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Abstract 

The presented thesis serves as part of a technology development program by Statoil ASA. The idea 

behind the technology seeds back several years, and is a product of hands- on- practical experi-

ence. Extensive experience has indicated feasibility of more work toward understanding the 

principles in action and approaching a practical solution for use on physical plants.  

The idea is registered internally at Statoil with Statoil reference K4064, and the current intellectual 

property strategy requires all information relating this idea, including this master thesis, to be 

qualified as ‘Confidential’. 

Introduction to the technology plan [1] defines the prime motivation of the technology develop-

ment: 

There is a growing motivation for monitoring control loop performance and for a change 

in maintenance strategy towards more condition based maintenance. Monitoring con-

trol loop performance and equipment condition enables for early action when deterio-

ration of a control function starts developing, i.e. before the developing fault(s) or 

changes in process characteristics has had a significant negative effect on business. 

The proposed technology is a practical method for superficial system identification and tech-

nical/operational state detection, with the goal of optimizing process component maintenance, 

and control loop retuning. The vital components of the plan will be properly detailed in the the-

sis outline, 1.3, with the associated deliverables and constraints. A description of the proposed 

test mechanism will be provided under the theory chapter, 2.3. 

Also as part of the same Statoil Technology Development program, a bachelor thesis [2] was con-

ducted in 2010, by Espen Svandalsflona and Frode Tuen associated with the University of Sta-

vanger, concluding among other topics that more study on the results criteria for making the 

maintenance decisions would have to be made and review changing several process parameters 

in combination. Additionally it would need to be proved that oscillations induced by the pro-

posed test mechanism would not upset other parts of the process to such a degree that the de-

sire for increase of product quality, effectiveness and the cost advantages, would be overshad-

owed by the potential performance loss associated during the testing. The latter topic will not 

be discussed in this thesis due to the time constraint.  
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Acronyms 

This section contains clarification of commonly used terms in order to lighten the reading, as well 

as a complete list of figures and tables for convenience. If something is unclear or needs elabo-

ration, the reader may have use of referring to this section. 

Term/symbol Meaning/annotation Comment/explanation 

Stiction  Static friction. A combination of 
stickband and slipjump 

Slipjump  Example: A steady increase of 
throttle results in an abrupt change 
of value 

Hysteresis  Example: Input must exceed a cer-
tain value after reversing direction 
before reaching its previous config-
uration 

Stickband / Deadtime  E.g. time before system reacts to an 
event on its input.  

Pv Controlled variable  

Op Controller output  

Sp/ref Set point  

Mv Valve positioner  

MTBF Mean Time Between Failures  

RCM Reliability Centered Mainte-
nance 

 

SFC Statfjord C  

S-function  Used to extend the capabilities of 
Simulink. Matlab code is compiled 
to c-code on runtime. 

FFT Fast Fourier Transform  

NaN/NA Not a Number/Not applicable  

DNF Did not finish  

RPD Reference-process-deviation  

FOI Frequency of interest  

    /        Frequency of when Pv has a phase 
lag of -180° relative to the refer-
ence 

    Frequency of zero dB gain of loop 
transfer function 

    Gain margin, stability criterion and 
control performance indicator 

    Phase margin, stability criterion 
and control performance indicator 
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Chapter 1  

Introduction 

The introduction chapter will start off with giving a small insight of the issues presented in this the-

sis. The author will discuss some of the objectives of having control loops governing processes, 

and some concerns associated with this. Section 1.2 will introduce some of the related work 

done within the field of control performance monitoring, as well as suggest some of the main 

differences between the mentioned solutions and the one that will be proposed in this thesis. In 

section 1.3 the work of this thesis will be further and more detailed described, and also the 

scope of the work will be clarified by listing constraints, initial simplifications, and the most im-

portant deliverables.  

Note: During the report some abbreviations or standard annotations may be used, and their mean-

ing or description is placed in the Acronyms table after the table of contents. Figures and illus-

trations are also listed in a table at the end of Appendix for convenience. 

1.1 Model based control systems 

Control systems are widely used in real life environments. The controllers are small, and built on a 

solid foundation of mathematical theory and practical experience. The controllers collect infor-

mation of the process through the inputs which is then processed. The controllers further out-

puts reactions to physical actuators that can influence the process image, like valves and pumps, 

with the intention of keeping or bringing the process into a desired state. The use is growing 

and getting more extensive and our modern technology depend on them. Developing control 

systems is often about automating a task that is too costly, too rapid or too dangerous for hu-

mans to control. Good control systems require knowledge of the system, and in order to gain 

great performance, a lot of time is often sunk into the system- design and modeling, although 

the modeling is usually much simplified. The control performance can be measured in the forms 

of lower energy consumption, less environmental consequences, heightened safety, greater 

product quality, and so on according to the control system’s operational area.  

The dynamics of the sensors and devices included in the process are given by specifications provid-

ed by the equipment manufacturers, and although some operational drift often is informed by 

the manufacturers, it can be unreliable or impractical to compensate for in reality (and may of-
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ten work against the intention). Since all physical sensors and devices are exposed to operation-

al drift due to physical strain, the control system will change1 over time resulting in lowered effi-

ciency and less of the desired performance. If the state of the system has reached a state of un-

desired or critical amount of lowered performance, a group of engineers can be called to con-

duct a survey on the system and either tune the controller parameters if the state of the pro-

cess equipment is adequate, or else replace/run maintenance on key components believed to 

be responsible for the deterioration. Retuning controllers to compensate for erroneous or bad 

behavior elsewhere in the process can often be considered a bad thing. Such actions may keep 

the faults partly hidden until their magnitude is so high that the consequences may be more se-

vere, than dealing with them immediately; such as a plant shutdown. If changes have been 

made to the physical process, the control parameters should also be updated. E.g. replacing a 

transmitter (possibly even with another type) may directly change the process gain, which calls 

for an adjustment of the control parameters. Other elements affecting the operation of the con-

trolled directly or indirectly process can also in most cases be regarded as dynamical and time 

variant. Such elements can be among change of flow into the process and change of pressure. 

This can be caused by change of set points. In the scene later described in this thesis, and which 

is the test site for this technology development, this can be a choice derived from the constant 

change of oil well properties. To summarize: There is a lot to keep in mind while designing and 

tuning process control loops, and the need of having a broader perspective covering all the typi-

cally thousands of active control loops, yet simultaneously individual and accurate health as-

sessment for each component, is of high desirability. 

 

1.2 Previous related work in the field 

Assessment of control loop performance is hardly a new topic. Industry is and always will be results 

driven, and having optimally performing control loops is a key property in order to achieve this. 

Unfortunately, manually keeping a close eye on every control loop, and all its consisting equip-

ment on a large scale is not feasible. An industrial plant may consist of thousands of control 

loops, and only a few process control engineers to ensure they are performing satisfactory. This 

                                                           
1
 Control performance can either be improved or degraded over time. The controller is not necessarily “per-

fectly” tuned upon commissioning. 
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suggests that automatic monitoring tools to flag and indicate degradation and source of prob-

lems as they arise would be of great assistance. For such monitoring systems to be helpful, they 

cannot be allowed to further complicate the process image, which hints to the use of relatively 

simple systems that require little attention before implementation and in addition decent flexi-

bility and adaptability. Such monitoring systems already exist, and most associated technologies 

are often based on analysis of collected data during operation.  Most of them are non-invasive 

and/or model free methods. Just to mention a few of such products that are commercially 

available, known to the author [3]: 

 ABB: Loop optimizer suite 

 Honeywell: Loop scout 

 Matrikon: ProcessDoc 

Many technologies are directed toward a data driven, analytic approach. Such technologies have a 

strong mathematical base and the methods care little about the particular process itself. That 

means the mechanism cares little about what the process consists of and what causes the dy-

namics, but is rather focused on the dynamic relation of input- output data during operation. 

Minimum variance controller is derived using such a “blind” approach. These methods are very 

adaptable and sturdy, and can give some insight of the control loop performance without too 

much adaptation of the mechanism. Although they provide a good understanding of the per-

formance they lack the insight required to identify causes and suggest precise solutions. In 

many practical situations “bad” or “loose” control is even desired. What we want to achieve 

would then rather be high precision and individual follow-up. To list some of the experienced 

challenges of today’s typical solutions: 

- 1: Looks only at parts of control function 

- 2: High sensitivity to noise and process disturbances 

- 3: Further analysis usually required to perform diagnosis 

- 4: Significant uncertainty 

- 5: Difficult to evaluate a loops performance against specific controller objectives and con-

straints 

- 6: Tools available typically implement only a few of several strongly related business processes 

which should be integrated 
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- 7: Lack of awareness of operational and technical states 

The proposed test mechanism has been proved in collaboration with the project supervisor to re-

spond superior on these challenges and the results can be summarized by: 

- 1: Evaluates the performance of the complete control function 

- 2: Low sensitivity to noise and process disturbances 

- 3: Results from test, preprocessing and analysis is directing towards the actual problems 

- 4: Low uncertainty 

- 5: Results are used for retuning with high precision 

- 6: Test mechanism implement all business processes 

- 7: Awareness of operation and technical states 

The work presented in this thesis will be a more practical approach for state detection, while the 

comparable results used for providing the process “footprint” used for developing the solution 

(which will henceforth be referred to as the “test mechanism”) are generated through simula-

tions of the chosen process of interest. 

 

1.3 Thesis outline 

The scope of this thesis will be directed toward the field of condition monitoring, detection of fault 

modes and deterioration of control loops, where the objective is to present a robust indicator 

for lowered performance and early detection of equipment fault and/or drift. This will be used 

to better schedule maintenance and retuning of the control loops, which in return yield expec-

tancy of increased production efficiency, increased product quality, and further reduced envi-

ronmental impact. In addition, preemptive detection can cause fewer emergency shutdowns on 

the plant, as well as reduce the load on the operator. 

The work is as mentioned in the abstract based on a Statoil technology development plan (TDP). 

The decided approach is a mechanism based on a modified relay test, which has been proven a 

good tool for system identification earlier in practical applications. The mechanism excites the 

system in a controlled manner by affecting actuators, such as valves and pumps, and the result-

ing process responses are logged for analytical purposes.  Among the response properties to be 

studied are: 
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 Pv-Sp 180° phase lag frequency,        

 Loop transfer function,   , 0dB gain frequency,    

 Gain margin,    

 Phase margin,    

These properties are considered indicators of the current process state. As the process changes, 

these indicators will change as well. Appropriate margins are commonly specified for a control 

system, and are therefore good indicators that also indicate the current stability limits of the 

control system. More indicators may be proposed and added to the routine later. The important 

principle is that the mechanism is able to recognize the current state of the system, thus identi-

fy whenever the process equipment are under influence of fault modes; such as stiction, hyste-

resis, dead time, bad transmitter filter settings and more, which is often caused by physical de-

terioration or faulty calibration. 

Before any industrial implementation, the technology will be thoroughly tested and prepared in 

simulation environments, and the system of interest will be analyzed while at a state of satisfac-

tory performance criteria, for later reference. Under operational conditions, the real process, as 

mentioned earlier, changes (i.e. drifts over time), altering the performance. During simulations 

common operational faults will be added to the process model and controlled by the simulation 

sequencer. The test mechanism iteratively excites the simulated process plant with a wide 

range of simulated fault parameters so that indications of changes can be found.  

An extra test mechanism will excite the physical process during a given window of time, but not to 

the extent that it will be intolerably interfered. The test window will be selected so that the test-

ing undergoes when the process plant is stable and there is no risk. Ideally the testing would be 

unnoticeable, but some oscillations will be induced in the control loop. The size of the oscilla-

tions can be easily controlled, but should be of such magnitude that the logged responses are 

accurate. Upon implementation at the physical plant, the monitoring process will have data ac-

quired during the simulation study, providing an understanding of changes and consequences 

affecting the monitored process, and will be able to analyze data and make diagnostics of the 

process accordingly. As mentioned the test mechanism will be limited so that is does not ana-

lyze or affect the process at times of abnormal activity or risk. In addition to the simulation 

study and the practical test mechanism, a part of the solution will be a descriptor based human 
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interface, presenting the relevant information in an understandable and descriptive manner. 

The interface will differentiate between different degrees of symptoms, and recommend coun-

ter measures accordingly. 

This thesis will serve as a continuation of the preliminary study on the following topics, and will 

give an idea of the feasibility and profitability of the research, design and implementation of 

such a system. Since the design objective of this study is to have a kind of a general solution for 

use in an industrial setting, there are some constraints limiting its form according to the TDP [1]: 

 The solution shall be based on a modified relay test. The relay approach has shown practical re-

liability and is well proven which opens up for more comprehensive work related to it. 

 The solution must produce results with sufficiently low uncertainty that relate to the operation-

al- and technical state, as well as be robust to process disturbances and noise. 

 The solution should not negatively impact HSE (Health, Safety and Environment). 

 The form of the solution should be general and adaptable, as well as documented, enough that 

it can be transferred to other similar processes without too much associated complex work. So-

lution algorithms should be fairly non-complex and structurally interchangeable. 

Since the study is fairly comprehensive some simplifications will also have to be taken in order to 

ensure the quality of the work. Such simplifications are: 

 The inlet separator tank of the Statfjord C production train has been selected as the process im-

age of focus for the preliminary study. 

 Study directed toward valves, which are important components of our process image. A valve 

should be a sufficient starting point and be able to demonstrate many of the symptoms that we 

want to recognize and classify. 

 There will be chosen some “boundaries” for the process image. “Boundaries” refer to environ-

ments in such a steady state they can be assumed static. I.e. there are no dynamics associated 

to the “boundaries” and they will help limit the scope of the simulations. 

 Process models will be implemented in Dymola, which is a Modelica based simulation and anal-

ysis tool. Its object oriented form will increase the reusability of the results, among other bene-

fits which will be mentioned later. 

 A simulation environment in Matlab will interface with the Dymola model. The author is familiar 

with Matlab through extensive academic use, which will increase the productivity on this part.  
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At completion a number of deliverables are expected, both as a whole or partly solution to the 

problems undertaken, but also as requirements formally requested by the contractor, Statoil. 

This thesis will contain the relevant information and documentation needed to understand the 

methods, grant insight in the solution process. Deliverables are: 

 Dymola model for “Statfjord C- inlet separator” and sufficient surroundings2. 

 Governing program sequence for a “Monte Carlo”3 based simulation setup written in Matlab. 

 Evaluation mechanism of test results with associated descriptors. This demands some sort of 

HMI. 

 Documentation of setup, tests and results reflecting the potential feasibility and profitability of 

the technology. 

All delivered program code after the study shall be modular and generic enough for other engi-

neers to be able to modify and update in a later time. At the completion of the thesis there will 

be an official handover process to assure that achieved project progression is maintained.  

                                                           
2
 In order to be able to determine the state of the system, a sufficient model that is able to reveal the symp-

toms produced by the dynamics of faulty or improperly calibrated equipment and sensors must be creat-
ed. A considerable part of this thesis will be spent on producing such a sufficient preliminary model. 

 
3
 In this setting Monte Carlo simulation is referred to as a broad simulation where a wide range of parameters 

are adjusted during simulations. The results are stored and provide a map of how different parameters af-
fect the process. 
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Chapter 2  

Theory 

The theory chapter will detail some on the proposed test site for the technology development, and 

the main principles used for the operational and technical process plant state detection. Insight 

in the development of faults will be provided, and what these may consist of. Refer to the men-

tioned bachelor’s thesis [2] if some topics call for more attention, as things may be intentionally 

left out to prevent extensive overlapping of the collaborative work toward a solution. Such a 

topic is for example the details of the modified relay method, and the explanations of the equa-

tions used for estimating        ,   , gain- and phase margins in 3.3. Topics that are considered 

of high relevance and importance are further detailed here by the author. 

2.1 The production train 

The task of the production train [4] of SFC (Statfjord C) is to process the well stream so that it 

reaches the desired specifications. The well stream contains a complicated mixture of hydrocar-

bons under high pressure. Along with the hydrocarbons, some pollution such as water, sand and 

other solid substances is also brought along. These components need to be separated, and also 

since they are naturally under high pressure they will need to be stabilized for storage and 

transportation. 
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Figure 2-1: Inlet separator (CD2001) illustration [4]. 

The raw well stream is fed into the inlet separator tank, CD2001, which is the first stage in the pro-

duction train. Oil, water and gas are separated to a satisfactory extent for this stage, and also 

the accompanied removal of solids. As hinted, the components of the wells stream (although 

they would ideally) are not perfectly separated into each category, and pollution of the other 

substances still occurs in the separator outlets. Most of the produced water is removed by the 

inlet separator, but both separator 1 (inlet) and 2 are three- phase separators, separating oil, 

gas and water by exploiting the differences in weight. Water, which is the heavier liquids of the 

three main components of the well stream, will sink to the bottom of the separator. Oil will 

separate from the water and float to the top of the liquids. Physical plates are installed in the 

separator to separate the oil from the water. The plates are called weirs. The oil level is kept 

above the weir plates so that sufficiently separated oil enters on the other side. The side of the 

oil is considered the light side of the weir and the inlet side, where the water is kept and 

drained, is considered the heavy side. 

A multiple of other equipment are connected to the output pipes of the inlet separator tank. 

Equipment considered to impose main influence in the near connectivity on the inlet system 

are: 

 Hydrocyclones are connected to the separator’s water outlet pipe with purpose of further ex-

crete oil from the water. 

 Water from the hydrocyclones continues to the degasser before it is returned as sea water. 

 Gas flowing through the gas outlet of the inlet separator enters heat- exchangers. The gas tem-

perature is lowered from 88°C to 35°C. 

 Scrubbers further process gas leaving the gas outlets of the separator. The input gas is dehy-

drated; Water particles and the heavier hydrocarbons are condensed and collected on separate 

outlets. Condensed hydrocarbons are returned to an appropriate stage of the production train. 

 The oil outlet leads to the next separator tank (flashdrum 1), CD2002, for further flashing4. 

These are considered to have some indirect effect on the control of the inlet separator. Loose or 

bad regulatory behavior in these elements can ripple to the inlet separator. The temperature of 

                                                           
4
 The liquids entering the separator are partially “flashed” into a vapor and liquid due to the different opera-

tional conditions of each separator stage; mainly lowered pressure. 
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the separator is 88°C, while the pressure is controlled with a set point of 19 BarG. In addition 

the separating line between oil and water also needs to be actively controlled to uphold the re-

quired settling time for the fluids for optimal separation. 

 

2.2 Performance of control loops 

In order to make decisions concerning the performance of our control loops, we need to have sets 

of quantitative indicators, and an understanding of the role of each control loop. This means 

that the roles must be bounded and quantified. The same principles as utilized while developing 

the control loops can be used to investigate the performance. Note that there is a degree of 

subjective freedom involved since the control loops can be tuned in ways that are irrational to 

explain with control theory, but can have practical gain in a specific industrial setting. Such free-

doms involve the possibility of letting the controller control the process loosely in order to re-

duce the amount of oscillations further down the production train. 

Each control loop gets their requirements from the controlled process. Such requirements include 

that of both static and dynamical properties. Such specifications can include to a selection of the 

following control properties [5], where some of them can be related to some degree: 

- Time response 

- Process output- reference overshoot constraint 

- Controlled variable’s follow reference property 

- Margins for change of process gain with respect to stability 

- Phase lag threshold at specific frequencies with respect to stability 

- Noise compensation and dampening of oscillations property 

- Bandwidth  

Usually the importance of each of these properties is different for each control loop, and the strict-

ness of each property may be weighted differently. Note that there is always a tradeoff in engi-

neering; if you for example desire very fast response to change, you can expect more overshoot 

as well. Some properties will have more situational criticality than others; if the flow into the in-

let separator (Figure 2-1) has a rapidly varying composition, e.g. a typical slug flow, the fluid lev-

els in the separator will oscillate to such a degree that it causes poor separation, which can be 
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seen as more oil in water exiting the water outlet, and more water in the oil travelling the oil 

outlet to the next separator. Oscillations can also ripple to other parts of the train, also affecting 

performance elsewhere. 

 

Figure 2-2: Production train overview from the Asset simulator, which is used to simulate real conditions for mimicking 
the Statfjord fields. CD2001 is the inlet separator (to the left), which is a three phase separator separating the crude 
production flow to oil, gas and water. 

 

The control performance can be evaluated using different methods of analysis. Important features 

are the control loop’s ability to follow the reference signal, and to compensate for process 

changes caused by disturbances. The control loop’s tendencies toward these features can be in-

vestigated by analyzing the frequency responses, which can be expressed as how sine- and co-

sine- signals on the input are manipulated throughout the system. Frequency components can 

be phase- shifted, biased and amplified/dampened, independently. Finding Bode plots can be 

done in many ways, most of which are applicable in different circumstances. Examples are: 

-  If we have accurate transfer- functions5 for the process in an operating point, we can easily ex-

press the frequency responses in a bode plot using direct mathematical analysis.  

- If the transfer functions are unknown (e.g. in a case where the process has so many varying pa-

rameters that the original differential equations no longer accurately reflect the process) we can 

attempt to fit a model to the system response, using system identification theory or by trial and 

error (qualified guessing).  

                                                           
5
 Transfer functions can only be applied if the process is or can be considered linear around an operating 

point. When process parameters are shifted, the process transfer functions may need to be corrected. 
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- A different method is applying signals with known amplitudes and frequencies on the input (e.g. 

sine sweep), read the resulting output values and plot the relations in a bode plot. The frequen-

cy responses can be used to express control systems’ properties with respect to stability and 

performance. The latter will be conducted in the simulation study in order to produce a foot-

print of the whole process, which will be compared with results from relay feedback testing. 

 

2.2.1 Phase- and gain margins 

The phase- and gain margins express how much change a system’s frequency response can change 

before an asymptotic stable system becomes marginally stable [5].  

- Asymptotic stable systems are characterized as having all poles in the left half plane of the unit 

cycle for the continuous plane (s-plane). 

- Marginally stable systems have one or more poles on the imaginary axis. 

- Unstable systems have one or more poles in the right half plane. 

During operational conditions the poles and zeros of the process’ transfer function6 wander, and 

although we might have an asymptotic stable system at commission it can become less and less 

dampened until it reaches a marginally stable system. The effect of each stability property is: 

- Asymptotic stable systems: The stationary impulse response is 0. 

- Marginally stable systems: The stationary impulse response is different from 0, but limited. 

- Unstable systems: The stationary impulse response is unlimited. 

We can in other words not keep an unstable system under control and if the controller and process 

is left completely alone, over time it will likely “collapse” on itself. We need to maintain an as-

ymptotic stable system, which is why we express requirements for the phase- and gain margins. 

The amplitude crossover frequency,   ,is the frequency where the loop transfer function,   , gain 

is equal to 1. This means that for an open loop system, the amplitude output-input relation is 

1:1. 

