

Faculty of Science and Technology

MASTER’S THESIS

Study program/Specialization:
Master of Information Technology
Automation and Signal Processing

Spring semester, 2014

Confidential

Writer:
Eivind Brate Midtun

(Writer’s Signature)

Faculty supervisor:
Morten Tengesdal

External supervisor(s):
Eivind Bjørge Sandsmark, Statoil

Thesis title:

“Study on a Solution for Condition monitoring of Process, Process Equipment and Control
Loops, and efficient System identification for retuning”

Credits(ECTS):
30

Key words:
Control systems, instrumentation,
modelling, system identification,
state detection, performance analy-
sis, intelligent control loop monitor-
ing

 Pages: 84

 + enclosure: 44

 Stavanger, 27/6-2014

 Date/year

Preface

When I first left my friends and family in Bergen to start my higher ed-

ucation at the University of Stavanger, blissfully was I unaware of all

the academic challenges that would be thrown at me during the

years. Being a student is often associated with living on bread

crumbs and water (thankfully not all the time), like an imagined

prisoner, but the prison that surrounds you is actually the lack of the

formal education you need in order to start the job career of your

desire.

I have been lucky and quickly selected the field of work appropriate for

my gray cells. Although the course sounded very interesting when I

first read the description, there was little information provided from

people with the same interests as you, but on a later life phase,

ahead of making the career choice. So the randomness of nature

sent me to Stavanger, which I in retrospect do not regret.

Ever since I was a little boy I have physically realized my imagination in

different forms; back then I had woodworking from growing up on a

farm, drawing from my mother’s father, and of course the Lego that

I always wanted for the birthdays and Christmases; and it became a

lot over the years, and eventually I got my hands on a Lego Mind-

storms set. I have more tools in my toolbox now, and the products of

my labor are more beneficial for others. I take pride in my work and

consider myself ambitious; sometimes ambitiousness throws you

down paths you did not expect, but having learned to cope with

challenges, for good and for worse, has made me aspire to be a

strong engineer.

There are many people to thank for being given this opportunity and it

is too easy to take it for granted. But I know that without support

from my family and friends, the journey would have been a cruder. I

will allocate more time for you now.

Thanks to all my teachers during the years. Thanks to the University of

Stavanger for providing such great lecturers and to aspire to be a

great University. Thanks to my supervisor for giving me this oppor-

tunity, and to the rest of the crew at Statoil Statfjord Plant Integrity

in Stavanger who has put up with me for 6 months straight. I hope

that we can still meet at least once a week and play football togeth-

er. Thanks to all my friends, that I too often prioritized second to my

education, but I will make it up to you now.

And especially a big thanks to my family, whom I love more than any-

thing.

Sincerely,

Eivind Brate Midtun,

Master of Technology,

Faculty of Science and Technology,

University of Stavanger,

2014

Classification: Confidential

i

Abstract

The presented thesis serves as part of a technology development program by Statoil ASA. The idea

behind the technology seeds back several years, and is a product of hands- on- practical experi-

ence. Extensive experience has indicated feasibility of more work toward understanding the

principles in action and approaching a practical solution for use on physical plants.

The idea is registered internally at Statoil with Statoil reference K4064, and the current intellectual

property strategy requires all information relating this idea, including this master thesis, to be

qualified as ‘Confidential’.

Introduction to the technology plan [1] defines the prime motivation of the technology develop-

ment:

There is a growing motivation for monitoring control loop performance and for a change

in maintenance strategy towards more condition based maintenance. Monitoring con-

trol loop performance and equipment condition enables for early action when deterio-

ration of a control function starts developing, i.e. before the developing fault(s) or

changes in process characteristics has had a significant negative effect on business.

The proposed technology is a practical method for superficial system identification and tech-

nical/operational state detection, with the goal of optimizing process component maintenance,

and control loop retuning. The vital components of the plan will be properly detailed in the the-

sis outline, 1.3, with the associated deliverables and constraints. A description of the proposed

test mechanism will be provided under the theory chapter, 2.3.

Also as part of the same Statoil Technology Development program, a bachelor thesis [2] was con-

ducted in 2010, by Espen Svandalsflona and Frode Tuen associated with the University of Sta-

vanger, concluding among other topics that more study on the results criteria for making the

maintenance decisions would have to be made and review changing several process parameters

in combination. Additionally it would need to be proved that oscillations induced by the pro-

posed test mechanism would not upset other parts of the process to such a degree that the de-

sire for increase of product quality, effectiveness and the cost advantages, would be overshad-

owed by the potential performance loss associated during the testing. The latter topic will not

be discussed in this thesis due to the time constraint.

Classification: Confidential

ii

Classification: Confidential

iii

Table of contents

Preface .. iii

Abstract ... i

 Table of contents .. iii

Acronyms .. vii

Chapter 1 Introduction ... 1

1.1 Model based control systems .. 1

1.2 Previous related work in the field .. 2

1.3 Thesis outline .. 4

Chapter 2 Theory ... 8

2.1 The production train ... 8

2.2 Performance of control loops .. 10

2.2.1 Phase- and gain margins .. 12

2.3 Valve properties.. 14

2.3.1 Stiction .. 16

2.3.2 Valve saturation and diaphragm faults ... 16

2.3.3 Valve leakage ... 17

2.4 Measuring equipment properties .. 18

2.5 Generic nonlinear effects .. 20

2.6 Test mechanic hypothesis ... 20

2.7 Standard and modified relay feedback method ... 22

2.8 Mapping process “footprint” .. 24

2.8.1 Approach 1: Sine sweep and fast Fourier transform ... 25

2.8.2 Approach 2: Relay sweep adjusting hysteresis and transport delay .. 26

Classification: Confidential

iv

Chapter 3 Experimental .. 30

3.1 Model requirements ... 30

3.2 Models produced according to requirements .. 31

3.2.1 Simulink simplified process model ... 32

3.2.2 Dymola more comprehensive process model ... 36

3.2.3 Control valve model ... 37

3.2.4 Level transmitter model ... 39

3.3 Design of test mechanism components ... 40

3.3.1 Matlab flow control and simulation setup .. 40

3.3.2 Simulink design .. 42

3.3.3 Detecting quiescence at process output ... 44

3.3.4 Detecting asymptotic stability .. 45

3.3.5 Preventing false relay switch behavior ... 45

3.3.6 Estimating frequency of process output ... 47

3.3.7 Estimating amplitude of process output ... 48

3.3.8 Estimating , , , .. 50

3.3.9 Alternative estimation methods for further investigation ... 53

3.4 Design of sine sweep components .. 53

3.4.1 Estimating amplitude and phase for sine sweep procedure .. 53

3.5 Project component tests ... 56

3.5.1 Amplitude and phase estimator (“AmpPhaEst”) ... 57

3.5.2 Period estimator (“PeriodEst”) ... 58

3.5.3 Valve .. 61

3.5.4 Modified relay testing .. 63

3.5.5 Test of Simulink setup for known system, with relay test and sine sweep....................................... 64

3.5.6 Test of exactly known system with relay test and relay sweep ... 66

Classification: Confidential

v

Chapter 4 Simulation study .. 68

4.1 Simulation setup and some regarding comments .. 68

4.2 Results .. 69

4.2.1 Simulation example: Zero fault/“commissioning state” .. 70

4.2.2 (Small) Simulation example: 0-20% stiction, 5% increments ... 72

4.2.3 (Big) Simulation example: Stiction configurations ... 74

4.2.4 (Big) Simulation example: Different pressures (operational states)... 75

4.2.5 (Big) Simulation example: Different oil flow rates (operational states) ... 76

4.2.6 (Big) Simulation example: Diaphragm leak and internleak .. 77

4.2.7 (Big) Simulation example: Stiction (technical) and different pressure (operational) 78

