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A B S T R A C T

Bayesian analysis constitutes an important pillar for assessing and managing risk, but it also has some weaknesses and limitations. The main aims of the present paper
are to summarize the scope and boundaries of Bayesian analysis in a risk setting, point to critical issues and suggest ways of meeting the problems faced. The paper
specifically addresses the Bayesian perspective on probability and risk, probability models, the link between probability and knowledge, and Bayesian decision
analysis. A main overall conclusion of the paper is that risk analysis has a broader scope and framing than Bayesian analysis, and that it is important for risk
assessment and management to acknowledge this and build approaches and methods that extend beyond the Bayesian paradigm. To adequately assess and handle
risk it is necessary to see beyond risk as commonly defined in Bayesian analysis.

1. Introduction

This paper discusses Bayesian analysis in a risk context. This context
captures concepts, theories, principles, frameworks, approaches,
methods and models for understanding, assessing, characterizing,
communicating, managing and governing risk, simply referred to for
short as ‘concepts for risk analysis’. It is defined by what can be seen as
the scope of the risk field and science [2,21,44,45]. The issue raised is
the role of Bayesian analysis in supporting risk analysis when ‘risk
analysis’ is interpreted in this broad sense. In order to do this, it is also
necessary to clarify the aims and scope of Bayesian analysis. Following
text books on the topic and well-established nomenclature, Bayesian
analysis can be viewed as a method of statistical inference that allows
one to combine prior information with new information, using Bayes’
formula to guide the statistical inference process (e.g.
[10,12,26,27,38]). Bayesian analysis is a cornerstone in decision ana-
lysis, and it is common to refer to Bayesian decision theory and Baye-
sian decision analysis. Bayesian decision analysis is built on two main
components: the use of a prior subjective probability distribution P, and
a utility function u, reflecting the decision maker's preferences. An
optimal decision rule then follows by identifying the act that optimizes
the overall expected utility, E[u] = ∫ u dP. Using Bayesian inference as
explained above, the prior probabilities are updated when new in-
formation becomes available, using Bayes’ formula. Thus, there is a link
between the Bayesian statistical inference and the Bayesian decision
analysis, but, as the key pillars of the framework are P and u, many
scholars just refer to this theory and analysis as decision theory and
analysis and avoid the term ‘Bayesian’.

It is also common to refer to Bayesian probability, when probability

is understood as a subjective probability. Following such terminology,
any use of subjective probability becomes a Bayesian analysis, whether
Bayes’ formula is applied or not.

The present paper will discuss all these interpretations of Bayesian
analysis. It will question the degree to which this type of analysis is
suitable for supporting risk analysis, particularly on how to characterize
risk and make decisions when facing risk problems. Considerable work
has been conducted to understand both the strengths and weaknesses of
the Bayesian thinking and approach, also in relation to risk; see
Section 2 for an overview and discussions in Bernardo and Smith [12],
Lindley [27], Bedford and Cooke [9], Singpurwalla [41], Paté‐Cornell
[32], Fenton and Neil [16] and Mayo [29]. The present discussion aims
at reviewing current knowledge on the topic and also gaining new in-
sights, by addressing some current fundamental issues in risk analysis
and risk science, including the acknowledgment of the need to see be-
yond probability-based perspectives to adequately conduct risk ana-
lysis. To illustrate, the Society for Risk Analysis (SRA) has recently
published a glossary [43] in which the concept of risk comprises two
main components: i) the consequences of the activity considered and ii)
related uncertainties. In line with this conceptualization, a main feature
of risk analysis and science is the incorporation of measures and ar-
rangements to strengthen robustness and resilience, to meet potential
surprises and the unforeseen. We question how and to what degree
Bayesian analysis can support this type of conceptualization and
thinking, in relation to both risk characterization and risk handling.

Section 3 discusses challenges for the Bayesian analysis to deal with
this type of fundamental issues in risk analysis. Finally, Section 4 pro-
vides some recommendations and conclusions.

The paper focuses on challenges of Bayesian analysis in a risk
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context. The strong scientific basis and the broad use of this type of
analysis, including those related to risk, are well-documented in the
literature but are only to a limited degree highlighted in the present
paper. For some practical guidance for conducting Bayesian analysis,
see for example Cowles [14] and Gelman et al. [19]. The discussion in
this paper is relevant to all types of applications of risk analysis, in-
cluding engineering, health, business and security [8,16,42,49].

The paper addresses generic and fundamental conceptual and
methodological issues, including the meaning of the probability term,
the use of probability models and Bayesian decision analysis. However,
the aim is not only to make a theoretical contribution. The discussion is
also very much important for the practice of risk analysis. For example,
to effectively communicate risk in real life applications, the inter-
pretation of probability could be critical. Furthermore, to assess,
characterize and understand risk in practice it is essential to introduce
and use probability models in a prudent way. And to apply the Bayesian
decision analysis approach in practice it is crucial to understand the
strengths of this approach, as well as its limitations. The paper clarifies
what these issues are really about and how they should be dealt with in
real life risk contexts.

