
Effect of buoyancy and inertia on viscoplastic

fluid-fluid displacements in a regular and an

irregular eccentric annulus

Hans Joakim Skadsem∗

University of Stavanger

NORCE Norwegian Research Centre AS / DrillWell

Stavanger, Norway

E-mail: hans.j.skadsem@uis.no

Steinar Kragset

NORCE Norwegian Research Centre AS / DrillWell

Stavanger, Norway

ABSTRACT

Casing strings and liners are important subsurface structural components in petroleum and in geothermal wells.

After the casing string has been run in hole, it is cemented to the formation by pumping a sequence of spacer fluids

and cement slurry into the annulus outside the string. Spacer fluids are usually pumped ahead of the cement slurry

in order to displace the drilling fluid from the annulus that is to be cemented, and thereby avoid contamination of

the cement slurry. Fluid displacements are governed by inertia, buoyancy and viscosity effects, in addition to being

strongly influenced by the annular geometry. Poor centralization of the casing or irregularities such as washouts

can influence the displacement flows both locally and over long axial distances.

We present three dimensional numerical simulations of the displacement flow involving two viscoplastic fluids

in the vicinity of a symmetric local hole enlargement. We focus on laminar flow regimes in the regular part of

the annulus and investigate how the volumetric flow rate and the mass density difference between the fluids affect

the displacement efficiency in the regular and the irregular parts of the annulus. This study considers viscoplastic

displacement flows in a near-vertical, irregular annulus and is an extension of a previous publication that focused

on a near-horizontal annulus.

∗Address all correspondence to this author.
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We contextualize our simulations by comparison to industry guidelines for effective and steady laminar dis-

placements in the regular, near-vertical annulus. Here, eccentricity favors flow in the wider sector of the annulus

while a positive density difference between the fluids generates secondary, azimuthal flow toward the narrow side

of the annulus. In the enlarged and irregular section, both the axial bulk velocity and casing eccentricity decrease

sharply and buoyancy becomes more pronounced compared to in the regular annulus. We quantify and discuss the

effects of local hole enlargements on displacement efficiencies. Simulations of cementing flows can aid in optimiz-

ing fluid properties and pump rates, including when the wellbore has suspected or confirmed zones of irregular

geometries.

1 INTRODUCTION

Construction of wells for production of hydrocarbons, geothermal energy or for geological carbon storage proceeds

in stages by first drilling a section to a certain target depth, and then securing this section by running a casing string to

the bottom of the hole followed by pumping cement slurry into the annular space between casing and formation. Once the

cement has hardened, the well construction operation continues by drilling a new and deeper section using a smaller diameter

drill bit inside the previously cemented casing. Casing and cement are important structural elements in wells that serve many

important functions, including that of providing well integrity and preventing migration or uncontrolled flow of formation

fluids along the wellbore.

The operation of cementing casing strings is often referred to as primary cementing and is considered a particularly

critical well construction operation. Before primary cementing is performed, the inside and the annular space behind the

casing is normally filled by the drilling fluid that was used to drill the current section. In order to cement the space behind

casing, cement slurry is conventionally injected down the well inside the casing. Once at the bottom, the cement slurry enters

the annulus and flows back up toward the surface, displacing drilling fluid and other fluids ahead of the slurry. The basic

fluid displacement process in primary cementing is illustrated in Fig. 1 for a near-vertical hole. The outer casing diameter is

slightly smaller than the diameter of the hole, resulting in a narrow annular space, typically of the order of centimeters, that

is to be cemented. The geometry of this annular space is often a dominant factor that affects the fluid flow behind casing. As

illustrated in the figure, de-centralization or eccentric orientation of the casing in the hole and the possibility of irregularities

along the formation wall are particular geometric effects that can have significant impact on the displacement mechanics

behind casing. Failure to displace the original drilling fluid from the narrow annular space behind casing can have adverse

impacts on well integrity and result in poor zonal isolation along the wellbore. Consequently, the complete displacement of

the drilling fluid and minimal inter-mixing between cement slurry and the other fluids are recognized as important criteria

for successful primary cementing [1]. As drilling fluids are often yield stress fluids with particles as weighting material that

may be hard to displace from narrow annulus geometries, the displacement and cementing operations require careful design

of displacing fluid properties, including their mass density and viscosity, and the optimal displacing flow rate.

Partly motivated by the important industrial application of primary cementing, single phase and displacement flows in

annular geometries have been investigated for several decades both experimentally and numerically. Eccentric annulus flow
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Fig. 1: In conventional primary cementing, the drilling fluid that initially occupies the annular space between casing and the

drilled formation is displaced up toward the surface by displacing fluids, including a cement slurry. Fluid flow in the annular

space is sensitive to the degree of de-centralization or eccentricity of the casing, and local hole enlargements caused during

the drilling process.

of non-Newtonian fluids was investigated by Walton and Bittleston [2] and by Szabo and Hassager [3] who considered a

Bingham plastic in a narrow eccentric annulus. They found that eccentricity can cause plugs in the wide and in the narrow

sectors of the annulus, and potentially static fluid in the narrow side of the annulus. This can lead to poorly displaced drilling

fluid at solid interfaces and potential leakage paths along the cement sheath [4]. Haciislamoglu and Langlinais [5] and

Hussain and Sharif [6] have also considered eccentric annulus flow of non-Newtonian shear thinning and yield stress fluids

numerically and found that eccentricity promotes flow on the wide side of the annulus and that eccentricity can lead to a

significantly reduced axial friction pressure gradient.

