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We present the first calculation of the hadronic tensor on the lattice for the nucleon. The hadronic tensor
can be used to extract structure functions in deep inelastic scatterings and to provide information for
neutrino-nucleon scattering which is crucial to neutrino-nucleus scattering experiments at low energies. The
most challenging part in the calculation is to solve an inverse problem. We have implemented and tested
three algorithms using mock data, showing that the Bayesian reconstruction method has the best resolution
in extracting peak structures while the Backus-Gilbert and maximum entropy methods are somewhat more
stable for smooth functions. Numerical results are presented for both the elastic case (clover fermions on
domainwall configurations withmπ ∼ 370 MeV and a ∼ 0.06 fm) and a case (anisotropic clover latticewith
mπ ∼ 380 MeV and at ∼ 0.035 fm) with large momentum transfer. For the former case, the reconstructed
Minkowski hadronic tensor gives precisely the vector charge which proves the feasibility of the approach.
For the latter case, the resonance and possibly shallow inelastic scattering contributions around energy
transfer ν ¼ 1 GeV are clearly observed but no information is obtained for higher excited states with
ν > 2 GeV. A check of the effective masses of the ρ meson with different lattice setups indicates that, in
order to reach higher energy transfers, using lattices with smaller lattice spacings is essential.
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I. INTRODUCTION

In scattering processes involving nucleons such as deep
inelastic scattering (DIS) and neutrino-nucleon scattering at
low energies, the hadronic tensor Wμν is used to character-
ize the nonperturbative nature of the nucleon structure. It is
the imaginary part of the forward virtual Compton scatter-
ing amplitude Wμν ¼ 1

2π ImTμν and can be expressed as a
nucleon matrix element with two current operators inserted,

Wμν ¼
1

4π

Z
d4zeiq·zhp; sj½J†μðzÞJνð0Þ�jp; si: ð1Þ

The hadronic tensor of the vector currents can be
further decomposed, according to its Lorentz structure,
into structure functions, i.e.,

Wμν ¼
�
−gμν þ

qμqν
q2

�
F1ðx;Q2Þ þ p̂μp̂ν

p · q
F2ðx;Q2Þ ð2Þ

for the unpolarized case, where p̂μ ¼ pμ −
p·q
q2 qμ. pμ and qμ

are the nucleon 4-momentum and momentum transfer,

respectively. x is the Bjorken x ¼ Q2

2p·q. The structure
functions are valuable quantities which reveal the inner
structure of the nucleon. They can be used to extract parton
distribution functions (PDFs) through the QCD factoriza-
tion theorem Fi ¼

P
a c

a
i ⊗ fa, where the convolution

kernel cai is perturbatively calculable.
Due to their nonperturbative nature and importance, it is

natural to explore the possibility of calculating the hadronic
tensor and structure functions with lattice QCD, which is a
first-principles nonperturbative method of solving the
strong interaction. While the proposal for a lattice QCD-
based evaluation was put forward more than 20 years ago
[1,2], it has only recently become feasible to compute the
necessary four-point correlation functions, thanks to
increases in computing power [3,4]. In recent years, there
has been a lot of effort in the lattice community focusing
on the computation of x-dependent PDFs. Examples are
quasi-PDFs and LaMET [5,6], Compton amplitude [7],
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pseudo-PDFs [8,9], and lattice cross-sections [10,11]. Each
of the approaches has its own advantages and difficulties.
For example, some of the approaches try to connect the
lattice matrix elements with the light cone PDFs by first
combining the matrix elements with different nucleon
momentum p⃗ and spacial distance ξ⃗ into an Ioffe time
(p⃗ · ξ⃗) distribution and then using a Fourier transform on
the Ioffe time to get the x-dependent PDF. So, large p⃗ and
therefore large p⃗ · ξ⃗ are essential from them especially to
access small x. But it is hard to have a highly boosted
nucleon on the lattice. In our approach, the hadronic tensor
and structure functions account for the general lepton-
nucleon scattering cross-section. To access the PDFs in the
DIS case, what we need is to have the structure functions
with large momentum transfer Q2 and energy transfer ν.
There is no direct requirement of large nucleon momentum
p⃗ since the structure functions in the hadronic tensor are
frame independent (N.B. many DIS experiments are done
with the nucleon at rest), although we find that a slightly
boosted nucleon makes it easier in practice to reach large ν
on the lattice. Another advantage of our method is that the
hadronic tensor is scale independent, such that no renorm-
alization is needed except for the finite lattice normalization
of the vector current if local operators are used. However,
to convert the hadronic tensor from Euclidean space to
Minkowski space involves an inverse problem [3] which
presents a substantial numerical challenge. In case that
reliable lattice results for the Minkowski hadronic tensor
are obtained for a set of kinematic setups, they can be used
to obtain parton distribution functions via the factorization
theorem, as are carried out in global fittings of experiments.
Another feature of calculating the hadronic tensor on the

lattice is that it reveals explicitly the connected-sea anti-
parton contribution. It has been pointed out [1,12] that the
Gottfried sum rule violation (i.e., the ū and d̄ difference of
their PDFs) can be explained by the existence of the
connected-sea antipartons. Recently, the momentum frac-
tion ratio of strange to u=d quark in disconnected insertions
was calculated [13], which helps to separate the connected-
sea and disconnected-sea parton distributions in global
fittings. The calculation of hadronic tensor using Euclidean
four-point correlation functions will provide a direct proof
to the degrees of freedom of connected-sea antipartons
and can finally resolve the puzzle of Gottfried sum rule
violation.
In addition to deep inelastic scattering, the hadronic

