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them exhibit linear band crossing points.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Pseudospin-1 fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1. Mode-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. Transmission coefficient, conductivity and Fano factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. Pseudospin-3/2 fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1. Mode-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2. Transmission coefficients, conductivity and Fano factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5. Summary and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. Introduction

Recently, there has been a surge of interest in condensed matter systems that can host multiband (both linear and quadratic) crossings 
in the Brillouin zone (BZ) [1], many of which do not have a high-energy counterpart. In particular, for threefold as well as for a class 
of fourfold degeneracies, the low energy Hamiltonian is of the form k · S , where S represents the vector consisting of three spin-1 
or spin-3/2 matrices. Hence, we get three-dimensional (3d) semimetals with pseudospin-1 and pseudospin-3/2 quasiparticle excitations, 
which are nothing but natural generalizations of the Weyl semimetal Hamiltonian k · σ (σ representing the vector of the Pauli matrices) 
featuring pseudospin-1/2 quasiparticles. All these fermions have a linear dispersion, just like Dirac fermions, and the bandstructures have 
nonzero Chern numbers. The pseudospin-1 quasiparticles are sometimes referred to as Maxwell fermions [2], while the pseudospin-3/2 
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Fig. 1. Tunneling through a potential barrier in a linear band-crossing semimetal. The upper panel shows the schematic diagrams of the spectrum of a pair of particle-hole 
symmetric bands, with respect to a scalar (or electric) potential barrier of strength V 0 in the x-direction. The middle panel shows a constant vector potential A superposed 
in the same region. Theoretically, this vector potential can be created by applying equal and opposite delta function magnetic fields (B and −B) at the edges of the barrier 
region, oriented perpendicular to the x-axis. The lower panel represents the schematic diagram of the transport across the potential barrier. The Fermi level is depicted by 
dotted lines, and lies in the conduction band outside the barrier, and in the valence band inside it. The blue fillings indicate occupied states. For simplicity, only one pair of 
particle-hole symmetric bands has been shown. Generically, there can be more than one such pair. (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

quasiparticles are well-known as Rarita-Schwinger-Weyl fermions [3]. By using DFT calculations and bulk-sensitive soft x-ray ARPES, 
B.Q. Lv et al. [4] have predicted the coexistence of all these three types of topological fermions in the electronic structure of PdBiSe. There 
is a crucial difference in the dynamical properties of the Dirac particles (with spin-1/2) and the spin-1 quasiparticles that we consider 
here – the latter exhibit super-Klein tunneling [5–7], which means that the barrier is completely transparent for all incident angles for 
certain incident energies. Note that both Dirac and spin-3/2 particles [8] exhibit Klein tunneling.

In this paper, we study the behaviour of the transmission coefficients of the pseudospin-1 and pseudospin-3/2 fermions in presence 
of finite barriers made of scalar and vector potentials. We try to identify the distinct features peculiar to the pseudospin value. These 
might prove to be a tool to identify/distinguish these materials in experiments. Tunneling in 2d optical lattice versions of pseudospin-1 
and pseudospin-3/2 fermions have been studied earlier in Ref. [9] and [10].

The paper is organized as follows. In Sec. 2, we explain the general set-up for carrying out the tunneling experiment. In Sec. 3 and 
4, we apply the Landau-Büttiker formalism to compute the tunneling coefficients for the pseudospin-1 and pseudospin-3/2 fermions, 
respectively. Finally, we end with a summary and outlook in Sec. 5.

2. Formalism

In order to study transport, the 3d system is modulated by a scalar potential barrier (giving rise to an electric field) of strength V 0 and 
width L, resulting in an x-dependent potential energy function:

V (x) =
{

V 0 for 0 < x < L

0 otherwise .
(2.1)

In the next step, we subject the sample to equal and opposite magnetic fields localized at the edges of the rectangular electric potential, 
and directed perpendicular to the x-axis [11,12]. This can be theoretically modeled as Dirac delta functions of opposite signs at x = 0 and 
x = L respectively, and gives rise to a vector potential with the components:

A(x) ≡ {0, A y, Az} =
{

{0, Bz,−B y} for 0 < x < L

0 otherwise .
(2.2)

Note that this arises from the magnetic field B = 1
2

(
B y ĵ + Bz k̂

)
[δ (x = 0) − δ (x = L)]. The entire set-up is depicted pictorially in Fig. 1. 

