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1 Introduction

Transport coefficients, such as viscosities, diffusion coefficients and conductivities contain

information about microscopic properties of the medium. In the framework of QCD matter

produced in ultrarelativistic heavy-ion collisions, the evaluation of such transport coeffi-

cients has been a longstanding problem. Perturbative evaluations at Leading Order (LO)

have been available for a long time [1–3]. More recently perturbative calculations have

been pushed to next-to-leading order (NLO) accuracy [4–8]. In equilibrium, there have

been attempts to extract transport coefficients also using nonperturbative lattice QCD

methods [9–11].

Heavy quarks are unique probes of the transport properties of the quark gluon plasma

(QGP) because of their large mass compared to the other scales of the medium. Pair

production and annihilation processes are negligible, and all the heavy quarks within the
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medium are created in the hard processes preceding the formation of the QGP. Heavy

quark observables carry information about the entire history of the medium.

In conventional transport approaches to heavy-ion collisions, the effects of early-time,

nonequilibrium evolution are usually ignored. Only very recently studies have addressed

the importance of the nonequilibrium evolution. For heavy quark diffusion specifically, a

Fokker-Planck approach to the evolution of heavy quarks in a non-equilibrium gluon plasma

or “glasma” present in the early stages of the evolution was used in [12, 13]. The authors

find that the glasma phase can have a sizable contribution to momentum broadening and

energy loss of heavy quarks. At later stages of the non-equilibrium evolution when the

quasiparticle description is valid, recent studies have indicated that the pre-equilibrium

effects can be important [14, 15]. In [16] jet momentum broadening in the glasma was

investigated. The main result is that a colored particle can accumulate sizable momentum

broadening during the glasma phase (〈p2
⊥〉 = 1 − 4GeV2). One might thus expect the

pre-equilibrium phase to be important also for heavy quarks.

The heavy quark momentum diffusion coefficient κ can be studied in multiple ways.

In thermal equilibrium, it has been calculated with perturbative methods [1, 2, 17–20]

and studied with a standard lattice approach [21–26]. Another possibility is to use lattice

gauge theory in the classical approximation. This technique has been applied to the heavy

quark diffusion coefficient κ∞ and the jet quenching coefficient q̂ in thermal equilibrium

systems [27–29]. However, one of the benefits of the classical approach is that one can also

study nonperturbative systems out of equilibrium, as we will do here. Once the heavy quark

diffusion coefficient is known, one can use it to understand heavy quark flow and spectra

by incorporating the diffusion process in a simulation of the heavy ion collision [18, 30–32].

The heavy quark diffusion coefficient κ is not only important for momentum broadening

of heavy quarks, but it also has applications for quarkonia. Quarkonia can be modelled

using an open quantum system approach [33–37], and their time-evolution is governed by

the Lindblad equation [38, 39]. The equation of motion needs two transport coefficients as

an input, one of which is the heavy-quark diffusion coefficient.

Our aim in this paper is to understand momentum broadening 〈p2〉 and the evolution

of the momentum diffusion coefficient κ of heavy quarks in a far-from-equilibrium overoccu-

pied system, with the main motivation coming from initial stages in ultrarelativistic heavy

ion collisions. After the collision, occupation numbers of gluonic fields at the characteristic

momentum scale Q are non-perturbatively large ∼ 1/g2 [40, 41] during initial stages in

a weak-coupling thermalization picture. In this case, classical-statistical simulations are

applicable and have been widely used [42–64] to understand the pre-equilibrium dynamics

in the collision.

In this paper we simulate a highly occupied plasma in SU(2) Yang-Mills theory in a

three dimensional fixed box in a self-similar regime [48, 56, 65–67]. We extract the heavy-

quark diffusion coefficient κ and momentum broadening 〈p2〉 in this far-from-equilibrium

system using suitable definitions of these gauge-invariant observables for out-of-equilibrium

dynamics. We explain how these generalized definitions can be used in quarkonium and

diffusion studies and compare our results with perturbative calculations. Unlike e.g. in [68–

71] we do not explicitly follow the motion of the quarks or quarkonia in the color field.
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Instead, we work in the infinite quark mass limit, where the quark is stationary, and

measure the force acting on the quark from the chromoelectric field. More specifically,

we will extract for the first time the heavy-quark diffusion coefficient in a classical non-

equilibrium system. In addition to this, we find new features in the time-dependence of

momentum broadening of a heavy quark. While we consider a self-similar regime, the

explanation of the different features in terms of a perturbative calculation is more general.

Therefore similar features could be found in gluonic plasmas with other initial conditions,

e.g., in the Glasma state in the initial stage of a heavy ion collision. In particular, we

observe modulations of the growing 〈p2〉 with the plasmon frequency ωpl, which we are

able to attribute to an excess of gluons at low momenta as compared to perturbative

predictions. To our knowledge, this is the first time that such oscillations are connected to

the gluonic IR enhancement that has been observed earlier in gauge fixed correlators [72].

Our result complements the observation of gauge-invariant condensation of ref. [73] in the

same non-Abelian systems as studied here.

This paper is structured as follows. First, in section 2 we will discuss the isotropic ove-

roccupied gluonic system that we are studying. This system has been extensively analyzed

in previous works, so we will be brief and concentrate on collecting the relevant numerical

results and parametric time dependences that we will need in our subsequent analysis. We

will then, in section 3 discuss how the motion of heavy quarks in a dense gluonic system

is related to the unequal time correlator of chromoelectric fields, how it is connected to

quarkonium and diffusion studies, and present our numerical calculation of this correlator

in the overoccupied gluonic system. In section 4 we will construct two microscopic models

for calculating these correlators from a momentum distribution of gluonic quasiparticles in

the system, and compare our numerical results to these models in section 5. We will then

conclude with a brief discussion of our results in section 6.

2 Highly occupied non-Abelian plasma

The system we are studying is described by an SU(2) pure gauge theory. Its classical evo-

lution starts from an initial condition that is characterised by a single-particle occupation

number distribution

f(t = 0, p) =
0.2

g2

Q

p
e
− p2

2Q2 . (2.1)

The overall properties of this system are rather well understood from several studies [48, 56–

58, 65, 74, 75]. We use the same initial conditions and numerical methods as in our previous

paper [72]. Thus we will only briefly summarize the physical properties and the calcula-

tional methods of this system here, referring the reader to the references for more details.

The momentum scale Q controls the typical hard momentum in the initial distribution

and we will write dimensionful quantities scaled with a suitable power of Q. For low

momenta p . Q, occupation numbers are large f(t, p) � 1 and after a transient time,

the system approaches a universal far-from-equilibrium attractor state, characterized by

self-similar dynamics

f(t, p) = (Qt)4βfs

(
(Qt)βp

)
. (2.2)
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The scaling exponent β and scaling function fs(p) of this state are universal and insensitive

to details of the initial conditions or to the precise value of the (weak) coupling. For the

considered d = 3 spatial dimensions, one has β = −1/7.

The momentum scale that dominates the energy density Λ, i.e., the momentum of hard

excitations, grows with time as

Λ ∼ Q(Qt)−β . (2.3)

More precisely, we define the hard scale as the value of p for which the integrand of the

energy density ∝ p2ω(p)f(t, p) is maximal, where the dispersion relation can be approx-

imated by a relativistic dispersion ω(p) ≈
√
p2 +m2. The (non-)thermal mass m that

gluons obtain in a medium can be computed perturbatively (and self-consistently) as

m2 = 2Nc

∫
d3p

(2π)3

g2f(t, p)

ω(p)
, (2.4)

where we have also included a mass correction in the denominator. The scale separation

between this mass scale and the hard (temperature for a thermal system) forms the basis

for the perturbative Hard-Loop (HTL) framework. The mass is connected to the Debye

mass mD and to the plasmon frequency ωpl via

m2
D = 2m2 , ω2

pl =
2

3
m2. (2.5)

The plasmon scale will turn out to be essential in our study of heavy quark diffusion far

from equilibrium. Eq. (2.4) implies that ωpl and mD decrease with time in the self-similar

regime as

ωpl ∼ mD ∼ Q(Qt)β . (2.6)

Physically, the plasmon frequency is the lowest energy that quasiparticle excitations can

have and has been computed in ref. [72] as the peak position of the spectral function at

vanishing momentum ρ(ω, p = 0).

The quasi-particle peak of ρ(ω, p = 0) is of Lorentzian form and has a width γpl ≡
γ(p = 0), which corresponds to the damping rate of plasmon excitations. Its value for

Qt = 1500 and the same initial conditions as employed here has been extracted numerically

from fits to ρ(ω, p = 0) in ref. [72]. Using the HTL formalism, it can also be computed

as γHTL
pl ≈ 6.64Ncg

2T∗/(24π) [76]. Here T∗ is the effective temperature of the soft field

modes, which is given by

g2T∗(t) =
2Nc

m2
D

∫
d3p

(2π)3

(
g2f
)2

(t, p) . (2.7)

Thus, in the scaling regime, we would expect the decay rate γpl to decrease with time like

g2T∗, i.e., as

γpl ∼ g2T∗ ∼ Q(Qt)3β . (2.8)

From eqs. (2.3), (2.6) and (2.8) we obviously have, at late enough times, the hierarchy

γpl � ωpl � Λ, which is reminiscent of the hierarchy of scales g2T � gT � T in thermal

– 4 –



J
H
E
P
0
9
(
2
0
2
0
)
0
7
7

equilibrium with temperature T . The extracted values in ref. [72] at Qt = 1500 are

Λ (Qt = 1500) = 2.1Q

mD(Qt = 1500) = 0.21Q

g2T∗(Qt = 1500) = 0.03Q

γpl(Qt = 1500) = 0.003Q , (2.9)

which indeed shows the expected separation of scales.

At momenta p . ωpl we observed in our earlier work that the actual occupation number

distribution [72] displays a feature that we refer to as an “IR enhancement,” a feature also

seen in earlier studies (see, e.g., [48, 57]). By this term we mean that the occupation

number is significantly larger than the behavior f(p) ∼ T∗/p expected from perturbation

theory. A gauge theory with a non-conserved number of particles is not expected to exhibit

actual condensation (see, e.g., [48, 75, 77]), and we do not interpret this excess of gluons as

an indication of condensation in the proper sense of the word. We will discuss this feature

more quantitatively in section 4.1.