Chapter 5 Conclusion ... 80

Chapter 6 Bibliography ... 82

Chapter 1 Appendix .. 1

1.1 (Early) Poster presentation of Thesis ... 2

1.2 List of figures .. 3

1.3 Main() .. 7

1.3.1 “run_MainSimulation.m” ... 7

1.4 Init files ... 8

1.4.1 “prep_simulation_parameters.m”.. 8

1.4.2 “init_CD2001.m” .. 10

1.4.3 “init_default_values.m” ... 10

1.4.4 “init_contr_and_rel.m” .. 10

1.4.5 “init_other_parameters.m”.. 12

1.4.6 “init_transmitter.m” .. 14

1.4.7 “init_valve_complete.m” ... 15

1.5 Script components .. 16

Classification: Confidential

vi

1.5.1 “component_create_testmatrix.m” ... 16

1.5.2 “component_simloops2.m” ... 18

1.5.3 “component_simloops_setparams2.m” ... 23

1.5.4 “component_hysteresis_relaysweep.m” .. 24

1.5.5 “component_sinesweep.m” ... 25

1.5.6 “component_save.m” .. 27

1.5.7 “component_transportdelay_relaysweep.m”... 27

1.6 Program functions .. 29

1.6.1 “post_fft_estAmpPha.m” ... 29

1.6.2 “checkTerminationCause.m” .. 29

1.6.3 “createSimID.m” .. 30

1.6.4 “post_find_P.m” .. 30

1.6.5 “createSweepVector.m” .. 31

1.6.6 “calcVirtualTimeToRealTimeFactor.m” ... 31

1.6.7 “postFindPhase.m” .. 31

1.7 Analysis functions ... 32

1.7.1 “analyzer_displayResultsAsText.m” .. 32

1.7.2 “analyzer_lookupResults.m” .. 34

1.7.3 “analyzer_plotBode.m” .. 37

1.7.4 “analyzer_plotIndicatorXY.m” .. 39

1.7.5 “analyzer_plotResponses.m” ... 40

1.7.6 “lookup_footprint_script.m” .. 41

1.7.7 “combineSegments.m” .. 42

1.7.8 “loadResults.m” ... 43

Classification: Confidential

vii

Acronyms

This section contains clarification of commonly used terms in order to lighten the reading, as well

as a complete list of figures and tables for convenience. If something is unclear or needs elabo-

ration, the reader may have use of referring to this section.

Term/symbol Meaning/annotation Comment/explanation

Stiction Static friction. A combination of
stickband and slipjump

Slipjump Example: A steady increase of
throttle results in an abrupt change
of value

Hysteresis Example: Input must exceed a cer-
tain value after reversing direction
before reaching its previous config-
uration

Stickband / Deadtime E.g. time before system reacts to an
event on its input.

Pv Controlled variable

Op Controller output

Sp/ref Set point

Mv Valve positioner

MTBF Mean Time Between Failures

RCM Reliability Centered Mainte-
nance

SFC Statfjord C

S-function Used to extend the capabilities of
Simulink. Matlab code is compiled
to c-code on runtime.

FFT Fast Fourier Transform

NaN/NA Not a Number/Not applicable

DNF Did not finish

RPD Reference-process-deviation

FOI Frequency of interest

 / Frequency of when Pv has a phase
lag of -180° relative to the refer-
ence

 Frequency of zero dB gain of loop
transfer function

 Gain margin, stability criterion and
control performance indicator

 Phase margin, stability criterion
and control performance indicator

Classification: Confidential

viii

Classification: Confidential

1

Chapter 1

Introduction

The introduction chapter will start off with giving a small insight of the issues presented in this the-

sis. The author will discuss some of the objectives of having control loops governing processes,

and some concerns associated with this. Section 1.2 will introduce some of the related work

done within the field of control performance monitoring, as well as suggest some of the main

differences between the mentioned solutions and the one that will be proposed in this thesis. In

section 1.3 the work of this thesis will be further and more detailed described, and also the

scope of the work will be clarified by listing constraints, initial simplifications, and the most im-

portant deliverables.

Note: During the report some abbreviations or standard annotations may be used, and their mean-

ing or description is placed in the Acronyms table after the table of contents. Figures and illus-

trations are also listed in a table at the end of Appendix for convenience.

1.1 Model based control systems

Control systems are widely used in real life environments. The controllers are small, and built on a

solid foundation of mathematical theory and practical experience. The controllers collect infor-

mation of the process through the inputs which is then processed. The controllers further out-

puts reactions to physical actuators that can influence the process image, like valves and pumps,

with the intention of keeping or bringing the process into a desired state. The use is growing

and getting more extensive and our modern technology depend on them. Developing control

systems is often about automating a task that is too costly, too rapid or too dangerous for hu-

mans to control. Good control systems require knowledge of the system, and in order to gain

great performance, a lot of time is often sunk into the system- design and modeling, although

the modeling is usually much simplified. The control performance can be measured in the forms

of lower energy consumption, less environmental consequences, heightened safety, greater

product quality, and so on according to the control system’s operational area.

The dynamics of the sensors and devices included in the process are given by specifications provid-

ed by the equipment manufacturers, and although some operational drift often is informed by

the manufacturers, it can be unreliable or impractical to compensate for in reality (and may of-

Classification: Confidential

2

ten work against the intention). Since all physical sensors and devices are exposed to operation-

al drift due to physical strain, the control system will change1 over time resulting in lowered effi-

ciency and less of the desired performance. If the state of the system has reached a state of un-

desired or critical amount of lowered performance, a group of engineers can be called to con-

duct a survey on the system and either tune the controller parameters if the state of the pro-

cess equipment is adequate, or else replace/run maintenance on key components believed to

be responsible for the deterioration. Retuning controllers to compensate for erroneous or bad

behavior elsewhere in the process can often be considered a bad thing. Such actions may keep

the faults partly hidden until their magnitude is so high that the consequences may be more se-

vere, than dealing with them immediately; such as a plant shutdown. If changes have been

made to the physical process, the control parameters should also be updated. E.g. replacing a

transmitter (possibly even with another type) may directly change the process gain, which calls

for an adjustment of the control parameters. Other elements affecting the operation of the con-

trolled directly or indirectly process can also in most cases be regarded as dynamical and time

variant. Such elements can be among change of flow into the process and change of pressure.

This can be caused by change of set points. In the scene later described in this thesis, and which

is the test site for this technology development, this can be a choice derived from the constant

change of oil well properties. To summarize: There is a lot to keep in mind while designing and

tuning process control loops, and the need of having a broader perspective covering all the typi-

cally thousands of active control loops, yet simultaneously individual and accurate health as-

sessment for each component, is of high desirability.

1.2 Previous related work in the field

Assessment of control loop performance is hardly a new topic. Industry is and always will be results

driven, and having optimally performing control loops is a key property in order to achieve this.

Unfortunately, manually keeping a close eye on every control loop, and all its consisting equip-

ment on a large scale is not feasible. An industrial plant may consist of thousands of control

loops, and only a few process control engineers to ensure they are performing satisfactory. This

1
 Control performance can either be improved or degraded over time. The controller is not necessarily “per-

fectly” tuned upon commissioning.

Classification: Confidential

3

suggests that automatic monitoring tools to flag and indicate degradation and source of prob-

lems as they arise would be of great assistance. For such monitoring systems to be helpful, they

cannot be allowed to further complicate the process image, which hints to the use of relatively

simple systems that require little attention before implementation and in addition decent flexi-

bility and adaptability. Such monitoring systems already exist, and most associated technologies

are often based on analysis of collected data during operation. Most of them are non-invasive

and/or model free methods. Just to mention a few of such products that are commercially

available, known to the author [3]:

 ABB: Loop optimizer suite

 Honeywell: Loop scout

 Matrikon: ProcessDoc

Many technologies are directed toward a data driven, analytic approach. Such technologies have a

strong mathematical base and the methods care little about the particular process itself. That

means the mechanism cares little about what the process consists of and what causes the dy-

namics, but is rather focused on the dynamic relation of input- output data during operation.

