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Abstract. Previous research on the OC3 spar floating offshore wind turbine (FOWT) has shown 
the sensitivity of the yaw and side-side modes’ load and motion responses to different 
atmospheric conditions. Using the same baseline turbine of the OC3 spar wind turbine for a 
semisubmersible floater (OC4), this study investigates the load and motion responses of such 
offshore wind turbine for neutral and unstable atmospheric conditions. The effect of different 
levels of wind spatial coherence associated with two different wind spectral models for neutral 
conditions (Kaimal and Mann) are studied for the same turbulence intensity levels. An increase 
of 18% in the tower torsional moment fatigue damage equivalent load (DEL) is observed for the 
wind inflow with the weakest coherence (Mann spectral model), compared to the DELs under 
turbulent wind inflow with the highest coherence (Kaimal spectral model). Unstable atmospheric 
conditions are also simulated based on the Pointed-Blunt spectral model derived from FINO1 
wind measurement. The yaw mode of the semisubmersible wind turbine is found to be the 
response component most affected by the variation in atmospheric stability conditions. A 28% 
higher fatigue DEL for the tower torsional moment is observed for very unstable atmosphere 
than the DELs under neutral atmospheric conditions.  

1.  Introduction 
In recent years, the bottom fixed offshore wind industry has matured to the point that subsidies are no 
longer required. As we develop sites farther from shore and in deeper waters, floating offshore wind 
turbines will become the next generation of the offshore wind power producing devices. Floating 
substructures are offered as an alternative solution enabling cost reduction and installation simplicity 
compared to the bottom-fixed substructures in the deep water offshore. The two well-known floating 
offshore wind farms currently built in Europe, the Hywind Scotland and the WindFloat Atlantic, adopt 
a spar floater and a semisubmersible floater. A FOWT structure must be designed to withstand offshore 
environmental loads, primarily waves, current, and wind during its lifetime. While the overall responses 
of a FOWT floater under wave loading are well understood from the oil and gas designs, its responses 
with respect to wind loading however are still a topic of active research.  

The FOWT floaters carry not only the dead loads from the wind turbine, but also the rotating blade 
harmonic loads which are affected by the turbulent wind conditions on the rotor. In particular, the low-
frequency part of the turbulent wind contributes to loading in the rotating rotor frequencies [1]. 
Moreover, the interaction between each degree of freedom (DOF) of the floater motions and the rotor’s 
responses due to the wind inflow is also a concern. When a FOWT is pitching, the resulting rotor tilt 
may cause yaw loads on the FOWT, specifically for a spar-type floater [1]. A spar FOWT has been 
shown to have an increased yaw response when exposed to a less coherent turbulent wind inflow [2, 3, 
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4]. A less spatially-coherent wind inflow for lateral separations results in higher twisting moments about 
the spar wind turbine’s vertical axis and thus creates greater yaw loads and motion responses [2, 3]. 
Furthermore, different levels of turbulent wind energy associated with various atmospheric conditions 
are also found to affect the yaw load and motion of a spar-type wind turbine [5, 6]. The two aspects of 
turbulent wind flow (spatial coherence and turbulent wind energy content) significantly contribute to 
the yaw responses since a spar-type FOWT has low resistance to yaw. Motivated by previous studies on 
a spar-type floating wind turbine [2, 3, 4, 5]  and the fact that a semisubmersible FOWT also corresponds 
to long eigen-periods susceptible to wind excitation, we aim to investigate the response sensitivity of a 
semisubmersible FOWT to the variation in turbulent wind inflow. In the present study the responses of 
the DeepCwind from the OC4 project [7] is investigated under different turbulent wind inflow 
conditions.   

2.  Turbulent wind models 
Turbulent wind is a random process which is complex to simulate. In common engineering design of 
wind turbines, standard guidelines such as IEC 61400-1 [8] are commonly used. In this standard, two 
wind spectral models are recommended for numerical simulations of turbulent wind fields for neutral 
atmospheric stability conditions: the Kaimal Spectra [9] with an Exponential Coherence, and the Mann 
Spectral Tensor Model [10]. A neutral atmospheric stability condition indicates no vertical temperature 
flux in the atmosphere, a condition not necessarily prevailing in the offshore atmospheric [9]. Over the 
ocean, there often exists significant temperature discrepancies between the sea water surface and the air, 
which results in enhanced vertical mixing under unstable atmospheric stability conditions [11]. The 
present offshore wind turbine design guidelines take into account wind spectral models for neutral 
atmospheric conditions only. A wind spectral model such as the Pointed-Blunt [12], which was derived 
based on wind measurement data from an offshore site, can be used to represent non-neutral atmospheric 
conditions. 

