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A B S T R A C T

Biohydrogen production from industrial wastewater has been a focus of interest in recent years. The in depth
knowledge in lab scale parameters and emerging strategies are needed to be investigated in order to implement
the biohydrogen production process at large scale. The operating parameters have great influence on biohy-
drogen productivity. With the aim to gain major insight into biohydrogen production process, this review
summarizes recent updates on dark fermentation, inoculum pretreatment methods, operating parameters (hy-
draulic retention time, organic loading rate, pH, temperature, volatile fatty acids, bioreactor configuration,
nutrient availability, partial pressure etc.). The challenges and limitations associated with the biohydrogen
production are lack of biohydrogen producers, biomass washout and accumulation of metabolites are discussed
in detail. The advancement strategies to overcome these limitations are also briefly discussed.

1. Introduction

About 87% of energy consumption is achieved by using fossil fuel as
a major source (Xia et al., 2016). Hydrogen is considered to be one of
the alternative source which can be derived from renewable and sus-
tainable source of energy (Plangklang et al., 2012). The hydrogen is a
sustainable fuel which generates water and energy, it overcomes the
negative effects from the usage of fossil fuels (Poleto et al., 2016). The
economic and promising way of producing biohydrogen is using mi-
crobes under dark or photo fermentation methods (Argun and Dao,
2017). Several researchers worked with the industrial wastewater from
sugar industry, beverage industry, chemical industry, palm oil effluent,
distillery industry effluent as substrate for the biohydrogen production
(Boodhun et al., 2017). In acidogenic phase of an anaerobic digestion
the hydrogen is produced as a by-product and the yield is very low. The
dark fermentation methods were established to enhance the production
of hydrogen whereas it is a challenge towards commercial use (Kumar
et al., 2017). The dark fermentative hydrogen production is improved
by pretreating the substrate or inoculum. The pretreatment of inoculum
were helpful in suppressing the activity of methanogens and increasing
the activity of hydrogen producing bacteria (Venkata Mohan et al.,
2008). The efficient and beneficial hydrogen productions by fermen-
tation were influenced by various factors such as substrate composition,
nutrient availability, mode and operation of reactors, bacterial

consortium and its yield (Mota et al., 2018). The substrate is one of the
important factors that are necessary for the metabolism of microbes
involved in biohydrogen production and the yield can be increased by
the optimization of carbon to nitrogen ratio (Hernández-Mendoza et al.,
2014). The optimisation of these factors helps in smooth flow of process
of biohydrogen productions. In textile industry and pharmaceutical
industry various toxic compounds were produced, which disturbs the
overall hydrogen production process. Hydrogen production potential
(HPP) are evaluated to know the amount of inhibitory compounds (Lay
et al., 2012; Chu et al., 2013). The advancement and the modifications
of various factors through technological means help to move towards
commercialisation. The technical and economical issues like storage,
distribution and expensive infrastructure are the major barriers for
commercialisation. The recent progress in large scale hydrogen pro-
ducing technologies may overcome the technical and commercial issues
(Singh and Rathore, 2017). This review article summarizes the various
research work carried out in biohydrogen production using industrial
wastewater as substrate and various operational parameters which af-
fects the effective hydrogen productions were compared. The major
limitation and challenges in biohydrogen production and the ad-
vancement in technologies to overcome the issues in large scale bio-
hydrogen production were discussed in detail.
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1.1. Dark fermentation

The anaerobic fermentation in absence of light breaks down the
carbohydrate to form hydrogen and other intermediates called dark
fermentation and the intermediate compounds like volatile fatty acids
(VFA) and alcohols were also produced. Bacteria such as Clostridia sp.,
and Enterobacter sp. were used for dark fermentation of carbohydrates
(Levin et al., 2004). The anaerobic metabolism of pyruvate accelerates
the hydrogen production, formate lyase and ferredoxin oxido reductase
enhances the breakdown of pyruvate. The main factors like tempera-
ture, pH, substrate, nutrition feed etc. should be maintained for efficient
biohydrogen production especially, the pH affects the hydrogenase
enzyme activity. In a study by Ginkel et al. (2005), the pH was main-
tained at 5.5–8 to enhance the production of biohydrogen by 60–70%.
In a study by Van Niel et al. (2003) the effect of hydrogen inhibitors
were studied and shows that the lactate, ethanol, acetate etc. are the
major products which inhibit biohydrogen production. Ozmihci and
Kargi (2011) used Clostridium butyricum for continuous production of
biohydrogen using wheat starch in dark fermentation.

2. Pretreatment of inoculum

In hydrogen production the pretreatment allows us to select the
group of acidogenic bacteria (AB) and thereby inhibiting the metha-
nogenic bacteria (MB) in mixed culture. The hydrogen producing bac-
teria i.e. AB can produce a layer surrounds its cell surface which pro-
tects it from severe environmental conditions whereas the hydrogen
consuming bacteria i.e. MB lacks this capacity (Zhu and Beland, 2006).
The untreated biocatalysts have wide range of microorganisms with
different metabolic activities. The pretreatment helps us to select the
microorganisms having the biochemical function towards acidogenesis.
Pretreatment of inoculum helps to reduce the substrate degradation
which attributes to the inhibition of hydrogen consuming bacteria
(Srikanth et al., 2010).

