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Abstract. Reliable data on the properties of the porous medium are necessary for the correct 
description of the process of displacing hydrocarbons from the reservoirs and forecasting 
reservoir performance. The true permeability of the reservoir is one of the most important 
parameters which determination is time-consuming, costly and require skilled labor. The paper 
describes the methodology for determining the permeability of a porous medium, based on 
machine learning. The results of laboratory experiments, available in the database (terrigenous 
reservoirs with permeability in the range from 12 to 1132 md), are used to train the neural 
network, and then to predict the reservoir permeability. Comparison of the predicted and 
calculated permeability values showed a fairly good match between them with the determination 
coefficient of 0.92. The last task considered in this paper is to obtain an analytical expression 
describing a fluid flow in a porous medium using machine learning. This procedure enabled to 
obtain a resultant equation of fluid flow in a wide range of reservoir parameters and pressure 
gradients, which can be used in reservoir simulators. 

1.  Introduction 
The determination of the absolute permeability of a rock sample based on standard laboratory studies 
requires special attention at the stage of processing experimental data. The traditional technique is based 
on the use of the Forchheimer equation [1], which takes into account the deviation from the Darcy law 
at high flow velocities caused by inertial forces: 

|𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝| = 𝜇𝜇
𝑘𝑘
𝑢𝑢 + 𝛽𝛽𝛽𝛽𝑢𝑢2     (1) 

where |𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝| – pressure difference, 𝜇𝜇 – dynamic viscosity coefficient, 𝑘𝑘 – permeability 
coefficient, 𝑢𝑢  – velocity, 𝛽𝛽 – non‐Darcy coefficient, 𝛽𝛽 – fluid density. Although equation (1) seems to 
be a simple relation for determining permeability, estimating the inertial (high velocity) coefficient 𝛽𝛽 is 
not a simple task [2,3]. To evaluate it, data from experiments conducted at high pressure gradients, i.e. 
under conditions when inertial forces become comparable with viscous forces and when the deviation 
from the (linear) Darcy law becomes obvious and can be fixed. 

It has been established by numerous experiments (for example, [2,3]) that the coefficient 𝛽𝛽 is not 
constant and can change its value thousands of times depending on the type of porous medium. It has 
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also been noted in numerous literature [4-8] that 𝛽𝛽 depends on porosity and permeability and that its 
determination is not an easy task. 

At low pressure gradients, the gas exhibits a slip property (superconductivity of the porous medium), 
and Darcy’s law also ceases to correctly describe the fluid flow. This phenomenon was first described 
and investigated by Klinkenberg [9]. Thus, the flow of fluids in a porous medium is quite complex and 
exhibits nonlinearity properties over the entire range of pressure gradients.  

In [10,11], an attempt was made to describe the law of flow of fluids in porous media using dimension 
theory, which enabled to write it in the following compact form: 

П = 1 + 𝐶𝐶 ∙ 𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑒𝑒𝑝𝑝(−𝑏𝑏 ∙ 𝑅𝑅𝑅𝑅𝛾𝛾),    (2) 

 Π = 𝑘𝑘∆𝑝𝑝
𝜇𝜇𝜇𝜇𝜇𝜇

,    𝑅𝑅𝑅𝑅 = 𝜇𝜇𝑢𝑢√𝑘𝑘
𝜇𝜇𝜙𝜙1.5 .                    (3) 

where 𝑙𝑙 – characteristic length, 𝜙𝜙 – porosity. Let us note that parameter 𝑅𝑅𝑅𝑅 is a macroscopic Reynolds 
number in porous media. Although equation (2) captures the main characteristics of flow in the entire 
range of pressure gradients. Coefficients 𝐶𝐶, 𝑏𝑏 and 𝛾𝛾 are to be determined. However, this task is not a 
simple one. 

In this paper, an approach based on Machine Learning (ML) is used in order to identify these 
coefficients, compose a methodology of determining the permeability of porous media and obtain a 
universal equation of fluid flow through porous media.   

2.  Methodology 
The solution of the above task based on the use of ML will be carried out in stages, namely: 

1. Determination of the permeability of samples of a porous medium based on available 
experimental data using artificial neural networks. 