The turbulent wind fields used in this study are simulated by focusing on two different aspects of 
turbulent wind: (1) variation in the spatial coherence, and (2) variation in the atmospheric stability. 
Variation in the spatial coherence is represented by simulated wind fields comparing the Kaimal and the 
Mann spectral models [8] for neutral atmospheric stability conditions. The Kaimal and Mann spectral 
models are equivalent in terms of turbulent energy, but not the spatial coherence [8]. Variation in the 
atmospheric stability is represented by wind fields simulated using the Pointed-Blunt spectral model 
[12] for progressively decreasing atmospheric stability from neutral to very unstable, assuming fixed 
spatial coherences for all stabilities.  

2.1.  Kaimal spectra 
The Kaimal spectra was derived based on measured wind data in Kansas [9] and widely used to simulate 
turbulent wind fields. The adopted formulation of the single-sided one-point Kaimal spectra in the IEC 
61400-1 is expressed as [8]: 

𝑓𝑓𝑆𝑆𝑖𝑖(𝑓𝑓)
𝜎𝜎𝑖𝑖2

=

4𝑓𝑓𝐿𝐿𝑖𝑖
𝑈𝑈ℎ𝑢𝑢𝑢𝑢

�1 + 6𝑓𝑓𝐿𝐿𝑖𝑖
𝑈𝑈ℎ𝑢𝑢𝑢𝑢

�
5/3  

(1) 
where 
f: frequency (Hz) 
i: velocity component index (u: longitudinal, v: lateral, and w: vertical)  
Si: velocity spectrum for each component i 
σi: standard deviation of velocity component i (m/s), detailed in ref. [8] 
Li: integral length scale of velocity component i (m), detailed in ref. [8] 
Uhub: mean wind speed at hub height (m/s) 
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The one-point spectra given in Eq. (1) is paired with an exponential coherence to compute the 
surrounding points’ spectral properties of the u- wind component [8]: 

𝐶𝐶𝐶𝐶ℎ𝑢𝑢𝑢𝑢(𝑓𝑓,𝛥𝛥) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−12��
𝑓𝑓 𝛥𝛥
𝑈𝑈ℎ𝑢𝑢𝑢𝑢

�
2

+ �
0.12 𝛥𝛥
𝐿𝐿𝑢𝑢

�
2

� 

(2) 
where Δ is the separation distance, either lateral or vertical (m). As stated in the IEC 61400-1, Eq. (2) is 
applicable only for the longitudinal wind component u-, while coherence formulation for the lateral (v) 
and vertical (w) components are not given. In the TurbSim guideline [13], identity coherence is 
recommended for v- and w- components. However, in the absence of validated coherence values for v- 
and w- components, the present study utilizes Eq. (2) as the coherence formulation for v- and w- 
components as well. 

2.2.  Mann spectral tensor model 
The Mann spectral tensor implies isotropic von Kármán spectra as the initial condition, and the presence 
of wind shear allows the isotropic flow transforms into anisotropic flow with time as the eddies’ structure 
is stretched until they break [10]. The velocity component spectra for the Mann spectral tensor model 
as given in the IEC 61400-1 is [8]: 

𝑓𝑓𝑆𝑆𝑖𝑖(𝑓𝑓)
𝜎𝜎𝑖𝑖2

=
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖2

𝜎𝜎𝑖𝑖2
�

4𝜋𝜋ℓ𝑓𝑓
𝑈𝑈ℎ𝑢𝑢𝑢𝑢

�𝛹𝛹𝑖𝑖𝑖𝑖 �
2𝜋𝜋ℓ𝑓𝑓
𝑈𝑈ℎ𝑢𝑢𝑢𝑢

� 

(3) 
where 
Ψij: autospectrum/cross-spectrum as a function of spectral tensor components, detailed in ref. [8] 
σi