Minimum variance controller is derived using such a “blind” approach. These methods are very

adaptable and sturdy, and can give some insight of the control loop performance without too

much adaptation of the mechanism. Although they provide a good understanding of the per-

formance they lack the insight required to identify causes and suggest precise solutions. In

many practical situations “bad” or “loose” control is even desired. What we want to achieve

would then rather be high precision and individual follow-up. To list some of the experienced

challenges of today’s typical solutions:

- 1: Looks only at parts of control function

- 2: High sensitivity to noise and process disturbances

- 3: Further analysis usually required to perform diagnosis

- 4: Significant uncertainty

- 5: Difficult to evaluate a loops performance against specific controller objectives and con-

straints

- 6: Tools available typically implement only a few of several strongly related business processes

which should be integrated

Classification: Confidential

4

- 7: Lack of awareness of operational and technical states

The proposed test mechanism has been proved in collaboration with the project supervisor to re-

spond superior on these challenges and the results can be summarized by:

- 1: Evaluates the performance of the complete control function

- 2: Low sensitivity to noise and process disturbances

- 3: Results from test, preprocessing and analysis is directing towards the actual problems

- 4: Low uncertainty

- 5: Results are used for retuning with high precision

- 6: Test mechanism implement all business processes

- 7: Awareness of operation and technical states

The work presented in this thesis will be a more practical approach for state detection, while the

comparable results used for providing the process “footprint” used for developing the solution

(which will henceforth be referred to as the “test mechanism”) are generated through simula-

tions of the chosen process of interest.

1.3 Thesis outline

The scope of this thesis will be directed toward the field of condition monitoring, detection of fault

modes and deterioration of control loops, where the objective is to present a robust indicator

for lowered performance and early detection of equipment fault and/or drift. This will be used

to better schedule maintenance and retuning of the control loops, which in return yield expec-

tancy of increased production efficiency, increased product quality, and further reduced envi-

ronmental impact. In addition, preemptive detection can cause fewer emergency shutdowns on

the plant, as well as reduce the load on the operator.

The work is as mentioned in the abstract based on a Statoil technology development plan (TDP).

The decided approach is a mechanism based on a modified relay test, which has been proven a

good tool for system identification earlier in practical applications. The mechanism excites the

system in a controlled manner by affecting actuators, such as valves and pumps, and the result-

ing process responses are logged for analytical purposes. Among the response properties to be

studied are:

Classification: Confidential

5

 Pv-Sp 180° phase lag frequency,

 Loop transfer function, , 0dB gain frequency,

 Gain margin,

 Phase margin,

These properties are considered indicators of the current process state. As the process changes,

these indicators will change as well. Appropriate margins are commonly specified for a control

system, and are therefore good indicators that also indicate the current stability limits of the

control system. More indicators may be proposed and added to the routine later. The important

principle is that the mechanism is able to recognize the current state of the system, thus identi-

fy whenever the process equipment are under influence of fault modes; such as stiction, hyste-

resis, dead time, bad transmitter filter settings and more, which is often caused by physical de-

terioration or faulty calibration.

Before any industrial implementation, the technology will be thoroughly tested and prepared in

simulation environments, and the system of interest will be analyzed while at a state of satisfac-

tory performance criteria, for later reference. Under operational conditions, the real process, as

mentioned earlier, changes (i.e. drifts over time), altering the performance. During simulations

common operational faults will be added to the process model and controlled by the simulation

sequencer. The test mechanism iteratively excites the simulated process plant with a wide

range of simulated fault parameters so that indications of changes can be found.

An extra test mechanism will excite the physical process during a given window of time, but not to

the extent that it will be intolerably interfered. The test window will be selected so that the test-

ing undergoes when the process plant is stable and there is no risk. Ideally the testing would be

unnoticeable, but some oscillations will be induced in the control loop. The size of the oscilla-

tions can be easily controlled, but should be of such magnitude that the logged responses are

accurate. Upon implementation at the physical plant, the monitoring process will have data ac-

quired during the simulation study, providing an understanding of changes and consequences

affecting the monitored process, and will be able to analyze data and make diagnostics of the

process accordingly. As mentioned the test mechanism will be limited so that is does not ana-

lyze or affect the process at times of abnormal activity or risk. In addition to the simulation

study and the practical test mechanism, a part of the solution will be a descriptor based human

Classification: Confidential

6

interface, presenting the relevant information in an understandable and descriptive manner.

The interface will differentiate between different degrees of symptoms, and recommend coun-

ter measures accordingly.

This thesis will serve as a continuation of the preliminary study on the following topics, and will

give an idea of the feasibility and profitability of the research, design and implementation of

such a system. Since the design objective of this study is to have a kind of a general solution for

use in an industrial setting, there are some constraints limiting its form according to the TDP [1]:

 The solution shall be based on a modified relay test. The relay approach has shown practical re-

liability and is well proven which opens up for more comprehensive work related to it.

 The solution must produce results with sufficiently low uncertainty that relate to the operation-

al- and technical state, as well as be robust to process disturbances and noise.

 The solution should not negatively impact HSE (Health, Safety and Environment).

 The form of the solution should be general and adaptable, as well as documented, enough that

it can be transferred to other similar processes without too much associated complex work. So-

lution algorithms should be fairly non-complex and structurally interchangeable.

Since the study is fairly comprehensive some simplifications will also have to be taken in order to

ensure the quality of the work. Such simplifications are:

 The inlet separator tank of the Statfjord C production train has been selected as the process im-

age of focus for the preliminary study.

 Study directed toward valves, which are important components of our process image. A valve

should be a sufficient starting point and be able to demonstrate many of the symptoms that we

want to recognize and classify.

 There will be chosen some “boundaries” for the process image. “Boundaries” refer to environ-

ments in such a steady state they can be assumed static. I.e. there are no dynamics associated

to the “boundaries” and they will help limit the scope of the simulations.

 Process models will be implemented in Dymola, which is a Modelica based simulation and anal-

ysis tool. Its object oriented form will increase the reusability of the results, among other bene-

fits which will be mentioned later.

 A simulation environment in Matlab will interface with the Dymola model. The author is familiar

with Matlab through extensive academic use, which will increase the productivity on this part.

Classification: Confidential

7

At completion a number of deliverables are expected, both as a whole or partly solution to the

problems undertaken, but also as requirements formally requested by the contractor, Statoil.

This thesis will contain the relevant information and documentation needed to understand the

methods, grant insight in the solution process. Deliverables are:

 Dymola model for “Statfjord C- inlet separator” and sufficient surroundings2.

 Governing program sequence for a “Monte Carlo”3 based simulation setup written in Matlab.

 Evaluation mechanism of test results with associated descriptors. This demands some sort of

HMI.

 Documentation of setup, tests and results reflecting the potential feasibility and profitability of

the technology.

All delivered program code after the study shall be modular and generic enough for other engi-

neers to be able to modify and update in a later time. At the completion of the thesis there will

be an official handover process to assure that achieved project progression is maintained.

2
 In order to be able to determine the state of the system, a sufficient model that is able to reveal the symp-

toms produced by the dynamics of faulty or improperly calibrated equipment and sensors must be creat-
ed. A considerable part of this thesis will be spent on producing such a sufficient preliminary model.

3
 In this setting Monte Carlo simulation is referred to as a broad simulation where a wide range of parameters

are adjusted during simulations. The results are stored and provide a map of how different parameters af-
fect the process.