Due to the large occupation numbers f ∼ 1/g2 � 1, the non-perturbative quantum

problem can be accurately mapped onto a classical-statistical lattice gauge theory with

lattice spacing as and lattice size N3
s . Its far-from-equilibrium evolution can be then

studied using computer simulations solving classical equations of motion in temporal axial

gauge A0 = 0. The equations are formulated in a gauge-invariant way using link fields

Uj(t,x) = exp(ig asAj(t,x), that replace the usual gauge fields Aj(t,x) in the numerics,

and chromo-electric fields Ej(t,x). Since we use the same initial conditions and numerical

method as in our previous paper [72], we refer the reader there and to references therein

for details of our numerical approach.

Data has been averaged over typically 10-15 configurations and error bars correspond

to the standard error of the mean. If not stated otherwise, we use the lattice spacing

Qas = 0.5 and lattice sizes ranging from N3
s = 1283 to 2643. We also vary as and Ns to

check for possible lattice artifacts (see appendix A).

3 Heavy quark diffusion and momentum broadening

3.1 Heavy quark motion in a color field

We consider a heavy quark with mass M in the highly occupied non-Abelian plasma far

from equilibrium described above. We take the quark mass to be the largest momentum

scale in our system, i.e., larger than a typical hard momentum scale M � Λ. Consequently

the formation time of the heavy quark is much shorter than any other timescale in the

system. We can then assume that the production mechanism of the heavy quark factorizes

from its interaction with the color field degrees of freedom. Thus we do not need to specify a

particular production mechanism here, but just concentrate on the subsequent interactions

of the quark with the medium. The large mass of the quark also implies that the wave

function is sufficiently localized so that we can use the classical equation of motion for its
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Figure 1. Left: the unequal time electric field correlation function (3.3) as a function of relative

time. The inset zooms into the data with a much smaller coordinate axis scale. One finds small

oscillations with the plasmon frequency. Right: the electric field correlator in Fourier space (3.4).

The inset shows the low-frequency part of the curve. The visible structure can be understood using

the gluon spectral function, as mentioned in section 3.1 and detailed in section 4.

momentum:

ṗi(t) = Fi(t) . (3.1)

Here ṗi ≡ dpi
dt and the force Fi is proportional to the chromo-electric field Ei acting on

the heavy quark. Averaging over color states of the quark and the ensemble of color field

configurations gives a zero mean force acting on the quark 〈ṗ〉 = 0. On the other hand,

the variance of the force is given by the force-force correlator [16]

〈ṗi(t)ṗi(t′)〉 = g2 Tr〈Ei(t)U0(t, t′)Ei(t
′)U0(t′, t)〉

Tr1

=
g2

2Nc
〈Eai (t)Eai (t′)〉 (3.2)

≡ g2

2Nc
〈EE〉(t, t′) . (3.3)

The electric field correlator is evaluated at the same spatial location because in the limit

of large M , the velocity of the heavy quark is negligible. In the last line, we have defined

the (statistical) correlation function 〈EE〉(t, t′). The trace is taken in the fundamental

representation and in the last line we used temporal gauge with U0(t′, t′′) = 1 as well as a

summation over repeated color indices of the adjoint representation a = 1, . . . , N2
c − 1.

The correlation function (3.2) is shown in figure 1 for the time Qt = 1500 as a function

of the time difference t′ − t. The signal starts with a large initial oscillation (upper panel)

that quickly fades away on a time scale ∼ 1/Λ. As shown in the inset, the correlator

oscillates subsequently with a small frequency ∼ ωpl. The amplitude of these oscillations

is roughly a factor 103 times smaller than the initial quick oscillations.
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It is useful to consider the Fourier transform of the correlator (3.2) with respect to

relative time ∆t = t′ − t. Normally we would define this in a symmetric way as

〈EE〉(t̄, ω) =

∫ ∞
−∞

d∆t e−iω∆t〈EE〉(t̄−∆t/2, t̄+ ∆t/2)

= 2 Re

∫ ∞
0

d∆t e−iω∆t〈EE〉(t̄−∆t/2, t̄+ ∆t/2) (3.4)

for a fixed (central) time t̄ ≡ (t+ t′)/2, where we exploited that the statistical correlator is

an even function. For the purpose of numerically extracting the frequency space correlation

function for figure 1, we approximate it by

〈EE〉(t, ω) ≈ 2 Re

∫ t+∆tmax

t
dt′ e−iω(t′−t)〈EE〉(t, t′) (3.5)

for a fixed lower limit t. This is a good approximation as long as the time difference

|t − t′| is small compared to the rate of change as a function of the central time. In a

power law cascade this latter can be estimated as the lifetime of the system, and thus the

approximation is a good one when t ≈ t′ � |t− t′|, i.e., ω � 1/t, which is the case here.

The frequency space signal is shown in the lower panel of figure 1. While it has a broad

peak around ω ∼ Λ, the relevant part for heavy quark diffusion is located at low frequencies

(see inset). This also illustrates a practical challenge related to the measurement: to obtain

the low-frequency behavior correctly, high accuracy is required. The observed structure

of the low-frequency part can be easily understood with the help of the spectral function

ρ(ω, p), which will be discussed below in section 4. Here we note that the finite piece

at ω = 0 stems from Landau damping of longitudinally polarized gluonic fields. On the

other hand, the steep rise at ω ≈ ωpl results from quasiparticle excitations, which can only

contribute for frequencies ω & ωpl.

3.2 Momentum broadening

So far, we have discussed the force-force correlation, which corresponds to 〈ṗi(t′)ṗi(t′′)〉 of

a heavy quark traversing the non-equilibrium gluon plasma (see eq. (3.2)). Integrating it,

we arrive at the momentum broadening of the heavy quark after its creation at time t as

〈p2(t,∆t)〉 =
g2

2Nc

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′ 〈EE〉(t′, t′′) . (3.6)

This gauge-invariant physical observable is shown in figure 2. Its evolution shows three

important features that are associated with different time scales for ∆t:

(i) rapid growth at a short time scale of the order of the inverse hard scale ∆t ≈ 2π/Λ;

(ii) damped oscillations with period ∆t ≈ 2π/ωpl;

(iii) overall approximately linear growth ∼ ∆t for 1/Λ� ∆t� t.
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Figure 2. The measured momentum broadening given by (3.2). We observe that after a rapid initial

rise the momentum broadening increases roughly linearly in p. The linear rise is attributable to

the interactions and the “steps” can be understood in the spectral reconstruction framework below.

The initial rapid rise is shown in the inset with higher resolution. It corresponds to a decoherence

effect whose early and later ∆t behavior of eqs. (3.11) and (3.12) is shown as black-dashed and blue

horizontal lines, respectively.

Each of these properties of momentum broadening has a different physical explanation and

we will elaborate on them in this work. The modulations with frequency ωpl in (ii) are a

new feature that is, to our knowledge, observed in this work for the first time. We will

discuss the relation of these oscillations to the quasiparticle properties of the plasma in

section 4.2 and show (see figure 6) that they are related to an enhancement of infrared

modes in the system over the perturbative expectation.

While we will study these features (i)–(iii) in detail below, we argue here that the

different time scales result from the structure of 〈EE〉(t̄, ω). With the approximation that

this correlator depends weakly on the central time t̄ = (t′ + t′′)/2 within the integration

intervals, we can write

〈p2(t,∆t)〉 =
g2

2Nc

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′

∫ ∞
−∞

dω

2π
eiω(t′′−t′) 〈EE〉 (t̄, ω)

≈ g2

2Nc

∫ ∞
−∞

dω

2π
4

sin2(ω∆t/2)

ω2
〈EE〉(t, ω) . (3.7)

With the frequency space correlator 〈EE〉(t, ω) shown in figure 1, we can distinguish the

features based on different regimes of ∆t. When ∆t . 1/Λ, basically all frequencies are

included in the integral. Then the broad peak of 〈EE〉(t, ω) dominates the integration,
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which corresponds to frequencies with ω ∼ Λ and the rapid growth observed under (i). For

larger time scales 1/Λ� ∆t ∼ 1/ωpl, the broad peak provides a constant shift in 〈p2〉 and

the evolution of the integral is instead dominated by lower frequencies like those depicted

in the inset of figure 1 (bottom). This corresponds to the properties (ii) and (iii).

We can compute the early rapid growth of (i) analytically. For that, we remind our-

selves that the fields in the correlator 〈EE〉 are evaluated at the same location x = x′. Due

to spatial translation invariance, we can hence write1

〈p2(t,∆t)〉 ≈ g2

2Nc

∫ ∞
−∞

dω

2π
4

sin2(ω∆t/2)

ω2

∫
d3p

(2π)3
〈EE〉(t, ω, p)

≈ g2

2Nc

∫
d3p

(2π)3

∫ ∞
−∞

dω

2π
4

sin2(ω∆t/2)

ω2
〈EE〉(t, t, p) ω ρ(t, ω, p)

≈ 4g2(N2
c − 1)

Nc

∫
d3p

(2π)3

f(t, p)

ωp
sin2

(
ωp∆t

2

)
. (3.8)

In the second line we used a generalized fluctuation-dissipation relation (given by (4.7) in

section 4.2 where the fluctuation dissipation relation is discussed in more detail) to express

the frequency space 〈EE〉 correlator in terms of the equal time 〈EE〉 correlator and the

spectral function in frequency space. In our earlier paper [72] we have verified that such

a relation holds very well in the system considered here. Since at small ∆t the integral is

dominated by high frequencies, we then used the spectral function of free quasi-particles

ρ(t, ω, p) ≈ ρfree(ω, p) = 2π sgn(ω) δ(ω2 − ω2
p) (3.9)

and expressed the equal time correlator in terms of the distribution f(t, p) as

〈EE〉(t, t, p) = 2(N2
c − 1) ωp f(t, p). (3.10)

Here 2(N2
c −1) counts the degrees of freedom of transverse gluons and ωp is their dispersion

relation.

The last line of eq. (3.8) already explains our observations of the initial rise. The

integral over momenta is dominated by the hard scale and hence, ωp ∼ p ∼ Λ. At early

times ∆t . 1/Λ, one can approximate

〈p2(t,∆t)〉 ≈ g2

2Nc
(∆t)2 ε , (3.11)

with the energy density ε = 2(N2
c − 1)

∫
d3pωpf(t, p)/(2π)3. This is shown as the black

dashed curve in the inset in figure 2. At later times ∆t � 1/Λ, the momentum integral

involves rapid oscillations such that the approximation sin2(ωp∆t/2) ≈ 1/2 can be used,

leading to

〈p2(t,∆t)〉 ≈ 3(N2
c − 1)

2N2
c

ω2
pl . (3.12)

This is shown as the blue horizontal line in the inset in figure 2. Therefore, the initial fast

growth stops due to decoherence after ∆t ∼ 1/Λ at a value ∼ ω2
pl.

