 1 expected
utility U21 does not approach infinity, since the growth factor g2 is confined to Period 2. Instead,
it is inverse U-shaped and approaches zero, lim

g2−→∞
U21 = 0. The other limit values are as in Panel

i,i’, i.e., lim
g2−→∞

U2 = lim
g2−→∞

U22 = ∞, lim
g2−→∞

D22 = lim
g2−→∞

Z11 = lim
g2−→∞

Z12 = lim
g2−→∞

U1 = lim
g2−→∞

U11 =

lim
g2−→∞

U12 = 0. In contrast, as g2 decreases below the benchmark g2 = 1, Player 2′s Period 1 effort is

slightly U-shaped since the asset still has value V2 for Player 2 in Period 1. Solution 3 arises when
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0.31 ≤ g2 ≤ 0.94. Player 2 decreases its Period 2 effort D22 since the asset has less value in Period 2,
receiving decreasing expected utility U22 in Period 2. Both efforts Z11 and Z12 by Player 1 are inverse
U-shaped, as in Panel i,i’, when the asset value V2 decreases below the benchmark V2 = 2. As g2

decreases, Player 1′s expected utilities U1,U11,U12 increase, while Player 2′s expected utilities U2 and
U21 are U-shaped. This latter remarkable result is caused by Player 2 focusing more explicitly on
Period 1, when the growth factor g2 is very low, while Player 1 focuses on both periods and strikes a
balance between them.

In Figure 3l,l’, when Player 1′s valuation W1 of Player 2′s asset acquired in Period 2 increases
above the benchmark W1 = 0, Player 1′s Period 1 effort Z11 quickly increases to its budget constraint
Z11 = R11/b11, causing transition from Solution 1 to Solution 3 when W1 = 0.07. Player 1′s Period 1
expected utility U11 is thus constrained, increasing concavely to lim

W1−→∞
U11 = 0.41. Player 1′s Period 2

effort Z12 increases concavely, lim
W1−→∞

Z12 = 0.59, and its expected utilities U1 and U12 increase without

bounds, lim
W1−→∞

U1 = lim
W1−→∞

U12 = ∞. In contrast, Player 2′s defense efforts D21 and D22 in the two

periods and its expected utilities U2 and U22 decrease convexly, lim
W1−→∞

D21 = 0.41, lim
W1−→∞

D22 = 0,

lim
W1−→∞

U2 = 0.17, lim
W1−→∞

U22 = 0. Player 2′s Period 1 expected utility U21 increases concavely,

lim
W1−→∞

U21 = 0.17, since Player 1 is budget-constrained in Period 1 and strongly focuses instead on

Period 2 as W1 increases.
In Figure 3m,m’, when Player 2′s valuation W2 of its own asset acquired in Period 2 increases

above the benchmark W2 = 0, Player 2′s Period 1 defense effort D21 and expected utility U21 increase
concavely, lim

W2−→∞
D21 = 1.28, lim

W2−→∞
U21 = 0.32. Player 1′s Period 1 effort Z11 and expected utilities

U1 and U11 decrease concavely, lim
W2−→∞

Z11 = 0.32, lim
W2−→∞

U1 = lim
W2−→∞

U11 = 0.08. Player 2′s Period

2 defense effort D21 also increases concavely, lim
W2−→∞

D22 = 0.4, and Player 2′s expected utilities U2

and U22 increase without bounds, lim
W2−→∞

U2 = lim
W2−→∞

U22 = 0.08. Player 1′s Period 2 effort Z12 and

expected utility U12 decrease convexly, lim
W2−→∞

Z12 = lim
W2−→∞

U12 = 0.

In Figure 3n,n’, when the contest intensity v in Period 1 increases above the benchmark v = 1,
the players compete more fiercely with each other in Period 1, receiving decreasing expected utilities
U1,U11,U2,U21 until Player 1 reaches its budget constraint Z11 = R11/b11 = 1 when v > 1.14.
When v > 1.14, which gives a transition from Solution 1 to Solution 3, Player 2 competes even more
fiercely with increasing Period 1 defense effort D21 while accepting negative Period 1 expected utility U2.
Player 1′s Period 1 expected utility U11 is even more negative. When v > 1.14, the advantaged Player 2
exerts slightly increasing Period 2 effort D22, while Player 1 exerts decreasing effort Z12. That continues
until v > 1.30, when Player 1 starts to receive negative expected utility U1 < 0 over the two periods,
which is unacceptable for Player 1. Hence Solution 9 emerges, where Player 1 withdraws from both
periods and receives zero expected utilities Z11 = Z12 = U1 = U11 = U12 = 0. When v > 1.30, Player 2
exerts a arbitrarily small positive effort and keeps its asset, i.e., D21 = D22 = ε > 0, where ε is arbitrarily
small but positive, and receives expected utilities U2 = U21 = 2, U2 = 4. In contrast, as v decreases
below the benchmark v = 1, both players exert lower Period 1 efforts Z11 and D21 and eventually
zero effort Z11 = D21 = 0 at the limit for an egalitarian contest v = 0, where efforts do not matter.
Concomitantly, both players’ expected utilities U1,U11,U2,U21 increase. The players’ Period 2 efforts
and expected utilities are constant at Z11 = D21 = U12 = U22 = 0.25.