Classification: Confidential

8

Chapter 2

Theory

The theory chapter will detail some on the proposed test site for the technology development, and

the main principles used for the operational and technical process plant state detection. Insight

in the development of faults will be provided, and what these may consist of. Refer to the men-

tioned bachelor’s thesis [2] if some topics call for more attention, as things may be intentionally

left out to prevent extensive overlapping of the collaborative work toward a solution. Such a

topic is for example the details of the modified relay method, and the explanations of the equa-

tions used for estimating , , gain- and phase margins in 3.3. Topics that are considered

of high relevance and importance are further detailed here by the author.

2.1 The production train

The task of the production train [4] of SFC (Statfjord C) is to process the well stream so that it

reaches the desired specifications. The well stream contains a complicated mixture of hydrocar-

bons under high pressure. Along with the hydrocarbons, some pollution such as water, sand and

other solid substances is also brought along. These components need to be separated, and also

since they are naturally under high pressure they will need to be stabilized for storage and

transportation.

Classification: Confidential

9

Figure 2-1: Inlet separator (CD2001) illustration [4].

The raw well stream is fed into the inlet separator tank, CD2001, which is the first stage in the pro-

duction train. Oil, water and gas are separated to a satisfactory extent for this stage, and also

the accompanied removal of solids. As hinted, the components of the wells stream (although

they would ideally) are not perfectly separated into each category, and pollution of the other

substances still occurs in the separator outlets. Most of the produced water is removed by the

inlet separator, but both separator 1 (inlet) and 2 are three- phase separators, separating oil,

gas and water by exploiting the differences in weight. Water, which is the heavier liquids of the

three main components of the well stream, will sink to the bottom of the separator. Oil will

separate from the water and float to the top of the liquids. Physical plates are installed in the

separator to separate the oil from the water. The plates are called weirs. The oil level is kept

above the weir plates so that sufficiently separated oil enters on the other side. The side of the

oil is considered the light side of the weir and the inlet side, where the water is kept and

drained, is considered the heavy side.

A multiple of other equipment are connected to the output pipes of the inlet separator tank.

Equipment considered to impose main influence in the near connectivity on the inlet system

are:

 Hydrocyclones are connected to the separator’s water outlet pipe with purpose of further ex-

crete oil from the water.

 Water from the hydrocyclones continues to the degasser before it is returned as sea water.

 Gas flowing through the gas outlet of the inlet separator enters heat- exchangers. The gas tem-

perature is lowered from 88°C to 35°C.

 Scrubbers further process gas leaving the gas outlets of the separator. The input gas is dehy-

drated; Water particles and the heavier hydrocarbons are condensed and collected on separate

outlets. Condensed hydrocarbons are returned to an appropriate stage of the production train.

 The oil outlet leads to the next separator tank (flashdrum 1), CD2002, for further flashing4.

These are considered to have some indirect effect on the control of the inlet separator. Loose or

bad regulatory behavior in these elements can ripple to the inlet separator. The temperature of

4
 The liquids entering the separator are partially “flashed” into a vapor and liquid due to the different opera-

tional conditions of each separator stage; mainly lowered pressure.

Classification: Confidential

10

the separator is 88°C, while the pressure is controlled with a set point of 19 BarG. In addition

the separating line between oil and water also needs to be actively controlled to uphold the re-

quired settling time for the fluids for optimal separation.

2.2 Performance of control loops

In order to make decisions concerning the performance of our control loops, we need to have sets

of quantitative indicators, and an understanding of the role of each control loop. This means

that the roles must be bounded and quantified. The same principles as utilized while developing

the control loops can be used to investigate the performance. Note that there is a degree of

subjective freedom involved since the control loops can be tuned in ways that are irrational to

explain with control theory, but can have practical gain in a specific industrial setting. Such free-

doms involve the possibility of letting the controller control the process loosely in order to re-

duce the amount of oscillations further down the production train.

Each control loop gets their requirements from the controlled process. Such requirements include

that of both static and dynamical properties. Such specifications can include to a selection of the

following control properties [5], where some of them can be related to some degree:

- Time response

- Process output- reference overshoot constraint

- Controlled variable’s follow reference property

- Margins for change of process gain with respect to stability

- Phase lag threshold at specific frequencies with respect to stability

- Noise compensation and dampening of oscillations property

- Bandwidth

Usually the importance of each of these properties is different for each control loop, and the strict-

ness of each property may be weighted differently. Note that there is always a tradeoff in engi-

neering; if you for example desire very fast response to change, you can expect more overshoot

as well. Some properties will have more situational criticality than others; if the flow into the in-

let separator (Figure 2-1) has a rapidly varying composition, e.g. a typical slug flow, the fluid lev-

els in the separator will oscillate to such a degree that it causes poor separation, which can be

Classification: Confidential

11

seen as more oil in water exiting the water outlet, and more water in the oil travelling the oil

outlet to the next separator. Oscillations can also ripple to other parts of the train, also affecting

performance elsewhere.

Figure 2-2: Production train overview from the Asset simulator, which is used to simulate real conditions for mimicking
the Statfjord fields. CD2001 is the inlet separator (to the left), which is a three phase separator separating the crude
production flow to oil, gas and water.

The control performance can be evaluated using different methods of analysis. Important features

are the control loop’s ability to follow the reference signal, and to compensate for process

changes caused by disturbances. The control loop’s tendencies toward these features can be in-

vestigated by analyzing the frequency responses, which can be expressed as how sine- and co-

sine- signals on the input are manipulated throughout the system. Frequency components can

be phase- shifted, biased and amplified/dampened, independently. Finding Bode plots can be

done in many ways, most of which are applicable in different circumstances. Examples are:

- If we have accurate transfer- functions5 for the process in an operating point, we can easily ex-

press the frequency responses in a bode plot using direct mathematical analysis.

- If the transfer functions are unknown (e.g. in a case where the process has so many varying pa-

rameters that the original differential equations no longer accurately reflect the process) we can

attempt to fit a model to the system response, using system identification theory or by trial and

error (qualified guessing).

5
 Transfer functions can only be applied if the process is or can be considered linear around an operating

point. When process parameters are shifted, the process transfer functions may need to be corrected.

Classification: Confidential

12

- A different method is applying signals with known amplitudes and frequencies on the input (e.g.

sine sweep), read the resulting output values and plot the relations in a bode plot. The frequen-

cy responses can be used to express control systems’ properties with respect to stability and

performance. The latter will be conducted in the simulation study in order to produce a foot-

print of the whole process, which will be compared with results from relay feedback testing.

2.2.1 Phase- and gain margins

The phase- and gain margins express how much change a system’s frequency response can change

before an asymptotic stable system becomes marginally stable [5].

- Asymptotic stable systems are characterized as having all poles in the left half plane of the unit

cycle for the continuous plane (s-plane).

- Marginally stable systems have one or more poles on the imaginary axis.

- Unstable systems have one or more poles in the right half plane.

During operational conditions the poles and zeros of the process’ transfer function6 wander, and

although we might have an asymptotic stable system at commission it can become less and less

dampened until it reaches a marginally stable system. The effect of each stability property is:

- Asymptotic stable systems: The stationary impulse response is 0.

- Marginally stable systems: The stationary impulse response is different from 0, but limited.

- Unstable systems: The stationary impulse response is unlimited.

We can in other words not keep an unstable system under control and if the controller and process

is left completely alone, over time it will likely “collapse” on itself. We need to maintain an as-

ymptotic stable system, which is why we express requirements for the phase- and gain margins.

The amplitude crossover frequency, ,is the frequency where the loop transfer function, , gain

is equal to 1. This means that for an open loop system, the amplitude output-input relation is

1:1.

 () () ()7 (1)

6
 The transfer function is complex and unknown, but still existent.

Classification: Confidential

13

 () (2)

The phase crossover frequency, , is the frequency that causes the loop transfer function to

have a phase lag of .