tensor plays an important role too for scatterings at lower
energies such as in the experiments of neutrino-nucleus
scattering (e.g., the LBNF/DUNE [14] at Fermilab), which
aim to study neutrino properties. These experiments face
several challenges such as the reconstruction of the
neutrino beam energy and flux and the consideration of
nuclear effects and models [15]. In view of this, the input of
accurate determination of neutrino-nucleon scattering is
vital to investigating the nuclear effects of neutrino-nucleus

scattering. However, it is not trivial to study the neutrino-
nucleon scattering since at different beam energies, differ-
ent contributions [elastic (EL), resonance (RES), shallow
inelastic scattering (SIS), and DIS] dominate the total
cross-section [16]. Nevertheless, the hadronic tensor is
useful in all the energy regions. For example, in the EL
region of neutrino-nucleon scattering that is relevant to the
quasielastic neutrino-nucleus scattering, the hadronic ten-
sor is actually the square of the elastic form factors of the
nucleon and, as a result, the cross-section of the neutrino-
nucleus scattering can be calculated by combining the
nucleon form factors and nuclear models about the nucleon
distribution inside a nucleus. In the RES, SIS, and DIS
regions, inelastic neutrino-nucleon scatterings emerge and
one will need to have the hadronic tensor to cover all the
inclusive contributions. In this sense, calculating the
hadronic tensor is so far the only way we know that lattice
QCD can serve the neutrino experiments in the whole
energy range [17].1

Since lattice QCD is formulated with Euclidean time and
the hadronic tensor involves a four-dimensional Fourier
transform, one cannot calculate the hadronic tensor directly
on the lattice. Instead, we calculate its counterpart in
Euclidean space and then convert it back to Minkowski
space. The formalism of Euclidean hadronic tensor is
discussed in Sec. II. The conversion to Minkowski space
is implemented by solving the inverse problem which is the
most challenging part of our calculation. We will discuss
three methods and two examples in Sec. III. Section IV
presents numerical results for both the elastic case and a
case with large momentum transfer. A discussion on the
results comes in Sec. V.

II. LATTICE FORMALISM
OF HADRONIC TENSOR

After inserting a complete set of intermediate states in
Eq. (1) and carrying out the integral, one comes to the
following expression of the hadronic tensor [3]:

WM
μν ¼

1

2

X
n

Z YNn

i

�
d3p⃗i

ð2πÞ32Ei

�
hp; sjJ†μð0ÞjnihnjJνð0Þ

× jp; sið2πÞ3δ4ðq − pn þ pÞ; ð3Þ

where q is the momentum transfer, p the nucleon momen-
tum, and pn the momentum of the nth intermediate state.QNn

i ½ d3p⃗i

ð2πÞ32Ei
� gives the normalization of the intermediate

states, and the index i goes from 1 to Nn, which is the
number of hadrons contained in the state n. The four-
dimensional Dirac delta function ensures the conservation
of 4-momentum and picks out the contribution of a

1We thankA.Kronfeld for bringing to our attention the relevance
of the hadronic tensor to the neutrino-nucleon scattering.
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particular momentum transfer. However, it is noted in [3]
that if one tries to carry out the integral of Eq. (1) in the
Euclidean case, the Fourier transform in the time direction
becomes a Laplace transform,

W0
μν ¼

1

4π

X
n

Z
dteðν−ðEn−EpÞÞt

×
Z

d3z⃗eiq⃗·z⃗hp; sjJ†μðz⃗ÞjnihnjJνð0Þjp; si; ð4Þ

and after the integration one has

W0
μν ¼

1

4π

X
n

eðν−ðEn−EpÞÞT − 1

ν − ðEn − EpÞ

×
Z

d3z⃗eiq⃗·z⃗hp; sjJ†μðz⃗ÞjnihnjJνð0Þjp; si; ð5Þ

where ν is the energy transfer, Ep and En are the energies of
the external nucleon and the nth intermediate state, and T is
the integration length in the time direction. The factor of
eðν−ðEn−EpÞÞT−1
ν−ðEn−EpÞ is problematic since it does not converge if

ν − ðEn − EpÞ > 0. This happens when ν is greater than the
energy gap between the nucleon and the intermediate
states, such asΔ, Roper,… . Besides, even if the numerator
converges, 1

ν−ðEn−EpÞ is not a good approximation to the

delta function and one cannot pick out the clean contribu-
tion for a specific ν as nearby states will mix.
Instead, we construct the following four-point correla-

tion function with only a three-dimensional Fourier
transform:

C4ðtf; t2; t1Þ ¼
X
x⃗f

e−ip⃗·x⃗f
X
x⃗1x⃗2

e−iq⃗·ðx⃗2−x⃗1Þ

× h χNðx⃗f; tfÞJ†μðx⃗2; t2ÞJνðx⃗1; t1Þχ̄Nð0⃗; t0Þi
ð6Þ

and also the nucleon two-point function as

C2ðtfÞ ¼
X
x⃗f

e−ip⃗·x⃗fhχNðx⃗f; tfÞχ̄Nð0⃗; t0Þi; ð7Þ

where χNðx⃗; tÞ is the nucleon interpolation field operator.
Then, the Euclidean hadronic tensorWE