Some possible methods to achieve this set-up in real experiments (for instance, by placing ferromagnetic stripes at barrier boundaries) 
have been discussed in Ref. [11].

We will follow the usual Landau-Büttiker procedure (see, for example Refs. [13–15]) to compute the transport coefficients. For the 
sake of completeness, we review the important steps here. We consider the tunneling of quasiparticles in a slab of square cross-section 
(without any loss of generality), with the transverse width being W . We assume that W is large enough such that the specific boundary 
conditions being used in the calculations are irrelevant for the bulk response. Here, we impose the periodic boundary conditions:
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�tot(x,0, z) = �tot(x, W , z) , �tot(x, y,0) = �tot(x, y, W ) . (2.3)

The transverse momentum k⊥ = (ky, kz) is conserved as no potential is applied along those directions, and its components are quantized 
as:

ky = 2π ny

W
≡ qny , kz = 2π nz

W
≡ qnz , (2.4)

where (nx, ny) ∈ Z. The longitudinal direction corresponds to transport along the x-axis, and for this we need to consider plane wave 
solutions of the form ei kxx . Then the full wavefunction is given by:

�tot(x, y, z,n) = const. × �n(x) e
i
(

qny y+qnz z
)
, (2.5)

with

n = (ny,nz) . (2.6)

Since we consider transmission in semimetals with at least one pair of valence (ε−) and conduction (ε+) bands crossing linearly at a 
point, with dispersion relation of the form ε± = ±h̄ v g

√
k2

x + k2
y + k2

z (v g is the effective speed of the quasiparticles), we will deal with 
the case when the incident particles are electron-like excitations. In other words, the Fermi energy (E) is adjusted to lie in the conduction 
band outside the potential barrier.1 Hence, given an arbitrary mode of transverse momentum k⊥ , we can determine the x-component 
of the wavevectors of the incoming, reflected, and transmitted waves (denoted by k�), by solving ε+(kx, n) = E . In the regions x < 0
and x > L, we have only propagating modes (k� is real), while the x-components in the scattering region (denoted by k̃), are given by 

k̃2 =
(

E−V 0
h̄ v g

)2 −
(

k⊥ + e A
h̄

)2
, and may be propagating (k̃ is real) or evanescent (k̃ is imaginary).

Now we need to use the piece-wise solutions for the wavefunction (�), applicable in the regions in question (inside or outside the 
potential barrier). Hence, even though the incident wavefunction represents an electron-like excitation, for V 0 > E , the Fermi level within 
the potential barrier lies within the valence band, and we must use the valence band wavefunctions (representing hole-like excitations) 
in that region. In the next step, we need to use the boundary conditions to determine the reflection and transmission coefficients. The 
boundary conditions are determined by integrating the equation H� = E � (H is the Hamiltonian written in the position space) over a 
small interval in the x-direction around the points x = 0 and x = L, and they ensure the continuity of the current flux along the x-direction.

3. Pseudospin-1 fermions

It has been shown in Ref. [1] that the space group 199 may host a 3d representation at the P point (and its time-reversed partner −P ) 
in the BZ, which is time reversal non-invariant. The linearized k · p Hamiltonian about P hosts pseudospin-1 fermions and takes the form:

H1(k) = h̄ v g k · S , (3.1)

where S represent the vector spin-1 operator with the three-components

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , S y = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , Sz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ , (3.2)

and v g denotes the magnitude of the group velocity associated with the Dirac cone. The energy eigenvalues are given by:

ε±
1 (k) = ±h̄ v gk , ε0

1(k) = 0 , (3.3)

where k =
√

k2
x + k2

y + k2
z , and demonstrate two linearly dispersing bands and a flat band crossing at a point. Here the “+” and “−” signs 

refer to the linearly dispersing conduction and valence bands, respectively. The corresponding normalized eigenvectors are given by:

�s = 1

Ns

{
2kz (kz + s k) + k2

x + k2
y

(kx + i ky)2
,

√
2 (kz + s k)

kx + i ky
,1

}T

( where s = ±) , �0 = 1

N0

{
−kx + i ky

kx + i ky
,

√
2 kz

kx + i ky
,1

}
, (3.4)

respectively, where the 1
Ns

and 1
N0

denote the corresponding normalization factors.