2. Obtaining the universal law of fluid flow in a porous medium by normalizing dimensionless 
parameters obtained using dimensional analysis. 

3. Using the machine learning method - a multiple regression model to test and refine the universal 
law of fluid flow in a porous medium. 

2.1. Artificial Neural Network Model  
The significant benefit of ML predictive models is that one may not have to perform core analysis (CA) 
measurements for all the core samples, but can conduct prediction of the results [12]. Once a predictive 
model of any CA results is trained it could be effectively used for future forecasting. There are quite a 
number of ML algorithms to build a predictive model [13]. In our work, we used the neural network to 
predict the permeability of porous media. 

The choice of algorithm is highly dependent on the problem at hand, data quality and dataset size. 
For example, it would be unnecessary to build recursive or convolutional neural networks in our problem 
due to the small dataset size and its structure.  

Artificial neural network (ANN) is a mathematical representation of the biological neural network 
(Figure 1) [14]. It consists of several layers with units that are connected by links. Each connection has 
its own weight and level of activation. Each node has an input value, an activation function and an 
output. In ANN information propagates (forward pass) from first (not hidden) layer with inputs to the 
next hidden layer and then to further hidden layers until the output layer would be achieved. The value 
in each node of the first hidden layer obtained after calculation of activation function for the dot product 
of inputs and weights. Next hidden layer receives the output of the previous one and puts its dot product 
with weights to the activation, and so on. Initially, all weights for all nodes are assigned randomly. ANN 
calculates first output with random weights. Then compare it to real values, calculate the error and adopts 
weights to obtain smaller error on the next iteration via backpropagation (ANN training algorithm). 
After training all weights are tuned, and one may make a prediction for a new data by passing them into 
an ANN, which will calculate output via forward propagation throw all activations [15]. Scikit-learn 
Python library provides ANN representation in MLPRegressor method [16]. This implementation 
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allows to indicate the number of hidden layers, number of nodes in each layer, activation function, 
learning rate and some other parameters. 

 

 
Figure 1. Artificial neural network with two hidden layers. 

The objective of this research is to use ANN techniques to build a model to predict reservoir 
permeability. In the proposed model, the physical characteristics of the rock and fluid sample are used 
as input parameters, which fully describe the gas flows in the porous medium and are determined prior 
to the simulation with a high degree of reliability from laboratory studies. As the output (predicted) 
parameter of the model, the permeability characteristic of the rock sample was used. The choice of this 
predicted characteristic was based on the fact that when determining the coefficient 𝐶𝐶 in the Forchheimer 
equation (2), it is necessary to preset the approximate permeability from the obtained physical 
parameters of the sample and fluid. Sometimes databases contain low-quality data on laboratory 
measured permeability values. This may be due to the lack of competence of the stuff, inaccuracy of 
instruments, and other reasons. In this case, the use of a neural network can serve as an additional tool 
that evaluates the quality of the obtained permeability values. In some cases, inaccurate data maybe 
replaced with the values obtained by ANN. For permeability predictive models we have used 4 features. 
All 4 features accounting in machine learning algorithm are presented in Table 1. In our model, we did 
not consider such input parameters as sample diameter, gas viscosity and density, and ambient 
temperature, because in all rock samples they had the same value. 

Table 1. All features used in predictive model. 

No. Feature Unit 
1 Sample porosity, 𝜙𝜙 – 
2 Length of the sample, 𝑙𝑙 𝑚𝑚 
3 Pressure difference, 𝛥𝛥𝑃𝑃 𝑃𝑃𝑔𝑔 
4 Flow rate, 𝑢𝑢 𝑚𝑚/𝑠𝑠 