    ( ) ( ) ( )7  ( 1 ) 

                                                           
6
 The transfer function is complex and unknown, but still existent. 
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   (   )     ( 2 ) 

The phase crossover frequency,     , is the frequency that causes the loop transfer function to 

have a phase lag of      . 

   (     )         ( 3 ) 

The gain margin,   , is the multiplicative increase that    can take at      before the loop transfer 

function passes the critical point8 and becomes marginally stable.  

   
 

   (     ) 
     ( 4 ) 

In practice this can be interpreted analogous to a scenario where a level transmitter outputting 4-

20mA for levels of 0-4m is replaced with a level transmitter with the same output range but for 

levels between 0-2m. This change effectively doubles the gain of    and in order to still have an 

asymptotic stable system according to the gain margin,    needs to be   . Normally it is the 

physical elements of the process itself that changes   ( )  and thus shifts the poles of the trans-

fer function closer or farther away from the critical point. This can be exemplified as a valve de-

veloping stiction9, causing more aggressive behavior to changes. 

The phase margin is defined as the amount of added phase lag     can tolerate before reaching the 

critical point.  

           (   )    ( 5 ) 

These observations lead us to the Bode-Nyquist stability critera: 

                ( 6 ) 

If any of these conditions are satisfied we are sure that our system is asymptotic stable, or in other 

words; controllable.  Phase- and gain margins requirements should be specified according to the 

worst theoretical scenario. Note that controllable does not mean satisfactory controllable and 

that these measures do not reveal anything of our other control performance properties, such 

as the Pv-reference follow property. 

 

                                                                                                                                                                       
7
 R(s), P(s), M(s) are the control, process and measuring transfer functions consecutively. 

8
 Where the poles intersect the imaginary axis and the process becomes marginally stable. 

9
 Stiction is defined in 2.3. 
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2.3 Valve properties 

Control valves are the most common actuators in control loops. They are mechanical and are used 

to limit, or restrict, the amount of flow of process medium through a pipe. This is used to con-

trol process parameters such as temperature, pressure and fluid levels. The Fisher 667-70 sliding 

stem valve (Figure 2-3) is one of the valves connected to the inlet separator, controlling the oil 

liquid flow exiting the separator. As descripted in [6] a valve consists of three basic components: 

- Actuator; The positioner for the valve plug 

- Valve body subassembly; Valve casing, valve seats and valve plug 

- Accessories; Position sensors, I/P transducers etc. 

 

      

- Figure 2-3: Leftmost: Fisher 667 sliding stem control valve [7]. The 667 valves are reverse acting, which means that 
pressure of applied on the bottom of the diaphragm creating a force opposing the spring force. This setup gives a fail 
closed position. The rightmost figure is taken from Finn Haugen’s book “Regulering av dynamiske systemer, 1994” 
[5], and describes the same working principle and general internal structure as used in the Fisher 667. 

Since a valve is a mechanical component, they develop faults over time due to wear and tear. Con-

sider as example the extreme case of a valve controlling a well stream, consisting of a mixture of 

different substances such as crude petroleum, chemicals, water and sand. Coarse working con-

ditions can cause corrosion, which over time alter the characteristics of the valve, and may 

eventually result in leakage; either internal (can result in fluid passing through a closed valve) or 

external (such as stem leakage). In addition, the valve depends on mechanical movement in or-

der to perform its task, and friction on the actuator- stem can increase, resulting in a slower 

working speed. Non optimum clean fluids can contribute to deposits on stem. 
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The ideal valve as described by Choudhury [6]: 

An ideal valve should have a constant gain throughout the valve travel span, i.e. a linear in-

stalled flow characteristic, no dead time with properly adjusted packing and a small 

time constant. 

Choudhury further mentions details of problematic tied to practical valves. They can be summa-

rized shortly as follows: 

- Incorrectly sized valves or incorrect flow characteristic valve for intended operation. 

- Corrosion on valve seat, casing and plug. 

- Actuator faults, such as faulty diaphragm. 

- Partly or fully blocked air vents. 

- Packing leakage or too tight packing on stem. 

- Crystallization and scale on stem, plug and seat. 

Any of these problems, or a combination of them, can results in an associated development of: 

- Static friction, “stiction” (slip jump and dead band behavior). 

- Saturation of valve travel range. 

- Backlash (slack or reverse motion). 

- Increased response time due to change of friction on stem or by weakened actuator (valve travel 

time). 

- Change of flow characteristics (wear and tear). 

- Change of gain, Kv [8]. 

Many of these problems will add additional linear and nonlinear properties to the process, and if 

their combined effect gets too big, the control loop will no longer be able to perform its task at 

a satisfactory level, and in the worst case cause a shutdown. It is desired to proactively search to 

eliminate the problems before they become too dominant, either by running maintenance on, 

or by replacing the affected valves. Valve service plans are usually created based on experience 

or some form of statistical expectations. The manufacturer provides the expected mean time 

between failure (MTBF [9]) according to the equipment’s specifications and operating area. The 

MTBF is predicted to fulfil certain reliability. In order to achieve the reliability factor, the manu-

facturer will advise to run maintenance more often than the MTBF. Statoil mostly perform relia-
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bility centered maintenance (RCM, [10]), which is an experienced based approach to scheduling 

and performing maintenance to uphold the process integrity. 

Depending on the working conditions, and the natural randomness of things, valve problems are al-

lowed to develop for some time. Unsatisfactory and faulty valves are usually depending on be-

ing manually detected. If problems are comprehensive and in e.g. a critical section of the crude 

oil separation, this can result in downtime or a reduced production rate. It is noteworthy that 

even small deviations from the ideal valve characteristics will affect the behavior of the control 

loop, and reduced performance may propagate in some degree to other parts of the process 

plant. 

 

2.3.1 Stiction 

Static friction, also termed “stiction”, is the most common problem in spring-diaphragm-type 

valves. In the lack of a formal definition of stiction, Choudhury investigated earlier self-

proclaimed and adapted definitions of stiction for common properties. Choudhury then pro-

posed a formal definition, able to define the phenomenon of stiction in valves, as follows: 

The presence of stiction impairs proper valve movement, i.e. the valve stem may not move 

in response to the output signal from the controller or the valve positioner. The smooth 

movement of the valve in response to a varying input from the controller or the valve 

positioner is preceded by a stickband and an abrupt jump termed as slip-jump. Its origin 

in a mechanical system is static friction, which exceeds the dynamic friction during 

smooth movement of the valve. 

Stiction is a byproduct of a valve-packing-tradeoff. Too tight packing around the stem prevents 

leakage, but also increases the friction on the stem movement. Corrosion and flaws can also add 

to the unevenness of the valve stem, and increase the friction. See Figure 3-23 for typical effects 

caused by stiction. 

 

2.3.2 Valve saturation and diaphragm faults 
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Mohamed A. Sharif and Roger I. Grosvenor [11] did experimental tests to highlight limitations by 

today’s diagnostics tools on control valve. Their experiments illustrate how common control 

valve problems affect the valve properties, and pose degradation and limitations to the valves’ 

objective. Among the discussed problems are: 

- Entrapment of air in the upper diaphragm casing as result of partly of fully blockage of air vent, 

which works as an air spring opposing the pressure force applied to the other side of the dia-

phragm. Additionally the blockage will likely reduce the valve’s “backward” travel capabilities, so 

that the valve’s travel time in each direction is different. 

- Diaphragm rupture, which results in a loss of applied pressure to the valve stem, reducing the 

sensitivity to pressure changes. Even though there is a throttling element which provides pressure 

its maximum allowed pressure output is set. 

- Internal and external leakage. This is normally due to bad stem packing, or corrosion at the valve 

seat or plug. Can also come from an unbalanced valve plug. 

Any of the mentioned faults can cause saturation of the valve’s operation and either reduce the 

possible amount of fluid flow through the valve, or inhibit the valve from preventing liquid flow. 

 

2.3.3 Valve leakage 

Valve leakage can be closely related to seals and gaskets. According to an article by Sanders, D. 

[12], this is one of the two leading causes of user concern regarding control valve performance, 

along with oversized valves. Tight seals are vital to ensure product quality, but also in respect to 

safety and the environment.  

- Too loose gaskets on the valve stem will make valve travel rapid and fluent, but will also contrib-

ute to allowing fluids to exit the valve along the stem. This again can impair the valve’s movement 

and cause an increase of wear and tear on places that are not designed to be in direct contact 

with the process fluids. If the process fluids (or other substances like gas) exit the pipes in unin-

tended places this can cause hazardous situations, or make an increase of potential risk. 

- The valve plug-to-seat interface is the largest contributor when it comes to seat leakage, which is 

an internal leakage problem. Internal leakage will cause a form of saturation as mentioned in the 

previous section.  
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- In some scenarios the process medium can corrode new passages for it to flow. The process me-

dium can be turbulent and have a corrosive composition. It is important that the valve material 

choice is appropriate for its task. If this is a problem and the valve is left too long without mainte-

nance, both internal and external leakages can develop. 

 

2.4 Measuring equipment properties 

Among measuring equipment, level transmitters will be of focus, but most of the theory is applica-

ble to other types of transmitters as well. The level transmitters at SFC are Rosemount 3051 (see 

Figure 2-4) differential pressure transmitters, measuring the differential pressure between their 

two connectors. Common errors and mistakes are: 

- The transmitters work as transducers meaning that the physical displacement of a thin dia-

phragm separating the two connected inputs to electrical energy of 4-20mA read by the process 

control and data acquisition system. Transmitters need to be scaled properly both in the field 

and in the control system, which can be a potential cause of erroneous readings. For example a 

transmitter is set to provide its full range of electrical output for a level reading between 0 to 3 

meters. This means that it will reach saturation if the liquid levels go beyond these limits. 

 

Figure 2-4: Rosemount 3051 pressure transmitter [13]. 

- It is important that the bandwidth of the transmitter is not exceeded, as the frequency response 

of a transmitter is normally designed to be approximately linear around its intended operating 

area, while below or above it may have nonlinear characteristics. 
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- The physical connectors can be partially or fully blocked, preventing the transmitter from mak-

ing the differential pressure readings correctly. The diaphragm can also get worn out or in some 

way become stuck. This can cause signal freezes or total malfunction. 

- The transmitters’ readings are based on the differential pressure calculations of liquid height. To 

get the calculations correctly the composition of the liquids on both sides must be known. This is 

not always trivial, although constant measurements on the well stream composition are done. 

Incorrect specific weight values errors on readings, such as added (and unknown) skew. 

- Small dents and unevenness will contribute to altering the readings from the transmitter. This is 

vulnerability since it measures the differential pressure of two potentially corrosive substances 

on either side. The substances can also potentially scratch and deposit sediments on the dia-

phragm. As result; bias or “zero- drift” can be added to readings. 

- The transmitters come with an option called “damping”, which in reality is a low- pass filter op-

tion. In practice the setting is used to prevent rapid fluctuations in readings caused by noise or 

disturbances that are not of interest. In many cases a common mistake is to set the damping 

factor too high, so that the transmitters become blunt and too slow at responding to changes so 

their output no longer adequately represent the physical levels.  
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2.5 Generic nonlinear effects 

Finn Haugen points out in his book “Anvendt reguleringsteknikk,1990”  [14] (English: Applied con-

trol theory) that in reality there are elements that add nonlinear dynamics to a given process. 

These elements can for example be associated with valve travel dynamics. Such elements are 

contained by the process but may be hidden and less obvious to the control engineers. Their 

roots can be related to the physicality of the process and the process equipment, and their 

magnitude may change during operation. Their effects will only be apparent in the process re-

sponse, but it is important to have an understanding of them nevertheless.  

 

Figure 2-5: Figure is an excerpt of an illustration adopted from Finn Haugen’s  
“Anvendt reguleringsteknikk, 1990” [14], with some translations. 

The illustrated functions are considered to contribute with generic nonlinear effects to the con-

trolled process, and their effects are shown in Chapter 4.2. The meaning of the term generic in 

this context is that the functions (and their associated features) are considered underlying caus-

es of most of the prominent and prevalent nonlinear features observed at the process output. 

Each function is later simulated in series with the process, individually, and also in combinations. 

We will also see how the suggested indicators (according to the TDP [1]) change with the differ-

ent configurations. 

 

2.6 Test mechanic hypothesis 
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The theory the research is built on is derived from practical experience and conviction that a rela-

tively simple approach to controller tuning has more potential than what has been exploited 

previously. The suggested method is based on a modified relay method where a relay is put in 

series with/or replaces the PID controller. For robustness the relay is placed in series for this 

purpose.  

Åström and Hägglund [15] proposed the standard relay test in a paper of 1984; replace the regula-

tor with a relay in series with the process to automatically detect the critical gain and critical 

frequency, with the objective of automating tuning of simple controllers as well as initialization 

of more complicated adaptive controllers. The method has been widely used and modified dur-

ing the years.  

Implications of the theory used as base for this thesis is an extended use of the modified relay 

method to not only use it for support and ease controller tuning by knowing the amplitude and 

phase margins, but to reveal process control loop and control equipment characteristics, thus 

possibly indicate the source of changes in control performance (Figure 2-6).  

 

Figure 2-6: Descriptive drawing of the test mechanism implemented on the physical plant. 

The method is a variation of a modified relay test and is directed toward building an understanding 

of how different faults affect the frequency response of the process in series with the known 

controller. The operators know when the process is performing satisfactory and the process 

state at that point can be used as a reference. By studying how the selected indicators change 

with different parameter settings of modelled faults during the simulation study, the knowledge 
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base shall give insight and enable setting limits to determine whenever the performance is low-

ered, and what likely causes are. The indicators will indicate the process healthiness. 

 

2.7 Standard and modified relay feedback method 

The standard relay feedback method can be seen in Figure 2-8. Once the testing is initiated the PID 

controller is disconnected from the control loop. The relay (with adjustable hysteresis) has a 

built in memory and outputs its value according to the rules: 

- High signal,  , if      

- Low signal,  , if     

- Else     

Where   is the modifiable hysteresis on the input of the relay that is controlled by the test mecha-

nism and   is the       deviation. An expression that is central in the derived equations for 

the relay tests and the test mechanism is 
  

 
, which corresponds to the amplitude of the first 

harmonic frequency of the relay, where    is the magnitude of the relay output. 

 

Figure 2-7: Illustration of the relay output and its corresponding first harmonic frequency.  
Illustration is adopted from a textbook written by Finn Haugen [5]. 

The relay method gives the open loop response. The feedback is “cancelled” by the relay, and the 

relay induces oscillatory behavior in the process output, called limit cycles. The frequency of the 

output is dependent on the chosen hysteresis,  . If     the produced limit cycles have fre-

quency of       which corresponds to the frequency of the critical point.        means, as 

mentioned earlier, the frequency of where the open loop response has a phase lag of       

from the reference. On the unit cycle this equals -1, and with the negative feedback this corre-

sponds to  -(-) which gives +, thus a positive feedback and instability unless we have an appro-
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priate amount of gain dampening.    can be found by adjusting the hysteresis, and then the 

phase and gain margin can be easily calculated as well. The method used for this is found in [16], 

and is also summarized in 3.3.8. 

 

Figure 2-8: The standard relay feedback method.  
The relay and controller are run in parallel. 

Running the test mechanism as a standard relay method was desired since the controller’s transfer 

function is not included in the transfer function for the revealed indicators. The transfer function 

seen by the relay method is  ( ) for the standard relay test.  ( ) is the transfer function for the 

controller,  ( ) is the process transfer function and  ( ) is the measurement transfer function. 

There is one undesirable effect in particular that points toward a modified relay structure in-

stead. 

 

Figure 2-9: The modified relay feedback method.  
The relay is now in series with the controller. 

 

For the modified relay test the observed10 transfer function is  ( )   ( ) ( ) ( ). Although 

 ( ) and  ( ) are unknown, the form of  ( ) is known exact since we design it by setting its 

parameters. If we measure  ( ) we can therefore derive the transfer function contributions 

                                                           
10

 Observed as in the meaning that we see how the known input is changed throughout the system. 
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originating from ( ) ( ) in series, and if we could know  ( ) exact we could isolate the con-

tribution from  ( ), but in reality these two are inseparable. The transfer function for a PID con-

troller is given by the equation (this is the standard and generally known equation): 

 ( )    
            

   
   ( 7 ) 

 

Figure 2-10: Frequency response of a PI(D) controller with Kp=4, Ti=100 and Td=0.  
This is the controller setup used in the Monte Carlo simulation in Chapter 4. 

The response seen from Figure 2-10 is an example of the added controller contribution to the loop 

transfer function. The advantage of keeping the controller in the loop for the relay feedback 

testing is to keep the process around the operating point, which is important for different fac-

tors. If substantial amount of disturbances and forces act on the process output, they can break 

the relay mechanism by preventing its input value from reaching the required value for the relay 

to switch.        for  ( ) will be different than that of  ( ) and  ( ) in series, but since we 

are interested in the control performance this is a topic of no concern. We are interested in pro-

cess parameters, as well as control performance. 

 

2.8 Mapping process “footprint” 

As mentioned in 2.7, zero hysteresis makes the relay produce oscillations with frequency corre-

sponding to       , and corresponding gain can be read accordingly.    is also found according 

to the mentioned method, and together these two frequencies mark the edge points of interest-
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ing frequencies to study. Finding “footprints” for our process model is vital to provide an under-

standing of how our process state indicators travel as the process is under operation. When we 

know how the indicators travel, we can later look on the indicators in order to see how the op-

erational and technical states have changed, and we can make plans for controller retuning and 

process equipment maintenance accordingly.  In addition to being reliable tools for obtaining 

the frequency responses for the “footprints”, the proposed methods can also be used to obtain 

additional indicators for the test mechanism; e.g. obtain gain dampening per decade or phase 

sensitivity at specific frequencies. 

Several methods for mapping the process footprint was developed, but most were considered too 

unreliable that they could be used. We need something that is little subjected to random varia-

tions induced by the simulation time steps and discretization. The methods are not required in 

practice as they would never be run on a physical plant due to their effect on the control loops. 

Two approaches were proven to be outstanding and are included in sub sections 2.8.1 and 2.8.2. 

The first approach is a post simulation procedure and finding the phase and gain frequency re-

sponses, while the other is benefiting from simple components to do it in real time. 

 

2.8.1 Approach 1: Sine sweep and fast Fourier transform 

To find the exact bode plots for the simulated process we use a sine sweep approach by applying 

sine waves of known amplitude, frequency,  , and phase, , on the input to  ( ), and read the 

resulting amplitude and phase response on the output signal. The difference between the input-

output amplitude and phase then corresponds to  (  ). The observed system, as opposed to in 

the modified relay test, is the closed loop of  ( ). This means that  ( ) is part of a normal con-

trol feedback structure described by: 

 ( )  
 ( )

 ( )
 

 ( )

   ( )
 

 ( ) ( ) ( )

   ( ) ( ) ( )
          ( 8 ) 

 

The contribution of  ( ) ( ) can be found by solving equation (8) by reorganizing for 

 ( ) ( ), but the feedback structure applies a resonance peak on the amplitude response 
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and which cannot be removed by reorganizing the equation when calculating “backwards”11. 

Instead using the fast Fourier transform (FFT) is suggested and it has proven itself reliable 

and accurate in most situations12. This transform brings the time variant signals to the fre-

quency plane, where we can easily isolate the frequency of the limit cycles and obtain phase 

and gain change from Op to Pv. 

 

Figure 2-11: Applying sine waves on the reference while the process 
 is quiescent at the operating point. 

The transfer function of  ( ) ( ) is unknown, and we have to estimate its frequency response by 

studying how its output behaves with different frequencies on its input side, which is connected 

to the controller output. Sine waves ranging from    to        are applied as time varying set 

point for the control loop and the frequency responses are easily obtained by logging the con-

troller output signal , Op, and the controlled process value, Pv. Thereby the response is found by 

applying the FFT on the data to obtain  ( ) ( )’ gain and phase lag [17] during the post simu-

lation procedure. 

 

2.8.2 Approach 2: Relay sweep adjusting hysteresis and transport delay 

This approach is more practical and exploits how the modified relay forces limit cycles and how 

these cycles can be modified by adding nonlinear elements on the digital processing side to pro-

                                                           
11

 This was attempted, but the resonance peak completely overshadowed some of the interesting frequency 
response, as well as manipulating some of the values around. 

12
 FFT does not cope as good in situations with high signal deterioration, such as when frequencies are close 

the sample frequency or if there are nonlinear elements in the process/equipment so that some energy 
from the first harmonic frequency of the input is shifted to other frequencies (and therefore no longer no-
ticed by the FFT gain/phase algorithm). 
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duce additional information. The method has further shown that the sine sweep approach is ob-

solete, since FFTs can be obtained for the digital signals produced in the relay setup as well, thus 

removing the need for a sine wave source, thus further generalizing the method. The only draw-

back is that the relay produces a range of frequencies rather than just one, but we can dismiss 

all but the first harmonic in the resulting FFTs. 

Adjusting hysteresis relay sweep: 

As mentioned in 2.7 we can lower the frequency of the limit cycles by applying hysteresis to the re-

lay. This has been proved to provide reliable results for the gain response of  ( ), and thus for 

  ( ) ( ) . 

 

Figure 2-12: Illustration of the adjusted hysteresis relay sweep setup 
(in Simulink the hysteresis is in reality part of the relay block, 
 hence its block drawing). 

The relay hysteresis,  , is adjusted between the value that produced   , and 0 (which produced 

      ).  

       
       13 

The measured process output is passed through a period- and an amplitude estimator (detailed in 

3.3.6 and 3.3.7). Consequently,  

  (  )   
 (  )

 (  )
  

 (  )
  

 

     ( 9 ) 

                                                           
13

 Note that     and      
 are not included in the sweep since their amplitudes are already known from 

the test mechanism. 
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Where    is the estimated frequency, 
 

  
, in hertz. If the estimators are correctly parameterized this 

provides an accurate and reliable reading for   (  ) . Further;  (  ) (  ) can be isolated by 

removing the contribution from the known  (  ).  

  (  ) (  )  
  (  ) 

  (  ) 
, or 

  (  ) (  )             (  )           (  )  

However, it is not straight forward to derive the effect that adjusting the hysteresis has on the 

phase of  (  ) so a second test is proposed for finding the phase response; adding a transport 

delay on the relay output. 

Adjusting transport delay relay sweep: 

 

Figure 2-13: Illustration of the adjusted transport delay relay sweep setup. 

The transport delay’s ability is to “steal” bandwidth from the rest of the system during the modified 

relay test with zero hysteresis. Since the relay (with zero hysteresis) will always induce the criti-

cal limit cycles (       ), the resulting frequency of the output oscillations is given by 

    
 (         (         ) )

 

Where 

 (         )   
      

  
                      

Since    is unknown until we have ran the test with a given transport delay,       , the resulting 

frequency shift,    , can be tiny or large depending if we are positioned at a steep slope or on 

flat ground on the phase response of  (  ). 
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The value of        has to be trialed and adjusted incrementally since we cannot predict which fre-

quency we will end up on in advance.        should therefore be incremented by small steps at 

start, and one could consider letting         increase inversely proportional to     , if the re-

sulting    s are small. 