2. The Bayesian perspective

The classical Bayesian set-up is illustrated by the following simple
example. Let θ be an unknown parameter, representing the health
condition of a patient. If the patient is ill, θ =1, whereas θ = 0
otherwise. A test of the patient is conducted, indicating whether the
patient is ill or not. Let X be the test result: 1 indicating that the patient
is ill, and 0 indicating that the patient is not ill.

Bayesian analysis uses Bayes’ formula to compute the posterior
probability that the patient is ill, given the result of the test:

= = = = = = = =P X x P X x P P X x x( 1| ) ( | 1) ( 1)/ ( ), where 0 or 1
(2.1)

Here, P(θ=1) is the prior probability that the patient is ill, whereas P
(X=1| θ=1) = 1- P(X=0| θ=1) is the probability that the test is
correct, i.e. shows a positive response when in fact the patient is ill. The
prior probability can be based on historical data for a relevant popu-
lation of patients, or it can simply represent the assessors’ subjective
probability judgement, given their knowledge about the illness and the
patient before the test is conducted. The probability P(X=x| θ) ex-
presses the quality of the test.

In more general form, we can write (2.1) as

=f x f x f f x( | ) ( | ) ( )/ ( ) (2.2)

where f is used as a generic symbol for a probability density function.
Thus the posterior distribution f(θ|x) is proportional to f(x|θ)f(θ). Here,
f(x|θ) can be seen as a model of the ‘world’: how the observations x are
generated for different world states θ. The function f(x|θ) is commonly
referred to as a probability model for X with parameter θ.

A probability model in a Bayesian setting can be viewed as a model
formed by chances. A model is a simplified representation of the world,
whereas a chance is interpreted as a limiting relative frequency or
fraction of successes when performing a set of thought-constructed
trials. Hence, the chance is a measure of variation − the trials either
showing success or not. Consider, as an illustration, throwing a special
die with not a normal shape. The focus is on the fraction of times q the
die will show 6 (success) in the long run. Let Y1, Y2, … be the Bernoulli
series for the outcome of the trials, where Yi is equal to 1 if the die
shows 6 and zero otherwise. Are the Yi’s independent? No, clearly not,
as, if we obtain the results of some trials, we learn about the die and can
improve the predictions of future trials. However, if we were to know q,
the Yi’s would be independent, as the observations would not add
anything to our knowledge. Unconditionally, the Yi’s are outcomes from
‘similar’ trials but not independent ones. Formally, the idea of ‘similar’
is reflected by the concept of exchangeability defined as follows: If the

joint probability distribution of a set of Yi’s is judged to remain un-
changed (invariant) when switching (permuting) the indices, the series
is said to be exchangeable [12,27].

Thus, we are led to a framework – the Bayesian one – which is based
on two types of probabilities: subjective probabilities P and chances p.
Different types of interpretations for a subjective probability P exist.
Historically, the interpretation has been linked to betting situations
(e.g. [15,37,39]). As an illustrative example, consider the event A that a
specific hypothesis is true, and suppose a probability equal to 0.90 is
assigned. Then, following de Finetti, this probability judgement can be
understood as stating that 0.90 is “the price at which the person as-
signing the probability is neutral between buying and selling a ticket
that is worth one unit of payment if the event occurs, and worthless if
not” (see e.g. [7,40]). An alternative type of interpretation is provided
by Lindley [25,27]. If a probability of 0.90 for an event A is specified, it
means that the assessor's uncertainty and degree of belief in the event
occurring (being true) is comparable to randomly drawing a red ball out
of an urn comprising 100 balls, of which 90 are red.

In formulas (2.1) and (2.2), all probabilities (densities) are sub-
jective. However, commonly, the subjective probability P(X=x|θ) is
replaced by a probability model reflecting variation. In the above illness
case, the subjective probability, that the test instrument is showing
positive results when in fact the patient is ill, is replaced by a frequency
of the test instrument showing such results in general. Also, the prior
probability P(θ=1) can be founded on such frequencies, as mentioned
for the illness case, but in general it expresses the assessor's judgement,
which could reflect other knowledge aspects than those produced by an
observed relative frequency.

The subjective probability P is conditional on the assessor's knowl-
edge K, as reflected when writing P(A) = P(A|K) for the probability of
an event A. This knowledge is based on data, information, tests, argu-
mentation, assumptions, etc.

This Bayesian statistical framework allows one to coherently com-
bine prior information with new information, the tools being prob-
ability, probability models and Bayes’ formula.

It is, however, also common to extend the above framework by in-
corporating the decision-making process; see e.g. Lindley [26] and
Aven ([2], p. 133). As highlighted by Lindley [27], two more elements
should be covered: the consequences should have their merits described
by utilities, and the optimum decision needs to combine the prob-
abilities and utilities by calculating subjective expected utility and then
maximizing that. The rationale for the expected utility is strong, as
thoroughly discussed in the literature (see e.g. [26]). Applying the
theory is, however, challenging, as will be further discussed in the
coming Section 3.