Early investigations of annulus displacement and cementing identified the importance of casing eccentricity on the

shape of the interface between the two fluids and the displacement quality [7–9]. As pointed out above, the casing string

to be cemented is in practice always de-centralized in the hole, even in vertical wellbores [10], and this results in higher

flow velocities in the wide sector of the annulus compared to the narrow sector. Unless compensated for by density and/or

viscosity contrasts between displaced and displacing fluids, eccentricity will cause the fluid-fluid interface to elongate axially

and give poor displacement on the narrow side of the annulus. More recent laboratory measurements such as those reported

by Jakobsen et al. [11], Tehrani et al. [12] and Malekmohammadi et al. [13] have improved the fundamental fluid mechanics

insight into vertical and inclined annulus displacement flows, including the existence of secondary azimuthal flows from the

wide to the narrow side of an eccentric annulus and the existence of steady, laminar displacement flows.

To guide fluid and job design toward more effective laminar displacements, industry-accepted guidelines have been

Hans Joakim Skadsem 3 JERT-20-1620. Copyright c© by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Energy Resources Technology. Received July 09, 2020;
Accepted manuscript posted September 02, 2020. doi:10.1115/1.4048529
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/energyresources/article-pdf/doi/10.1115/1.4048529/6568415/jert-20-1620.pdf by N

TN
U

 U
niversitets Biblioteket user on 25 Septem

ber 2020



developed. An example of such a rule set is the effective laminar flow (ELF) guidelines [14–16] which state that:

1. The displacing fluid should be at least 10 % heavier than the displaced fluid,

2. The friction pressure gradient exerted by the displacing fluid should be at least 20 % larger than that of the displaced

fluid,

3. The shear stress on the narrow side of the annulus must exceed the yield stress of the displaced fluid, and

4. The flow resistance of the displacing fluid on the wide side of the annnulus must be larger than that of the displaced fluid

on the narrow side.

The first two ELF rules ensure density and viscosity hierarches between the fluids, so that the denser and more viscous fluid

is the displacing fluid which should be underneath the lighter and less-viscous displaced fluid in a near-vertical annulus. The

third rule ensures mobiliziation of the fluid to be displaced, while the fourth rule promotes a stable shape of the fluid interface

in vertical and inclined annuli.

The applicability of the ELF rules was investigated by Pelipenko and Frigaard [16], using a lubrication model derived

from the two-dimensional gap-averaged displacement model of Bittleston et al. [17]. Their results show that the ELF rules

are generally more conservative than the lubrication model predictions when it comes to steady state displacements, i.e.

the lubrication model predicts good displacement conditions for some parameter combinations where the ELF rules are not

satisfied.

Most of the work discussed above have focused on displacement flows in annuli with regular cross sections or slowly

varying geometric features. As shown by caliper logs, and as indicated in Fig. 1, wellbores can exhibit a wide variety

of irregular shapes resulting from e.g. the drilling process itself or the existence of weak or unconsolidated formation

layers [18, 19]. For shales in particular, chemical interaction between drilling fluid and formation can lead to wellbore

instability problems and irregular wellbore geometries [20, 21]. The single phase flow of yield stress (Bingham plastic)

fluids in annuli with axisymmetric cavities was recently investigated numerically by Roustaei et al. [22–24]. The work was

motivated by drilling fluid conditioning ahead of displacement and cement placement. The studies showed that fluid can

remain unyielded inside washout sections and the existence of a generally non-linear relation between Reynolds number and

the circulating area of the irregularity [23, 24].

Relatively few studies have addressed displacement flows in annuli with hole enlargements or similar sudden changes

to the flow path. Yard tests such as Refs. [8,25–27] have investigated the effect of sudden hole enlargements on the hardened

cement quality. More recently, laboratory measurements on displacement flows in a nearly horizontal irregular annulus

were reported by Lund et al. [28] and analyzed further by numerical simulation by Renteria et al. [29] and Skadsem et

al. [30]. Additional numerical simulations of displacement in irregular slanted and near-horizontal annuli were presented by

Kragset and Skadsem [31]. The simulations showed that the displacement flow becomes fully three-dimensional inside the

enlargement, and that the displacement is mainly governed by the balance between buoyancy and inertia forces.

The brief overview above suggests that annulus displacements from irregular geometries have so far primarily been

studied in near-horizontal annuli. As buoyancy, and therefore inclination, is considered important for fluid displacement
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of irregular annuli, we turn our attention in this paper to cementing of near-vertical casing strings and investigate non-

Newtonian fluid displacements in an eccentric annulus with a sudden hole enlargement using fully 3D numerical simulations.

Very recently, Etrati at al. [32], considered vertical wellbores and the displacement of yield stress drilling fluids by Newtonian

spacer fluids from the annular space outside surface casings. For a sudden hole enlargement, as we also study in this paper,

Etrati et al. found that for sufficiently high Reynolds numbers, the flow destabilizes inside the washout resulting in fluid

inter-mixing and recirculation that may improve the overall displacement of the washout volume. Further, buoyancy was

seen to improve overall mud removal from the washout, especially in the viscous-dominated regime, as the density difference

helps move the displacing spacer fluid laterally in the washout [32]. Our results are considered novel and complementary to

those reported by Etrati et al. as we resolve the full three-dimensional flow field in near-vertical, irregular annuli involving

two non-Newtonian fluids. Further, we compare displacements in a regular eccentric annulus to that of an eccentric annulus

with a sudden hole enlargement, and assess our results on the basis of the ELF design rules. Results presented in these

studies can help improve fluid design and operational planning for cementing of casings that penetrate known or expected

irregular layers. Insights from these studies can also benefit other industries for which fluid displacement from non-uniform

geometry process equipment is relevant.

