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a b s t r a c t 

As cryptocurrencies emerged only recently, they are subject to only very limited financial 

regulations. In this paper we study which variables can predict bubbles in the prices of 

eight major cryptocurrencies, focusing on uncertainty measures as predictors. We detect 

multiple bubble periods for all eight cryptocurrencies, particularly in 2017 and early 2018. 

We find that higher volatility, trading volume and transactions are positively associated 

with the presence of bubbles across cryptocurrencies. Regarding the uncertainty variables, 

the VIX-index consistently demonstrates negative relationships with bubble occurrence, 

while the EPU-index mostly exhibits positive associations with bubbles. These results may 

assist authorities in designing appropriate regulations. 
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1. Introduction 

Emergence of cryptocurrencies was one of the most remarkable financial innovations of the last decade. Their futuristic

properties and extreme price behavior have attracted excessive media coverage, as well as regulators’ and researchers’ atten-

tion. Most cryptocurrencies are known to have volatile prices and have experienced dramatic price increases and collapses

in the recent years. This has triggered discussions as to whether cryptocurrencies experience bubbles and how cryptocur-

rencies should be regulated. 

Bitcoin, the first cryptocurrency, has experienced severe price fluctuations; its price reached a peak in late 2017. Bitcoin

was originally intended to function as digital money: it was designed to be a reliable and trustworthy transaction system

with low costs ( Grinberg, 2012 ). Bitcoin and other cryptocurrencies have the potential to replace the intermediate role of

financial third parties. Though it was intended to be utilized as money, its decentralized and unregulated market have

attracted criticism ( Grinberg, 2012 ) and experts have discussed whether it should be classified as either a speculative asset

or as a means of exchange. Yermack (2015) and Glaser et al. (2014) concluded in their research that it was primarily held

as a speculative asset. Given its apparent risky nature and extreme price behavior, the presence of bubbles in this currency

is naturally an interesting topic for research. 
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Table 1 

Time Period Employed for Each Cryptocurrency Price dataset start and end dates for each of the 

eight cryptocurrencies. 

Cryptocurrency From To # of days 

Bitcoin (BTC) 27.12.2013 15.02.2019 1876 

Ethereum (ETH) 27.07.2016 15.02.2019 933 

Ripple (XRP) 31.12.2013 15.02.2019 1872 

Litecoin (LTC) 27.12.2013 15.02.2019 1876 

Monero (XMR) 16.04.2015 15.02.2019 1401 

Dash coin (DASH) 20.01.2015 15.02.2019 1487 

Nem coin (XEM) 29.03.2016 15.02.2019 1053 

Dogecoin (DOGE) 16.12.2014 15.02.2019 1522 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper we detect bubbles in all the major cryptocurrencies and study which factors can predict these bubbles.

Such information can be useful for both investors and regulators. We consider factors specific to particular cryptocurrencies,

such as trading volume, as well as global uncertainty measures such as economic policy uncertainty (EPU). The daily EPU

measure reflects uncertainty about legislation and regulation. Since financial regulation of cryptocurrencies is only emerging

now, uncertainty in this area could have a major impact on cryptocurrencies. Several papers have analyzed the impact of

such uncertainty (measured by EPU or the VIX index) on Bitcoin ( Bouri et al., 2017; Aalborg et al., 2018; Demir et al., 2018;

Wang et al., 2019; Wu et al., 2019 ). However, these papers have only studied one cryptocurrency (Bitcoin) and none of them

have looked at the presence of bubbles. 

From an economic perspective, a bubble is a deviation from the fundamental value. However, where cryptocurrencies are

concerned it is hard to pinpoint what the fundamental value is. We therefore define a bubble as explosive price behaviour,

as proposed by Phillips et al. (2015a,b) . There have been numerous attempts to develop statistical procedures to identify

bubbles. Diba and Grossman (1988) applied a unit root test to detect explosive behavior in asset prices. Extensions of this

method based on various forms of the augmented Dickey-Fuller test were suggested by Phillips et al. (2011) and Phillips

et al. (2015a,b) to identify bubbles, and these methods become known as acronyms of the respective authors’ names, PWY

and PSY. Phillips et al. (2015a,b) show that the PSY method outperforms the PWY method in detecting multiple bubbles. We

therefore use the PSY method. 

The PSY framework was initially developed to identify price bubbles. Subsequent research by Phillips (2017) has shown

that the PSY procedure can also be used as a warning device for crisis, as the method can be extended to cover market

collapse dynamics. Phillips and Shi (2018) incorporated this crisis detection aspect into the PSY method presented in Phillips

et al. (2015a,b) and improved the PSY procedure by optimizing the recursive evolving test algorithm. 

Several papers have used the PSY framework to detect bubbles in cryptocurrencies. Cheung et al. (2015) and Su et al.

(2018) date-stamp bubbles in Bitcoin price and find that the bubble periods coincide with major events that affected the

Bitcoin market. Corbet et al. (2018) and Bouri et al. (2018) use the PSY framework to identify bubbles in multiple cryptocur-

rencies. Corbet et al. (2018) look at Bitcoin and Ethereum and detect bubble behavior in both, particularly at the end of

their sample period (mid 2017). Bouri et al. (2018) identify bubbles in Bitcoin, Ripple, Ethereum, Litecoin, NEM, Dash and

Stellar and find that the likelihood of bubble periods in one cryptocurrency is related to the existence of bubbles in other

cryptocurrencies. Various methods have also been used to study the presence of speculative bubbles, see Cheah and Fry

(2015) and Fry and Cheah (2016) . However, none of these papers have attempted to predict cryptocurrency bubbles. 

We set out to study which factors can predict bubbles for a larger set of cryptocurrencies. The ability to predict bubbles is

valuable not only for understanding the cryptocurrencies’ price dynamics, but also for market monitoring. First, we use the

PSY framework to locate bubbles for the cryptocurrencies Bitcoin, Ethereum, Ripple, Litecoin, Monero, Dash coin, Nem coin

and Dogecoin. Next, we study whether any of four variables related to the particular cryptocurrency (Google search queries

for the cryptocurrency’s name, its price volatility, number of transactions, trading volume) or three variables capturing un-

certainty in general financial markets (the economic policy uncertainty (EPU) index, the VIX-index and the TED-spread) can

predict those bubbles. We find that volatility and trading volume consistently exhibit a positive relationship with bubble

behavior. High EPU levels imply a greater likelihood of bubbles, while high VIX-index levels imply a lower likelihood of

bubbles. 

The remainder of the paper is structured as follows: Section 2 describes the data on the cryptocurrencies and the vari-

ables that may predict bubbles. In Section 3 we present our analysis of the detected bubbles and their potential predictors.

We offer conclusions in section 4 . 

2. Data 

The data used in the analysis cover the time period December 27, 2013 to February 15, 2019. The starting dates vary

depending on the availability of data for the individual cryptocurrencies studied, see Table 1 . The cryptocurrencies to be

considered were chosen based on the length of their data sets, their popularity and their total market value. The VIX-index,

which we use in our analysis, is not reported on weekends or on certain holidays. These days are therefore omitted from

our analysis. 
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Daily price and trading volume data for the cryptocurrencies were collected from CoinMarketCap through an API in R

Studio. Transaction volume was collected from Coinmetrics. Though it is possible to obtain earlier data from other sources,

we chose to use these data sets due to their apparent reliability compared to other available sources. The economic policy

uncertainty index (EPU) data was collected from the Economic Policy Uncertainty web page. Data on the TED-spread and

VIX-index were collected from the FRED database, the Federal Reserve Bank of St. Louis. For the remainder of the paper, we

frequently use ticker symbols when we refer to each cryptocurrency. The tickers are displayed in parentheses in Table 1 . 

