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Abstract

Relatedness has become a key concept for studying the

diversification of firms, regions and countries. However,

studies tend to treat relatedness as being time-invariant or,

alternatively, consider its evolution as exogenously given.

This study argues that relatedness is inherently dynamic

and endogenous to technological and economic develop-

ments. Using patent data, we test the extent to which relat-

edness between technologies developed along co-location

and differences in technological complexity in 1980–2010.

Our results show that co-located technologies are more

likely to become related over time. Moreover, our results

suggest that co-location and complexity of technologies are

conducive to the intensification of relatedness over time.
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1 | INTRODUCTION

The relatedness concept has drawn a lot of attention in management studies, economic geography, and innovation

studies (Boschma, 2017; Hidalgo et al., 2018; Teece, Rumelt, Dosi, & Winter, 1994). Relatedness refers to the fact

that two activities (technologies, industries, products, jobs) are not identical but share commonalities. Such common-

alities may originate from two activities belonging to the same overarching technological or economic field, or they
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share complementarities and similarities (Broekel & Brachert, 2015; Nooteboom, 2000). There is ample evidence that

relatedness of technologies conditions whether a technology will be invented or adopted by a firm, region or coun-

try. Moreover, relatedness has been shown to influence performance and diversification of firms (Fornahl, Broekel, &

Boschma, 2011; Neffke, Henning, & Boschma, 2012), regions (Frenken, van Oort, & Verburg, 2007; Neffke,

Henning, & Boschma, 2011), and nations (Hidalgo, Klinger, Barabási, & Hausmann, 2007). Recently, relatedness has

also found its way into policy as an evaluation and benchmarking dimension (Balland, Boschma, Crespo, &

Rigby, 2019; Fitjar, Benneworth, & Asheim, 2019).

However, few studies have analysed relatedness as a dependent variable, and how relatedness changes and

evolves over time. In fact, in most of the empirical studies, relatedness is either treated as time-invariant, or as an

exogenously given component. While one might argue that relatedness is rather stable in the short run, this is less

likely to be the case in the long-run (Balland, Boschma, & Frenken, 2015; Boschma, 2017; Broekel, 2015). Conse-

quently, so far we know little about how (technological) relatedness comes into existence, and how it develops over

time (Menzel, 2015). This gap motivates the present paper studying the emergence and evolution of technological

relatedness. More precisely, we evaluate two dimensions' relations with the emergence of technological relatedness

and its intensification over time: co-location and complexity. Making use of patent data, our empirical findings sug-

gest that co-location of technology pairs support the emergence of relatedness in Europe during the period

1980–2010. Moreover, both co-location and the level of complexity are correlated to the intensification of related-

ness over time.

The paper is organized as follows. Section 2 provides a short introduction to the concept of relatedness and its

possible interplay with co-location and complexity. Section 3 introduces the data, key variables, and modelling

approaches. Section 4 presents and discusses the empirical findings, while Section 5 contains several robustness

checks. The paper concludes with a discussion that outlines limitations, implications, and possibilities for future

research.

2 | DYNAMICS OF RELATEDNESS

Relatedness has become a key input to outline possible technological and economic re-combination and diversifica-

tion opportunities in particular. There is a consensus that the probabilities of firms, regions and countries to enter

new and specific activities is a function of the number of the related activities they are specialized in (Boschma,

Balland, & Kogler, 2015; Hidalgo et al., 2018; Neffke et al., 2011). Similarly, regions and countries with access to

related variety tend to outperform economically those that are either highly specialized or overly diversified (Fornahl

et al., 2011; Frenken et al., 2007; Hidalgo et al., 2007). Thereby, relatedness refers to two activities

(e.g., technologies, industries, occupations, research fields) being based on similar underlying knowledge, skills or

other inputs (Boschma, 2017; Hidalgo et al., 2018). The present paper focuses on technological relatedness, which is

defined as the degree to which two technologies are proximate in a technological or cognitive dimension (Boschma

et al., 2015; Breschi, Lissoni, & Malerba, 2003; Kogler, Rigby, & Tucker, 2013; Rigby, 2015).

In the quickly growing literature using (technological) relatedness as a key explanatory variable, most studies put

little emphasis on relatedness as an evolving property. In fact, we know surprisingly little about how relatedness

comes into existence, and how it develops over time (Balland et al., 2015; Menzel, 2015). In most studies on (related)

diversification, relatedness is being treated as time-invariant or exogenously given. For instance, relatedness is fre-

quently added to the empirical models as an independent variable that is constant over the observed time period

(e.g., Breschi et al., 2003; Frenken et al., 2007; Neffke et al., 2011). This assumption seems reasonable when consid-

ering short time-periods, but it is much less likely to be the case over the long run (Balland et al., 2015;

Boschma, 2017; Cowan, Jonard, & Zimmermann, 2007), and in particular when technological paradigms shift

(Dosi, 1982) and thereby reshuffle the technology space (Rigby, 2015). This is exemplified by the rise of electronics

and biotech industries in recent years (Krafft, Quatraro, & Saviotti, 2011, 2014).
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Notably, in a number of studies, relatedness is modelled as being time-variant, that is, it may change between

time periods (e.g., Boschma et al., 2015; Mewes & Broekel, 2020; Rigby, 2015). However, none of these studies sys-

tematically discuss how relatedness emerges and evolves over time. Nevertheless, there are several ideas that give a

hint about what factors and conditions might be important for the emergence and development of relatedness.