The structure of this paper is as follows: We begin by defining the governing equations, the annulus geometry under

consideration and the fluid properties in the next section. We proceed by evaluating the design rules and stability conditions

for the specific cases investigated in this paper. We next turn to validation of the 3D numerical simulations based on dis-

placement efficiency measurements from a vertical, eccentric annulus, followed by presentation and discussion of our main

observations. Finally, we summarize and draw conclude.

PROBLEM DEFINITION

We consider isothermal and laminar flow of shear thinning yield stress fluids in an annulus geometry with and without a

local hole enlargement. The annulus with a local hole enlargement is shown in Fig. 2, where the left panel provides a close-up

of the irregular section with some parts clipped away for illustration. The middle panel provides a view of the entire length

of the annulus geometry, which we assume is inclined by 5◦ from the vertical, as indicated by comparison with the vertical

direction represented by the black arrow in the right panel. The main geometric features and dimensions are summarized in

Table 1. In addition to the irregular geometry shown in Fig. 2, we also present results from a regular annulus without the

enlarged, washout section. In all cases we take inner-pipe eccentricity in the regular sections to be 42 %, with the narrow

part of the annulus toward the lower side of the annulus. As shown by Guillot et al. [10], even in near-vertical wellbores, this

level of eccentricity is realistic and relevant for primary cementing operations.

We assume that the rheological properties of both the displaced fluid and the displacing fluid can be approximated by
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Table 1: Physical dimensions of the annular geometry.

Dimension Value (mm)

Outer radius, regular annulus, Ro 115.32

Outer radius, washout 195.16

Annulus inner radius, Ri 88.90

Offset between cylinder axes, δ 11.10

Inlet axial length 12000

Washout taper axial length 67.05

Washout axial length 2319

Washout taper axial length 67.05

Outlet axial length 21550

6

Fig. 2: The model geometry of a 36 m eccentric annulus with an irregular section. The geometry is inclined from the vertical

(black arrow) by 5◦. A close-up of the irregular section with some parts clipped away for visibility is shown to the left. In

all cases, the narrow side of the annulus is toward the lower side of the annulus.

the Herschel-Bulkley model

γ̇γγ = 0, where τ≤ τy, (1a)

τττ = µ(γ̇)γ̇γγ, elsewhere, (1b)
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where γ̇γγ denotes the rate-of-strain tensor and the viscosity function is defined as µ(γ̇) = τy/γ̇+Kγ̇n−1. Here, the yield stress

is denoted τy, K is the consistency index and the shear thinning index is n≤ 1.

Displacing fluid
Displaced fluid

Shear rate, γ̇ (s−1)

S
h
ea
r
st
re
ss
,
τ
(P

a
) τ = (0.86 + 0.32γ̇0.90) Pa

τ = (3.92 + 0.59γ̇0.59) Pa

400350300250200150100500

80

70
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50

40

30

20

10

0

Fig. 3: Flow curves for displaced and displacing fluid.

We base the Herschel-Bulkley model parametrizations of the displaced and the displacing fluids on six- and eight-

speed viscometer measurements of a conventional polymeric water-based drilling fluid and a conventional oil-well cement

slurry, respectively. To be specific, we assume the displaced fluid is approximated by τ = (3.92+ 0.59γ̇0.59) Pa, while

the displacing cement slurry is represented by τ = (0.86+ 0.32γ̇0.9) Pa, based on measurements from a previous full-scale

cementing experiment [33]. Flow curves for the displaced and displacing fluids are plotted in Fig. 3. As for the density,

we take the mass density of the displacing fluid to be based on conventional cement slurries, fixed at 1.92 s.g. The density

of the displaced fluid is varied in order to assess the importance of buoyancy and taken as either 1.5 s.g. or 1.8 s.g. in the

simulations. Although increasing the density of the displaced fluid from 1.5 s.g. to 1.8 s.g. would affect the viscosity of the

fluid, we assume for simplicity that the same Herschel-Bulkley model parameters apply irrespective of mass density. Finally,

we note that these fluid parametrizations are identical to those in a previous paper on displacements in a near-horizontal,

irregular annulus geometry [31]. As for the injection rate, we will consider constant rates of either 150 l/min or 900 l/min in

order to vary the effective viscosity hierarchy between the fluids.

The governing equations for each of the two fluid phases are derived from the principles of mass and momentum
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conservation which result in the two equations:

∇ ·u = 0, (2)

ρ

(
∂u
∂t

+u ·∇u
)
=−∇p+∇ · τττ+ρg. (3)

Here ρ is the fluid mass density, u is the three dimensional velocity field, p is pressure, τττ is the deviatoric stress tensor and g

is the gravitational acceleration. Gravity is the only body force present in these simulations.

The governing equations are solved using the open-source computational fluid dynamics platform OpenFOAM ver.