2: component variance (m2/s2) 
σiso: 0.55 σu (m/s) 
ℓ: 0.8 Λu, taken as 33.6 m 

To account for the anisotropy, the shear parameter γ is added to the spectral tensor model so the 
model has three representative parameters in total: α𝜖𝜖2/3 (a measure of the turbulent kinetic energy 
dissipation rate), ℓ, and γ [10]. A fit to the Kaimal spectral model in Eq. (1) gives the value of 3.9 for the 
shear parameter γ [8]. The coherence is then calculated as [10]: 

𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖�𝑓𝑓,𝛥𝛥𝑦𝑦,𝛥𝛥𝑧𝑧� =
�𝛹𝛹𝑖𝑖𝑖𝑖�𝑓𝑓,𝛥𝛥𝑦𝑦,𝛥𝛥𝑧𝑧��

2

𝑆𝑆𝑖𝑖(𝑓𝑓)𝑆𝑆𝑖𝑖(𝑓𝑓)  

(4) 
with Δy and Δz are the separation distances respectively in the lateral and vertical directions with respect 
to the incoming wind inflow. The resulting coherences for lateral separations from Eq. (4) are much 
lower than those given in Eq. (2), especially at frequencies lower than 0.2 Hz [4]. The same applies to 
the involved co-coherences, which concern the in-phase, simultaneous action of turbulence across the 
considered separations. 

2.3.  Pointed-Blunt spectra 
The Pointed-Blunt spectral model was derived based on two-year measured wind data from FINO1 
platform [12]. The model is a one-point spectra presented in a similar form to the Kaimal spectra, except 
it is made up by a low-frequency part and a high-frequency part. Each of the parts has two floating 
parameters which depend on the atmospheric stability. The parameters are defined for the range of -2 < 
ζ < 2; where ζ is the stability parameter = z/Lm, z is the measured height (m) and Lm is the Obukhov length 
(m). For the considered stability, from very stable (ζ=2) to neutral (ζ=0) and then very unstable (ζ=-2), 
the turbulent kinetic level increases progressively [12]. The Pointed-Blunt spectra is given as [12]:  
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𝑓𝑓𝑆𝑆𝑖𝑖(𝑓𝑓)
𝑢𝑢∗2

=
𝑎𝑎1𝑖𝑖𝑓𝑓

�1 + 𝑏𝑏1
𝑖𝑖𝑓𝑓�

5/3 +
𝑎𝑎2𝑖𝑖𝑓𝑓

�1 + 𝑏𝑏2
𝑖𝑖𝑓𝑓5/3�

 

(5) 
where a1

i, a2
i, b1

i, b2
i are the floating parameters for different velocity component i (u: longitudinal, v: 

lateral, w: vertical), and u∗ is the friction velocity (m/s). Here, the spectral model in Eq. (5) is paired 
with the exponential coherence given in Eq. (2) for u-, v-, and w- velocity components, which is adopted 
for all considered stability conditions.  

3.  Numerical simulations 
Coupled SIMO-Riflex included in the Simulation Workbench for Marine Application (SIMA) is used 
as the main numerical simulation tool. By utilizing SIMO-Riflex and simulated wind fields as input, the 
load and motion responses of the OC4-DeepCwind wind turbine corresponding to different turbulent 
wind inflow conditions are computed and analyzed. Turbulent wind fields are generated accordingly for 
all load cases presented in Table 1 by means of TurbSim [13] for Kaimal spectral model, Mann 
Turbulence Generator [14] for Mann spectral model, and windSimFast [15] for Pointed-Blunt spectral 
model. These wind fields are produced in the form of moving ‘turbulence box’ in the direction of the 
incoming longitudinal wind u- component for the coupled SIMO-Riflex simulations. 

3.1.  Load case 
The load cases (LCs) are divided into LC 1 (variation in the wind spatial coherence) and LC 2 (variation 
in the atmospheric stability). The turbulent intensity (TI) input for LC 1 are adopted to match the 
simulated values for LC 2a. Table 1 presents the simulated TI and other input values for all load cases. 
It can be observed from Table 1 that the TI values for LC 1 are close to the target values in LC 2a. A 
uniform mean wind profile is used for all load cases in Table 1. Additional simulations were performed 
for LC 2 by applying a stability-corrected logarithmic mean wind profile. This is discussed further in 
Subsection 4.5. A constant irregular wave input for all load cases is added to SIMA simulations using 
the JONSWAP spectra with significant wave height Hs = 4 m, peak period Tp = 8 s, and peakedness 
parameter γ = 3.3. The selected wave peak period is far shorter than the OC4-DeepCwind’s first six 
eigen-periods. To minimize the uncertainties, each load case is simulated with six different random 
seeds and the simulation time step is taken as 0.01 s for a continuous 3600 s duration. Three mean wind 
speeds at hub height (Uhub) are considered for each load case given in Table 1, 8 m/s (below rated), 11.4 
m/s (rated), and 15 m/s (above rated). 