μνðp⃗; q⃗; τÞ is defined
by the ratio of the four-point function to the two-point
function [1–4,12] as

WE
μνðp⃗; q⃗; τÞ ¼

Ep

mp

Tr½ΓeC4�
Tr½ΓeC2�

⟶
tf≫t2;t1≫t0 X

x⃗1x⃗2

e−iq⃗·ðx⃗2−x⃗1Þ

× hp; sjJ†μðx⃗2; t2ÞJνðx⃗1; t1Þjp; sieEpτ; ð8Þ

where Ep and mp are the energy and mass of the nucleon,

and Γe ¼ 1þγ4
2

is the unpolarized projector and τ ¼ t2 − t1.
We can insert the intermediate states again between the two
currents and we have

WE
μν ¼

X
n

Ane−ðEn−EpÞτ; ð9Þ

where

An ≡
X
x⃗1x⃗2

e−iq⃗·ðx⃗2−x⃗1Þhp; sjJ†μðx⃗2; 0ÞjnihnjJνðx⃗1; 0Þjp; si:

ð10Þ

The computation of four-point functions consumes the
most computer resources in our calculation. Doing the
Wick contraction for the four-point function leads to
several topologically distinct diagrams in the Euclidean
path-integral formulation (shown in Fig. 1). We have not
specified the flavor of the quark lines in the figure. In
practice where the flavor is taken into account, the con-
tractions can be more complicated according to the types of
the currents (neutral or charged). For the calculation with
small momentum transfers, all the diagrams contribute and
one needs to combine them to have physical results.
However, for the case with large momentum and energy
transfers as in the DIS, Figs. 1(a)–1(c) are dominated by the
leading twist while Figs. 1(d)–1(f) are suppressed since
they involve only high twists. Therefore, the respective
leading twist parton degrees of freedom are classified by
the first three diagrams, namely, the valence and connected-
sea (CS) partons qvþcs [Fig. 1(a)], the CS antipartons q̄cs

[Fig. 1(b)], and the disconnected-sea (DS) partons and
antipartons qds þ q̄ds [Fig. 1(e)] [1,2]. It is a great feature of
our approach that they all can be calculated separately,
especially since the CS antipartons are responsible for the
Gottfried sum rule violation [1,2,12].
After the Euclidean hadronic tensor is calculated, we

need to convert it back to Minkowski space to obtain
physical results. Formally, the inverse Laplace transform
fulfills this objective,

WM
μνðp⃗; q⃗; νÞ ¼

1

i

Z
cþi∞

c−i∞
dτeντWE

μνðp⃗; q⃗; τÞ: ð11Þ

However, in practice, the Euclidean hadronic tensor is a
function of Euclidean time, which is real, so that the
integral in the inverse Laplace transform along the imagi-
nary time axis is not possible. Numerically, one can try to
solve the inverse problem of the Laplace transform to
obtain an estimation of WM

μν [3,4],

WE
μνðp⃗; q⃗; τÞ ¼

Z
dνWM

μνðp⃗; q⃗; νÞe−ντ: ð12Þ
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Details about solving the inverse problem are discussed in
Sec. III.

III. SOLVING THE INVERSE PROBLEM

A general form of the inverse problem reads

cðτiÞ ¼
Z

kðτi; νÞωðνÞdν; ð13Þ

where cðτiÞ denotes discrete lattice data with a finite
number of points [usually Oð10Þ], kðτi; νÞ is the integral
kernel that is a function of both τi and ν, and ωðνÞ is the
target function which is usually continuous with respect
to ν. In principle, determining every detail of a totally
unknown continuous function with finite input information
is not possible; videlicet, more than one solution can be
found to match the input data. Numerically, we can always
discretize ωðνÞ,

cðτiÞ ¼
X
j

kðτi; νjÞωðνjÞΔνj; ð14Þ

however, the number of νj one needs to reproduce the
structures of ωðνÞ is, in many cases, much larger than the
number of input points, so the problem is still ill-posed.
Nevertheless, many algorithms are available to extract the
most probable solution of ω at a certain resolution.
Actually, this is a common problem not only in physics,
and the algorithms have been kept updated and improved.
In this section, we will briefly introduce three methods to

solve the inverse problem, discuss their features, and use
some mock data to test their resolutions and robustness.