To measure the volatility of the cryptocurrencies we use the estimator based on trading price range during a day, as

proposed by Garman and Klass (1980) . The method, which offers an improvement in accuracy compared to the common

method of measuring volatility by standard deviation of returns ( Molnár, 2012 ), has recently gained popularity ( Molnár,

2016; Bašta and Molnár, 2018; Fiszeder, 2018; Fiszeder and Fałdzi ́nski, 2019; Fiszeder et al., 2019 ). Daily volatility is calcu-

lated as follows: 

Volatility t = 

√ 

1 

2 

(h t − l t ) 2 − (2 log 2 − 1) c 2 t , (1)

where c t = log ( close t ) − log ( open t ) , l t = log ( low t ) − log ( open t ) and h t = log ( high t ) − log ( open t ) . In order to deal with pos-

sible weekly seasonality, we convert the preceding daily values into a 7-day arithmetic average by the following equation:

Volatility t = 

1 

7 

t ∑ 

τ= t−6 

Volatility τ . (2)

Cryptocurrency transfers can be classified into transfers between a user and a cryptocurrency exchange, and transfers

between two users. In general, transfers between users are assumed to represent purchases of goods or services using

cryptocurrency, whereas transfers with exchanges represent buying or selling cryptocurrency (in exchange for conventional

currency). It is therefore useful to differentiate between these forms of transfers. In our paper, transaction volume (TV) is

classified as the volume of transfers of a cryptocurrency between users. Transaction volume is standardized in the same way

as in Aalborg et al. (2018) , as a deviation from the average volume over the last year divided by the standard deviation over

the same period: 

Transactions t = 

TV t − TV 

σ ( TV) 
. (3)

Trading volume, on the other hand, is classified as transfers over an exchange, and does not include direct transfers

between users. The time series for Bitcoin’s trading volume has historically exhibited both linear and exponential trend

components ( Balcilar et al., 2017 ). By following the procedure of Gebka and Wohar (2013) we can remove these from the

series, which is necessary to make the variable stationary. The trend elements can be estimated by converting the data

to logarithmic form and regressing a constant, ( t / T ) and ( t / T ) 2 on volume, where T is total observations. Following these

estimations, each observation is corrected by subtracting the trend components. Trends exist for all cryptocurrencies, as all

the estimated coefficients are statistically significant. 

We employ search volume from Google trends in our analysis because it measures public interest in each specific cryp-

tocurrency. This variable is constructed as the relative level of web searches provided by Google, and has previously been

demonstrated to have predictive potential, as Choi and Varian (2009) , Choi and Varian (2012) , Bijl et al. (2016) , Molnár

and Bašta (2017) have reported. This data can be collected for various time scales and is measured as an index of relative

search volume (SVI) between 0 and 100. The daily data can only be collected in samples with a maximum time span of 10

months. In order to make observations between data sets into one complete set, we apply the methodology described by

Bleher and Dimpfl (2018) . The search results are not case sensitive and the keywords used are: ”Bitcoin”, “Litecoin”, “Ripple”,

“Ethereum”, “Monero”, “Dash coin”, “Nem coin” and “Dogecoin”. 

We standardize the data following the procedure used in Da et al. (2011) and Kim et al. (2019) . Each daily observation

is measured as a deviation from the median. The measure is calculated as the difference from the median of the previous

8 corresponding weekdays. For example, if the observation is on a Monday it is compared against the 8 previous Mondays.

More precisely, it is given by the following equation: 

Google t = log [ SVI t ] − log [ Median ( SVI t−7 , SVI t−14 , . . . , SVI t−56 ) ] . (4)

The EPU-index can be considered a proxy for economic policy uncertainty in the US economy, as perceived by the public.

It is constructed by measuring and standardizing the volume of news articles that contain a combination of certain key

words, such as ”economy+regulation+uncertainty”, from over 10 0 0 US news outlets ( Economic Policy Uncertainty, 2019 ). In

an attempt to reduce noise in the data series and deal with possible weekly seasonality, we use the moving average of the

most recent 7 days in our analysis: 

EPU t = log 

[ 

1 

7 

t ∑ 

τ= t−6 

EPU τ

] 

. (5)
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Table 2 

Descriptive statistics for currency-specific variables. 

BTC ETH XRP LTC 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Volatility 0.027 0.018 0.043 0.025 0.037 0.034 0.037 0.026 

Transactions 1.078 1.133 1.289 1.572 0.644 1.380 0.276 1.435 

Volume 16.639 0.804 14.799 0.835 11.932 1.345 15.446 1.214 

Google 0.026 0.309 0.045 0.481 0.017 0.317 0.018 0.331 

XMR DASH XEM DOGE 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Volatility 0.055 0.026 0.049 0.027 0.062 0.034 0.048 0.031 

Transactions 0.450 1.385 0.539 1.494 0.944 1.470 0.222 1.281 

Volume 8.213 1.072 9.891 1.055 9.479 1.334 11.263 1.255 

Google 0.007 0.303 -0.688 0.805 -0.129 1.038 0.018 0.308 

Table 3 

Descriptivestatistics for macroeconomic variables. 

Variables N Mean St. Dev. Min Max Skew Kurtosis 

EPU 1259 4.370 0.323 3.526 5.649 0.386 3.407 

VIX 1259 2.669 0.254 2.213 3.707 0.751 3.374 

TED 1259 −1.199 0.336 −1.897 −0.386 0.282 2.059 

Table 4 

Correlation Matrix. The average correlations between the independent variables used in the analysis are reported in 

the table. We apply the same methodology as Da et al. (2011) . First, we estimate each correlation individually for the 

specific cryptocurrencies. Then, we average the results across all cryptocurrencies. 

Google Volatility Transactions Volume EPU-index VIX-index TED-spread 

Google 1.00 

Volatility 0.22 1.00 

Transactions 0.36 0.40 1.00 

Volume 0.25 0.47 0.41 1.00 

EPU-index 0.04 0.14 0.13 0.07 1.00 

VIX-index 0.27 0.14 0.31 0.19 0.06 1.00 

TED-spread 0.09 0.16 0.16 0.25 0.20 0.12 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The VIX-index is a measure of perceived short term price uncertainty in the stock market and is commonly called a

fear index. It is constructed from option prices based on the S&P 500, with an expiration date of approximately one month

( CBOE, 2019 ). For the purposes of our analysis, this variable has undergone logarithmic transformation. 

The level of credit risk in the economy is proxied by the TED-spread, which is constructed as the difference between

the US interbank rate and the risk-free US Treasury rate. The intuition behind this metric is that the spread between the

interbank interest rate and Treasury rate increases when the possibility of counter party default increases. Historically, when

the financial sector has experienced periods of uncertainty and higher default risk, the TED-spread has been high ( Boudt

et al., 2017 ). For the purposes of our analysis, this variable has undergone logarithmic transformation. 

Table 2 provides the descriptive statistics of the currency-specific variables included in the analysis and Table 3 reports

the descriptive statistics of the macroeconomic variables. For the remainder of this paper, in regression tables and equations,

EPU, VIX and TED are used as abbreviations for the EPU-index, VIX-index and TED-spread, respectively. 

The correlations between the variables are presented in Table 4 . It is notable that the correlations between volume and

volatility and between volume and transactions are relatively high, with coefficients of 0.47 and 0.41, respectively. Further-

more, we see that the correlation between the uncertainty variables (EPU-index, VIX-index and TED-spread) are quite low.

This indicates that collinearity is not a problem and that the variables capture different aspects or forms of uncertainty. 

3. Results 

We begin by discussing the results from the PSY algorithm and providing an overview of the bubble periods. We then

study which variables can predict cryptocurrency bubbles. Details of the PSY methodology can be found in Appendix B . 

3.1. Bubble Detection - PSY Test 

Fig. 1 illustrates the PSY test, when applied to the logarithm of Bitcoin price (black line). The red line represents the

95%-level critical value of the bootstrapped Dickey-Fuller test statistics generated by this framework. The explosive periods
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Fig. 1. PSY Test of Bitcoin Bubbles. 

Table 5 

Statistics of Bubble Periods. Panel A reports the number of bubble days (days when the cryptocurrency was experiencing a bubble) 

for the individual cryptocurrencies. Panel B reports the same data but this time expressed as percentage of the total number of days 

in each given year and over the whole sample period. 