The current operator for this is system is captured by ĵ = ∇kH1(k) = v g S, which implies that the local current for a flat band plane 
wave is given by:

j0 = v g�
†
0 S�0 = 0 . (3.5)

Hence, it does not contribute to the current density [6], and we need only consider �± for transport properties.
In presence of the scalar and vector potentials, we need to consider the total Hamiltonian:

Htot
1 = H1(−i∇ + e A(x)

h̄
) + V (x) (3.6)

in position space, and find the appropriate wavefunctions.

1 The Fermi energy E can in general be tuned by chemical doping or a gate voltage.
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3.1. Mode-matching

A scattering state �n , in the mode labeled by n, is constructed from the states:

�n(x) =

⎧⎪⎨
⎪⎩

φL for x < 0

φM for 0 < x < L

φR for x > L

,

φL = �+(k�,k⊥) ei k�x + rn �+(−k�,k⊥) e−i k�x

√
V(k�,n)

,

φM =
[
αn �+(k̃, k̃⊥) ei k̃ x + βn �+(−k̃, k̃⊥) e−i k̃ x

]
�(E − V 0)

+
[
αn �−(k̃, k̃⊥) ei k̃ x + βn �−(−k̃, k̃⊥) e−i k̃ x

]
�(V 0 − E) ,

φR = tn �+(k�,k⊥)√
V(k�,n)

ei k�(x−L) ,

V(k�,n) ≡|∂k�
ε+

1 (k�,n)| = h̄ v gk�

k
, k� =

√
E2

h̄2 v2
g

− k2⊥ , k̃ =
√

(E − V 0)
2

h̄2 v2
g

− k̃2⊥ , k̃⊥ = k⊥ + e A(x)

h̄
, (3.7)

where we have used the velocity V(k�, n) to normalize the incident, reflected and transmitted plane waves. The symbol �(u) represents
the Heaviside step function, as usual. The mode-matching procedure at the edges x = 0 and x = L gives us the explicit expressions for 
tn(E, V 0, B), which are too long to write down within the manuscript. In any case, we have to compute the transmission probability 
numerically, which at an energy E is given by:

T (E, V 0, θ,φ,B) = |tn(E, V 0,B)|2 , where θ = cos−1
(

h̄ v g qnz

E

)
and φ = tan−1

(
qny

k�,3/2

)
(3.8)

define the incident angle (solid) of the incoming wave in 3d.

At normal incidence, the analytical expression simplifies to t0(E, V 0, 0) = e
i L

(
E−V0

)
h̄ v g , which results in perfect transmission (T = 1), 

also referred to as Klein tunneling. Again, tn(V 0/2, V 0, 0) = e
i L V0 sin θ cosφ

2 h̄ v g , which implies the occurrence of perfect transmission for any 
incident angle when E = V 0/2. This is the well-known super-Klein tunneling [6,7] for pseudospin-1 Dirac cone systems. We also note that 
tn �=0(V 0, V 0, 0) = 0.

3.2. Transmission coefficient, conductivity and Fano factor

We assume W to be large enough such that k⊥ can effectively be treated as a continuous variable, and perform the integrations over 
the angular variables to obtain conductivity and Fano factor. We express E and V 0 in units of h v g

L .