2.1. Physical treatment

This treatment involves the physical forces to treat biomass without
any actions of chemical and enzyme (Zheng et al., 2014). The physical
treatment mainly includes microwave and thermal treatment. Micro-
wave pretreatment inactivates the microorganisms through thermal
and non-thermal effect.

Microwave pretreatment is the irradiation of electromagnetic waves
of 300MHz to 300 GHz frequency which produces heat in liquids and it
disrupts the cell wall of biomass and increases the solubility of the
medium. The rearrangement of dipoles due to the heat generated is the
reason for disruption (Banik et al., 2003). It inactivates the non‑hy-
drogen producer by extracting the contaminant in inoculum which
causes adverse effect to hydrogen producers. In mixed culture, the
Clostridium sp. was found to be dominated, when it is pretreated with
microwave (Singhal and Singh, 2014; Guo et al., 2015).

Heat shock treatment (HST) is a thermal treatment which helps for
the growth of hydrogen producing bacteria which suppresses the ac-
tivity of methanogens. The spore formation indicates the hydrogen
producing bacteria and in this treatment the non sporing bacterium
were killed i.e. the methanogens and the non sporulating hydrogen
producing bacteria (Zhu and Beland, 2006). The parameters of HST will
vary according to its temperature between 80 and 104 °C and exposure
time between 15 and 120min (Zhu and Beland, 2006). The HST
treatment in batch reactor with mesophillic conditions encourage to
produce more hydrogen. The hydrogen yield (HY) of 2.49mol H2/mol
hexose were found by using anaerobic sludge as inoculum at 100 °C
temperature and 60min treating time (De Sa et al., 2013). The micro-
wave treatment shows higher efficiency than the thermal treatment in
terms of cell solubilisation when compared under same temperature
(Kuglarz et al., 2013).

2.2. Mechanical treatment

Ultrasonication is a wave when propagates in the medium, forms
bubbles which when collapse produce highly active radicals, shear
force, high temperature and pressure (Wang et al., 2010). The input
energy control in inoculum helps to suppress the methanogens and
protects the hydrogen producing bacteria (Dhar et al., 2012). The ul-
trasonic pretreatment of Rhodopsuedomonas palustris QK01 increased
the biohydrogen yield by 66.7% (Hay et al., 2016). In an investigation
by Budiman et al. (2017) the HY was increased to 14.438ml H2/mL
medium when the inoculum R. sphaeroides NCIMB8253 was pretreated
with ultrasonicator for 10min.

2.3. Chemical treatment

In chemical treatment process the Acetylene, iodopropane, 2 -
Bromo ethanesulfonic acid (BESA) served as inhibitors for hydrogen
consuming bacteria. The treatment with BESA facilitates the destruc-
tion of methanogens without disturbing the hydrogen producing bac-
teria. Iodopropane restricts the functioning of B12 enzyme which car-
ries methyl group (Zhu and Beland, 2006). Acetylene has the ability to
disturb the metabolic pathway of methanogens and declines the me-
thanogenic functions (Valdez- Vazquez et al., 2006; Chan and Parkin,
2000). Acid treatment was used to kill MB which survives at narrow pH
range and thereby protects the acidogenic bacteria which can survive at
drastic range of pH (Oremland, 1998). The pH ranges between 5 and
5.5 provides an efficient hydrogen production by suppressing the ac-
tivity of methanogens (Zhu and Beland, 2006). The acid treated in-
oculum shows higher biohydrogen production according to Chang et al.
(2011), whereas the base treated inoculum shows higher HY due to the
difference in microbial distribution as investigated by Yin et al. (2014)
and Zhu and Beland (2006).

2.4. Biological pretreatment

The biological pretreatment employs bacteria or enzymes to in-
crease the hydrolysis rate by breaking the bonded structures in waste-
water. Enzymatic treatment is an option for the other types of biomass
pretreatment. The reaction takes place under mild conditions without
any formation of toxic products (Verardi et al., 2012).

Apart from these treatment processes the freezing thawing, infrared,
forced aeration also provides efficient treatment. In forced aeration the
anaerobic sludge will be inoculated with aerated sludge to suppress the
activity of methanogens (Terentiew and Bangley, 2003). The infrared
and freeze thaw treatment provides efficient removal of methanogens
(Wang et al., 2003). In freezing and thawing the extreme changes in
temperature leads to the intracellular formation of ice crystals take
place and it leads to the disruption of microbial cells (Sawicka et al.,
2010). In some cases the single pretreatment methods were not so ef-
fective to eliminate the methanogens and combined treatments are
required to increase the efficiency to much higher level. The thermal
treatments are widely used in case of combined pretreatment. Mohan
et al. (2008) investigated the combination of heat shock with acid
treatment and achieved higher HY as compared to single method. They
also observed the inhibition of hydrogen production when heat shocks
are combined with other chemical treatment. Boboescu et al. (2014)
investigated the negative effect of combined pretreatment on HY as the
irreversible deterioration of all the microbes and mainly the hydrogen
producers.