 () (3)

The gain margin, , is the multiplicative increase that can take at before the loop transfer

function passes the critical point8 and becomes marginally stable.

 ()
 (4)

In practice this can be interpreted analogous to a scenario where a level transmitter outputting 4-

20mA for levels of 0-4m is replaced with a level transmitter with the same output range but for

levels between 0-2m. This change effectively doubles the gain of and in order to still have an

asymptotic stable system according to the gain margin, needs to be . Normally it is the

physical elements of the process itself that changes () and thus shifts the poles of the trans-

fer function closer or farther away from the critical point. This can be exemplified as a valve de-

veloping stiction9, causing more aggressive behavior to changes.

The phase margin is defined as the amount of added phase lag can tolerate before reaching the

critical point.

 () (5)

These observations lead us to the Bode-Nyquist stability critera:

 (6)

If any of these conditions are satisfied we are sure that our system is asymptotic stable, or in other

words; controllable. Phase- and gain margins requirements should be specified according to the

worst theoretical scenario. Note that controllable does not mean satisfactory controllable and

that these measures do not reveal anything of our other control performance properties, such

as the Pv-reference follow property.

7
 R(s), P(s), M(s) are the control, process and measuring transfer functions consecutively.

8
 Where the poles intersect the imaginary axis and the process becomes marginally stable.

9
 Stiction is defined in 2.3.

Classification: Confidential

14

2.3 Valve properties

Control valves are the most common actuators in control loops. They are mechanical and are used

to limit, or restrict, the amount of flow of process medium through a pipe. This is used to con-

trol process parameters such as temperature, pressure and fluid levels. The Fisher 667-70 sliding

stem valve (Figure 2-3) is one of the valves connected to the inlet separator, controlling the oil

liquid flow exiting the separator. As descripted in [6] a valve consists of three basic components:

- Actuator; The positioner for the valve plug

- Valve body subassembly; Valve casing, valve seats and valve plug

- Accessories; Position sensors, I/P transducers etc.

- Figure 2-3: Leftmost: Fisher 667 sliding stem control valve [7]. The 667 valves are reverse acting, which means that
pressure of applied on the bottom of the diaphragm creating a force opposing the spring force. This setup gives a fail
closed position. The rightmost figure is taken from Finn Haugen’s book “Regulering av dynamiske systemer, 1994”
[5], and describes the same working principle and general internal structure as used in the Fisher 667.

Since a valve is a mechanical component, they develop faults over time due to wear and tear. Con-

sider as example the extreme case of a valve controlling a well stream, consisting of a mixture of

different substances such as crude petroleum, chemicals, water and sand. Coarse working con-

ditions can cause corrosion, which over time alter the characteristics of the valve, and may

eventually result in leakage; either internal (can result in fluid passing through a closed valve) or

external (such as stem leakage). In addition, the valve depends on mechanical movement in or-

der to perform its task, and friction on the actuator- stem can increase, resulting in a slower

working speed. Non optimum clean fluids can contribute to deposits on stem.

Classification: Confidential

15

The ideal valve as described by Choudhury [6]:

An ideal valve should have a constant gain throughout the valve travel span, i.e. a linear in-

stalled flow characteristic, no dead time with properly adjusted packing and a small

time constant.

Choudhury further mentions details of problematic tied to practical valves. They can be summa-

rized shortly as follows:

- Incorrectly sized valves or incorrect flow characteristic valve for intended operation.

- Corrosion on valve seat, casing and plug.

- Actuator faults, such as faulty diaphragm.

- Partly or fully blocked air vents.

- Packing leakage or too tight packing on stem.

- Crystallization and scale on stem, plug and seat.

Any of these problems, or a combination of them, can results in an associated development of:

- Static friction, “stiction” (slip jump and dead band behavior).

- Saturation of valve travel range.

- Backlash (slack or reverse motion).

- Increased response time due to change of friction on stem or by weakened actuator (valve travel

time).

- Change of flow characteristics (wear and tear).

- Change of gain, Kv [8].

Many of these problems will add additional linear and nonlinear properties to the process, and if

their combined effect gets too big, the control loop will no longer be able to perform its task at

a satisfactory level, and in the worst case cause a shutdown. It is desired to proactively search to

eliminate the problems before they become too dominant, either by running maintenance on,

or by replacing the affected valves. Valve service plans are usually created based on experience

or some form of statistical expectations. The manufacturer provides the expected mean time

between failure (MTBF [9]) according to the equipment’s specifications and operating area. The

MTBF is predicted to fulfil certain reliability. In order to achieve the reliability factor, the manu-

facturer will advise to run maintenance more often than the MTBF. Statoil mostly perform relia-

Classification: Confidential

16

bility centered maintenance (RCM, [10]), which is an experienced based approach to scheduling

and performing maintenance to uphold the process integrity.

Depending on the working conditions, and the natural randomness of things, valve problems are al-

lowed to develop for some time. Unsatisfactory and faulty valves are usually depending on be-

ing manually detected. If problems are comprehensive and in e.g. a critical section of the crude

oil separation, this can result in downtime or a reduced production rate. It is noteworthy that

even small deviations from the ideal valve characteristics will affect the behavior of the control

loop, and reduced performance may propagate in some degree to other parts of the process

plant.

2.3.1 Stiction

Static friction, also termed “stiction”, is the most common problem in spring-diaphragm-type

valves. In the lack of a formal definition of stiction, Choudhury investigated earlier self-

proclaimed and adapted definitions of stiction for common properties. Choudhury then pro-

posed a formal definition, able to define the phenomenon of stiction in valves, as follows:

The presence of stiction impairs proper valve movement, i.e. the valve stem may not move

in response to the output signal from the controller or the valve positioner. The smooth

movement of the valve in response to a varying input from the controller or the valve

positioner is preceded by a stickband and an abrupt jump termed as slip-jump. Its origin

in a mechanical system is static friction, which exceeds the dynamic friction during

smooth movement of the valve.

Stiction is a byproduct of a valve-packing-tradeoff. Too tight packing around the stem prevents

leakage, but also increases the friction on the stem movement. Corrosion and flaws can also add

to the unevenness of the valve stem, and increase the friction. See Figure 3-23 for typical effects

caused by stiction.

2.3.2 Valve saturation and diaphragm faults

Classification: Confidential

17

Mohamed A. Sharif and Roger I. Grosvenor [11] did experimental tests to highlight limitations by

today’s diagnostics tools on control valve. Their experiments illustrate how common control

valve problems affect the valve properties, and pose degradation and limitations to the valves’

objective. Among the discussed problems are:

- Entrapment of air in the upper diaphragm casing as result of partly of fully blockage of air vent,

which works as an air spring opposing the pressure force applied to the other side of the dia-

phragm. Additionally the blockage will likely reduce the valve’s “backward” travel capabilities, so

that the valve’s travel time in each direction is different.

- Diaphragm rupture, which results in a loss of applied pressure to the valve stem, reducing the

sensitivity to pressure changes. Even though there is a throttling element which provides pressure

its maximum allowed pressure output is set.

- Internal and external leakage. This is normally due to bad stem packing, or corrosion at the valve

seat or plug. Can also come from an unbalanced valve plug.

Any of the mentioned faults can cause saturation of the valve’s operation and either reduce the

possible amount of fluid flow through the valve, or inhibit the valve from preventing liquid flow.

2.3.3 Valve leakage

Valve leakage can be closely related to seals and gaskets. According to an article by Sanders, D.

[12], this is one of the two leading causes of user concern regarding control valve performance,

along with oversized valves. Tight seals are vital to ensure product quality, but also in respect to

safety and the environment.

- Too loose gaskets on the valve stem will make valve travel rapid and fluent, but will also contrib-

ute to allowing fluids to exit the valve along the stem. This again can impair the valve’s movement

and cause an increase of wear and tear on places that are not designed to be in direct contact

with the process fluids. If the process fluids (or other substances like gas) exit the pipes in unin-

tended places this can cause hazardous situations, or make an increase of potential risk.