In Figure 3o,o’, when the contest intensity w in Period 2 increases from w = 0 (egalitarian contest)
through to the benchmark w = 1 and to w = 2, the players’ Period 2 efforts Z12 and D22 increase from
Z12 = D22 = 0 through Z12 = D22 = 0.25, and to Z12 = D22 = 0.5. Simultaneously, the players’ Period
1 efforts Z11 and D21 increase from Z11 = D21 = 0.75, when w = 0 (no egalitarian contest in Period
1), through the benchmark Z11 = D21 = 0.875, and to Z11 = D21 = 1 when w = 2. These increases
in the efforts Z12, D22, Z11, D21 depress the players’ expected utilities U1,U11,U12,U2,U21,U22, all of
which decrease after reaching U1 = U11 = U12 = U2 = U21 = U22 = 0 when w = 2. When w > 2,



Games 2020, 11, 64 21 of 26

causing transition from Solution 1 to Solution 10, we assume that the players choose the equilibrium,
where they both exert the w = 2 efforts Z12 = D22 = 0.5 and Z11 = D21 = 1 and receive zero expected
utilities U1 = U11 = U12 = U2 = U21 = U22 = 0. Increasing the Period 2 contest intensity w is quite
costly for equally matched (equally advantaged) players.

In Figure 3p,p’, when Player 1′s zero-day appreciation factor δ1 of stockpiled zero-day exploits S1

from Period 1 to Period 2 increases above the benchmark δ1 = 1, causing transition from Solution 1 to
Solution 2 in Table 1, Player 1 immediately utilizes its entire Period 1 budget R11 = 1, allocating S1 =
R11−b11Z11

b11
= 0.125 to stockpiling, Z11 = 0.875 to the Period 1 attack, and Z12 = 0.125 to the Period 2

attack. Hence, Player 1 cuts the Period 2 attack in half, from the benchmark Z12 = 0.25 to Z12 = 0.125,
utilizing stockpiling S1 = 0.125 from Period 1 instead as δ1 increases above δ1 = 1. As δ1 increases
above δ1 = 1, Player 1 keeps its stockpiling at S1 = 0.125, as permitted by its budget constraint R11 = 1,
but decreases its Period 2 attack Z12 linearly since stockpiling at S1 gets multiplied with the increasing
δ1 (see δ1S1 in (5)). Player 1′s expected utilities U1 and U2 increase, while its Period 1 expected utility
is zero, U11 = 0, since its stockpiling S1 gives a cost in Period 1 and a benefit in Period 2. Player 2′s
expected utilities U2,U21,U22 remain at their benchmarks when 1 ≤ δ1 ≤ 2 since Player 1′s allocation
from Z12 to S1 is all that happens when 1 ≤ δ1 ≤ 2. As δ1 increases above δ1 = 2, Player 1′s Period 2
attack Z12 decreases to Z12 = 0, as it gets entirely replaced by stockpiling S1. That causes transition
from Solution 2 to Solution 7 in Table 1. As δ1 increases above δ1 = 2, Player 1 decreases its stockpiling
S1, lim

δ1−→∞
S1 = 0, which continues to impact Period 2 due to δ1S1 in (5). That enables Player 1 to increase

its Period 1 attack Z11, within its budget R11 = 1, lim
δ1−→∞

Z11 = 1. Thus, Player 2 decreases its defense

in both periods, lim
δ1−→∞

D21 = 0.66, lim
δ1−→∞

D22 = 0.19. Thus, Player 1′s expected utilities U1,U11,U12

increase concavely, lim
δ1−→∞

U1 = 0.948, lim
δ1−→∞

U11 = 0.203, lim
δ1−→∞

U12 = 0.745, while Player 2′s expected

utilities U2,U21,U22 decrease convexly, lim
δ1−→∞

U2 = 0.25, lim
δ1−→∞

U21 = 0.13, lim
δ1−→∞

U22 = 0.12. In contrast,

when δ1 is less than 1, i.e., 0 ≤ δ1 ≤ 1, which means depreciation, then Player 1 refrains from stockpiling,
S1. Hence, all variables are constant at their benchmark values as functions of δ1 when 0 ≤ δ1 ≤ 1.