Using k� = E
h̄ v g

sin θ cosφ , ny = W E
h v g

sin θ sin φ , nz = W E
h v g

cos θ , dny dnz = W 2 E2

h2 v2
g

cosφ sin2 θ dφ, in the zero-temperature limit and for a 
small applied voltage, the conductance is given by [16]:

G(E, V 0) = e2

h

∑
n

|tn|2 → e2

h

∫
|tn|2 dnx dny = e2 W 2 E2

h3 v2
g

π∫
θ=0

π
2∫

φ=− π
2

T (E, V 0, θ,φ,B) cos φ sin2 θ dφ , (3.9)

leading to the conductivity expression:

σ(E, V 0,B) =
(

L

W

)2 G(E, V 0)

e2/h
=

(
E

hv g/L

)2 π∫
θ=0

π
2∫

φ=− π
2

T (E, V 0, θ,φ,B) cos φ sin2 θ dφ . (3.10)

The Fano factor can be expressed as:

F (E, V 0,B) =
∫ π
θ=0

∫ π
2

φ=− π
2

T (E, V 0, θ,φ,B) cos φ sin2 θ dφ∫ π
θ=0

∫ π
2

φ=− π
2

T (E, V 0, θ,φ,B) [1 − T (E, V 0, θ,φ,B)] cosφ sin2 θ dφ

. (3.11)

First let us study the characteristics of transmission coefficients in the absence of the magnetic fields. Fig. 2 shows the polar plots 
of T (E, V 0, π/2, φ, 0) as a function of the incident angle φ (at θ = π/2), which corresponds to kz = 0. In Fig. 3, we show the angular 
dependence of T (E, V 0, θ, φ, 0) in contourplots. As E approaches the value V 0/2, it reaches the condition of super-Klein tunneling where 
there is perfect transmission for all angles. The super-Klein contourplot is not shown here as this would have been a redundant plot. As E
goes above V 0/2, the transmission regions get confined to narrower and narrower angular regions, centred around (θ = 0, φ = 0). In Fig. 4, 
we illustrate the conductivity σ(E, V 0, 0) and the Fano factor F (E, V 0, 0), as functions of E/V 0, for some values of V 0. Due to super-Klein 
tunneling, F = 0 for E = V 0/2.
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Fig. 2. Pseudospin-1 semimetal: The polar plots show the transmission coefficient T (E, V 0, θ, π2 , 0) as a function of the incident angle φ (in the xy-plane with no kz-
component) for the parameters E = 0.3 V 0 (red), E = 0.5 V 0 (green), E = 0.8 V 0 (magenta), E = V 0 (blue), E = 1.001 V 0 (orange), E = 1.2 V 0 (cyan), E = 1.5 V 0 (pink), and 
E = 2.0 V 0 (purple). Super-Klein tunneling manifests itself at E = V 0/2, for which T = 1.

Fig. 3. Pseudospin-1 semimetal: Contourplots of the transmission coefficient (T ) in the absence of the vector potential, as a function of (θ, φ), for various values of V 0 and E .

Fig. 4. Pseudospin-1 semimetal: Plots of the (a) conductivity, and (b) Fano factor (F ), as functions of E/V 0, for various values of V 0, in absence of the vector potential. F is 
zero at E = V 0/2 due to super-Klein tunneling.

The presence of the vector potential modifies the contourplots of T , as shown in Fig. 5. Although T = 1 for E = V 0/2 (for all angles) 
in absence of magnetic fields, this feature is destroyed by the constant vector potential, as seen in Fig. 5(b). For values of E above V 0/2, 
the T 
 1 regions get restricted to discs (just like in the B = 0 case), whose centres are now shifted away from the (θ = π/2, φ = 0) point 
due to the effect of B �= 0.

4. Pseudospin-3/2 fermions

The eight space groups 207-214 can host fourfold topological degeneracies about the �, R and/or H points [1]. The linearized k · p
Hamiltonian about such a point hosts pseudospin-3/2 fermions and takes the form:

H3/2(k) = h̄ v g k · J , (4.1)
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Fig. 5. Pseudospin-1 semimetal: Contourplots of the transmission coefficient (T ) in the presence of the vector potential, as a function of (θ, φ), for various values of V 0 and 
E . The values for the vector potential components {A y , Az

}
are equal to: (a) {0.5, 0.5} V 0 h̄2 v g

e , (b) {0.2, −0.2} V 0 h̄2 v g
e , (c) {0.1, 0.1} V 0 h̄2 v g

e , (d) {−0.2, 0.2} V 0 h̄2 v g
e .

where the three components of J form the spin-3/2 representation of the SO(3) group, and their standard representation is given by:

J x =

⎛
⎜⎜⎜⎝

0
√

3
2 0 0√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎠ , J y =

⎛
⎜⎜⎜⎝

0 −√
3 i

2 0 0√
3 i
2 0 −i 0

0 i 0 −√
3 i

2

0 0
√

3 i
2 0

⎞
⎟⎟⎟⎠ , J z = 1

2

⎛
⎜⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎟⎠ . (4.2)

Here v g denotes the magnitude of the group velocity of the quasiparticles. The energy eigenvalues take the form:

ε±
3/2(k) = ±3 h̄ v gk

2
, ε±

1/2(k) = ± h̄ v gk

2
, (4.3)

demonstrating four linearly dispersing bands crossing at a point. Here the “+” and “−” signs, as usual, refer to the conduction and valence 
bands, respectively. The corresponding normalized eigenvectors are given by:

�s
3/2 = 1

N s
3/2

{
s k

(
k2

x + k2
y + 4 k2

z

) + kz
(
3 k2

x + 3k2
y + 4 k2

z

)
(
kx + i ky

)3
,

√
3
[
2 kz (s k + kz) + k2

x + k2
y

]
(
kx + i ky

)2
,

√
3 (s k + kz)

kx + i ky
,1

}T

,

�s
1/2 = 1

N s
1/2

{
− (s k + kz)

(
kx − i ky

)
(kx + i ky)2

,−−2 kz (s k + kz) + k2
x + k2

y√
3
(
kx + i ky

)2
,

s k + 3 kz√
3
(
kx + i ky

) ,1

}T

, (4.4)

respectively, where s = ±, and 1
N s

3/2
and 1

N s
1/2

denote the corresponding normalization factors.

In presence of the scalar and vector potentials, we need to consider the total Hamiltonian:

Htot
3/2 = H3/2(−i∇ + e A(x)

h̄
) + V (x) (4.5)

in position space, and find the appropriate wavefunctions.

4.1. Mode-matching

We will follow the same procedure as described for the pseudospin-1 semimetals. Again, without any loss of generality, we consider 
the transport of one of the positive energy states, namely �+

3/2, corresponding to electron-like particles, with the Fermi level outside the 

potential barrier being adjusted to the value E = 3 h̄ v gk
2 . In this case, a scattering state �̃n , in the mode labeled by n, is constructed from 

the states:

�̃n(x) =

⎧⎪⎨
⎪⎩

φ̃L for x < 0

φ̃M for 0 < x < L

φ̃R for x > L

, (4.6)

where

φ̃L = �+
3/2(k�,3/2 , k̃⊥) ei k�,3/2 x√

Ṽ(k�,3/2 , n)

+
∑

σ= 1
2 , 3

2

rn,σ �+
σ (−k�,σ , k̃⊥) e−i k�,σ x√

Ṽ(k�,σ ,n)

,

φ̃M =
[ ∑

σ= 1
2 , 3

2

αn,σ �+
σ (k̃σ , k̃⊥) ei k̃σ x +

∑
σ= 1

2 , 3
2

βn,σ �+
σ (−k̃σ , k̃⊥) e−i k̃σ x

]
�(E − V 0)

+
[ ∑

σ= 1 , 3

αn,σ �−
σ (k̃σ , k̃⊥) ei k̃σ x +

∑
σ= 1 , 3

βn,σ �−
σ (−k̃σ , k̃⊥) e−i k̃σ x

]
�(V 0 − E) ,
2 2 2 2
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φ̃R =
∑

σ= 1
2 , 3

2

tn,σ �+
σ (k�,σ , k̃⊥) ei k�,σ x√
Ṽ(k�,σ ,n)

,

Ṽ(k�,σ ,n) ≡|∂k�
ε+
σ (k�,n)| , k�,3/2 =

√
4 E2

9 h̄2 v2
g

− k2⊥ , k̃3/2 =
√

4 (E − V 0)
2

9 h̄2 v2
g

− k̃2⊥ , k̃⊥ = k⊥ + e A(x)

h̄
,

k�,1/2 =
√

4 E2

h̄2 v2
g

− k2⊥ , k̃1/2 =
√

4 (E − V 0)
2

h̄2 v2
g

− k̃2⊥ . (4.7)