      ( )        (   )  
      

   
 

Where        is a suggested sensitivity factor of the        adjustment between simulation num-

ber   and    . For high frequency response resolution        should be kept small, but for 

simulations each increment of        must be higher than the simulation step time. Simulating 

increments of        is done until      . 

                    
      14 

  (  ) can now be found for all produced limit cycles,   , according to: 

  (   ) (   )          (   )   (         )  

We can now finally represent the sampled frequency response of  (  ) (  ), which is our pro-

cess “footprint”. 

  

                                                           
14

 The phase of          is already known from the relay test with zero hysteresis (-180°). 
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Chapter 3  

Experimental 

The experimental chapter will start off by listing some of the requirements (3.1) for the models 

produced (3.2). Most of them are related to the modelling power of faults mentioned in Chapter 

2. The chapter will then progress on by illustrating and describing the produced models (3.3), 

and associated sub elements, as well as fairly in- depth descriptions of their structure and be-

haviors. Component testing and associated results can be found in section 3.4.1. 

3.1 Model requirements 

Model in this context is a reference to all Simulink and Dymola models produced. Among such 

models can be the top level Simulink model, or the model of a control valve. The models used 

for the simulation study need to be able to reflect realistic technical and operational changes 

that the inlet separator of SFC is subjected to. The system can be split into three main compo-

nents; transmitters, valves and physical separator, which are each modelled independently and 

detailed in separate subsections of this chapter. 

The models produced are to be used in conjunction with both the Simulink and the Dymola process 

models, meaning that the Simulink control valve and transmitter models are also acting as ele-

ments in Dymola, and need the proper interfacing. Their objective is to create a realistic image 

of real equipment, with parametric faults, for the simulation study. They shall reflect behavior 

seen in real equipment, where faults have root in physical causes that can be modelled, and 

which can be governed by Matlab. The focus will be directed at some or most of the fault modes 

described in 2.3 and 2.4. 

The models should ideally have realistic inputs to them, but to keep in line with the main topic of 

the thesis which is finding the signatures of different linear and nonlinear characteristics in-

duced by change of technical states; this would in contrary bury some of the interesting results. 

This is still optional and can easily be included on a later stage for hardening the proposed test 

mechanism itself against disturbances. Relevant data can be obtained by logging the liquid flows 

through each level control valve and create a looping vector of these values and insert into the 

simulated environment. 
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3.2 Models produced according to requirements 

All parameters in the Simulink model are stored in a structure called MODEL, which means they 

have the prefix MODEL. when they are initialized. The model separates the digital processing 

signal side from the physical part of the process. 

 

Figure 3-1: Principle drawing of the Simulink model containing the actuator, process and equipment models. Data flow 
with Matlab is also included. 

An accurate process model has been created in Dymola and based on existing Statoil libraries. Re-

use here reduced the workload by a large factor and allows more concentration to be spent on 

the actual topic of this thesis. The Dymola model’s task is to maintain a realistic and true process 

image during simulations, benefiting of the powerful physical modelling capabilities of Dymola, 

while the control oriented approach of Simulink and the analytical capabilities of Matlab is used 

to dictate the simulation sequencing, and interpret the produced data.  

The time constraint of this work prevented the model from being operational and implemented in 

Simulink. It lacks parameter setting, and interfacing with Simulink. The Dymola model was going 

to be exported to the Simulink environment as a .MEX file. The created Dymola model (Figure 

3-5) shows the choice of boundaries (where the production train meets stable counter forces) 

and the elements included. 
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3.2.1 Simulink simplified process model 

Only the light side of the weirs in the separator is considered in the simplified model. Light side re-

fers to the side where the oil is drained. The separator is a hollow cylinder shape, with half 

spheres at each end point. Weir plates are located on each side of the separator. The crude 

three phase fluid from the production manifold enters the separator in the middle. Sand and 

other minerals and chemicals may also be included in the fluid mixture, but are not important 

for modelling purposes. The substances of interest are gas, oil and water. Water, which is the 

heavier substance, will by sink to the bottom of the separator by gravitational principle. The wa-

ter level is held at a desired level by water control valve, below the weir plates so that water 

does not flow over the weir plates, sinks, and gets drained along with the oil continuing further 

down the production train. The water is not considered pure and continues through hydro cy-

clones and to the degasser to achieve the required maximum of oil in water before being dis-

posed as sea water. When the three phase fluid enters the separator, lowered pressure causes 

the lighter hydrocarbons to flash. A combination of the separator volume occupied by the in-

compressible fluids, oil and water, and the amount of gas gives the total pressure exerted on the 

substances leaving the separator. Pressure in the separator is controlled to ensure optimal sepa-

ration and uphold safety. Emergency valves are installed in case of dangerous situations. The 

pressure set point is maintained by draining gas through the gas control valve at the top of sepa-

rator. As mentioned the oil level is kept above the height of the weirs. Both light sides of the 

weirs are connected so that the levels at both sides will be the same. Oil exits the inlet separator 

through the oil control valve. 

Control loops involved in keeping optimal conditions for separation: 

- Oil level control loop 

- Water level control loop 

- Pressure control loop (gas amount) 
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The simplified model was developed in Simulink for the purpose of providing the signatures15 of 

(simulated) prominent process changes. Dimensions and terms are listed in Table 1 page 36. The 

model consists of a simplified three phase separator which only “sees” the light side of the weir 

(see Figure 3-2). Oil flows over the weir as a disturbance, and is drained through the oil control 

valve. The level of oil is kept under the weir height so that only the light side volumes are con-

sidered in volume calculations. This violates normal operational circumstances as the level of oil 

in the drum is usually set above the weir to prevent water from flowing over the weir and 

through the oil outlet. This should not have any impact on the verification of the test mecha-

nism, since it will mostly only impact the residence time of the fluid in the drum, and the nonlin-

earity caused by the volume calculation at different set points. 

Starting point of the oil height at light side is the mass balance equation: 

  ( )

  
   ( )    ( )   ( 10 ) 

Which further leads to: 

  ( )

  
 

 

 ( ( ))
(  ( )    ( ))   ( 11 ) 

  ( ) is considered as an unknown disturbance of oil flowing across the weir to the light side, while 

the outgoing flow,   ( ), is controlled by a level valve following the equation 

  

    
 ( )√  ( )       ( 12 ) 

 

Note that 3600 is a conversion from 
  

 
  

  

 
, and  ( ) is the valve flow characteristics. The differ-

ential pressure across the valve is calculated by: 

  ( )  (
   ( )

       
        ( ))         ( )   ( 13 ) 

Where   is the density of oil and   is the gravitational constant. Division by 100 000 is a conversion 

from the physical unit Pascal to barG, which is standard in the SFC systems.        ( ) and 

       ( ) are internal separator pressures of the inlet separator and flash drum 1 respectively. 

                                                           
15

 The models are also used for validating the test mechanism during development iterations. It is important 
to keep in mind that the TDP is the basis, and that the equipment fault (and other process properties) sig-
natures are of most importance. 
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These are realistically variable and controlled by separate control loops, but this dynamic is ig-

nored and they are set to their respective set point values. 

The valve equation is combined with additional elements in order to be able to simulate faults. The 

valve dynamics is located in the “complete valve(1417_0304)” subsystem (see Figure 3-4). 

 

 ( ( )) can be calculated with basis in the figure below. 

 

Figure 3-2: Geometry of the inlet separator. 

Only the volumes represented in brown are considered as part of the simplification. Dimensions are 

obtained from [18]. Both ends can be considered as perfect spheres (       ), which 

makes it easy to calculate their contribution to the cross section area as function of the oil level, 

 .  

 

Figure 3-3: Both edge spheres have been combined to a whole sphere for calculations. Radius of this sphere at oil 
height h(t) is the same as the width/2 of the cylinder area (with length c+e). 

The entire cross section area occupied with oil is 

       ( ( ))           ( ( ))         ( ( ))    ( 14 ) 



Classification: Confidential  
 

35 
 

          ( ( ))  (   ) ( ( ))      ( 15 ) 

        ( ( ))    ( ( ))    ( 16 ) 

where  

  ( ( ))  √
  

 
 ( ( )   )  , derived from the standard circle equation;         . 

The resulting model is implemented in continuous form as a block diagram (see Figure 3-4). 

 

Figure 3-4: The simplified Simulink model produced according to the equations  
describing the input-output- and valve dynamics. 

 

Symbol Description Unit/value 

  ( ),  ( ) In/outgoing mass flow respectively   

 
 

  ( ),  ( ) In/outgoing volume flow respectively   

 
 

 ( ( )) Cross section area of light side as function of  

oil height 

   

   Valve coefficient in metric units. Flow through 

valve at 1 bar pressure drop 

  

      
 

  ( ) Pressure drop across the valve      

  Gravitational constant     
 

  
 

     Density of oil, this is an estimation and may 

vary 
   

  

  
 

        Radius of edge spheres       

  Length of left light side portion of cylinder       
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  This value is not used in the simple model         

  Length of right light side portion of cylinder         

Table 1: Symbol table for the Simplified Simulink model. 

 

3.2.2 Dymola more comprehensive process model 

The purpose of all models is, as mentioned, to provide signatures of commonly prominent faults or 

change of operational or other technical states. The Dymola system’s role is to represent the re-

al inlet separator as realistically as possible, with more dynamics introduced to the inlet separa-

tor caused by surrounding elements and other control loops. The Dymola model takes both the 

separator and its close surroundings into consideration. Fluctuations caused by control loops in 

other elements connected with the production train can also ripple back to the inlet separator, 

acting as disturbances in its control loops. Development of the Dymola model had to be down- 

prioritized due to a change of approach to finding the signatures. Rather than diving straight into 

the complex system, more generic properties were considered of higher importance until a later 

stage of the technology development. 
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Figure 3-5: Dymola model produced. This was not implemented in Simulink due  
to the time constraint of the thesis. 

 

3.2.3 Control valve model 

The practical valve model is implemented according to specifications in 3.1 and is tested to verify 

that it behaves as expected (see Figure 3-6). The valve model is constructed in a way that is logi-

cal for users to interpret and thus simplifies the verification. The model is created so that signal 

faults are considered first, then actuation and mechanical features, followed by implemented 

valve characteristics and flow calculation. The inducing valve fault elements16 are considered to 

have root in physical features exposed to operational drift and their rationales follow: 

                                                           
16

 The order of the elements is important. 
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- Different valves have different valve characteristics and different characteristics should be con-

sidered depending on its role in the process, for example a scenario where rapid valve closing is 

more important that valve opening. 

- The actuator diaphragm can gradually rupture creating a loss of power transferred to the actuator 

stem. The valve’s ability to move will be reduced accordingly. Diaphragm leak is considered to be 

a variable value as % subtracted from the desired pressure applied to the valve stem. 

- The valve is considered to be a first order system, with mechanical movement described by its 

transfer function with response time valve_T. Friction on valve stem, weight, actuation method 

among others affect the time constant. 

- Valve saturation can be changed by erosion, corrosion and replacing of the actual valve present in 

the process. Valves are often implemented with fixed valve saturation for e.g. making 85% physi-

cally closed valve correspond to 100% inhibited fluid flow through the valve. 

- Stiction is implemented as an S-function in the model. Choudhury’s 2 parameter driven valve stic-

tion algorithm gives a good relation between the parameters and the physical observations. 

- The valve can develop internal leakage so that its Kv is higher than listed in its specifications. Fluid 

may pass through the valve even in closed position. 

- Additional limit blocks in between blocks that may elevate or lower signal values above or below 

physically possible values are added to keep the model in bounds. 



Classification: Confidential  
 

39 
 

 

Figure 3-6: Practical valve model implemented in Simulink. Uses three inputs; Controller output, u/op(k), pressure on 
input side, P_IN, and pressure on output side, P_OUT. 

Characteristics of the diaphragm air outlet are not included in the current model because this 

should be more properly modelled, and depends a lot on the throttling element’s capabilities. 

The potentially arising air spring effect due to air entrapment in the diaphragm, and also the re-

duced “backward” travel capabilities are considered large. 

 

3.2.4 Level transmitter model 

The practical level transmitter model consists of: 

- A saturation block. The transmitter’s range of measurements is physically and digitally limited so 

that it e.g. outputs 4-20mA for levels 0-4 meters. 

- A filter that may or may not be connected (boolean transmitter_filter_enabled). The filter is im-

plemented as a first order continuous low pass filter with its cutoff frequency at transmitter_Tm. 

- Transmitter characteristics. The physical transmitter can also be incorrectly calibrated so that the 

interpreted fluid level is biased and/or skewed. 

- The transmitter has an IO out part, which has a fixed sample rate and a set resolution for quantiz-

ing the bits. 
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Figure 3-7: Transmitter model. Left is the complete transmitter model, while right is the subelements of the Transmit-
ter dynamics block. 

 

3.3 Design of test mechanism components 

3.3.1 Matlab flow control and simulation setup 

The Monte Carlo simulation (Figure 3-8) is mostly scripted, because the reusability of converting it 

to functions is considered small. In addition there are some problems if the programmatic run of 

the Simulink model exists within a function and the simulation state is saved, as it will be saved 

to the top level workspace and will be unreachable within the function. The script is divided into 

small scripts where it is appropriate. The program flow from the main simulation file continues 

to scripts with the prefix “component_”.  
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Figure 3-8: Main simulation flow diagram. 

 

The Simulink models are initialized through running the main simulation file 

“run_MainSimulation.m” in Matlab. This initializes all the different elements with default set-

tings. The initialization is divided into several files with the prefix “init” in order to make it faster 

and more intuitive for users to change process and test mechanism parameters. All automatic 

simulation parameters that are meant to be accessed and specified by users are initialized in the 

“prep_simulation_parameters.m” file. Among these parameters are the vectors specifying the 

fault parameter configurations the Monte Carlo simulation will step through. The main simula-

tion file will then open the correct specified model and wait for user to make the desired choice 

of running in automatic mode, which is used for large simulations of many fault and process 
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configurations, or manual mode, which stops the script and lets users manually run the Simulink 

model, which is good for quick testing. 

After initializing the model and fault parameters the main simulation file will set the reference of 

the next simulation, and then set Simulink to output the simulation states at completion. Sim-

ulink simulation is then programmatically started with default parameters. The simulation is au-

tomatically stopped when the process output satisfies the conditions for stationarity. The script 

then continues to load the stationary states, set all the simulation parameter settings to all the 

pre specified configurations and then start the Simulink simulation again. Each simulation is 

stopped by the test mechanism when the indicators are obtained. The obtained results and 

some of the simulation values are stored for verification, analysis and post processing. Script 

then continues to the sine sweep procedure, which is an extra test to verify the validity of the 

main test mechanism (the modified relay test). Stationary state is loaded and then the fault pa-

rameters are set again. Then a pre specified amount of frequencies spanning from lower than 

   to higher than        are passed through the process model, obtaining gain and phase for 

each frequency. 

After (and during if the processing takes more than a specified amount of time) all results are writ-

ten to .mat files. The files are stored in a readable manner so one can load them to workspace 

and read the obtained results and see the degree of the faults used for each simulation. There 

are also some analysis tools for plotting responses and create bode plots for gain and phase re-

sponses obtained during sine sweep. 

 

3.3.2 Simulink design 

In the top level of the simulation model, digital processing is separated from the elements repre-

senting the physicality of the process plant. The system that is under control is easily swappable 

and is represented as a single block with specified inputs and outputs. Author has developed 

two models of the inlet separator in different simulation environments, one in Dymola and one 

in Simulink which are described in their own subsections. Most of the work during this thesis has 

been spent on the simplified Simulink process model to develop the test mechanism further. 

The Dymola model should use most of the same interface connections as the Simulink process 

model. 
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Figure 3-9: Top level view of Simulink model organized with subsystems. 

The Digital Processing block (Figure 3-10) contains elements that represent the signal processing 

side of the control loop. Elements found here are: 

- IO in; A calculation from mA to meters. The signal from the level transmitter is connected to its 

input port. 

- Performance; Contains blocks for integrated absolute error (IAE) and integral of time multiplied 

by absolute error (ITAE) performance indicators. 

- Reference; Desired level of the closed control loop. 

- Stationarity; This block’s objective is to indicate whenever the process has stabilized at a set op-

erating point.  

- Actuation; Contains the implementation for the PID controller and relay. Can select if the control-

ler is to be used in series or in parallel with the relay. 

- Property measurement; This holds the blocks for the real time control loop property estimation 

such as amplitude, phase, frequency and ultimate values. 

- IO out; Quantification of the digital signal and conversion to the appropriate signal level on the 

physical communication line. Signal from the digital processing is also down sampled to specified 

rate handled by the process equipment. 
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Figure 3-10: CD2001_model_vX/Digital Processing. 

 

3.3.3 Detecting quiescence at process output 

When Matlab commences a Monte Carlo simulation the process is brought to stationarity before 

enabling the relay. Stationarity is defined as the quiescent state of the process output; in other 

words where the operational states and the internal state of the controller balance the system 

at a fixed set point. The block “stationarity" in Figure 3-10 is responsible for this and outputs a 1 

when criteria are satisfied, 0 else. Stationarity is considered to be when the process-output has 

stabilized around an operating point with constant process- and equipment- parameters. Sta-

tionarity is considered attained when several conditions are true: 

- The average absolute deviation-signal is below a threshold 17 

- The average absolute derivate of the deviation-signal is below a threshold 

When these conditions are satisfied an element will notify the rest of the simulation model and the 

relay will be connected into the closed loop. If the relay is set to run with the controller discon-

nected, the controller output used to hold the process at stationarity is sampled and held, and is 

used as an output-bias for the relay. The default setting is to have the relay in series with the 

controller so that the relay bias is given by the controller in order to increase robustness toward 

disturbances. 

                                                           
17

 The reference-process-output deviation-signal is also down-sampled to the same rate as the measuring 
equipment. 
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3.3.4 Detecting asymptotic stability 

Detecting when the control system’s performance is so degraded that it would have been manually 

noticed by the process operators is important. There is no relevance to run simulations for cases 

that will never have the time to develop, and it is important for the Monte Carlo simulation to 

not spend unnecessary time on such cases. The asymptotic stability criteria is therefore imple-

mented in the test mechanism by checking if the closed loop process gain is larger than a given 

threshold, and in such a case the simulation will be prematurely terminated and marked as un-

stable. Stability properties are: 

- Asymptotic stable system:            

- Marginally stable system:            

- Unstable system:            

Interpretation of these properties leads to the asymptotic stability threshold implemented in the 

test mechanism: 

Asymptotic stable system:  
  
  

 

       ( 17 ) 

Where    is the measured process output and   is the magnitude of the relay output. 
  

 
 corre-

sponds to the magnitude of the first harmonic frequency produced by the relay, which is consid-

ered r (reference) for the controller. Following part of the interpretation is that        is pro-

duced with zero hysteresis on the relay, which is the case when the test mechanism checks for 

stability, and that the definition of    is given by: 

   (   )          ( 18 ) 

Giving the implemented limit for stability: 

  (   )  |
 (   )

 (   )
|  |

  (   )

    (   )
|  

 

   
 

 

 
   ( 19 ) 

 

3.3.5 Preventing false relay switch behavior 
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The relay test is susceptible to noise, especially high frequent oscillatory noise while crossing over 

the reference-process output zero deviation point with zero hysteresis. This can propagate as 

rapid relay switching. The extra relay switching caused by the noise is outside of the process 

bandwidth and will not affect the process output at any such degree that it would change the 

response, but it has another drawback: It can be tricky to accurately read the frequency from 

the process output, and it is therefore read directly from the edges of the relay switch- points. If 

the relay then switches multiple times per deviation-zero-crossing this can be a weakness in the 

robustness of our test mechanism, even if we make a logical mechanism to ignore extra fast 

switching. Such a mechanism is proposed in the Simulink model, although it disabled and not 

considered necessary since the rate of the level transmitter and other process equipment con-

nected to the process control and data acquisition system (PCDA) is so low. 

 

Figure 3-11: Setup for showing false relay switch behavior. 

 

Figure 3-12: Left: Ideal relay switching with little or no hysteresis or filter, right: The effect on noise on relay with little 
or no hysteresis or filter. 

 In scenarios of rapid sample rates a small amount of hysteresis with amplitude larger than the 

noise can also be added so that the noise itself is no longer enough to make the relay switch. It 

is important to be aware of the issue, but since the simulation model is currently set to the 

same rate as of the level transmitter at SFC (Ts = 1), which suppresses the problem for now 
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since the process output is then allowed to rise and fall enough between each sampled level 

that the rapid switching seen in Error! Reference source not found. does not occur. If the filter 

is enabled, it will affect the phase of the relay signal passed through. 

 

3.3.6 Estimating frequency of process output 

An element  named “PeriodEst” in the Simulink simulation model is responsible for finding the fre-

quency of the limit cycles. The element is implemented as an S-function block. The block has 

several connectors: 

Inputs: 

- “reset”; Boolean input which resets the block to its initial conditions. This is used when system 

parameters have changed, such as the relay hysteresis. Reset is connected to activate whenever 

SimcycleOp steps to the next simulation stage. 

- “trigger”; Boolean input which causes the block to store the current input at “new_t”. 

- “new_t”; The current simulation time, of type double. 

- “std_thresh”; The threshold that must be satisfied by the standard deviation of the logged peri-

ods for the output “ready” to be true. Its value is given as a percentage of the mean logged peri-

od value. The threshold is specified by the Matlab workspace variable “T_std_tresh_pct”. 

- “memory_in”; The S-function does not have an internal memory so the logged time values from 

last simulation time step are fed back as a vector through this input. 

Outputs: 

- “T_out”; The estimated period of the “trigger” signal. This is the mean value of all the logged pe-

riods. The amount of periods considered is specified by the Matlab workspace variable 

“T_n_relay_edges”. 

- “std_out_pct”; Outputs the standard deviation of the estimated period. This can be used for veri-

fication and to quantify the threshold value from observations during simulations18 when results 

are satisfactory.  

                                                           
18

 Note that when the estimated period is zero, the standard deviation will be NaN and will not be shown on 
the scope.  
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- “ready”; Boolean output which is true when following conditions are met: 

 Standard deviation < threshold 

 “T_n_relay_edges” periods are included in the average 

 The time since last period has not exceeded a factor time the current period estimate 

- “memory_out”; Current logged time values as a vector. 

 

Figure 3-13: PeriodEst Simulink block. Located in  
CD2001_model_v2/property measurement/period estimation/. 