BTC ETH XRP LTC XMR DASH XEM DOGE Sum 

Panel A: Number of bubble days 

2013 0 – 0 0 – – – – 0 

2014 1 – 25 4 – – – 0 30 

2015 3 – 0 11 0 0 – 0 14 

2016 12 1 0 1 24 0 11 2 51 

2017 129 79 57 91 44 174 66 54 694 

2018 48 11 18 11 24 14 2 8 136 

2019 0 0 0 0 0 0 0 0 0 

Sum bubble days 193 91 100 118 92 188 79 64 925 

Panel B: % of days with explosiveness Average 

2013 0.0 % – 0.0% 0.0% – – – – 0.0% 

2014 0.3% – 6.8% 1.1% – – – 0.0% 2.1% 

2015 0.8% – 0.0% 3.0% 0.0% 0.0% – 0.0% 0.6% 

2016 3.3% 0.3% 0.0% 0.3% 6.6% 0.0% 3.0% 0.5% 1.7 % 

2017 35.3% 21.6% 15.6% 24.9% 12.1% 47.7% 18.1% 14.8% 23.8% 

2018 13.2% 3.0% 4.9% 3.0% 6.6% 3.8% 0.5% 2.2% 4.7% 

2019 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Total% 7.6% 6.2% 3.9% 4.6% 5.0% 10.3% 5.4% 2.9% 5.7% 

 

 

 

 

 

 

 

 

 

 

 

occur when the PSY test values, illustrated by the blue line, exceed the critical value. Evidently, there were numerous bubble

periods in Bitcoin during the observed sample period. 

Fig. 2 plots the time-stamped bubble periods from the PSY test against development of the uncertainty variables (VIX-

index, EPU-index and TED-spread) employed in the regression models. Most of the explosive periods lasted only for a few

days, although a few were much longer-lived. The short-lived bubbles occurred at different times for different cryptocurren-

cies. The longer-lived bubbles coincided to a greater extent across the cryptocurrencies than the short-lived bubbles. 

The prices of all the cryptocurrencies studied in this paper increased dramatically during 2017. As Fig. 2 shows, the

PSY algorithm reveals that there were bubbles in most of the cryptocurrencies for large parts of 2017. Bitcoin in particular

exhibits long-lived bubble periods in both 2017 and 2018. The date-stamped bubble periods for each cryptocurrency ended

some time after the price collapse in January 2018. Notably, that price collapse seems to have coincided with a substantial

increase in the VIX-index. By February 15, 2019, the analyzed cryptocurrencies had declined on average 90% from their peak

in December 2017/January 2018. 

An overview of the bubble periods we identified is provided in Table 5 . Panel A presents the number of bubble days

(days when the cryptocurrency was was in a bubble state). The cryptocurrencies BTC and DASH experienced the highest



134 F.A. Enoksen, Ch.J. Landsnes and K. Lu ̌civjanská et al. / Journal of Economic Behavior and Organization 176 (2020) 129–144 

Fig. 2. Bubble Periods in Cryptocurrencies and Uncertainty Variables. The colored areas in this figure mark the explosive periods in the individual cryp- 

tocurrencies detected by the PSY framework. The black lines for the cryptocurrencies represent the price in $. The lines start when the dataset of prices 

begins for each individual cryptocurrency and end on February 15, 2019. The black lines for the uncertainty variables VIX-index, EPU-index and TED-spread 

display their historical development. 
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Table 6 

Summary ofregression models. 

Sample Dependent Variable Estimator 

All Bubble dummy Panel probit with random effects & cluster robust standard errors 

All PSY statistics Panel Prais-Winsten with panel corrected standard errors, in Appendix 

Individual Bubble dummy Probit with optimal cluster robust standard errors 

Individual PSY statistics OLS with optimal lag Newey-West standard errors, in Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

total number of bubble days: 193 and 188 days, respectively. Most bubble days occured in 2017. DASH had the highest

frequency of bubble days in 2017 (174 days). Panel B indicates that the percentage of days with explosiveness was higher in

2017 than in other years. DASH featured explosiveness most frequently (on 10.3% of days over the time period 2015–2019)

and DOGE least frequently (on 2.9% of days over the time period 2014–2019). 

3.2. Bubble predictors 

Having applied the PSY framework, we generated the PSY statistics for each of the cryptocurrencies. We then analyzed

the results by performing various regressions in order to evaluate which variables can predict cryptocurrency bubbles.

We estimated both probit models and regular linear regression models (the results of the linear models are presented in

Appendix A ). First, we present estimates of panel models with all cryptocurrencies in the same sample. Second, we present

estimates of models for each cryptocurrency separately. 

The two dependent variables (the bubble dates dummy and the PSY test statistic) applied in the regressions measure

the same property to some extent, as they are both derived from the PSY statistics. As we described in Section 2 , previous

studies have shown that there are correlations between cryptocurrency prices and variables such as Google Trends, EPU,

volatility and trading volume etc. This research provides a starting point for the predictor selection in our analysis. 

The dependent binary variable of the probit models, denoted BUB i,t for panel probit regressions and BUB t for time series

regressions, takes values of one and zero. BUB i,t and BUB t is set to 1 when the PSY statistic for the respective observation is

above the generated critical value for the considered cryptocurrency (i.e. there is a bubble), and zero when this statistic is

below the critical value (i.e. there is no bubble): 

BUB i,t = 

{
1 , if P SY i,t (r 0 ) > cv i,t (βT ) 

0 , if P SY i,t (r 0 ) < cv i,t (βT ) 

The panel probit model and time series probit model can, respectively, be expressed as: 

P ( BUB i,t = 1) = �(βx i,t−1 + νi ) , (6)

P ( BUB t = 1) = �(βx t−1 ) , (7)

where �( ·) is the normal cumulative distribution function. In the panel probit models, x i,t−1 is the vector of lagged pre-

dictors in cryptocurrency i = BTC , ETH , . . . , DOGE at time t − 1 and νi 
iid ∼ N 

(
0 , σ 2 

ν

)
corresponds to random effects. x t−1 is a

vector of lagged predictors in the models for individual cryptocurrencies. The linear regression models use the generated

PSY statistic as a dependent variable. The PSY statistic is the supremum of the estimated ADF statistic for the respective

observation, generated by the algorithm, as defined in Appendix B in Eq. (15) . The estimated probit models consider only

whether the PSY test statistic is below or above the generated critical value; they do not use the actual value of PSY statistic.

We therefore also consider an alternative linear model which employs the PSY statistic directly. The linear panel regression

model is specified as follows: 

P SY i,t (r 0 ) = β0 + β1 Google i,t−1 + β2 Volatility i,t−1 + β3 Transactions i,t−1 + β4 Volume i,t−1 

+ β5 EPU t−1 + β6 VIX t−1 + β7 TED t−1 + εi,t , (8)

while the linear time series regression model takes the form: 

P SY t (r 0 ) = β0 + β1 Google t−1 + β2 Volatility t−1 + β3 Transactions t−1 + β4 Volume t−1 

+ β5 EPU t−1 + β6 VIX t−1 + β7 TED t−1 + εt . (9)

An overview of the models used is presented in Table 6 . To improve this paper’s readability, we report the results of the

linear models only in Appendix A . The data sample is always either an individual cryptocurrency or all the cryptocurrencies

together. Due to potential autocorrelation and heteroscedasticity, we apply models suitable for dealing with this issue. The

panel probit models are estimated with random effects and robust standard errors, clustered by cryptocurrency. The linear

panel models use a Prais–Winsten estimator with standard errors corrected for AR(1) autocorrelation, heteroscedasticity

and cross-sectional correlation. Both these methods are suggested by Hoechle (2007) . The linear time series models are
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Table 7 

Probit Regression Results - Panel Regression. The table reports average marginal effects for standardized explanatory variables. The dependent binary vari- 

able BUB i,t only takes the values 1 (explosive dates) and 0 (non-explosive dates). The independent variables are described in Section 2 and are standardized 

by substracting the sample mean and dividing by the sample standard deviation. The sample includes all cryptocurrencies (see Table 1 for the individual 

time spans). ∗ , ∗∗ and ∗∗∗ represents significance at the 10%, 5% and 1% level, respectively. The panel model is estimated with random effects. All the 

reported estimates are coefficients with corresponding cluster-robust standard errors, by cryptocurrency. 