- The valve plug-to-seat interface is the largest contributor when it comes to seat leakage, which is

an internal leakage problem. Internal leakage will cause a form of saturation as mentioned in the

previous section.

Classification: Confidential

18

- In some scenarios the process medium can corrode new passages for it to flow. The process me-

dium can be turbulent and have a corrosive composition. It is important that the valve material

choice is appropriate for its task. If this is a problem and the valve is left too long without mainte-

nance, both internal and external leakages can develop.

2.4 Measuring equipment properties

Among measuring equipment, level transmitters will be of focus, but most of the theory is applica-

ble to other types of transmitters as well. The level transmitters at SFC are Rosemount 3051 (see

Figure 2-4) differential pressure transmitters, measuring the differential pressure between their

two connectors. Common errors and mistakes are:

- The transmitters work as transducers meaning that the physical displacement of a thin dia-

phragm separating the two connected inputs to electrical energy of 4-20mA read by the process

control and data acquisition system. Transmitters need to be scaled properly both in the field

and in the control system, which can be a potential cause of erroneous readings. For example a

transmitter is set to provide its full range of electrical output for a level reading between 0 to 3

meters. This means that it will reach saturation if the liquid levels go beyond these limits.

Figure 2-4: Rosemount 3051 pressure transmitter [13].

- It is important that the bandwidth of the transmitter is not exceeded, as the frequency response

of a transmitter is normally designed to be approximately linear around its intended operating

area, while below or above it may have nonlinear characteristics.

Classification: Confidential

19

- The physical connectors can be partially or fully blocked, preventing the transmitter from mak-

ing the differential pressure readings correctly. The diaphragm can also get worn out or in some

way become stuck. This can cause signal freezes or total malfunction.

- The transmitters’ readings are based on the differential pressure calculations of liquid height. To

get the calculations correctly the composition of the liquids on both sides must be known. This is

not always trivial, although constant measurements on the well stream composition are done.

Incorrect specific weight values errors on readings, such as added (and unknown) skew.

- Small dents and unevenness will contribute to altering the readings from the transmitter. This is

vulnerability since it measures the differential pressure of two potentially corrosive substances

on either side. The substances can also potentially scratch and deposit sediments on the dia-

phragm. As result; bias or “zero- drift” can be added to readings.

- The transmitters come with an option called “damping”, which in reality is a low- pass filter op-

tion. In practice the setting is used to prevent rapid fluctuations in readings caused by noise or

disturbances that are not of interest. In many cases a common mistake is to set the damping

factor too high, so that the transmitters become blunt and too slow at responding to changes so

their output no longer adequately represent the physical levels.

Classification: Confidential

20

2.5 Generic nonlinear effects

Finn Haugen points out in his book “Anvendt reguleringsteknikk,1990” [14] (English: Applied con-

trol theory) that in reality there are elements that add nonlinear dynamics to a given process.

These elements can for example be associated with valve travel dynamics. Such elements are

contained by the process but may be hidden and less obvious to the control engineers. Their

roots can be related to the physicality of the process and the process equipment, and their

magnitude may change during operation. Their effects will only be apparent in the process re-

sponse, but it is important to have an understanding of them nevertheless.

Figure 2-5: Figure is an excerpt of an illustration adopted from Finn Haugen’s
“Anvendt reguleringsteknikk, 1990” [14], with some translations.

The illustrated functions are considered to contribute with generic nonlinear effects to the con-

trolled process, and their effects are shown in Chapter 4.2. The meaning of the term generic in

this context is that the functions (and their associated features) are considered underlying caus-

es of most of the prominent and prevalent nonlinear features observed at the process output.

Each function is later simulated in series with the process, individually, and also in combinations.

We will also see how the suggested indicators (according to the TDP [1]) change with the differ-

ent configurations.

2.6 Test mechanic hypothesis

Classification: Confidential

21

The theory the research is built on is derived from practical experience and conviction that a rela-

tively simple approach to controller tuning has more potential than what has been exploited

previously. The suggested method is based on a modified relay method where a relay is put in

series with/or replaces the PID controller. For robustness the relay is placed in series for this

purpose.

Åström and Hägglund [15] proposed the standard relay test in a paper of 1984; replace the regula-

tor with a relay in series with the process to automatically detect the critical gain and critical

frequency, with the objective of automating tuning of simple controllers as well as initialization

of more complicated adaptive controllers. The method has been widely used and modified dur-

ing the years.

Implications of the theory used as base for this thesis is an extended use of the modified relay

method to not only use it for support and ease controller tuning by knowing the amplitude and

phase margins, but to reveal process control loop and control equipment characteristics, thus

possibly indicate the source of changes in control performance (Figure 2-6).

Figure 2-6: Descriptive drawing of the test mechanism implemented on the physical plant.

The method is a variation of a modified relay test and is directed toward building an understanding

of how different faults affect the frequency response of the process in series with the known

controller. The operators know when the process is performing satisfactory and the process

state at that point can be used as a reference. By studying how the selected indicators change

with different parameter settings of modelled faults during the simulation study, the knowledge

Classification: Confidential

22

base shall give insight and enable setting limits to determine whenever the performance is low-

ered, and what likely causes are. The indicators will indicate the process healthiness.

2.7 Standard and modified relay feedback method

The standard relay feedback method can be seen in Figure 2-8. Once the testing is initiated the PID

controller is disconnected from the control loop. The relay (with adjustable hysteresis) has a

built in memory and outputs its value according to the rules:

- High signal, , if

- Low signal, , if

- Else

Where is the modifiable hysteresis on the input of the relay that is controlled by the test mecha-

nism and is the deviation. An expression that is central in the derived equations for

the relay tests and the test mechanism is

, which corresponds to the amplitude of the first

harmonic frequency of the relay, where is the magnitude of the relay output.

Figure 2-7: Illustration of the relay output and its corresponding first harmonic frequency.
Illustration is adopted from a textbook written by Finn Haugen [5].

The relay method gives the open loop response. The feedback is “cancelled” by the relay, and the

relay induces oscillatory behavior in the process output, called limit cycles. The frequency of the

output is dependent on the chosen hysteresis, . If the produced limit cycles have fre-

quency of which corresponds to the frequency of the critical point. means, as

mentioned earlier, the frequency of where the open loop response has a phase lag of

from the reference. On the unit cycle this equals -1, and with the negative feedback this corre-

sponds to -(-) which gives +, thus a positive feedback and instability unless we have an appro-

Classification: Confidential

23

priate amount of gain dampening. can be found by adjusting the hysteresis, and then the

phase and gain margin can be easily calculated as well. The method used for this is found in [16],

and is also summarized in 3.3.8.

Figure 2-8: The standard relay feedback method.
The relay and controller are run in parallel.

Running the test mechanism as a standard relay method was desired since the controller’s transfer

function is not included in the transfer function for the revealed indicators. The transfer function

seen by the relay method is () for the standard relay test. () is the transfer function for the

controller, () is the process transfer function and () is the measurement transfer function.

There is one undesirable effect in particular that points toward a modified relay structure in-

stead.

Figure 2-9: The modified relay feedback method.
The relay is now in series with the controller.

For the modified relay test the observed10 transfer function is () () () (). Although

 () and () are unknown, the form of () is known exact since we design it by setting its

parameters. If we measure () we can therefore derive the transfer function contributions

10

 Observed as in the meaning that we see how the known input is changed throughout the system.

Classification: Confidential

24

originating from () () in series, and if we could know () exact we could isolate the con-

tribution from (), but in reality these two are inseparable. The transfer function for a PID con-

troller is given by the equation (this is the standard and generally known equation):

 ()

 (7)

Figure 2-10: Frequency response of a PI(D) controller with Kp=4, Ti=100 and Td=0.
This is the controller setup used in the Monte Carlo simulation in Chapter 4.