The relevance of geographical proximity is frequently highlighted to enhance knowledge spillovers between eco-

nomic agents (Audretsch & Feldman, 1996; Jaffe, Trajtenberg, & Henderson, 1993). Geographical co-location of

actors facilitates localized learning processes and lays the foundation for technological (re-)combinations. Conse-

quently, co-located actors with expertise in different technologies are more likely to engage in knowledge exchange.

It increases the likelihood that they learn from each other, which may eventually (in some instances) even lead to the

(re-)combination of distinct technological knowledge. In the latter case, their geographical proximity may have helped

in growing the relatedness of their respective fields of expertise (technologies). These arguments fit well those of

Jacobs (1969), who argues that the diversity of ideas, knowledge, and technologies in cities (i.e., within the geo-

graphic vicinity) enables and triggers cross-fertilization and knowledge re-combination. Put differently, the co-

location of experts with specific knowledge on technologies increases the chances that connections may be discov-

ered between previously unrelated technologies and that complementarities are identified, which in turn create or

intensify relatedness (Boschma, 2017; Broekel & Brachert, 2015; Desrochers & Leppälä, 2011). This is summarized in

the following two hypotheses:

Hypothesis 1A Co-location enhances the emergence of relatedness between technologies.

Hypothesis 1B : Co-location enhances the intensification of relatedness between technologies.

In addition to geographical proximity, we argue that another dimension which is of relevance in this context is

complexity, as it is likely to influence knowledge combinatorial processes. The complexity of a technology is often

understood as a function of the number of its (sub-)components and their interdependencies (Fleming &

Sorenson, 2001; Simon, 1962). Combining two technologies requires a basic understanding and the mastering of

both. Gaining such an understanding is more difficult the more complex technologies are (Balland & Rigby, 2017;

Fleming & Sorenson, 2001; Hidalgo & Hausmann, 2009; Sorenson & Fleming, 2004). When combining multiple tech-

nologies, these difficulties will scale up with the number of technologies.

It can also be expected that it is more difficult to combine two complex technologies than it is to combine a sim-

ple technology with a complex one. One reason is that to combine multiple technologies, mastery in all involved is

required, implying that the necessary learning efforts are cumulative. Another reason is that the result of the combi-

natorial activity, that is, an innovation or new technology, is most probably at least as complex as the most complex

technology it is based upon. Consequently, combining two technologies and mastering the result thereof, go beyond

the sum of the efforts required to obtain mastery in its constitutive technological elements. Significantly, this will

even hold when the combinatorial process is conducted by a team. Members of the team must have a basic under-

standing of the technologies involved, which, as argued above, is more difficult in the cases of more complex tech-

nologies. Moreover, complex technologies are made of heterogeneous and relatively unrelated (sub-)components

implying they are characterized by a greater knowledge diversity (Broekel, 2019). This implies that larger cognitive

distances need to be bridged within the team. In turn, it makes co-ordination, communication and learning harder,

which translates into greater efforts and higher costs of collaboration (Gross & McMullen, 1982; Lundvall, 1993; von

Hippel, 1987). Consequently, due to its “cost-and-efforts” driving nature, the complexity of technologies will have a

negative impact on the likelihood and frequency of the technologies being combined.

Yet, this relation might be countered by economic reasons. Technologies have a value that reflects their supply

and demand. Technologies that are simple to learn can diffuse easily between economic agents through re-invention,

reverse engineering, or copying. Hence, they offer little potential for competitive advantage and consequently they

have relatively little economic value (Maskell & Malmberg, 1999). Concomitantly, technologies that are more difficult
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to replicate and imitate – which particularly applies to complex technologies – will not diffuse easily. Complex tech-

nologies therefore offer a high potential for competitive advantage and thus, a higher level of socio-economic value

(Fleming & Sorenson, 2001). In addition, Hidalgo and Hausmann (2009) argue that complex technologies are crucial

stepping stones for acquiring additional technological competences in the future. This adds further to their value.

Accordingly, while complex technologies and their combinations are more likely to be associated with higher

economic rewards (Dalmazzo, 2002; Hidalgo & Hausmann, 2009), they are also characterized by greater difficulties

in being understood and combined. Considering this, we expect complexity to act as an (initial) barrier to technologi-

cal combinations and thereby to the emergence of relatedness. When two technologies have not previously been

combined, the (economic) potential of their combination is unknown, which will lower the actors' willingness and

likelihood to explore it. This will change once this barrier has been overcome and the hidden potential becomes

clearer. In this case, the potentially higher social-economic benefits associated with combinations of complex tech-

nologies should attract the interest of the actors and motivate them to invest. Consequently, there will be greater

exploration of such combinations and quicker convergence of the two technologies in terms of their relatedness.

In sum, complexity represents a dimension of technologies that is likely to impact the likelihood and frequency

of their (re-)combination and consequently to shape the evolution of their relatedness. Our second set of hypotheses

summarizes this:

Hypothesis 2A More complex technologies are less likely to become related.

Hypothesis 2B Once they have become related, the relatedness of two complex technologies is more likely to

intensify than that between two simple technologies.

As pointed out above, despite the great interest in relatedness and complexity, little is known about their rela-

tion and their relation over time. The following empirical investigations seek to shed some light on this for the

first time.

3 | EMPIRICAL APPROACH

3.1 | Dataset and relatedness of technology pairs

Following much of the literature, we rely on patent data as our primary data source (Breschi et al., 2003). More pre-

cisely, we use the OECD REGPAT dataset (version 2018) covering patents registered by the European Patent Office

(EPO). It contains detailed information on patents' application year, technology classes, inventors and inventor loca-

tions since 1976. The pros and cons of patent data have been discussed extensively, so we refrain from this and refer

to the relevant literature (Desrochers, 1998; Griliches, 1990).