Dependent variable: BUB i,t 

(1) (2) (3) (4) (5) (6) (7) (8) 

Google i,t−1 0.153 ∗∗∗ 0.0198 

(0.0350) (0.0294) 

Volatility i,t−1 2.968 ∗∗∗ 0.794 ∗∗∗

(0.537) (0.239) 

Transactions i,t−1 0.0590 ∗∗∗ 0.0141 

(0.0125) (0.0109) 

Volume i,t−1 0.0796 ∗∗∗ 0.0713 ∗∗∗

(0.00619) (0.00796) 

EPU i,t−1 0.115 ∗∗∗ 0.0474 ∗

(0.0247) (0.0285) 

VIX i,t−1 −0.449 ∗∗∗ -0.158 ∗∗∗

(0.0713) (0.0448) 

TED i,t−1 −0.107 ∗∗∗ 0.0166 

(0.0337) (0.0228) 

Observations 8060 8060 8060 8060 8060 8060 8060 8060 

McFadden R-squared 0.1083 0.1510 0.1507 0.0515 0.0198 0.152 0.0123 0.3613 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

estimated with Newey-West standard errors ( Newey and West, 1987 ), treating the gaps as equally spaced, as suggested by

Datta and Du (2012) . Optimal lags are 5 for all models, following the lag selection procedure presented in Greene (2007) . 3 

For the measure of fit metrics, regular R-squared is the share of variance in the dependent variable that can be explained

by the estimated model. Interpretation of the the McFadden R-squared is not as straightforward, but still applicable when

comparing the fitness of different models. It is constructed by utilizing the log-likelihood ratio of the models with and

without explanatory variables ( McFadden, 1973 ). 

3.2.1. Panel regressions: All cryptocurrencies together 

The regression results from the probit panel regressions are provided in Table 7 (the PSY statistic panel regressions

in Table A.3 ). We use panel regressions to analyze the variables’ predictive effects across cryptocurrencies. We estimate

univariate models investigating one explanatory variable at a time and a multivariate model with all variables. 

For a proper evaluation of (not only statistical significance, but also) economic significance, we standardize the explana-

tory variables by subtracting the sample mean and dividing it by the sample standard deviation. Furthermore, we report

average marginal effects. For the probit regression, these are the most informative and similar alternative to simple beta

coefficients in a classical linear regression. 

Positive coefficients indicate a higher predicted probability. An increase in the variable is thus associated with a higher

likelihood of bubbles. A negative coefficient would indicate a lower likelihood of bubbles. A higher absolute value of the

coefficient indicates stronger economic significance. 

It is important to emphasize that we utilize two types of explanatory variables: variables related to particular cryptocur-

rencies (volatility, transactions, volume, Google searches), and variables capturing various aspects of uncertainty in general

financial markets (the EPU index, the VIX index and the TED spread). 

Let us first discuss the cryptocurrency-specific variables. In both univariate and multivariate panel models, higher volatil-

ity raises the likelihood of bubble states. The research by Bekiros et al. (2017) states that herding behavior is usually more

prevalent in periods of excessive volatility, which might make volatility a natural property of bubbles. Volume exhibits a

positive relationship with bubble occurrence in all models. Higher trading volume is also associated with a higher likeli-

hood of bubbles. This can possibly be explained by theories such as rational bubbles 4 or herding behavior. Trading volume

is naturally related to the price dynamics of cryptocurrencies, and is thus assumed to be closely connected with bubble

behavior. This differs from the research by Blau (2017) , which does not find any connection between speculative trading and

extreme market behavior. Google searches and transactions have positive effects on bubble behavior in all univariate panel

models, although these effects are not significant when other variables are controlled for in the multivariate probit panel

model. We suspect that both these variables are closely connected to the trading volume, which may explain why the effects

are not significant in the multivariate probit panel model, when trading volume is included. To some extent, the volume,
3 Optimal lag size is calculated by the smallest integer of T 
1 
4 , where T is total sample size. This procedure is presented on page 463 in Greene (2007) . 

4 The concept of rational bubbles was established by Blanchard and Watson (1982) , who indicates that temporary price levels above the intrinsic value 

can be consistent with rationality, if the expected future price is higher than the current price. 
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Table 8 

Probit Regression Results - Time Series. The table reports average marginal effects for standardized explanatory variables. The dependent binary variable 

BUB t only takes the values 1 (explosive dates) and 0 (non-explosive dates). Independent variables are described in Section 2 and are standardized by 

subtracting the sample mean and dividing by the sample standard deviation. The sample includes all dates for the respective cryptocurrency (see Table 1 

for individual time spans). ∗ , ∗∗and ∗∗∗ represents significance at the 10%, 5% and 1% level, respectively. All the reported estimates are coefficients with 

corresponding robust standard errors. 

Dependent variable: BUB t 

BTC ETH XRP LTC XMR DASH XEM DOGE 

Google t−1 0.172 ∗∗∗ 0.154 ∗∗∗ 0.00520 0.0340 ∗∗ 0.0765 ∗∗∗ −0.0621 ∗∗∗ −0.000346 0.00999 

(0.0279) (0.0237) (0.0109) (0.0152) (0.0250) (0.0147) (0.00645) (0.0115) 

Volatility t−1 2.609 ∗∗∗ 0.897 ∗∗ 0.298 ∗∗∗ 0.452 ∗∗ 1.240 ∗∗∗ 1.245 ∗∗∗ 0.703 ∗∗∗ −0.0817 

(0.488) (0.368) (0.112) (0.187) (0.246) (0.398) (0.272) (0.145) 

Transactions t−1 −0.0332 ∗∗∗ 0.0470 ∗∗∗ 0.000528 0.0215 ∗∗∗ 0.0148 ∗∗ 0.0217 ∗∗ 0.0356 ∗∗∗ −0.00563 

(0.00807) (0.00977) (0.00441) (0.00539) (0.00669) (0.00919) (0.00757) (0.00444) 

Volume t−1 0.111 ∗∗∗ 0.0154 0.0606 ∗∗∗ 0.0412 ∗∗∗ 0.0520 ∗∗∗ 0.105 ∗∗∗ 0.0319 ∗∗∗ 0.0582 ∗∗∗

(0.0130) (0.00978) (0.00609) (0.00781) (0.00843) (0.0162) (0.00877) (0.00545) 

EPU t−1 −0.0693 ∗∗ 0.0467 0.0223 −0.00279 0.0234 (0.0162) 0.0685 ∗∗ 0.0518 ∗∗∗

(0.0304) (0.0330) (0.0217) (0.0228) (0.0261) (0.0162) (0.0284) (0.0143) 

VIX t−1 −0.192 ∗∗∗ 0.111 ∗∗∗ −0.0675 ∗∗∗ −0.0418 −0.0413 (0.0162) −0.0936 ∗∗ −0.117 ∗∗∗

(0.0363) (0.0372) (0.0226) (0.0279) (0.0430) (0.0162) (0.0426) (0.0337) 

TED t−1 0.108 ∗∗∗ −0.0343 −0.0557 ∗∗ 0.0237 0.0569 ∗ (0.0162) −0.0536 ∗ 0.0330 ∗∗

(0.0239) (0.0313) (0.0237) (0.0172) (0.0294) (0.0162) (0.0304) (0.0156) 

Observations 1258 625 1256 1258 939 998 707 1019 

McFadden R-squared 0.4854 0.5383 0.5781 0.5531 0.4651 0.5674 0.3959 0.6876 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Google searches and transactions variables are similar, as they are all related to the market demand for cryptocurrencies.

The fact that they demonstrate the same direction of effects supports this intuition. 

When it comes to uncertainty variables, the TED-spread is significant and negatively associated with bubbles in the

univariate probit model, but the effect is not significant when other variables are included in the multivariate regression. Of

the three variables capturing uncertainty in financial markets, TED spread matters the least for cryptocurrency bubbles. 

The EPU-index is positive and significant for both the univariate and multivariate probit models. This implies that the

probability of cryptocurrency bubbles is higher when economic policy uncertainty is high. This result is quite intuitive. 

However, the VIX-index, which is significant in both the univariate model and the multivariate models, demonstrates

negative relationships with bubbles in all panel models. This implies that even though both EPU and VIX are measures of

uncertainty, these measures capture significantly different aspects of uncertainty. 

The EPU index is based on the number of articles that contain at least one term from each of three sets of terms. The

first set is economic or economy. The second is uncertain or uncertainty. The third set is legislation or deficit or regulation

or congress or federal reserve or white house. In other words, the EPU index reflects only sources of uncertainty that are

already reflected and discussed in the media. Therefore, the EPU index might be a good proxy for uncertainty as viewed

by the general public. The VIX index, on the other hand, is based on option prices, which capture the market consensus

and respond to new information almost immediately. The VIX index therefore mainly captures uncertainty as viewed by

professional investors in the financial markets. 