3. Factors affecting biohydrogen production

The factors which affect the production of Biohydrogen were more
likely to be the pH, temperature, organic loading rate (OLR), Hydraulic
retention time (HRT), nutrient composition, partial pressure, metabo-
lite concentration, mode and operation of reactors and substrate used
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for fermentation.

3.1. pH

pH is a crucial parameter which affects the efficiency of hydrogen
production. The decrease in pH eventually affects the growth and the
metabolic production of bacteria. The pH ranges 4.5–9 are considered
to be efficient for biohydrogen production (Stavropoulos et al., 2016).
The cumulative hydrogen production rate (CHPR) and HY have some
influence due to change in pH and the hydrogen accumulation is
completely dependent on pH and pH varies inversely with the HY (Silva
et al., 2019). The pH at 5 reduces the hydrogen production due to lesser
biomass growth and the effective production of hydrogen takes place
above 5.5 pH (Sivagurunathan and Lin, 2019). Lower pH affects the
activity of hydrogenase enzymes and inhibits the action of hydrogen
producers (Liu et al., 2008; Ngo et al., 2012). At extreme pH conditions,
the sporulating hydrogen producing microorganisms can survive
whereas the methanogens will be eliminated (Shida et al., 2009). As
contrast to certain literatures methane generation were also possible at
low pH (Silva and Eyng, 2013; Hernández-Mendoza et al., 2014). The
pH plays a major role in limiting the growth of bacteria and also shows
the total solvent concentration. The optimum pH for high production of
hydrogen and lower solvent production are between 5.5 and 6.5 (Ma
et al., 2015).

3.2. Temperature

Temperature plays a major role since the substrate degradation,
hydrogen production, growth of microorganisms and by products are
dependent (Perna et al., 2013). The different temperature ranges in
anaerobic fermentation are: ambient (15–30 °C), mesophillic
(30–49 °C), thermophilic (50–64 °C), hyperthermophilic (65–80 °C),
extreme thermophilic (> 80 °C). The mesophillic temperature of
30–49 °C is efficient for hydrogen production using mixed culture (Lin
et al., 2012) and also favourable in terms of expense and technical
features (Vatsala et al., 2008). The fermentative hydrogen productions
are effective between 25 and 60 °C (Rosa et al., 2014). Hydrogen pro-
duction and substrate degradation can be achieved efficiently at higher
temperature with negligible energy recovery whereas the energy re-
covery was possible only at ambient temperature (Mu et al., 2006). The
temperature shows opposite effect towards biogas solubility and
therefore the connection between the microbes and the biogas in re-
actor will be smaller and it leads to the consumption of hydrogen
produced by methanogenic and acetogenic bacteria (Silva et al., 2019).
The increase of temperature from optimum limit leads to degradation of
enzymes involved in hydrogen production process (Hernández-
Mendoza et al., 2014). In brewery wastewater the increase in tem-
perature from 25 to 40 °C increases the cumulative hydrogen produc-
tion (CHP) yield and above 45 °C the production rate was affected. The
thermophiles can be used when the mesophiles lack the tendency to use
cellulose for hydrogen production directly (Dippolito et al., 2010). The
hydrolysis rate will be high using thermophiles (Singh et al., 2015). In
mesophiles, Clostridium and Enterobacter sp. shows higher hydrogen
production rate (HPR) whereas in thermophiles Thermobacterium sp.
shows higher yield. Thermodynamically, higher temperature favours
hydrogen production due to increment in entropy of the system
whereas in economic point of view extreme thermophiles conditions are
not possible due to the energy required for maintaining temperature
(Hallenbeck, 2005).

3.3. Hydraulic retention time

HRT or fermentation time is a parameter that influence on hydrogen
production and evaluate the efficiency of produced gas. It is one of the
eminent operating factors which restrict the methanogenic process
during acidogenic fermentation. Longer HRT leads to the shift in