1We use here the same approximation of replacing the central time with the initial one that was used in

eq. (3.7).
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3.3 Heavy quark diffusion

We can define the heavy-quark diffusion coefficient as the time derivative of the accumulated

squared momentum (3.6) at late times. For that purpose, let us define the function κ (t,∆t)

as follows

3κ (t,∆t) ≡ d

d∆t
〈p2(t,∆t)〉 (3.13)

=
g2

Nc

∫ t+∆t

t
dt′〈EE〉(t+ ∆t, t′)

≈ g2

Nc

∫ ∞
−∞

dω

2π

sin(ω∆t)

ω
〈EE〉(t, ω), (3.14)

where we again approximated the dependence on the central time in the correlator

〈EE〉(t, ω). As we will see in the following, the limit ∆t → ∞ of κ (t,∆t) gives the

quantity that is commonly known as the heavy quark diffusion coefficient.

The expression (3.13) has also an interpretation for quarkonium evolution and decay

in a non-Abelian plasma. As detailed in ref. [33], it is related to the real part of the

color-singlet self-energy (note that we have a different definition of the time arguments)

Re Σs(t,∆t) =
g2

6Nc
r2

∫ t+∆t

t
dt′〈Eai (t+ ∆t)Eai (t′)〉 =

r2

2
κ (t,∆t) , (3.15)

where r is the distance between the heavy quark and anti-quark. It is also proportional to

the decay width Γ in thermal equilibrium if ∆t is larger than any other time scale of the

system. We emphasize, however, that the relation in the last line of (3.15) is more general

and also holds for finite ∆t.

It is beneficial to understand how the definition of κ (t,∆t) in (3.13) is related to the

usual definition of the heavy-quark diffusion coefficient κtherm in thermal equilibrium (see,

e.g., [19]). Since thermal equilibrium is time translation invariant, there is no dependence

on t and we can simply set t = 0. Thermal equilibrium is also time reversal invariant and

therefore the correlator 〈EE〉 is an even function of the time difference. Then we have

κtherm
∞ ≡ g2

3Nc

∫ ∞
−∞

dt′ 〈TrEi(0)U0(0, t′)Ei(t
′)U0(t′, 0)〉

= lim
∆t→∞

g2

6Nc

∫ ∆t

−∆t
dt′ 〈Eai (0)Eai (t′)〉

= lim
∆t→∞

g2

3Nc
Re

∫ ∆t

0
dt′ 〈Eai (0)Eai (t′)〉

= lim
∆t→∞

κ (0,∆t) , (3.16)

where the superscript “therm” is a reminder of the thermal state considered here while

the subscript ∞ corresponds to the limit ∆t → ∞. We note that in the literature, this

coefficient is usually referred to as κ. In the second line of eq. (3.16), we used temporal

gauge (U0 = 1). Obviously, we lose exact time translation invariance once we consider
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far-from-equilibrium systems as in the present work. However, we can still compute a

time-dependent heavy-quark diffusion coefficient κ∞(t) in analogy to eq. (3.16) as

κ∞(t) = κ (t,∆t) |t�∆t�1/γpl
. (3.17)

Here the limit ∆t → ∞ is replaced by the condition that ∆t is larger than the longest

life-time of quasi-particles in the plasma, which is given by the inverse damping rate of

the zero mode γpl. This is sufficient to assure that no contributions from quasi-particles

enter the definition of κ∞(t). We cannot, however, formally take the infinite time difference

limit, but require ∆t� t. This is done so that the dependence of the correlator 〈EE〉(t, t′)
on the central time is weak compared to its dependence on the time difference. We note

that, as for the thermal case [78, 79], 3κ∞(t) is the zero-frequency value of the Fourier

transform of the force-force correlator shown in figure 1

g2

2Nc
〈EE〉(t, ω = 0) = 3κ∞(t) . (3.18)

The transport coefficient κ∞(t) enables us to formulate a Langevin equation for heavy

quarks in analogy to thermal equilibrium. Since the integral of the force-force correlator

over a long but not infinite time interval t� ∆t� 1/γpl is a constant, we can approximate

the dynamics of the heavy quark at this timescale by a random momentum kick with the

same normalization

〈Fi(t′)Fj(t′′)〉 =
g2

2Nc
〈Eai (t)Eaj (t′)〉 ≈ κ∞(t) δijδ(t− t′) . (3.19)

This leads to a physical picture of the dynamics of a heavy quark in the medium as a

Langevin process, which is commonly used in phenomenological applications.

Finally, we explain here how we extract κ (t,∆t) from our simulations. In this paper

we only consider sufficiently late times well within the self-similar regime so that we can

stay in the limit ∆t � t. Then one can, for the purpose of convenience in the numerical

evaluation, replace our definition (3.13) with a version where one of the electric fields is

always evaluated at the lower, instead of the upper, time

3κ (t,∆t) =
g2

Nc

∫ t+∆t

t
dt′〈EE〉(t+ ∆t, t′)

≈ g2

Nc

∫ t+∆t

t
dt′〈EE〉(t, t′). (3.20)

Also averaging over the (lattice) volume leads us to the equation

κ (t,∆t) ≈ g2

3Nc

∫ t+∆t

t
dt′
∫

d3x

V
〈Eai (t,x)Eai (t′,x)〉, (3.21)

which we employ in our numerical extraction of κ (t,∆t).
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Figure 3. Transient time behavior of the electric-field correlator κ (t,∆t) as a function of ∆t

extracted using the real time lattice method for various starting times. In the inset, the axes are

scaled with the constant scale Q. In the main figure we rescale the vertical axis with the heavy-

quark diffusion coefficient, which is the asymptotic ∆t → ∞ value κfit
∞(t). It is extracted using

the fit given by (3.22) and its time dependence is shown below, in figure 6. The horizontal axis is

rescaled with the plasmon frequency ωpl (effectively t−1/7) for each time t. That all curves fall on

top of each other after rescaling is a sign of self-similarity in t.

3.4 Self-similar behavior of κ (t,∆t)

In section 3.2 we have seen that after a quick initial growth, 〈p2(t,∆t)〉 grows more slowly

with time ∆t, approximately linearly, and involves damped oscillations. We summarized

these observations under the features of damped oscillations (ii) around a linear growth (iii).

Let us now study these properties in more detail in terms of κ (t,∆t). We recall that this

quantity can be thought of equivalently as the time derivative of 〈p2(t,∆t)〉 or as the integral

of the electric field correlator over the time difference up to ∆t, and that its ∆t→∞ limit

is the heavy quark diffusion coefficient.

The ∆t-dependence of κ (t,∆t) at different times Qt = 1500, 3000, 5000 is shown in

figure 3. The inset of figure 3 shows our result scaled by the constant hard scale Q only.

The main plot shows the correlator divided by the heavy-quark diffusion coefficient κfit
∞(t),

i.e. the ∆t → ∞ limit, which is extracted using the fit given by (3.22). As we will show

in section 5, the time dependence of κ∞(t) can be well described by a functional form

of (Qt)−5/7 times a logarithm of time that we will motivate in section 4 (see the explicit

expression given in eq. (5.2)). The correlators in the main plot are plotted as a function

of the time difference scaled by the plasmon frequency, ωpl(t)∆t. The plasmon frequency

used for the rescaling is computed using the HTL formulas (2.4) and (2.5), which amounts

– 12 –
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Figure 4. Comparison of the plasmon mass scale ωpl to the frequency ωfit extracted from the

unequal time electric field correlation function κ (t,∆t) given by (3.21). The plasmon mass scale

is extracted using eq. (2.4). The oscillation frequency of κ (t,∆t) is extracted by fitting it to the

damped oscillator in eq. (3.22). The main observation is that the frequencies are closely related.

to effectively rescaling the horizontal axis with a power law (Qt)−1/7. As explained in

section 2, the different values of t correspond to different ratios of the physical scales in the

problem. The fact that the curves from different times t overlap as functions of rescaled

time, clearly shows that the oscillations in κ (t,∆t) happen at a scale determined by the

plasmon frequency. The scaling of the amplitude of the oscillations in figure 3 shows that

this same time dependence also describes the amplitudes of the oscillations as a function

of ∆t, a sign of self similar evolution in κ (t,∆t).

The oscillatory form in figure 3 can be fitted for ∆t & 1/Λ separately for each t to a

damped harmonic oscillator with a constant offset term

κfit (t,∆t) ≈ κfit
∞(t) +Afit cos(ωfit∆t− φfit) e

−γfit∆t. (3.22)

From this fitting procedure, we extract the frequency ωfit(t) and show it in figure 4 to-

gether with the computed frequency ωHTL
pl as functions of time. Since the frequencies are

quantitatively close to each other, we conclude

ωfit ≈ ωpl(t) . (3.23)

Also the heavy-quark diffusion coefficient κ∞(t) is extracted using the fit in (3.22). Accord-

ing to eq. (3.17), the coefficient κ∞(t) is defined as the late relative time limit ∆t� 1/γpl

of κ (t,∆t). For finite ∆t, it corresponds to the offset κfit
∞(t) of the oscillations visible in
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figure 3 and incorporated into the fit function (3.22). Measuring κ∞(t) as κfit
∞(t) reduces

the residual dependence on ∆t and will be used as our standard way to extract κ∞(t).

We have also studied lattice regularization effects on our extraction of κ∞(t), with

results shown in appendix A. We find that κ is insensitive to the IR cutoff. In the case

of the UV cutoff, the results start to drift considerably for lattice spacings larger than

Qas > 0.6 and hence, we use smaller lattice spacings. The Debye scale stays well within

the reach of our lattice at all times.