 

3.3.7 Estimating amplitude of process output 

We are interested in finding the amplitude of the specific frequency caused by the relay, but we al-

so want to find the frequency response of the whole system for additional analysis purposes, 

such as verification of the test mechanism accuracy. For simplicity “frequency of interest” will 

be shortened to “FOI”.  

The amplitude is defined as the distance between the peak of a period, and an equilibrium, which 

can be expected as the middle value of a peak and a valley. Since the process output may con-

sist of multiple (and realistically unknown) frequencies caused by process disturbances in addi-

tion to the FOI, which will affect the height and depth of peaks and valleys consequently, we 

need to apply a filter to the signal. Since the frequencies can be anything ranging from lower to 

higher than the FOI, we will need a bandpass- filter. In theory the chances that the process dis-

turbances have approximately the same frequency as our FOI is low (and hard to quantify) we 

want our passband to be tight around our FOI, with some tolerance toward inaccuracy in its es-

timation. To satisfactory neglect the influence of disturbance frequencies close to our passband 

we also want sideband attenuation to be as high as possible. Since we need to find the ampli-
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tude as accurately as possible, zero passband ripple is desired. Note that there is a tradeoff be-

tween sideband attenuation and passband ripple, and to achieve the filter requirements high 

order filters are necessary. There is no filter phase response requirement since the time lag of 

the peaks and valleys won’t affect the obtained amplitude readings within each period. 

An element named AmpPhaEst in the Simulink simulation model is responsible for finding the am-

plitude of the limit cycles. The element is implemented as an S-function block. The block has 

several connectors: 

Inputs: 

- “reset”; Boolean input which resets the block to its initial conditions. This is used when system 

parameters have changed, such as the relay hysteresis. Reset is connected to activate whenever 

SimcycleOp steps to the next simulation stage. 

- “trigger”; Boolean input which causes the block to store the current maximum and minimum of 

the input signal and start the detection of a new max/min. 

- “signal”; The input signal of interest. 

- “time”; See the next section. 

- “Ts”; See the next section. 

- “Tp”, See the next section. 

- “std_thresh”; The threshold that must be satisfied by the standard deviation of the logged ampli-

tudes for the output “ready” to be true. Its value is given as a percentage of the mean logged 

amplitude value. The threshold is specified by the Matlab workspace variable “A_std_tresh_pct”. 

- “variables_in”; The current maximum and minimum values of the input signal (and time values of 

these; see next section) since last reset/trigger. 

- “memory_amp_in”; The S-function does not have an internal memory so the logged amplitude 

values from last simulation time step are fed back as a vector through this input. memory_in 

holds A_n_relay_edges amplitudes for a mean value. 

- “memory_lag_in”;  See the next section. 

Outputs: 

- “amp_out”;  The estimated amplitude of the input signal. This is the mean value of all the logged 

amplitudes. The amount of periods considered is specified by the Matlab workspace variable 

“A_n_relay_edges”. 
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- “pha_out”; See the next section. 

- “std_out_pct”; Outputs the standard deviation of the estimated amplitude. This can be used for 

verification and to quantify the threshold value from observations during simulations19 when re-

sults are satisfactory. 

- “ready”; Boolean output which is true when following conditions are met: 

 Standard deviation < threshold 

 “A_n_relay_edges” periods are included in the average 

- “variables_out”; Current logged min/max values as a vector. 

- “memory_lag_out”; See the next section. 

-  “memory_amp_out”; Current logged amplitude values as a vector. 

 

Figure 3-14: AmpEst Simulink block. Located in  
CD2001_model_v2/property measurement/amp & phase estimation/. 

 

3.3.8 Estimating        ,   ,   ,    

The task of SimcycleOp in 20 block is to implement the stepwise procedure of finding the gain- and 

phase margins. The procedure in implemented as an S-function block in Simulink. The procedure is 

described in the preliminary Bachelor thesis [2] and is summarized as follows:  

                                                           
19

 Note that when the estimated period is zero, the standard deviation will be NaN and will not be shown on 
the scope.  
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(1) Perform a relay test without hysteresis (    ), calculate the gain margin,    and        . 

(2) Calculate first process parameter,  . 

(3) Perform second relay test with hysteresis               .   is the relay amplitude 

(4) Calculate the hysteresis,       that puts the process at the unit circle,    (  )   . 

(5) Estimated frequency is    . Calculate the phase margin,   . 

The block listens to the amplitude- and period estimators, AmpEst and PeriodEst, which are located in 

the same subsystem as SimcycleOp. Whenever gain and period criteria are satisfied the block will 

step to the next current simulation stage. The stages implement the summarized procedure and 

are: 

(1)  

- Set        

- Wait for amplitude- and period estimators to return true on the ready output. 

(2)  

-    
   

   
, where   is the amplitude estimate given by AmpEst.  

-        
 

  
, where    is read from PeriodEstimate. 

-   
 

 
 

-            

- Wait for amplitude- and period estimators to return true on the ready output. 

(3)  

-   
      

  
 

-    
   

 
 

-    
       

 
 

-         (
  

  
) 

- Wait for amplitude- and period estimators to return true on the ready output. 

(4)  

-    
 

  
 

- Mark simulation as completed. End simulation. 

                                                                                                                                                                       
20

 Located in CD2001_model_v2/property measurement/ 
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SimcycleOp starts the procedure by default whenever the process is considered to be stationary at the 

operating point.  

 

Figure 3-15: The simcycle operator, SimcycleOp, Simulink block.  
Located in CD2001_model_v2/property measurement/. 

Inputs: 

- “amp”; Amplitude estimated by AmpEst is connected to this port. 

- “Tp”; Period estimated by PeriodEst is connected to this port. 

- “ready”; SimcycleOp will progress to the next stage when this is true. 

- “d”; Current specified amplitude of the relay is connected to this port. 

- “ctrl”; Control signal which indicates that the process has reached stationarity. 

- “Ts”; The simulation time step is connected to this port. 

- “minswitchT”; This input port specifies the minimum time between each progress 

increment of the procedure. 

- “memory_in”; In order for the block to keep track of progress and hold onto neces-

sary variables during runtime, states of the last simulation time step are fed back to 

this port. 

Outputs: 

- “eps”;  This port outputs the current hysteresis to be used by relay. 

- “complete”;  This port outputs true when the procedure is completed, which means 

all properties have been estimated. This is default connected to a Simulation Stop 

block, which terminates the simulation. 

- “memory_out”;  Outputs the current block states and internal variables. 
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3.3.9  Alternative estimation methods for further investigation 

Ideally all implemented methods should provide equal results for verification, and there may be a 

difference of robustness between the proposed methods and other methods that are not men-

tioned in this thesis. Other methods for estimation may be interesting to further investigate for 

the final implementation of the test mechanism. Some methods may increase the accuracy of 

estimation for overall increased accuracy in results and diagnostics found by the test mecha-

nism.  

Finding the most reliable and precise estimation technique was not a topic of this thesis, but it is 

important nonetheless. Alternatives can either replace or work in collaboration with the current 

estimation techniques. If all methods are proven reliable they can back each other up so if none 

provide outlying results one can safely assume that the obtained results are correct, which is an 

important aspect for practical application. The amplitude and frequency of the limit cycles in-

duced by the modified relay test can for example be estimated with an extended Kalman filter 

[19], or by least squares estimation.  

When it comes to the practical appliance of the test mechanism in a physical plant it is advanta-

geous that it is active for as little time as possible, and there will likely be small time windows of 

opportunity open for the actual testing. Considering that, letting properties be estimated during 

runtime and then let the test mechanism tell when it is complete and then end is a good idea. 

When it comes to the sine sweep procedure this is a topic of little concern since the sine sweep 

is only used during the simulation study for understanding and verification. In this case estimat-

ing in real time or post simulation does not matter. 

 

3.4 Design of sine sweep components 

3.4.1 Estimating amplitude and phase for sine sweep procedure 

An estimation technique for obtaining the phase response for the Bode plot for a set configuration 

of process and fault parameter settings is required for the simulation study. Three techniques 

are suggested, whereas one is focused on a simple way of measuring phase during simulation, 
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the other two are directed toward post simulation estimation. An important notice is that the 

first suggestion needs to extend the Simulink model with an additional amplitude- and phase es-

timation block at the controller output. Its strength is its simplicity and. To circumvent adding 

extra elements to the Simulink model, the results are obtained post simulation from method 

number three (FFT). 

During simulation: 

The AmpPhaEst block has an increased functionality and also detects the phase shift of the input-

output signals. This is needed for the sine sweep procedure used to verify the results acquired 

using the test mechanism. This is done in virtual real time as well. Limitations to the phase esti-

mation using this method is that it is unable to determine if the phase is more than 360°, which 

means that if the phase passes 360° during testing will cause it to be read as a much lower val-

ue. This should not be a huge concern though since it is only needed to sine sweep for frequen-

cies between the edge points    and       . 

Algorithmic description of the method: 

- If there is a reset signal detected, reset all values to the initial states. 

- If there is a trigger signal set time of trigger, peak and valley variables to current time. 

- Otherwise: 

 If new maximum value, set time of peak to current time value. 

 If new minimum value, set time of valley to current time. 

- Recalculate output values with new variables 

The phase calculation is done by taking the mean of the peak phase lag and the valley phase lag. 

This should compensate for constant nonlinearities around an operating point. The resulting 

phase is also a mean over the same amount of periods as the amplitude. Since a sine starts in 0 

and increases until 1/4th of its period, corresponding to 90°, 90° is subtracted from the peak 

phase lag value. Same applies to the valley phase lag, but this is located at 3/4th on a sine with 

no phase lag, so that 270° is subtracted from the valley phase lag value. 

Since the phase detection functionality is built into the AmpPhaEst block, the same inputs/outputs 

apply, although there are some inputs that are specific for the phase detection functionality: 
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- “Ts”; The sample rate of the AmpPhaEst block. This should be equal to the rate of the process 

transmitter. Its value is used to correct the estimated phase by subtracting 
  

   
 from the phase, so 

that the theoretically estimated phase is 
 
 

  

  
 with expectancy value 0. 

Specific added inputs:  

- “time”; The current simulation time. 

- “Ts”; The sample time of the test mechanism/process transmitter. 

- “Tp”; The currently estimated output signal period. 

- “variables_in”; Also contains the time value of trigger/peak and valley. 

- “memory_lag_in”; Also contains the A_n_relay_edges last estimated phase lag values for a mean. 

Specific added outputs:  

- “pha_out”; The currently estimated phase. 

- “memory_lag_out”; Currently logged phase lag values. 

 

Post simulation method 1 (sine fitting): 

As an alternative to estimating the phase directly during processing, it is also estimated post simu-

lation. There have been some problems with the method described above during the last stages 

of the work so that the estimated phase used for the simulation study is derived from the post 

simulation. There are numerous ways to estimate phase, but to keep it simple and by using al-

ready obtained results, the phase estimation is done by fitting sine waves on the stored input 

and output data. This method is easier to verify since the stored input and output data from 

simulation can simply be overlaid with the adapted sine waves. The frequency of the adapted 

sine is known since the frequency will remain that of the input, and the amplitude is obtained 

from the simulation amplitude estimation, although this can also be easily be read from the 

stored data. This leaves only one degree of freedom for the sine wave; the phase. The method 

iteratively approximates the input and output signals by overlaying sine waves with the estimat-

ed amplitudes and known frequencies. It then looks for the phase match that minimizes the 

sum: 
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∑ (      ( )       (          
 

   
 ))

 

   
      ( 20 ) 

Where the signal is de trended by removing its mean value. Notice that this method is also limited 

to search for phase lag        ] . The value of t1 is chosen so that the response is stabilized 

before the sine approximation. 

 

Figure 3-16: Example of control loop input (top) and output (bottom)  
fitted with sine waves to find phase. 

 

3.5 Project component tests 

The components of the Simulink model have been tested and analyzed according to an adaptation 

of BS 7925-2:1998, «A British standard for testing of software components and techniques for 

the design and measurement of that testing». The full standard should be considered for the fi-

nal completion of the test mechanism, but due to the time constraint of this thesis some simpli-

fications have to be done.  

Some parts of the system are considered particularly prone to bugs and other faults. These compo-

nents are tested and verified that the outputs for the specified inputs are as expected.  

- Amplitude estimation 

- Period estimation 

- Modified relay method for known system 

- Modelled valve behavior 
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The tests will be executed on a windows 7 pc. The components to be tested consist of a combina-

tion of Simulink blocks and Matlab (R2012b) code. 

Components shall be tested in isolation with both normal and abnormal inputs on the connectors. 

Signals cannot exceed realistic range which is naturally limited by the physicality of the real sys-

tem modelled. System as a whole shall be tested and verified semi- isolated and by locking most 

variables. 

Primarily there are no dependencies between the components being tested since each component 

is tested in isolation. Lower priority components can tolerate more misbehavior than that of 

higher priority components. All test setups and scripts are found in the “Component Tests” pro-

ject folder. 

 

3.5.1 Amplitude and phase estimator (“AmpPhaEst”) 

AmpPhaEst is located in CD2001_model_v4/Digital Processing/property measurement/Amp & 

phase Estimation/. This is considered a critical block for the system’s ability to accurately obtain 

the necessary indicators both for the final implementation of the relay test mechanism, but also 

to obtain the process footprint for the simulation study and validation of the test mechanism. 

Stubs: The Amp & phase Estimation subsystem is isolated from its surroundings. The reset port is 

forced to 0. 

Driver: A sine wave source on the input of a relay replaces the process feedback which results in the 

Pv-Sp deviation signal. The period of the sine waves are controlled by the test script. A different 

sine signal with known amplitude and phase acts as the Pv with the properties of interest. 
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Figure 3-17: Test setup for AmpPhaEst with selected stubs and drivers. 

 

Figure 3-18: Upper plot: Current max value as cyan, min value as yellow and measured signal is white. 
   Middle plot: Triggers given by positive relay flanks (deviation signal to controller passes 0) 
  Bottom plot: Estimated phase. Phase vector is initially NaN and after reset and is therefore not displayed. 

The block’s typical behavior can be seen in Figure 3-18. It uses the pre specified amount of cycles 

before it outputs the control signal indicating that the output values can be read. The estimated 

phase is not used in the modelled test mechanism and “footprint” mapping algorithms, since us-

ing FFT was performing very accurately and reliably.  

 

3.5.2 Period estimator (“PeriodEst”) 
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PeriodEst is located in CD2001_model_v4/Digital Processing/property measurement/Period Estima-

tion/. This is considered a critical block for the system’s ability to accurately obtain the necessary 

indicators.  

Stubs: The Period Estimation subsystem is isolated from its surroundings. The reset port is forced to 

0. 

Driver: Sine wave sources on the input of a relay. The period of the sine waves are controlled by the 

test script. 

Results can be read from the output scope inside the Period Estimation subsystem block. The test is 

run for a few sets of different periods. Two different sine waves are applied to the system for 

each test run. The sine waves are each run for 7 periods. The estimation is set to average over 

the last 3 logged periods. The standard deviation threshold is set to 20%. 

PeriodEst should with high accuracy be able to quickly estimate the period of the relay switches, in-

dicating the frequency of the limit cycles induced by the test mechanism. The block should indi-

cate when the standard deviation for the logged periods are below a threshold and output a log-

ical 1 on its ready port accordingly. 

 

 

Figure 3-19: Test setup for PeriodEst (located in the Period Estimation subsystem). 
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Figure 3-20: Scope from testing PeriodEst with stubs and drivers. Upper plot shows how the estimated period changes 
over time. Middle plot shows the standard deviation of the period samples in %. Lower plot shows the output sig-
nal of the ready port. 

Normally during simulation with the test mechanism active, the PeriodEst is reset each time the 

test mechanism goes to the next stage of the test procedure, but during this test it is interesting 

to see how the estimate changes over time. There is implemented a standard deviation thresh-

old of the period samples, which when satisfied will make the block output a logical 1 on the 

ready output port.  

 

Exact 
Tp [s] 

Applied at 
time, [s] 

Indicating change of Tp 
at time (ready = 0) 

Time of 
ready =1, [s] 

Estimated 
Tp, [s] 

Avg. error, 
[%] 

15.3 0 NA 46 15.15 0.15 0,99 

23 107.1 116 162 23.2  0.2 0,86 

Table 2: Limit cycle period/frequency estimator test results. 

Indicating the change of Tp is done by setting the ready output to 0 when the standard deviation is 

above the threshold. The threshold is set to 20%, but this adjustable. Another improvement 

could be to weight the newer samples more than the old ones in order to make it respond faster 

to fast new changes. Other than this, the measurements are satisfactory, and their accuracy is 

limited by the rate of the test mechanism, which is only allowed to run as the same rate as the 

process measurement equipment.  
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There is probably room for some improvements in the mechanic of the component, but its final de-

sign will be decided on a later stage of the technology development. 

 

 

 

 

 

 

3.5.3 Valve 

The valve has been isolated and tested according to the setup described in Figure 3-21. The valve 

model is detailed in 3.2.3.  

 

Figure 3-21: Test setup for testing of complete valve model. 

The valve was thoroughly tested with the effects of adjusting the different fault parameters. Figure 

3-22 and Figure 3-23 demonstrate the effects of adding slip jump and stick band characteristics 

to the valve. The effect the stiction has on the flow through the valve can be seen in Figure 3-24. 



Classification: Confidential  
 

62 
 

 

Figure 3-22: Left plots: Effect on flow by diaphragm leak, respectively (from top) 0%, 15% and 30%. The effect of the 
leak is assumed to be proportional with the controller output. 
Right plots: Effect on flow by internal leak, respectively (from top) 30%, 15% and 0%. The effect increases the effec-
tive Kv for the valve, increasing throughput. In the case that the valve wants to close, fluid will still flow through. 

 

Figure 3-23: Effect of valve stiction. Plot descriptions from left to right: 0% stickband and slipjump, 10% stickband and 
0% slipjump, 0% stickband and 10% slipjump, 10% stickband and 10% slipjump. 
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Figure 3-24: Effect of valve stiction on the flow through the valve.  
Plot for 0 stiction (red), and 10% slip jump and stick band in blue. 

 

3.5.4 Modified relay testing 

It was need to prove that the modified relay setup actually worked, and there were run several 

tests with the setup shown in Figure 3-25. Results were proved to be near identical to those in-

dicated in Figure 3-26. This removes the concern of bugs in this part of the complete Simulink 

model and associated code. 

 

Figure 3-25: Modified relay test with additional sine sweep frequency testing  
for known system. Results are used to verify the methods used for finding 
the signatures (process “footprints”). 

 



Classification: Confidential  
 

64 
 

 

Figure 3-26: Exact Bode plot characteristics for the known controller and process. 

 

3.5.5 Test of Simulink setup for known system, with relay test and sine sweep 

The top level Simulink model with all the components, including relay, sine sweep and estimator 

blocks was tested on a known fictional system that replaced the simple Simulink process model. 

This was done in order to validate the estimation techniques before applying them to the con-

tinuous and more realistic process models. 

 

Figure 3-27: Left: The exact bode plot for the known system. Right: Frequency response found from sine sweep with 
post FFT processing on controller and process output. Note that the axis are not equal. 
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The fictional system created for testing is an under dampened second order system with time de-

lay, in continuous (Laplace) form (step response and pole-zero plot can be seen in appendix): 

       

                
      ( 21 ) 

The results obtained from the sine sweep are closely similar. There will be some differences due to 

the discretization on the digital processing part of the top level Simulink model (     ). Addi-

tionally the FFT estimation approach can produce some dissimilarity due to some of the applied 

sine wave energy is shifted into other frequency components due to the presence of nonlineari-

ties. The time delay of the fictional system is one such nonlinearity. 

 

Figure 3-28: Left: Exact bode plot for the known controller, R(s). Right: Bode plot for controller and process in series 
(open loop), h0 = R(s)P(s). Marked data points are the indicated wc and w180 from the relay test. H0 should be 
equal to R(jw) (known) + P(jw) (unknown) for the estimated response, which we see is approximately true. 

Obtained indicators from the relay test can be seen in Table 3. There are some slight variances in-

troduced because of the Ts of the digital processing side. Allowing the relay test to run for a 

longer amount of time can increase accuracy, but for testing purposes it is kept low with respect 

to the required simulation time.  

Indicators Relay test From bode plots  Error 

               ]            ]       ] 

             ]             ]             ] 

                     

                    

Table 3: Results from the modified relay feedback test versus the exact results from the bode plot for the known sys-
tems. 
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As seen by Table 3,     and the phase margin,   , are more prone to error than the other readings. 

This is because of added sources of errors due to the approximations and estimations used. It is 

therefore important to give an extra weight on the techniques used for the final implementation 

of the technology. 

 

3.5.6 Test of exactly known system with relay test and relay sweep  

The modified relay test was extended with the relay sweep “footprint” estimation techniques. The 

transfer functions for the processes tested were: 

 ( )  
   

     
       

 ( )  
      

    
 

Results can be seen in Figure 3-30. The transport delay sweep was later replaced with FFT, since the 

FFT was more accurate and reliable in most cases. 

 

Figure 3-29: Test setup for modified relay test and relay sweep adjusting hysteresis and transport delay. 
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Figure 3-30: Left: Obtained response with relay sweep. Hysteresis was adjusted to obtain the amplitude response and 
transport delay from relay was adjusted to obtain the phase response. Right: Exact bode plots. As seen, the ob-
tained values are very similar to the exact values. 
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Chapter 4  

Simulation study 

4.1 Simulation setup and some regarding comments 

For the final simulations the decided estimation techniques to obtain the “process footprint“ was 

relay sweep by adjusting the hysteresis between    
 and 0 (described in 2.8.2) to obtain the 

process gain, and FFT on the Op and Pv signals to find the phase lag. These methods proved reli-

able and effective in combination. This also removed the need for the sine source since the oscil-

lations were generated by the relay alone throughout the simulations. In retrospect, the added 

hysteresis should not have been linearly incremented, but rather inverse exponentially incre-

mented. At first, small increments of hysteresis result in larger shifts in logged frequencies, so 

the process “footprint” resolution is poorer close to        than at   . 

The simulations were ran for all combinations of the parameters listed in Table 4, except for 

                  (this would cause reverse flow which is not relevant) and     (this 

causes the valve to behave like a relay, so that there are now effectively two relays in the loop 

during testing; would have been manually detected by process engineers). 

Parameter Type Value(s) Run priority 

Reference Operational 0.7, 1.2 [m] 

Oil flow in Operational 0.05, 0.07 [
  

 
] 

Pressure CD2001 Operational 19, 27 [barG] 

Pressure CD2002 Operational 16, 18 [barG] 

Diaphragm leak Technical, valve 0, 10 [%] 

Internal leak Technical, valve 0, 10, 20 [%] 

Upper saturation Technical, valve 100 [%] 

Lower saturation Technical, valve 0 [%] 

Time constant Technical, valve 10, 15 [s] 

Stick band Technical, valve 0, 10, 20 [%] 

Slip jump Technical, valve 0, 10, 20 [%] 
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Filter time constant Technical, transmitter 0, 20, 60 [
 

  
] 

Bias Technical, transmitter 0, 0.05 [m] 

Skew Technical, transmitter 1, 0.9, 1.1 [Factor] 

Table 4: “Big” Simulation parameter configurations. 