In Figure 3q,q’, as Player 1′s time discount factor β1 decreases below the benchmark β1 = 1, so that
Player 1 assigns less weight to the future Period 2, Player 1 exerts decreasing efforts Z11 and Z12 in
both periods, receiving decreasing expected utilities U1 and U12 but increasing expected utility U11 in
Period 1, which is more important than Period 2 for Player 1, while Player 2 assigns equal importance
to both periods. As β1 decreases, Player 2 exerts increasing defense efforts D12 and D22 in both periods,
which eventually decrease slightly, causing inverse U-shapes as β1 approaches β1 = 0. As β1 decreases,
Player 2 becomes more competitive due to weighing both periods equally and receiving increasing
expected utilities U2,U21,U22. When β1 < 1, Player 1 assigns less weight to Period 2 than Period 1,
causing zero stockpiling S1 = 0.

In Figure 3r,r’, as Player 2′s time discount factor β2 decreases below the benchmark β2 = 1, so that
Player 2 assigns less weight to the future Period 2, Player 2 exerts decreasing defense efforts and D22 in
both periods, receiving decreasing expected utilities U2 and U22 but increasing expected utility U21 in
Period 1, which is more important than Period 2 for Player 2, while Player 1 assigns equal importance to
both periods. As β2 decreases, Player 1 exerts increasing efforts Z11 and Z12 in both periods, becoming
more competitive due to weighing both periods equally and receiving increasing expected utilities
U1,U11,U12. As β2 decreases below β2 = 0.80, Player 1 reaches its budget constraint, which constricts
its Period 1 effort Z11 = R11/b11 = 1, causing a transition from Solution 1 to Solution 3.

5. Discussion

Table 2 presents the key findings from Section 4, including the three situations where Player 1
stockpiles in Panels e,e’, g,g’, and p,p’.
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Table 2. Key findings from Section 4, including the three situations where Player 1 stockpiles in Panels
e,e’, g,g’, and p,p’.

Panel Parameter(s) Key Findings

a,a’ R11

As Player 1′s available resources R11 in Period 1 decrease, its efforts in both periods decrease, while Player 2′s
efforts in both periods are inverse U-shaped. Player 2 transitions from being inferior when Player 1 is

resourceful to being competitive when the players are equally matched and being superior when Player 1
lacks resources.

b,b’ a21

As Player 2′s unit effort cost a21 of defense in Period 1 increases, its efforts decrease, while Player 1′s efforts are
inverse U-shaped and resource-constrained. As a21 decreases, Player 2′s Period 1 effort increases, while its

Period 2 effort is inverse U-shaped, and Player 1′s efforts decrease.

c,c’ a21 = a22
As Player 2′s unit defense costs a21 = a22 in both periods increase (decrease), Player 2 becomes more

disadvantaged (advantaged) than when only its unit effort cost a21 of defense in Period 1 increases (decreases).

d,d’ a22

If Player 2 can choose, it prefers being disadvantaged in Period 2 with high unit effort cost a22, when a less
valuable asset is at stake, rather than being disadvantaged in the more important Period 1 with high unit effort
cost a21. Similarly, Player 2 prefers being advantaged in the more important Period 1 with low unit effort cost

a21, rather than being advantaged in Period 2 with high a22.

e,e’ b11

Player 1 may stockpile when its unit effort cost b11 of developing zero-day capabilities in Period 1 decreases,
through three phases, below that of Period 2. First, Player 1 stockpiles as permitted by the budget and cuts

back on the Period 2 effort. Second, Player 1 utilizes its entire budget in Period 1 without stockpiling, to
exploit its advantage competitively over Player 2. Third, Player 1 eventually does not need to utilize its entire
budget, attacks optimally in Period 1, and stockpiles sufficiently in Period 1 to deter Player 2 from defending

in Period 2.

f,f’ b11 = b12

As Player 1′s unit effort costs b11 = b12 of developing zero-day capabilities increase equally in both periods,
Player 1 does not stockpile and becomes more disadvantaged than when only one unit effort cost increases.