4 Understanding the time dependence of the correlator

To understand the observations in the previous section in terms of microscopic degrees of

freedom in the system, we construct here two models for the ∆t-dependence of κ (t,∆t)

and compare them to our numerical results. A crucial role in our discussion here is played

by the momentum space gluonic equal-time correlation function 〈EE〉(t, t, p) in Coulomb

gauge, which we interpret in terms of a single particle distribution of gluons. The input in

the models that we want to construct is this single particle distribution that we extract from

our simulation. This is an equal time correlator, meaning that it represents an integral over

frequencies. It is also needed as a function of momentum, which means that in coordinate

space it is not local. This single particle distribution is also not manifestly gauge invariant,

but evaluated using field configurations in the Coulomb gauge. From this information we

want to construct the heavy quark diffusion coefficient, which is local in coordinate space,

i.e., involves an integral over gluonic momenta. The heavy quark diffusion coefficient is the

zero frequency limit of an electric field correlator, i.e., requires correlators at unequal times.

We will here use two different approaches to go from equal time — unequal coordi-

nate correlations to an unequal time — equal coordinate one. The basic idea of the first

one, that we call here the spectral reconstruction (SR) method, is to assume that the

spectral functions in the general momentum-frequency space are the ones given by (HTL)

perturbation theory, and that they are related to the statistical function by a generalized

fluctuation-dissipation relation. This connection enables us to relate the statistical func-

tions in different parts of phase space to each other, via the intermediary of the spectral

function. The underlying assumptions are backed up by our previous numerical results in

ref. [72]. The second one, of course related to the first one in the appropriate parametric

regime, is to use known perturbative calculations of the heavy quark diffusion coefficient

in kinetic theory, and simply substitute our measured single gluon distribution in such a

calculation. We will first construct these two models in this section, and then compare

them to the numerical result for the electric field correlator κ (t,∆t) in section 5.

4.1 Equal time electric field correlator

We start here with the statistical correlation function. In general it is defined as the

anticommutator of Heisenberg field operators

〈EE〉jk(x, x′) =
1

2

〈{
Êaj (x), Êak(x′)

}〉
, (4.1)
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Figure 5. Extracted equal time transverse and longitudinal statistical functions (continuous lines).

The fits to the data are shown using dashed lines, corresponding to the infrared enhanced equal

time statistical correlation function. The dash dotted lines correspond to the unenhanced correlator,

which corresponds to the thermal IR expectation in the infrared given by (4.5). The expectation is

then smoothly matched to data to incorporate a proper UV behavior.

with x ≡ (t,x). In the classical-statistical approximation it becomes the expectation value

of the product
1

2

〈{
Êaj (x), Êak(x′)

}〉
→
〈
Eaj (x), Eak(x′)

〉
. (4.2)

On a periodic lattice the Fourier transform with respect to the relative coordinate x − x′

averaged over the whole lattice can conveniently be computed by Fourier transforming

the electric fields as 〈EE〉(t, t′, p) =
〈
Eaj (t,p), (Eak(t′,p))∗

〉
/V . We refer to its Fourier

transform to frequency space as 〈EE〉jk(t, ω, p), neglecting the difference between fixed t

and fixed t̄ = (t+ t′)/2 as discussed in section 3.

It is necessary to distinguish transverse and longitudinal projections, which are defined

as 2P Tjk = δjk − pjpk/p2 and PLjk = pjpk/p
2, respectively, where 2 counts the number of

transverse polarizations. Correlators can then be decomposed into polarizations

〈EE〉 ≡ 〈EE〉jj = 2〈EE〉T + 〈EE〉L . (4.3)

In our previous publication [72] we observed that the equal-time statistical correlation func-

tion 〈EE〉T,L(t, t, p) is enhanced compared to HTL expectations at low momenta for both

polarizations. We show the numerically extracted 〈EE〉T,L(t, t, p) correlators in figure 5 in

the self-similar regime at time Qt = 1500 as solid curves. The figure also shows in dashed

lines a fit to these numerical results. To enable a more efficient evaluation of some integrals
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appearing below in our models for the time-dependent correlator, we will in practice use

these fits instead of our original numerical data. Moreover, using 〈EE〉T (t, t, p), we can

define the distribution function as in our previous publication [72] as

f(t, p) =
1

N2
c − 1

〈EE〉T (t, t, p)√
p2 +m2

. (4.4)

This is the definition that we used to extract the values (2.9) in section 2, with an iterative

procedure to simultaneously extract both f(t, p) and m using eqs. (2.4) and (4.4).

In HTL theory at leading order, the electric field correlator would, for low momenta

p� mD, be expected to approach a constant

〈EE〉T,L(t, t, p) ≈ T∗ ρ̇T,L(t, t, p) ≈ T∗ . (4.5)

Note that the second “≈” is in fact an equality at all p for the transverse polarization but

only at p = 0 for the longitudinal one: for a discussion of the spectral function see ap-

pendix B. The value of this constant, i.e., the effective temperature of the infrared modes2

at low momenta, is conventionally denoted by T∗. We construct a parametrization of

this expected behavior by taking the parametrization of our data at high momenta and

smoothly matching it to a constant value determined by the temperature T∗ calculated

using eq. (2.7). This “thermal IR” parametrization is shown by the dot-dash curves in

figure 5. We emphasize that this second parametrization is meant to represent a scenario

without the “infrared enhancement” seen in the correlator and discussed above, but keep-

ing the large momentum degrees of freedom as close to the ones present in the lattice

calculation as possible. We can then use both, the parametrization of our data including

the infrared enhancement, and the one where it has been removed, to construct a model for

the time-dependent correlators both with and without the infrared enhancement. Using

this approach we will in fact argue below that the excess of gluons at low momenta is the

main reason for the oscillations in ∆t observed in 〈p2〉 and κ.

4.2 Spectral reconstruction (SR) method

The aim of this section is to develop a spectral reconstruction (SR) method, which is based

on our previous measurements of the gluonic spectral functions, the 〈EE〉T,L(t, t, p) equal-

time correlators and expectations from perturbation theory, and that can be compared to

our measurement of the unequal time electric field correlators, specifically to our numerical

result for κ(t,∆t).

For this, let us reformulate κ (t,∆t) using the full correlation functions ρ̇(t, ω, p) and

〈EE〉(t, ω, p), respectively. We discussed the statistical correlation function in the previous

subsection. The spectral function (strictly speaking the time derivative of the spectral

2One way to see that one expects a constant is to note that the equipartition of energy in thermal

equilibrium at temperature T∗ for a classical noninteracting theory would correspond to an expectation

value T∗/2 for every quadratic term in the Hamiltonian, which in this case are (half) the squares of the

components Ea
j (t,p).
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function, but we will call ρ̇ the spectral function in an abuse of language below) is defined

as the commutator

ρ̇jk(x, x
′) =

1

N2
c − 1

〈[
Êaj (x), Âak(x

′)
]〉
. (4.6)

In the classical-statistical approximation, it can be computed using the retarded propa-

gator ĠRjk(x, x
′) = θ(t − t′) ρ̇jk(x, x′), which can be extracted from simulations with lin-

ear response theory [72]. We denote the Fourier transform of ρ̇ with respect to relative

time and spatial coordinates as ρ̇jk(t, ω, p). Transverse and longitudinal polarizations can

be distinguished as for the statistical correlator in eq. (4.3). For thermal equilibrium the

fluctuation-dissipation relation states that the ω-dependence of these functions is the same,

i.e., the ratio 〈EE〉T,L(t, ω, p)/ρ̇T,L(t, ω, p) is a known function that only depends on the

momentum p and the temperature. We can easily generalize this to a nonequilibrium

situation by taking this function of p to be one determined by the equal-time statistical

function (and the equal time spectral functions ρ̇T,L(t, t, p), whose expressions are written

in appendix B). Explicitly, we start by assuming that

〈EE〉T,L(t, ω, p)

〈EE〉T,L(t, t, p)
=
ρ̇T,L(t, ω, p)

ρ̇T,L(t, t, p)
(4.7)

even out of equilibrium. We have indeed observed numerically in ref. [72] that this relation

holds in the self-similar regime.

With these considerations, we can write eq. (3.14) as

3κ (t,∆t) (4.8)

=
g2

Nc

∫ ∞
−∞

dω

2π

sin(ω∆t)

ω

∫
d3p

(2π)3
〈EE〉(t, ω, p)

=
g2

Nc

∫
d3p

(2π)3

∫ ∞
−∞

dω

2π

sin(ω∆t)

ω
[2〈EE〉T (t, ω, p) + 〈EE〉L(t, ω, p)]

=
g2

Nc

∫
d3p

(2π)3

∫ ∞
−∞

dω

2π

sin(ω∆t)

ω

[
2〈EE〉T (t, t, p)

ρ̇T (t, ω, p)

ρ̇T (t, t, p)
+ 〈EE〉L(t, t, p)

ρ̇L(t, ω, p)

ρ̇L(t, t, p)

]
.

We now have to determine the spectral functions. Note that they appear as ratios, which

are normalized to unity ∫ ∞
−∞

dω

2π

ρ̇T,L(t, ω, p)

ρ̇T,L(t, t, p)
= 1 . (4.9)

According to HTL calculations at LO, each spectral function can be decomposed in fre-

quency space into parts that are associated with Landau damping and to quasiparticle

excitations, resulting in

ρ̇T,L(t, ω, p) = ρ̇Landau
T,L (t, ω, p) + ρ̇QP

T,L(t, ω, p) . (4.10)

We have seen this same structure in our numerical calculations of the spectral functions in

ref. [72]. The quasiparticle contributions can be written as

ρ̇QP
T,L(t, ω, p) = 2π ZT,L(p) ω [hT,L (ω − ωT,L(p), p)− hT,L (ω + ωT,L(p), p)] , (4.11)
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in terms of the dispersion relations ωT,L(p) of transversely and longitudinally polarized

quasi-particles, the residues ZT,L(p) and the functions hT,L (ω, p) that are normalized to

unity and correspond to the quasiparticle peaks. Perturbatively, the damping rate of the

quasiparticles is of the order g2T∗. Thus, at leading order HTL the quasiparticle peaks

correspond to delta functions hT,L (ω, p) → δ(ω). More realistically, the quasiparticle

peaks exhibit a Lorentzian shape with finite damping rate γT,L(p)

hT,L (ω, p) =
1

π

γT,L(p)

ω2 + γ2
T,L(p)

, (4.12)

which we have also verified numerically in [72]. The explicit leading order expressions for

dispersion relations ωT,L(p), quasiparticle residues ZT,L(p) and Landau damping contribu-

tions ρ̇Landau
T,L (t, ω, p)/ρ̇T,L(t, t, p) are written in the appendix B.