A. Backus-Gilbert method

The Backus-Gilbert (BG) method [18–20] utilizes the
fact that the kernel functions, if they span a complete
function basis, can be linearly combined to approximate a
delta function,

X
i

aðτj; ν0Þkðτi; νÞ ∼ δðν − ν0Þ; ð15Þ

where aðτi; ν0Þ are the coefficients for the ith kernel
function at a certain point ν0, which can be calculated
by assuming a criterion of “deltaness” and solving linear
equations. Having aðτi; ν0Þ, the value of the target function
at ν0 can be accessed by

X
i

aðτi; ν0ÞcðτiÞ ∼
Z

δðν − ν0ÞωðνÞdν ¼ ωðν0Þ: ð16Þ

It is worthwhile noting that the number of independent
kernel functions is equal to the number of the discrete
lattice data points so usually the function basis spanned by
the kernel functions is far from complete, leading to a
coarse resolution. In some sense, this is a feature instead of
a disadvantage because the lattice spectrum is discrete and
the volume correction for a particular multiparticle state is
not negligible, but the broadened delta function (“regulated
delta function”) can be treated as a smoothing procedure
and ensures a well-defined infinite volume limit [20].
However, in our case, we are only concerned about the
inclusive contribution rather than the contribution from one
particular state, so the infinite volume limit is well-defined.
And in fact, it is nearly impossible to isolate the multi-
particle-state contributions even with other methods of

t0

t1 t2

tf

(a)

t0 tf

t2t1

(b)

t0 tf

t1 t2

(c)

t0

t1

t2
tf

(d)

t0 tf

t1

t2

(e)

t0 tf

t1 t2

(f)

FIG. 1. Topologically distinct diagrams in the Euclidean path-integral formulation of the nucleon hadronic tensor. (a)–(c) contain all
twists and (d)–(f) contain high twists only.
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better resolution from present-day lattice data. Another
feature of BG is that, unlike other Bayesian-type methods,
it solves the problem point by point and does not guarantee
that the reconstructed result reproduces the input data well
[21], so careful checks are always needed.

B. Maximum entropy method

The maximum entropy (ME) method [22,23] makes use
of Bayesian probability with prior information about the
target function to find the most probable solution,

P½ωjD; α; m� ∝ 1

ZSZL
eQðωÞ; ð17Þ

where P½ωjD; α; m� denotes the conditional probability that
ω is the solution given lattice data D, prior information m,
and a hyper parameter α. Q ¼ αS − L is a combination of
the Shannon entropy,

S ¼
X
j

�
ωðνjÞ −mðνjÞ − ωðνjÞ log

�
ωðνjÞ
mðνjÞ

��
Δνj; ð18Þ

which entails the constraint from the prior information, and
the likelihood function

L ¼ 1

2

X
i;j

ðcðτiÞ − cωðτiÞÞC−1
ij ðcðτjÞ − cωðτjÞÞ; ð19Þ

which embodies the constraint from the data. In the
equations,mðνjÞ is the default model (the prior information
we plug in), cðτiÞ is the input Euclidean correlator, cωðτiÞ is
the correlator regenerated from ω using Eq. (14), C is the
covariance matrix, and ZSZL is the normalization factor. α
is the weight that balances the two constraints. If α is zero,
ME reduces to the normal χ2 fit which has no unique
solution for the inverse problem, since the number of
parameters is larger than the number of input data. The
uniqueness is guaranteed for a finite α and the results of
different α’s are averaged in a range of α based on certain
assumptions [23]. Practically, the parameter space for
finding the maximum probability P½ωjD; α; m�, i.e., the
maximum value ofQ, is reduced to a smaller one instead of
the whole ν space by employing singular value decom-
position [23,24], which makes the maximum search easier
but the resolution may be affected. Improved ME with an
extended search space [25] is also proposed and we will
check whether it produces better results in our future study.

C. Bayesian reconstruction

Bayesian reconstruction (BR) [26] is an improved
Bayesian method. The Bayesian probability is

P½ωjD; α; m� ∝ eQ
0ðωÞ; ð20Þ

where Q0 ¼ αS0 − L − γðL − NτÞ2 and

S0 ¼
X
j

�
1 −

ωðνjÞ
mðνjÞ

þ log

�
ωðνjÞ
mðνjÞ

��
Δνj; ð21Þ

which is an alternative way to encode the constraint from
the prior. γ is a numerically large number such that the term
γðL − NτÞ2 helps to prevent overfitting. The hyper param-
eter α here is explicitly integrated over as

P½ωjD;m� ¼ P½Djω; I�
P½Djm�

Z
dαP½αjD;m�; ð22Þ

where P½αjD;m� is the probability of α in the presence of
D and m. The search space of the maximum of BR is the
whole parameter space which enhances the ability of
finding the real maximum while the price to pay is the
need of high-precision architecture (e.g., 512-bit floating
point numbers). For both Bayesian-type methods, ME and
BR, the choice of the default model is in principle arbitrary,
but a reliable reconstruction should not depend on the
default model. In all the following calculations of the paper,
the default model is chosen to be a constant.

D. Mock data examples

To test the three methods, mock data are generated. The
first set of mock data is a two-point function with three
states of mass 1.0, 1.5, and 1.8 GeV, respectively, and the
spectral weights are all unity. The lattice spacing is tuned to
0.1 fm and the number of time slices available is 20. Noises
are added by assuming normal distributions around the
central values and the signal-to-noise ratio is set to be 100.
This is to check the resolution for peak structures of the
spectral functions.
The results of the reconstruction can be found in Fig. 2.