3. Challenges in a risk setting

From the review of Section 2, several issues need further reflections
when applying the Bayesian perspective to a risk context. The first re-
lates to the importance of distinguishing between i) ‘Bayesian prob-
ability’, ii) Bayesian inference, and iii) Bayesian decision analysis, de-
fined as:

Bayesian probability: A subjective probability
Bayesian inference: A method of statistical inference that allows one

to combine prior information with new information, using Bayes’ for-
mula

Bayesian decision analysis: The use of subjective expected utility as a
basis for making decisions.

These three concepts and approaches support each other and are
often integrated, but they can also be seen as three ‘independent’ in-
struments. For example, a risk analyst may support the use of subjective
probabilities to express uncertainties about unknown quantities but not
necessarily back Bayesian inference and decision analysis. Moreover,
scholars supporting Bayesian inference may not favour Bayesian deci-
sion analysis (see discussion in Section 3.3). On the other hand,
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Bayesian decision analysts would endorse all three components i), ii)
and iii), forming a complete theory for risk and uncertainty analysis and
decision-making. Some authors, like Dennis Lindley [26], go one step
further, arguing that such a full Bayesian perspective is the only ra-
tional way of making inference and decision-making when faced with
uncertainty.

Below we will discuss in more detail the following issues linked to
the understanding and use of the instruments i), ii) and iii):

1) Several interpretations of the Bayesian (subjective) probability exist,
but many cannot be justified. To describe uncertainties, Bayesian
probabilities are in general not sufficient

2) Bayesian inference is based on probability models, but often these
models cannot be justified

3) There is a need to see beyond Bayesian decision analysis when
making decisions involving risk.

3.1. Bayesian (subjective) probabilities

The use of subjective probabilities represents a cornerstone of
Bayesian analysis, and this may explain why these are referred to as
Bayesian, despite the fact that Bayes’ formula does not presume the use
of subjective probabilities − it applies to any type of probabilities. As
mentioned in Section 2, the literature on subjective probabilities is
founded on early work by scholars like Ramsey [37], de Finetti [15]
and Savage [39], and these authors are also commonly referred to
today, particularly in economic-related risk analysis. These scholars
have made important contributions to probability theory and un-
certainty analysis, and their works represent an historical pillar in the
development of subjective probabilities to express the assessor's un-
certainty and degree of beliefs.

However, in a risk setting, all these interpretations are in-
appropriate. The problem is that they mix uncertainty assessment and
value judgements, as the example in Section 2 demonstrates. When
conducting an uncertainty or risk analysis, a basic requirement in
practical risk analysis contexts is that the analysts provide ‘pure’ jud-
gements of the uncertainties, not affected by their attitude to money
and the betting situation [7]. The historical definitions of subjective
probabilities are closely linked to expected utility theory and personal
decision-making. However, risk assessment is mainly about producing a
‘neutral’ characterization of the uncertainties and risks, not being in-
fluenced by how the analyst likes or dislikes money. Being influenced
by this type of value judgements would violate this neutrality. When
subjective probabilities are adopted, subjectivity is acknowledged, but
not lack of neutrality, as here described.

Fortunately, there is a well-established and solid theory for sub-
jective probabilities which provides pure uncertainty judgements [25],
as also indicated in Section 2. This interpretation of a subjective
probability was mentioned by Kaplan and Garrick [23] in their re-
nowned paper about risk quantification, but, surprisingly, it is not
commonly referred to or used by risk analysts and researchers today
[7]. This is unfortunate, as the interpretation is the only one, as far as
the present author can see, that is theoretically sound and at the same
time simple and easy to understand. The interpretation also allows for
adjustments to treat imprecise probabilities, for example a statement
that the probability is at least 0.90 (the assessor is not willing to be
more precise): The assessor's uncertainty or degree of belief is com-
parable with randomly drawing a red ball out of an urn comprising 100
balls, of which 90 or more are red.

In much work on risk where subjective probabilities are used, in-
terpretations are lacking. This is problematic, as the interpretation is
often very important in the practical setting, for example on how to
understand and communicate the results of the risk study and follow up
the findings. It matters, for example, if the results presented are ‘ob-
jective’ representations of the world or ‘just some’ analysts’ judgements
about how the world performs. The subjectivity of the subjective

probabilities is commonly seen as a problem, conflicting basic scientific
criteria of deriving objective knowledge not depending on the analysts’
judgements. Two main types of argumentation are used to meet this
challenge. The first is based on the use of imprecise (interval) prob-
ability, as exemplified by the above interval [0.9, 1.0]. This type of
interval makes the transformation from the knowledge available to the
probability statement less subjective than, say, a probability assignment
of 0.94. The price is, however, a less informative statement, and still the
statement could be highly subjective, for example expressing the view
of one particular expert. The point made is that we also need to consider
the knowledge on which the probability statements are based. It could,
to varying degrees, be strong and objective.