As b11 = b12 decrease, Player 1 becomes more advantaged than when only one unit effort cost decreases.

g,g’ b12

As Player 1′s unit effort cost b12 of developing zero-day capabilities in Period 2 increases above that of Period
1, Player 1 stockpiles more to exploit the advantage of the cheaper unit effort cost in Period 1, decreases the
efforts in both periods, and accepts negative expected utility in Period 1 to ensure higher expected utility in
Period 2. This continues until Player 1 can no longer afford to exert effort in Period 2. Player 1 instead focuses

on Period 1 and stockpiles optimally for Period 2, as permitted by the budget constraint.

h,h’ V1

As Player 1′s valuation V1 of Player 2′s asset increases, Player 1 exerts higher efforts and eventually becomes
resource-constrained, while Player 2 exerts lower efforts. As V1 decreases, Player 1 exerts lower efforts and

Player 2′s efforts are inverse U-shaped.

i,i’ V2

As Player 2′s valuation V2 of its own asset increases, Player 2 exerts concavely increasing Period 1 defense
effort and inverse U-shaped Period 2 effort, while Player 1′s efforts decrease. As V2 decreases, Player 2′s

efforts decrease, while Player 1′s efforts are inverse U-shaped and resource-constrained.

j,j’ g1

As Player 1′s growth factor g1 of asset V1 from Period 1 to Period 2 increases, Player 1′s efforts increase,
subject to the resource constraint, while Player 2′s efforts decrease. As V1 decreases, Player 1′s efforts decrease

overall, while Player 2′s efforts are inverse U-shaped.

k,k’ g2

As Player 2′s growth factor g2 of asset V2 from Period 1 to Period 2 increases, Player 2′s Period 1 effort
increases, its Period 2 effort is inverse U-shaped, and Player 1′s efforts decrease. As V2 decreases, Player 2′s

efforts decrease overall, while Player 1′s efforts are inverse U-shaped and resource-constrained.

l,l’ W1
As Player 1′s valuation W1 of Player 2′s asset, acquired in Period 2, increases, Player 1′s efforts increase,

subject to the budget constraint, while Player 2′s efforts decrease.

m,m’ W2
As Player 2′s valuation W2 of its own asset acquired in Period 2 increases, Player 2′s efforts increase concavely,

while Player 1′s efforts decrease convexly.

n,n’ v
As the contest intensity v in Period 1 increases, both players’ Period 1 efforts increase due to more fierce

competition, until Player 1 reaches its budget constraint, after which Player 2 benefits. As v decreases, both
players’ Period 1 efforts decrease, causing higher expected utilities.

o,o’ w As the contest intensity w in Period 2 increases, both players’ efforts in both periods increase until the fiercer
competition causes zero expected utilities to both players, assuming they are equally matched.

p,p’ δ1

As Player 1′s zero-day appreciation factor δ1 of stockpiled zero-day exploits from Period 1 to Period 2
increases above one, Player 1 immediately utilizes its entire Period 1 budget to attack and stockpile, cutting
back on its Period 2 attack. This continues until Player 1′s stockpiling is so large that the Period 2 attack is no
longer cost effective. Thereafter, Player 1 decreases its stockpiling (due to its appreciation) and increases its

Period 1 attack, while Player 2 decreases its defense in both periods.

q,q’ β1

As Player 1′s time discount factor β1 decreases, so that Player 1 assigns less weight to the future Period 2,
Player 1′s efforts decrease, causing lower expected utilities, while Player 2′s efforts increase overall, causing

higher expected utilities.

r,r’ β2

As Player 2′s time discount factor β2 decreases, so that Player 2 assigns less weight to the future Period 2,
Player 2′s efforts decrease, causing lower expected utilities, while Player 1’s efforts increase, subject to the

budget constraint, causing higher expected utilities.

6. Conclusions

The article presents a two-player two-period game between players producing zero-day exploits
for immediate deployment in Period 1 or stockpiles for future deployment in Period 2. In Period 2,
Player 1 produces zero-day exploits for immediate deployment, supplemented by stockpiled zero-day
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exploits from Period 1. Player 2 defends its asset against the attack in both periods. The analysis
implies 11 solutions, where Player 1 may or may not stockpile, may or may not utilize its entire budget,
may or may not attack in Period 2, and may or may not deter Player 2 from defending in Period 2.
Relative to a benchmark solution with no stockpiling, 18 parameter values are altered to understand
the nature of the zero-day phenomenon over two periods. Both players strike balances between how
to exert efforts over the two periods, while Player 1 additionally decides whether to stockpile.