The left panel shows the reconstructed spectral functions,
and the right panel shows the comparison between the
original input data and the two-point functions computed
using the resultant spectral functions. For the spectral
functions, we see that the result of BG shows basically
no peak structures, reflecting its poor resolution for this
mock data setup. The result of ME is much better as two
peaks around 1 and 2 GeVare clearly seen. Considering the
broad widths of the peaks, it is consistent with the input
data. BR gives the best reconstruction in this case as two
sharp peaks appear at ∼1 and ∼1.6 GeV. Although the
second and the third states are still not separated, the
resolution of BR is much better. From the right panel, we
see that the regenerated two-point functions from the
spectral functions of ME and BR are well consistent with
the input data, but for the BG case, differences occur at
large t. This exhibits the fact that, as pointed out before, BG
does not guarantee that the reconstructed result reproduces
the input data.

TOWARDS THE NUCLEON HADRONIC TENSOR FROM LATTICE … PHYS. REV. D 101, 114503 (2020)

114503-5



The second set of the mock data is for the Euclidean
hadronic tensorWE with two isolated states of mass 1.0 and
1.5 GeV (simulating the elastic and resonance contribu-
tions) and a dense spectrum from 2 to 15 GeV (simulating
the contributions of continuous spectrum in SIS and DIS
regions). The corresponding matrix elements of these dense
states are all assumed to be a constant. This is like the
energy dependence of the neutrino-nucleon scattering
cross-section. The lattice spacing is set to be 0.02 fm in
this case and the number of time slices is 100. The signal-
to-noise ratio is set to be 100 too. This example is mainly to
check the three methods’ ability of resolving a smooth
Minkowski hadronic tensor WM at higher energies. The
results of this test are shown in Fig. 3. Similarly, the left
panel shows the reconstructed Minkowski hadronic tensor
and the right panel shows the comparison between the
original input data and the Euclidean hadronic tensor
recomputed using the resultant Minkowski hadronic tensor.

From the left panel, we see that both ME and BR
reconstruct a peak at ∼1 GeV (the BR one is much sharper)
while BG shows no peak in that low energy region.
This agrees with what we observed in the previous test.
However, in the region 2–8 GeV, BG presents more
consistent results with the input WE (the red dashed line)
while both ME and BR show unphysical oscillations. These
unphysical oscillations are called “ringing” and are artifacts
of the reconstruction [21]. The ringing of the ME method
seems weaker, which is due to the fact that the singular
value decomposition (SVD) used in ME acts as an addi-
tional smoothing that suppresses the ringing but also leads
to the significantly larger width of peak structures. Both the
BR and ME methods suffer from this disadvantage, so they
are not the optimal method for the reconstruction of a
smooth hadronic tensor at high energies. Actually, there is
an update of BR aiming to address this problem [21,27] and
we will also try to test this in our future study. Similar to the

FIG. 3. The test results for the second mock data set. Again, both the ME and BR results coincide with the input data so the orange and
green curves are not visible in the right panel.

FIG. 2. The results of the reconstruction of the first mock data set. The left panel shows the spectral functions, and the right panel
shows the comparison between the original input data and the two-point functions regenerated using the resultant spectral functions.
Note that both the ME and BR results coincide with the input data so the orange and green curves are not visible in the right panel. BR
has the best resolution in the test.
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first case, the right panel of Fig. 3 shows that the
regenerated Euclidean hadronic tensor from ME and BR
is well consistent while that of BG is not.
Solving the inverse problem is the most challenging

part of our calculation. More detailed studies on how
the lattice spacing, the error of the correlation functions,
and the number of available time slices affect the
reconstruction and more inverse methods regarding this
physics problem are needed. Recently, several inverse
algorithms have been checked for the efficiency of
obtaining x-dependent PDFs from mock Euclidean corre-
lators [28]. From the above two tests, we know that BR has
the best resolution for peak structures while BG and ME
are more stable for resolving smooth functions. Knowing
the different methods’ advantages, one can combine them
to resolve different parts of the Minkowski hadronic
tensor, e.g., BR for the sharp peak structures and ME
for the smooth region.

IV. RESULTS

A. Elastic case

Having discussed how to solve the inverse problem, we
now apply the algorithms to realistic lattice data. The first
example is to check the vector charge. This is a calculation
that is relevant to the neutrino-nucleon scattering and
also serves as a benchmark of the whole approach. The
calculation is done on RBC/UKQCD domain wall lattice
32If [29] with clover fermions as valence quarks. The
configuration is preprocessed by hypercubic (HYP) smear-
ing, and the tadpole improved clover coefficient Csw ¼
1.033 is used to generate the clover term for the valence
part. The pion mass is tuned to be close to the unitary point
∼371 MeV. The lattice spacing is about 0.06 fm which we
expect to be fine enough such that the inverse algorithms
can give reasonably reliable results.
For this case, we choose μ ¼ ν ¼ 4 and p⃗ ¼ q⃗ ¼ 0 to

calculate the Euclidean hadronic tensor WE
μν. So Eq. (8)

becomes

WE
44ð0⃗; 0⃗; τÞ ¼

X
n

hp; sjψ̄γ4ψ jnihnjψ̄γ4ψ jp; sie−ðEn−MpÞτ:

ð23Þ

For simplicity, the two currents are both inserted on the
d quark line, so only Fig. 1(a) contributes. With τ ≫ 0

only the ground state survives, so WE
4;4ð0⃗;0⃗;∞Þ¼g2V¼1,

given proper normalization factor ZV. Two sequential
propagators are used for constructing the four-point func-
tion with one starting from t0 through t1 to t2 and the other
starting from t0 through tf to t2 [Fig. 1(a)]. Therefore, for
one calculation, the source point t0 and the two sequential
points t1 and tf are fixed while all the values of t2 are
available. In this particular example, we choose t0 ¼ 0,
tf ¼ 15, and t1 ¼ 5 in lattice unit so the working t2 should
be in the range of [6, 14] to exclude the contact points and
the corresponding τ ¼ t2 − t1 is from 1 to 9. The result of
WE