Combining eqs. (4.8) and (4.10), we can split the diffusion coefficient (4.8) into four

parts, corresponding to transverse / longitudinal and to Landau / quasiparticle contribu-

tions. Note that for each of these contributions, the frequency integration simplifies. The

Landau damping contributions only have support for |ω| < p, i.e., ρ̇Landau
T,L (t, ω, p) ∝ θ(p2−

ω2). Thus the frequency integration becomes
∫∞
−∞ dω 7→

∫ p
−p dω for these contributions.

For the quasiparticle contributions the frequency integration can be done analytically as∫ ∞
−∞

dω

2π

sin(ω∆t)

ω
2π ZT,L(p) ω [hT,L (ω − ωT,L(p), p)− hT,L (ω + ωT,L(p), p)]

= 2ZT,L(p) sin(ωT,L(p) ∆t) e−γT,L(p) |∆t| . (4.13)

All the remaining integrals are in general performed numerically. We have observed

deviations from the HTL expressions at LO for ωT,L(p), γT,L(p) and 〈EE〉T,L(t, t, p).

Thus, in our numerical calculations of κSR(t,∆t) we will use the following forms, which

we have extracted in our linear response framework [72, 80]:

• Since we observed for the dispersion relations ωT,L(p) some deviations from the re-

spective HTL expressions at LO, we use fits to our data from [72].

• We use the damping rates γT,L(p) extracted in ref. [72]. However, as will be shown

in figure 8, setting γT,L(p) = 0 does not change the results considerably.

• For the statistical 〈EE〉T,L(t, t, p) correlation function we observe significant enhance-

ment over the HTL expectation in the infrared. To study this effect we use both, a

parametrization of our numerical result for 〈EE〉T,L(t, t, p) and one where this en-

hancement has been removed, as discussed above in section 4.1 and shown in figure 5.

For the other ingredients needed in the calculation: for the functional form of the quasi-

particle peak hT,L we use the expression (4.12), and for the Landau damping contribution

ρ̇Landau
T,L (t, ω, p) and the quasiparticle residue ZT,L(p) we use the standard forms from the

literature that can be found explicitly in appendix B, with the value of the Debye mass

obtained using the iterative procedure discussed above. Also note that in all of these

expressions, a time dependence enters both due to 〈EE〉T,L(t, t, p) and due to the time

dependence of the Debye mass mD(t).
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We will evaluate the full ∆t dependence numerically with the procedure described

above. It is also important to compute κ∞(t), which emerges in the limit ∆t→∞, i.e., the

actual heavy quark diffusion coefficient. In this limit the sinc functions in the frequency

integral (4.8) become delta functions

lim
∆t→∞

2 sin (ω∆t)

ω
→ 2πδ(ω). (4.14)

The transverse Landau damping contribution vanishes in the limit ω/p→ 0 (see eq. (B.3)

in appendix B) and thus does not contribute. The longitudinal Landau cut, on the other

hand, has a finite limit ω/p→ 0 (see eq. (B.4) in appendix B) and indeed gives a nonzero,

in fact the only nonzero, contribution to κ∞(t).

One can see in two ways that the quasiparticle contributions vanish. One way is to

simply use the delta function representation (4.14) and then note that the particle contribu-

tion to ρ̇ in eq. (4.11) is proportional to ω. Alternatively, if one first integrates over ω as in

eq. (4.13), it is the quasiparticle damping term e−γ(p)∆t that vanishes in the ∆t→∞ limit.

Thus, for the heavy quark diffusion coefficient κSR
∞ (t) using the spectral reconstruction

model method, we are left with only the Landau damping contribution, resulting in

κSR
∞ (t) =

1

6Nc

∫
d3p

(2π)3 g
2〈EE〉L(t, t, p)

πp

p2 +m2
D

. (4.15)

A straightforward evaluation yields

κSR
∞ (Qt = 1500) = 7.4× 10−5Q3 (4.16)

κSR
∞,th.IR (Qt = 1500) = 6.5× 10−5Q3 (4.17)

for our measured 〈EE〉L(t, t, p) correlator and for the “thermal IR” parametrization in

figure 5 where the infrared enhancement has been removed, respectively.

To obtain a heavy-quark diffusion coefficient that is accurate to leading logarithmic

order, we can use the simpler parametrization

〈EE〉LLL (t, t, p) = (N2
c − 1)T∗

m2
D

p2 +m2
D

θ(Λ− p) . (4.18)

Then we would get

κSR
∞,LL(t) =

N2
c − 1

24πNc
m2
D(t)g2T∗(t)

[
log

(
1 +

Λ2(t)

m2
D(t)

)
− 1 +

m2
D(t)

m2
D(t) + Λ2(t)

]
≈ N2

c − 1

12πNc
m2
D(t)g2T∗(t) log

(
Λ(t)

mD(t)

)
, (4.19)

where in the last line we have left only the leading logarithmic contribution. We leave this

equation here as a reference since we will come back to it in the context of the kinetic

theory expression discussed in the following.
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4.3 Kinetic theory (KT) framework

We can also estimate κ∞(t) in the kinetic theory framework. Here the physical picture is

quite intuitive: the heavy quark gains momentum from independent kicks by gluons in the

medium. The scattering can be described by a perturbative Qg → Qg matrix element that,

in the limit of large quark mass, is dominated by t-channel exchange of a gluon. To arrive

at a scattering rate one additionally needs the gluon distribution for the incoming gluons,

and the Bose enhancement factor for the outgoing ones (noting that for us f � 1 so that

we can neglect the unity in the Bose enhancement factor f + 1). We can easily obtain a

quantitative expression for the diffusion coefficient following, e.g., the discussion in [18] as

κKT
∞ (t) =

1

6M

∫
d3kd3k′d3p′

(2π)9 8k0k′0M
(2π)3 δ3

(
p+ k′ − p′ − k

)
× 2πδ

(
k′ − k

)
q2 |M|2gluon f(t, k)f(t, k′), (4.20)

where M is the mass of the heavy quark. The incoming heavy quark momentum is

(M,p) and the outgoing heavy quark momentum is (M,p′). The gluon momenta before

and after a collision are given by (k,k) and (k′,k′). The transferred momentum is given

by q = p′ − p. Compared to the calculation in [18], which takes place in a thermal

background, we have neglected scatterings from quarks and replaced the thermal gluon

distributions with general ones.

The process is dominated by t-channel gluon exchange. We take the matrix element

squared to be

|M|2gluon = NcCHg
416M2k2

(
1 + cos2 (θkk′)

) 1(
q2 +m2

D

)2 , (4.21)

where CH = (N2
c − 1)/(2Nc) is the color Casimir of the heavy quark and where we intro-

duced an infrared regulator in terms of m2
D.

The angle between k and k′ can be expressed as

cos (θkk′) = 1− q2

2k2 . (4.22)

Carrying out the integrals that are possible using the delta functions and an angular inte-

gral, we can transform this to

κKT
∞ (t) =

NcCHg
4

12π3

∫ ∞
0

dk k2

∫ 2k

0
dq q3

(
2− q2

k2
+

q4

4k4

)
1(

q2 +m2
D

)2 f2 (t, k)

=
NcCHg

4

12π3

∫
dkk2

[
− 3m2

D

2k2
− 4k2

4k2 +m2
D

−
m2
D log

(
m2

D

4k2+m2
D

)
k2

+ log

(
4k2 +m2

D

)
m2
D

+
3m4

D log
(

4k2

m2
D

+ 1
)

8k4
− 1
]
f2 (t, k) . (4.23)
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This is now an integral that we can carry out numerically. Using the definition of the gluon

distribution in eq. (4.4), we get, again at Qt = 1500, the result

κKT
∞ (t = 1500) = 4.3× 10−5Q3 (4.24)

κKT
∞,th.IR (t = 1500) = 1.9× 10−5Q3 . (4.25)

The first one of these is a little bit smaller than, but roughly in line with the results that

we obtain from the SR method, see eqs. (4.16) and (4.17). The second one is smaller

by a factor of more than two. The effect of removing the infrared enhancement (i.e.

the “thermal IR” approximation) is larger here than it is in the SR method. This is

somewhat paradoxical, since conceptually the kinetic theory calculation is based on the

integral over k in (4.24) being dominated by UV particle like degrees of freedom in f(k),

whereas the expression (4.15) in the SR depends on the longitudinal correlator in the

soft momentum region. The effect of the infrared enhancement is large enough that such

parametric estimates start becoming unreliable quantitatively, even if they remain true at

the leading logarithmic level, as we will discuss next.

Let us now discuss how the KT and SR approaches are equivalent at the leading

logarithmic order for large Λ/mD, again roughly following the discussion in [18]. We start

from the first form in eq. (4.23) that has an integral over both k and q. Now the momentum

of the gluon k is typically of order Λ, while q is of the order of the Debye scale mD. In the

limit Λ� mD we can therefore assume that k � q. This limit enables several modifications

that decouple the k and q integrals. First, at leading order we can replace the upper limit

in the q integral by the UV scale Λ. We can also drop terms O
(
q2/k2

)
in the integrand. In

terms of the original kinetic theory this corresponds to a small-angle approximation where

the scattering angle between k and k′ is cos θkk′ ≈ 1. With these approximations we arrive

at the same result as the leading logarithmic limit in the SR picture, eq. (4.19)

κKT
∞,LL(t) =

2NcCHg
4

12π3

∫ ∞
0

dk k2f2 (t, k)

∫ Λ

0
dq q3 1(

q2 +m2
D

)2
=
NcCH
6π3

4π4

2Nc
g2T∗m

2
D

∫ Λ

0

dq

(2π)3

q(
q2 +m2

D

)2
=

1

6Nc

∫
d3q

(2π)3 g
2〈EE〉LLL (t, t, q)

πq

q2 +m2
D

= κSR
∞,LL(t) , (4.26)

where we used the integral defining T∗ from eq. (2.7) and the assumption that the longi-

tudinal 〈EE〉LLL (t, t, p) correlator has the form ∝ T∗ that we expect in HTL, eq. (4.18).

To summarize, there is a common limit for our SR and KT models. From the KT side,

it can be reached by systematically taking the limit of large Λ/mD, implying small angle

scatterings and neglecting the exact kinematical limits for the scattering process. From the

SR model reaching the common limit requires removing the infrared enhancement that we

see in the equal time correlator and replacing it by a functional form that is proportional

to ∼ T∗ which is determined by the hard modes (by the integral (2.7)). For the values of
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t that we have studied, i.e., the values of the scale separation Λ/mD, we see no indication

of a disappearance of this infrared enhancement. However, even with the IR enhancement

the leading logarithmic limit eq. (4.19) should still be valid, the effect being on the value

of the constant under the logarithm.