Player 1 may stockpile in three situations. First, as Player 1′s unit effort cost of developing
zero-day capabilities in Period 1 decreases below that of Period 2, it may exploit the Period 1 advantage
for stockpiling and deployment in Period 2. Second, when Player 1′s unit effort cost of developing
zero-day capabilities in Period 2 increases above that of Period 1, it may similarly exploit the Period 1
advantage for stockpiling, potentially even accepting negative expected utility in Period 1 in order
to benefit from subsequent deployment in Period 2. Third, when Player 1′s zero-day appreciation
factor of stockpiled zero-day exploits from Period 1 to Period 2 increases above one, it stockpiles for
utilization in Period 2 until no additional Period 2 attack is required.

When the contest intensity in Period 1 increases, the players compete more fiercely with each
other in Period 1, receiving decreasing expected utilities, until Player 1 reaches its budget constraint.
Thereafter, Player 2 competes more fiercely, and both players receive negative Period 1 expected
utilities. This continues until Player 1 receives negative expected utility over both periods, causing it to
withdraw, while Player 2 keeps its asset. When the contest intensity in Period 2 increases, all efforts
increase until both players receive zero expected utilities, assuming that they are equally advantaged.

If a player’s time discount factor decreases, the player exerts lower efforts in both periods and
receives lower expected utilities except in Period 1. The other player exerts higher efforts overall.
The model confirms many intuitive results. For example, a player exerts more effort if it is cheaper,
if it values the asset more, if the asset has a higher growth factor, and if the asset added in Period 2
is more valuable. If a player’s unit effort costs increase (decrease) equally as much in both periods,
the player becomes more disadvantaged (advantaged) than if the unit effort cost in only one period
increases (decreases). The phenomenon of inversely U-shaped efforts is documented extensively.
Typically, a player competes most fiercely when equally advantaged compared with the other player
and decreases its efforts due to cost-effectiveness when too advantaged (due to superiority) or too
disadvantaged (due to inferiority).

Future research should include more players, outside interference from governments and
nongovernment bodies, regulation, and supervision and account for technological developments of
the various aspects of zero-day exploits. The parameter values should be estimated by considering
zero-day attacks that have occurred. Empirical support should be provided from contemporary and
historical records. More complexity and more than two time periods may also be incorporated.
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Nomenclature

Parameters
R11 Player 1′s cyber resources in Period 1, R11 ≥ 0
a2 j Player 2′s unit effort cost of defense in Period j, j = 1, 2, a2 j ≥ 0
b1 j Player 1′s unit effort cost of developing zero-day capabilities in Period j, j = 1, 2, b1 j ≥ 0
Vi Player i’s valuation of Player 2′s asset, Vi ≥ 0
gi Growth factor of asset Vi from Period 1 to Period 2, gi ≥ 0
Wi Player i’s valuation of Player 2′s asset acquired in Period 2, Wi ≥ 0
v Contest intensity in Period 1, v ≥ 0
w Contest intensity in Period 2, w ≥ 0
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δ1
Player 1′s zero-day appreciation factor of stockpiled zero-day exploits S1 from Period 1 to
Period 2, δ1 ≥ 0

βi Player i’s time discount factor, 0 ≤ βi ≤ 1
Strategic Choice Variables
Z11 Player 1′s effort to develop zero-day capabilities in Period 1, Z11 ≥ 0
D21 Player 2′s defense effort in Period 1, D21 ≥ 0
Z12 Player 1′s effort to develop zero-day capabilities in Period 2, Z12 ≥ 0
D22 Player 2′s defense effort in Period 2, D22 ≥ 0
Dependent Variables
S1 Player 1′s stockpiling of zero-day exploits in Period 1 for use in Period 2, S1 ≥ 0
pi j Player i’s expected contest success in Period j, i, j = 1, 2, 0 ≤ pi j ≤ 1
Ui j Player i’s expected utility in Period j, i, j = 1, 2
Ui Player i’s expected utility over both time periods, i = 1, 2
R11b = b11Z11 + b11S1 ≤ R11 The actual amount of resources used by Player 1 in Period 1

References

1. Nakashima, E.; Warrick, J. Stuxnet Was Work of U.S. and Israeli Experts, Officials Say. 2012. Available online: https:
//cyber-peace.org/wp-content/uploads/2013/06/Stuxnet-was-work-of-U.S.pdf (accessed on 16 December 2020).

2. Cherepanov, A. Windows Zero-Day CVE-2019-1132 Exploited in Targeted Attacks. 2019. Available online: https://
www.welivesecurity.com/2019/07/10/windows-zero-day-cve-2019-1132-exploit/ (accessed on 14 December 2020).

3. PhishProtection. Recent Zero-Day Attacks: Top Examples and How to Prevent It. 2020. Available online:
https://www.phishprotection.com/content/zero-day-protection/recent-zero-day-attacks/ (accessed on
14 December 2020).