Common Bayesian analyses do not, however, allow for or encourage
such judgements of the knowledge supporting the probabilities, al-
though they are increasingly often reflected in risk analysis and risk
science (e.g. [43]). It still seems that many Bayesian analysts believe
that probability in principle is a perfect tool for expressing uncertainties
[28,30]. The thesis is that coherent judgements about uncertainty lead
to the use of probability. As stated by Lindley ([28], p. 239), “If you
want to handle uncertainty, then you must use probability to do it.”
This conclusion is based on different types of arguments [28], the use of
scoring rules and logic. It is, however, based on one key assumption,
that we restrict attention to a quantitative way of measuring un-
certainty. Let us take one step back and consider all types of approaches
for describing the uncertainties. To be concrete, let us consider the
classical example with a coin showing head or tail. Suppose that you are
to perform one and only one throw, and suppose in one case a) you
have no knowledge about the coin (it could be non-symmetric) and the
other b) where you have made a careful study of the coin, showing that
it is perfectly symmetric. We are to assign a probability P(A|K) for both
cases, where A is a coin showing head and K is the background
knowledge supporting the assignment. In both cases, we are led to a
probability equal to 0.5. However, the two situations are clearly fun-
damentally different, and building the uncertainty characterization on
this probability alone would obviously be insufficient. As the notation P
(A|K) shows, the uncertainty description is also a function of K, and
hence we need to also pay attention to K. In the former case a), this
knowledge is more or less empty, whereas, in the latter b), it is very
strong. Clearly, this insight needs to accompany the probability as-
signment 0.5. Otherwise, the uncertainty characterization would be
incomplete. For a discussion on how to conduct such knowledge
strength judgments, see discussion in Aven [3]. See also discussion in
Paté-Cornell [34] and Gilboa and Marinacci [20].

The argumentation leads to an adjusted approach: if you want to
handle uncertainty, then you must use probability (precise or im-
precise), together with judgements of the knowledge supporting the
probability assignments.

A sensitivity analysis may show how a probability is affected by
changing an aspect of the knowledge K, for example an assumption.
Such an analysis would not, however, discuss the reasonability of the
assumption made, as a knowledge strength judgement would, just the
effect of changing the assumption.

Historically, many scholars have argued for so-called logical prob-
abilities, reflecting the idea that the probability represents the objective
degree of logical support that the evidence gives to the event or a
statement to be true. The rationale for this type of probabilities can,
however, be questioned. Dennis Lindley writes:

Some people have put forward the argument that the only reason
two persons differ in their beliefs about an event is that they have
different knowledge bases, and that if these bases were shared, the two
people would have the same beliefs, and therefore the same probability.
This would remove the personal element from probability and it would
logically follow that with knowledge base K for an uncertain event E, all
would have the same uncertainty, and therefore the same probability P
(E|K), called a logical probability. We do not share this view, partly
because it is very difficult to say what is meant by two knowledge bases
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being the same. In particular it has proved impossible to say what is
meant by being ignorant of an event, or having an empty knowledge
base, and although special cases can be covered, the general concept of
ignorance has not yielded to analysis. ([28], p. 44)

Intuitively, the idea that some evidence is equivalent to one and
only one probability is appealing. Suppose a prior distribution is to be
assigned for an unknown future quantity Y, representing the number of
systems that will fail during a specific period of time in a population
comprising n such systems. We are to assign the probability distribution
P(Y≤y). Instead of making a direct assignment of this distribution, we
introduce a mind-constructed population of an infinite number of sys-
tems, and let p denote the failure fraction of this population. By con-
ditioning on p, it follows that

=P Y y P Y y p dF p( ) ( | ) ( )

where F is the prior distribution of p. Given p, it follows, under rea-
sonable conditions, that Y can be considered a binominal distributed
random quantity with parameters n and p. Hence, it can be claimed
that, if it is possible to establish a unique and objective distribution F,
we have been able to derive a unique and objective distribution of Y.
Now, suppose we have obtained some evidence of the type Z=z, where
Z is the number of failed systems in a similar type of population com-
prising m systems. The problem is to assign a posterior probability
distribution P(Y≤y| Z=z)= P(Y≤y| z). Again, using a conditional
probability argument, we obtain

=P Y y z P Y y z p dF p z( | ) ( | , ) ( | )

with obvious interpretations. We see that P(Y≤y| z, p) = P(Y≤y| p)
and, using Bayes’ formula, dF(p|z) = [f(z|p)f(p)/f(z)]dp, where f is
used as a generic letter for a probability density function. We see that
all terms can be determined in a unique and objective way, if we can do
this also for F(p).