The resulting configurations with the exceptions add up to 20’736 simulations. In order to produce 

results for analysis for a variety of configurations, the resolution (amount of values for each pa-

rameter) had to be low. This was the last big (thus nicknamed “big”) simulation run producing a 

lot of interesting results although there wasn’t enough time to let it finish. Different configura-

tions had different priorities, so those considered to be of higher importance were run first. The 

last Monte Carlo simulation finished 308 simulations in approximately 16 hours. This indicates 

an optimization issue and it is not feasible to run it for all the listed configurations in its current 

state, but there are some things that can be adjusted to further lower it. The most time saving 

fix would likely be to compile the Simulink model and run it in either “accelerator” or “rapid ac-

celerator” mode, but this was not investigated due to the time constraint of the thesis. These 

modes should only be used when the models are completely finished. This is not something that 

was considered since there were still possibilities in tweaking the models first in order to opti-

mize. It is possible to do analysis while the simulations are ongoing since results are stored to 

the hard drive for the completion of each simulation loop (depends on simulation settings). 

 

4.2 Results 

In order to analyze results some “analyzer” functions were created: 

-  “combineSegments.m”; During the Monte Carlo simulation, results are as mentioned regu-

larly stored as data packets, or “segments”, (.mat files) in order to prevent loss of results if 

a crash occurs or other reasons. For a vast amount of simulations it is more practical to 

combine the segments to larger files, which also lowers the processing time required to 

search through the data. 

- “analyzer_lookupResults.m”; This function is a practical way to search through specified 

configurations of technical and operational states. For example one can search for all com-
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binations of stick band, and require all other parameters to be set to a certain value among 

the ones used for the Monte Carlo simulations. 

- “analyzer_plotResponses.m”; To verify that signals are behaving as expected during simula-

tions there was need for a tool to quickly visualize signal behaviors from different simula-

tion measurements. Such signals that are constantly logged are Op, Pv and Sp-Pv deviation 

etc. 

- “analyzer_plotFootprintBode.m”; This function visualizes the data obtained from the re-

laysweep with hysteresis for gain, and post FFT of Op and Pv for phase lag. This is the most 

revealing visualization for seeing how different operational and technical states affect the 

process of interest. Function also produces a 3D plot with frequency, gain and phase along 

the x-,y- and z- axes respectively which simplifies seeing trends in the “footprints”. 

- “analyzer_displayResultsAsText.m”; This is a fast way to look up specified parameters and 

results for the modified relay test. Indicator values can be read from this text display in the 

Matlab command window. 

- “analyzer_plotIndicatorXY”; Plots gain- and phase margins along the x- and y axes respec-

tively. These margins are obtained from the test mechanism and plotting them in this way 

simplifies seeing trends by adjusting single or combinations of parameters. 

 

4.2.1 Simulation example: Zero fault/“commissioning state” 

Parameters Values Units 

Reference 0.7 [m] 

Oil flow in 0.05 [
  

 
] 

Pressure CD2001 19 [barG] 

Pressure CD2002 16 [barG] 

Diaphragm leak 0 [%] 

Internal leak 0 [%] 

Upper saturation 100 [%] 

Lower saturation 0 [%] 

Time constant 10 [S] 
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Stick band 0 [%] 

Slip jump 0 [%] 

Filter time constant 0 [
 

  
] 

Bias 0 [m] 

Skew 1 [factor] 

Table 5: Default configuration of all operational and technical parameters. This corresponds to the “commissioning 
state”.  

 

Indicators Values (test 

mechanism) 

Values 

(footprint) 

Units 

Wc 0.0098    (             Hz 

W180 0.0638 0.0638 Hz 

Ampl. margin 30.84 26.82 dB 

Phase margin 28.39 47.84 ° 

Table 6: Indicators obtained from the test mechanism and from the “footprint”. There is some differences in the mar-
gins due to wc being slightly improperly estimated. This could be improved on in the final test mechanism by e.g. 
letting the test mechanism have a feedback that adjusts the hysteresis and thus close in on the exact frequence. 

 

 

Figure 4-1:  Gain and phase plots show the response of the process, while the margins XY plot is derived from the test 
mechanism. A similar plot can be created for the “footprint”. 
Leftmost: 3D plot with XYZ corresponding to frequency, gain and phase respectively. 
Middle: Standard Bode plot with gain and phase versus frequency. 
Rightmost: Margins XY plot with respectively gain and phase margins along the axis. 
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Figure 4-2: Response from Simulink scope for a typical test mechanism run. In this case, the zero fault run is displayed. 
#1 from top: Pv (red) vs Sp (blue) 
#2 from top: Pv-Sp deviation 
#3 from top: Test mechanism status. 
#4 from top: Op response. Notice the relay in series with the controller effect. 

 

4.2.2 (Small) Simulation example: 0-20% stiction, 5% increments 

Config.- 

index 

S [%] J [%] Wc [hz] W180 [hz] Gain. -

margin,     

Phase -

margin,    

1 0 0 0.0096 0.0638 31.46 37.39 

2 5 0 0.0076 0.0268 18.17 31.02 

3 5 5 0.0093 0.0435 22.26 33.67 

4 10 0 0.0060 0.0168 13.66 27.12 

5 10 5 0.0073 0.0226 15.13 32.51 

6 10 10 0.0085 0.0273 14.07 35.65 

7 15 0 0.0045 0.0109 10.85 19.97 

8 15 5 0.0060 0.0153 11.76 25.50 
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9 15 10 0.0068 0.0173 10.00 33.12 

10 15 15 0.0086 0.0190 8.34 29.84 

11 20 0 Unstable - - - 

12 20 5 0.0045 0.0097 8.46 17.57 

13 20 10 0.0059 0.0116 6.80 21.75 

14 20 15 Unstable - - - 

15 20 20 Unstable - - - 

Table 7 

 

 

Figure 4-3:  
Upper left: Process footprint for stick band, S, and slip jump, J,each being adjusted for 0 to 20%, with 5% incre-
ments. 
Upper right: Margins XY plot for 0-20% stiction with 5% increments. 
Lower: 3D representation 



Classification: Confidential  
 

74 
 

 

4.2.3 (Big) Simulation example: Stiction configurations 

The simulations were run only for J<=S. 

Config.- 

index 

S [%] J [%] Wc [hz] W180 [hz] Gain. -

margin,     

Phase -

margin,    

1 0 0 0.0096 0.0638 31.46 37.39 

2 10 0 0.0060 0.0168 13.66 27.12 

3 10 10 0.0085 0.0273 14 35.65 

4 20 0 Unstable - - - 

5 20 10 0.0059 0.0116 6.81 21.75 

6 20 20 Unstable - - - 

Table 8 
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Figure 4-4: Combinations of stiction for the first (big) simulation loops.  
The “footprints” are numbered for convenience. 

 

4.2.4 (Big) Simulation example: Different pressures (operational states) 

Config.- 

index 

CD2001 P 

[barG] 

CD2002  

P[barG] 

Wc 

[hz] 

W180 

[hz] 

Gain. -

margin,     

Phase -

margin,    

1 19 16 0.0096 0.0638 30.84 28.39 

74 19 18 0.0098 0.0698 34.90 27.62 

146 27 16 0.0106 0.0577 27.07 31.88 

218 27 18 0.0112 0.0714 29.99 27.95 

Table 9:  
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Figure 4-5:  
Upper left: Gain and phase plot. The FFT misread the phase for some of the sample points for the “footprint” for 
these configurations. 
Upper right: Margins XY plot. 
Lower: 3D representation. 

 

4.2.5 (Big) Simulation example: Different oil flow rates (operational states) 

Config.- 

index 

Oil flow 

[
  

 
] 

Wc [hz] W180 [hz] Gain. -

margin,     

Phase -

margin,    

1 0.05 0.0096 0.0638 31.46 37.39 

290 0.07 0.0119 0.0526 26.04 28.59 

Table 10 
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Figure 4-6:  

 

4.2.6 (Big) Simulation example: Diaphragm leak and internleak 

Config.- 

index 

Diaphragm 

leak 

Intern 

leak 

Wc 

[hz] 

W180 

[hz] 

Gain. -

margin,     

Phase -

margin,    

1 0 0 0.0096 0.0638 31.46 37.39 

13 0 10 0.0060 0.0612 33.12 45.29 

25 0 20 DNF - - - 

37 10 0 0.0097 0.0625 30.06 30.52 

49 10 10 0.0058 00625 33.60 36.66 
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Table 11 

 

 

Figure 4-7: The FFT misread some of the “footprint” phase samples. 
 

 

4.2.7 (Big) Simulation example: Stiction (technical) and different pressure 

(operational) 

This produced a lot of results (24) and weren’t tabulated for this section.  
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Figure 4-8 
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Chapter 5  

Conclusion 

The obtained results show great promise of being able to separate theeffects of the different oper-

ational and technical states. None of the observed results have been identical in any configura-

tion, which indicates that the configurations are separable. For all observed cases of increased 

technical state parameters (faults etc.), the frequency of      and    go down. This behavior is 

as expected, since the bandwidth, and margins, are in practice reduced during operation of the 

process plant.  

In the case of valve stiction, observed tendencies are that the frequency of    goes down, but at a 

slower rate than that of       . This indicates that           is reduced. Additionally, when the 

stiction consists purely of slip jump, or if slip jump is gradually applied to the valve, the gain- and 

phase margins are increased. The XY- plots are good for looking at the trajectories of margins for 

the increase of the technical degradation and change in operational state. For the valve stiction, 

the gain margins are reduced, while the phase margins can both increase or decrease depending 

on the specific composition of a certain stiction. General tendencies are that the margins change 

a lot for small increments of the operational and technical parameters. This is very desirable 

since the test mechanism will be more sensitive toward detecting small changes. This also sug-

gests that the test mechanism should run as often as possible (without adding any cost or low-

ered performance).  

In the case of the operational state configurations, it seems that the “footprints” mainly parallel 

shift, such as an increase of process gain if the differential pressure across the valve is increased 

as demonstrated by #218 in Figure 4-5. The change of the inlet oil flow acts in the same manner. 

The footprints’ resolutions could be increased for later simulations to increase accuracy and to 

open up for some error removal mechanics for samples that are known to be wrong. The FFT es-

timation technique for process phase lag sometimes fails, and there is need to go some in depth 

of this to see why, and how to robustify it (The major cause is assumed to be handling of phase 

results according to the crossover of unit cycle quadrants). 
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The developed tools prove reliable and very helpful in the understanding of the effects of devel-

oped faults and change of operational states. This will be used to develop the limits required to 

separate the presence of multiple technical states and varying operational states from each oth-

er, and to further simplify process plant control and controller retuning. The completed Monte 

Carlo simulation setup is handed over to Statoil, and the supervisor receives extensive training 

required to use the developed tools. 
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1.3 Main( ) 

1.3.1 “run_MainSimulation.m” 

%   ***MainSimulation governs the entire simulation procedure*** 
%--------------------------------------------------------------- 
% Description and comments: 
%   Script is divided into three components. Simulation state object is 
%   automaticly stored in the outer workspace making attempts at clustering 
%   relevant code together in functions hard as long as the 'sim()' is 
%   located in the function. 
%--------------------------------------------------------------- 
% DO: 
%   -Add simulation loop index to each stored data segment. 
%   -Add the stopcause and store in data segment 
%   -Store the test matrix in the segment folder 
%   -Save controller setup 

  
%% Program initialization 
if exist('TEMP.progressbar_handle','var'), if ishandle(TEMP.progressbar_handle), 

close(TEMP.progressbar_handle); end, end % Prevent multiple progress bars 
% clear all; 
close all; clc; 
warning('off','Simulink:Engine:SimStateParameterChecksumMisMatch') % turns off 

unnecessary warning 

  
% Directories 
addpath('Program functions')    % essential 
addpath('S-Functions')           % essential 
addpath('Init files')           % essential 
addpath('Simulink models')      % essential 
addpath('Analysis functions') 
addpath('Script components')    % essential (will be gradually converted to func-

tions) 
if ~(exist('Simulation results','dir')==7), mkdir('Simulation results'); end 
addpath('Simulation results')   % essential for automatic procedure 
if ~(exist('Simulation restore files','dir')==7), mkdir('Simulation restore 

files'); end  

  
%% Initialize model 
disp('Started..') 
run('init_default_values.m'); 
run('prep_simulation_parameters.m');    % simulation adjustable parameters 
run('init_other_parameters.m');         % 
run('init_CD2001.m');                   % matlab init file 
run('init_valve_complete.m');           % lv20024A 
run('init_transmitter.m');              % init before controller 
run('init_contr_and_rel.m');            % 

  
openModels = find_system('SearchDepth', 0); % get current open models 
if ~ismember(USERPARAM.mdl,openModels) % check if selected model is open, else 

open 
    statusdisp(['Opening model ',USERPARAM.mdl,'...'],2) 
    open(USERPARAM.mdl);     
    % remove old open scopes for cleanliness 
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    shh = get(0,'ShowHiddenHandles'); 
    set(0,'ShowHiddenHandles','On'); 
    hscope = findobj(0,'Type','Figure','Tag','SIMULINK_SIMSCOPE_FIGURE'); 
    close(hscope); 
    set(0,'ShowHiddenHandles',shh); 
    clear('shh','hscope'); 
    statusdisp('Done',2) 
end 
set_param(USERPARAM.mdl, 'LoadInitialState', 'off'); % prevents loading at first 

run 
clear('openModels') 

  
% Pause and ask for permission to continue 
dlgansw = questdlg('Continue processing (Automatic)?','Initialization complet-

ed','Yes','No','Yes'); 
if  strcmp(dlgansw,'No') 
    clear('dlgansw') 
    return 
else clear('dlgansw') 
end 

  
%% Simulation 
component_simloops2; %( DATA,MODEL,USERPARAM ); 

  
%% Summary 
if exist('TEMP.progressbar_handle','var'),close(TEMP.progressbar_handle), end 

  
if USERPARAM.mail.notify_by_mail && ~(isempty(USERPARAM.mail.address) || is-

empty(USERPARAM.mail.pw)) 
    message = 'Processing complete'; 
    notifyEmail( message,USERPARAM.mail.address,USERPARAM.mail.pw ) 
end 

  

1.4 Init files 

1.4.1 “prep_simulation_parameters.m” 

%%  INFOPANEL 
%   unique() makes sure each vector is optimized by removing repeating values 
%   linspace(a,b,c) creates c values equally spaced between a and b 

  
%% Global 
global GLOBALDATA 
GLOBALDATA.display_priority_requirement = inf;   % default inf -> displays all 

messages. 1 is highest priority normal messages, 0 is error. 

  
%% Simulation setup 
USERPARAM.simulation_timeout = 20000; 
USERPARAM.mdl               = 'CD2001_model_v4'; % simulink model 
USERPARAM.system            = 1;                 % 1:simple, 2:advanced, 

3:fictional 
USERPARAM.include_sinesweep = 0;                % default 1 
USERPARAM.include_relaysweep = 1;               % default 1 
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USERPARAM.include_transportdelaysweep = 0;      % default 0, not necessary with 

post fft for phase 
USERPARAM.save_results      = 1;                % default 1 
USERPARAM.prevent_load_states = 0;              % default 0 
USERPARAM.START_AT_IDX = 49;                    % default 1 

  
USERPARAM.ERROR_LIMIT             = 1; % default 1. Amount of errors before ter-

minating 
USERPARAM.perform_save_frequency  = 0; % default 0 [min], save after every run 
USERPARAM.save_minimum_loops      = 1; % default 1. Least amount of loops before 

a save 

  
% does currently not work on the Statoil network 
USERPARAM.mail.notify_by_mail = 0; % send default message that the processing is 

completed to selected recipient upon simulation completion 
USERPARAM.mail.address       = ''; % mail client address. Gmail is accepted 
USERPARAM.mail.pw            = ''; % client password 

  
%% Operational states 
DATA.oper.reference              = unique(linspace(0.7,1,2)); 
DATA.oper.oilflow_in             = [0.05 0.07]; 
DATA.oper.cd2001_P               = [19 27]; 
DATA.oper.cd2002_P               = [16 18]; 

  
%% Valve 
% Relevant values in [%] 
DATA.valve.diaphragmleak    = unique(linspace(0,10,2));     % default lin-

space(0,0,1) % partly blockage of air intake/supply 
DATA.valve.internleak       = unique(linspace(0,20,3));     % default lin-

space(0,0,1) % internal leakage / bypass 
DATA.valve.uppersaturation  = unique(linspace(100,100,1)); % default lin-

space(100,0,1) 
DATA.valve.lowersaturation  = unique(linspace(0,0,1));     % default lin-

space(0,0,1) 
DATA.valve.T                = unique(linspace(10,15,2));   % default lin-

space(10,10,1) % Too low value will cause problems in valve model 
DATA.valve.S                = unique(linspace(0,20,3));     % default lin-

space(0,0,1) % Stiction 
DATA.valve.J                = unique(linspace(0,20,3));     % default lin-

space(0,0,1) % Slipjump 

  
%% Transmitter 
DATA.transmitter.Tm         = [0 20 60]; % default 0 
DATA.transmitter.bias       = [0 0.05]; % [m] b, default 0 
DATA.transmitter.skew       = [1 0.9 1.1]; % [unit] a, default 0, y = ax + b 

  
%% Sine sweep (only applicable if include_sinesweep==1) 
DATA.sinesweep.amplitude    = 0.1;  % [m] 
DATA.sinesweep.resolution   = 16;   % number of sine sweeps performed for verifi-

cation, wc and w180 is automaticly added 
DATA.sinesweep.wcfactor     = 0.7;  % lowest frequency of sine sweep equals 0.7 * 

wc 
DATA.sinesweep.w180factor   = 1.1;  % highest frequency of sine sweep equals 1.1 

* w180 
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%% Summary 
statusdisp(['simulating system : ',num2str(USERPARAM.system)]) 
statusdisp('initialized prep simulation parameters'); 

 

1.4.2 “init_CD2001.m” 

%% CD2001 
MODEL.oilflow_in = 0.05;% [m^3/s], oil in 

  
MODEL.cd2001_rho_oil    = 836;      %[kg/m^3] Density of oil in separator 
MODEL.cd2001_weirheight = 1.8;      %[m] Height of weir 
MODEL.cd2001_hsl        = 1.2+1.222; %length of drum lightside of weir west side 

+ east side 
MODEL.cd2001_d          = 3.8;      %internal diameter of drum 

  
MODEL.cd2001_P=19; 
MODEL.cd2002_P=16; 
%% 
statusdisp('initialized CD2001',1); 

 

1.4.3 “init_default_values.m” 

DEFAULT = struct(); 

  
% Operational 
DEFAULT.oper.refhigh = 0.7; 
DEFAULT.oper.oilflow_in = 0.05; 
DEFAULT.oper.cd2001_P = 19; 
DEFAULT.oper.cd2002_P= 16; 

  
% Valve 
DEFAULT.valve.diaphragmleak = 0; 
DEFAULT.valve.internleak = 0; 
DEFAULT.valve.uppersaturation = 100; 
DEFAULT.valve.lowersaturation = 0; 
DEFAULT.valve.T = 10; 
DEFAULT.valve.S = 0; 
DEFAULT.valve.J = 0; 

  
% Transmitter 
DEFAULT.transmitter.Tm = 0; 
DEFAULT.transmitter.bias = 0; 
DEFAULT.transmitter.skew = 1; 
DEFAULT.transmitter.filter_enabled = 1; 

  
% Summary 
disp('initialized default values'); 

 

1.4.4 “init_contr_and_rel.m” 
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%% Relay parameters 
%relay and controller in series 
MODEL.relay_d_fixed = 0.05; %  [m] was 0.1 until 24.06.14. d_fixed corresponds to 

the 'e' that the controller sees. For relay in series with controller. 