The response seen from Figure 2-10 is an example of the added controller contribution to the loop

transfer function. The advantage of keeping the controller in the loop for the relay feedback

testing is to keep the process around the operating point, which is important for different fac-

tors. If substantial amount of disturbances and forces act on the process output, they can break

the relay mechanism by preventing its input value from reaching the required value for the relay

to switch. for () will be different than that of () and () in series, but since we

are interested in the control performance this is a topic of no concern. We are interested in pro-

cess parameters, as well as control performance.

2.8 Mapping process “footprint”

As mentioned in 2.7, zero hysteresis makes the relay produce oscillations with frequency corre-

sponding to , and corresponding gain can be read accordingly. is also found according

to the mentioned method, and together these two frequencies mark the edge points of interest-

Classification: Confidential

25

ing frequencies to study. Finding “footprints” for our process model is vital to provide an under-

standing of how our process state indicators travel as the process is under operation. When we

know how the indicators travel, we can later look on the indicators in order to see how the op-

erational and technical states have changed, and we can make plans for controller retuning and

process equipment maintenance accordingly. In addition to being reliable tools for obtaining

the frequency responses for the “footprints”, the proposed methods can also be used to obtain

additional indicators for the test mechanism; e.g. obtain gain dampening per decade or phase

sensitivity at specific frequencies.

Several methods for mapping the process footprint was developed, but most were considered too

unreliable that they could be used. We need something that is little subjected to random varia-

tions induced by the simulation time steps and discretization. The methods are not required in

practice as they would never be run on a physical plant due to their effect on the control loops.

Two approaches were proven to be outstanding and are included in sub sections 2.8.1 and 2.8.2.

The first approach is a post simulation procedure and finding the phase and gain frequency re-

sponses, while the other is benefiting from simple components to do it in real time.

2.8.1 Approach 1: Sine sweep and fast Fourier transform

To find the exact bode plots for the simulated process we use a sine sweep approach by applying

sine waves of known amplitude, frequency, , and phase, , on the input to (), and read the

resulting amplitude and phase response on the output signal. The difference between the input-

output amplitude and phase then corresponds to (). The observed system, as opposed to in

the modified relay test, is the closed loop of (). This means that () is part of a normal con-

trol feedback structure described by:

 ()
 ()

 ()

 ()

 ()

 () () ()

 () () ()
 (8)

The contribution of () () can be found by solving equation (8) by reorganizing for

 () (), but the feedback structure applies a resonance peak on the amplitude response

Classification: Confidential

26

and which cannot be removed by reorganizing the equation when calculating “backwards”11.

Instead using the fast Fourier transform (FFT) is suggested and it has proven itself reliable

and accurate in most situations12. This transform brings the time variant signals to the fre-

quency plane, where we can easily isolate the frequency of the limit cycles and obtain phase

and gain change from Op to Pv.

Figure 2-11: Applying sine waves on the reference while the process
 is quiescent at the operating point.

The transfer function of () () is unknown, and we have to estimate its frequency response by

studying how its output behaves with different frequencies on its input side, which is connected

to the controller output. Sine waves ranging from to are applied as time varying set

point for the control loop and the frequency responses are easily obtained by logging the con-

troller output signal , Op, and the controlled process value, Pv. Thereby the response is found by

applying the FFT on the data to obtain () ()’ gain and phase lag [17] during the post simu-

lation procedure.

2.8.2 Approach 2: Relay sweep adjusting hysteresis and transport delay

This approach is more practical and exploits how the modified relay forces limit cycles and how

these cycles can be modified by adding nonlinear elements on the digital processing side to pro-

11

 This was attempted, but the resonance peak completely overshadowed some of the interesting frequency
response, as well as manipulating some of the values around.

12
 FFT does not cope as good in situations with high signal deterioration, such as when frequencies are close

the sample frequency or if there are nonlinear elements in the process/equipment so that some energy
from the first harmonic frequency of the input is shifted to other frequencies (and therefore no longer no-
ticed by the FFT gain/phase algorithm).

Classification: Confidential

27

duce additional information. The method has further shown that the sine sweep approach is ob-

solete, since FFTs can be obtained for the digital signals produced in the relay setup as well, thus

removing the need for a sine wave source, thus further generalizing the method. The only draw-

back is that the relay produces a range of frequencies rather than just one, but we can dismiss

all but the first harmonic in the resulting FFTs.

Adjusting hysteresis relay sweep:

As mentioned in 2.7 we can lower the frequency of the limit cycles by applying hysteresis to the re-

lay. This has been proved to provide reliable results for the gain response of (), and thus for

 () () .

Figure 2-12: Illustration of the adjusted hysteresis relay sweep setup
(in Simulink the hysteresis is in reality part of the relay block,
 hence its block drawing).

The relay hysteresis, , is adjusted between the value that produced , and 0 (which produced

).

 13

The measured process output is passed through a period- and an amplitude estimator (detailed in

3.3.6 and 3.3.7). Consequently,

 ()
 ()

 ()

 ()

 (9)

13

 Note that and
 are not included in the sweep since their amplitudes are already known from

the test mechanism.

Classification: Confidential

28

Where is the estimated frequency,

, in hertz. If the estimators are correctly parameterized this

provides an accurate and reliable reading for () . Further; () () can be isolated by

removing the contribution from the known ().

 () ()
 ()

 ()
, or

 () () () ()

However, it is not straight forward to derive the effect that adjusting the hysteresis has on the

phase of () so a second test is proposed for finding the phase response; adding a transport

delay on the relay output.

Adjusting transport delay relay sweep:

Figure 2-13: Illustration of the adjusted transport delay relay sweep setup.

The transport delay’s ability is to “steal” bandwidth from the rest of the system during the modified

relay test with zero hysteresis. Since the relay (with zero hysteresis) will always induce the criti-

cal limit cycles (), the resulting frequency of the output oscillations is given by

 (())

Where

 ()

Since is unknown until we have ran the test with a given transport delay, , the resulting

frequency shift, , can be tiny or large depending if we are positioned at a steep slope or on

flat ground on the phase response of ().

Classification: Confidential

29

The value of has to be trialed and adjusted incrementally since we cannot predict which fre-

quency we will end up on in advance. should therefore be incremented by small steps at

start, and one could consider letting increase inversely proportional to , if the re-

sulting s are small.

 () ()

Where is a suggested sensitivity factor of the adjustment between simulation num-

ber and . For high frequency response resolution should be kept small, but for

simulations each increment of must be higher than the simulation step time. Simulating

increments of is done until .

 14

 () can now be found for all produced limit cycles, , according to:

 () () () ()

We can now finally represent the sampled frequency response of () (), which is our pro-

cess “footprint”.

14

 The phase of is already known from the relay test with zero hysteresis (-180°).

Classification: Confidential

30

Chapter 3

Experimental

The experimental chapter will start off by listing some of the requirements (3.1) for the models

produced (3.2). Most of them are related to the modelling power of faults mentioned in Chapter

2. The chapter will then progress on by illustrating and describing the produced models (3.3),

and associated sub elements, as well as fairly in- depth descriptions of their structure and be-

haviors. Component testing and associated results can be found in section 3.4.1.

3.1 Model requirements

Model in this context is a reference to all Simulink and Dymola models produced. Among such

models can be the top level Simulink model, or the model of a control valve. The models used

for the simulation study need to be able to reflect realistic technical and operational changes

that the inlet separator of SFC is subjected to. The system can be split into three main compo-

nents; transmitters, valves and physical separator, which are each modelled independently and

detailed in separate subsections of this chapter.