5.0 [34] and the volume of fluid approach where the fluids are treated as immiscible and with no surface tension. We

specify for the velocity Dirichlet conditions at solid boundaries and at the inlet (no slip and uniform, bulk inlet velocity,

respectively) and a Neumann outflow condition at the outlet. For the pressure, Neumann inlet and Dirichlet outlet conditions

are used. In our numerical simulations, the viscosity is regularized using the Papanastasiou regularization [35] to ensure a

finite viscosity also at zero shear rate, viz. Eq. (1b) is applied everywhere with the regularized viscosity function µ(γ̇) =

τy[1− exp(−mγ̇)]/γ̇+Kγ̇n−1.

DIMENSIONAL ANALYSIS

We now characterize the parameter combinations in the simulations using dimensionless numbers that are representative

for the eccentric annulus displacement flows. We first introduce the concentric annulus gap width d∗ = 2(Ro−Ri) as a

characteristic length scale and take the axial bulk velocity Q/A to be the velocity scale U∗. Further, we let γ̇∗ = 4U∗/d∗

be the characteristic shear rate and µ∗i = τy,i/γ̇∗+Kiγ̇
∗ni−1 be the characteristic viscosity of fluid i. Based on these scales,

we define the dimensionless numbers in Table 2 as characteristic dimensionless numbers for the flows investigated in this

paper. The ratio of inertia to viscous forces for fluid i is characterized by the Reynolds number Rei, the ratio of yield stress

Table 2: Dimensionless numbers for scaling analysis.

Number Definition Description

κ Ri/Ro Pipe radius ratio

e δ/(Ro−Ri) Eccentricity

At ρ2−ρ1
ρ1+ρ2

Atwood number

Rei
ρiU∗d∗

µ∗i
Reynolds number for fluid i

Bni
τy,id∗

µ∗i U∗ Bingham number for fluid i

Fr U∗√
Atgd∗ Froude number

ni Shear thinning index for fluid i
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to viscous stresses is given by the Bingham number Bni and the densimetric Froude number Fr expresses the ratio of inertia

to buoyancy forces. Here, and in the following, we denote the displacing fluid as i = 1 and the displaced fluid as i = 2.

An overview of key dimensionless numbers for the four cases we consider is provided in table 3.

Table 3: Summary of main dimensionless numbers.

Simulation Re2 Re1 Bn2 Fr

ρ2 = 1.5 s.g., Q = 150 l/min 20 46 2.5 0.6

ρ2 = 1.5 s.g., Q = 900 l/min 428 403 1.4 3.5

ρ2 = 1.8 s.g., Q = 150 l/min 25 46 2.5 1.1

ρ2 = 1.8 s.g., Q = 900 l/min 514 403 1.4 6.8

At the lowest flow rate of 150 l/min, the Reynolds numbers for the 1.5 sg and 1.8 sg displaced fluid are estimated to be

20 and 25, and 46 for the displacing fluid. At the highest flow rate of 900 l/min, the displaced fluid Reynolds numbers are

428 and 514 for 1.5 sg and 1.8 sg density fluid, respectively. The displacing fluid is effectively more viscous at this flow

rate, resulting in a lower Reynolds number of 403. In all cases, these Reynolds numbers suggest laminar conditions. The

Bingham numbers are larger for the displaced fluid compared to the displacing fluid (2.5 and 1.4 at respectively 150 l/min

and 900 l/min, compared to 0.9 and 0.2 for the displacing fluid at the same flow rates). The densimetric Froude number varies

from a minimum of 0.6 at a flow rate of 150 l/min with 1.5 sg. displaced fluid (buoyancy most prominent relative to inertia)

and up to 6.8 at 900 l/min and 1.8 sg. displaced fluid (buoyancy least prominent relative to inertia). While the Reynolds

numbers considered here are comparable to the simulations by Etrati et al. [32], the Bingham numbers in our study are

consistently smaller, suggesting smaller yield stress effects compared to their recent study. Finally, the density differences in

our study range from approximately 7 % to more than 2 %, overlapping with the density difference of up to 8 % in Ref. [32].

Concerning the effect of buoyancy as expressed by the densimetric Froude number, certainly the cases with the lowest flow

rate stand out among the cases listed in table 3.

EFFECTIVE LAMINAR FLOW GUIDELINES

In the following we will evaluate the ELF design rules proposed by Couturier et al. [14] and presented in the introduction

of this paper.

Rule 1: Density hierarchy

The displacing fluid mass density is 1.92 s.g. in our simulations. In order to meet the density hierarchy requirement

presented in the introduction, the mass density of the displaced fluid should not exceed 1.75 s.g. This rule is satisfied for the

lightest displaced fluid (mass density 1.5 s.g.), but violated for the 1.8 s.g. displaced fluid.
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Rule 2: Friction pressure hierarchy

To determine the minimum flow rate required to achieve the recommended viscosity hierarchy in a regular, concentric

annulus with the dimensions specified above, we use the semianalytical solution presented by Hanks [36] to predict the

relation between flow rate and pressure gradient for the two fluids. The fully developed, laminar results are shown in Fig. 4.

For flow rates above approximately 300 l/min, we meet the friction pressure hierarhcy requirement stated in the introduction.

Displacing fluid
Displaced fluid

Flow rate (l/min)

P
re
ss
u
re

g
ra
d
ie
n
t
(P

a
/
m
)

6005004003002001000
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0

Fig. 4: Pressure gradient and flow rate in the concentric annulus.

Thus, at the low flow rate of 150 l/min in our simulations, we violate the friction pressure hierarchy between the two fluids.

At 900 l/min, the displacing fluid exerts a friction pressure gradient that is significantly higher than that of the displaced fluid.