We focus on the period 1976–2010, as this period offers reliable patent information. Figure 1(a) illustrates the

growth of the number of patent applications during this period. To track the evolution of technological relatedness,

we constructed seven non-overlapping 5-year time periods from 1976 to 2010, with the first covering the years of

1976–1980, the second 1981–1985, and so on. By pooling the data of multiple periods, we increase the stability of

our measures, as patent numbers tend to fluctuate strongly between years. This is particularly the case when they

are aggregated at the regional or technological level (Buerger, Broekel, & Coad, 2012).

To empirically represent technological relatedness, we first need to define the technologies. We follow existing

studies and consider technologies being represented by four-digit CPC classes (Balland et al., 2019; Broekel, 2019).

We exclude technologies starting with the letter Y, indicating cross-technological patents,1 that is, patents that could

1The ‘Y’ CPC class is only a technical category with significant overlap to other classes.
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not be clearly assigned to other classes. This leaves 645 distinct technologies. Figure 1(b) illustrates that almost all of

these technologies contributed patents to the data set since 1980. Accordingly, four-digit CPC classes provide a con-

sistent representation of technologies over this period.

There are many ways in which technological proximity can be estimated. Many studies use the information on

technologies jointly appearing on patents, so-called co-occurrences, as an indication of combinatorial innovation pro-

cesses and technological distance (Breschi et al., 2003). We follow this literature and concentrate on the joint

appearance of technologies (four-digit CPC) classes on patents.

The 645 technologies translate into 207,690 potential technological combinations (excluding self-combinations),

which serve as units of observation. For each of these pairs, we count the number of occurrences on patent docu-

ments within each of the seven time periods with no geographical restriction (including all the patents in OECD

REGPAT from all over the world). More precisely, we count how frequently different four-digit CPC classes are com-

bined on patents during the given period, thus abstracting from the same combinations of four-digit classes on the

same patent for the purpose of simplification.

Figure 1(c) visualizes the number of distinct technological combinations for each five-year period. Their number

is increasing linearly over time. This growth is both in absolute and relative terms. The share of realized combinations

of technologies (appearing on at least one patent) on the potential number of combinations grows from around 5%

to 18%. This can be explained by the strongly growing numbers of patents and the more or less constant number of

technologies (four-digit CPC classes). Figure 1(d) highlights there are few technology combinations that appear in

high frequencies (>100 times), while the vast majority are realized in significantly smaller numbers (<10).

F IGURE 1 (A) Number of patents in each year, 1976–2010, (B) Number of different four-digit Cooperative
Patent Classification (CPC) technology classes that appear on patents in each year, 1976–2010, (C) Number of

observed distinct technological combinations. We measure technologies as four-digit CPC technology classes and by
combination we count the co-occurrence of 2 technologies on patents in the selected 5-year long period,
(D) Distribution of combination frequencies in the full sample over all the periods. For this chart, we excluded
combinations with 0 frequency

Source: Authors' own construction based on OECD REGPAT 2018.
Notes: The x axis is on a log10 scale. Figures are based on the entire dataset with no geographical restrictions
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In general, each patent represents a possibility of two technologies co-occurring in the data. Consequently,

the likelihood of two technologies jointly appearing on patents is primarily determined by the size of the two

technologies, that is, by the number of patents that are assigned to these technologies (jointly and independently).

In the literature, measures of relatedness are often constructed in such a way that they account for this size

effect. For instance, some studies employ the Cosine index (Breschi et al., 2003; Ejermo, 2003) or alternative

measures of co-occurrence standardization (Kogler et al., 2013; Mewes, 2019). However, specifying the correct

standardization/normalization is far from straightforward (van Eck & Waltman, 2009).

We are not so much interested in which technologies are significantly related in statistical terms, and which are

not. We simply seek to approximate technological distance between two technologies in a continuous manner.

Therefore, we will account for this size effect in the later regression analysis, following roughly the idea of

Neffke (2009) and Neffke et al. (2011).

3.2 | Co-location of technologies

As previously discussed, we expect technologies to become more related when they frequently co-locate. Empiri-

cally, this corresponds to the overlap of their spatial distributions. Empirically, we first assign patents to the NUTS

2 regions of their inventors' addresses. Accordingly, patents with multiple inventors are assigned to multiple regions,

without counting fractions. Next, we obtain the spatial distribution of a technology's patents, by counting the num-

ber of its patents assigned to each region. On this basis, we assess the overlap in two technologies' distributions with

the technology pair level co-agglomeration measure proposed by Ellison, Glaeser, and Kerr (2010). For two technolo-

gies i and j, the measure looks as follows:

COAGGLOMi,j =

PR
r =1 sir−xrð Þ sjr−xr

� �

1−
PR

r =1
x2r

, ð1Þ

where Pir is the number of patents in technology i in region r and sir =
Pir

PR

r0 =1
Pir0

is the share of technology i in region

r (and for j accordingly). xr is the mean of these shares in region r across all technologies. The index has been used in

multiple studies investigating industrial co-agglomeration (Diodato, Neffke, & O'Clery, 2018; Ellison et al., 2010). Its

main advantage is that it is largely invariant to the distribution of inventors, applicants, and the type of spatial units

considered (Diodato et al., 2018).

We calculate the co-location of the 207,690 technology pairs in all seven periods. To reduce the noise in the

data, we set the patent counts to zero for all regions with less than ten patents in a particular technology. Moreover,

we exclusively consider the 316 EU and EFTA NUTS 2 regions with sufficiently large patent numbers and the pat-

ents associated to these.2 To make the co-location score comparable across technologies, we calculate its z-score.