Table 1. Load case. 

Load 
case 

Wind 
model 

Atmospheric 
stability  

Coherence 
function 

α𝜖𝜖2/3 for 
8, 11.4, 15 m/s 

Input TI [%] for 
8, 11.4, 15 m/s 

Simulated TI [%] 
for 8, 11.4, 15 m/s 

1a Kaimal Neutral (ζ=0) Eq. (2) - 5.95, 6.08, 6.16 5.77, 5.93, 6.03 

1b Mann1 Neutral (ζ=0) Eq. (4) 0.00956, 0.0203, 
0.036 5.95, 6.08, 6.16 5.83, 5.95, 6.01 

2a 

Pointed-
Blunt 

Neutral (ζ=0) 

Eq. (2) - 

 5.95, 6.08, 6.16 

2b Weakly unstable 
(ζ=-0.407) 

 6.0, 6.11, 6.18 

2c Unstable (ζ=-0.815)  6.51, 6.61, 6.67 

2d Very unstable 
(ζ=-1.63) 

 7.6, 7.74, 7.83 
1other input parameters: ℓ=33.6m, γ=3.9 

3.2.  DeepCwind characteristics 
The OC4-DeepCwind is the phase II of the Offshore Code Comparison Collaboration Continuation 
(OC4) project which adopts the NREL 5 MW offshore baseline turbine with a semisubmersible floater 
[7]. For shortness, the properties of the DeepCwind are not shown here but can be found in Robertson 
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et al. [7]. Figure 1a illustrates the DeepCWind semisubmersible wind turbine model in SIMA. The 
NREL 5 MW offshore baseline turbine has the cut-in, rated, and cut-out wind speeds of 3, 11.4, and 25 
m/s respectively. The hub height is 90 m above mean seawater level and the rotor diameter is 126 m. 
The cut-in and rated rotor speeds are 6.9 and 12.1 rpm respectively. The simulated eigen-frequencies of 
the first eight modes of the OC4-DeepCwind compared to the OC4 code comparison are given in Figure 
1b and show a good agreement.  

 
Figure 1. (a) DeepCWind wind turbine model in SIMA and (b) the simulated eigen-frequencies.  

4.  Result 
Structural response of the DeepCwind wind turbine with respect to the different turbulent wind inflows 
is studied in terms of the fatigue DEL. The 1-hour output time series of the considered stress resultants 
(in this case bending and torsional moment) are quantified as DEL and calculated by assuming an 
equivalent number of cycles neq of 107 during a 20-year lifetime: 

𝐷𝐷𝐷𝐷𝐿𝐿 = �
𝛴𝛴𝑁𝑁𝑖𝑖𝑆𝑆𝑖𝑖𝑚𝑚

𝑛𝑛𝑒𝑒𝑒𝑒
�
1/𝑚𝑚

 

(6) 
where Ni is the total number of cycles causing failure due to repeated stresses with a magnitude of Si. 
The number of stresses in each bin is obtained from the Rainflow counting method [16]; m is the Wöhler 
exponent, here taken as 3 for steel material (tower) and 12 for fiberglass material (blade). The moments 
and the related fatigue damage are evaluated for the tower base fore-aft, tower base side-side, and the blade 
root flap-wise. The tower base and tower top torsional moments are also studied. In addition, the 
displacement responses (motions) are presented in the form of minimum, maximum, and standard 
deviation. The resulting force and displacement responses of the DeepCwind are discussed separately, 
when exposed to different turbulent wind conditions for neutral atmospheric stability with variable 
coherences (LC 1) and for different atmospheric stability conditions with constant coherences (LC 2). 