 
The creation of an ANN model was implemented in the programming language Python. Ninety 

percent of the total data were used for the training of ANN models while the remaining data points were 
used for testing. Data were randomly mixed for training and testing. The training sample consisted of 
203 experimental measurements on four physical parameters of the rock sample (terrigenous reservoirs 
with permeability in the range from 12 to 1132 md). The network architecture was chosen on the basis 
of the dependence of the number of hidden layers and the number of neurons in each hidden layer shown 
in Figure 2. The figure shows various models from 1 to 4 hidden layers, and in each layer consisting 
from 5 to 20 neurons. For training ANN, we chose a model consisting of 4 hidden layers. The neurons 
in the hidden layer were 11. Rectified Linear Unit activation function was used as a transfer function 
between input and hidden layer and linear type activation functions were used between hidden and 
output layer. 
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As follows from Figure 2, the best (most reliable) results are coming from the ANN with a limited 
number of hidden layers (up to four) a number of neurons in each not exceeding high numbers. This is 
a well-known thesis (not yet formally proven): The number of hidden layers and neurons in each layer 
should be somehow proportional to the available dataset.   

Performance of the ANN model could be demonstrated by plotting predicted values (via cross-
validation) of permeability after ablation versus the actual values (Figure 3). The permeability values 
are set in a normalized form since the values of low-permeability rock samples are not visually visible 
against the background of other high-permeability samples. The determination coefficient (𝑅𝑅2) between 
the estimated permeability using the developed ANN model and the actual core permeability was 0.92. 
Based on these results, we decided to select the ANN model for permeability prediction. 

 

  

Figure 2. Neural network architecture graph. Figure 3. Comparison of real and predicted core 
permeability by ANN model. 

2.2. Method of data normalization 
By data normalization in this work, we mean the translation (mapping) of a series of curves into one 
universal straight line. In accordance with the results of laboratory experiments and previous studies, 
for further analysis, we select dimensionless criteria described in (2). Using the research results 
[10,11,17], it is possible to determine two areas in the 𝚷𝚷 − 𝑹𝑹𝑹𝑹 diagram (Figure 4), where the dependence 
has non-linear (interval 1) and linear (interval 2) parts. 
 

 
Figure 4. Typical characteristics of the dependency Π = 𝑓𝑓(𝑅𝑅𝑅𝑅). 
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2.2.1. Linear area. Let us start with the interval 2 as the initial study area. As follows from earlier works, 
the fluid flow in the linear interval 2 of the Π − 𝑅𝑅𝑅𝑅 diagram can be described using the following 
equation [11,17]: 

Π = 1 + 𝐶𝐶 ∙ 𝑅𝑅𝑅𝑅      (4) 

In accordance with the accepted research algorithm the following dependency graph based on 
laboratory experiments can be built: 

Π𝑖𝑖𝑖𝑖 = 1 + 𝐶𝐶𝑖𝑖 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖      (5) 

for the linear interval 2 of all laboratory experiments in expiremental database. Here index 𝑗𝑗 indicates 
experiment number, and index 𝑖𝑖 – measurement number in the 𝑗𝑗-th experiment. On Figure 5 
experimental points of the same color belong to the same experiment. 

Analysis of the data obtained from processing each of the experimental straight lines (Figure 6) 
showed that the value of the coefficient 𝐶𝐶𝑖𝑖 depends on the permeability, porosity and length of a rock 
sample measured in the 𝑗𝑗-th experiment and can be approximated by the following dependency: 

𝑙𝑙𝑙𝑙 � 𝑘𝑘𝑗𝑗
𝜙𝜙𝑗𝑗∙𝜇𝜇𝑗𝑗2

� = 1.9679 𝑙𝑙𝑙𝑙 �𝐶𝐶𝑛𝑛
𝐶𝐶𝑗𝑗
� − 20.109     (6) 

where 𝐶𝐶𝑛𝑛 = 1.2085,  coefficient obtained for a rock sample with a permeability of 1132 mD.  
 

  
Figure 5. Building the dependency Π = 𝑓𝑓(𝑅𝑅𝑅𝑅) 

on experimental data. 
Figure 6. Normalization of experimental data 

and their translation into a universal dependence. 

A dimensionless group  𝜙𝜙∙𝜇𝜇
2

𝑘𝑘
 can be interpreted as tortuosity τ of porous channels, i.e.  