Detailed descriptive statistics of the COAGGLOM variable can be found inTable 1.

3.3 | Technological complexity

Empirically approximating technological complexity is a challenge, as the literature offering few approaches that are

applicable to the data at hand. Balland and Rigby (2017) transferred the idea of the economic complexity index of

2Regions belonging to the following countries are considered: Austria, Belgium, Bulgaria, Croatia, Republic of Cyprus, the Czech Republic, Denmark,

Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania,

Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.
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Hidalgo and Hausmann (2009) to patent data and calculated an index of technological complexity. In essence, the

method utilizes information on the extent to which technologies are ubiquitous, since few regions specialize in them,

and how diversified regions are; how many technologies do they specialize in? By means of an iterative procedure,

the index sets these two aspects into relation and measures the complexity of technologies by their tendency of co-

concentration with other ubiquitous technologies.

Earlier, Fleming and Sorenson (2001) employed an number of components/degree of interdependence between

components (N/K) model to derive a technological complexity index based on the frequencies with which patent

subclasses co-occur on patents. The underlying argument is that more complex combinations are harder to realize

and thereby less likely to be observed. The difficulty of (re-)combining two classes is empirically assessed by evaluat-

ing the currently observed co-occurrence of patent subclasses on patents in relation to the cumulative frequency of

their co-occurrence in previous years.

While both approaches have their merits, Broekel (2019) argues that some of the core assumptions underlying

these measures are problematic. Moreover, he shows that both indices fail in resembling several stylized facts com-

monly associated with technological complexity. However, more importantly, in our analyses both indices carry the

danger of being very closely related to key variables in the model. The complexity index of Balland and Rigby (2017)

is based on spatial co-location of technologies, which is at the heart of the measure of co-agglomeration. Fleming

and Sorenson's (2001) approach utilizes the frequency of patent class co-occurrences on patents as a central ingredi-

ent, which is the basis of our technological relatedness measure. To avoid the potential of (artificial) empirical over-

lap, we turn to an alternative measure of complexity that does not raise these concerns.

We adopt the structural complexity index developed by Broekel (2019). It measures technological complexity by

modeling technologies (four-digit CPC classes) as combinatorial networks of (knowledge) components. While in this,

co-occurrence information of patent classes on patents is used as well, in this case, these networks are dichotomized

eliminating large portions of the frequency information, which is central in our measure of technological distance.

Broekel (2019) argues that the combinatorial networks of complex technologies are characterized by a greater diver-

sity of (sub-)network topologies. Network science shows that a greater diversity implies a larger information content

TABLE 1 Descriptive statistics behind the entire dataset

Variable Number of observations Mean Min Max Standard deviation

entire dataset

RELATEDNESS 1,453,830 1.912 0 13,373 39.450

COAGGLOMERATION 1,453,830 −0.006 −3.874 35.943 0.952

COMPLEXITY_SUM 1,453,830 14.275 0 28.158 4.659

COMPLEXITY_ABSDIFF 1,453,830 2.973 0 14.983 2.390

Logit dataset

RELATEDNESS (0/1) 206,976 0.255 0 1 0.436

COAGGLOMERATION 206,976 0.046 −3.874 26.422 1.010

COMPLEXITY_SUM 206,976 14.344 0 28.118 4.082

COMPLEXITY_ABSDIFF 206,976 2.537 0 13.642 1.973

Growth models

RELATEDNESS (growth) 143,206 13.542 −4.143 3.922 0.750

COAGGLOMERATION 143,206 0.168 −3.874 32.148 0.938

COMPLEXITY_SUM 143,206 16.623 0 28.118 3.791

COMPLEXITY_ABSDIFF 143,206 2.164 0 13.406 1.685

Source: Authors' own construction based on OECD REGPAT 2018.

Note: The entire dataset contains all the possible CPC technology combinations for all the periods. For a few technology

classes the complexity measure is not available.
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of these networks. Consequently, it can be argued that this demands greater R&D efforts for the invention of such

technologies and also represents greater obstacles to them being learned or copied. Both aspects make complex

technologies more exclusive and therefore potentially more economically valuable (Broekel, 2019).

To capture this diversity, Broekel (2019) proposes the network diversity score of Emmert-Streib and Dehmer (2012),

as empirical approximation of structural diversity of technologies that is, as empirical measure of technological proximity.

This score is estimated as follows. For each technology T (four-digit CPC class), its combinatorial network is constructed

in period t, by extracting all patents with at least one patent subclass (ten-digit CPC subclass) belonging to technology

T. Next, the co-occurrence matrix of all patent subclasses appearing on these patents is created and dichotomized with

all positive entries being one, and all others remaining zero. This matrix represents the combinatorial network of tech-

nology T in which complexity is assessed by means of the network diversity score (NDS). In the estimation of the NDS,

multiple subsamples are drawn from the networks' main component. For each subsample i, the share of modules (ɑmod-

ule), the variability of module sizes (vmodule), the variability of the Laplacian matrix (VLaplacian), and the relation of graphlets

of size three and four (rgraphlets) are calculated and the individual NDS score is estimated as:

iNDSi =
ɑmodule � rgraphlets
VLaplacian �Vmodule

: ð2Þ

The iNDS is subsequently averaged over sample networks giving the NDS for this technology's combinatorial net-

work. It is log-transformed and multiplied by −1 to obtain the final complexity measure of structural diversity, which

signals higher complexity with larger values. For a more detailed introduction to the measure see Broekel (2019).