4. Hausken, K.; Welburn, J.W. Attack and Defense Strategies in Cyber War Involving Production and Stockpiling
of Zero-Day Cyber Exploits. Inf. Syst. Front. 2020, 1–12. [CrossRef]

5. Chen, H.; Han, Q.; Jajodia, S.; Lindelauf, R.; Subrahmanian, V.S.; Xiong, Y. Disclose or Exploit? A Game-Theoretic
Approach to Strategic Decision Making in Cyber-Warfare. IEEE Syst. J. 2020, 14, 3779–3790. [CrossRef]

6. Ablon, L.; Bogart, A. Zero Days, Thousands of Nights: The Life and Times of Zero-Day Vulnerabilities and Their
Exploits; RAND Corporation: Santa Monica, CA, USA, 2017.

7. Singh, U.K.; Joshi, C.; Kanellopoulos, D. A Framework for Zero-Day Vulnerabilities Detection and
Prioritization. J. Inf. Secur. Appl. 2019, 46, 164–172. [CrossRef]

8. Al-Rimy, B.A.S.; Maarof, M.A.; Prasetyo, Y.A.; Shaid, S.Z.M.; Ariffin, A.F.M.; Malaysia, S.K.C. Zero-Day Aware
Decision Fusion-Based Model for Crypto-Ransomware Early Detection. Int. J. Integr. Eng. 2018, 10, 82–88.
[CrossRef]

9. Venkatraman, S.; Alazab, M. Use of Data Visualisation for Zero-Day Malware Detection. Secur. Commun. Netw.
2018, 2018, 1–13. [CrossRef]

10. Sun, X.y.; Dai, J.; Liu, P.; Singhal, A.; Yen, J. Using Bayesian Networks for Probabilistic Identification of
Zero-Day Attack Paths. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2506–2521. [CrossRef]

11. Parrend, P.; Navarro, J.; Guigou, F.; Deruyver, A.; Collet, P. Foundations and Applications of Artificial
Intelligence for Zero-Day and Multi-Step Attack Detection. EURASIP J. Inf. Secur. 2018, 2018, 4. [CrossRef]

12. Singh, S.; Sharma, P.K.; Moon, S.Y.; Park, J.H. A Hybrid Layered Architecture for Detection and Analysis of
Network Based Zero-Day Attack. Comput. Commun. 2017, 106, 100–106. [CrossRef]

13. Kim, J.Y.; Bu, S.J.; Cho, S.B. Zero-Day Malware Detection Using Transferred Generative Adversarial Networks
Based on Deep Autoencoders. Inf. Sci. 2018, 460, 83–102. [CrossRef]

14. Gupta, D.; Rani, R. Big Data Framework for Zero-Day Malware Detection. Cybern. Syst. 2018, 49, 103–121.
[CrossRef]

15. Sharma, V.; Lee, K.; Kwon, S.; Kim, J.; Park, H.; Yim, K.; Lee, S.Y. A Consensus Framework for Reliability and
Mitigation of Zero-Day Attacks in IoT. Secur. Commun. Networks 2017, 2017, 1–24. [CrossRef]

16. Haider, W.; Creech, G.; Xie, Y.; Hu, J.K. Windows Based Data Sets for Evaluation of Robustness of Host Based
Intrusion Detection Systems (IDS) to Zero-Day and Stealth Attacks. Future Internet 2016, 8, 29. [CrossRef]

17. Tran, H.; Campos-Nanez, E.; Fomin, P.; Wasek, J. Cyber Resilience Recovery Model to Combat Zero-Day
Malware Attacks. Comput. Secur. 2016, 61, 19–31. [CrossRef]

18. Tidy, L.; Woodhead, S.; Wetherall, J. Simulation of Zero-Day Worm Epidemiology in the Dynamic,
Heterogeneous Internet. J. Def. Model. Simul. Appl. Methodol. Technol. 2015, 12, 123–138. [CrossRef]