One possible explanation why high EPU is associated with a greater likelihood of bubble occurrence, while high VIX is

associated with lower bubble occurrence, is that when the general public perceives high uncertainty, some people resort

to cryptocurrencies, raising the likelihood of bubbles. However, when professional investors perceive high uncertainty they

become more cautious, reducing the likelihood of bubbles. This explanation is only one possible explanation; we do not

currently have empirical evidence to support or disprove this explanation. 

Considering the measures of fit metrics of the panel probit models, the McFadden R-squared shows that the models

display varying ability to predict bubbles. The model with the VIX-index as an explanatory variable has the highest value

and the model with TED-spread as an explanatory variable has the lowest value of the McFadden R-squared. 

3.2.2. Time series regressions: individual cryptocurrencies 

The results from the estimated probit regressions for individual cryptocurrencies are shown in Table 8 . 5 We study the

cryptocurrencies separately to examine whether the predictive effects seem to be cryptocurrency-dependent or consistent

across cryptocurrencies. 

Similar to what we observed in the results of the panel regressions, volatility and volume exhibit positive associations

with bubbles for most cryptocurrencies. This means that high volatility or volume correspond with a higher likelihood of

bubbles, as demonstrated in the panel regression models. Google searches shows varying direction of effects and predictive

ability depending on the particular cryptocurrency studied. Google searches are positively associated with bubbles for BTC
5 We also estimated linear univariate and multivariate regressions for the individual cryptocurrencies, which are included in the appendix ( Table A.1, 

Table A.2 and Table A.4 ). 
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Table 9 

Models’ Predictive Ability. % True Bubble Days Predicted is the share of the bubble days detected by the PSY framework which the respective 

model is able to predict. % Correct Predictions is the share of model-predicted bubble days that are detected by the PSY framework as 

bubble days. 

BTC ETH XRP LTC XMR DASH XEM DOGE Average 

PSY Detected Bubbles Days 193 91 100 118 92 188 79 64 

Panel A: Probit regression 

Predicted Bubble Days 144 76 69 94 53 169 46 54 

% True Bubble Days Predicted 58.6% 65.9% 53.00% 62.7% 46.7% 75.5% 40.51% 70.3% 59.2% 

% Correct Predictions 78.5% 79.0% 76.81% 78.7% 81.1% 84.0% 69.57% 83.3% 78.9% 

Panel B: Linear regression 

Predicted Bubble Days 115 113 86 81 52 79 70 38 

% True PSY Bubble Days Predicted 46.63% 78.02% 59.00% 52.54% 34.78% 32.98% 53.16% 48.44% 50.69% 

% Correct Predictions 78.26% 62.83% 68.60% 76.54% 61.54% 78.48% 60.00% 81.58% 70.98% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and ETH and negatively associated with bubbles for DASH and XMR. This variation in effects may possibly be explained

by the differences in the various cryptocurrencies’ total market values. The transactions variable generally demonstrates a

positive relationships with bubbles, except in the case of BTC, where it displays a negative effect. One possible explanation

for this exception is that BTC is one of the highest-ranking cryptocurrencies in terms of total market value. An increase in

transactions for such a high-value cryptocurrency might imply a higher degree of use of that currency as means of exchange.

This could lead to a weaker association with bubble behavior, as it could indicate practical utility for the owners. Overall,

the cryptocurrency-specific variables mostly demonstrate the same positive associations with bubble behavior as we saw in

the panel regression models. 

The examined uncertainty variables EPU-index, VIX-index and TED-spread show varying relationships with bubble states 

when it comes to the direction of their effects. As the results from the panel model regression indicate, the EPU-index is

positively associated with bubbles, although this relationship is dependent on the particular cryptocurrency studied. The

VIX-index is in general negatively associated with bubbles across cryptocurrencies, as we also saw in the panel regression

models. In the probit models, the VIX variable is negatively associated with bubbles for BTC, DASH and DOGE, which might

explain why the panel models exhibit the same effect. TED-spread shows a positive relationship with bubbles for BTC in the

time series models, but not in the panel models, where there are only weak indications of an effect. Note that TED-spread

does not show any significant effects for the other cryptocurrencies. 

The measures of fit metrics, R-squared and McFadden R-squared are relatively high, which demonstrates that the models

have a considerable ability to predict bubbles. 

3.2.3. Summary of regression results 

In general, the cryptocurrency-specific variables volatility and trading volume demonstrate similar and consistent results 

in both the panel regressions and time series regressions. In the panel regression models, Google searches and transactions

are generally positively associated with bubbles. In the time series regression models, Google searches and transactions

demonstrate varying effects for the various cryptocurrencies studied. 

The uncertainty variables EPU-index, VIX-index and TED-spread exhibit differing associations with bubble behavior in the

panel regression models. The EPU-index shows positive relationships in the probit panel models, the VIX-index demonstrates

negative relationships with bubbles in all panel models, while the TED-spread exhibits a more ambiguous relationship. The

time series regressions for the uncertainty variables reveal varying effects depending on the cryptocurrency studied. 

In summary, we find that several variables can predict bubbles. Overall, the panel regression results for the uncertainty

variables are primarily in line with the time series regression results. In particular, we find that volatility, trading volume

and the VIX-index demonstrate a general potential to predict bubble behavior across cryptocurrencies. The predictive effect

of other variables is contingent on whether we look at the probit models or the linear models, and which cryptocurrency

we examine. 

3.2.4. Models’ predictive ability 

Table 9 presents a comparison of the time series models’ ability to predict the bubble dates estimated using the PSY

framework. The models utilized to test this predictive ability are the multivariate regressions displayed in Table 8 and

Table A.4 . The probit models presented in panel A predict that a bubble is expected for the next observation if the esti-

mated probability is above a 50% threshold. The linear regression models predict the PSY statistic for the next observation.

A bubble is predicted if the estimated PSY statistic exceeds the critical value (generated by the PSY framework) for the

respective cryptocurrency. 

The results in Table 9 indicate that the probit models are generally superior to the linear regression models. These results

contradict our a priori expectation that the linear models would perform better than the probit models. We had suspected

that trying to predict the underlying PSY values would result in greater predictive accuracy. 
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The superiority of the probit models to the linear models might be due to the binary categorization of the detected

bubble days. Following the definition used in the PSY framework, bubble days are detected when the PSY values are high

and above the generated critical value. Therefore, it seems that extreme values fit better into the binary structure (bubble/no

bubble) of the probit models. On the other hand, the linear PSY models might be a better fit with the underlying PSY data. 

4. Conclusion 

In this paper, we have examined whether certain variables can predict bubbles in cryptocurrency prices. The ability

to predict bubbles potentially represents an important contribution to market monitoring and to the understanding of price

dynamics for cryptocurrencies. To our knowledge, this is the first study to examine predictors of bubbles in cryptocurrencies.

As cryptocurrencies emerged only recently, they are only now beginning to be financially regulated. We have therefore

included economic policy uncertainty (EPU), the VIX index and the TED spread among our tested bubble predictors. The

EPU index captures uncertainty about legislation and regulations, while the VIX index and TED spread capture general un-

certainty in financial markets. 

We have studied a set of variables with potential impacts on cryptocurrency prices and used this as a basis for our

selection of predictors in the regression models. 

Our results, based on the PSY test, reveal multiple bubble periods in all the studied cryptocurrencies, particularly during

2017 and 2018. This is in line with the results of Corbet et al. (2018) and Bouri et al. (2018) , who also detect extensive

cryptocurrency bubbles in the same periods. Furthermore, Bouri et al. (2018) find that Bitcoin in particular demonstrates

extensive price explosivity, and our findings support this. 

We have also looked into which factors can predict these bubbles. Where cryptocurrency-specific variables are concerned,

volatility and volume are distinctly associated with bubble behavior across all the studied cryptocurrencies. Google trends

and transactions mostly demonstrate positive relationships with bubbles, but the effects are dependent on the cryptocur-

rency studied and the type of regression model. Among the uncertainty variables we tested, the VIX-index generally exhibits

a negative association with bubbles, while the EPU-index demonstrates a positive relationship with bubbles. The TED-spread

exhibits a more ambiguous relationship with bubbles. Overall, many of the variables we have investigated exhibit potential

to predict bubbles, and of these, trading volume, volatility and the VIX-index appear to be particularly strong predictors.