In practice, we use the values of structural complexity given in Broekel (2019).3 These are annual complexity

values for each of the 645 four-digit CPC classes. As structural complexity scores are relatively stable over short time

(Broekel, 2019), we used the complexity values of technologies given at the end of each period.

As discussed in Section 2, we expect complexity to influence the likelihood and the frequency of two technolo-

gies being combined, that is, co-occurring on patents. Crucially, this influence may be negative, as it is more difficult

to combine complex technologies. However, complexity may also have a positive impact by signalling the potential

of greater rewards associated to the combination of two complex technologies. In any case, it is less the individual

complexity values of technologies which matter most, but rather their joint configuration. We model this with a vari-

able representing the sum of structural complexity values of two technologies (COMPLEX_SUM). Figure 2(a) gives a

first impression on this by visualizing how, potentially, all technology pairs' complexity values potentially align.

Figure 2(b) then shows how these values are actually distributed across the observed (co-occurring) technology pairs.

The figures suggest that most of the realized combinations are pairs with mid or higher-value of complexity, which

supports our theoretical argumentation of complexity positively correlating to the (economic and technological)

potential of combinations of technologies. To control for the possibility that the sum of two technologies' complexity

may be relatively high as a result of a combination of a highly complex and a rather simple technology, we also

include the absolute difference of two technologies' complexity values (COMPLEX_ABSDIFF) in the models. Descrip-

tive statistics on both complexity variables can be found inTable 1.

3.4 | Empirical model

We seek to explain the level (and change) of technological relatedness in our baseline models. Accordingly, the units

of analysis are technology pairs and their numbers of co-occurrences are the dependent variable.4 To account for

the fact that large technologies have more possibilities of co-occurring on patents, we follow the idea of

3The data can be downloaded via: https://doi.org/10.1371/journal.pone.0216856.s007.
4The approach is very similar to the frequently employed gravity regression model (Broekel, Balland, Burger, & van Oort, 2014; Gómez-Herrera, 2012;

Scherngell & Barber, 2009).
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Neffke (2009) and Neffke et al. (2011) by estimating a model for (revealed) relatedness and include the absolute

numbers of patents that are assigned to either of the two technologies. In other words, the number of co-

occurrences that are predicted by the sizes of the two technologies can be seen as the baseline number of expected

co-occurrences given the size of two technologies. Further explanatory variables are added to the model that are

either technology specific (at the level of technologies) or technology pair specific (i.e., at the level of technology

relations). These variables seek to explain the observed deviations from this baseline number, that is, they give

insights into why some technological combinations are observed more or less frequently than what can be expected

by just considering the numbers of patents of two technologies. This particularly refers to the degree of geographical

co-location and complexity.

As we are interested in both the emergence and intensification of relatedness between technology pairs, we use

two different estimation strategies. First, to observe the relationship between the first appearance of a technological

combination and the level of co-location and the level of technological complexity, we rely on logit models similar to

the entry models frequently used in economic geography and related fields to study diversification processes

(Balland et al., 2019; Boschma et al., 2015). For this exercise we filter the dataset to those technology pairs that are

not present in every period and become related at some point during the observed time. In other words, we

restricted observations with zero relatedness in every period and higher than zero relatedness in every period, which

results an unbalanced panel setting.

Our model specification for the logit regression is the following:

Pr yijt = 1
� �

= β0 + β1COAGGLOMijt + β2COMPLEX �SUMijt + β3COMPLEX �ABSDIFFijt + β4log Nitð Þ+ β5log Njt

� �
+ λt + ηt, ð3Þ

where our dependent variable yijt takes the value of zero when there is no observed co-occurrence of technology i and

j in period t and in t + 1, and one in case there is no observed combination in t but there is one in t + 1. COAGGLOM,

COMPLEX_SUM and COMPLEX_ABSDIFF denote the characteristics of the technology pair i and j in period t. Nit and Njt

are the number of patents in technology i and j at time t as in gravity model specifications. λt is a technology fields

F IGURE 2 (a) The density of all the possible technological combinations on a complexity-complexity plot
(1980–2010), (b) The density of all observed technological combinations on a complexity-complexity plot
(1980–2010).

Source: Authors' own construction based on OECD REGPAT 2018.
Note: For the construction of these charts we do not split the dataset into periods

JUH�ASZ ET AL. 9



effects constructed by the concatenation of the first letter of the two technology codes combined and ηt is a period

fixed effect. Detailed descriptive statistics regarding this specific model setting in comparison to the entire dataset is

represented inTable 1. Correlation between the main variables are presented inTable A1 in the Appendix.

Second, we explore the relationship between the changes in the strength of technological relatedness and the co-

location and complexity of technologies. To do so we use panel OLS models on the growth rates of technological relat-

edness. For this second exercise our focus is only on technology pairs with higher than zero combinations at time t.

For the growth models, we use the corresponding specification:

GrowthRELATEDNESS yijt
� �

= γ0 + γ1log yijt
� �

+ γ2COAGGLOMijt + γ3COMPLEX_SUMijt + β4COMPLEX_ABSDIFFijt

+ γ5log Nitð Þ+ γ6log Njt

� �
+ τt + δt,

ð4Þ

where yijt is the rate of relatedness growth from t to t + 1. log(yijt) is the level of relatedness at time t, COAGGLOM,

COMPLEX_SUM and COMPLEX_ABSDIFF denote the characteristics of the technology pair i and j in period t. Nit and

Njt are the number of patents in technology i and j at time t as in gravity model specifications. τt is a technology fields

effects constructed by the concatenation of the first letter of the two technology codes combined and δt is a period

fixed effect. We applied several further estimations to improve the robustness of our results. We summarize these

robustness checks in Section 5.