𝜏𝜏𝑖𝑖 = 𝜙𝜙𝑗𝑗∙𝜇𝜇𝑗𝑗2

𝑘𝑘𝑗𝑗
                     (7) 

This definition of tortuosity is referred to [18], where it is stated that “Tortuosity of the streamline 𝑆𝑆 
is given by 𝜏𝜏(𝑆𝑆) = 𝑙𝑙

𝑙𝑙𝑆𝑆�  for the length of the porous medium 𝑙𝑙 divided by the length of the streamline 𝑙𝑙𝑆𝑆. 
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Figure 7. Dependence of  𝐶𝐶𝑛𝑛
𝐶𝐶𝑗𝑗

  on 𝜏𝜏𝑖𝑖. 

We believe that more natural and similar to the definition of the term tortuosity will be the ratio of 
the inverse of the above, i.e. = 𝑙𝑙𝑠𝑠

𝑙𝑙�  , which is further converted to (7). With the last result dependency 
of 𝐶𝐶𝑛𝑛

𝐶𝐶𝑗𝑗
 on 𝜏𝜏𝑖𝑖 can be illustrated as shown on Figure 7. Taking into account the last relation, dependence (6) 

can be rewritten as follows: 

𝐶𝐶𝑖𝑖 = 𝐵𝐵1 ∙ �𝜏𝜏𝑖𝑖�
𝛼𝛼     (8) 

where 𝐵𝐵1 = 4.41 ∙ 10−5;  𝛼𝛼 = 0.5. In view of the last result, the universal dependence takes the 
following form: 

Π𝑖𝑖𝑖𝑖 = 1 + 𝐵𝐵1 ∙ �𝜏𝜏𝑖𝑖�
𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖    (9) 

Using the new equation (9) the new values of the normalized coefficient 𝐶𝐶𝑖𝑖,n were obtained (Table 
2) and the dependence Π𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) was built (Figure 8). 

Table 2. The results of calculating the coefficients 𝐶𝐶𝑖𝑖,n and 𝑏𝑏𝑖𝑖,n based on the normalization method 

No. 𝑘𝑘𝑖𝑖 ,𝑚𝑚𝑚𝑚 𝜙𝜙𝑖𝑖 𝑙𝑙𝑖𝑖 ,𝑚𝑚2 1/𝜏𝜏 𝑙𝑙𝑙𝑙(1/𝜏𝜏) 𝑅𝑅𝑅𝑅𝑖𝑖∗ 𝐶𝐶𝑖𝑖 𝐶𝐶𝑖𝑖,n 𝑏𝑏𝑖𝑖 𝑏𝑏𝑖𝑖,n 

1 1132 0.204 0.051 2.10E-09 -19.983 0.20 1.209 1.133 5.000 3.043 
2 254 0.188 0.051 5.11E-10 -21.395 0.18 2.531 2.323 7.177 5.657 
3 165.28 0.173 0.051 3.65E-10 -21.730 0.19 2.494 2.754 6.326 6.553 
4 177.68 0.192 0.051 3.50E-10 -21.774 0.17 2.832 2.816 7.076 6.680 
5 135.88 0.147 0.051 3.49E-10 -21.775 0.18 2.832 2.818 4.970 6.683 
6 173.89 0.192 0.052 3.37E-10 -21.811 0.11 2.900 2.870 7.617 6.790 
7 174.91 0.202 0.051 3.27E-10 -21.840 0.11 2.914 2.913 6.137 6.878 
8 101.4 0.184 0.051 2.09E-10 -22.288 0.09 3.331 3.657 6.620 8.372 
9 85.83 0.201 0.049 1.73E-10 -22.475 0.07 3.830 4.023 7.309 9.090 
10 22.65 0.202 0.051 4.25E-11 -23.880 0.02 8.444 8.214 14.714 16.843 
11 16.03 0.149 0.051 4.07E-11 -23.926 0.01 9.300 8.405 17.956 17.181 
12 13.97 0.169 0.051 3.12E-11 -24.189 0.01 9.450 9.610 20.439 19.288 
13 12.14 0.162 0.052 2.76E-11 -24.315 0.01 9.854 10.242 20.819 20.379 
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a) Dependence Π𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) on the 

experimental data 
b) Dependence Π𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), calculated 

according to equation (9) 

Figure 8. Graphs Π𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), obtained by using the data normalization method. 