https://cyber-peace.org/wp-content/uploads/2013/06/Stuxnet-was-work-of-U.S.pdf
https://cyber-peace.org/wp-content/uploads/2013/06/Stuxnet-was-work-of-U.S.pdf
https://www.welivesecurity.com/2019/07/10/windows-zero-day-cve-2019-1132-exploit/
https://www.welivesecurity.com/2019/07/10/windows-zero-day-cve-2019-1132-exploit/
https://www.phishprotection.com/content/zero-day-protection/recent-zero-day-attacks/
http://dx.doi.org/10.1007/s10796-020-10054-z
http://dx.doi.org/10.1109/JSYST.2020.2964985
http://dx.doi.org/10.1016/j.jisa.2019.03.011
http://dx.doi.org/10.30880/ijie.2018.10.06.011
http://dx.doi.org/10.1155/2018/1728303
http://dx.doi.org/10.1109/TIFS.2018.2821095
http://dx.doi.org/10.1186/s13635-018-0074-y
http://dx.doi.org/10.1016/j.comcom.2017.01.019
http://dx.doi.org/10.1016/j.ins.2018.04.092
http://dx.doi.org/10.1080/01969722.2018.1429835
http://dx.doi.org/10.1155/2017/4749085
http://dx.doi.org/10.3390/fi8030029
http://dx.doi.org/10.1016/j.cose.2016.05.001
http://dx.doi.org/10.1177/1548512913507153


Games 2020, 11, 64 25 of 26

19. Chowdhury, M.U.; Abawajy, J.H.; Kelarev, A.V.; Hochin, T. Multilayer Hybrid Strategy for Phishing Email
Zero-Day Filtering. Concurr. Comput. Pract. Exp. 2017, 29, e3929. [CrossRef]

20. Duessel, P.; Gehl, C.; Flegel, U.; Dietrich, S.; Meier, M. Detecting Zero-Day Attacks Using Context-Aware
Anomaly Detection at the Application-Layer. Int. J. Inf. Secur. 2017, 16, 475–490. [CrossRef]

21. Chamotra, S.; Sehgal, R.K.; Misra, R.S. Honeypot Baselining for Zero Day Attack Detection. Int. J. Inf.
Secur. Priv. 2017, 11, 63–74. [CrossRef]

22. Afek, Y.; Bremler-Barr, A.; Feibish, S.L. Zero-Day Signature Extraction for High-Volume Attacks.
IEEE/ACM Trans. Netw. 2019, 27, 691–706. [CrossRef]

23. Baliga, S.; De Mesquita, E.B.; Wolitzky, A. Deterrence with Imperfect Attribution. Am. Political Sci. Rev.
2020, 114, 1155–1178. [CrossRef]

24. Edwards, B.; Furnas, A.; Forrest, S.; Axelrod, R. Strategic aspects of cyberattack, attribution, and blame.
Proc. Natl. Acad. Sci. USA 2017, 114, 2825–2830. [CrossRef] [PubMed]

25. Welburn, J.W.; Grana, J.; Schwindt, K. Cyber Deterrence or: How We Learned to Stop Worrying and Love the Signal;
RAND Corporation: Santa Monica, CA, USA, 2019.

26. Nagurney, A.; Shukla, S. Multifirm models of cybersecurity investment competition vs. cooperation and
network vulnerability. Eur. J. Oper. Res. 2017, 260, 588–600. [CrossRef]

27. Levitin, G.; Hausken, K.; Taboada, H.A.; Coit, D.W. Data Survivability vs. Security in Information Systems.
Reliab. Eng. Syst. Saf. 2012, 100, 19–27. [CrossRef]

28. Enders, W.; Sandler, T. What Do We Know About the Substitution Effect in Transnational Terrorism?
In Researching Terrorism: Trends, Achievements, Failures; Silke, A., Ilardi, G., Eds.; Frank Cass: Ilfords, UK, 2003.

29. Hausken, K. Income, Interdependence, and Substitution Effects Affecting Incentives for Security Investment.
J. Account. Public Policy 2006, 25, 629–665. [CrossRef]

30. Lakdawalla, D.N.; Zanjani, G. Insurance, Self-Protection, and the Economics of Terrorism. J. Public Econ.
2005, 89, 1891–1905.

31. Hausken, K. Returns to Information Security Investment: The Effect of Alternative Information Security
Breach Functions on Optimal Investment and Sensitivity to Vulnerability. Inf. Syst. Front. 2006, 8, 338–349.
[CrossRef]

32. Hausken, K. Returns to Information Security Investment: Endogenizing the Expected Loss. Inf. Syst. Front.
2014, 16, 329–336. [CrossRef]

33. Hausken, K. Information Sharing Among Firms and Cyber Attacks. J. Account. Public Policy 2007, 26, 639–688.
[CrossRef]

34. Hausken, K. A Strategic Analysis of Information Sharing Among Cyber Attackers. J. Inf. Syst. Technol. Manag.
2015, 12, 245–270. [CrossRef]

35. Hausken, K. Information Sharing Among Cyber Hackers in Successive Attacks. Int. Game Theory Rev.
2017, 19, 33. [CrossRef]