metabolic activity from acidogenic to methanogenic phase, which
eventually inhibits the production of hydrogen. Shorter HRT inhibits
the action of methanogens (Hawkes et al., 2007). The shorter HRT less
than the growth of slow growing microorganisms' i.e. methanogenic
bacteria lead to washout of microorganisms (Ueno et al., 2001). The
washout of methanogens helps to reduce the cost and size of reactors
(Hawkes et al., 2007). The activity of methanogens can be restricted at
the HRT of 2–10 h and the acidogenic bacteria will be increased (Zhu
and Beland, 2006; Fang and Liu, 2002; Venkata Mohan, 2009).The
optimum HRT for hydrogen production is maintained between 8 and
14 h (Chen and Lin, 2003; Liu and Fang, 2002; Hussy et al., 2003). The
wastewater from dairy, chemical industries etc. used as a substrate for
acidogenic activity can produce hydrogen at 0–14 h (Vijaya Bhaskar
et al., 2008). The mixed cultures have the ability to continuously pro-
duce hydrogen for 3 days without any methanogenic inhibition. The
HRT for hydrogen gas generation from dark fermentation occurs at
0.5 h–24 h depending upon the substrate and the process used
(Fernandes et al., 2013; Singh et al., 2013; Wu et al., 2007; Perna et al.,
2013). The higher void in support particle from biomass leads to higher
release of gas from liquid to head space (Fernandes et al., 2013; Lee
et al., 2003). Long HRT leads to higher production of total VFA and
causes inhibition (Lee et al., 2003). It is also related to the specific
growth rate of organisms involved in hydrogen production, where the
increase in growth rate leads to decrease in HRT. The HRT can be
controlled by dilution rate in continuous stirred tank reactor (Singh and
Das, 2018) and the optimum HRT can be determined based on the
bioprocess used (Karaosmanoglu Gorgec and Karapinar, 2018). A study
by Mahmod et al. (2018) investigated the effect of HRT on pal oil mill
effluent and found that the highest HY of 2.45 ± 0.24mol H2/mol
sugar was obtained at 6 h. The maximum yield was obtained at lower
HRT since the bacterial culture can adapt to the high substrate avail-
ability because of the active metabolism.

3.4. Organic loading rate

The OLR have major influence on biohydrogen production. The
total conversion of carbohydrate is inversely proportional to OLR in the
reactor, which indicates the overload of organic content and affects the
performance of the reactor. The highest HY was obtained at lower
glucose feeding rate. The HY will be lower at increased OLR due to
overloading of organic substrates (Kargi et al., 2012; Rosales-Colunga
et al., 2012). The HY varies with the function of OLR and the higher
yield meets by lowering OLR (Spers et al., 2013). In a study by Castillo
et al. (2007) the positive effects of OLR were seen in hydrogen pro-
duction, where the production rate and yield was 0.042 ± 0.008 L H2

h−1 L−1 and 0.668 ± 0.002mol H2/mol Lactose at the highest OLR of
37 ± 1 kg COD/m−3/d−1. The increase in OLR increases the microbial
diversity and thereby decreasing its HY (Silva et al., 2019). The hy-
drogen production can be enhanced by optimising HRT and OLR in
continuous system and it is considered as a threshold factor (Kumar
et al., 2016a, 2016b, 2016c, 2016d).

3.5. Composition of nutrients

The availability of nutrients is necessary for attaining optimum
growth of microorganisms. The carbon, nitrogen, vitamins and trace
metals helps to maintain the growth of microorganisms. Nitrogen serves
as an important source for the growth and also enhances the hydrogen
production. The inorganic salt like urea doesn't contribute in the pro-
duction of hydrogen (Yokoi et al., 2001). The waste from cornstarch
serves as an alternative and used as a peptone supplement (Yokoi et al.,
2002). The stabilization of dark fermentation process is enhanced by
carbon to nitrogen ratio (C/N ratio) and affects the productivity and
HPR. The overall hydrogen production will be enhanced by optimum
phosphate content (Lin and Lay, 2004). The increase in phosphate
content alters the cellular reducers from production of hydrogen and
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thus VFA concentration increases and decrease the overall hydrogen
production. Trace elements like Mg, Na, Zn, Fe, K, I, Co, Mn, Ni, Cu, Mo
and Ca have certain effects on hydrogen production (Lin and Lay,
2004). The enzyme functioning can be enhanced by supplementing
trace metals.

3.6. Volatile fatty acid concentration

The metabolic end product affects the HY in fermentative hydrogen
production. The dominant metabolic products are acetic acid, ethanol,
butyric acid and propionic acid (Lee et al., 2002). The number of hy-
drogen mole production depends on the type of metabolite and it serves
as a crucial factor to analyse the total hydrogen produced. The meta-
bolic route can be affected by HRT and OLR (Tchamango et al., 2010).
The increment in VFA concentration leads to the lysis of the cells
through the permeation of proton onto the cell membrane of sporing
bacteria and thus disruption of cells takes place. The restoration of cell
membrane takes place by maintenance energy which adjusts the growth
of microorganism and enhances hydrogen production. The substrate
degradation efficiency, HPR and HY decreases with increase in VFA
concentration (Lee et al., 2002).

3.7. Partial pressure

The partial pressure is increased due to the accumulation of hy-
drogen inside the reactor. The accumulation of hydrogen leads to the
inhibition of forward reaction in reactor according to Le Chateliers
Principle and thereby the HPP reduces the hydrogen production in re-
actor. The extraction of generated hydrogen from the system helps to
overcome the impact of increase in partial pressure due to the accu-
mulated hydrogen inside the reactor. The maintenance in partial
pressure enhances the production of hydrogen (Junghare et al., 2012)
and the introduction of nitrogen gas helps to extract the hydrogen gas
by 68% (Mizuno et al., 2000).