These results may assist authorities in designing appropriate financial regulations for cryptocurrencies. 
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Appendix A. Additional Tables 

The regression results from the probit univariate regressions and the PSY statistic univariate regressions are provided in

Table A.1 and A.2 , respectively. The univariate models employ regressions between the dependent variable (PSY-statistic or

bubble dates dummy) with one explanatory variable at a time, for each cryptocurrency. The models are estimated with a

constant, but only the parameters of the explanatory variables and the corresponding standard errors are reported in the

table. This implies that we estimate 7 univariate regression equations per cryptocurrency. 
Table A.1 

Probit Regression Results - Univariate Time Series Regressions. The dependent binary variable BUB i,t only takes the values 1 (explosive dates) and 0 (non- 

explosive dates). The independent variables are described in the data section. The sample includes all dates for the respective cryptocurrency (see Table 1 

for individual time spans). ∗ , ∗∗ and ∗∗∗ represents significance at the 10%, 5% and 1% level, respectively. All the reported estimates are coefficients with 

corresponding Newey-West standard errors. 

Dependent variable: BUB i,t 

BTC ETH XRP LTC XMR DASH XEM DOGE 

Google t−1 1.187 ∗∗∗ 2.075 ∗∗∗ 1.173 ∗∗∗ 1.725 ∗∗∗ 1.866 ∗∗∗ 0.454 ∗∗∗ 0.311 ∗∗∗ 1.742 ∗∗∗

(0.420) (0.298) (0.416) (0.486) (0.608) (0.137) (0.0799) (0.431) 

Volatility t−1 36.23 ∗∗∗ 20.25 ∗∗∗ 17.69 ∗∗∗ 22.97 ∗∗∗ 22.65 ∗∗∗ 15.77 ∗∗∗ 16.52 ∗∗∗ 19.07 ∗∗∗

(4.685) (4.939) (4.364) (4.806) (3.810) (4.515) (3.446) (3.317) 

Transactions t−1 −0.213 ∗∗ 0.700 ∗∗∗ 0.162 ∗∗ 0.162 ∗∗ 0.609 ∗∗∗ 0.450 0.445 ∗∗∗ 0.374 ∗∗∗

(0.0836) (0.174) (0.0691) (0.0691) (0.0909) (0.313) (0.108) (0.0713) 

Volume t−1 1.204 ∗∗∗ 0.620 ∗∗∗ 1.070 ∗∗∗ 1.051 ∗∗∗ 0.847 ∗∗∗ 0.954 ∗∗∗ 0.526 ∗∗∗ 1.338 ∗∗∗

(0.160) (0.162) (0.132) (0.140) (0.171) (0.160) (0.0816) (0.186) 

EPU t−1 0.464 ∗∗ 0.489 ∗ 0.563 ∗ 0.767 ∗∗∗ 0.0138 1.003 ∗∗∗ 0.828 ∗∗∗ 0.866 ∗∗∗

(0.208) (0.291) (0.292) (0.234) (0.362) (0.248) (0.289) (0.229) 

VIX t−1 −2.117 ∗∗∗ −2.370 ∗∗∗ −2.659 ∗∗ −3.296 ∗∗∗ −1.936 ∗∗∗ −4.864 ∗∗∗ −1.572 ∗ −4.001 ∗∗

(0.754) (0.827) (1.132) (1.160) (0.650) (1.129) (0.830) (1.711) 

TED t−1 −0.199 −1.020 ∗∗∗ −0.579 ∗∗∗ −0.353 ∗∗ 0.113 −1.064 ∗∗∗ −1.098 ∗∗∗ −0.912 ∗∗∗

(0.193) (0.304) (0.200) (0.160) (0.427) (0.290) (0.311) (0.216) 

Observations 1258 1258 1256 1019 998 939 625 707 
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Table A.2 

Linear Regression Results - Univariate Time Series Regressions. The dependent variable is the PSY-statistic. The independent variables are described in 

the data section. The sample includes all bubble dates for the respective cryptocurrency i (see Table 1 for individual time spans). ∗ , ∗∗ and ∗∗∗ represents 

significance at the 10%, 5% and 1% level, respectively. All the reported estimates are coefficients with corresponding Newey–West standard errors. 

Dependent variable: PSY r † (r 0 ) i,t 

BTC ETH XRP LTC XMR DASH XEM DOGE 

Google t−1 1.069 ∗∗∗ 1.071 ∗∗∗ 0.775 ∗∗∗ 0.899 ∗∗∗ 0.588 ∗∗ 0.453 ∗∗∗ 0.205 ∗∗∗ 0.936 ∗∗∗

(0.267) (0.174) (0.295) (0.233) (0.229) (0.150) (0.0474) (0.340) 

Volatility t−1 28.87 ∗∗∗ 19.23 ∗∗∗ 19.28 ∗∗∗ 25.11 ∗∗∗ 10.42 ∗∗∗ 13.93 ∗∗∗ 15.28 ∗∗∗ 20.53 ∗∗∗

(3.346) (2.783) (2.700) (2.939) (2.372) (4.020) (2.382) (2.843) 

Transactions t−1 −0.250 ∗∗∗ 0.404 ∗∗∗ −0.0344 0.491 ∗∗∗ 0.467 ∗∗∗ 0.458 ∗∗∗ 0.281 ∗∗∗ 0.392 ∗∗∗

(0.0458) (0.0463) (0.0459) (0.0322) (0.0359) (0.111) (0.0631) (0.0558) 

Volume t−1 0.734 ∗∗∗ 0.478 ∗∗∗ 0.539 ∗∗∗ 0.629 ∗∗∗ 0.373 ∗∗∗ 0.561 ∗∗∗ 0.561 ∗∗∗ 0.619 ∗∗∗

(0.0708) (0.107) (0.0451) (0.0391) (0.0663) (0.0827) (0.0827) (0.0629) 

EPU t−1 0.836 ∗∗∗ −0.0322 0.267 0.292 0.725 ∗∗∗ 1.030 ∗∗∗ 0.184 0.389 ∗

(0.154) (0.235) (0.206) (0.211) (0.191) (0.223) (0.188) (0.219) 

VIX t−1 −1.176 ∗∗∗ −0.988 ∗∗∗ −1.043 ∗∗∗ −0.995 ∗∗∗ −1.539 ∗∗∗ −1.985 ∗∗∗ −1.250 ∗∗∗ −0.779 ∗∗

(0.267) (0.261) (0.275) (0.294) (0.215) (0.261) (0.263) (0.305) 

TED t−1 0.263 ∗ −1.246 ∗∗∗ −0.559 ∗∗∗ −0.639 ∗∗∗ 0.674 ∗∗∗ 0.281 −0.913 ∗∗∗ −1.079 ∗∗∗

(0.147) (0.221) (0.177) (0.179) (0.213) (0.242) (0.223) (0.213) 

Observations 1258 1258 1256 1019 998 939 625 707 

Table A.3 

Linear Regression Results - Panel Regression. The dependent variable is the PSY statistic. The independent variables are described in Section 2 . The sample 

includes all cryptocurrencies (see Table 1 for the individual time spans). ∗ , ∗∗ and ∗∗∗ represents significance at the 10%, 5% and 1% level, respectively. The 

coefficients are estimated by Prais–Winsten regression. The panel model is estimated with random effects. The standard errors are corrected for AR(1) 

autocorrelation, heteroscedasticity and cross-sectional correlation. 