4 | RESULTS

Table 2 presents the coefficients of four logit regression models described in Equation 3. Control variables are

included in all models and the central explanatory variables are introduced in a stepwise manner. The two size

TABLE 2 Models on the entry of new relatedness ties

Entry models

(1) (2) (3) (4)

COAGGLOM 0.038*** (0.006) 0.037*** (0.006)

COMPLEX_SUM −0.001 (0.002) −0.003 (0.002)

COMPLEX_ABSDIFF −0.034*** (0.004) −0.034*** (0.005)

No. patents CPC1 0.165*** (0.005) 0.166*** (0.005) 0.161*** (0.005) 0.163*** (0.005)

No. patents CPC2 0.169*** (0.005) 0.170*** (0.005) 0.165*** (0.005) 0.167*** (0.005)

Constant −3.698*** (0.051) −3.699*** (0.051) −3.557*** (0.052) −3.552*** (0.052)

Technology fields FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes

Observations 206,976 206,976 206,976 206,976

Log Likelihood −99,051 −99,074 −99,009 −98,987

AIC 198,193 198,239 198,109 198,069

Notes: The regressions are based on all the combinations that appear at least once during the 1980–2010 period and not

observed in each period. ‘Technology fields FE’ refers to a control variable constructed by the concatenation of the first let-

ter of the two technology codes combined. We also clustered standard errors by these groups. Standard errors in

parentheses,
*p < 0.1;
**p < 0.05;
***p < 0.01.
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variables, the number of patents of the considered technologies (No. Patents CPC1, CPC2) are significantly positive

and their coefficients are relatively large in all four models. The finding reflects that technologies characterized by

many patents have more opportunities to co-occur on patents.

The first key variable is COAGGLOM approximating the extent to which concentrations of technology 1 tend

to appear in the same regions as technology 2. The positive and significant coefficient for COAGGLOM in model

(1) suggests that the more two technologies are co-located, the more likely they are related. In model (2) COM-

PLEX_SUM is introduced and its coefficient is insignificant. Consequently, the complexity of two technologies

does not have explanatory power of whether they will become related over time. In model (3) COMPLEX_ABSDIFF is

added. In contrast to COMPLEX_SUM its coefficient is significant, but negative. Accordingly, the more two technolo-

gies differ in their levels of complexity, the less likely it is that they will become related. Model (4) contains all of

our main explanatory variables. It shows that their signs and significances do not change when they are simulta-

neously included. These findings support our first Hypothesis 1A: geographical co-location of technologies facilitates

the emergence of relatedness. In contrast, model (4) suggests rejecting our Hypothesis 2A: complexity does not

seem to be crucial for the emergence of technological relatedness. What is striking about the results is that the two

significant coefficients COAGGLOM and COMPLEX_ABSDIFF are of almost similar magnitude, implying that both

dimensions are of somewhat equal empirical importance in this respect, albeit co-agglomeration being of somewhat

higher relevance.

The second set of models focuses on the explanation of the intensification of relatedness, that is, its develop-

ment after the first connection between technologies has been made. Table 3 represents the results of the growth

model specified in Equation 4. Again, we include our main variables step-by-step from models (5) to (8). Generally,

our (few) control variables show the expected signs. The two size variables, the coefficients of the number of patents

of the considered technologies (No. Patents CPC1, CPC2) are significantly positive and are relatively large. Hence,

technologies characterized by many and increasing patent numbers do occur more frequently on patents.

Model (5) confirms that the intensification of relatedness is positively linked to the previous level of tech-

nological relatedness, which is also the strongest predictor in all model settings. Model (6) adds COAGGLOM

and demonstrates that the co-location of technologies correlates to growing relatedness. This finding adds

TABLE 3 Models on the intensification of relatedness

Growth of RELATEDNESS

(5) (6) (7) (8)

RELATEDNESS 0.044*** (0.002) 0.041*** (0.002) 0.040*** (0.002) 0.038*** (0.002)

COAGGLOM 0.031*** (0.002) 0.030*** (0.002) 0.030*** (0.002)

COMPLEX_SUM 0.008*** (0.001) 0.008*** (0.001)

COMPLEX_ABSDIFF −0.012*** (0.001)

No. patents CPC1 0.069*** (0.002) 0.070*** (0.002) 0.063*** (0.002) 0.062*** (0.002)

No. patents CPC2 0.066*** (0.002) 0.068*** (0.002) 0.061*** (0.002) 0.060*** (0.002)

Technology fields FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes

Observations 143,206 143,206 143,206 143,206

R2 0.047 0.049 0.049 0.050

Notes: The dependent variables are growth rates of relatedness. Hausman tests supported the use of fixed effect models.

‘Technology fields FE’ refers to a control variable constructed by the concatenation of the first letter of the two technology

codes combined. We also clustered standard errors by these groups. Standard errors in parentheses,
*p < 0.1,
**p < 0.05,
***p < 0.01.
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empirical support to the hypothesis H1B that the relatedness between technologies becomes stronger in case

they are strongly co-located. In model (7), COMPLEX_SUM is added and model (8) COMPLEX_ABSDIFF. The sig-

nificantly positive coefficient of COMPLEX_SUM suggests that the complexity of two technologies significantly

correlates to the growth of their relatedness. This holds even after controlling for their differences in terms of

their complexity (COMPELX_ABSDIFF). It thereby shows that technologies at the upper end of the complexity

spectrum are more likely to intensify their relatedness than those at the lower end. The finding backs Hypothe-

sis 2B and provides some support for our argument that the larger the economic rewards associated to the

combination of complex technologies, in contrast to less complex ones, lead to more activities being (success-

fully) undertaken in that respect.