3.8. Wastewater as a substrate for fermentation

Organic rich wastewater can be used as a substrate for efficient
biohydrogen production since it reduces the overall treatment cost
(Sivagurunathan et al., 2017; Laurinavichene et al., 2012). Industrial
wastewater contains higher degradable organic matters which maintain
the balance between the energy applied and recovered (Angenent et al.,
2004). The research have been undergone by using the wastewater
from cattle (Tang et al., 2008),sugar industry (Jayabalan et al., 2018;
Lai et al., 2014), food processing industry, paper mill (Lakshmidevi and
Muthukumar, 2010), rice winery, distillery (Wicher et al., 2013), che-
mical (Venkata Mohan et al., 2007a, 2007b), starch, palm oil mill,
beverage(Kumar et al., 2015), cheese whey (Azbar et al., 2009), phar-
maceutical (Krishna et al., 2013) as a substrate for the fermentation
process. The increase in biodiesel production leads to excessive dis-
charge of glycerol and it can be effectively used as substrate for bio-
hydrogen production (Mahapatra et al., 2013; Sabourin-Provost and
Hallenbeck, 2009; Rossi et al., 2012). Brewery wastewater along with
enriched mixed culture at 5.5pH, 38.3 °C temperature and 16.6 g/l OLR
gives the higher hydrogen production and shows that the substrate
concentrations have a huge effect on the product (Sivagurunathan and
Lin, 2019). Sivagurunathan et al. (2015) investigated the high fer-
mentation rate of beverage industry wastewater in immobilized cell
reactor and found that the HPR was 55 L/L-d with 1.5 h HRT and 320 g/
L-d hexose equivalent OLR. They showed that the HPR value is higher
than all other industrial wastewater fermentative hydrogen production.
In a study by Cappelletti et al. (2011) cassava processing wastewater
was used as a substrate and Clostridium acetobutylicum ATCC 824 as
inoculum for the biohydrogen production. The increase in substrate
concentration leads to the lower yield of hydrogen and substrate con-
version efficiency. The lower concentration of COD increased the yield

by 2.41mol H2/mol glucose and the result shows the efficient utiliza-
tion of substrate for biohydrogen production. Lin et al., 2017 used
textile desizing water (TDW) using coagulation pretreatment to produce
fermentative biohydrogen. The result shows that the substrate con-
centration of 15 g total sugar/l reduces the hydrogen production using
coagulation pretreatment and it indicate that the coagulation pre-
treatment at high concentration reduces the high content of toxic
compounds which inhibits the hydrogen producing microorganisms.
The hydrogen production ability increased to 120% and it shows the
effectiveness of coagulation pretreatment. The coagulation pretreated
TDW at the concentration of 15 g total sugar/l gave the HY of 1.52mol/
mol hexose and the HPR of 3.9 l/l-d. Kothari et al. (2016) investigated
the production of hydrogen and methane using dairy effluent. The HY
was 105 H2 ml/g COD at 13 h HRT with 75% substrate concentration
and the methane yield was 190 CH4 ml/g COD. The economic analysis
shows that the hydrogen energy have 0.22$/m3 effluent benefit
whereas methane production gives 0.336$/m3 effluent. They concluded
that the selected pathway of treatment selected gives efficient produc-
tion of bioenergy. Table 1 represents the comparison of different was-
tewater used from industries for biohydrogen production.

3.9. Reactor configuration for biohydrogen production

Bioreactor configuration is the main impacting parameter that af-
fects the biohydrogen production. Batch reactors are widely used in lab
scale studies whereas in commercial scale, continuous stirred tank re-
actor (CSTR) has been widely used. Various types of reactors have been
used for the production of biological hydrogen from industrial waste-
water such as CSTR, Up flow Anaerobic Sludge Blanket Reactor
(UASBR), Anaerobic Fluidized Bed Reactor (AFBR), membrane bior-
eactors and Packed bed reactor (PBR).

3.9.1. Continuous stirred tank reactor
CSTR can be used widely for continuous production of hydrogen

and microorganism in which liquid can mix constantly due to the
constant regime of mixing pattern. It facilitates higher contact between
the substrate and the microorganism and thus obtains higher mass
transfer. Due to the mixing pattern the CSTR is unable to hold large
amount of microbes responsible for fermentation and thus the washout
of microbes takes place at low HRT (Show et al., 2011). The reactor
with mixed culture favours lower Solid Retention Time (SRT) for bio-
hydrogen production since the methanogens are reduced (Waligorska,
2012). In order to overcome these limitations (biomass washout) cell
immobilization is the possible option (Ding et al., 2016). The authors
studied about CSTR treated yeast industry wastewater where the yeast
cells were immobilized in polyvinylidene fluoride (PVDF) membrane.
This reduces the biomass washout and favours higher hydrogen pro-
duction. In addition, the authors have reported that the change in HRT
and OLR had a great impact on the hydrogen production. The highest
production was observed at 8 h HRT and OLR of 24 kg COD/m3/d. They
concluded that the efficient way to recover hydrogen is done by the
restriction of methanogenic process by lowering HRT and OLR. Li and
Li (2019) underwent a study using molasses wastewater for the in-
tegrated production of hydrogen and methane using CSTR-IC reactor.
The volumetric HPR was 2.41 L/Ld at 30 kg COD/m3/d OLR and the
further increment in OLR decreases the production rate due to in-
sufficient time for hydrolysis in CSTR.