We have used the velocity Ṽ(k�,σ , n) to normalize the incident, reflected and transmitted plane waves.
The usual mode-matching procedure at x = 0 and x = L allows us to solve for tn,σ (E, V 0, B) numerically. The transmission probabilities 

at an energy E are given by:

Tσ (E, V 0, θ,φ,B) = |tn,σ (E, V 0,B)|2 , where θ = cos−1
(

3 h̄ v g qnz

2 E

)
and φ = tan−1

(
qny

k�,3/2

)
(4.8)

define the incident angle (solid) of the incoming wave in 3d. For normal incidence, we get the simple analytical expression t0,σ (E, V 0, 0) =
e

i L
(

E−V0
)

3 δσ ,3/2, which implies the occurrence of Klein tunneling with perfect transmission (T3/2 = 1 and T1/2 = 0). We note that super-
Klein tunneling [6,7] is absent for the pseudospin-3/2 quasiparticles, unlike the pseudospin-1 Dirac cone systems.

4.2. Transmission coefficients, conductivity and Fano factor

In the continuum limit for the transverse momenta, using k�,3/2 = 2 E
3 h̄ v g

sin θ cosφ , ny = 2 W E
3 h v g

sin θ sin φ , nz = 2 W E
3 h v g

cos θ , dny dnz =
4 W 2 E2

9 h2 v2
g

cosφ sin2 θ dφ, the conductance is given by [16]:

G(E, V 0) = 4 e2 W 2 E2

9 h3 v2
g

π∫
θ=0

π
2∫

φ=− π
2

∑
σ

Tσ (E, V 0, θ,φ,B) cos φ sin2 θ dφ , (4.9)

leading to the conductivity expression:

σ(E, V 0,B) = 4

9

(
E

hv g/L

)2 π∫
θ=0

π
2∫

φ=− π
2

∑
σ

Tσ (E, V 0, θ,φ,B) cos φ sin2 θ dφ . (4.10)

The Fano factor is given by:

F (E, V 0,B) =
∫ π
θ=0

∫ π
2

φ=− π
2

∑
σ

Tσ (E, V 0, θ,φ,B) cos φ sin2 θ dφ

∫ π
θ=0

∫ π
2

φ=− π
2

∑
σ

Tσ (E, V 0, θ,φ,B) [1 − Tσ (E, V 0, θ,φ,B)] cosφ sin2 θ dφ

. (4.11)

In the absence of the magnetic fields, Fig. 6 shows the polar plots of the two transmission coefficients as functions of the incident 
angle φ, for the case when kz = 0 (hence θ = π/2). Klein tunneling is observed for T3/2 for a range of angles around normal incidence 
(independent of the incident energy). Additionally, there are resonance conditions for certain values of k̃ and L under which the barrier 
becomes completely transparent for T3/2 or T1/2. Fig. 7 shows the angular dependence of T (E, V 0, θ, φ, 0) in contourplots. The patterns 
for E = V 0/2 clearly distinguish the pseudospin-3/2 semimetal from the pseudospin-1 case, as the latter exhibits perfect transmission at 
all angles for E = V 0/2. Klein tunneling is observed for T3/2 for a range of angles around (θ = 0, φ = 0), and in those regions, T1/2 = 0
(since T3/2 + T1/2 ≤ 1). In Fig. 8, we illustrate the conductivity σ(E, V 0, 0) and the Fano factor F (E, V 0, 0), as functions of E/V 0, for some 
values of V 0. Unlike the pseudospin-1 case, F does not go to zero at E = V 0/2, due to the absence of super-Klein tunneling. Both F and 
σ show much more oscillatory behaviour compared to the pseudospin-1 quasiparticles.

The contourplots in Fig. 9 capture how the presence of the vector potential modifies the transmission coefficients. The angles for 
perfect transmission is now shifted away from normal incidence. The transmission patterns are also markedly different from those for the 
pseudospin-1 semimetals, as seen by comparing with Fig. 5.