5 | ROBUSTNESS CHECKS

We applied a variety of robustness checks to validate our results. As the emergence of relations between technolo-

gies is a binary variable, logit regression with a large number of fixed effects with few time periods can lead to biased

results because of the prominent incidental parameters problem (Mewes & Broekel, 2020; Neyman & Scott, 1948).

Therefore, we re-estimate the binary (entry) regression models as linear probability model (LPM). The results are

shown inTable A2 in the Appendix. By and large, they support our findings.

Our logistic models only focus on the emergence of relatedness (first co-occurrence). To validate the find-

ings, we also estimate models for the disappearance of technological relatedness, i.e. no more co-occurrences

(see Appendix Table A3). To identify this disappearance event, we exclude all technology pairs with strictly pos-

itive co-occurrence counts in all periods (RELATEDNESS > 0) and those that never occur (RELATEDNESS = 0)

during the examined periods. The disappearing dummy is then constructed such that it is one if in any of the

periods we observe a positive number of co-occurrences and simultaneously, in a subsequent period, none. In

these models, we find the coefficient of COAGGLOM to be significantly positive. However, its level of signifi-

cant is smaller than in the case of the first-co-occurrence model. More importantly, the coefficient of COM-

PLEX_SUM is significantly negative. This suggests that the more complex two technologies are, the less likely it

is that their combinations will disappear. This is in line with our arguments that once complex technologies are

combined and their relatedness is discovered, they represent economically valuable technology combinations

that tend to be used continuously in the future.

In an alternative specification, we combine the two models (emergence and intensification of relatedness) into a

zero-inflated negative binomial (ZINB) regressions model, which addresses the issue of the access of zeros in our

dependent variable (Figure 1(c)). The result of the ZINB regression are shown in Table A4 in the Appendix. As

expected, they confirm the earlier findings.

Even though our main variables and estimations are based on different (temporal) subsets of the patent data-

base, endogeneity is a crucial concern. Frequently, this is addressed by means of an instrumental variable regression.

However, our empirical observations are based on technology pairs, which complicates the identification of proper

instrumental variables. Nevertheless, to gain a better understanding of the potential causal directions of the

observed relations, we follow the approach of Broekel (2015) who applies an empirical strategy in a similar setting

that is popular in the firm growth literature (see, e.g., Coad, 2009). In Table A5 in the Appendix, we transform our

central variables (RELATEDNESS, COAGGLOM, COMPLEX_SUM and COMPLEX_ABSDIFF) into annual growth rates and

use these as explanatory and dependent variables in different OLS regression settings. More precisely, we regress

onto a focal variable's growth in t, its level in t, and the growth rates and the respective levels of all the other vari-

ables in t. We find that while RELATEDNESS explains COAGGLOM and both complexity variables in all models, co-

location and the complexity of technology pairs seems to be not linked in most models. Notably, none of the models

contradicts our previous findings, which highlight their robustness. However, they contain some additional insights,

which we will address in more detail in the concluding section.
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6 | CONCLUSION

This paper seeks to explore the evolution of technological relatedness over time and to identify what factors contrib-

ute to this. Thereby, we shed light on an issue that received little attention so far in studies on relatedness in eco-

nomic geography and innovation studies: relatedness is usually treated as independent, almost exogenous factor

shaping the co-location of technologies (e.g., Kogler et al., 2013; Rigby, 2015), rather than a endogenous structure

that requires explanation in itself.

We argue that geographical co-concentration of technologies provides mechanisms that impact the evolution of

their relatedness. We provide empirical support for this and show that the more the spatial distributions of two tech-

nologies overlap, the more likely they become related, and the more this relatedness tends to grow in the future. This

suggests that mechanisms such as local knowledge spillovers enhance the emergence and intensification of techno-

logical relatedness. This finding is important for the interpretation of outcomes in studies on related diversification,

which suggest an impact of relatedness on the location of industrial, technological, and economic activities (Kogler

et al., 2013; Neffke et al., 2011). The present study emphasizes that this process is most likely bi-directional: co-

location drives the development of relatedness, and vice versa. Knowledge spillovers stimulated by co-location con-

tribute to (re-)combinatorial invention processes, which facilitate technologies converging in terms of relatedness.

A somewhat different role seems to be played by technological complexity in this context. In contrast to geo-

graphic co-location, it we do not find indications of its influence on the emergence of relatedness. However, once

complementarity between technologies has been achieved (i.e., a minimum level of relatedness has been reached),

we show that complex technologies are more likely to be combined subsequently. We interpret this is to be driven

by the higher economic incentives associated to the combination of complex technologies.

Our paper has several implications for future research. First, while our study makes a first step to increase our

understanding of how technological relatedness emerges and evolves over time, we need more research to fully

comprehend the evolution of technologies and their relations over time (Castaldi, Frenken, & Los, 2015;

Desrochers & Leppälä, 2011). This includes gaining more knowledge about where and when re-combinatorial pro-

cesses create new patterns of relatedness and what type of benefits are related to this (Pinheiro, Alshamsi,

Hartmann, Boschma, & Hidalgo, 2018).

Second, our study has shown that differences in technologies' levels of complexity can act as barriers to the devel-

opment of technological relatedness, while two highly complex technologies are more likely to intensify their level of

relatedness over time as compared to two less complex ones. Still, these are early insights requiring further validation in

future research. For instance, it might be the case that simple and complex technologies represent different underlying

knowledge infrastructures and human capital, which restrict their complementarity and consequently their integration.