Rule 3: Mobilization on narrow side

This requirement can be expressed as follows [15]:

(
d p
dL

)

1
+(ρ1−ρ2)gcosβ >

2τy,2

h
,

where subscript 1 refers to displacing fluid and subscript 2 to displaced fluid. Further, (d p/dL)1 is the friction pressure

gradient of the displacing fluid evaluated in an equivalent concentric annulus, β is the inclination from vertical and h is the

radial gap on the narrow side of the eccentric annulus. Considering an eccentricity of e = 0.42, we find that the radial gap on

the narrow side of the annulus is h = (1−e)(ro−ri)≈ 0.015 m, so that 2τy,2/h≈ 512 Pa/m. This is balanced by a hydrostatic

pressure difference (ρ1− ρ2)g with ρ2 ≈ 1.87 s.g. in a vertical annulus when ρ1 = 1.92 s.g. Consequently, mobilization
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of displaced fluid on the narrow side of the annulus is ensured for both of the displaced fluids in our simulations since the

maximum density we consider is 1.8 s.g.

Rule 4: Differential velocity

The final rule is formulated to ensure that the displacing fluid is not flowing faster in the wide sector of the annulus than

the axial velocity of the displaced fluid in the narrow sector of the annulus. The rule can be expressed mathematically as

follows [15, 16]:

(
d p
dL

)wide

1
+ρ1gcosβ >

(
d p
dL

)narrow

2
+ρ2gcosβ, (4)

where (d p/dL)wide
1 is the friction pressure gradient of the displacing fluid in a concentric annulus with gap width equivalent

to that of the wide side of the original, eccentric annulus at the same bulk velocity as the original problem. Similarly,

(d p/dL)narrow
2 is the friction pressure gradient of the displaced fluid in a concentric annulus with gap width equal to that of

the narrow side of the original annulus.
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Displaced fluid, 1.80 sg
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Fig. 5: Evaluation of the differential velocity rule, Eq. (4) for the displaced and displacing fluid rheologies and two different

mass densities of the displaced fluid. The lines correspond to the sum of the friction pressure gradient and the hydrostatic

component for each of the fluids.

In Fig. 5 we evaluate the differential velocity criterion (4) for the displacing fluid with mass density 1.92 s.g. and the

displaced fluid at three different mass densities. The lines correspond to the sum of the friction pressure gradient and the

hydrostatic term, evaluated for a near-vertical annulus inclined by 5◦ from the vertical.
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Table 4: Summary of ELF design rule evaluation.

Simulation Rule 1 Rule 2 Rule 3 Rule 4

ρ2 = 1.5 s.g., Q = 150 l/min 3 7 3 3

ρ2 = 1.5 s.g., Q = 900 l/min 3 3 3 3

ρ2 = 1.8 s.g., Q = 150 l/min 7 7 3 7

ρ2 = 1.8 s.g., Q = 900 l/min 7 3 3 7

We summarize the discussion above in Table 4, where we indicate which combinations of displaced fluid mass density

and injection rates that satisfy each of the four ELF design rules.

RESULTS

Above we have evaluated the four different combinations of displaced fluid mass density and flow rate against the

ELF rules designed to promote steady, effective laminar displacements. We now turn to results from 3D computational

fluid dynamics simulations. In this section we will first assess the accuracy of the numerical method before we present 3D

simulation results of the four cases under study, for both a regular, eccentric annulus and for an eccentric annulus with the

irregular section shown in Fig. 2.

Model validation

We begin this section by assessing the accuracy of the numerical method by comparing simulation results to experi-

mental data presented by Tehrani et al. [12, 37], which was also used by Tardy and Bittleston [38] who included additional

experimental results that was not presented in [12]. In the experiments we use for model validation, a yield stress fluid is

displaced from a vertical, eccentric annulus by another yield stress fluid with the same effective viscosity and equal or higher

mass density. The viscosity of both fluids are characterized by the Herschel–Bulkley parametrization τ= (1.52+0.246γ̇0.509)

Pa and the density of the displacing fluid varies from 0 to 16.77 % higher than that of the displaced fluid [38]. Based on fluid

property information in Ref. [37], we approximate the mass density of the displaced fluid to be ρ =1000 kg/m3. The annulus

under consideration is 3 m long and has outer radius 0.025 m and inner radius 0.02 m, with eccentricity 50 %. The flow rate

is 2.5×10−4 m3/s, corresponding to a bulk velocity of approximately 0.3537 m/s [38].

We compare numerical simulations of displacement efficiencies to experimental measurements which we have extracted

from Ref. [38]. Displacement efficiency can best be defined by considering an annular volume V0 that is initially filled with

a fluid that is flowing axially at a constant volumetric rate Q. Then, at t = 0, a displacing fluid (that may be the same or

a different fluid) is suddenly introduced at the inlet to V0. The displacement efficiency at a time t, E(t), is then defined as

the volume inside V0 occupied by the displacing fluid relative to the total volume V0. To facilitate the result presentation,

we will use a dimensionless time t∗ = Qt/V0 to compare results from the displacement simulations with the experimental

measurements. Thus, at t∗ = 1, all the initial fluid is displaced from the annulus if perfect displacement is achieved in any of
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the simulations [12].