The issue of specifying F has been subject to considerable discussion
in the literature. The question addressed is this: Does a distribution F
exist, which corresponds with the idea that we have no information or
knowledge available about the relevant quantity, here p? At a first
grasp, the use of a uniform probability distribution for p over the in-
terval [0,1] seems to provide a solution, but further reflections show
that the issue is not that simple. The main problem using the uniform
distribution as a non-informative prior is that this distribution is not
invariant under reparametrization (e.g. [10,46]). In the case that we
have no information about p, we should also have no information
about, for example, 1/p. However, a uniform prior on 1/p does not
correspond to a uniform distribution for p.

Many other approaches have been suggested; see, for example,
discussions in Kass and Wasserman [24] and Syversveen [46]. It is
concluded that no fully objective prior that represents ignorance can in
general be derived. Under certain conditions, approaches exist that are
independent of the parameterization and are impersonal, for example
the so-called Jeffrey's priors or the maximum entropy priors, but
something (information, principles, criteria) has to be added to estab-
lish the priors.

Thus, the concept of an objective logic probability has to be re-
jected. It cannot be justified, even for this simple case. In practice, we
are not only facing situations where the knowledge basis can be traced
to observations of relevant data. In general, the knowledge K is founded
on combinations of data, information, argumentation, analysis, testing
and assumptions. Then, there is subjectivity also related to assigning P
(Y≤y| K, p), as there is not necessarily an obvious choice for the dis-
tribution of Y given K and p. Other knowledge aspects in K than p may
be of relevance for Y.

In addition, the situation may not allow a meaningful probability
model with parameters to be defined. We will discuss this issue in more
detail in the coming section.

Finally in this section, a comment on metrics used to describe the

degree of uncertainties present. A common such metric is the Shannon
entropy H introduced in information analysis. It is defined as:

=
=

H p plog ( )
i

n

i i
1

2

where pi equals the probability that the discrete random quantity stu-
died takes the value xi. Now consider two cases, with the same prob-
abilities. In the first, the probabilities refer to known frequentist
probabilities and, in the second, subjective probabilities founded on a
poor knowledge basis. The entropy H gives the same score, but clearly
the situations are completely different. A probability distribution alone
is, in general, a poor way of measuring the level of uncertainty. We also
need to reflect the knowledge used to derive the probabilities; refer also
to discussion in Aven ([3], p. 102).

3.2. Bayesian inference is based on probability models, but often these
models are difficult to justify

A probability model is a collection of frequentist probabilities
(chances), often associated with a parameter which is not specified.
Bayesian inference builds on the existence of such models, as demon-
strated in Section 2. In many cases, such models are easy to justify, for
example the binominal distribution to model the success rate for a
series of repeated types of similar experiments. However, in other cases,
the model is not straightforward to establish. Consider the following
example.

An availability performance study is to be conducted for a system in
a design phase [6]. To simplify, suppose the system comprises two in-
dependent units in a series structure, labelled 1 and 2. Each unit is
represented by an alternating renewal process corresponding to the unit
being functioning and under repair, respectively. The uptimes have a
common probability distribution Fi, whereas the downtimes have a
common distribution Gi, i=1, 2. To study the performance (avail-
ability) of the system, the distributions Fi and Gi need to be determined.

For this purpose, it is common practice in availability analysis to
simply assume a parametric probability distribution, for example an
exponential or Weibull distribution for the time to failures, and log-
normal or triangular restoration times. For the sake of the present
discussion, suppose exponential distributions with rates λi are used for
the uptimes, and constants for the downtimes, and we can focus on the
rationale and treatment in relation to Fi.

Let Y denote the performance of the system, and let λ = (λ1, λ2).
Then we have

=P Y y P Y y dF( ) ( | ) ( )

where F is the distribution of λ. Given the vector λ, we can find the
distribution of Y by using the fact that the uptimes are independent
with exponentially distributions with parameters λi; see Aven and
Jensen [6]. The distribution F can be prior or posterior, depending on
the availability of information.

The issue raised here is the use of exponential distribution. In the
above Bayesian analysis, the exponential distributions model variation
within the population of consecutive lifetimes. Arguments can be pro-
vided for why a constant failure rate make sense for units comprising
many components subject to maintenance ([6], p. 13); yet, using this
particular model adds an assumption to the analysis that is important to
be aware of when interpreting the result of the study. The knowledge K
adopted for the analysis is built on this assumption (see discussions in
Bergman [11], Aven and Bergman [5] and Flage and Askeland [17]).

This example again demonstrates the importance of adding judge-
ments about the strength of knowledge supporting the probabilities’
calculations. It matters a lot for how to understand and use the output
probability results whether the models used have strong support or are
more or less arbitrary chosen distributions.