Incidentally, the equivalence of the common limit κ∞,LL(t) in the KT and SR frame-

works in eq. (4.26) justifies a posteriori the form of IR regulation we used in eq. (4.21).

One arrives at the known leading logarithmic expression of κKT
∞,LL(t) in thermal equilibrium

with temperature T [18, 27] by setting T∗ 7→ T and Λ 7→ T .

We can use the leading logarithmic limit to estimate the expected scaling behavior for

the diffusion coefficient with t, which controls the magnitudes of the relevant scales Λ, T∗
and mD as discussed in section 2. Based on the scaling behavior of mD ∼ Q(Qt)−1/7 and

g2T∗ ∼ Q(Qt)−3/7 in the self-similar regime, the scaling behavior of the diffusion coefficient

is expected to be

κKT
∞,LL(t) ≈ N2

c − 1

12πNc
m2
D(t) g2T∗(t) log

[
Λ(t)

mD(t)

]
∼ t−5/7, (4.27)

up to logarithmic corrections.

For a generalization to finite time κKT(t,∆t), we allow for a possibility of a nonzero

frequency ω = k′0 − k0 = k′ − k, corresponding to finite energy transfer between gluons

and the heavy quark. Here one should in principle use the proper HTL expression. We,

however, simplify the form by employing the same IR regulator as for κKT
∞ (t) in eq. (4.21).

In this case the matrix element becomes

|M|2gluon (ω) = NcCHg
4 4M2(k0 + k′0)2

(
1 + cos2 θkk′

)
(q2 − ω2 +m2

D)2
, (4.28)

and the frequency dependent expression can be written as

κKT(t, ω) =
1

6M

∫
d3k d3k′

(2π)6 8 k k′M
2πδ(k′ − k − ω)

×
(
k − k′

)2 |M|2gluon (ω)f(t, k)f(t, k′). (4.29)

We carry out this integral by a change of variables from q to k′. The integrals over the

angular variables can be carried out analytically. After Fourier transforming, our expression

for the ∆t dependent diffusion coefficient is

κKT(t,∆t) =NcCHg
4

∫ ∞
0

dkdk′f(t,k)f(t,k′)(k+k′)2

×
[
m2
D

(
4kk′+m2

D

)(
−2m2

D(k2−6kk′+(k′)2
)
−4kk′

(
k2−4kk′+(k′)2)+3m4

D

)
× log

(
m2
D

4kk′+m2
D

)
+4kk′

(
−2m4

D(k2−9kk′+(k′)2
)

−8kk′m2
D

(
k2−4kk′+(k′)2

)
−8k2(k′)2(k−k′)2 +3m6

D)

]

×
[
384π4k2(k′)2m2

D

(
4kk′+m2

D

)]−1 sin(∆t(k′−k))

(k−k′) . (4.30)
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The remaining integrals are evaluated numerically. One recovers κKT(t,∆t → ∞) =

κKT
∞ (t). This procedure has enabled us to get a ∆t-dependent expression from the KT

description.

We would only expect this result in eq. (4.30) to describe the physics at large ∆t.

In terms of the different physical ingredients included in the SR description, this finite-

∆t calculation in kinetic theory still includes only the effect of the longitudinal Landau

cut, and even that quite crudely. The gluon exchanged in the kinetic theory calculation is

longitudinal and has a very spacelike four-momentum, because the quark is infinitely heavy

and the scattering gluon interacts only with its Coulomb field. As we will see explicitly in

the following, the contribution of the other parts of the spectral function: the quasiparticle

poles and the transverse Landau cut, are essential to reproduce the full ∆t dependence.

The effective Debye mass in the matrix element in eq. (4.28) has been tuned such

that it gives the leading-order correct late-time limit but as it has a trivialized frequency

structure it cannot capture the full leading-order accuracy at finite ∆t. In order to arrive

to full leading order description of the time evolution of κ one could further improve the

estimate by replacing the simple mass regularization in eq. (4.28) by the fully resummed

HTL expression (as is done in, e.g., [17]).

5 Results

Here we present our numerical results for the evolution of the heavy-quark diffusion coeffi-

cient κ∞(t) and the correlator κ (t,∆t) and compare them to results using the SR and KT

methods introduced in the previous section. With these tools, we are able to understand

distinctive features of these quantities like the origin of the oscillations of κ (t,∆t). The

comparison to our full numerical data also helps us to assess the quality of the (mainly

perturbative) SR and KT methods employed here.

5.1 Time dependence of κ∞(t)

We have extracted the values of κ∞ (t) from the numerical calculation using the fitting

procedure described above (see eq. (3.22)).3 The resulting κ∞(t) is shown in figure 6 as a

function of t.

In figure 6 we also show the heavy quark diffusion coefficients computed using the SR

and KT methods in the eqs. (4.15) and (4.23), respectively, as discussed in the previous

section. Both the SR and the KT methods have a time dependence that agrees rather

well with our full numerical extraction. As for the normalization, the SR model slightly

overestimates and the KT one underestimates it. Both methods agree with the lattice

3An alternative method to approximate κ∞(t) is to take an average over ∆t in an interval from ∆tmin

to ∆tmax, with both values � 1/Λ, as in

κ∞(t) ≈ 1

∆tmax − ∆tmin

∫ ∆tmax

∆tmin

d∆t κ(t,∆t). (5.1)

It is easily seen that this is equivalent to cutting off the in principle infinite integration region ∆t in eq. (3.17)

or (3.21) by a linear window function going from 1 at ∆tmin to 0 at ∆tmax. We have observed that the thus

extracted values for κ∞(t) are consistent with our standard extraction method using fits.
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∞

(t
)/
Q
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Latt. data
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Figure 6. Dependence on time of the heavy quark diffusion coefficient κ∞(t). We also show the

extracted values from the spectral reconstruction (SR) and kinetic theory (KT) frameworks in the

infinite time limit. In addition, we show fits to the lattice data (black dash-dotted line), SR (blue

dashed line) and KT (dark-blue line) frameworks whose form is given by (5.2). The solid points at

Qt = 1500 indicate the numerical values (eqs. (4.16), (5.3), and (4.24)) discussed in the text. The

open points (eqs. (4.17) and (4.25)) show the expectations for a thermal infrared spectrum without

the enhancement.

extraction with roughly 30 % accuracy. In the light of the discussion of the common

leading logarithmic limit, eq. (4.26), we could interpret the lower value for the KT model

as being due to importance of the infrared enhancement: the KT model has an implicit

assumption that the soft electric field modes have a thermal distribution with a temperature

T∗ determined by the hard modes as in eq. (2.7), while the SR model actually uses our

measured correlator of electric fields at soft momenta, which is larger.

From the leading logarithmic limit we extracted an expectation for the scaling of

the diffusion coefficient with time t in (4.27). The resulting power law, κ∞ (t) ∼ t−5/7,

however, receives logarithmic corrections that can be large. Also at the earliest values of

t, it is possible that κ∞(t) suffers from a larger transient effect from the system not yet

being fully in the scaling regime. Using a simple t−5/7 times logarithmic fit to our data,

the evolution of κ∞(t) can be effectively described as

κ∞(t) ≈ κ∞(Qt = 1500)

C

(
Qt

1500

)−5/7(
ln

Qt

1500
+ C

)
(5.2)
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with two fit parameters

κ∞(Qt = 1500) = 5.90× 10−5Q3

C = 4.34. (5.3)

It can be instructive to compare our result for κ∞(t) to the corresponding thermal

value κtherm
∞ . We emphasize that the classical-statistical framework here cannot be used

to follow the system all the way to thermal equilibrium, since one has to remain in the

regime of large occupation numbers. At the times where our system starts to approach

a thermal equilibrium one, it will simultaneously fall out of the regime of validity of the

classical statistical approximation that we are using here. To get a parametrical estimate,

this will happen when occupation numbers are of order unity f(ttherm,Λ) ∼ 1. Due to

the scaling behavior g2f(t,Λ) ∼ (Qt)−4/7 this will occur at times that are parametrically

Qttherm ∼ g−7/2. Until this time, the non-equilibrium value is larger than the thermal one

κ∞(t)� κtherm
∞ by an inverse power of the coupling g � 1.

Let us now try to make this comparison to a corresponding thermal system more quan-

titative. The choice to be made in comparing our result to thermal equilibrium is to define

what is meant by a “corresponding” thermal system. One way to perform such a compar-

ison is to choose a value for the coupling constant g and the energy density ε and keep

them the same for the two systems. For a thermal system these are enough to determine

the temperature T and other physical quantities. In our case, the combination g2 ε of the

coupling and the energy density is fixed by our initial conditions. But subsequently the

system also has a time dependence that affects the magnitudes of the different physical

scales in the system. Since we cannot follow our simulation to equilibrium we have to

choose a meaningful value of t for a comparison to a thermal result. This choice should be

made by looking at the value of some other physical quantity.

Since a defining feature of both the thermal system and our overoccupied cascade

is the scale separation between a hard scale and a soft Debye scale, a natural way to

compare to a thermal system is to compare the Debye scales. At fixed g2 ε we can do this

in two ways. One option is to compare our system to a thermal one at the same value

of the Debye mass, or equivalently the ratio m2
D/
√
ε. For a thermal system the energy

density and Debye mass are related to the temperature by ε = (N2
c − 1)π2T 4/15 and

m2
D = (Nc/3)g2T 2. We can quantify this Debye scale comparison by defining an “effective

coupling” with the ratio m2
D/
√
ε as

g̃2
ε ≡

3π
√
N2
c − 1

Nc

√
15

m2
D ε
−1/2

≈ 2.1m2
D ε
−1/2, (5.4)

where we have used Nc = 2 as in our numerical simulation for the explicit value. Another

option is to target similar values of the scale separation between the hard and soft scales.

This scale separation can be parametrized by the ratio mD/Λ. For a thermal system

with Nc colors and no dynamical fermions the energy density, coupling, Debye and hard

scales are related by ε = (N2
c − 1)π2T 4/15 ≈ 1.97T 4 ≈ 0.031 Λ4 and m2

D = (Nc/3)g2T 2.
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Note that here we define, as in section 2, the hard scale Λ as the momentum scale for

which the integrand of the energy density is maximal. For a thermal system this condition

(d/dp (p3fBE(p)) = 0) leads to (Λ/T ) = 3(1 − exp(−Λ/T )) and consequently Λ ≈ 2.82T .