4.1.  Fore-aft response 
It is noted that the tower base fore-aft moment DELs are increasing with wind speed. The tower base 
fore-aft moment power spectral density (PSD) plots are given in Figure 1 for the rated wind speed (11.4 
m/s). The highest response is found for LC 2d (very unstable atmospheric condition) and is reduced as 
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turbulence level decreases as the atmospheric stability tends to neutral conditions (from LC 2d to LC 
2a, Figure 2). Figure 2 shows that the tower base fore-aft moment response from LC 1b (Mann spectral 
model) are of a similar magnitude to those in LC 2d even though LC 1b considers neutral stability. 
However, the observed DEL difference between the highest (LC 2d) and the lowest (LC 2a) averaged 
tower base fore-aft DELs is only 3.4% (noted at 8 m/s), which is negligible. The highest excitation for 
the tower fore-aft moment is observed at the wave frequency as shown in Figure 2. In our simulations, 
the wave input was kept the same, and as a result there is negligible variation at the wave excitation for 
different load cases. Figure 3 shows the platform pitch response and it is noted that the platform pitch 
standard deviation is neither affected by variation in the spatial coherence nor influenced by variation 
in the turbulent energy content. 

 

Figure 2. PSD of tower base fore-aft moment at the rated wind speed (11.4 m/s) for: 
(a) neutral stability and (b) different stability conditions. 

 

Figure 3. Platform pitch for: (a) neutral stability and (b) different stability conditions. 
Triangles indicate the minimum values, circles indicate the standard deviations, and plus 
indicate the maximum values. 
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4.2.  Side-side response 
Figure 4 gives the normalized DELs and Figure 5 gives the PSD response at 8 and 11.4 m/s of the tower 
base side-side for all load cases. Figure 4 shows that the DELs are the lowest at the rated wind speed 
(11.4 m/s) which might be caused by the influence of blade controller transition from a constant pitch 
angle to variable pitch angle. We note at wind speeds below rated, the tower base side-side DELs are 
primarily excited in the 1st tower side-side (Figure 5a). As the wind speeds approach rated and above, 
the excitation in the 1st tower side-side is reduced and excitation at the 3p frequency appears (Figure 
5b). The highest averaged DEL is observed for LC 2d (very unstable conditions) and decreases as 
turbulence level decreases with the atmospheric conditions tend towards neutral (LC 2d to LC 2a, Figure 
4b). However the DELs from LC 1b (Mann spectral model) are of similar magnitude to the DELs from 
LC 2d. The observed difference between the highest (LC 1b) and the lowest (LC 1a) averaged tower 
base side-side DEL is 30% at 15 m/s (Figure 4a). 

 

Figure 4. Normalized DELs of tower base side-side moment for: (a) neutral stability and 
(b) different stability conditions. Normalized by the values of LC 2a at 8 m/s. 

 

Figure 5. PSD of tower base side-side moment at: (a) 8 m/s and (b) 11.4 m/s. 
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Figure 6 presents the platform sway response and it shows a clear trend of sway response both with 
variation in the spatial coherence (Figure 6a) and the variation in atmospheric stability (Figure 6b). A 
less coherent turbulent wind inflow (LC 1b) results in larger sway, whereas the platform sway is 
decreasing gradually as the atmospheric conditions tend towards neutral (from LC 2d to LC 2a). The 
platform roll response is not shown here but it is noted that the platform roll is decreasing gradually 
from very unstable (LC 2d) to neutral conditions (LC 2a), while no clear trend is observed for variation 
in the spatial coherence (LC 1). 

 

Figure 6. Platform sway for: (a) neutral stability and (b) different stability conditions. 
Triangles indicate the minimum values, circles indicate the standard deviation, and plus 
indicate the maximum values. 

4.3.  Yaw/torsion response 
It is observed that the characteristics of the tower base torsional moment and the tower top torsional 
moment responses are very similar, therefore only tower top torsional moment is discussed here. In 
Figure 7, the normalized tower top torsional moment DELs are noted to increase with wind speed. 
Again, the highest averaged DEL is observed for LC 2d (very unstable conditions) and decreasing as 
the stability tends towards neutral atmospheric stability (from LC 2d to LC 2a, Figure 7b).  