Dependent variable: PSY i,t ( r 0 ) 

(1) (2) (3) (4) (5) (6) (7) (8) 

Google i,t−1 0.0409 ∗∗∗ 0.0413 ∗∗∗

(0.00628) (0.00729) 

Volatility i,t−1 3.397 ∗∗∗ 5.076 ∗∗∗

(0.400) (0.414) 

Transactions i,t−1 0.0403 ∗∗∗ 0.0351 ∗∗∗

(0.00472) (0.00476) 

Volume i,t−1 0.0241 ∗∗∗ 0.0419 ∗∗∗

(0.00460) (0.00405) 

EPU i,t−1 −0.00328 0.0650 

(0.0338) (0.0414) 

VIX i,t−1 −0.148 ∗∗∗ −0.339 ∗∗∗

(0.0538) (0.0602) 

TED i,t−1 −0.0497 −0.0499 

(0.0576) (0.0614) 

Intercept 0.00759 −0.138 ∗∗∗ −0.0164 −0.291 ∗∗∗ 0.0233 0.404 ∗∗∗ −0.0463 −0.194 

(0.0320) (0.0348) (0.0302) (0.0653) (0.153) (0.148) (0.0746) (0.277) 

Observations 8060 8060 8060 8060 8060 8060 8060 8060 

R-Squared 0.0043 0.0189 0.0106 0.0040 0.0000 0.0028 0.0002 0.0830 
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Table A.4 

Linear Regression Results - Time Series Regressions. The dependent variable is the PSY statistic. The independent variables are described in Section 2 . The 

sample includes all dates for the respective cryptocurrency (see Table 1 for individual time spans). ∗ , ∗∗ and ∗∗∗ represents significance at the 10%, 5% and 1% 

level, respectively. All the reported estimates are coefficients with corresponding Newey–West standard errors. 

Dependent variable: PSY t ( r 0 ) 

BTC ETH XRP LTC XMR DASH XEM DOGE 

Google t−1 0.885 ∗∗∗ 0.520 ∗∗∗ 0.0947 0.0152 −0.451 ∗∗∗ −0.196 ∗∗∗ 0.0599 ∗∗∗ 0.127 ∗

(0.154) (0.112) (0.107) (0.101) (0.146) (0.101) (0.0298) (0.139) 

Volatility t−1 12.07 ∗∗∗ 5.506 ∗∗∗ 8.548 ∗∗∗ 10.32 ∗∗∗ 2.961 ∗ 7.231 ∗∗∗ 8.236 ∗∗∗ 5.307 ∗∗

(2.854) (1.757) (2.404) (2.695) (1.519) (2.297) (1.972) (2.062) 

Transactions t−1 −0.191 ∗∗∗ 0.304 ∗∗∗ −0.186 ∗∗∗ 0.175 ∗∗∗ 0.355 ∗∗∗ 0.228 ∗∗ 0.149 ∗∗∗ 0.132 ∗∗∗

(0.0340) (0.0368) (0.0329) (0.0521) (0.0465) (0.104) (0.0519) (0.0364) 

Volume t−1 0.423 ∗∗∗ 0.0953 ∗ 0.446 ∗∗∗ 0.320 ∗∗∗ 0.115 ∗∗ 0.320 ∗∗∗ 0.164 ∗∗∗ 0.462 ∗∗∗

(0.0647) (0.0545) (0.0454) (0.0552) (0.0491) (0.0984) (0.0281) (0.0658) 

EPU t−1 0.451 ∗∗∗ −0.0141 0.144 −0.0267 0.441 ∗∗∗ 0.569 ∗∗∗ −0.159 0.365 ∗∗∗

(0.117) (0.107) (0.117) (0.132) (0.119) (0.145) (0.110) (0.129) 

VIX t−1 −0.485 ∗∗∗ 0.722 ∗∗∗ −0.301 ∗∗ −0.0423 −0.733 ∗∗∗ −1.057 ∗∗∗ −0.769 ∗∗∗ −0.0208 

(0.158) (0.191) (0.135) (0.178) (0.175) (0.217) (0.147) (0.166) 

TED t−1 0.469 ∗∗∗ −0.877 ∗∗∗ −0.181 −0.006 0.218 0.745 ∗∗∗ −0.208 ∗ −0.16 

(0.118) (0.133) (0.117) (0.137) (0.156) (0.155) (0.107) (0.127) 

Intercept −7.118 ∗∗∗ −4.384 ∗∗∗ −5.716 ∗∗∗ −5.342 ∗∗∗ −0.941 −2.349 ∗ 0.720 −7.670 ∗∗∗

(1.279) (1.036) (0.894) (1.151) (0.799) (1.209) (0.721) (1.036) 

Observations 1258 625 1256 1258 939 998 707 1019 

R-Squared 0.603 0.722 0.583 0.566 0.617 0.560 0.568 0.585 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. Details on Methodology 

In this paper, we detected bubbles using the psymonitor 6 package. For sake of completeness, we briefly present the PSY

procedure here. First, we provide the rationale behind the identification of price explosiveness. Second, we present the PWY

and PSY tests and their respective test statistics. Third, we outline how the date-stamping of bubbles is executed. Lastly, we

describe how the PSY framework can be extended to identify market collapses or crisis. 

B1. Identification of price explosiveness 

Phillips and Magdalinos (2007) propose that explosive behavior in asset price series can be regarded as a warning signal

of an expansionary phase of a bubble period. It is this assumption that lays the foundation for econometric testing of market

data time series by applying recursive right-tailed unit root test procedures. Although the PWY, the sequential PWY and the

PSY date-stamping strategies each use distinctive recursive algorithms, they are all based on recursive right-sided unit root

tests. 

Phillips et al. (2015a,b) integrate the mild drift in price processes that frequently appears over long time series by adding

an asymptotically negligible drift to the martingale process. The null hypothesis ( H 0 ) of the date stamping strategies assumes

normal market behavior and takes the following form: 

y t = dT −η + θy t−1 + εt , εt 
iid ∼

(
0 , σ 2 

)
, θ = 1 (10)

where dT −η (with constant d , and sample size T ) perceive any small drift process that may occur in the price time series,

but which is of lower order than the martingale element θy t−1 and is consequently asymptotically negligible. The localizing

parameter η regulates the impact of the intercept and drift as the sample size T goes to infinity. 

One can rewrite Eq. (10) to obtain y t = d t 
T η

+ 

∑ ∞ 

j=1 ε j + y 0 . The deterministic drift is represented by the component d t 
T η

.

The drift is minor in relation to a linear trend when the localizing coefficient η > 0, the drift is minor relative to the

martingale element of y t when η > 

1 
2 . Furthermore, the standardized output T −

1 
2 y t behaves like a Brownian motion with

drift when η < 

1 
2 . The reason for the inclusion of the drift term is to separate the transient drift component and be able to

perform tests for explosiveness similar to the ordinary augmented Dickey-Fuller unit root test against stationarity. 

B2. Models and test statistics 

Phillips et al. (2011) presented the sup augmented Dickey–Fuller test (SADF), known as the PWY test. Later Phillips et al.

(2015a,b) presented the general sup augmented Dickey-Fuller test (GSADF), named the PSY test. Both tests are based on

recursive approaches and contain a rolling window augmented Dickey-Fuller style regression. The window size of the rolling

ADF regression is denoted r w 

, defined by r w 

= r 2 − r 1 and the set minimum window width r 0 . Note that all the parameters,

r w 

, r 2 , r 1 , r 0 are defined as fractions of the overall number of periods. 
6 https://cran.r-project.org/web/packages/psymonitor/index.html . 

https://cran.r-project.org/web/packages/psymonitor/index.html
https://cran.r-project.org/web/packages/psymonitor/index.html
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The PWY and PSY procedures are based on the following reduced form empirical equation, to respectively obtain the

SADF and GSADF test statistics: 


y t = ˆ αr 1 , r 2 + 

ˆ βr 1 , r 2 y t−1 + 

k ∑ 

i =1 

ˆ ψ 

i 
r 1 , r 2 


y t−i + ˆ εt , εt 
iid ∼

(
0 , σ 2 

)
(11) 

where k is the transient lag order. ˆ αr 1 , r 2 , 
ˆ βr 1 , r 2 and 

ˆ ψ r 1 , r 2 are parameters estimated using OLS and y t is the logarithm of the

cryptocurrency price. The numbers r 1 and r 2 represent the starting and ending points in the regression window of the total

sample ( T ). The observation quantity in the regression is denoted by T w 

= � T r w 

� , where � · � is the floor function. The ADF

statistic (t-ratio) from the regression, denoted by ADF 
r 2 

r 1 
, is given by the ratio of ˆ βr 1 , r 2 and its standard error. We then apply

this type of ADF rolling window regression to acquire a series of ADF statistics and detect bubbles. 