We again parametrize the scale separation mD/Λ in terms of another effective coupling

g̃2
Λ ≡

23.9

Nc

m2
D

Λ2

≈ 11.9
m2
D

Λ2
, (5.5)

with again Nc = 2 for the numerical value. Both of the effective couplings (5.4) and (5.5)

are constructed so that for a thermal system at leading order in g they just give back the

gauge coupling: g̃2
ε = g̃2

Λ = g2.

The thermal calculation at leading order (e.g. [19]) gives (with Nc colors and no

fermions) a value κtherm = CF g
4T 3/(18π)Nc(ln(2T/mD)−0.64718). In terms of the energy

density and the scale separation ratio this gives us

κtherm =
N2
c − 1

36π

(
15

(N2
c − 1)π2

)3/4(
ln

(
Λ

mD

)
− 0.99

)
g4ε3/4

≈ 0.016

(
ln

1

g
+ 0.25

)
g4ε3/4 (5.6)

where in the second equality we have taken explicitly Nc = 2.

For a comparison of our overoccupied system results with this number, we now want to

extrapolate our result to a value of t where our measured time dependent Debye scale has

a value corresponding to a g̃ that is the same as in a thermal system, i.e., g̃ → g. Since our

results are usually expressed in terms of Q, we start by relating this quantity to the energy

density by g2ε = 2(N2
c −1)

∫
p p g

2f(t = 0, p) ≈ 0.0762Q4. Thus, we have Q3 ≈ 6.9 (g2ε)3/4

and Q = 1.90 (g2ε)1/4. Using the scaling laws in section 2 and the numerical extractions

in eq. (2.9), we get the values for the scale separation mD/Λ ≈ 0.1 (Qt/1500)−2/7 and

the Debye scale mD(t) ≈ 0.21 (Qt/1500)−1/7Q ≈ 0.40 (Qt/1500)−1/7 (g2ε)1/4. Using the

definitions of the effective couplings g̃ε and g̃Λ, eqs. (5.4) and (5.5), we can translate values

of Qt into values of the effective couplings(
Qt

1500

)−1/7

= 1.73
g̃ε

g1/2
= 1.703 g̃

1/2
Λ . (5.7)

We can then express our result (5.2) for κ∞(t) in terms of g̃ε as

κ∞(t) ≈ 0.0050

(
ln

g

g̃2
ε

+ 0.148

)
g̃5
ε g
−1ε3/4. (5.8)

or in terms of g̃Λ analogously as

κ∞(t) ≈ 0.0047

(
ln

1

g̃Λ
+ 0.177

)
g̃

5/2
Λ g3/2ε3/4. (5.9)

The expressions (5.8) and (5.9) involve different powers of the effective couplings due to the

fact that the definitions (5.4) and (5.5) use ε and Λ that are, in our overoccupied cascade,
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proportional to g−2 and g0. It is interesting to see that the coefficients in (5.8) and (5.9)

are almost the same. This is a consequence of the values of the Debye and hard scales in

eq. (2.9) fortuitously being such that they match the thermal values when extrapolated

to late t. In other words, it is a coincidence that the conditions g̃ε = g and g̃Λ = g are

satisfied at not just parametrically, but also numerically at the same values of t.

Now, we can make a comparison of the diffusion coefficient in the overoccupied gluonic

cascade to that in a thermal system by comparing (5.6) to (5.8) and (5.9). We firstly re-

emphasize that in the overoccupied phase of the evolution, where our classical description

is justified, g̃ε � g and g̃Λ � g; thus the value of κ∞(t) is parametrically larger than for a

thermal system with the same energy density. We can then extrapolate the time evolution

of our system to occupation numbers f ∼ 1, i.e. the parametric region Qt ∼ g−7/2 where the

occupation number becomes order one and the classical statistical approximation breaks

down. This is done in practice by setting g̃ε → g, g̃Λ → g. With these assignments we

observe two features from eqs. (5.6), (5.8) and (5.9). Firstly, as a consistency check, the

powers and logarithms of g are the same in all three cases. Secondly, the value of the

coefficient in (5.8) and (5.9) is smaller by a factor of ∼ 3. This is mostly a result of the

IR enhancement and the way we defined the effective couplings using mD. To be more

precise: the change in the functional form of f(p) with the IR enhancement increases

the value of mD by 25% (from a comparison between our result and the “thermal IR”

parametrization). Since in our classical simulations we have mD ∼ (Qt)−1/7, we have to

wait for (Qt)−1/7 to be 25% larger to reach the limit g̃ε = g̃Λ = g, compared to a case

without the IR enhancement. During this time, κ(t) ∼ (Qt)−5/7 becomes smaller by a

factor of 1.255 ≈ 3. In other words, while the IR enhancement increases the value of κ(t),

it increases the value of mD even more, relative to a thermal distribution. This has the

effect that when we express the g in κ ∼ g4ε in terms of mD, the coefficient is smaller

in our case than for a thermal distribution. As long as values are consistently expressed

in terms of the appropriate physical scales of the problem, our overall result is thus quite

consistent with the perturbative understanding of the microscopic picture of heavy quark

diffusion, apart from these effects of the IR enhancement.

5.2 Understanding the ∆t dependence of κ (t,∆t)

The self-similar t dependence of the time derivative of 〈p2(t,∆t)〉, i.e., of κ (t,∆t) has been

discussed in section 3.4. We also showed there that its dependence on ∆t is well described

by a damped oscillating function with oscillation frequency ωpl shifted by κ∞(t), which was

parametrized in eq. (3.22). Here we study the origin of these oscillations by comparing our

data to computations within the SR and KT methods.

The dependence of κ (t,∆t) on ∆t is shown in figure 7 for Qt = 1500. The black solid

curve shows our data while the other curves are obtained using the SR and KT models,

eqs. (4.8) and (4.30). The blue dashed curve corresponds to the SR model when using

the parametrization of the equal time statistical correlation function which agrees with our

extracted 〈EE〉(t, t, p) correlator in the infrared. The green dotted curve corresponds to the

SR calculation in which we use the “thermal IR” equal time statistical correlation function,

where we have forced the 〈EE〉(t, t, p) correlator to a constant ∼ T∗ in the infrared, see
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Figure 7. Extracted value of κ (Qt = 1500,∆t) as a function of the relative time ∆t. The oscilla-

tions in the signal correspond to the plasma frequency, as shown in figure 4. The curve labeled SR

is obtained using eq. (4.8) with an 〈EE〉 parametrization fit to our data in figure 5, and the one

labeled SR thermal IR with the curve extrapolated to a constant ∼ T∗ in the infrared. The curves

labeled KT are obtained using eq. (4.30) with the same conventions as for SR. One observes that

only the SR curve can reproduce the oscillations reasonably well. As further argued in the text, we

take this as a gauge-invariant confirmation of the existence of the IR enhancement.

figure 5. We observe that the SR method quite well reproduces the oscillations seen in the

data, where the shift to slightly larger values of κ can be attributed to the overestimation

of κ∞(t) by the SR method, as observed above. However, if the “IR enhancement” in the

equal time correlation function is removed, the oscillations practically disappear. Likewise,

the oscillations seen in the data are not present in the KT model calculation, as could

be anticipated based on the discussion in section 4.3. We take the comparison with the

SR model with and without the infrared enhancement in the equal-time correlator as a

confirmation of the existence of this infrared enhancement from a manifestly gauge invariant

observable. This is one of the main conclusions of our paper.

We can also break down the SR model into different components contributing to

κSR(t,∆t), as mentioned in section 4.2, to get an idea of their relative contributions. This

decomposition

κSR = κQP
T + κQP

L + κLandau
T + κLandau

L (5.10)

is shown in figure 8, which includes the total κSR(t,∆t) together with the contributions

from transverse and longitudinal quasiparticles and the transverse and longitudinal Landau

cut. We can make two main observations from this figure.
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Figure 8. Comparison of the different contributions to κ(t,∆t) computed in the SR framework in

eq. (4.8), where the 〈EE〉 correlator with the extracted IR enhancement is used. The curve for κSR

is also shown in figure 7. We observe that the source of the oscillations at the plasmon mass scale

are the quasiparticle contributions, while neglecting the damping rates by setting γ = 0 has little

effect on the oscillations. On the other hand, the major contribution to the heavy-quark diffusion

coefficient κ∞ arises from the longitudinal Landau cut, around which the oscillations proceed.

Firstly, as discussed earlier, the only contribution to the ∆t → ∞ limit comes from

the longitudinal Landau damping which, however, does not show any oscillations (the

integration weight being mostly at very small ω in eq. (4.8)). The transverse Landau cut

only contributes at quite small ∆t, and does not exhibit oscillations.

Secondly, the oscillations are produced by both the transverse and longitudinal quasi-

particle contributions, which, however, vanish at ∆t→∞. Their amplitudes decrease due

to the specific momentum integration in eq. (4.8) and because of a finite damping rate

γT,L(p). The latter seems to have a smaller effect on the evolution. This can be seen in fig-

ure 8 by comparing κSR(t,∆t) to the curve κSR
γ=0(t,∆t), where the damping rates have been

set to zero in its calculation. Therefore, even LO perturbative calculations, where quasi-

particles are given by Delta functions in the spectral function, lead to damped oscillations

with frequency ωpl if the IR enhancement is taken into account.

6 Conclusions

In this paper we have measured the heavy quark diffusion coefficient κ∞(t) in a self-similar

overoccupied cascade system, using numerical calculations in classical gluodynamics.

In addition to calculating the diffusion coefficient, we have observed strong oscillatory
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structures in ∆t in local gauge-invariant electric field correlators κ (t,∆t) at the plasmon

frequency scale.

The correlator κ (t,∆t) is, in physical terms, the derivative of the momentum broad-

ening 〈p2(t,∆t)〉 of a heavy quark traversing the plasma with respect to the time ∆t. In

general, we have observed that 〈p2(t,∆t)〉 rises fast initially on a time scale of ∆t ∼ 1/Q,

where Q is a typical hard scale of the plasma. This initial rise is followed by an approx-

imately linear growth that can be interpreted as due to momentum diffusion. The linear

growth is modified by additional damped oscillations with the plasmon frequency. While

the initial rapid growth is a direct consequence of the decoherence of hard quasiparticles

with momenta ∼ Q, in order to understand the observed oscillations, dynamics at lower

momenta and frequencies have to be taken into account.