2.2.2. Nonlinear area. Now let us consider interval 1 (see Figure 4), in which the effect of nonlinearity 
of the gas flow is observed. This effect is due to a so-called gas slippage effect, first described by 
Klinkenberg [9]. To take into account the slippage effect, we can use the following approximation, in 
which the function 𝜑𝜑(𝑅𝑅𝑅𝑅) describes interval 1: 

Π𝑖𝑖𝑖𝑖 = 1 + 𝐶𝐶𝑖𝑖 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 𝜑𝜑(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖)     (10) 

where 𝜑𝜑(𝑅𝑅𝑅𝑅) can be approximated by the following function used in equation (2) (Figure 9) [11]:  

𝜑𝜑�𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖� = 𝑅𝑅−𝑏𝑏𝑗𝑗∙𝑅𝑅𝑅𝑅𝑖𝑖𝑗𝑗
𝛾𝛾
     (11) 

In accordance with the above algorithm of the data normalization, we build dependency graphs. The 
generalized straight line takes the following form (Figure 10):  

ln(Π𝑖𝑖𝑖𝑖 − 1 − 𝐶𝐶𝑖𝑖𝑅𝑅𝑅𝑅) = 𝑏𝑏𝑖𝑖 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝛾𝛾    (12) 

 

  
Figure 9. Dependence Π𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), calculated 

according to equation (11). 
Figure 10. Normalization of experimental data 

and their translation into a universal dependence 
Π𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝛾𝛾). 
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Figure 11. Dependence of coefficient 𝑏𝑏𝑛𝑛
𝑏𝑏𝑖𝑖𝑗𝑗

 on 𝜏𝜏𝑖𝑖. 

Let us now determine the value of the universal constant (or functional) 𝑏𝑏𝑖𝑖 in equation (11). Analysis 
of the available experimental data showed that the coefficient 𝑏𝑏𝑖𝑖 depends on permeability and porosity 
and the length of the rock sample, as well as the coefficient 𝐶𝐶𝑖𝑖𝑖𝑖, and can be approximated by the 
following dependency (Figure 11): 

ln �1
𝜏𝜏
� = 2.2779 ln �𝑏𝑏𝑛𝑛

𝑏𝑏𝑗𝑗
� − 21.114        (13) 

where 𝑏𝑏𝑛𝑛 = 5,  coefficient obtained for a rock sample with a permeability of 1132 mD.  
Equation 13 can be rewritten as: 

𝑏𝑏𝑖𝑖 = 4.72 ∙ 10−4�𝜏𝜏𝑖𝑖�
0.44 = 𝐵𝐵2 ∙ 𝜏𝜏𝑖𝑖

𝛾𝛾1       (14) 

where 𝐵𝐵2 = 4.72 ∙ 10−4, 𝛾𝛾1 = 0.44. With the last result (11) can be written in the following form: 

𝜑𝜑�𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖� = 𝑅𝑅−𝐵𝐵2∙𝜏𝜏𝑗𝑗
𝛾𝛾1∙𝑅𝑅𝑅𝑅𝑖𝑖𝑗𝑗𝛾𝛾2     (15) 

Using the new equation (15) we obtained the values of the normalized coefficient 𝑏𝑏𝑖𝑖,n (Table 2) and 
constructed the dependence 𝜑𝜑(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) (Figure 12). 