To identify explosiveness (explosive behaviour) we perform a right-tailed variation of the standard Augmented Dickey-

Fuller unit root test. As Caspi (2017) specifies, in both the PWY and PSY framework, we test for: 

H 0 : ˆ βr 1 , r 2 = 1 , H 1 : ˆ βr 1 , r 2 > 1 . (12) 

The null and alternative hypotheses are dependent on the test statistic used. In the PWY test the null hypothesis is of a

unit root, and the alternative hypothesis is of a single periodically collapsing bubble period. The PSY test’s null hypothesis is

also of a unit root, but the alternative hypothesis is of multiple periodically collapsing bubbles. A comparison between PWY

and PSY are given in Section B.2.3 . 

B2.1. The PWY Test for Bubbles (SADF Test) 

Phillips et al. (2012) suggest a sup ADF (SADF) process, also known as the PWY approach, to identify bubbles in asset

prices. The SADF statistics series is denoted by: 

SADF ( r 0 ) = sup 

r 2 ∈ [ r 0 , 1] 

{ ADF r 2 
0 

} . (13) 

This statistic is obtained through the PWY test which, as mentioned above, relies on repeated estimation of the Augmented

Dickey Fuller regression model on a forward expanding sample sequence. The window size r w 

expands from r 0 (smallest

window width fraction of the total sample size) to 1 (largest window width fraction of the total sample size). In the PWY

test, the starting point in the data r 1 is fixed at 0. The endpoint varies with r w 

and ends up in r 2 = 1 . The non-varying

starting point in the PWY test stand in contrast to the PSY test, where both the starting point r 1 and ending point r 2 in the

sample window is allowed to vary. 

B2.2. The PSY Test for Bubbles (GSADF Test) 

Phillips et al. (2015a) suggest a generalized sup ADF (GSADF) process, also known as the PSY approach, to detect and

date-stamp bubble periods. The date-stamping is done by performing a recursive backward method, which is presented in

Section B.3 . Similar to PWY, the PSY dating strategy applies recursive right-tailed ADF tests and accepts flexible window

widths. As distinct from the SADF test of PWY, the GSADF process enables both the starting and ending point to be adjusted

over a reasonable range of flexible windows. The PSY test allows the starting point in the ADF regression model (11) to vary

from 0 to r 2 − r 0 , in addition to also changing the endpoint as in the PWY test. As a consequence, the subsamples used in

the recursion are substantially more comprehensive than those in the PWY test. The power of the GSADF statistic is hence

larger compared to the SADF statistic. For a better grasp of the recursion in the PSY test, we refer the reader to Fig. 1 in

Phillips et al. (2015a) . Formally the GSADF statistic is defined as: 

GSADF ( r 0 ) = sup 

r 2 ∈ [ r 0 , 1] ,r 1 ∈ [0 ,r 2 −r 0 ] 

{ ADF r 2 r 1 
} . (14) 

B2.3. Comparison of bubble identification tests 

Phillips et al. (2015a) show that the PSY method outperforms the PWY approach, a modified sequential PWY algorithm

developed in the same paper, and a procedure called the CUSUM approach. The main reason for its better performance

is that the PSY approach covers more subsamples and has more flexibility when it comes to choosing and adjusting win-

dow width. The PWY approach can be unreliable when multiple bubbles appear: when the sample period includes several

episodes of explosive behavior, the PWY approach may suffer from reduced power and can be unreliable when it comes to

detecting the presence of bubbles. These inconsistencies become even more evident when using long time series or swiftly

fluctuating market data in which more than one bubble period is expected. 

The high degree of volatility in cryptocurrency prices makes the PWY method unsuitable for our study. In contrast to the

PWY dating strategy, the PSY procedure is consistent in time stamping the origination and termination of multiple bubbles.

The PSY approach is hence considerably more suitable for identifying bubbles in cryptocurrencies because of their rapidly

changing price behavior. We therefore use the PSY approach in this paper. 
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B3. Date-stamping Bubbles 

The PSY test allows the origination and termination points of a bubble to be date stamped. Bubble periods are found

by executing a rolling window test backwards. The psymonitor package used in our paper employs a optimized recursion,

introduced in Phillips and Shi (2018) , when date-stamping the bubbles. The PSY statistic is defined as the supremum of the

ADF statistic sequence, i.e. 

P SY r † (r 0 ) = sup 

r 1 ∈ [0 ,r † −r 0 ] ,r 2 = r † 
{ ADF r 2 r 1 

} . (15)

The PSY framework then suggests comparing each element of the estimated ADF 
r 2 

r 1 
test statistic sequence to the related

right-tailed critical values of the standard ADF statistic, in order to detect explosive behaviour at time T r † . The first chrono-

logical observation where the ADF statistic exceeds the critical value is defined as the origination point of the bubble T r e .

The estimated termination point of the bubble T r f is the first chronological observation after T r e where the ADF statistic goes

below the critical value from above. Denote cv r † (βT ) the 100(1 − βT ) critical value of the P SY r † (r 0 ) statistic where βT is the

test size. The origination and termination of the explosiveness are respectively stated according to the following crossing

time fractions: 

ˆ r e = inf 
r † ∈ [ r 0 , 1] 

{
r † : P SY r † (r 0 ) > cv r † (βT ) 

}
, (16)

ˆ r f = inf 
r † ∈ [ ̂ r e , 1] 

{
r † : P SY r † (r 0 ) < cv r † (βT ) 

}
. (17)

B4. The PSY Test for bubble vs. crisis identification 

The PSY method presented in Phillips et al. (2015a,b) was intended to detect and time-stamp explosive behavior in asset

prices. More recently, Phillips (2017) has shown that the PSY procedure also can be used as a warning device for crisis, as the

algorithm can be extended to cover market collapse dynamics. Under the null hypothesis of normal market behavior, asset

prices follow a martingale process with a mild drift function. In the bubble identification setting, the alternative hypothesis

is a mildly explosive process. When it comes to detecting crisis, the alternative hypothesis is a random-drift martingale

process. 

In our paper we examine whether the asset prices follow a martingale process with a mild drift (null hypothesis - normal

market conditions) or not (alternative hypothesis - either a bubble or a crisis). We do not distinguish between bubbles

and crises, since the PSY algorithm doesn’t separate these either. 7 In the following paragraphs we present the rationale

associated with the PSY test for bubble and crisis identification, respectively. 

Phillips and Magdalinos (2007) propose that explosive behavior in asset price series can be a signal of bubble behavior.

In this case, asset prices can be expressed as a mildly explosive process of the form: 

y t = δT y t−1 + u t , (18)

in which δT = 1 + cT −η is a autoregressive coefficient which mildly exceeds unity, where c > 0 and η ∈ (0, 1). Bubble

identification is achieved by testing the null hypothesis of normal market conditions (martingale process with a drift) against

the bubble alternative (mildly explosive process). 

Phillips (2017) modeled the dynamics of asset prices during market collapses as a random drift martingale process. The

logarithmic price change y t − y t−1 is affected by a random sequence term (−L t ) and the martingale difference innovations

u t : 

y t − y t−1 = −L t + u t , (19)

where u t are the superposition of martingale differences and L t is a random sequence independent of u t , which follows an

asymmetric scaled uniform distribution. L t may take different forms, which cause diversity in the types of crises, and is

given by: 

L t = Lb t , b t 
iid ∼ U [ −ε, 1 ] , 0 < ε < 1 , (20)

where L is a positive scale quantity which represents the shock intensity and b t is uniform on the interval from −ε to 1. A

crisis is identified by testing the null hypothesis of normal marked conditions (martingale process with a drift) against the

alternative of crisis (random-drift martingale process). Mathematically, the null and alternative hypothesis of the empirical

regression model from Eq. (11) can then be written as: 

H 0 : μ = dT −η and ρ = 0 H 1 ,crash : μ = K and ρ = 0 , (21)

where K is the expected value of L t and dT −η perceive any small drift process that may occur in the price time series as in

Eq. (10) . 
7 When using the terms “bubble”, “explosive behavior”, “crisis”, “market collapse” and so on, we have detected that there is a deviation from normal 

market conditions (null hypothesis of martingale process with mild drift fails) and that there is either a bubble or a crisis (alternative hypothesis of either 

a mildly explosive process or random-drift martingale process is valid). 
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