In this sense, complexity might reflect fundamental differences between technologies. Put differently, in the extremes,

it might be another way of identifying unrelatedness. This certainly calls for additional research.

Third, our study points towards endogenous relations shaping the interplay of relatedness, co-location, and com-

plexity of technologies. For instance, our results indicate that the relation between co-location and relatedness is bi-

directional: co-location is linked to the emergence and intensification of relatedness, and vice versa. Our study

thereby complements the rich literature on relatedness that has identified relatedness as being a crucial driver

behind the spatial distribution of industries and technologies (e.g., Hidalgo et al., 2007; Neffke et al., 2011;

Rigby, 2015). Our results suggest that this relationship is more complex and characterized by the existence of co-

evolutionary dynamics between the spatial concentration, complexity, and relatedness of different technologies. This

has hardly been addressed in the literature. However, the empirical approaches employed do not provide causal evi-

dence on which dimension is driving which. To establish this, future research needs a more elaborate approach utiliz-

ing causal modelling strategies. While we have made an attempt to get first insights into the magnitude and direction

of these relations, we are far from disentangling the interplay of complexity, co-location, and relatedness. Undoubt-

edly, such endeavours are crucial, as all these dimensions are applied and used to an increasing extent in current

regional innovation policies (Balland et al., 2019; Fitjar et al., 2019).
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Finally, while the paper provides insights on the evolution of relatedness and explored the role of several factors

therein, it leaves a universe of other dimensions unexplored. The consideration of other factors such as the role of

institutions or policy interventions will surely add to our understanding of the underlying mechanisms. Moreover,

our empirical study relies exclusively on patent data. Despite the many advantages of this approach, it is undoubtedly

advisable to repeat and extend the analysis using other types of data in the future (Boschma, 2017).
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APPENDIX A

TABLE A1 Correlation matrix of the most important variables

RELATEDNESS COAGGLOM COMPLEX_SUM COMPLEX_ABSDIFF

RELATEDNESS 1

COAGGLOM 0.019 1

COMPLEX_SUM 0.065 0.004 1

COMPLEX_ABSDIFF .0.033 −0.043 −0.250 1

Source: Authors' own construction based on OECD REGPAT 2018.

Note: For the construction of the correlation matrix we do not split the dataset to periods.

TABLE A2 Entry models in linear probability settings

Entry models – linear probability setting

(1) (2) (3) (4)

COAGGLOM 0.006*** (0.001) 0.006*** (0.001)

COMPLEXITY SUM −0.000 (0.000) −0.001* (0.000)

COMPLEXITY ABSDIFF −0.005*** (0.000) −0.005*** (0.000)

No. Patents CPC1 0.023*** (0.001) 0.023*** (0.001) 0.022*** (0.001) 0.023*** (0.001)

No. Patents CPC2 0.019*** (0.001) 0.020*** (0.001) 0.019*** (0.001) 0.019*** (0.001)

Constant −0.109*** (0.005) −0.109*** (0.005) −0.089*** (0. 005) −0.087*** (0. 006)

Period FE Yes Yes Yes Yes

Observations 206,976 206,976 206,976 206,976

R2 0.172 0.172 0.172 0.172

Notes: The regressions are based on all the combinations that appear at least once during the 1980–2010 period and not

observed in each period. Standard errors in parentheses,
*p < 0.1;
**p < 0.05;
***p < 0.01.
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TABLE A3 Exit models in logit setting

Exit models – logit setting

(1) (2) (3) (4)

COAGGLOM 0.019** (0.008) 0.020** (0.008)

COMPLEXITY SUM −0.028*** (0.003) −0.030*** (0.003)

COMPLEXITY ABSDIFF −0.010*** (0.004) −0.014*** (0.004)

No. Patents CPC1 0.039*** (0.006) 0.068*** (0.006) 0.037*** (0.006) 0.067*** (0.006)

No. Patents CPC2 0.003 (0.005) 0.028*** (0.006) 0.001 (0.006) 0.027*** (0.006)

Constant −19.763 (59.827) −19.706 (59.801) −19.717 (59.8295) −19.649 (59.792)

Period FE Yes Yes Yes Yes

Observations 172,313 172,313 172,313 172,313

Log Likelihood −56,682 −56,637 −56,682 −56,628

AIC 113,385 113,294 113,384 113,280

Notes: The regressions are based on all the combinations that appear at least once during the 1980–2010 period and not

observed in each period. Standard errors in parentheses,
*p < 0.1;
**p < 0.05;
***p < 0.01.

TABLE A4 Results of the multivariate gravity models, zero-inflation negative binomial regressions (ZINB) on the
strength of technological relatedness

Count model Zero-inflation model

RELATEDNESS in t + 1 RELATEDNESS in t + 1

COAGGLOM (z-score) 0.507*** (0.007) −0.017*** (0.004)

COMPLEX_SUM 0.091*** (0.001) 0.068*** (0.002)

COMPLEX_ABSDIFF −0.196*** (0.002) −0.006 (0.003)

NO. PATS CPC1 log 0.424*** (0.004) −0.811*** (0.006)

NO. PATS CPC2 log 0.354*** (0.004) −0.697*** (0.005)

Constant −4.008*** (0.029) 6.487*** (0.040)

Period FE Yes Yes

Log-likelihood −84,030

Observations 1,092,636

Notes: Standard errors in parentheses,
*p < 0.1;
**p < 0.05;
***p < 0.01.
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F IGURE A1 (a) Visual representation of the influence of our main variables on the entry of relatedness from
Model (4) inTable 2, (b) Visual representation of the influence of our main variables on the intensification of
relatedness from Model (8) inTable 3
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