36. Hausken, K. Security Investment, Hacking, and Information Sharing between Firms and between Hackers.
Games 2017, 8, 23. [CrossRef]

37. Hausken, K. Proactivity and Retroactivity of Firms and Information Sharing of Hackers. Int. Game Theory Rev.
2018, 20, 1750030. [CrossRef]

38. Do, C.T.; Tran, N.H.; Hong, C.; Kamhoua, C.A.; Kwiat, K.A.; Blasch, E.; Ren, S.; Pissinou, N.; Iyengar, S.S.
Game theory for cyber security and privacy. ACM Comput. Surv. 2017, 50, 1–37. [CrossRef]

39. Hausken, K.; Levitin, G. Review of Systems Defense and Attack Models. Int. J. Perform. Eng. 2012, 8, 355–366.
[CrossRef]

40. Roy, S.; Ellis, C.; Shiva, S.; Dasgupta, D.; Shandilya, V.; Wu, Q. A survey of game theory as applied to network
security. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI,
USA, 5–8 January 2010; pp. 1–10.

41. Tullock, G. Efficient Rent-Seeking. In Toward a Theory of the Rent-Seeking Society; Buchanan, J.M., Tollison, R.D.,
Tullock, G., Eds.; Texas A&M University Press: College Station, TX, USA, 1980; pp. 97–112.

42. Hausken, K.; Levitin, G. Efficiency of Even Separation of Parallel Elements with Variable Contest Intensity.
Risk Anal. 2008, 28, 1477–1486. [CrossRef] [PubMed]

43. Hausken, K. Additive Multi-Effort Contests. Theory Decis. 2020, 89, 203–248. [CrossRef]

http://dx.doi.org/10.1002/cpe.3929
http://dx.doi.org/10.1007/s10207-016-0344-y
http://dx.doi.org/10.4018/IJISP.2017070106
http://dx.doi.org/10.1109/TNET.2019.2899124
http://dx.doi.org/10.1017/S0003055420000362
http://dx.doi.org/10.1073/pnas.1700442114
http://www.ncbi.nlm.nih.gov/pubmed/28242700
http://dx.doi.org/10.1016/j.ejor.2016.12.034
http://dx.doi.org/10.1016/j.ress.2011.12.015
http://dx.doi.org/10.1016/j.jaccpubpol.2006.09.001
http://dx.doi.org/10.1007/s10796-006-9011-6
http://dx.doi.org/10.1007/s10796-012-9390-9
http://dx.doi.org/10.1016/j.jaccpubpol.2007.10.001
http://dx.doi.org/10.4301/S1807-17752015000200004
http://dx.doi.org/10.1142/S0219198917500104
http://dx.doi.org/10.3390/g8020023
http://dx.doi.org/10.1142/S021919891750027X
http://dx.doi.org/10.1145/3057268
http://dx.doi.org/10.23940/ijpe
http://dx.doi.org/10.1111/j.1539-6924.2008.01090.x
http://www.ncbi.nlm.nih.gov/pubmed/18631300
http://dx.doi.org/10.1007/s11238-020-09749-1


Games 2020, 11, 64 26 of 26

44. Congleton, R.D.; Hillman, A.L.; Konrad, K.A. 40 Years of Research on Rent Seeking—Applications: Rent Seeking
in Practice; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Contribution 
	Literature 
	Game Theoretic Analyses 
	Detection, Prioritization, Ranking, and Classification 
	Detection and Identification by Applying Probability Theory and Statistics 
	Detection Applying Learning 
	Mitigation, Robustness, Recovery, and Simulation 
	Filtering, Protocol Context, Honeypots, and Signatures 
	Cyber Security 
	Information Security 

	Article Organization 

	The Model 
	Period 1 
	Period 2 

	Solving the Model 
	Solutions 1, 2, 3 (Z12 0 , D22 0 , S1 0 ) 
	Solving Period 2 
	Solving Period 1 
	Solution 3 (Z11 = R11/b11 ) 

	Solutions 4–8 (Z12 = 0 , D22 0 , R11 R11b ) 
	Solution 4 (Z12 = D22 = 0 , R11 R11b ) 
	Solution 5 (Z12 = D22 = 0 , R11 = R11b ) 
	Solutions 6–8 (Z12 = 0 , D22 0 , R11 = R11b ) 

	Solution 9 (S1 = Z11 = 0 ) 
	Solution 10 (S1 = 0 , Z11 = R11/b11 = D21 ) 
	Solution 11 (Z12 = D22 = S1 = 0 ) 

	Illustrating the Solution 
	Discussion 
	Conclusions 
	References