In Fig. 6 simulation results with meshes ranging from 104 to 4×106 cells are shown for the case with the largest density

difference, ∆ρ/ρ = 16.77 %, between the two fluids. This seemed to be the most demanding case due to the secondary

(azimuthal) flows produced by the buoyancy forces. Various combinations of azimuthal, radial and axial resolution were

tested and the bundle of lines indicates the spread of the results. The solid dots show the results of a relatively coarse

resolution with 5× 104 cells that was eventually chosen for the remaining parts of this study as this produced satisfactory

accuracy for the qualitative assessments in the current work. The other cases with smaller density differences are shown

in Fig. 7, and the agreement can be seen to be good between the simulations and the experimental measurements for these

cases.
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Fig. 6: Comparison of displacement efficiency results from simulations and experimental measurements (points with error

bars) of Tehrani et al. [12, 37, 38]. The bundle of lines shows results from mesh refinement variations, and the solid dots

indicate simulations with settings finally chosen for the remaining part of this study.

Regular annulus

In Fig. 8 we plot the volume fraction of non-displaced fluid at time t∗ = 0.5, averaged over the annulus cross section

as function of axial position. The top and bottom panel corresponds to displaced fluid mass densities 1.8 s.g. and 1.5 s.g.,

respectively. From the bottom panel, we observe a clear transition from mainly displacing fluid at axial positions below

18 m, to mainly displaced fluid above. The transition occurs over a short axial length, corresponding to nearly piston-like

displacement at both flow rates at this density difference. The total axial length of our geometry is 36 m, so the transition

Hans Joakim Skadsem 13 JERT-20-1620. Copyright c© by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Energy Resources Technology. Received July 09, 2020;
Accepted manuscript posted September 02, 2020. doi:10.1115/1.4048529
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/energyresources/article-pdf/doi/10.1115/1.4048529/6568415/jert-20-1620.pdf by N

TN
U

 U
niversitets Biblioteket user on 25 Septem

ber 2020
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Fig. 7: Comparison of displacement efficiency results from simulations (lines) and experimental measurements (points with

error bars) of Tehrani et al. [12, 37, 38].

occurs at approximately 18 m, as expected for piston-like displacements at t∗ = 0.5. In the top panel where the density

difference and buoyancy is reduced, we observe a more gradual transition.

To obtain a better impression of residual fluid distribution along the regular annulus, we plot the volume fraction of non-

displaced fluid averaged separately over the wide and the narrow sides in Figs. 9 and 10 for each of the cases we consider.

From the bottom panels of Figs. 9 and 10 we see that the larger density difference (1.5 s.g. vs. 1.92 s.g.) clearly promotes

a more piston-like displacement compared to the top panels where the density difference is smaller (1.8 s.g. vs. 1.92 s.g.).

Buoyancy is effective in displacing fluid from the narrow side of the annulus, especially at the lowest flow rate (Fig. 9).

Again, at t∗ = 0.5 the transition from displacing fluid to displaced fluid occurs at an axial position of approximately 17 - 18

m, corresponding to approximately 50 % of the axial length of our geometry. The top panels show a larger axial elongation

of the transition region between displacing and displaced fluid, and also much larger differences between the narrow and

the wide side of the annulus. These results underline the importance of buoyancy (mass density difference) for effective

displacements in near-vertical and eccentric annuli.

Finally, in Fig. 11 we plot the distribution of displacing (blue) fluid after injecting a displacing fluid volume correspond-

ing to 50 % of the annulus volume, i.e. t∗ = 0.5, for each of the four cases under consideration. A displacing fluid volume

fraction of 10 % corresponds to the brightest blue color; darkest blue corresponds to 100% volume fraction displacing fluid.

The displaced fluid is made transparent in order to facilitate the three dimensional visualization. Averaging the fluid distribu-

tions in Fig. 11 over the entire annulus cross section or separately across the wide and narrow parts of the annulus reproduces

Fig. 8 and Figs. 9 and 10, respectively.
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Fig. 8: The cross-sectional average of the non-displaced volume fraction at t∗ = 0.5 as a function of the axial position in the

regular annulus model. The density of the displaced fluid is varied between 1.5 s.g. and 1.8 s.g. while the displacing fluid is

kept at 1.92 s.g. in all the cases. Two different flow rates are considered for each combination of mass densities.

Axial position (m)

V
ol
u
m
e
fr
ac
ti
on

of
n
on

-d
is
p
ac
ed

fl
u
id

1.92 s.g. displacing 1.5 s.g.

30252015105

0.8

0.6

0.4

0.2

0

Narrow
Wide

1.92 s.g. displacing 1.8 s.g.

1

0.8

0.6

0.4

0.2

0

Fig. 9: Averages of the non-displaced volume fraction across the wide (red) and the narrow (blue) gaps, respectively, at

t∗ = 0.5 as a function of the axial position in the regular annulus model. The density of the displaced fluid is varied between

1.5 s.g. and 1.8 s.g. while the displacing fluid is kept at 1.92 s.g. in all the cases. The flow rate is 150 l/min.
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Fig. 10: Averages of the non-displaced volume fraction across the wide (red) and the narrow (blue) gaps, respectively, at

t∗ = 0.5 as a function of the axial position in the regular annulus model. The density of the displaced fluid is varied between

1.5 s.g. and 1.8 s.g. while the displacing fluid is kept at 1.92 s.g. in all the cases. The flow rate is 900 l/min.

Irregular annulus

We next turn our attention to displacements in the irregular annulus geometry with a sudden washout section. In Fig. 12

we show cross-sectional averages of the volume fraction of the non-displaced fluid at t∗ = 1 as function of axial position.