5. Summary and discussions

In this paper, we have computed the transmission coefficients of the pseudospin-1 and pseudospin-3/2 semimetals with linear disper-
sion and nonzero Chern numbers. These are the higher-pseudospin generalizations of the well-studied Weyl semimetals. The transmission 
coefficients have been calculated in the presence of both scalar and vector potentials, existing uniformly in a bounded region. The patterns 
found clearly serve as fingerprints of the corresponding semimetal, although all of them have linear dispersions. Similar computations 
were done for the case of Weyl fermions in Ref. [11]. Comparing with those results, one can easily see that the characteristics for these 
higher-pseudospin cases differ considerably. In particular, the pseudospin-1 case demonstrates super-Klein tunneling, which is absent in 
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Fig. 6. Pseudospin-3/2 semimetal: The polar plots show the transmission coefficients Tσ (E, V 0, θ, π2 , 0) as functions of the incident angle φ (in the xy-plane with no kz-
component) for the parameters E = 0.3 V 0 (red), E = 0.5 V 0 (green), E = 0.8 V 0 (magenta), E = 0.95 V 0 (blue), E = 1.001 V 0 (orange), E = 1.2 V 0 (cyan), E = 1.5 V 0 (pink), 
and E = 2.0 V 0 (purple). Klein tunneling is observed for normal incidence.

Fig. 7. Pseudospin-3/2 semimetal: Contourplots of the transmission coefficient (Tσ ) in the absence of the vector potential, as functions of (θ, φ), for various values of V 0 and 
E . Klein tunneling is observed for a range of angles around normal incidence.
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Fig. 8. Pseudospin-3/2 semimetal: Plots of the (a) conductivity (σ in units of 4/9), and (b) Fano factor (F ), as functions of E/V 0, for various values of V 0, in absence of the 
vector potential.

Fig. 9. Pseudospin-3/2 semimetal: Contourplots of the transmission coefficients (Tσ ) in the presence of the vector potential, as functions of (θ, φ), for various values of V 0

and E . The values for the vector potential components {A y , Az
}

are equal to: (a) {0.3, 0.3} V 0 h̄2 v g
e , (b) {0.2, −0.2} V 0 h̄2 v g

e , (c) {0.01, 0.01} V 0 h̄2 v g
e , (d) {−0.01, 0.01} V 0 h̄2 v g

e .

the Weyl and pseudospin-3/2 cases. The conductivities and Fano factors obtained here also serve as another set of measurable quanti-
ties to identify the different types of semimetals. Another important point is that this kind of calculations will help us find the perfect 
transmission regions by tuning the Fermi level and/or the magnetic fields, which has the potential to be used in generating localized 
transmission in the bulk of the semimetals, for example in electro-optic applications.

The behaviour of the quantities calculated here can also be contrasted against that in quadratic band-crossing semimetals studied in 
Ref. [15]. In future works, these transport properties will be studied in the presence of disorder, as has been done in the case of Weyl [17]
and double-Weyl [18] nodes. The effect of magnetic fields on the tunneling behaviour of the 3d double-Weyl nodes and 2d anisotropic 
Weyl fermions [19] will be another interesting avenue to explore. Furthermore, it will be worthwhile to examine the effects of terms 
which reduce the symmetry. For example, addition of a term proportional to ki J 3

i to H3/2 reduces the full rotational symmetry to the 
rotational cubic group. Lastly, this exercise needs to be carried out in the presence of interactions, which can destroy the quantization of 
various physical quantities in the topological phases [20,21].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

We thank Atri Bhattacharya for help with the figures.



10 I. Mandal / Physics Letters A 384 (2020) 126666
References

[1] B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Science 353 (2016).
[2] Y.-Q. Zhu, D.-W. Zhang, H. Yan, D.-Y. Xing, S.-L. Zhu, Phys. Rev. A 96 (2017) 033634.
[3] L. Liang, Y. Yu, Phys. Rev. B 93 (2016) 045113.
[4] B.Q. Lv, Z.-L. Feng, J.-Z. Zhao, N.F.Q. Yuan, A. Zong, K.F. Luo, R. Yu, Y.-B. Huang, V.N. Strocov, A. Chikina, A.A. Soluyanov, N. Gedik, Y.-G. Shi, T. Qian, H. Ding, Phys. Rev. B 