When considering systems with a number of units with unknown
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parameters for both uptimes and downtimes, the above methodology is
challenging. In theory, a simultaneous distribution for all parameters is
required. To simplify, the following approach is often used ([2], p. 93).
Suppose we have rather strong background knowledge. Then, we fix the
probability distributions, for example an exponential for the uptimes.
The parameter λ is specified, based on the information available. Then,
the focus is on using subjective probabilities to express uncertainties
about the unknown quantities, first on unit level, then on system level.
However, following this approach the Bayesian set-up is basically lost,
as there is no probability model allowing us to use Bayes’ formula to
systematically update our knowledge, when new information on the
unit level becomes available. Depending on the decision situation
considered, this may, to varying degrees, be a problem. The assumption
that we use the same distribution for the uptimes represents a strong
simplification, as we ignore learning from observations of previous
lifetimes. As discussed in Aven ([2], p. 93), the approach requires that
the background knowledge is rather strong, so that we can, as an ap-
proximation, assume independence between consecutive lifetimes for
the time period considered.

As another example of the challenges of using probability models in
Bayesian risk analysis, consider the task of studying ‘rare events’ with
extreme consequences (such as the September 11 attacks and the
Fukushima event). To this end, a Bayesian framework is often for-
mulated, based on the use of probability models. Concepts like heavy
and fat distribution tails are referred to. However, this framework is
seldom justified or questioned: is it in fact meaningful?

The key problem raised is: does it make sense to perform repeated
experiments generating an infinite population of similar situations to
the one studied, as is required to interpret the frequency-based prob-
abilities of the probability model? Can we define a meaningful popu-
lation characterizing the variation in relation to, for example, the
September 11 events? No, these are rather unique types of events. A
probability model representing similar situations to the one of
September 11 cannot meaningfully be defined. If probability is to be
used, it needs to be a subjective probability expressing someone's jud-
gement about the uncertainties related to the occurrence of this type of
events.

A scientific framework requires that all concepts introduced have
precise meanings. Such a requirement is essential for ensuring that the
uncertainties in a risk context can be adequately dealt with. If a
quantity x is introduced and it lacks a clear interpretation, analysts
would struggle to express uncertainties about x. For example, if a
parametric probability model is introduced without having a proper
interpretation, a Bayesian exercise deriving a subjective distribution for
the parameters would be subject to considerable arbitrariness, as the
assessors would not have a clear understanding of what the un-
certainties are about. A subjective probability distribution for ‘rare
events’ may have fat tails, but this would just reflect the assessor's be-
liefs; it is not an objective property of the world, which would be the
case if a frequentist distribution was the point of reference.

3.3. The need to see beyond Bayesian decision analysis when making
decisions involving risk

In practice, there will always be a need for a ‘managerial review and
judgement’ which sees beyond analysis, so also with the use of the
expected utility theory or any other formal decision analysis approach.
There is a leap between formal analysis and actual decision-making,
reflecting the fact that the analysis has limitations in capturing all as-
pects of interest for the decision makers, for example properly reflecting
the potential for surprises and the unforeseen. Yet, applying a formal
decision analysis process can provide structure and knowledge im-
portant for the decision-making but not a prescription for what to do.
Scholars have discussed the role of formal decision analysis methods for
years (e.g. [2,18,22,48]), yet current risk science literature to varying
degrees acknowledges the importance of managerial review and

judgements [2].
A risk analyst can be a strong advocator of Bayesian probabilities

and inference but prefer using other perspectives than the Bayesian
decision analysis to support the decision-making. In most types of real-
life problems, the present author would apply a type of multi-attribute
analysis, aiming to show the pros and cons of the various decision al-
ternatives considered, using both quantitative and qualitative ap-
proaches and methods to show activity performance, risks and un-
certainties [2,4]. Some key arguments for not using a Bayesian decision
analysis approach are discussed below. For some decision analysis
perspectives and approaches challenging the expected utility theory
(Prospective theory and rank-dependent utility theory); see Tversky and
Kahneman [47] and Quiggin [36].

Quantitative decision analysis, including Bayesian expected utility
theory, is based on the use of decision rules, which tell “decision-ma-
kers what to do, given what they believe about a particular problem and
what they seek to achieve” [35]. The use of decision rules contributes to
ensuring consistency and presuming that the rules have a strong ra-
tionale, good decisions. However, in many situations, particularly when
facing large uncertainties, the specification of such rules is difficult. A
case is discussed in Aven ([4], p. 179), where the issue concerns ap-
plying the precautionary principle; the consequences of the activity are
subject to scientific uncertainties. If the decision rule is founded on
probability assignments, as for Bayesian expected utility theory, it is
obvious that care has to be shown when reading the recommendations
produced by the decision analysis. The basis for the assigned prob-
abilities would be poor, and a strict adherence to the results of the
formal analysis would violate fundamental principles of risk manage-
ment, giving weight to uncertainties and potential surprises.

Risk is not a concept used in Bayesian inference, but it is used in
Bayesian decision analysis, as outlined in Section 2. Here, risk is defined
as expected (dis)utility; in the following, without loss of generality, it is
just referred to as the utility.