The washout is indicated by the colored region in these plots, and we note that the volume fraction is measured relative to

the local cross-sectional area times a differential length. This means that the absolute volume of non-displaced fluid within

the washout is larger than it appears when compared to the regular parts due to the difference between the cross-sectional

areas of the regular sections and the washout.

Consistent with the results of Etrati at al. [32], we note by comparing the two panels that increasing the mass density

difference between the fluids improves the displacement efficiency. We begin by considering the lower panel, where, at

t∗ = 1, there is nearly no residual non-displaced fluid below the washout section for either flow rate. Inside the washout, the

lower flow rate leads to improved displacement of the lighter 1.5 s.g. fluid. Etrati et al. also found significant improvements

in the displacement efficiency due to buoyancy especially at lower Reynolds numbers and in the viscous dominated regime.

Above the washout, the lower flow rate leads to markedly lower volume fraction of non-displaced fluid and apparently

improved displacement efficiency compared to the case of 900 l/min pump rate. We next turn our attention to the top panel

in Fig. 12. Inside the washout section in particular, the lower flow rate of 150 l/min is again more effective in displacing the

irregular section. Based on the evaluation at t∗ = 1 in Fig. 12, the combination of low mass density difference (1.8 s.g. vs.

1.92 s.g.) and high flow rate (900 l/min) results in the overall poorest displacement of these four cases.
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(a) Displaced fluid 1.5 s.g. (b) Displaced fluid 1.8 s.g.

Fig. 11: Snapshots representing the three-dimensional distribution of displacing fluid in a near-vertical regular annulus at

t∗ = 0.5. The shades of blue ranges from volume fraction 10 % as the brightest to 100 % volume fraction of displacing fluid.

In Figs. 13a and 13b we plot the distribution of displacing (blue) fluid at different dimensionless times since start of

injection for constant injection rate of 150 l/min. We first note the effect of buoyancy which results in a more horizontal

interface between the fluids in Fig. 13a. The fluid interface remains nearly horizontal also above the washout with only a thin

finger propagating above the main location of the fluid-fluid interface in Fig. 13a. This is also reflected in the evaluation of

non-displaced fluid shown in Fig. 12, where this combination of density differences and flow rate results in the most effective

displacement of the four combinations investigated in this paper.

For the simulation summarized in Fig. 13b only one of the ELF design rules was satisfied and we observe a larger axial

elongation of the fluid interface now that buoyancy is reduced. Displacing fluid clearly enters the washout through the wide

sector of the annulus first. Due to the larger cross-sectional area in the washout, the fluid interface flattens considerably

during displacement of the washout. Displacement of the regular section above the washout is similar to that of the regular

section below, i.e. a fluid interface that elongates axially due to the dominating effect of eccentricity over buoyancy. Both

Figs. 12 and 13b suggest poorer displacement of the washout compared to Fig. 13a.

In Figs. 14a and 14b we turn to the higher flow rate of 900 l/min. Starting with Fig. 14a, which is the only combination

of density and flow rate that satisfies all four ELF rules in our study, we observe that the fluid distributions are qualitatively

similar to that of Fig. 13a, i.e. buoyancy is still effective in limiting the axial elongation of the fluid interface. Finally, in

Fig. 14b we plot the fluid distributions for the case of high flow rate and small density difference between the two fluids. The

trends caused by reduced buoyancy observed in Fig. 13b are now even clearer; displacing fluid enters the washout section
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Fig. 12: The cross-sectional average of the non-displaced volume fraction at t∗ = 1 as a function of the axial position in the

model with an irregular section. The density of the displaced fluid is varied between 1.5 s.g. and 1.8 s.g. while the displacing

fluid is kept at 1.92 s.g. in all the cases. Two different levels of bulk fluid velocity were simulated as indicated by the curve

colors.

(a) Displaced fluid density 1.5 s.g. (b) Displaced fluid density 1.8 s.g.

Fig. 13: Snapshots representing the three-dimensional distribution of displacing fluid in a near-vertical annulus at different

t∗, as indicated. The shades of blue ranges from volume fraction 10 % as the brightest to 100 % volume fraction of displacing

fluid. The injection rate is constant at 150 l/min in both cases.

through the wide sector first and then starts displacing the opposite side of the washout due to density-driven azimuthal flow.

Eventually displacing fluid flows into the washout also through the narrow side of the annulus which assists in the overall
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(a) Displaced fluid density 1.5 s.g. (b) Displaced fluid density 1.8 s.g.

Fig. 14: Snapshots representing the three-dimensional distribution of displacing fluid in a near-vertical annulus at different

t∗, as indicated. The shades of blue ranges from volume fraction 10 % as the brightest to 100 % volume fraction of displacing

fluid. The injection rate is constant at 900 l/min in both cases.

washout displacement. Displacing fluid enters the regular section above the washout while there are still large pockets of

intermixed fluids and residual non-displaced fluid left behind in the washout. Due to the high bulk velocity of the flow and

the small mass density difference, the washout is only partly displaced before displacing fluid propagates into the regular

section above the washout.