 

  
a) Dependence φ𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) based on the 

experimental method 
b) Dependence φ𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), calculated 

according to the equation (15) 

Figure 12. Graphs φ𝑖𝑖𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), obtained using the data normalization method. 
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2.2.3. Combining linear and nonlinear areas. Based on the newly obtained universal coefficients 𝐶𝐶, 𝑏𝑏 
and 𝛾𝛾, we can rewrite equation (10) as follows:  

Π = 1 + 𝐵𝐵1𝜏𝜏𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅−𝐵𝐵2∙𝜏𝜏𝑗𝑗
𝛾𝛾1∙𝑅𝑅𝑅𝑅𝛾𝛾2     (16) 

where 𝐵𝐵1 = 4.41 ∙ 10−5 , 𝐵𝐵2 = 4.72 ∙ 10−4 , 𝛼𝛼 = 0.5 , 𝛾𝛾1 = 0.44 , 𝛾𝛾2 = 0.4 

2.2.4 The border Reynolds number.  
Let us note that the border Reynolds number 𝑅𝑅𝑅𝑅𝑖𝑖∗ defined as: 

𝜑𝜑�𝑅𝑅𝑅𝑅𝑖𝑖∗� ≤ 𝜀𝜀 ,      (17) 

where 𝜀𝜀 is a small number, is the number dividing intervals 1 and 2 on the dependency Π = 𝑓𝑓(𝑅𝑅𝑅𝑅) 
(Figure 1). Dependency of 𝑅𝑅𝑅𝑅𝑖𝑖∗ on tortuosity 𝜏𝜏 is shown on Figure 13. 

 

 
Figure 13. Dependency of the border Reynolds number 𝑅𝑅𝑅𝑅𝑖𝑖∗ on tortuosity 𝜏𝜏. 

2.3. Linear regression model 
As was shown above, the dependence of Π𝑖𝑖𝑖𝑖 values on the parameters 𝑅𝑅𝑅𝑅 and 𝜏𝜏 (tortuosity) is generally 
nonlinear, approaching the linear one only asymptotically (for large 𝑅𝑅𝑅𝑅 values). To simplify the 
subsequent analysis, we divide the entire area of variation of the parameter 𝑅𝑅𝑅𝑅 into two, namely, the 
interval 1 of small 𝑅𝑅𝑅𝑅 values (non-linear part) and the interval 2 of large 𝑅𝑅𝑅𝑅 values (linear part). We first 
consider the linear part of the equation, leaving the border number 𝑅𝑅𝑅𝑅𝑖𝑖∗ separating both zones for further 
analysis in more detail. 

2.3.1. Linear part of the equation. For the linear part, as was shown above, the following equation holds: 

Π𝑖𝑖𝑖𝑖 = 1 + 𝐶𝐶𝑖𝑖 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 

or, in terms of the tortuosity parameter 𝜏𝜏 introduced above:  

Π𝑖𝑖𝑖𝑖 = 1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖      (18) 

where 𝜏𝜏𝑖𝑖 = 𝜙𝜙𝑗𝑗𝜇𝜇𝑗𝑗2

𝑘𝑘𝑗𝑗
 . We rewrite equation (18) in a more convenient form for subsequent analysis: 

ln�Π𝑖𝑖𝑖𝑖 − 1� = 𝛼𝛼 ∙ ln�𝜏𝜏𝑖𝑖� + ln�𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖� + ln (𝐵𝐵1)   (19) 

or in terms commonly used in regression analysis:  

𝑦𝑦 = 𝑤𝑤0 ∙ 𝑒𝑒0 + 𝑤𝑤1 ∙ 𝑒𝑒1 + 𝑏𝑏0     (20) 
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where the following notation is used: 𝑤𝑤0 = 𝛼𝛼 , 𝑤𝑤1 = 𝜆𝜆, 𝑏𝑏0 = ln (𝐵𝐵1). The input data for the 
regression model: 𝑒𝑒0 = ln �𝜏𝜏𝑖𝑖� , 𝑒𝑒1 = ln (𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), the output is: 𝑦𝑦 = ln�Π𝑖𝑖𝑖𝑖 − 1�. The regression model 
produces the following parameters:  

ln�Π𝑖𝑖𝑖𝑖 − 1� = 0.471 ∙ ln�𝜏𝜏𝑖𝑖� + 0.977 ∙ ln�𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖� − 9.244, 

or 

Π𝑖𝑖𝑖𝑖 = 1 + 𝐵𝐵1�𝜏𝜏𝑖𝑖�
𝛼𝛼𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆,    (21) 

where 𝐵𝐵1 = 9.67 ∙ 10−5, 𝛼𝛼 = 0.47, 𝜆𝜆 = 0.98. 