44ðτÞ is plotted in Fig. 4(a). It shows that within errors,
WE

4;4ðτÞ is a constant of value 1, indicating that the excited-
state contributions are negligible. The drop at τ ¼ 9 is
likely due to the fact that it is too close to the nucleon sink.
The errors are around 0.4% and the number of configu-
rations used is 100.
To convert the results to Minkowski space, the ME and

BG methods are employed. Actually, the exact form of the
hadronic tensor for elastic scatterings [30] is

WM
44ðq2; νÞ ¼ δðq2 þ 2mpνÞ

2mp

1 − q2=4mp
2

×

�
G2

Eðq2Þ −
q2

4m2
p
G2

Mðq2Þ
�
: ð24Þ

In our case, WM
44ðq2 ¼ 0; νÞ ¼ δðνÞG2

Eð0Þ ¼ δðνÞ. This is
easy to understand since the Minkowski hadronic tensor
should be a Dirac delta function at ν0 when its Euclidean
counterpart is a single exponential ∼e−ν0t and here the
constant Euclidean hadronic tensor is a special case of an
exponential with ν0 ¼ 0.

(a) (b) (c)

FIG. 4. The results of the elastic case. (a) The Euclidean hadronic tensor WE
44 as a function of τ. (b) The Minkowski hadronic tensor

WM
44 as a function of energy transfer ν from the ME method. (c) The Minkowski hadronic tensor as a function of ν from the BG method.
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The converted results of WM
44ðνÞ using ME and BG are

plotted in Figs. 4(b) and 4(c), respectively. They both give
a peak around ν ¼ 0 and in this sense the results are
consistent with the theoretical prediction of δðvÞ. However,
similar to the cases of the mock data, ME shows much
better resolution than BG. Another problem of the result of
BG is that it is not symmetric about ν ¼ 0, which is because
BG has difficulties in resolving the target function with
negative ν. An important check is that the area under the
peaks should be g2V ¼ 1, and the values of numerical
integral of the results from ME and BG are 1.001(7) and
1.18(6), respectively. Again, ME shows a more precise
result.
Although it is cumbersome and unnecessary to calculate

the vector charge by constructing four-point functions and
solving the inverse problem, it nevertheless shows the
feasibility of our approach. The vector charge can be
obtained reliably. For more complicated cases such as
nonzero momentum transfers or charged currents, this
approach can show its advantages and provide the inclusive
contribution of all intermediate states.

B. Nonzero nucleon momentum
and momentum transfer

As pointed out in the introduction, another important
motivation of calculating the hadronic tensor is to have the
lattice results of structure functions in the DIS region which
can be used together with experimental inputs to better pin
down the parton distribution functions. To this end, we
need to have large momentum transfer Q2 and energy

transfer ν to make the scattering “deep” enough to access
the parton degrees of freedom. This is different from the
requirement of, e.g., the quasi-PDF approach where they
need large nucleon momentum. In practice, in order to
reach small x (e.g., ∼0.1), it is also beneficial numerically
in our approach to have a nonzero 3-momentum of
the external proton to be in the opposite direction of the
3-momentum transfer.
For this calculation, we use an anisotropic clover lattice

[31] with at ∼ 0.035 fm. The pion mass is about 380 MeV
and the momentum unit is 2π

Ls
∼ 0.42 GeV. The reason we

switch to this lattice is that the signal-to-noise ratio will
be much worse than the previous elastic case when the
momentum transfer is large. Thus, having more data points
in the t direction helps the inverse algorithms to have more
stable results.
The detailed kinetic setup is listed in Table I. We choose

p⃗ ¼ ð0; 3; 3Þ and q⃗ ¼ ð0;−6;−6Þ in lattice unit and
μ ¼ ν ¼ 1, such that only the F1 structure function
survives; thus, WM

11 ¼ F1ðx;Q2Þ. Since the energy transfer
ν is not fixed by the lattice three-dimensional Fourier
transform, we can choose a range of ν ∈ ½2.96; 3.68� GeV
such that the corresponding Q2 is in a range of 2–4 GeV2.
The Bjorken x that can be accessed accordingly is between
0.07 and 0.16 for this setup. A special feature of this setup
is that p⃗þ q⃗ ¼ −p⃗; therefore, the energy of the lowest
intermediate state is En¼0 ¼ Ep and, for large enough τ,
WE

11 ∝ e−ðEn¼0−EpÞτ is a constant.
The results of the Euclidean hadronic tensor WE

11ðτÞ for
both d and u quarks are shown in Fig. 5. In this calculation,

TABLE I. The kinematic setup of nucleon momentum p⃗, 3-momentum transfer q⃗, proton energy Ep, the energy of the lowest
intermediate state En¼0, the modulus of the 3-momentum transfer jq⃗j, the range of energy transfer ν, the range of 4-momentum transfer
Q2, and the corresponding Bjorken x.