99 (2019) 241104.
[5] D.F. Urban, D. Bercioux, M. Wimmer, W. Häusler, Phys. Rev. B 84 (2011) 115136.
[6] H.-Y. Xu, Y.-C. Lai, Phys. Rev. B 94 (2016) 165405.
[7] R. Zhu, P.M. Hui, Phys. Lett. A 381 (2017) 1971.
[8] P. He, X. Shen, D.-W. Zhang, S.-L. Zhu, Phys. Lett. A 383 (2019) 2462.
[9] R. Shen, L.B. Shao, B. Wang, D.Y. Xing, Phys. Rev. B 81 (2010) 041410.

[10] Z. Lan, N. Goldman, A. Bermudez, W. Lu, P. Öhberg, Phys. Rev. B 84 (2011) 165115.
[11] C. Yesilyurt, S.G. Tan, G. Liang, M.B.A. Jalil, Sci. Rep. 6 (2016) 38862.
[12] Z. Wu, F.M. Peeters, K. Chang, Phys. Rev. B 82 (2010) 115211.
[13] M. Salehi, S. Jafari, Ann. Phys. 359 (2015) 64.
[14] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, Phys. Rev. Lett. 96 (2006) 246802.
[15] I. Mandal, arXiv:2004 .06134 [cond -mat .mes -hall].
[16] Y. Blanter, M. Büttiker, Phys. Rep. 336 (2000) 1.
[17] B. Sbierski, G. Pohl, E.J. Bergholtz, P.W. Brouwer, Phys. Rev. Lett. 113 (2014) 026602.
[18] B. Sbierski, M. Trescher, E.J. Bergholtz, P.W. Brouwer, Phys. Rev. B 95 (2017) 115104.
[19] I. Mandal, K. Saha, Phys. Rev. B 101 (2020) 045101.
[20] A. Avdoshkin, V. Kozii, J.E. Moore, Phys. Rev. Lett. 124 (2020) 196603.
[21] I. Mandal, Symmetry 12 (2020) 919.

http://refhub.elsevier.com/S0375-9601(20)30533-8/bib5F611D897A4449F9BB3F3DF9DD1E6595s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bibDB5A06A99D4B14174E851A3C632DA89Ds1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib0F5264038205EDFB1AC05FBB0E8C5E94s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib85D1A9C488D7117EA86291A755E5D43Cs1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib85D1A9C488D7117EA86291A755E5D43Cs1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib66B67CF48EB78F0E0AE9902BC70D9E9As1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib1030F2AEC488F1310F74B041529E686Es1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib4545EC12DFEBCB70043960AA74D17446s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib24671D16E6CA0CF14CAC894DEEB098E0s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bibEC73EDC40AD10A963C3F9CAD7EDB407Fs1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib73F50C9F17291CE93EE52E50B73F6F63s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bibD42D4B104AFA23E3083FC2A153191936s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bibE79FB748C3C8AB532A8FCF2DA53AE54Ds1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bibDF6BADFFCDCBDE0366F4C0F13EB66482s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib3A32F5127FD0D00110BD935B6FEF742Cs1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib53785D9ABAD30AF5F07E79AD384B66BCs1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bibF61D1A8876BDC33BFB4B4606E7D2D9CCs1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib12B447CC7D7C800D83AF219EF97B587As1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bibF7CB3054AF5084F5B0D84703C867349Bs1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib7C250DFDBAEBCD7AD2EE393B65A3F355s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib083A3EAA569818DC3361B533FD0798F0s1
http://refhub.elsevier.com/S0375-9601(20)30533-8/bib0AE427EB3092AEA1FC46557FAC88D32Bs1

	Transmission in pseudospin-1 and pseudospin-3/2 semimetals with linear dispersion through scalar and vector potential barriers
	1 Introduction
	2 Formalism
	3 Pseudospin-1 fermions
	3.1 Mode-matching
	3.2 Transmission coefficient, conductivity and Fano factor

	4 Pseudospin-3/2 fermions
	4.1 Mode-matching
	4.2 Transmission coefficients, conductivity and Fano factor

	5 Summary and discussions
	Acknowledgements
	References