The DELs from LC 1b (Mann spectral model) are higher than the DELs under unstable conditions 
(LC 2c), due to the lower lateral coherence and the associated higher twisting moments about the 
turbine’s vertical axis. This effect is also apparent for the platform yaw responses as presented in Figure 
8, where the standard deviations from LC 1b even exceed the standard deviations from LC 2d. The 
difference between the highest (LC 2d) and the lowest (LC 2a) averaged tower top torsional moment 
DELs is 28% at 15 m/s (Figure 7b). 

4.4.  Blade root flap-wise bending 
The blade root flap-wise moment DELs are seen to increase with wind speed. The difference between 
the highest (LC 1a) and the lowest (LC 1b) averaged blade root flap-wise moment DELs is 5.5% at 15 
m/s. This is likely due to a more coherent wind inflow (for both vertical and lateral separations) in the 
LC 1a (Kaimal spectral model) compared to the wind flow defined by the Mann spectral model (LC 1b). 
With respect to the variation in the atmospheric stability (LC 2), the averaged DEL values do not vary 
significantly.  



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 022012

IOP Publishing

doi:10.1088/1742-6596/1618/2/022012

9

 
 
 
 

 

Figure 7. Normalized DELs of tower top torsional moment for: (a) neutral stability and (b) 
different stability conditions. Normalized by the values of LC 2a at 8 m/s. 

 

Figure 8. Platform yaw for: (a) neutral stability and (b) different stability conditions. 
Triangles indicate the minimum values, circles indicate the standard deviation, and plus 
indicate the maximum values. 

4.5.  Influence of the stability-corrected mean wind profile 
The use of stability-corrected mean wind profile for LC 2 results in similar platform motions as shown 
in Subsection 4.1 to 4.4. The associated DELs with the use of stability-corrected mean wind profile for 
LC 2 also give similar DEL values to the simulations with a uniform mean wind profile. However, the 
observed average DEL values are lower by up to 8% for the tower base side-side moment, tower base 
torsional moment, and tower top torsional moment than those described in Subsection 4.1 to 4.4. The 
average blade root flap-wise DELs are shown to be increasing by 1.5% with the inclusion of stability-
corrected mean wind profile as the stability shifts from neutral to very unstable. This is in agreement 
with Kretschmer et al. [18] who studied the measured blade root flap-wise DEL response from Alpha 
Ventus wind farm located near FINO1 platform, where the wind model used in LC 2 is derived from. 
Nonetheless, the 1.5% increase is negligible as there is very little wind shear for very unstable 
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conditions. Mean wind profile contribution could be more significant under stable atmospheric 
conditions which are not addressed in the present study. 

5.  Discussion 
We note that the yaw and side-side responses of the DeepCwind are affected by different turbulent wind 
fields in a similar manner to the spar Hywind wind turbine from the OC3 project studied previously [3, 
5]. The observed similar sensitivity of the yaw and side-side modes could be because the OC4 
DeepCwind and the OC3 Hywind share the same turbine, the NREL 5 MW offshore baseline. When a 
FOWT experiences yaw errors between the rotor axis and the incoming wind direction (in the present 
case due to the prominent rotor yawing), side-side induced loads are triggered [17]. Such side-side 
induced loads’ variation is then dependent on the turbine’s properties i.e. rotor mass as well as the floater 
resistance to roll. From this study, the DeepCwind platform’s roll is seen to have smaller deviations than 
those studied for the Hywind turbine [5]. 

The platform heave responses of the DeepCwind show negligible variation with different turbulence 
conditions because waves are the governing load for the platform heave translation [3]. In the present 
study, the wave input is kept constant for all load cases, therefore such conclusion is observed.  

6.  Conclusion 
The yaw and the side-side response of the OC4 DeepCwind are demonstrated to be sensitive to the 
variation in the different turbulent wind inflow conditions, related to the spatial coherence and the 
atmospheric stability. The side-side response is largely triggered by the rotor-wind yaw error due to the 
rotor yawing. Other response components are seen to be less sensitive to the studied turbulent wind 
conditions. An 18% increase in the tower torsional moment and 30% increase for the tower side-side 
moment averaged DELs are observed for the simulated responses using the Mann spectral model 
(weaker coherence) than the simulated responses using the Kaimal spectral model (higher coherence). 
A 28% increase in the tower torsional moment and 28% increase for the tower side-side moment 
averaged DELs are observed for the simulated responses under very unstable conditions than the values 
obtained from neutral conditions. 
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