3.9.2. Anaerobic Fluidized Bed Reactor (AFBR)
It shows the combinative action of PBR and CSTR. It has an ex-

cellent stirring capacity and low shear as compared to PBR and CSTR
and it obtains an efficient mass transfer characteristics. The cells are
attached as biofilms and the upward flow of wastewater maintain the
biomass in suspension, thereby the catalytic activity increases which
results in higher degradation of organics in wastewater. In AFBR the
induced flow of liquid helps to enhance the fermentative hydrogen
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production with negligible substrate inhibition. It helps in the removal
of gas produced, constant mixing of solid or liquid and reduces the
pressure fall (Anjana et al., 2016). The biomass washout will be less in
AFBR and it is considered to be more efficient. It can have the ability to
work both at lower HRT and higher loading rate (Zhang et al.,
2008).The energy required for fluidization is the only disadvantage of
AFBR (Zhang et al., 2007). Amorim et al. (2014) studied the effect of
propionic acid, OLR and HRT on HPR of cassava wastewater. With the
increase in OLR and decrease in HRT, HPR increases. The hydrogen
content in biogas increase with decrease in HRT to 2 h with OLR at
126 kg COD/m3/d. VFA accumulation is also an important factor which
affects the biohydrogen production as discussed in previous Section 3.6.
Amorim et al. (2014) have suggested that the propionic acid accumu-
lation happens at 8 h HRT which subsequently decrease the hydrogen
production. They concluded that by decreasing the HRT to 1 h de-
creases the propionic acid accumulation and favours HY. Silva et al.
(2019) used dairy wastewater as a substrate in AFBR for the efficient
production of biohydrogen. They reported that immobilizing the bio-
mass culture within the reactor enhances the HY. The maximum hy-
drogen production of 2.56mol H2 mol/carbohydrate was observed at
8 h HRT.

3.9.3. Up flow Anaerobic Sludge Blanket Reactor (UASBR)
In this type of bioreactors, the structure of granule and its enrich-

ment leads to increase in hydrogen production. It consists of self-ag-
glomerated granular microbial diversity and has higher capability of
degradation, since the HRT is less (Banu et al., 2015). The blanket of
granulated sludge is suspended in the reactor during operation and it
can treat high organic strength wastewater rich in microbial popula-
tion. Intanoo et al. (2015) used two stage UASB reactors to produce
methane and hydrogen in mesophillic temperature. The first reactor
was operated at 37 °C with pH control for hydrogen production and
second reactor operated without pH control for methane production.
The loading rate increased from 10 to 25 kg/m3 d in first reactor. The
maximum chemical oxygen demand (COD) removal was obtained at the
loading rate of 25 kg/m3 d and produced about 36.4% of hydrogen and
63.6% of carbon dioxide with no methane, since the methanogens got
washed out. The methane production was about 83% at the loading rate
of 8 kg/m3d. They concluded that the two stage system increases the
methane production rate as compared to single one. Krishnan et al.
(2016) studied the effect of OLR in two stage UASBR-CSTR units under
thermophilic condition in palm oil mill effluent (POME). The methane
content decrease as the OLR increases and HRT decreases. At the
loading rate of 75 kg/m3d, the obtained hydrogen content was about
35%. In the same study, the VFA increased with increase in OLR from
25 to 100 kg/m3d and it moderately increased beyond 100 kg/m3d. The
CH4 content in CSTR increases with increase in OLR from 4 to 12 kg
COD/m3d and beyond that it decreases. The maximummethane content
at 12 kg COD/m3 d is 65%. The maximum VFA in CSTR was observed at
20 kg COD/m3d. Overall COD removal of 85% was obtained in this
study. They further concluded that the two stage reactor were efficient
to generate methane and hydrogen from POME.

3.9.4. Membrane bioreactor (MBR)
It integrates the semi permeable membrane with the biological

process and it is the combination of micro or ultra filtration with sus-
pended growth bioreactor. It consolidates the features of membrane
filtration and activated sludge treatment used for retention of micro-
organisms inside the reactor and the parameters such as HRT and SRT
can be controlled (Oh et al., 2004). The increase in SRT increases the
retention of biomass and thus increases the substrate utilization rate by
decreasing the production of hydrogen. A study by Li and Fang (2007)
shows the hydrogen production of 0.25–0.69 L/L h by using MBR.
Buitrón et al. (2019) showed the feasibility of using granular sludge
membrane reactor for biohydrogen production from brewery waste as
inoculum. The increase in OLR decreases the HPR and HY in the reactor

and the maximum HPR was obtained at the loading rate of 30 g/L/d.
The increase in OLR to 60 g/L/d leads to decrease in hydrogen pro-
duction due to metabolic shift to solvent production. The optimum
production rate was achieved at 4 h HRT and determined that the re-
sistance of membrane was controlled by solutes. The fouling of mem-
brane is affected by formation of Extracellular polymeric substance
(EPS) and operational flux.