p⃗ (2π=Ls) q⃗ (2π=Ls) Ep (GeV) En¼0 (GeV) jq⃗j (GeV) ν (GeV) Q2 (GeV2) x

(0,3,3) ð0;−6;−6Þ 2.15 2.15 3.57 [2.96, 3.68] [4, 2] [0.16, 0.07]

FIG. 5. The Euclidean hadronic tensorWE
11 as a function of τ for both d and u quarks. p⃗ ¼ ð0; 3; 3Þ and q⃗ ¼ ð0;−6;−6Þ in lattice unit

in this case.
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we set t0 ¼ 0, t1 ¼ 8, and tf ¼ 28 in lattice unit and still
we focus on the diagram of Fig. 1(a) for the moment. The
figures show that for small τ, the Euclidean hadronic tensor
WE

11ðτÞ decays exponentially since the energy of the
intermediate states En is larger than Ep. For larger τ, it
gets flatter for the d quark case (left panel), which is
consistent with what we expect, i.e., En¼0 ¼ Ep. The tail of
the Euclidean hadronic tensor for the u quark case (right
panel) goes up after τ ∼ 15, which we believe is due to the
contamination of the sink nucleon excited states.
Similarly, we need to solve the inverse problem to obtain

the results in Minkowski space. The results from the ME
method are shown in Fig. 6. The error bands are mainly
from the average of different default models. The behaviors
of d and u quarks are similar. We do not observe a peak
around the elastic point ν ¼ 0which is because at this point
the hadronic tensor is the square of the electric form factor
and the form factor is highly suppressed by the large

momentum transfer. Taking a dipole form for the form
factor with Q2 ¼ 12.7 GeV2 in this case, the hadronic
tensor is suppressed by a factor of ð1þQ2=0.71Þ−4 ∼ 10−5

as compared to the charge at Q2 ¼ 0. Then, we do observe
a broad structure at about 1 GeV, which should account for
the combined contribution of nucleon resonances and
possibly the SIS.
As discussed above, the preferred ν range that can lead us

to the parton structure functions is from 2.96 to 3.68 GeV;
however, our results give basically zero within errors in that
region. To check whether this is a resolution issue of the
ME method, we also use the BR method that shows better
resolution for discrete structures in our mock data test to
handle the same data. The results are shown in Fig. 7. And
this time, to show exactly the effect of different default
models, we plot the results with different default models
separately in log scale. We also check the effect of
including or excluding the data points of large τ since

FIG. 6. The Minkowski hadronic tensor WM
11 as a function of energy transfer ν reconstructed using the ME method for both d and u

quarks. The error bands show the difference introduced by different ME parameters while no statistical errors are included. At some
certain points, the error seems tiny which just indicates that different ME parameters result in similar results.

FIG. 7. The Minkowski hadronic tensor WM
11 as a function of energy transfer ν reconstructed using the BR method for both d and u

quarks. In the legend, te denotes the end point of t2 we use in BR and c is the value of the constant default model. After ∼2 GeV, the
default models dominate the results.
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they can have large excited-state contaminations. This time,
except that the peaks around 1 GeV are much sharper than
the ME case, the basic conclusion we learn is the same. No
elastic contribution shows at ν ¼ 0 and the only structure is
around 1 GeV. When the energy transfer goes above, say,
2 GeV, the reconstructed results approach to the values of
the default model which means the data have no constraint
in that region.
From these two examples, we see that the elastic and the

resonance contributions, where the energy transfer is not
too large, can be extracted from the current setup. However,
it seems that there is no contribution found in the DIS
region. We will discuss the possible reason and solution
in Sec. V.
It is suggested by Chambers et al. [7] that the structure

functions can be extracted through time-ordered current-
current correlators on the lattice using the operator product
expansion of the forward Compton amplitude. This is
carried out by setting ν ¼ 0 in the integral of Eq. (4) to
avoid the divergence when ν − ðEn − EpÞ > 0 as discussed
in Sec. II after Eq. (5). However, this leads W0

μνðp; q; TÞ in
Eq. (5) (considered to be the Compton amplitude Tμνðp; qÞ
in [7]) to

W0
μνðTÞ¼

Z
d3z⃗

eiq⃗·z⃗

4π
½hp;sjJ†μðz⃗Þj0ih0jJνð0Þjp;siT

þ
X
n≥1

eð−ðEn−EpÞÞT−1

−ðEn−EpÞ
hp;sjJ†μðz⃗ÞjnihnjJνð0Þjp;si�;

ð25Þ

where the state label 0 is for the nucleon state with
momentum p⃗þ q⃗ so that the first term accounts for the
elastic scattering which diverges as T and reflects the

elastic scattering pole in Eq. (5). As T → ∞, the contri-
butions of the n ≥ 1 states are suppressed by 1=T.
However, as shown in Fig. 6, when T is finite (0.7 fm
in our case), the excited states including nucleon reso-
nances and those in the SIS and DIS regions all contribute.
When Q2 is large (e.g., 12.7 GeV2 in this case), the
hadronic tensor for the elastic scattering is highly sup-
pressed (by a factor of ∼10−5), whereas the resonance
contribution around 1 – 2 GeVatQ2 ∼ 9–11 GeV2 is much
larger as shown in Fig. 6.
To estimate how large a ν is needed for DIS, we can look

at W, the total invariant mass of the hadronic final state

W2 ¼ ðqþ pÞ2 ¼ m2
p −Q2 þ 2mpν: ð26Þ

The global fittings of PDF usually take a cut with
W2 > 10 GeV2. When we take Q2 ¼ 4 GeV2, this gives
ν > 6.5 GeV. Therefore, taking ν ¼ 0 in Eq. (4) will not
yield PDF in the DIS region, which needs both Q2 and ν to
be large.