Following current definitions of risk [43], see also [1,4], the risk
related to an activity can be conceptualized as (C,U), where C is the
consequences of the activity and U, the associated uncertainties.
Looking into the future of the activity, we do not know what C will be.
Normally, C is seen in relation to a reference, for example a current
level, a target or a goal. There will always be at least one outcome that
is negative or undesirable. To characterize risk, we need to specify the
consequences and represent, describe or measure the uncertainties. In
general terms, this leads to a characterization of the form (C’,Q,K),
where C’ is the specification of C, Q a measure (in a wide sense) of the
uncertainties related to C’, and K the knowledge that C’ and Q are based
on.

Different metrics can be defined on the basis of (C’,Q,K), for ex-
ample the expected consequences and a probability distribution P for C’
(hence Q=P). The Bayesian risk is another example of such a metric. If
u denotes the utility function, we have

= =Bayesian risk E u C u C dP[ ( )] ( )

Thus, the Bayesian risk is not really a definition of risk but an approach
for measuring or describing risk. An important issue is then how well
this measure is able to actually represent or express risk.

A common risk metric is the expected value, E[C’]. However, this
measure suffers from serious weaknesses, as the potential for severe
consequences is not properly reflected. Two distributions could have
the same centre of gravities (expected values) but be completely dif-
ferent when it comes to the potential for extreme consequences. For the
risk response and handling these situations are completely different,
but, using the expected value as the risk metric, this type of difference is
ignored.

The use of the utility function meets this critique of the expected
value. By introducing the utility function, the preferences of the deci-
sion maker can be reflected. However, in practice, the derivation of the
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utility function is not straightforward – it requires a rather complex
procedure, using lotteries (e.g. [26]), that is difficult for decision ma-
kers to carry out in practice. For some decision problems with many
stakeholders, it can also be an issue to determine which utility function
to use. As the Bayesian theory is applicable to only one decision maker,
the solution is to consider the Bayesian decision analysis as a way of
thinking and a tool to gain insights for different stakeholders and de-
cision makers, by studying the implications of using various utility
functions. A problem encountered in practice, however, is that many
stakeholders and decision makers would hesitate to reveal their pre-
ferences as the expected utility approach requires.

Seeing risk as the expected utility is also restrictive for other rea-
sons, the main one being that important aspects of risk are not ade-
quately reflected by the probabilities. Probability here is a subjective
probability, as explained in Section 3.2. The common risk management
situation in practice is that some analysts perform a risk assessment,
and then one or more stakeholders and decision makers are informed by
the results of the risk assessment. The Bayesian decision analysis fra-
mework is designed for situations where the decision makers assign
both probabilities and utilities. The more professional risk management
setting, with analysts informing decision makers, is fundamentally
different from the individual perspective used in traditional Bayesian
decision analysis.

However, regardless of the setting, the problems discussed in
Section 3.1 prevail. The knowledge could be more or less strong and
even wrong. Consequently, a decision maker cannot simply limit the
information and judgements to the expected utility, even though it
captures the preferences of the decision maker. The decision maker also
needs to be informed about the knowledge supporting the probabilities.
A key question is how strong it is. Furthermore, the decision maker
needs to take into account potential surprises relative to this knowledge
– the unforeseen (‘black swans’). Of special interest here are ‘unknown
knowns’ (the event is unknown for the analysts, but known to others)

and known type of events ignored because of erroneous assumptions.
This aspect of risk cannot meaningfully be quantified, but it certainly is
an aspect of risk which needs to be given due attention in risk man-
agement, for example by designing systems which score highly on ro-
bustness and resilience. In recent years, considerable research and de-
velopment has been conducted to develop concepts, principles,
approaches, methods and models for assessing and managing this type
of risk (e.g. [3,33]). Using the Bayesian decision perspective on risk, the
importance of these enhancements is not sufficiently noticed, as the risk
framing to a large extent ignores their contributions. In contrast, the
current risk conceptualizations based on (C,U), seek to stimulate in-
vestigations into all types of risks, as a result of both weak knowledge
and erroneous knowledge. See Bjerga and Aven [13].

The above discussion should not be interpreted as stating that
Bayesian risk analysis is restricted to the expected utility calculations.
Aspects of risk may also be quantified and expressed by probability
distributions of C’, as for example in Quantified Risk Assessment (QRAs)
and Probabilistic Risk Assessments (PRAs). However, the discussion in
the last paragraph also applies to the probability distributions. The
strength of the knowledge is not addressed, nor the potential for sur-
prises.

Paté-Cornell [31] provides an excellent exposition of the difference
between risk analysis/assessment and decision analysis, including
Bayesian decision analysis. A main goal of a risk assessment could be to
enhance relevant stakeholders’ understanding of risk. A specific deci-
sion may not even be on the agenda. The insights gained by the risk
assessment could stimulate discussion and suggestions for completely
different types of action than previously thought about. The results
could also provide a basis for a political discussion on what to do next.

4. Recommendations and conclusions

The main conclusions of the paper are summarized in Table 1.