3.9.5. Packed bed reactor (PBR)
These types of reactors are used for the conversion of biomass with

high organic content. The can work efficiently at lower HRT without
any extraction of biomass, where the beds of the reactor have a granule
or biofilms (Show et al., 2011). The substrates are passed through
column packed with biocatalyst. The performances of reactor for im-
mobilized cells are based on the kind of immobilization. It advantages
being its simple operation, anaerobic environment maintained by pur-
ging nitrogen and the elevated rates of reactions were possible through
its operation. Perna et al. (2013) demonstrated a work on hydrogen
production from cheese whey using Anaerobic Packed Bed Reactor
(APBR) with different OLR. There is no much increment in yield as
compared to other reactor configuration whereas the production was
stable related to higher loads and the operational problem was negli-
gible in this reactor. Palazzi et al. (2000) used continuous packed
column for dark fermentation of starch by Enterobacter aerogenes. The
bacteria are immobilized on fragments of spongy structures so as to
reduce a stress on organisms while stirring and to limit the removal of
microbial biomass from the reactor. The highest HY was 3.02mmol H2/
mmol glucose.

4. Limitations and challenges of biohydrogen production

Despite of the remarkable merits the major limitation faced in
biohydrogen production is limited substrate conversion potential and
remaining fractions of substrate (wastewater) exist in acidogenic ef-
fluent during acidification process (Venkata Mohan, 2010). The pro-
longed buildup of acidogenic metabolites leads to decrease in pH. This
in turn causes inhibition of hydrogen producing microbes and HY.
These metabolites can enter the cell membrane of hydrogen producers
and penetrate into the cell causing growth discrepancy, augments the
ionic strength and cause cell cleavage. Therefore, energy maintenance
is needed to retain the biological balance in the biomass. This mini-
mizes the energy needed for biomass growth. The productivity of hy-
drogen is reduced when more metabolic by products such as lactic
acids, ethanol, and propionic acid were accumulated as these com-
pounds surpass the productivity of hydrogen. Integration of fermenta-
tion process with other approaches is the viable option to overcome the
other metabolites. Another major limitation in continuous biohydrogen
reactor is the biomass wash out. In order to overcome this limitation,
immobilizing the biomass in support material and granulation in re-
actors is the promising choice. Another major challenge associated with
biohydrogen production is the competition of methanogens over hy-
drogen producers. Selective enrichment and bioaugmentation are the
emerging strategies to overcome the suppressive growth of hydrogen
producing microbes. The emerging strategies such as immobilization,
process integration, bioaugmentation and genetic engineering techni-
ques have been discussed in detail in the forthcoming section.

5. Advancement and way forward to commercial application

Hydrogen production by microorganisms gained more attention for
few decades due to the pollution less nature, recyclability and high
efficiency of conversion of substrate. Microorganisms such as cyano-
bacteria, algae and bacteria were widely used for the efficient pro-
duction of hydrogen from organic waste substrates (Gupta et al., 2013).
The development of hydrogen production technologies are not widely
accepted commercially due to its high cost of production and lower
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yield of hydrogen. The major challenges which prevent the commer-
cialization of hydrogen production process are the selection of micro-
organism for hydrogen production, optimization of operational factors
and design of reactors. The lack of storage of hydrogen, fuel cell tech-
nologies and distribution networks are the major barrier in technolo-
gical means along with the pretreatment technologies and cost of hy-
drogen production are needed to be addressed for the production in
commercial scale (Zhu and Lin, 2016).

Advancement in improving the hydrogen production are focused
widely in recent years by introducing new production technologies such
as bioaugmentation (Marone et al., 2012), cell immobilization (Kumar
et al., 2016a, 2016b, 2016c, 2016d), integration of process
(Chandrasekar et al., 2015), microbial electrolysis cell (Kadier et al.,
2016) for improving efficiency and by incorporating genetic en-
gineering (Srirangan et al., 2011). The basic improvement can be
achieved by the cheaper substrate with pretreatment, high yielding
strain and cost efficient reactors. The pretreatment of the substrates
enriches the acidogenic bacteria by inhibiting the growth of methano-
genic bacteria (Kumar et al., 2016a, 2016b, 2016c, 2016d; Kumar et al.,
2017). The mild acid and microwave pre-treated corn stalk can provide
the HY of 1.53mol H2/mol glucose at thermophilic temperature (Liu
and Cheng, 2010). The study on economic viability and reusability were
needed to carry out the integrated pretreatments for industrial ef-
fluents.

Immobilization is one of the techniques where the biomass attached
to inert or supporting material and this material helps the biomass to
remain in the reactor (for instance, CSTR). It is the promising technique
to retain the biomass within the reactor to increase the yield and pro-
ductivity of biohydrogen (Lutpi et al., 2016). Various support material
can be used to attach the cells of biomass and repeating cultivation of
mixed culture helps in increasing the growth of microorganisms (Kumar
et al., 2012). Lutpi et al. (2016) used granular activated carbon (GAC)
as a support material to grow hydrogen producing microbes in re-
petitive cultivation and obtained about 48–50% of hydrogen content in
total biogas. Another enhancement strategy to enhance the biohy-
drogen production is process integration which reduces the inhibition
of biohydrogen stimulated by the accumulation of metabolites during
fermentation process.