DISCUSSION

The results shown in the previous section suggests that increasing the mass density difference between the displaced

and the displacing fluid aids displacement in the near-vertical annulus both in the regular sections below and above the

washout and also inside the washout. The results for the regular annulus, presented in Figs. 8, 9 and 10 illustrate the effect

of buoyancy on displacement in near-vertical and eccentric annuli; buoyancy promotes a horizontal interface with the denser

displacing fluid below the lighter displaced fluid. By reducing the density difference and/or increasing the flow rate, the axial

elongation of the interface increases. We also note that the fluid combination that appears to result in the best conditions for

displacement in the regular annulus (1.5 s.g. displaced fluid, 150 l/min flow rate) violates the friction pressure hierarchy rule

according to the ELF criteria, see Table 4. The large density difference and low flow rate promote piston-like displacements

in the eccentric, near-vertical annulus and this most likely outweighs the reversed friction pressure hierarchy between the

fluids, resulting in very good overall displacement. Both fluid combinations in the top panel of Fig. 8 violate the differential

velocity rule (rule 4 in Table 4); this is manifested in the axial elongation of the fluid interface in these simulations. While

the lowest flow rate and the highest density difference results in the best displacement conditions in these purely fluid

mechanical simulations, the lower flow rate may not be practical or achievable from an operational perspective. For instance,

while injecting dense cement slurry in the casing, undesired free-fall or u-tubing resulting in excessive fluid inter-mixing
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inside the casing could occur unless a certain minimum injection rate is maintained. Further, a certain minimum wall shear

stress may be desired to clean the surfaces of the casing or formation. Similar operational considerations, which are not

reflected in the present analysis, may favor overall higher displacement rates.

The examples discussed above show the importance of proper casing centralization on the quality of the displacement,

also in the presence of washouts: low density differences and high flow rates can result in unstable displacements and

channelling on the wide side of the annulus unless the inner casing is well centralized in the hole. The cases with a heavy

displaced fluid (1.8 s.g.) violate at least two of the ELF guidelines for laminar displacement flow, including insufficient

density hierarhcy and (related to this) the differential velocity rule. These two cases result in the overall poorest displacements

in this study.

Finally, we compare the predicted volume fraction of non-displaced fluid at t∗ = 1 for the near-vertical annulus in Fig. 12

to the results for the near-horizontal annulus in Ref. [31]. For the regular section below the washout, mass density difference

and buoyancy aids displacement in both the near-horizontal and the near-vertical annulus. In the near-horizontal annulus,

gravity-assisted slumping of displacing fluid from the upper wide side to the lower narrow side is effective in assisting overall

displacement in this regular part of the annulus. Comparing Fig. 12 to Fig. 3 of Ref. [31], we observe very similar volume

fractions of residual fluid. The displacement of the washout section is however fairly different for the near-horizontal and

the near-vertical annulus. Displacement of the washout is generally better for the near-vertical annulus compared to the

near-horizontal annulus since the density difference between the fluids promotes a piston-like displacement of this section

with large cross-sectional area. In the near-horizontal annulus, gravity results in slumping of the denser displacing fluid from

the upper wide side of the annulus toward the lower side. In the washout in particular, this results in very slow displacement

of the lighter from the top part of the washout.

CONCLUSIONS

The effects of flow rate and fluid mass density difference on the displacement quality in a regular and an irregular

near-vertical annulus has been the focus of this paper. Primary cementing of liners and casing strings is the industrial

operation that motivates our study. As such, we have analyzed four combinations of fluid mass densities and flow rates

and compared these combinations to industry guidelines for effective laminar flow. These guidelines were developed and

designed to promote stable laminar displacements in generally eccentric annuli, and we find that only one out of the four

combinations of densities and flow rates satisfies all four guidelines simultaneously. The overall best displacement quality

of both the regular and the irregular annulus is achieved with the largest mass density contrast and the lowest flow rate.

This combination (which in fact violates the friction pressure hierarchy guideline) results in piston-like displacement where

the large buoyancy force is effective in producing a nearly horizontal interface between the fluids in the regular and in the

irregular sections. While the lowest flow rate and the highest density difference results in apparently better displacement

conditions in these simulations, we point out that the lower flow rate may not be practical or achievable from an operational

perspective. We observe stable displacement of the washout with minimal intermixing between fluids for this specific case,

which also benefits the displacement quality of the regular section above the washout. When the displaced fluid is just
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slightly less dense than the displacing fluid, the stabilizing effect of buoyancy is reduced and eccentricity of the inner string

leads to an axially elongated interface between the fluids even at low flow rates. The combination of low density difference

and high flow rate leads to unstable displacements - the presence of washouts can in such cases exacerbate the situation

further by increasing intermixing of fluids. Our main observations are qualitatively consistent with recent simulations of

annular displacement outside vertical surface casings [32]. When comparing with previous results for a near-horizontal

irregular annulus [31], we observe that the inclination is important for the displacement efficiency and location of residual

fluids inside the washout. The effects of fluid intermixing inside the washout and possible implications for the cement quality

above the washout remain uncertain however, and is considered as a possible topic for future research.
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Nomenclature

g Gravitational acceleration [m/s2]

h Radial gap width [m]

K Consistency index [Pa·sn]

n Shear thinning index

p Pressure [Pa]

Q Volumetric flow rate [m3/s]

t Time [s]

t∗ Dimensionless time (= Qt/V )

u Velocity vector [m/s]

V Annulus volume [m3]

β Inclination from vertical [radians]

γ̇γγ Rate of strain tensor [s−1]

γ̇ Shear rate [s−1]

ρ Mass density [kg/m3]

τττ Deviatoric stress tensor [Pa]

τ Shear stress [Pa]
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τy Yield stress [Pa]

µ Viscosity [Pa·s]
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