Prompted by these numerical observations, we have constructed two models to under-

stand them, which start from a distribution of gluons in the system, obtained numerically

from an equal-time correlator of electric fields. In the first method, that we call spectral re-

construction (SR), we extrapolate our measured equal time correlators from (∆t = 0, p) to

ω-space using a generalized fluctuation-dissipation relation and assuming a HTL structure

for the spectral function. This structure, which we have also observed numerically in [72],

includes both damped quasiparticle peaks and a low-frequency Landau damping region.

Both contributions are needed to explain the full ∆t dependence of the electric field correla-

tors κ (t,∆t). We found that the oscillations at the plasmon frequency are produced by the

quasiparticle contributions, whereas the main contribution to the diffusion coefficient arises

from the Landau damping of longitudinal modes in the plasma. In our second method we

use a kinetic theory (KT) calculation where the diffusion coefficient is computed utilizing

the fact that the process is dominated by t-channel gluon exchange. We have shown that

these two models are equivalent in the leading logarithmic limit. The screened scatter-

ing matrix element in the KT model implicitly corresponds to a thermal distribution of

longitudinal field correlators in the infrared, with a temperature determined by the hard

modes. The SR model, on the other hand, includes an explicit parametrization of these

small momentum modes, which enables a better description of the full lattice results.

Using these models we have argued that the oscillations at the plasmon scale can be ex-

plained by a larger occupation of infrared modes p . mD in the system than expected from

perturbation theory. This feature, that we call IR enhancement, had been observed earlier

in the equal-time electric field correlator in Coulomb gauge. We have now demonstrated an

independent confirmation for it in a gauge-invariant observable d〈p2(t,∆t)〉/d∆t in a dif-

ferent part of phase space. These oscillations are also visible in the momentum broadening

observable 〈p2(t,∆t)〉.
The time-dependence of physical quantities in the scaling system tends to follow

simple, analytically derivable power laws as a function of time. We have seen that

the time dependence of the heavy quark diffusion coefficient is consistent with the

t−5/7 × log t-dependence expected from scaling arguments. Due to the IR enhancement,

the contribution of small momentum quasiparticle-like modes below the plasmon frequency

scale is larger than one would expect in perturbation theory. Recall that a crucial feature

of our (SR) analysis was to assume an HTL form for the spectral function, which is not
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proportional to the number of quasiparticles in the system, together with a generalized

fluctuation-dissipation relation. This means that the IR enhancement leads to an

enhancement of the longitudinal statistical correlation function in the Landau damping

region ω � p over the perturbative expectation. Consequently the heavy quark diffusion

coefficient is larger than one would perturbatively expect based on just the number of

hard gluons in the system. In the case of heavy quark diffusion this enhancement is not a

large correction to the leading logarithmic behavior of the diffusion coefficient, but shows

up as an oscillatory deviation from the diffusive behavior. In the kinetic theory framework

the IR enhancement is a substantial correction. We take this as an indication that kinetic

theory becomes less reliable due to the IR enhancement.

A similar argumentation can also be used to related transport coefficients like the jet

quenching parameter q̂ and the momentum broadening resulting from it. Therefore, we

believe that the effects of overoccupied IR gluonic quasiparticle modes should be taken into

account for calculations of other transport coefficients. Similar effects could be important

also in different gluonic systems, including different initial states, anisotropies or in expand-

ing geometry, if the underlying plasma involves infrared enhancement. It would therefore

be interesting to study their effect, and thus the effects of such an infrared enhancement,

on other phenomenological observables.

Our calculation has been done in an extremely weak coupling, classical field limit. To

make a connection to phenomenologically relevant values of the parameters, one needs to

scale this to realistic values of the coupling, keeping a meaningful set of physical quantities

constant. Unsurprisingly, in the strongly overoccupied system the diffusion coefficient is

enhanced by inverse powers of the coupling constant compared to a thermal system at the

same energy density. We have done a more detailed comparison to a thermal system by

extrapolating our overoccupied cascade system to a situation where the scale separation

between the energy density and the Debye scale are similar. The results of this exercise,

obtainable from a comparison of eqs. (5.8) and (5.9) to (5.6), are intended to be usable by a

brave phenomenologist to estimate the effect of an initial overoccupation of gluonic modes

in the pre-equilibrium stage of a heavy ion collision on calculations of heavy quark diffusion.
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Figure 9. Dependence on the lattice spacing of the heavy-quark diffusion coefficient

κ∞ (Qt = 1500), averaged over 4-6 configurations and computed using eq. (5.1). Little dependence

is visible for lattice spacings Qas ≤ 0.6.

A Lattice checks

The sensitivity to the lattice UV cutoff depends on the lattice spacing Qas. The dependence

of our extraction of the heavy quark diffusion coefficient at Qt = 1500 on the cutoff is shown

in figure 9. The results remain relatively stable up to values Qas = 0.6. For larger lattice

spacings, we start to observe significant lattice UV cutoff effects, and for Qas = 0.8 the

observed value for κ has been nearly doubled compared to Qas = 0.3. The main conclusion

in this case is that one has to use lattice spacings Qas ≤ 0.6. This also means that our

standard choice Qas = 0.5 is sufficiently small.

The infrared cutoff on the lattice is given by the finite size of the system L ≡ Nsas. The

dependence of the extracted heavy quark diffusion coefficient at Qt = 1500 on this cutoff is

shown in figure 10. The main result is that κ∞ (t) is relatively independent of the IR cutoff,

only for lattice sizes QL < 20 we see that our measurements start to break down. Typically

our IR cutoff is QL = 130 (2603 lattice with Qas = 0.5), which is sufficiently large.

We want our lattice to be large enough that the Debye scale is resolved on the lattice.

In our simulations we have mD ≈ 0.21Q at Qt = 1500. The smallest momentum mode we

have available is kmin = 2π
L ≈ 0.1Q for a 1283 lattice. Thus even for 1283 lattices we can

still accommodate the Debye scale. Because of the self-similar scaling, we have mD ∼ t−1/7

and ultimately at some point the Debye scale will fall below our reach. Due to the slow

power law evolution we expect this to happen roughly at Qt = (1500×27) ≈ 190000, which

is much later than our simulation times.
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Figure 10. Dependence on the lattice length L ≡ Nsas of the heavy-quark diffusion coefficient

κ∞ (Qt = 1500), averaged over 4-10 configurations and computed using eq. (5.1). For QL > 20,

results are seen to be relatively independent of the lattice volume.

B HTL functions

In this appendix we will briefly recap the functional forms of the HTL functions which are

necessary for the estimation of κ, in particular for the decomposition eq. (4.10). For more

details on these we refer the reader to textbooks on thermal field theory, see e.g., [81] (with

a slightly different notation than here). Previously in [72] we have studied the spectral

properties of classical Yang-Mills theory in the self-similar regime, and these functions and

their characteristics are discussed there in more detail.

Equal time spectral functions are determined by the sum rules

ρ̇HTLT (t, t, p) = 2

∫ ∞
0

dω

2π
ρ̇HTLT (t, ω, p) = 1 (B.1)

ρ̇HTLL (t, t, p) = 2

∫ ∞
0

dω

2π
ρ̇HTLL (t, ω, p) =

m2
D(t)

m2
D(t) + p2

. (B.2)
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The transverse and longitudinal Landau cut contributions are given by the functions

ρ̇Landau
T (t, ω, p)

ρ̇T (t, t, p)
=

(
π p

m2
D

2
x2(1− x2) θ

(
1− x2

))
×
{[

p2
(
1− x2

)
+
m2
D

2

(
x2 +

x
(
1− x2

)
2

ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣
)]2

+
π2

4

m2
D

4
x2
(
1− x2

)2}−1

(B.3)

and
ρ̇Landau
L (t, ω, p)

ρ̇L(t, t, p)
=

π p (p2 +m2
D) θ

(
1− x2

)[
p2 +m2

D

(
1− x

2 ln
∣∣∣x+1
x−1

∣∣∣)]2
+ π2m

4
D

4 x2

, (B.4)

where x = ω
p . The residues of the quasiparticle peaks are given by the functions

ZT (p) =
ωT (p)

(
ω2
T (p)− p2

)
m2
Dω

2
T (p)−

(
ω2
T (p)− p2

)2 , (B.5)

ZL(p) =

(
p2 +m2

D

) (
ω2
L(p)− p2

)(
p2 +m2

D − ω2
L(p)

)
ωL(p)m2

D

. (B.6)

Next we will go through the explicit forms of the dispersion relation ωT,L(p). In

temporal gauge, the retarded transverse and longitudinal propagators are given by

GT (ω, p) =
−1

ω2 − p2 −ΠT (ω/p)

GL(ω, p) =
p2

ω2

−1

p2 −ΠL(ω/p)
. (B.7)

where the transverse and longitudinal gluon self-energy tensors in the HTL framework at

LO read

ΠT (x) = m2 x
(
x+ (1− x2)Q0(x)

)
ΠL(x) = −2m2 (1− xQ0(x)) . (B.8)

Here Q0 is the Legendre function of the second kind

Q0(x) =
1

2
ln
x+ 1

x− 1
=

1

2
ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣− iπ

2
θ(1− x2). (B.9)

The dispersion relations of the transverse and longitudinal quasiparticle modes are given by

the poles of the retarded propagator. In the general case one has to solve these numerically.

It is, however, possible to find approximate solutions for small and large momenta. For the

transverse dispersion relation we have

ωT =
√
ω2

pl + 6/5 p2, p� mD (B.10)

ωT =
√
m2 + p2, p� mD, (B.11)
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while for the longitudinal dispersion relation the corresponding expressions are

ωL =
√
ω2

pl + 3/5 p2, p� mD (B.12)

ωL = p

(
1 + 2 exp

(
−p

2 +m2

m2

))
, p� mD. (B.13)

For the damping rates γT,L(p), we parametrize the data we have previously extracted

(see [72], figure 9). Since we could not observe any differences between transverse and

longitudinal damping, we use the same parametrization for both polarizations. In pertur-

bation theory the damping rate is a next to leading order effect. Perturbatively it has been

computed at p = 0 [76] and also for momenta of the order of the hard scale [82].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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