2.3.2. Linear and nonlinear parts of the equation. The generalized equation for a linear and non-linear 
zone has the following form: 

Π𝑖𝑖𝑖𝑖 = 1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆 − 𝑅𝑅−𝐵𝐵2∙𝜏𝜏𝑗𝑗
𝛾𝛾1∙𝑅𝑅𝑅𝑅𝑖𝑖𝑗𝑗𝛾𝛾2 ,    (22) 

which can be rewritten as: 

𝑅𝑅−𝐵𝐵2∙𝜏𝜏𝑗𝑗
𝛾𝛾1∙𝑅𝑅𝑅𝑅𝑖𝑖𝑗𝑗𝛾𝛾2 = 1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆 − Π𝑖𝑖𝑖𝑖 

𝐵𝐵2 ∙ 𝜏𝜏𝑖𝑖
𝛾𝛾1 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝛾𝛾2 = −𝑙𝑙𝑙𝑙�1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆 − Π𝑖𝑖𝑖𝑖�. 

In the final form, convenient for using the regression model, equation (22) will take the form:   

ln (𝐵𝐵2) + 𝛾𝛾1𝑙𝑙𝑙𝑙�𝜏𝜏𝑖𝑖� + 𝛾𝛾2𝑙𝑙𝑙𝑙�𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖� = 𝑙𝑙𝑙𝑙�−𝑙𝑙𝑙𝑙�1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆 − Π𝑖𝑖𝑖𝑖��,  (23) 

or in a form convenient for regression analysis: 

𝑦𝑦 = 𝑤𝑤0 ∙ 𝑒𝑒0 + 𝑤𝑤1 ∙ 𝑒𝑒1 + 𝑏𝑏0 

The input data for the regression model:  𝑒𝑒0 = 𝑙𝑙𝑙𝑙�𝜏𝜏𝑖𝑖�, 𝑒𝑒1 = ln (𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), the output data is: 
 𝑦𝑦 = 𝑙𝑙𝑙𝑙�−𝑙𝑙𝑙𝑙�1 − Π𝑖𝑖𝑖𝑖 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆��. The regression model produces the following parameters: 
𝑤𝑤0 = 𝛾𝛾1 , 𝑤𝑤1 = 𝛾𝛾2, 𝑏𝑏0 = ln (𝐵𝐵2). 

𝑙𝑙𝑙𝑙�−𝑙𝑙𝑙𝑙�1 − Π𝑖𝑖𝑖𝑖 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆�� = 𝛾𝛾1 ∙ ln�𝜏𝜏𝑖𝑖� + 𝛾𝛾2 ∙ ln�𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖� + ln (𝐵𝐵2) 

where 𝛾𝛾1 = 0.34, 𝛾𝛾2 = 0.36, 𝐵𝐵2 = 3.82 ∙ 10−3. Finally, the general formula generated by the 
method of the regression model is: 

Π𝑖𝑖𝑖𝑖 = 1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆 − 𝑅𝑅−𝐵𝐵2∙𝜏𝜏𝑗𝑗
𝛾𝛾1∙𝑅𝑅𝑅𝑅𝑖𝑖𝑗𝑗𝛾𝛾2  

where 𝐵𝐵1 = 9.67 ∙ 10−5, 𝐵𝐵2 = 3.82 ∙ 10−3, 𝛼𝛼 = 0.47, 𝜆𝜆 = 0.98, 𝛾𝛾1 = 0.34, 𝛾𝛾2 = 0.36 