Table 1
Summary of critical issues of Bayesian analysis in a risk setting, with suggestions for how to deal with them

Issue Explanation How to deal with the issue

Subjective probability The use of subjective probabilities represents a cornerstone of
Bayesian analysis, but the term is commonly not given an
interpretation or an unfortunate interpretation is used mixing
uncertainty judgements and value judgments.

It is recommended to use the interpretation based on comparison
with a standard approach [28], see Sections 2 and 3.1.

Bayesian probability It is common to refer to Bayesian probability when probability is
understood as a subjective probability

The concept of ‘Bayesian probability’ is confusing and should not be
used, as its definition and meaning are not directly linked to
Thomas Bayes or Bayes’ theorem.

Subjective probability is a tool for
expressing uncertainty

Bayesian analysis expresses epistemic uncertainty through
subjective probabilities, but these probabilities are not sufficient
for expressing uncertainty in a risk context

To express the uncertainties, the knowledge and judgements of the
strength of the knowledge supporting the probabilities P need to be
added. See Section 3.1.

Bayesian perspective on risk Bayesian analysis has a ‘narrow’ perspective on risk, based on
expected utility or probabilities. Important aspects of risk are not
reflected in the characterizations

Broader characterizations and frameworks are needed as presented
and discussed in Section 3.3. Specific processes need to be
implemented to address potential surprises and the unforeseen, see
Section 3.3, Aven [3] and Bjerga and Aven [13]

Probability models Bayesian analysis is to large extent built on probability models, but
in some risk settings such models can be difficult or impossible to
justify. The models require that a large (in theory an infinite)
population of similar situations to the one studied can be
generated, but many events are unique and such populations
cannot be meaningfully produced

Justification is needed for introducing and using a probability
model. The strength of the knowledge that the model is built on (in
particular the assumptions) need to be evaluated. Probabilistic
analysis can also be conducted based on subjective probabilities
without introducing probability models

Quantified Risk Assessment (QRA)
Probabilistic Risk Assessment
(PRA)

QRAs (PRAs) can be based on Bayesian analysis, using models and
subjective probabilities. The assessments characterize risk by (C’,P)
and provide a basis for discussions about risk between different
stakeholders – and they support the decision making. Assumptions
are made explicit, but knowledge strength judgments are not
commonly performed.

Knowledge strength judgments should be added, and specific
processes implemented to address potential surprises and the
unforeseen, see above. All models used need to be justified. The
strength of the assumptions forming the models should be included
in the overall strength of knowledge judgments for the probabilistic
results produced.

Bayesian decision analysis Bayesian decision analysis is a useful instrument and framework
for decision analysis but has strong limitations in addressing all
relevant risk issues

It needs to be supplemented with a management and review
process, as described in Section 3.3. Practical methods exist based
on different types of multi-attribute analysis, aiming to show the
pros and cons of the various decision alternatives considered, using
both quantitative and qualitative approaches and methods to show
activity performance, risks and uncertainties

T. Aven Reliability Engineering and System Safety 204 (2020) 107209

6



Bayesian inference and Bayesian decision analysis are acknowl-
edged as solid and important instruments (‘instrument’ interpreted
broadly to also capture ‘way of thinking’) for prudent risk analysis and
risk science. Although both refer to ‘Bayesian’, they are two completely
different things. The former is about knowledge generation and co-
herent uncertainty judgements, whereas the latter is about how to make
good decisions. We may value the usefulness of these two instruments
differently. An analyst may apply Bayesian inference but not Bayesian
decision analysis. Both instruments have their strengths and limitations,
as summarized and discussed in previous sections. For many types of
situations where risk analysis is conducted, particularly when the un-
certainties are large, there is a need to see beyond the Bayesian ap-
proaches. A key problem is that the strength of the knowledge sup-
porting the subjective probabilities is commonly not addressed in these
approaches. It is, however, essential that this aspect of risk is looked
into. Whereas the Bayesian approach highlights risks characterizations
in form of E[u(C’)] and (C’,P), risk science points to the more general
formulation (C’,Q,K), which allows for also including judgments of the
strength of knowledge supporting the probabilities. Methods have been
developed for how to implement such an approach in practice (e.g.
[3,4]). Also, the risk related to potential surprises needs to be con-
sidered, as discussed in the previous section.

Bayesian decision analysis may provide useful insights in many
cases, but the results from this type of analysis cannot in general replace
more overall considerations of the pros and cons of the alternatives
considered, as the quantitative approach is not able to capture all re-
levant aspects of the decision-making situation, as discussed in
Section 3.3.

The concept of ‘Bayesian probability’ is confusing and should not be
used, as its definition and meaning are not directly linked to Thomas
Bayes or Bayes’ theorem. Analysts may be users and advocators of
subjective probabilities but not of Bayesian inference or Bayesian de-
cision analysis. A subjective probability should be interpreted as men-
tioned in Section 3.1, using the comparison with a standard approach
[28].
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