Presently the integration of dark and photo fermentation anaero-
bically have widely adopted in large scale since the energy retrieval is
high and increases the efficiency of wastewater treatment (Mishra et al.,
2016). The process integration can improve the performance and sup-
presses the issues caused by single process (Rai and Singh, 2016). Dark
fermentation is the efficient concept for biohydrogen production as
compared to other methods and the integration of other system with
dark fermentation increases the energy recovery. The two stage

biological processes provide an efficient generation of biohythane
(mixture of biohydrogen and methane) which are commercially used as
an energy storage material in Germany and as a fuels for vehicles in
India (Tapia Venegas et al., 2015). The schematic representation of
integrated process of biohydrogen production is shown in Fig. 1. The
manipulation in genes involves the insertion of desirable gene in the
microbial strain to make it as a potent inoculum for biohydrogen pro-
duction (Pinchukova et al., 1979).

Some modelling approaches are necessary to optimize the para-
meters and to compute the issues related with biohydrogen process. The
computational fluid dynamics (CFD) tools is helpful to analyse the is-
sues which are predicted prior to the real operation in case of scaling up
of the process. This tool offers a balanced approach for scaling up or
design and optimisation of various strategies for CSTR operating in
industrial scale (Ren et al., 2011). Xu et al. (2010) performed a hy-
drodynamic assessment using CFD for industrial scale hydrogen pro-
duction in CSTR and optimised the reactor from lab scale to industrial
scale. The CSTR of 17 l capacity of CSTR in lab scale to 14,000 l capa-
city of CSTR in industrial scale was modelled. The two dimension Eu-
lerian – Eulerian model was used to demonstrate the flow behaviour of
liquid and gaseous phase. They suggested that the velocity hetero-
geneity and stagnation zone must be optimised for industrial scale re-
actor and for hydrodynamic analysis the reactor structure must be op-
timised. The SWOT (strengths, weaknesses, opportunities, and threats)
analysis is another method to evaluate the strength and weakness of the
system operation for upgrading the process towards industrialisation
(Babatunde and Adebisi, 2012). PEST (Political, Economic, Social and
Technological factors) analysis is used for understanding the market
growth or decline in organisation (Hsu and Lin, 2016). Hsu and Lin
(2016) investigated the feasibility of commercialisation of hydrogen
production in Taiwan by using ESCO model. This model assessed the
rate of return and concluded that the government promotion through
subsiding the installation for hydrogen production helps to gain the rate
of return to the investor.

Few studies have been studied in pilot scale by using the wastewater
as substrate for the production of hydrogen. The pilot scale studies give
an idea about the difficulties during operations. In order to understand
the conversion of process to an external validating research the realistic
pilot scale study is necessary. In a study by Vatsala et al. (2008) the
distillery effluent was used as a substrate for the co culture of Rho-
dopsuedomonas palustris P2, Citrobacter freundii 01 and E. aerogenes
E10 with the capacity of 100,000 L. The yield of hydrogen was 2.76mol
H2/mol glucose. Ren et al. (2006) studied the efficiency of biohydrogen
production from molasses in continuous mode with pilot scale reactor.
The reactor rums for about 200 days and obtained the HPR and yield of
5.57m3 H2/m3 day and 26,013 mol H2/kgCODremoved at the varying OLR

Fig. 1. Schematic representation of integrated process of biohydrogen production.

Preethi, et al. Bioresource Technology Reports 7 (2019) 100287

7



from 35 to 55 kg COD/m3 day.
The technology based economic analysis is needed to compare the

efficient production of hydrogen compared with fossil fuels. The scaling
up of the production to industrial scale decides the suitability of pro-
cesses adopted. Hydrogen production through microbial pathway
shows an excellent area where the future needs can be fulfilled in
sustainable way. The efficient and proper design of bioreactors and the
selection of substrate of lower cost are essential for the fermentation of
hydrogen which contributes towards the global renewable energy. The
development of reactor configuration are still challenging in large scale
production. The integration of dark and photo fermentation helps to
resolve the problems on inhibition of substrate and also increases the
yield of hydrogen. The fermentative hydrogen production is promising
one to achieve sustainability and economic viability in commercial
application for future generation.

6. Conclusion

This review presents a detailed report on recent challenges, updates
and operational changes of various biohydrogen producing reactors.
The optimizations of operating conditions are necessary to upgrade the
production with economic viability. Limited substrate conversion and
low productivity are the two main issues associated with biohydrogen
production process. The recent developments in these technologies help
to overcome limitations and guide towards large scale implementation
and commercialisation of biohydrogen production. The pilot scale
studies have been undergone with different technologies, whereas
commercialisation is still a great challenge due to its higher installation
cost.
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