V. DISCUSSION AND SUMMARY

To explore the reason why there is no contribution for
ν≳ 2 GeV in Figs. 6 and 7, we calculate the effective mass
of the four-point functions which is a quick way to check
the highest energy of intermediate states that our Euclidean
hadronic tensor contains. The results are plotted in the left
panel of Fig. 8. We see that for either the u or d quark, the
highest effective mass is around 1 GeV, which means that
there is simply no information of higher excitations which
can be obtained for this particular case. This should be due
to the lattice artifacts, since the lattice we are using has
finite volume (resulting in discrete momenta and discrete

FIG. 8. The effective mass plot for the Euclidean hadronic tensor (left panel) and for the ρ meson with different lattice setups (right
panel), including different actions (overlap (O), clover (C), domain wall (D), and HISQ (H)), different spacial lattice spacings, and
different pion masses. The information of the configurations used can be found in Refs. [29,31,32]. 24J and 16J are anisotropic lattices
with as=at ¼ 3.7, so their highest effective masses are higher than those of 24I and 48I that have similar spacial lattice spacings. To
increase visibility, some points in the right panel are shifted slightly in the horizontal direction.
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spectrum), finite lattice spacing (a UV cutoff), and unphys-
ical pion mass (unphysical multiparticle states).
To sort out the most relevant lattice artifact, we calculate

the effective mass of the ρ meson with different lattice
setups (the right panel of Fig. 8). The reason we choose to
check the ρ meson is because the hadronic tensor involves
two vector currents inserted between the nucleon states and
the correlator of ρ can be treated as two vector currents
inserted between the vacuum states. Although the exact
value of how high we can reach in the ρ meson case may
not have much to do with the hadronic tensor case, how the
lattice artifacts affect the effective mass should be relevant.
The legend of the figure shows the features of the setups.
Each label in the legend has four parts: valence quark type/
sea quark type (“O” denotes overlap, “D” domain wall, “C”
clover, and “H” HISQ), spacial size plus a suffix which
serves as an identifier, spacial lattice spacing, and sea pion
mass. It is easy to see that, for 24I and 48I [29], although
the pion masses and volumes are not the same, the highest
effective masses are similar, around 3 GeV. For 24J and 16J
[31], the spacial lattice spacings are similar to the ones of
24I and 48I (∼0.1 fm), but the highest effective masses can
be higher than 5 GeV, which is because these two lattices
are anisotropic and their temporal lattice spacings are about
0.035 fm. Then, for 48H [32] and the two setups of 32If
[29], despite their different fermion actions and volumes,
their highest effective masses are all about 5.5 GeV and
their lattice spacings are ∼0.06 fm. For the lattice with the
finest lattice spacing ∼0.045 fm (64H [32]), the highest
effective mass is close to 8 GeV. This test shows that
the lattice spacing is the most important factor in order
to have the information of higher excitations. In view of
this comparison, the HISQ lattice with lattice spacing
∼0.045 fm can be a better choice to reach ν > 2 GeV in
our approach.
In this paper, we formulate our approach of calculating

the hadronic tensor on the lattice. We point out that this is
an approach that covers the inclusive contribution of all the
intermediate states which is crucial to providing informa-
tion for the neutrino scattering experiments at low energies.
It is also promising to calculate the structure functions in
the DIS region which can be used in the global fittings of
parton distribution functions. However, solving the inverse
problem is the most challenging part. We have imple-
mented and tested three algorithms using mock data,
showing that the BR method has the best resolution in
extracting peak structures while BG and ME are more
stable for the smooth Minkowski hadronic tensor at high
energies. Realistic lattice results are presented for both the
elastic case and a case with large momentum transfer. For
the elastic case, the reconstructed Minkowski hadronic
tensor from the ME method gives precisely the vector

charge which shows the feasibility of this approach. For the
latter case, the RES and possibly SIS contributions around
1 GeV are observed but no information is obtained for
higher excited states with ν > 2 GeV.
A check of the effective masses of ρmeson with different

lattice setups indicates that, in order to reach higher energy
transfers, using lattices with smaller lattice spacings is
essential for this calculation. The HISQ lattice with lattice
spacing ∼0.045 fm should be suitable to study the neutrino-
nucleus scattering at DUNE where the beam energy is
between ∼1 and ∼7 GeV. In the future, working on lattices
with lattice spacing of 0.03 fm or even smaller would be
desirable for studying the parton physics. Another possibility
with the current 0.045 fm lattice is to calculate the pion
PDF. This might be an easier case, since we can have a
better signal-to-noise ratio and we possibly do not need very
large Q2 or ν to enter the DIS region. The large mass gap
between the pion and its first excited state will not be very
problematic because, as long as the pion is boosted, the
gap will become smaller and the multiparticle states will
also contribute.
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