3. Analysis of the results 
This section provides a brief analysis of the results of two methods employed for obtaining the universal 
equation of fluid flow in a porous medium, namely: 1) Normalization method and 2) Regression model. 
Table 3 lists the formulas obtained using these approaches. As the determination coefficients show, the 
normalization method showed a slightly better result than the regression model of machine learning. 
The obtained high values of the determination coefficient confirm the correct choice of the initial 
parameters and their presentation in a dimensionless form. Note that during the data processing using 
the normalization method it was found that some data fall far beyond the general trend. The response to 
the request to the laboratory where the tests were carried out confirmed that the initial porosity of the 
two samples instead of the correct 0.149 and 0.127 was recorded as 0.008 and 0.010, the correction of 
which put them back into the general trend. 
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When obtaining the universal gas flow equation using the two above methods, the corrected values 
were used, which ensured high determination coefficients between the experimental and calculated data. 
This result is illustrated by Figure 14, where experimental (blue points) and forecasted data (red points 
for normalization method and green points for regression method, respectively) are perfectly matched it 
a wide range of reservoir permeability and Reynolds number values. Due to the lack of space, we 
managed to place in Figure 14 only a part of the results. 

Table 3. Results of using the normalization method and regression model 

Method for determining the 
coefficients. Formula for calculating 𝑅𝑅2 

Normalization method 
Π𝑖𝑖𝑖𝑖 = 1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅−𝐵𝐵2∙𝜏𝜏𝑗𝑗

𝛾𝛾1∙𝑅𝑅𝑅𝑅𝛾𝛾2  

𝐵𝐵1 = 4.41 ∙ 10−5 , 𝐵𝐵2 = 4.72 ∙ 10−4 ,  
𝛼𝛼 = 0.5 , 𝛾𝛾1 = 0.44 , 𝛾𝛾2 = 0.4 

0.98 

Regression model 
Π𝑖𝑖𝑖𝑖 = 1 + 𝐵𝐵1 ∙ 𝜏𝜏𝑖𝑖𝛼𝛼 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝜆𝜆 − 𝑅𝑅−𝐵𝐵2∙𝜏𝜏𝑗𝑗

𝛾𝛾1∙𝑅𝑅𝑅𝑅𝑖𝑖𝑗𝑗𝛾𝛾2  

𝐵𝐵1 = 9.67 ∙ 10−5, 𝐵𝐵2 = 3.82 ∙ 10−3, 
𝛼𝛼 = 0.47, 𝜆𝜆 = 0.98, 𝛾𝛾1 = 0.34, 𝛾𝛾2 = 0.36 

0.97 

 
𝑘𝑘 = 1132 𝑚𝑚𝑚𝑚 𝑘𝑘 = 254 𝑚𝑚𝑚𝑚 

  
𝑘𝑘 = 177.68 𝑚𝑚𝑚𝑚 𝑘𝑘 = 85.83 𝑚𝑚𝑚𝑚 
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𝑘𝑘 = 22.65 𝑚𝑚𝑚𝑚 𝑘𝑘 = 16.03 𝑚𝑚𝑚𝑚 

  
𝑘𝑘 = 13.97 𝑚𝑚𝑚𝑚 𝑘𝑘 = 12.14 𝑚𝑚𝑚𝑚 

  

Figure 14. Dependence plots Π − 𝑅𝑅𝑅𝑅 obtained using: 1. Π𝑖𝑖𝑖𝑖_lin – the linear part of the equation;  
2. Π𝑖𝑖𝑖𝑖 – experimental data; 3. Π𝑖𝑖𝑖𝑖_n – normalization method; 4. Π𝑖𝑖𝑖𝑖_reg – regression model. 

4. Conclusions 
The following general conclusions can be derived from the previous analysis: 
- The use of the dimensional analysis method can significantly reduce the number of variables 

involved in the analysis, improve the quality of the resulting solutions and at the same time 
simplify the obtained equations and increase the reliability of the analysis. 

- In particular, this approach made it possible to evaluate the permeability of porous medium 
samples using artificial neural networks with a very high correlation of predicted values with 
the available data in the sample, even with a very limited number of available experimental 
data. 

- The use of dimensional theory methods in combination with regression analysis made it 
possible to define more precisely the constants included in the universal semi-empirical law of 
fluid flow. In its turn, it enables high accuracy and reliability of predictive flow regimes over 
the entire range of pressure gradients at reservoirs and experimental conditions for core 
samples. 

- The use of the universal equation of fluid flow in porous media makes it possible to 
significantly simplify and refine computer modeling of the oil and gas field development 
forecast. 
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