  
%% Controller parameters 

  
%D portion- filter 
w_f = 100; %filter any frequencies with higher frequence than bandwidth of our 

system 
MODEL.T_f = 2 * pi / w_f; % corresponding filter time constant 
clear('w_f') 

  
%Default PID params 

  
% simple system contr param, found by testing 
MODEL.controller_invert = 1; 
Kp1 = 4; 
Ti1 = 100; 
Td1 = 0; 

  
% fictional system contr param, found by pidtool(sys) + adjustment by trial and 

error 
% pidtool(fictionalsys); 
Kp2 = 0.0073806; % 0.5867 from pidtool 
Ki2 = 0.0063453; % 0.0034824 from pidtool 
Ti2 = Kp2/Ki2; % Kp2/Ki2 if using pidtool 
Td2 = 0; 

  
MODEL.system = USERPARAM.system; 
if USERPARAM.system == 1 
    MODEL.Kp = Kp1; 
    MODEL.Ti = Ti1; 
    MODEL.Td = Td1; 
elseif USERPARAM.system == 2 
    MODEL.Kp = Kp2; 
    MODEL.Ti = Ti2; 
    MODEL.Td = Td2; 
end 
clear('Kp1','Ti1','Td1','Kp2','Ki2','Ti2','Td2') 

  
num = MODEL.Kp*[MODEL.Ti*MODEL.Td MODEL.Ti 1]; 
den = [MODEL.Ti 0]; 
TEMP.R = tf(num,den); 
clear('num','den') 

  
% IO 
MODEL.controller_range_low = 0; 
MODEL.controller_range_high = 1; 
MODEL.controller_signal_low = 4; 
MODEL.controller_signal_high = 20; 
MODEL.controller_resolution = 16; % [bits] 
MODEL.controller_quant_interval = (MODEL.controller_range_high - MOD-

EL.controller_range_low)/(2^MODEL.controller_resolution); 
MODEL.controller_IO_rate = 1; % [hz], frequency of IO update 
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MODEL.unit_to_mA = (MODEL.transmitter_signal_high-

MODEL.transmitter_signal_low)/... 
        (MODEL.transmitter_range_high-MODEL.transmitter_range_low); 
MODEL.mA_to_unit = 1 / MODEL.unit_to_mA; 

  
%% Summary 
% plots 
if false 
    figure() 
    h = bodeplot(TEMP.R); 
    p=getoptions(h);    % Create a plot options handle p. 
    p.FreqUnits = 'Hz'; % Modify frequency units. 
    setoptions(h,p);    % Apply plot options to the Bode plot and render. 
end 

  
% text output 
str = ''; 
if MODEL.Kp ~= 0, str = [str,'P']; end 
if MODEL.Ti < inf, str = [str,'I']; end 
if MODEL.Td ~= 0, str = [str,'D']; end 
if MODEL.controller_invert, statusdisp('controlled input inverted',2), end 
statusdisp([str,' controller selected'],2), clear('str') 
statusdisp('initialized controller and relay',1); 

 

1.4.5 “init_other_parameters.m” 

%% Comment section 
%   Find unlinearity dynamics as linear dynamics in textbook and implement in 

model. 
%   Move nonparameter sections to functions. Generalize the input-output 
%   relation algorithm. 
% 
%   Acquire data for 'oilflow_in' 
% 

  
%% Simulation 
MODEL.simsteptime=0.01; % simulation resolution / accuracy 
MODEL.simstoptime = USERPARAM.simulation_timeout; % max simulation time 
MODEL.stop_at_OP = 0; % default continue 
MODEL.quiescence_limit = 30; % maximum allowed time without a change of output 

value 

  
%% Reference 
MODEL.refsteptime=50;%Time of step for reference (N/A for sinus) 
MODEL.reflow=0;%Lowest output amplitude of reference 
MODEL.refhigh = 0.7; 

  
%% Property measurement general parameters 
MODEL.property_measurement_Ts = 1; % [s] Should match transmitter rate. Sample 

time of property measurement elements 
% MODEL.property_measurement_Ts = MODEL.simsteptime; 
MODEL.Extra_n_relay_edges = 4; % Should be 3-4. Count extra before logging values 

in the simcycle operator 
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%% Relaysweep 
MODEL.eps = 0; 
MODEL.relay_Tdelay_enabled = 0; % use this to disconnect the transport delay 
MODEL.relay_Tdelay = MODEL.simsteptime; % must always be > than 0, else loading 

states won't work because the block changes behavior when switching from 0 to ~0 
MODEL.relaysweep = 0; 

  
%% Sinesweep 
MODEL.sinesweep_enabled = 0; % [bool] default 0/false 
MODEL.sinesweep_amplitude = 0.1; % [m] 
MODEL.sinesweep_frequency = 0.064; % [Hz] 
if USERPARAM.system == 1; MODEL.sine_phase = pi; 
else MODEL.sine_phase = 0; 
end 

  
%% Filter on physical side, for sinesweep 
Fs = 1/MODEL.simsteptime; 
Ws = MODEL.sinesweep_frequency / (Fs/2); 
[MODEL.sinesweep.num,MODEL.sinesweep.den] = createLowPass(Ws,0.2); 
% fvtool(MODEL.sinesweep.num,MODEL.sinesweep.den) 
clear('Fs','Ws') 

  
%% fictional system 
K = 1.2; 
w0 = 1/50; 
zhetta = 0.6; 
MODEL.fiction_timedelay = 3; 
MODEL.fiction_num = K*w0^2; 
MODEL.fiction_den = [1 2*zhetta*w0 w0^2]; 

  
%% World 
MODEL.g = 9.81;%gravitational constant 

  
%% Control performance 
MODEL.performance_integratefrom = MODEL.refsteptime; 

  
%% Stationarity 
MODEL.stationarity_startevalat = MODEL.refsteptime; 

  
% MODEL.stationary_absdedt_threshold = 0.015; % (e2-e1)/(t2-t1) < tresh 
% MODEL.stationary_abse_threshold = 0.02; % [m] 
MODEL.stationary_absdedt_threshold = 0.2*10^-3; 
MODEL.stationary_abse_threshold = 0.002; 

  
MODEL.moving_average_length = 50;%[s] This average is downsampled by 1/Ts 

  
%% Period prefilter 
MODEL.perprefilt_smallestontime = 2; % [s] Smallest amount of time the relay must 

output high for output to be caused by true zero crossing and not noise. For 

equal on/off time this value equals T/2 or 2*F 

  
%% Automaticly find T from relay 
MODEL.T_n_relay_edges = 4; %Was 10, which took a lot of time for low frequencies. 
MODEL.T_std_tresh_pct = 20;%[%] 
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%% Find Gain 
%filter with passband located at frequency from relay 

  
% Chebyshev filters 
% nfilters = 100; 
% Fs = 1/MODEL.property_measurement_Ts; % Sample frequence 
% bwoverlap = 0.5; % Bandwidth overlapping between target frequencies 
% [ MODEL.filter_ws,MODEL.numerators,MODEL.denominators ] = createBandpassFil-

ters2( nfilters,bwoverlap,Fs ); % ,'plot' 
MODEL.filter_ws = 0; 
MODEL.numerators = 0; 
MODEL.denominators = 0; 
% clear('nfilters','Fs','bwoverlap') 

  
%Gain 
MODEL.gainfilter_sampletime = MODEL.simsteptime; 

  
%Gain2 
MODEL.A_n_relay_edges = MODEL.T_n_relay_edges; 
MODEL.A_std_tresh_pct = 30; %[%] 

  
%% Simcycle operator 
MODEL.simcycle_minswitchT = 30;%[s] cannot step more often than this 

  
%% Summary 
statusdisp(['T std treshold : ',num2str(MODEL.T_std_tresh_pct),', A std treshold 

: ',num2str(MODEL.A_std_tresh_pct)],2) 
statusdisp(['T average over : ',num2str(MODEL.T_n_relay_edges),', A average over 

: ',num2str(MODEL.A_n_relay_edges)],2) 
if MODEL.sinesweep_enabled, statusdisp('Sinesweep is forced on, default is off 

for automatic',2); end 
statusdisp('initialized ''other'' parameters',1); 

 

1.4.6 “init_transmitter.m” 

%% Measurement 
%-- 
MODEL.transmitter_disconnected = 0; % Level measured is the exact real level 
MODEL.transmitter_filter_enabled = 0; % Enable filter in measurement equipment or 

not 
%--- 

  
f_m = 5; % [Hz] Measure equipment bandwidth 
MODEL.transmitter_bias = 0; % [m] b 
MODEL.transmitter_skew = 1; % [] a, 1 = zero skew, y = ax + b 
MODEL.transmitter_Tm = 1/f_m; % Corresponding time constant of 1st order filter 
MODEL.transmitter_range_low = 0; % [m] 
MODEL.transmitter_range_high = 1; % [m] 
MODEL.transmitter_signal_low = 4; % [mA] 
MODEL.transmitter_signal_high = 20; % [mA] 
MODEL.transmitter_resolution = 16; % [bits] 
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MODEL.transmitter_quant_interval = (MODEL.transmitter_range_high-

MODEL.transmitter_range_low)/(2^MODEL.transmitter_resolution); 
MODEL.transmitter_IO_rate = 1; % [hz], frequency of IO update 
clear('f_m') 

  
if ~MODEL.transmitter_disconnected 
    MODEL.meter_to_mA = (MODEL.transmitter_signal_high-

MODEL.transmitter_signal_low)/... 
        (MODEL.transmitter_range_high-MODEL.transmitter_range_low); % adjustment 

according to transmitter 
else meter_to_mA = 1; 
end 
MODEL.mA_to_meter = 1 / MODEL.meter_to_mA; 

  
%% Summary 
if MODEL.transmitter_disconnected, statusdisp('Measurement equipment is discon-

nected',2); 
else 
    statusdisp('Measurement equipment is connected',2); 
    if MODEL.transmitter_filter_enabled, statusdisp('Transmitter filter is ena-

bled',2); 
    else statusdisp('Transmitter filter is not enabled',2); 
    end 
    statusdisp('initialized level transmitter',1); 
end 

 

1.4.7 “init_valve_complete.m” 

%% Complete with choudhury's: 
%   Comments: 
%   Unable to respond for relay test (instant steps) if 'valve_T'=0 due to 
%   stiction model. Set it low rather than 0 for instant valve response. 

  
MODEL.lv20024_Kv=565; 

  
MODEL.valve_IO_rate = 1; % [s], frequency of IO update 

  
MODEL.valve_diaphragmleak = 0; % [%] of lost force 
MODEL.valve_T = 10; % Cannot be 0 (Unknown why...), must be very small instead 

(for ideal valve!) 

  
MODEL.valve_uppersaturation=100; 
MODEL.valve_lowersaturation=0; 
MODEL.valve_internleak=0; 

  
%valve characteristics 
R=20;%[20-50] 
x=0:0.01:1; 
%equal percentage flow characteristic 
MODEL.valve_characteristiclookup=( R.^(x-1)-R^-1 ) * ( 1/(1-R^-1) )*100; % 0-100% 
%plot(x,MODEL.valve_characteristiclookup); 
clear('R','x') 
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%controlsignal convertion 
MODEL.controlsignal_low = 0; 
MODEL.controlsignal_high = 1; 
MODEL.controloutput_to_percentage_lookup = 0:100;%control output 0-1->0-100% 

  
MODEL.valve_S = 0;%  [%] stickband 
MODEL.valve_J = 0;%   [%] slipjump 

  
%% 
statusdisp('initialized oil fluid valve'); 

 

1.5 Script components 

1.5.1 “component_create_testmatrix.m” 

% pre 
pcm_index.transmitter_Tm = 1; 
pcm_index.transmitter_bias = 2; 
pcm_index.transmitter_skew = 3; 
pcm_index.oper_oilflow_in = 4; 
pcm_index.oper_cd2001_P = 5; 
pcm_index.oper_cd2002_P = 6; 
pcm_index.valve_diaphragmleak = 7; 
pcm_index.valve_internleak = 8; 
pcm_index.valve_uppersaturation = 9; 
pcm_index.valve_lowersaturation = 10; 
pcm_index.valve_T = 11; 
pcm_index.valve_S = 12; 
pcm_index.valve_J = 13; 
parameter_configuration_matrix = zeros(1,13); 
simulation_order_index = 1; 
% generate test matrix 
for prep_transmitter_Tm = DATA.transmitter.Tm 
    for prep_transmitter_bias = DATA.transmitter.bias 
        for prep_transmitter_skew = DATA.transmitter.skew 
            % operational 
            for prep_oper_oilflow_in = DATA.oper.oilflow_in 
                for prep_oper_cd2001_P = DATA.oper.cd2001_P 
                    for prep_oper_cd2002_P = DATA.oper.cd2002_P 
                        % valve 
                        for prep_valve_diaphragmleak = DATA.valve.diaphragmleak 
                            for prep_valve_internleak = DATA.valve.internleak 
                                for prep_valve_uppersaturation = DA-

TA.valve.uppersaturation 
                                    for prep_valve_lowersaturation = DA-

TA.valve.lowersaturation 
                                        for prep_valve_T = DATA.valve.T 
                                            for prep_valve_J = DATA.valve.J 
                                                for prep_valve_S = DATA.valve.S 
                                                    % special case; J 
                                                    % cannot be higher than 
                                                    % S due to double relay 
                                                    % behavior. 
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                                                    if ... 
                                                            prep_valve_J <= 

prep_valve_S &&... 
                                                            prep_oper_cd2002_P < 

prep_oper_cd2001_P 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.transmitter_Tm) = 

prep_transmitter_Tm; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.transmitter_bias) = 

prep_transmitter_bias; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.transmitter_skew) = 

prep_transmitter_skew; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.oper_oilflow_in) = 

prep_oper_oilflow_in; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.oper_cd2001_P) = 

prep_oper_cd2001_P; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.oper_cd2002_P) = 

prep_oper_cd2002_P; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_diaphragmleak) = 

prep_valve_diaphragmleak; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_internleak) = 

prep_valve_internleak; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_uppersaturation) 

= prep_valve_uppersaturation; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_lowersaturation) 

= prep_valve_lowersaturation; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_T) = 

prep_valve_T; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_S) = 

prep_valve_S; 
                                                        parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_J) = 

prep_valve_J; 
                                                        simulation_order_index = 

simulation_order_index + 1; 
                                                    end % end special case 
                                                end % valve S 
                                            end % valve J 
                                        end % valve T 
                                    end % valve lower saturation 
                                end % valve upper saturation 
                            end % valve internal leak 
                        end % valve diaphragm leak 
                    end % CD2002 pressure 
                end % CD2001 pressure 
            end % oilflow in 
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        end % transmitter skew 
    end % transmitter bias 
end % transmitter Tm 

 

1.5.2 “component_simloops2.m” 

%% 'save' ID setup 
default_simulation_ID = createSimID(USERPARAM.mdl);   % create a default simula-

tion ID which should be satisfactory to distinguish between sessions 
valid = 0; 
string = 'Create an ID (name) for the simulation:'; 
while ~valid 
    dlganswer = inputdlg({string},'ID dialogue',1,{default_simulation_ID}); % 

prompt user 
    if isempty(dlganswer), return 
    elseif ~(exist(['Simulation results/',dlganswer{1}],'dir') == 7) 
        TEMP.simulation_ID = dlganswer{1}; % assign user input 
        valid = 1; 
    else string = 'ID (name) already in use. Please choose another:'; 
    end 
end 
clear('string','valid','dlganswer','default_simulation_ID'); 

  
%% Initalizations 
TEMP.segmentnum = 1;             % init 
TEMP.last_save_tic = tic;        % init 
TEMP.simOut = 0; 

  
TEMP.error_count = 0;        % init 
TEMP.last_param_loop_duration = nan; % init 
TEMP.last_sinesweep_loop_duration = nan; % init 
TEMP.time_of_start = tic;       % init 
results_container = {}; % init 
CURRENT_CONFIGURATION_IDX = 0;          % init 
TEMP.not_saved_count = 0; 

  
if USERPARAM.START_AT_IDX == 1 
    TEMP.zero_fault_run = 1;     % init, first run with zero faults. Assuming 

that the first simulation will be with default settings 
else TEMP.zero_fault_run = 0; 
end 
% create configuration matrix 
component_create_testmatrix; 

  
%% Status 
total_configurations_count = 

length(DATA.oper.reference)*size(parameter_configuration_matrix,1); 
% Create progress bar / update info 
if exist('TEMP.progressbar_handle','var') 
    if ishandle(TEMP.progressbar_handle) 
        waitbar(0,TEMP.progressbar_handle,'...'); 
    else TEMP.progressbar_handle = waitbar(0,'...'); 
    end 
else TEMP.progressbar_handle = waitbar(0,'...'); 
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end 

  
statusdisp('> > > Simulation started < < <',1); 
statusdisp(['    Will process for ',num2str(total_configurations_count),' config-

uration(s)'],2); 

  
%% Loops 
% reference / operating points loop 
% Note: depth of loop decides priority 
current_ref_conf_idx = 0; 
for prep_refhigh = DATA.oper.reference 
    % reset configuration matrix pointer 
    CURRENT_CONFIGURATION_IDX = USERPARAM.START_AT_IDX; 
    current_ref_conf_idx = current_ref_conf_idx + 1; 
    MODEL.refhigh = prep_refhigh; 
    if ~USERPARAM.prevent_load_states 
        set_param(USERPARAM.mdl, 'LoadInitialState', 'off'); % prevents loading 

at first run 
        MODEL.stop_at_OP = 1; % this will notify simulation to stop once operat-

ing point has been reached 

         
        %save simulation state 
        TEMP.op_state = [USERPARAM.mdl '_SimState']; % name of stationary state 

data holder 
        set_param(USERPARAM.mdl, 'SaveFinalState', 'on', 'FinalStat-

eName',TEMP.op_state,'SaveCompleteFinalSimState', 'on'); 

         
        if ishandle(TEMP.progressbar_handle) 
            wait-

bar((CURRENT_CONFIGURATION_IDX*current_ref_conf_idx)/total_configurations_count,T

EMP.progressbar_handle,'Simulating to stationary response..') 
        end 

         
        TEMP.successful_completion = 0; 
        try 
            TEMP.simOut = sim(USERPARAM.mdl); % starts simulation 
            TEMP.successful_completion = 1; 
        catch err, 
            TEMP.error_count = inf; 
            statusdisp('Failed to reach stability and terminated..',0); 
        end 

         
        if TEMP.successful_completion == 1 
            % check cause of termination 
            [TEMP.checkstate,str] = checkTerminationCause( si-

mout_stopcause_OP,simout_stopcause_simcycle,... 
                si-

mout_stopcause_sinesweep,simout_stopcause_drumcapacity,simout_stopcause_instabili

ty,simout_stopcause_timeoutnochange,TEMP.simOut, MODEL.simstoptime ); 
            statusdisp(str,2), clear str 

             
            set_param(USERPARAM.mdl, 'SaveFinalState', 'off'); % prevent over-

writing 
            if ishandle(TEMP.progressbar_handle) 
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                wait-

bar((CURRENT_CONFIGURATION_IDX*current_ref_conf_idx)/total_configurations_count,T

EMP.progressbar_handle,['Currently processing from stationary.. Last loop 

time:',num2str(TEMP.last_param_loop_duration),'s']) 
            end 
        end 
    else statusdisp('Simulating response (Skipping load of states)',2) 
    end 
    if TEMP.successful_completion 
        while CURRENT_CONFIGURATION_IDX <= 

size(parameter_configuration_matrix,1)... 
                && TEMP.error_count < USERPARAM.ERROR_LIMIT 
            % Simulations preparation sets parameters after loading stationary 

states 
            TEMP.successful_completion = 0; 
            %% Set params 
            if ~USERPARAM.prevent_load_states 
                set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'Initial-

State', TEMP.op_state); % load operating point 
            end 
            component_simloops_setparams2; % subscript for setting prep parame-

ters after state has been loaded 
            MODEL.sinesweep_enabled = 0; 
            MODEL.stop_at_OP = 0; 

             
            %% Simulation resumes (default) / starts (if load is inhibited) 
            try 
                statusdisp(['Simulating from stationarity 

[',num2str(CURRENT_CONFIGURATION_IDX),'/',num2str(total_configurations_count),']'

],2) 
                TEMP.time_of_loop_start = tic; 
                TEMP.simOut = sim(USERPARAM.mdl); % start simulation 
                TEMP.last_param_loop_duration = 

round(toc(TEMP.time_of_loop_start)); 
                str = calcVirtualTimeToRealTimeFactor( 

TEMP.simOut,TEMP.last_param_loop_duration ); 
                statusdisp(str,2); 
                clear('str') 
                TEMP.successful_completion = 1; 
            catch err 
                statusdisp('Error occured during inner loop simulation..',0); 
                TEMP.error_count = TEMP.error_count + 1; 
            end 
            % check cause of termination 
            [TEMP.checkstate,str] = checkTerminationCause( si-

mout_stopcause_OP,simout_stopcause_simcycle,... 
                si-

mout_stopcause_sinesweep,simout_stopcause_drumcapacity,simout_stopcause_instabili

ty,simout_stopcause_timeoutnochange,TEMP.simOut, MODEL.simstoptime ); 
            statusdisp(str,2) 

             
            %% Store results 
            rundata = struct; 
            rundata.stopcause = str; clear str 
            if TEMP.successful_completion 
                rundata.successful = 1; 
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            else 
                rundata.successful = 0; 
                rundata.error = err; 
            end 
            TEMP.time = round(clock); 
            rundata.timestamp = TEMP.time(4:6); 

             
            %------------------- 
            % parameters 
            rundata.parameters.refhigh = MODEL.refhigh; 
            rundata.parameters.oilflow_in = MODEL.oilflow_in; 
            rundata.parameters.cd2001_P = MODEL.cd2001_P; 
            rundata.parameters.cd2002_P = MODEL.cd2002_P; 

             
            % valve 
            rundata.parameters.valve_diaphragmleak  = MODEL.valve_diaphragmleak; 
            rundata.parameters.valve_internleak     = MODEL.valve_internleak; 
            rundata.parameters.valve_uppersaturation = MOD-

EL.valve_uppersaturation; 
            rundata.parameters.valve_lowersaturation = MOD-

EL.valve_lowersaturation; 
            rundata.parameters.valve_T              = MODEL.valve_T; 
            rundata.parameters.valve_S              = MODEL.valve_S; 
            rundata.parameters.valve_J              = MODEL.valve_J; 
            % transmitter 
            rundata.parameters.transmitter_filter_enabled = MOD-

EL.transmitter_filter_enabled; 
            rundata.parameters.transmitter_bias = MODEL.transmitter_bias; 
            rundata.parameters.transmitter_skew = MODEL.transmitter_skew; 
            rundata.parameters.transmitter_Tm   = MODEL.transmitter_Tm; 

             
            %------------------- 
            if TEMP.successful_completion 
                % store signals 
                rundata.results.signal.e = simout_vector_e; 
                rundata.results.signal.ym = simout_vector_lowrate_ym; 
                rundata.results.signal.c = simout_vector_lowrate_c; 
                rundata.results.signal.ref = simout_vector_lowrate_ref; 
                if TEMP.checkstate == 6 % unstable 
                    rundata.stability = 0; 
                    rundata.timeout = 0; 
                elseif TEMP.checkstate == 7 % timeout 
                    rundata.stability = 1; 
                    rundata.timeout = 1; 
                else 
                    rundata.stability = 1; 
                    rundata.timeout = 0; 

                     
                    % results 
                    A_m     = simout_property_A_m.Data(end); 
                    phi_m   = simout_property_phi_m.Data(end); 
                    wc      = simout_property_wc.Data(end); 
                    w180    = simout_property_w180.Data(end); 
                    rundata.results.A_m     = A_m; 
                    rundata.results.phi_m   = phi_m; 
                    rundata.results.wc      = wc; 
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                    rundata.results.w180    = w180; 
                    if TEMP.zero_fault_run % first run with process at commis-

sioning state 
                        TEMP.wc_comm = wc; 
                        TEMP.w180_comm = w180; 
                        TEMP.wc_eps = simout_property_epswc.Data; 
                        statusdisp(['Commissioning w180 : ',num2str(w180)],3) 
                        statusdisp(['Commissioning wc : ',num2str(wc)],3) 
                        statusdisp(['Commissioning A_m : ',num2str(A_m)],3) 
                        statusdisp(['Commissioning phi_m : ',num2str(phi_m)],3) 
                        rundata.results.commissioning_state = 1; 
                    else rundata.results.commissioning_state = 0; 
                    end 
                    rundata.results.wc_commissioning = TEMP.wc_comm; 
                    rundata.results.w180_commissioning = TEMP.w180_comm; 

                     
                    %% Footprint 
                    % sinesweep 
                    if USERPARAM.include_sinesweep && TEMP.error_count < 

USERPARAM.ERROR_LIMIT 
                        DATA.sinesweep.testvector = createSweepVec-

tor(TEMP.wc_comm,DATA.sinesweep.wcfactor,... 
                            TEMP.w180_comm, DATA.sinesweep.w180factor, DA-

TA.sinesweep.resolution,wc,w180); 
                        component_simloops_sinesweep; % enter subscript 
                        if TEMP.sinesweepsuccessful 
                            rundata.sinesweep.postestimation   = 

TEMP.postestimation; 
                            rundata.sinesweep.testfrequencies   = DA-

TA.sinesweep.testvector; 
                            rundata.sinesweep.source_amplitude  = DA-

TA.sinesweep.amplitude; 
                            rundata.sinesweep.signal = TEMP.signal; 
                        end 
                    end 
                    % relaysweep 
                    if USERPARAM.include_relaysweep && TEMP.error_count < 

USERPARAM.ERROR_LIMIT 
                        statusdisp('Mapping frequency response (Relaysweep)',2) 
                        % Estimate process gain by 
                        % adjusting relay hysteresis 
                        component_hysteresis_relaysweep; 
                        rundata.relaysweep.gain_process_vec = gain_process_vec; 
                        rundata.relaysweep.w_hyst_vec_hz = w_hyst_vec_hz; 
                        rundata.relaysweep.hystsignals = hystsignals; 
                        % Estimate process phase by adjusting 
                        % time delay 
                        if USERPARAM.include_transportdelaysweep 
                            component_transportdelay_relaysweep; 
                            rundata.relaysweep.pha_process_vec = pha_process_vec; 
                            rundata.relaysweep.w_delay_vec_hz = w_delay_vec_hz; 
                            rundata.relaysweep.delaysignals = delaysignals; 
                        end 
                        MODEL.relaysweep = 0; 
                    end 
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clear('simout_A_m','simout_phi_m','simout_wc','simout_w180','A_m','phi_m','wc','w

180'); 
                end 
            end 
            TEMP.zero_fault_run = 0; 

             
            %% End of cycle 
            if TEMP.successful_completion 
                TEMP.not_saved_count = TEMP.not_saved_count + 1; 
            end 
            results_container{length(results_container)+1,1} = rundata; 
            clear('rundata') 
            if 60 * USERPARAM.perform_save_frequency  < 

toc(TEMP.last_save_tic)... 
                    && 0 < TEMP.not_saved_count 
                TEMP.perform_save = true; 
            else TEMP.perform_save = false; 
            end 
            if TEMP.perform_save && USERPARAM.save_results 
                component_save; 
            end 
            statusdisp(['Completed simulation step, 

loop:',num2str(CURRENT_CONFIGURATION_IDX+1)],2) 

             
            % count the loop 
            CURRENT_CONFIGURATION_IDX = CURRENT_CONFIGURATION_IDX + 1; 
            if ishandle(TEMP.progressbar_handle) 
                wait-

bar((CURRENT_CONFIGURATION_IDX*current_ref_conf_idx)/total_configurations_count,T

EMP.progressbar_handle,['Currently processing from stationary.. Last loop 

time:',num2str(TEMP.last_param_loop_duration),'s']) 
            end 
        end 
    end % WHILE configurations 
end % reference 
clear('prep_refhigh','prep_valve_diaphragmleak','prep_valve_internleak','prep_val

ve_uppersaturation',... 
    

'prep_valve_lowersaturation','prep_valve_T','prep_valve_S','prep_valve_J','prep_s

inesweep_frequency') 

  
%% Completed 
statusdisp('> > > Completed all simulations < < <',1); 
if 0 < TEMP.not_saved_count && USERPARAM.save_results 
    component_save; 
end 
clear('results_container') 

  
TEMP.total_duration = toc(TEMP.time_of_start); 
waitbar(1,TEMP.progressbar_handle,['Processing completed after 

',num2str(round(TEMP.total_duration)),'sec!']) 

 

1.5.3 “component_simloops_setparams2.m” 
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% reset states 
MODEL.eps                    = 0; % default 
MODEL.relay_Tdelay_enabled   = 0; % default 

  
% operational states 
MODEL.refhigh                = prep_refhigh; 
MODEL.oilflow_in             = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.oper_oilflow_in); 
MODEL.cd2001_P               = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.oper_cd2001_P); 
MODEL.cd2002_P               = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.oper_cd2002_P); 

  
% valve properties 
MODEL.valve_diaphragmleak    = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_diaphragmleak)

; 
MODEL.valve_internleak       = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_internleak); 
MODEL.valve_uppersaturation  = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_uppersaturatio

n); 
MODEL.valve_lowersaturation  = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_lowersaturatio

n); 
MODEL.valve_T                = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_T); 
MODEL.valve_S                = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_S); 
MODEL.valve_J                = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_J); 

  
% transmitter properties 
if 0 < parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_Tm) 
    MODEL.transmitter_filter_enabled = 1; 
    MODEL.transmitter_Tm     = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_Tm); 
else 
    MODEL.transmitter_filter_enabled = 0; 
    MODEL.transmitter_Tm     = 0.2; %must be ~0, else model changes and 'state' 

can't be loaded 
end 
MODEL.transmitter_bias       = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_bias); 
MODEL.transmitter_skew       = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_skew); 

 

1.5.4 “component_hysteresis_relaysweep.m” 

M = MODEL.relay_d_fixed; 

  
hyst_reso = 16; 
A_out_vec = nan(hyst_reso,1); 
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T_out_vec = nan(hyst_reso,1); 
hystvec = linspace(0,TEMP.wc_eps,hyst_reso); 
hystsignals = cell(16,1); 
for i = 1:hyst_reso 
    set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'InitialState', 

TEMP.op_state); 
    component_simloops_setparams2; 
    MODEL.sinesweep_enabled = 0; 
    MODEL.stop_at_OP = 0; 
    MODEL.relaysweep = 1; 
    MODEL.relay_Tdelay_enabled = 0; 

                                 
    MODEL.eps = hystvec(i); 
    statusdisp(['Relaysweep (hysteresis) 

[',num2str(i),'/',num2str(hyst_reso),']'],2); 
    sim(USERPARAM.mdl) 
    A_out_vec(i) = simout_property_A.Data; 
    T_out_vec(i) = simout_property_T.Data; 

     
    signal = struct; 
    signal.c = simout_vector_lowrate_c; 
    signal.ym = simout_vector_lowrate_ym; 
    hystsignals(i) = {signal}; 
end 
w_hyst_vec_hz = 1./flipdim(T_out_vec,1); 
w_hyst_vec_rad = w_hyst_vec_hz*2*pi; 
a_hyst_vec = flipdim(A_out_vec,1); 
gain_hyst_vec_dB = 20*log10(a_hyst_vec/(4*M/pi)); 
hystsignals = flipdim(hystsignals,1); 

  
[g_r,~] = bode(TEMP.R,w_hyst_vec_rad); 
gain_reg_vec_dB = 20*log10(squeeze(g_r(1,1,:))); 
gain_process_vec = gain_hyst_vec_dB - gain_reg_vec_dB; 

 

1.5.5 “component_sinesweep.m” 

sw_vec_length = length(DATA.sinesweep.testvector); 
% create empty containers 
TEMP.postestimation.gain_vector = nan(sw_vec_length,1); 
TEMP.postestimation.phase_vector = nan(sw_vec_length,1); 
% output signals 
TEMP.signal.e = cell(sw_vec_length,1); 
TEMP.signal.highrate_y = cell(sw_vec_length,1); 
TEMP.signal.lowrate_ym = cell(sw_vec_length,1); 
TEMP.signal.highrate_ref = cell(sw_vec_length,1); 
TEMP.signal.lowrate_ref = cell(sw_vec_length,1); 
TEMP.signal.lowrate_c = cell(sw_vec_length,1); 
% 
TEMP.sinesweep_idx = 1; 
for prep_sinesweep_frequency = DATA.sinesweep.testvector 
    if  TEMP.error_count < USERPARAM.ERROR_LIMIT 
        if ~USERPARAM.prevent_load_states, set_param(USERPARAM.mdl, 'LoadInitial-

State', 'on', 'InitialState', TEMP.op_state); end 
        % set sinesweep parameters 
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        component_simloops_setparams; 
        MODEL.sinesweep_frequency = prep_sinesweep_frequency; 
        MODEL.sinesweep_enabled = 1; 
        MODEL.stop_at_OP = 0; 
        % update progress bar 
        if ishandle(TEMP.progressbar_handle) 
            wait-

bar(TEMP.loopcount/TEMP.total_loop_count,TEMP.progressbar_handle,['Sinesweep 

[',... 
                num2str(TEMP.sinesweep_idx),'/',num2str(sw_vec_length),... 
                '].. Last loop 

time:',num2str(TEMP.last_sinesweep_loop_duration),'s']) 
        end 
        try 
            TEMP.sinesweepsuccessful = false; 
            % start simulation 
            TEMP.time_sinesweep_loop = tic; 
            TEMP.simOut = sim(USERPARAM.mdl); % start simulation 
            % save signals 
            TEMP.signal.e(TEMP.sinesweep_idx) = {simout_vector_e}; % unnecessary 
            TEMP.signal.highrate_y(TEMP.sinesweep_idx) = {si-

mout_vector_highrate_y}; % unnecessary 
            TEMP.signal.highrate_ref(TEMP.sinesweep_idx) = {si-

mout_vector_highrate_ref}; % unnecessary 
            TEMP.signal.lowrate_ym(TEMP.sinesweep_idx) = {si-

mout_vector_lowrate_ym}; 
            TEMP.signal.lowrate_ref(TEMP.sinesweep_idx) = {si-

mout_vector_lowrate_ref}; 
            TEMP.signal.lowrate_c(TEMP.sinesweep_idx) = {si-

mout_vector_lowrate_c}; 
            % save phase and amplitude 
            x = TEMP.signal.lowrate_c{TEMP.sinesweep_idx}.Data; 
            y = TEMP.signal.lowrate_ym{TEMP.sinesweep_idx}.Data; 
            [TEMP.gain,TEMP.phas_rad] = post_fft_estAmpPha(x,y); 
            TEMP.phas_deg = TEMP.phas_rad*180/pi; 
            if 0<TEMP.phas_deg, TEMP.phas_deg=TEMP.phas_deg-360; end 
            TEMP.postestimation.gain_vector(TEMP.sinesweep_idx) = TEMP.gain; 
            TEMP.postestimation.phase_vector(TEMP.sinesweep_idx) = TEMP.phas_deg; 
            % cause of termination 
            [TEMP.checkstate,str] = checkTerminationCause( si-

mout_stopcause_OP,simout_stopcause_simcycle,... 
                si-

mout_stopcause_sinesweep,simout_stopcause_drumcapacity,simout_stopcause_instabili

ty,simout_stopcause_timeoutnochange,TEMP.simOut, MODEL.simstoptime ); 
            statusdisp([str,'[',num2str(TEMP.sinesweep_idx),']'],2), clear str 
            % mark successful sinesweep (could check termination cause and 
            % check correct termination state) 
            TEMP.sinesweepsuccessful = true; 
            TEMP.last_sinesweep_loop_duration = 

round(toc(TEMP.time_sinesweep_loop)); 
        catch err 
            statusdisp('Error occured during sinesweep simulation..',0); 
            TEMP.error_count = TEMP.error_count + 1; 
        end 
    end 
    TEMP.sinesweep_idx = TEMP.sinesweep_idx + 1; % update index 
end 
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MODEL.sinesweep_enabled = 0; % back to default 

 

1.5.6 “component_save.m” 

% pre/create sub directory 
if ~(exist(['Simulation results/',TEMP.simulation_ID],'dir')==7), 

mkdir('Simulation results',TEMP.simulation_ID); end 
TEMP.savefilename = ['Simulation Results\',TEMP.simulation_ID,'\results-

segment#',num2str(TEMP.segmentnum)]; 
% save results 
save(TEMP.savefilename,'results_container'); 
% backup workspace(overwrite last) 
save(['Simulation restore files\backup_',TEMP.simulation_ID]) 
% post/summary 
results_container = {}; 
TEMP.last_save_tic = tic; 
statusdisp(['Performed save operation. Saved results as : ',TEMP.savefilename],1) 
TEMP.segmentnum = TEMP.segmentnum + 1; 
TEMP.not_saved_count = 0; 

 

1.5.7 “component_transportdelay_relaysweep.m” 

relaysweep = 1; 
lastloggedfreq = inf; 

  
targetresolution = 16; 
A_out_vec = nan(targetresolution,1); % allocation of memory 
T_out_vec = nan(targetresolution,1); 
T_delay_vec = nan(targetresolution,1); 
delaysignals = cell(16,1); 
i = 1; 
MODEL.relay_Tdelay = MODEL.property_measurement_Ts; 

  
multTdelay = 0.1; % This should be dynamicly found (different from each process 

and configuration) 
if TEMP.zero_fault_run 
    while TEMP.wc_comm < lastloggedfreq 
        set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'InitialState', 

TEMP.op_state); 
        component_simloops_setparams; 
        MODEL.sinesweep_enabled = 0; 
        MODEL.stop_at_OP = 0; 
        MODEL.relaysweep = 1; 
        MODEL.eps = 0; 
        MODEL.relay_Tdelay_enabled = 1; 

         
        MODEL.relay_Tdelay = MODEL.relay_Tdelay + (i-1)*multTdelay; 
        statusdisp(['Relaysweep (timedelay) 

[',num2str(i),'][',num2str(wc),'(wc)<',num2str(lastloggedfreq),'][',num2str(MODEL

.relay_Tdelay),']'],2); 
        T_delay_vec(i) = MODEL.relay_Tdelay; 
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        sim(USERPARAM.mdl) 
        A_out_vec(i) = simout_property_A.Data; 
        T_out_vec(i) = simout_property_T.Data; 
        lastloggedfreq = 1/T_out_vec(i); 
        i = i+1; 

         
        signal = struct; 
        signal.c = simout_vector_lowrate_c; 
        signal.c1 = simout_vector_lowrate_c1; 
        signal.ym = simout_vector_lowrate_ym; 
        delaysignals(i) = {signal}; 
    end 
    TEMP.T_delay_vec = T_delay_vec; 
else 
    for i = 1:length(TEMP.T_delay_vec) 
        set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'InitialState', 

TEMP.op_state); 
        component_simloops_setparams; 
        MODEL.sinesweep_enabled = 0; 
        MODEL.stop_at_OP = 0; 
        MODEL.relaysweep = 1; 
        MODEL.eps = 0; 
        MODEL.relay_Tdelay_enabled = 1; 

         
        MODEL.relay_Tdelay = TEMP.T_delay_vec(i); 
        statusdisp(['Relaysweep (timedelay) 

[',num2str(i),'][',num2str(wc),'(wc)<',num2str(lastloggedfreq),'][',num2str(MODEL

.relay_Tdelay),']'],2); 
        T_delay_vec(i) = MODEL.relay_Tdelay; 
        sim(USERPARAM.mdl) 
        A_out_vec(i) = simout_property_A.Data; 
        T_out_vec(i) = simout_property_T.Data; 
        lastloggedfreq = 1/T_out_vec(i); 

         
        signal = struct; 
        signal.c = simout_vector_lowrate_c; 
        signal.c1 = simout_vector_lowrate_c1; 
        signal.ym = simout_vector_lowrate_ym; 
        delaysignals(i) = {signal}; 
    end 
end 
delaysignals = flipdim(delaysignals,1); 

  
w_delay_vec_hz = 1./flipdim(T_out_vec(~isnan(T_out_vec)),1); 
w_delay_vec_rad = w_delay_vec_hz*2*pi; 
a_delay_vec = flipdim(A_out_vec(~isnan(A_out_vec)),1); 
pha_delay_vec = -flipdim(T_delay_vec(~isnan(T_delay_vec)),1).*w_delay_vec_hz*360; 

  
[~,p_r] = bode(TEMP.R,w_delay_vec_rad); 
pha_reg_vec = squeeze(p_r(1,1,:)); 
pha_process_vec = -180 - pha_reg_vec - pha_delay_vec; 

 



 
 

29 
 

1.6 Program functions 

1.6.1 “post_fft_estAmpPha.m” 

function [amplitude_ratio, phase_lag] = post_fft_estAmpPha(x,y) 
x = x - mean(x); 
y = y - mean(y); 
% FFTs 
X=fft(x); 
Y=fft(y); 
% location 
[mag_x,idx_x] = max(abs(X)); 
[mag_y,idx_y] = max(abs(Y)); 
% 
px = angle(X(idx_x)); 
py = angle(Y(idx_y)); 
phase_lag = py - px; 
% 
amplitude_ratio = mag_y/mag_x; 

 

1.6.2 “checkTerminationCause.m” 

function [checkstate,str] = checkTerminationCause( ... 
    simout_stopcause_OP,simout_stopcause_simcycle,... 
    simout_stopcause_sinesweep,simout_stopcause_drumcapacity,... 
    simout_stopcause_instability,simout_stopcause_timeoutnochange,simOut, sim-

stoptime ) 

  
%CHECKTERMINATIONCAUSE Summary of this function goes here 
%   checkstate can be used to create specific handlers for events by 
%   outside program 

  
descript_str = '<Stopcause>: '; 
if simOut(end) == simstoptime 
    checkstate = 1; 
    cause_str = 'Simulation timed out.'; 
elseif simout_stopcause_simcycle.Data 
    checkstate = 2; 
    cause_str = 'Simulation stopped by completion of simcycle.'; 
elseif simout_stopcause_sinesweep.Data 
    checkstate = 3; 
    cause_str = 'Simulation stopped by completion of sinesweep.'; 
elseif simout_stopcause_drumcapacity.Data 
    checkstate = 4; 
    cause_str = 'Simulation stopped because separator reached capacity limit.'; 
elseif simout_stopcause_OP.Data 
    checkstate = 5; 
    cause_str = 'Simulation stopped by reaching operating point.'; 
elseif simout_stopcause_instability.Data 
    checkstate = 6; 
    cause_str = 'Simulation stopped due to asymptotic instability.'; 
elseif simout_stopcause_timeoutnochange.Data 
    checkstate = 7; 
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    cause_str = 'Simulation stopped due to timeout (output did not change)'; 
else 
    checkstate = 0; 
    cause_str = 'Unknown error. Should be considered by user.'; 
end 
str = [descript_str,cause_str]; 
end 

  

 

 

1.6.3 “createSimID.m” 

function [ string_out ] = createSimID( mdl ) 
%CREATESIMID Summary of this function goes here 
%   Detailed explanation goes here 

  
time = round(clock); 
bsymb = '+'; % break symbol 
msymb = '@'; % model symbol 
dsymb = '-'; % date symbol 
tsymb = '-'; % time symbol 
datestring = [num2str(time(3)),dsymb,num2str(time(2)),dsymb,num2str(time(1))]; 
timestring = [num2str(time(4)),tsymb,num2str(time(5)),tsymb,num2str(time(6))]; 
string_out = ['Sim',msymb,mdl,bsymb,datestring,bsymb,timestring]; 
end 

  

 

1.6.4 “post_find_P.m” 

function [P_K,P_phase] = post_find_P(R,f,in_x,in_y) 
f_rad = 2*pi*f; 
% 
excerptsize = 70; % uses last 70[%] of datasamples (needs time to settle at 

first) 
fac = (100-excerptsize)/100; 
idx1 = max([1,fac*length(in_x)]); 
idx2 = length(in_x); 
elements = round(idx1:idx2); 
x = in_x(elements); 
y = in_y(elements); 
% figure,plot(x),hold on,plot(y,'r'),hold off 
% 
[yx_gain,pha_rad] = post_fft_estAmpPha(x,y); 
s2 = yx_gain*exp(1i*pha_rad); 
% 
[mag_R,pha_deg_R,~] = bode(R,f_rad); % gain and phase of R 
R_jw = mag_R*exp(1i*pha_deg_R*pi/180); 
% 
abs_R_jw = abs(R_jw); 
% abs_R_jw_dB = 20*log10(abs_R_jw); 
% 
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% yx_gain = rt_amp; % test 
P_K = abs(yx_gain) / abs((1-yx_gain)*abs_R_jw); 
P_phase = angle(s2 / ((1 - s2)*R_jw))*180/pi; 
end 

 

1.6.5 “createSweepVector.m” 

function [ sweepvector ] = createSweepVector( 

wc_comm,wcfac,w180_comm,w180fac,res,wc,w180 ) 
%CREATESWEEPVECTOR Summary of this function goes here 
%   Detailed explanation goes here 

  
lin2log = @(x)log(x)./log(10); 
lowfreq                 = wc_comm * wcfac; 
highfreq                = w180_comm * w180fac; 
uselogspace = true; % can use linspace or logspace for vector 
if uselogspace, sweepvector = logspace(lin2log(lowfreq),lin2log(highfreq),res-2); 
else sweepvector            = linspace(lowfreq,highfreq,res-2); %subtracting 2 

from res since wc and w180 are also added 
end 
sweepvector(end+1:end+2) = [wc,w180]; % add wc and w180 freq 
sweepvector             = sort(unique(sweepvector)); % resort in ascending order 

and remove identical entries 
statusdisp(['Will sinus sweep with ',num2str(length(sweepvector)),... 
    ' frequencies from ',num2str(lowfreq),' to ',num2str(highfreq)],2) 
end 

  

 

1.6.6 “calcVirtualTimeToRealTimeFactor.m” 

function [ string ] = calcVirtualTimeToRealTimeFactor( simOut,looptime ) 
%CALCVIRTUALTIMETOREALTIMEFACTOR Summary of this function goes here 
%   Detailed explanation goes here 

  
factor = (simOut(end) - simOut(1)) / looptime; 
string = ['Processed in average ',num2str(factor),' virtual seconds per real sec-

ond.']; 
end 

 

 

1.6.7 “postFindPhase.m” 

function [ phase_out ] = postFindPhase( a_est,f,signal,t,addphase ) 
%POSTFINDPHASE Summary of this function goes here 
%   Detailed explanation goes here 

  
sign_detrend = detrend(signal); 
minphase = 0; 
maxphase = -359; 
phavec = linspace(minphase,maxphase,360); 
minsum = inf; 
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for phase = phavec 
    cmpsin = a_est*sin(2*pi*f.*t + (addphase + phase)*pi/180); 
    sumdiff = sum((cmpsin - sign_detrend).^2); 
    if sumdiff < minsum  
        phase_out = phase;  
        minsum = sumdiff; 
    end 
end 

  
if false 
    figure 
    plot(sign_detrend); title('signal out') 
    hold on 
    plot(a_est*sin(2*pi*f.*t + (addphase + phase_out)*pi/180),'r'); title('approx 

out') 
    hold off 
end 
end 

  

1.7 Analysis functions 

1.7.1 “analyzer_displayResultsAsText.m” 

function [  ] = analyzer_displayResultsAsText( varargin ) 
%READRESULTS_DISPLAYTEXT Summary of this function goes here 
%   Detailed explanation goes here 
%   Outputs measured phase and amplitude margin 

  
results_container = []; 
idx_list = []; 
R = []; 
if nargin == 0 
    try 
        [results_container,idx_list] = loadResults(); 
    catch e 
        return 
    end 
else 
    % input 
    while 0 < length(varargin) 
        removeentries = 1; 
        if isa(varargin{1},'char') 
            switch(varargin{1}) 
                case 'container' 
                    results_container = varargin{2}; 
                case 'indexes' 
                    idx_list = varargin{2}; 
                case 'controller' 
                    R = varargin{2}; 
                otherwise, disp('Unknown field ''',varargin{2},'''') 
            end 
            if removeentries, varargin(1:2) = []; end 
        else 
            varargin(1) = []; 
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            warning('Each input should have a descripting string first') 
        end 
    end 
end 

  
dowarn1 = true; 
for i=1:length(idx_list) 
    idx=idx_list(i); 
    disp(['**********Configuration ',num2str(idx),'**********']) 
    disp('             Parameters:           ') 
    disp(results_container{idx}.parameters) 
    if results_container{idx}.successful 
        % test mechanism 
        disp('             Results:') 
        disp(results_container{idx}.results) 
        % footprint 
        if ~isempty(R) 
            try 
            % wc 
            wc = results_container{idx}.relaysweep.w_hyst_vec_hz(1); 
            [gain_R_wc,pha_R_wc] = bode(R,wc*2*pi); 
            % gain 
            gain_P_wc = results_container{idx}.relaysweep.gain_process_vec(1); 
            gain_RPM_wc = 10^(gain_P_wc/20) + gain_R_wc; 
            % phase 
            wc_signals = results_container{idx}.relaysweep.hystsignals{1}; 
            [~, wc_pha_rad] = 

post_fft_estAmpPha(wc_signals.c.Data,wc_signals.ym.Data); 
            pha_P_wc = 180/pi*wc_pha_rad; 
            if 0<pha_P_wc,pha_P_wc=pha_P_wc-360; end 
            pha_RPM_wc = pha_P_wc + pha_R_wc; 

             
            % w180 
            w180 = results_container{idx}.relaysweep.w_hyst_vec_hz(end); 
            [gain_R_w180,pha_R_w180] = bode(R,w180*2*pi); 
            % gain 
            gain_P_w180 = re-

sults_container{idx}.relaysweep.gain_process_vec(end); 
            gain_RPM_w180 = 10^(gain_P_w180/20) + gain_R_w180; 
            % phase 
            w180_signals = results_container{idx}.relaysweep.hystsignals{end}; 
            [~, w180_pha_rad] = 

post_fft_estAmpPha(w180_signals.c.Data,w180_signals.ym.Data); 
            pha_P_w180 = 180/pi*w180_pha_rad; 
            if 0<pha_P_w180,pha_P_w180=pha_P_w180-360; end 
            pha_RPM_w180 = pha_P_w180 + pha_R_w180; 

             
            fpresults.gainmargin = abs(gain_RPM_w180-gain_RPM_wc); 
            fpresults.phasemargin = abs(pha_RPM_w180-pha_RPM_wc); 
            disp('             Results (footprint)') 
            disp(fpresults) 
            catch err % likely to be missing relay sweep 
            end 
        elseif dowarn1 
            dowarn1 = false; 
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            warning('Could not show results from footprint since the used control 

parameter were not given as input') 
        end 
    else disp('             Incomplete') 
    end 
    disp(['-------------       End ',num2str(idx),'     -------------']) 
    disp(' ') 
    disp(' ') 
end 
end 

 

1.7.2 “analyzer_lookupResults.m” 

function analyzer_lookupResults( varargin ) 
%LOOKUPRESULTS Summary of this function goes here 
%   Detailed explanation goes here 

  
% initialize other 
results_container = []; 
R = []; 

  
% initialize param 
refhigh = []; 
oilflow_in = []; 
cd2001_P = []; 
cd2002_P = []; 
valve_diaphragmleak = []; 
valve_internleak = []; 
valve_uppersaturation = []; 
valve_lowersaturation = []; 
valve_T = []; 
valve_S = []; 
valve_J = []; 
transmitter_filter_enabled = []; 
transmitter_bias = []; 
transmitter_skew = []; 
transmitter_Tm = []; 

  
% input 
while 0 < length(varargin) 
    removeentries = 1; 
    if isa(varargin{1},'char') 
        switch(varargin{1}) 
            case 'container' 
                % container 
                results_container = varargin{2}; 
            case 'controller' 
                %controller 
                R = varargin{2}; 
                % param 
            case 'refhigh' 
                refhigh = varargin{2}; 
            case 'oilflow_in' 
                oilflow_in = varargin{2}; 
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            case 'cd2001_P' 
                cd2001_P = varargin{2}; 
            case 'cd2002_P' 
                cd2002_P = varargin{2}; 
            case 'valve_diaphragmleak' 
                valve_diaphragmleak = varargin{2}; 
            case 'valve_internleak' 
                valve_internleak = varargin{2}; 
            case 'valve_uppersaturation' 
                valve_uppersaturation = varargin{2}; 
            case 'valve_lowersaturation' 
                valve_lowersaturation = varargin{2}; 
            case 'valve_T' 
                valve_T = varargin{2}; 
            case 'valve_S' 
                valve_S = varargin{2}; 
            case 'valve_J' 
                valve_J = varargin{2}; 
            case 'transmitter_filter_enabled' 
                transmitter_filter_enabled = varargin{2}; 
            case 'transmitter_bias' 
                transmitter_bias = varargin{2}; 
            case 'transmitter_skew' 
                transmitter_skew = varargin{2}; 
            case 'transmitter_Tm' 
                transmitter_Tm = varargin{2}; 
            otherwise, disp('Unknown field ''',varargin{2},'''') 
        end 
        if removeentries, varargin(1:2) = []; end 
    else 
        varargin(1) = []; 
        warning('Each input should have a descripting string first') 
    end 
end 

  
% load if not prespecified 
if isempty(results_container) 
    [ results_container,idx_list,~ ] = loadResults(); 
end 

  
% lookup routine 
dowarn1 = true; 
dowarn2 = true; 
indexlist = []; 

  
%tmp fix 
orig.cd2001_P = cd2001_P; 
orig.cd2002_P = cd2002_P; 
orig.oilflow_in = oilflow_in; 
orig.transmitter_bias = transmitter_bias; 
orig.transmitter_skew = transmitter_skew; 
orig.transmitter_Tm = transmitter_Tm; 
orig.transmitter_filter_enabled = transmitter_filter_enabled; 
for idx=idx_list 
    param = results_container{idx,1}.parameters; 
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    if idx==290 
       disp('')  
    end 

     
    % handle bug in old version (some missing fields) 
    cd2001_P = orig.cd2001_P; % part of tmp fix 
    cd2002_P = orig.cd2002_P; 
    oilflow_in = orig.oilflow_in; 
    transmitter_bias = orig.transmitter_bias; 
    transmitter_skew = orig.transmitter_skew; 
    transmitter_Tm = orig.transmitter_Tm; 
    transmitter_filter_enabled = orig.transmitter_filter_enabled; 
    warstr = ''; 
    if ~isfield(param,'cd2001_P'), cd2001_P=[]; param.cd2001_P=[]; war-

str=[warstr,'cd2001_P ']; end 
    if ~isfield(param,'cd2002_P'), cd2002_P=[]; param.cd2002_P=[]; war-

str=[warstr,'cd2002_P ']; end 
    if ~isfield(param,'oilflow_in'), oilflow_in=[]; param.oilflow_in=[]; war-

str=[warstr,'oilflow_in ']; end 
    if ~isfield(param,'transmitter_bias'), transmitter_bias=[]; 

param.transmitter_bias=[]; warstr=[warstr,'transmitter_bias ']; end 
    if ~isfield(param,'transmitter_skew'), transmitter_skew=[]; 

param.transmitter_skew=[]; warstr=[warstr,'transmitter_skew ']; end 
    if ~isfield(param,'transmitter_Tm'), transmitter_Tm=[]; 

param.transmitter_Tm=[]; warstr=[warstr,'transmitter_Tm ']; end 
    if ~isfield(param,'transmitter_filter_enabled'), transmit-

ter_filter_enabled=[]; param.transmitter_filter_enabled=[]; war-

str=[warstr,'transmitter_filter_enabled ']; end 
    if ~isempty(warstr) && dowarn1, warning(['Some parameter fields were missing 

and ignored by default [ ',warstr,']']),dowarn1=false; end 

     
    % special case of transmitter 
    if transmitter_Tm == 0 
        transmitter_Tm = param.transmitter_Tm; 
        transmitter_filter_enabled = 0; 
    else 
        transmitter_filter_enabled = 0; 
        if dowarn2 
            warning('Ambiguity since transmitter Tm was larger than 0, but filter 

was disabled') 
            dowarn2 = false; 
        end 
    end 

     
    % check if result is interesting 
    if ... 
            (isempty(refhigh) || isequal(refhigh,param.refhigh)) &&... 
            (isempty(oilflow_in) || isequal(oilflow_in,param.oilflow_in)) &&... 
            (isempty(cd2001_P) || isequal(cd2001_P,param.cd2001_P)) &&... 
            (isempty(cd2002_P) || isequal(cd2002_P,param.cd2002_P)) &&... 
            (isempty(valve_diaphragmleak) || ise-

qual(valve_diaphragmleak,param.valve_diaphragmleak)) &&... 
            (isempty(valve_internleak) || ise-

qual(valve_internleak,param.valve_internleak)) &&... 
            (isempty(valve_uppersaturation) || ise-

qual(valve_uppersaturation,param.valve_uppersaturation)) &&... 
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            (isempty(valve_lowersaturation) || ise-

qual(valve_lowersaturation,param.valve_lowersaturation)) &&... 
            (isempty(valve_T) || isequal(valve_T,param.valve_T)) &&... 
            (isempty(valve_S) || isequal(valve_S,param.valve_S)) &&... 
            (isempty(valve_J) || isequal(valve_J,param.valve_J)) &&... 
            (isempty(transmitter_filter_enabled) || ise-

qual(transmitter_filter_enabled,param.transmitter_filter_enabled)) &&... 
            (isempty(transmitter_bias) || ise-

qual(transmitter_bias,param.transmitter_bias)) &&... 
            (isempty(transmitter_skew) || ise-

qual(transmitter_skew,param.transmitter_skew)) &&... 
            (isempty(transmitter_Tm) || ise-

qual(transmitter_Tm,param.transmitter_Tm)) 
        indexlist(end+1,1) = idx; 
    end 
end 
disp(['Found ',num2str(length(indexlist)),' matches for your query']) 

  
% visualize results 
analyzer_plotBode( 'container',results_container,'indexes',indexlist ) 

  
% display margins XY plot 
analyzer_plotIndicatorXY( 'container',results_container,'indexes',indexlist ) 

  
% display results as text 
analyzer_displayResultsAsText( 'contain-

er',results_container,'indexes',indexlist,'controller',R ) 

  
end 

  

 

1.7.3 “analyzer_plotBode.m” 

function [ ] = analyzer_plotBode( varargin ) 
%READRESULTS_PLOTBODE Summary of this function goes here 
%   Detailed explanation goes here 

  
lin2log = @(x)log(x)./log(10); % anonymous function to convert from linear space 

to log space 
colorvec = 'gbmck'; 
R = []; 
progresstate = 1; 
figno = [1 2]; 
text_on = false; 
results_container = []; 
idx_list = []; 
post_phase = 1; 
% General code for reading variable input 
while 0 < length(varargin) 
    removeentries = 1; 
    if isa(varargin{1},'char') 
        switch(varargin{1}) 
            case 'container' 
                results_container = varargin{2}; 
            case 'indexes' 
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                idx_list = varargin{2}; 
            case 'plottext' 
                text_on = cell2mat(varargin{2}); 
            case 'figure' 
                figno = varargin{2}; 
            case 'controller' 
                R = varargin{2}; 
            case 'rtphase' 
                removeentries = 0; 
                varargin(1) = []; 
                post_phase = 0; 
            otherwise, disp('Unknown field ''',varargin{2},'''') 
        end 
        if removeentries, varargin(1:2) = []; end 
    else 
        varargin(1) = []; 
        disp('Each input should have a descripting string first') 
    end 
end 

  
if isempty(results_container) 
    [ results_container,idx_list,progresstate ] = loadResults(); 
end 

  
%% Process 
% open/create figure 
h1=figure(figno(1));  
subplot(2,1,1) 
title('Gain and phase, Bode plot') 
whitebg([.3 .4 .4]) 
h2=figure(figno(2)); 
title('Gain and phase, Bode plot (3D)') 
view(3) 
whitebg([.3 .4 .4]) 

  
for idx = 1 : length(idx_list) 
    cont_idx = idx_list(idx); 
    % points along the x dimension 
    try 
        cont = results_container{cont_idx}.relaysweep; 

         
        gain_dB = cont.gain_process_vec; 
        f_gain = cont.w_hyst_vec_hz; 
        f_gain_base10 = lin2log(f_gain); % logarithmic 10 base axis 

         
        if ~post_phase 
            phase = cont.pha_process_vec; 
            f_pha = cont.w_delay_vec_hz; 
            f_pha_base10 = lin2log(f_pha); 
        else 
            phase = nan(16,1); 
            for i = 1:length(cont.gain_process_vec) 
                x = cont.hystsignals{i}.c.Data; 
                y = cont.hystsignals{i}.ym.Data; 
                [~, pha_rad] = post_fft_estAmpPha(x,y); 
                pha_deg = pha_rad*180/pi; 
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                if 0 < pha_deg, pha_deg = pha_deg - 360; end 
                phase(i) = pha_deg; 
            end 
            f_pha_base10 = f_gain_base10; 
        end 
%                     phase = flipdim(phase,1); % bug in earlier version of saved 

signals (fixed now) 

         
        % plots 
        comm_state = results_container{cont_idx}.results.commissioning_state; 
        if comm_state, color = 'r'; 
        else color = colorvec(mod(cont_idx-1,length(colorvec))+1); 
        end 
        figure( figno(1) ) 
        subplot(2,1,1), hold on, plot(f_gain_base10,gain_dB,color), yla-

bel('Amplitude [dB]'), grid on 
        subplot(2,1,1), plot(f_gain_base10,gain_dB,'oy') 
        if comm_state, legend('Commissioning state'); end 
        subplot(2,1,2), hold on, plot(f_pha_base10,phase,color), ylabel('Phase 

[degrees]'), xlabel('frequency [Hz], base 10'), grid on 
        subplot(2,1,2), plot(f_gain_base10,phase,'oy') 

         
        % 3d plot 
        figure( figno(2) ), hold on, plot3(f_gain_base10,gain_dB,phase,color),  
        xlabel('frequency [Hz], base 10'), ylabel('Gain [dB]'), zlabel('Phase 

[degrees]') 
        grid on 
        plot3(f_gain_base10,gain_dB,phase,'oy') 

  
        figure( figno(1) ) 
        subplot(2,1,1), 

text(f_gain_base10(end),gain_dB(end),['s:',num2str(cont_idx)]) 
        subplot(2,1,2), 

text(f_pha_base10(end),phase(end),['s:',num2str(cont_idx)]) 
        figure( figno(2) ), 

text(f_pha_base10(end),gain_dB(end),phase(end),['s:',num2str(cont_idx)]) 
    catch err 
    end 
end 
end 

 

1.7.4 “analyzer_plotIndicatorXY.m” 

function analyzer_plotIndicatorXY( varargin ) 
%ANALYZER_PLOTINDICATORXY Summary of this function goes here 
%   Detailed explanation goes here 

  
colorvec = 'gbmck'; 
results_container = []; 
idx_list = []; 
while 0 < length(varargin) 
    removeentries = 1; 
    if isa(varargin{1},'char') 
        switch(varargin{1}) 
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            case 'container' 
                results_container = varargin{2}; 
            case 'indexes' 
                idx_list = varargin{2}; 
            otherwise, disp('Unknown field ''',varargin{2},'''') 
        end 
        if removeentries, varargin(1:2) = []; end 
    else 
        varargin(1) = []; 
        warning('Each input should have a descripting string first') 
    end 
end 

  
if isempty(results_container) 
    [ results_container,idx_list,~ ] = loadResults(); 
end 

  
figure 
xlabel('Gain margin (dB)') 
ylabel('Phase margin (degrees)') 
title('Margins XY plot') 
for i = 1 : length(idx_list) 
    idx = idx_list(i); 
    results = results_container{idx}.results; 
    try 
        XdB = 20*log10(results.A_m); 
        Ydeg = results.phi_m; 

         
        if results.commissioning_state, col='r'; 
        else col = colorvec(mod(idx-1,length(colorvec))+1); 
        end 

         
        hold on 
        plot(XdB,Ydeg,['o',col]) 
        text(XdB,Ydeg,num2str(idx)) 
        hold off 
    catch err 
    end 
end 
end 

 

1.7.5 “analyzer_plotResponses.m” 

function analyzer_plotResponses( varargin ) 
%PLOTRESPONSES ( varargin ) plots inputs of type 'timeseries' 
% Accepts variable size input of type timeseries 
%   Not very good code... should be refined 

  
figno = []; 
% General code for reading variable input 
while 0 < length(varargin) 
    if isa(varargin{1},'char') 
        switch(varargin{1}) 
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            case 'signals' 
                signals = varargin{2}; 
            case 'figure' 
                figno = varargin{2}; 
            otherwise, disp('Unknown field ''',varargin{2},'''') 
        end 
        varargin(1:2) = []; 
    else 
        varargin(1) = []; 
        disp('Each input should have a descripting string first') 
    end 
end 

  
if isempty(figno), figure 
else figure(figno) 
end 
whitebg([0 .5 .6]) 
colorvec = 'rgbmck'; 
legends = {}; 
for i = 1 : size(signals,1) 
    color = colorvec(mod(i-1,length(colorvec))+1); 
    prop = signals(i); 
    if isa(prop,'timeseries') 
        hold on, plot(prop.Time,prop.Data,color), hold off 
        legends{i} = prop.Name; 
    elseif isa(prop,'cell') 
        hold on, plot(prop{1}.Time,prop{1}.Data,color), hold off 
        legends{i} = prop{1}.Name; 
    end 
end 
legend(legends) 
end 

  

 

1.7.6 “lookup_footprint_script.m” 

clc 
% Script for analysing results 
Kp=4; 
Ti=100; 
Td=0; 
num = Kp*[Ti*Td Ti 1]; 
den = [Ti 0]; 
R = tf(num,den); 
% set parameter configurations of interest 
refhigh = DEFAULT.oper.refhigh; 
oilflow_in = DEFAULT.oper.refhigh; 
cd2001_P =  []; 
cd2002_P =  []; 
valve_diaphragmleak = DEFAULT.valve.diaphragmleak; 
valve_internleak = DEFAULT.valve.internleak; 
valve_uppersaturation = DEFAULT.valve.uppersaturation; 
valve_lowersaturation = DEFAULT.valve.lowersaturation; 
valve_T = DEFAULT.valve.T; 
valve_S = DEFAULT.valve.S; 
valve_J = DEFAULT.valve.J; 
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transmitter_filter_enabled = DEFAULT.transmitter.filter_enabled; 
transmitter_bias = DEFAULT.transmitter.bias; 
transmitter_skew = DEFAULT.transmitter.skew; 
transmitter_Tm = DEFAULT.transmitter.Tm; 

  
% lookup function 
analyzer_lookupResults( ... 
    'controller',R,... 
    'refhigh',refhigh,... 
    'oilflow_in',oilflow_in,... 
    'cd2001_P',cd2001_P,... 
    'cd2002_P',cd2002_P,... 
    'valve_diaphragmleak',valve_diaphragmleak,... 
    'valve_internleak',valve_internleak,... 
    'valve_uppersaturation',valve_uppersaturation,... 
    'valve_lowersaturation',valve_lowersaturation,... 
    'valve_T',valve_T,... 
    'valve_S',valve_S,... 
    'valve_J',valve_J,... 
    'transmitter_filter_enabled',transmitter_filter_enabled,... 
    'transmitter_bias',transmitter_bias,... 
    'transmitter_skew',transmitter_skew,... 
    'transmitter_Tm',transmitter_Tm... 
    ) 

 

1.7.7 “combineSegments.m” 

function [ ] = combineSegments( ) 
%COMBINDSEGMENTS Summary of this function goes here 
%   Detailed explanation goes here 
%   Combines result file segments into one larger file 

  
% browse for files 
disp('User must select multiple files to merge') 
[filename,pathname] = uigetfile('*.mat','Select a .m file that holds results from 

a completed simulation','MultiSelect','on'); 
if isequal(filename,0) || isequal(pathname,0) 
    disp('User selected Cancel') 
    return 
end 
if ~isa(filename,'cell') 
    disp('User did not select multiple files to merge') 
    return 
end 

  
% combine data 
results_container = {}; 
for i = 1 : length(filename) 
    tmp = load([pathname,filename{i}]); 
    if isfield(tmp,'results_container') 
        for j = 1 : length(tmp.results_container) 
            % prevent duplicates from being added 
            is_included = 0; 
            for k = 1 : length(results_container) 



 
 

43 
 

                if isequal(results_container(k),tmp.results_container(j)) 
                    is_included = 1; 
                    disp('Result was already part of structure') 
                end 
            end 
            % add if not already added 
            if ~is_included 
                results_container(end+1,1) = tmp.results_container(j); 
            end 
        end 
    else disp(['Missing field results_container in ',filename{i}]) 
    end 
end 

  
% save 
[filename2, pathname2] = uiputfile([pathname,'*.mat'],'Save as','Combined.mat'); 
if isequal(filename2,0) || isequal(pathname2,0) 
    disp('User selected Cancel') 
else 
    try 
        savename = fullfile(pathname2,filename2); 
        save(savename,'results_container'); 
        disp(['Saved as ',savename]) 
    catch err 
        disp('Error occured') 
    end 
end 
end 

  

 

1.7.8 “loadResults.m” 

function [ results_container,idx_list,progresstate ] = loadResults() 
%LOADRESULTS Helper function that loads a results container 

  
results_container = []; 
%% load 
progresstate = 0; 
[filename,pathname] = uigetfile('*.mat','Select a .m file that holds results from 

a completed simulation'); 
if isa(filename,'char') 
    load([pathname,filename]); 
    if exist('results_container','var') 
        cont_length = length(results_container); 
        if 1 < cont_length 
            prompt1 = ['Index of first simulation results you want to display. 

Min 1']; 
            prompt2 = ['Index of last simulation results you want to display. Max 

',num2str(cont_length)]; 
            answer = inputdlg({prompt1,prompt2},'Plot di-

alog',1,{num2str(1),num2str(cont_length)}); 
            if isempty(answer) 
                disp('User cancelled') 
                return 
            else 
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                % check if several results are specified 

                 
                % evaluation of each result index 
                idx_1 = str2double(answer{1}); 
                idx_2 = str2double(answer{2}); 
                if idx_1 < 1 ||  cont_length < idx_2 
                    disp('Index out of bounds') 
                    return 
                else idx_list = idx_1 : idx_2; 
                end 
            end 
        else idx_list = 1; 
        end 
        progresstate = 1; 
    else disp('The file contained an unfamiliar structure') 
    end 
else disp('No .mat file returned from browser') 
end 
end 