The models produced are to be used in conjunction with both the Simulink and the Dymola process

models, meaning that the Simulink control valve and transmitter models are also acting as ele-

ments in Dymola, and need the proper interfacing. Their objective is to create a realistic image

of real equipment, with parametric faults, for the simulation study. They shall reflect behavior

seen in real equipment, where faults have root in physical causes that can be modelled, and

which can be governed by Matlab. The focus will be directed at some or most of the fault modes

described in 2.3 and 2.4.

The models should ideally have realistic inputs to them, but to keep in line with the main topic of

the thesis which is finding the signatures of different linear and nonlinear characteristics in-

duced by change of technical states; this would in contrary bury some of the interesting results.

This is still optional and can easily be included on a later stage for hardening the proposed test

mechanism itself against disturbances. Relevant data can be obtained by logging the liquid flows

through each level control valve and create a looping vector of these values and insert into the

simulated environment.

Classification: Confidential

31

3.2 Models produced according to requirements

All parameters in the Simulink model are stored in a structure called MODEL, which means they

have the prefix MODEL. when they are initialized. The model separates the digital processing

signal side from the physical part of the process.

Figure 3-1: Principle drawing of the Simulink model containing the actuator, process and equipment models. Data flow
with Matlab is also included.

An accurate process model has been created in Dymola and based on existing Statoil libraries. Re-

use here reduced the workload by a large factor and allows more concentration to be spent on

the actual topic of this thesis. The Dymola model’s task is to maintain a realistic and true process

image during simulations, benefiting of the powerful physical modelling capabilities of Dymola,

while the control oriented approach of Simulink and the analytical capabilities of Matlab is used

to dictate the simulation sequencing, and interpret the produced data.

The time constraint of this work prevented the model from being operational and implemented in

Simulink. It lacks parameter setting, and interfacing with Simulink. The Dymola model was going

to be exported to the Simulink environment as a .MEX file. The created Dymola model (Figure

3-5) shows the choice of boundaries (where the production train meets stable counter forces)

and the elements included.

Classification: Confidential

32

3.2.1 Simulink simplified process model

Only the light side of the weirs in the separator is considered in the simplified model. Light side re-

fers to the side where the oil is drained. The separator is a hollow cylinder shape, with half

spheres at each end point. Weir plates are located on each side of the separator. The crude

three phase fluid from the production manifold enters the separator in the middle. Sand and

other minerals and chemicals may also be included in the fluid mixture, but are not important

for modelling purposes. The substances of interest are gas, oil and water. Water, which is the

heavier substance, will by sink to the bottom of the separator by gravitational principle. The wa-

ter level is held at a desired level by water control valve, below the weir plates so that water

does not flow over the weir plates, sinks, and gets drained along with the oil continuing further

down the production train. The water is not considered pure and continues through hydro cy-

clones and to the degasser to achieve the required maximum of oil in water before being dis-

posed as sea water. When the three phase fluid enters the separator, lowered pressure causes

the lighter hydrocarbons to flash. A combination of the separator volume occupied by the in-

compressible fluids, oil and water, and the amount of gas gives the total pressure exerted on the

substances leaving the separator. Pressure in the separator is controlled to ensure optimal sepa-

ration and uphold safety. Emergency valves are installed in case of dangerous situations. The

pressure set point is maintained by draining gas through the gas control valve at the top of sepa-

rator. As mentioned the oil level is kept above the height of the weirs. Both light sides of the

weirs are connected so that the levels at both sides will be the same. Oil exits the inlet separator

through the oil control valve.

Control loops involved in keeping optimal conditions for separation:

- Oil level control loop

- Water level control loop

- Pressure control loop (gas amount)

Classification: Confidential

33

The simplified model was developed in Simulink for the purpose of providing the signatures15 of

(simulated) prominent process changes. Dimensions and terms are listed in Table 1 page 36. The

model consists of a simplified three phase separator which only “sees” the light side of the weir

(see Figure 3-2). Oil flows over the weir as a disturbance, and is drained through the oil control

valve. The level of oil is kept under the weir height so that only the light side volumes are con-

sidered in volume calculations. This violates normal operational circumstances as the level of oil

in the drum is usually set above the weir to prevent water from flowing over the weir and

through the oil outlet. This should not have any impact on the verification of the test mecha-

nism, since it will mostly only impact the residence time of the fluid in the drum, and the nonlin-

earity caused by the volume calculation at different set points.

Starting point of the oil height at light side is the mass balance equation:

 ()

 () () (10)

Which further leads to:

 ()

 (())
(() ()) (11)

 () is considered as an unknown disturbance of oil flowing across the weir to the light side, while

the outgoing flow, (), is controlled by a level valve following the equation

 ()√ () (12)

Note that 3600 is a conversion from

, and () is the valve flow characteristics. The differ-

ential pressure across the valve is calculated by:

 () (
 ()

 ()) () (13)

Where is the density of oil and is the gravitational constant. Division by 100 000 is a conversion

from the physical unit Pascal to barG, which is standard in the SFC systems. () and

 () are internal separator pressures of the inlet separator and flash drum 1 respectively.

15

 The models are also used for validating the test mechanism during development iterations. It is important
to keep in mind that the TDP is the basis, and that the equipment fault (and other process properties) sig-
natures are of most importance.

Classification: Confidential

34

These are realistically variable and controlled by separate control loops, but this dynamic is ig-

nored and they are set to their respective set point values.

The valve equation is combined with additional elements in order to be able to simulate faults. The

valve dynamics is located in the “complete valve(1417_0304)” subsystem (see Figure 3-4).

 (()) can be calculated with basis in the figure below.

Figure 3-2: Geometry of the inlet separator.

Only the volumes represented in brown are considered as part of the simplification. Dimensions are

obtained from [18]. Both ends can be considered as perfect spheres (), which

makes it easy to calculate their contribution to the cross section area as function of the oil level,

 .

Figure 3-3: Both edge spheres have been combined to a whole sphere for calculations. Radius of this sphere at oil
height h(t) is the same as the width/2 of the cylinder area (with length c+e).

The entire cross section area occupied with oil is

 (()) (()) (()) (14)

Classification: Confidential

35

 (()) () (()) (15)

 (()) (()) (16)

where

 (()) √

 (()) , derived from the standard circle equation; .

The resulting model is implemented in continuous form as a block diagram (see Figure 3-4).

Figure 3-4: The simplified Simulink model produced according to the equations
describing the input-output- and valve dynamics.

Symbol Description Unit/value

 (), () In/outgoing mass flow respectively

 (), () In/outgoing volume flow respectively

 (()) Cross section area of light side as function of

oil height

 Valve coefficient in metric units. Flow through

valve at 1 bar pressure drop

 () Pressure drop across the valve

 Gravitational constant

 Density of oil, this is an estimation and may

vary

 Radius of edge spheres

 Length of left light side portion of cylinder

Classification: Confidential

36

 This value is not used in the simple model

 Length of right light side portion of cylinder

Table 1: Symbol table for the Simplified Simulink model.

3.2.2 Dymola more comprehensive process model

The purpose of all models is, as mentioned, to provide signatures of commonly prominent faults or

change of operational or other technical states. The Dymola system’s role is to represent the re-

al inlet separator as realistically as possible, with more dynamics introduced to the inlet separa-

tor caused by surrounding elements and other control loops. The Dymola model takes both the

separator and its close surroundings into consideration. Fluctuations caused by control loops in

other elements connected with the production train can also ripple back to the inlet separator,

acting as disturbances in its control loops. Development of the Dymola model had to be down-

prioritized due to a change of approach to finding the signatures. Rather than diving straight into

the complex system, more generic properties were considered of higher importance until a later

stage of the technology development.

Classification: Confidential

37

Figure 3-5: Dymola model produced. This was not implemented in Simulink due
to the time constraint of the thesis.

3.2.3 Control valve model

The practical valve model is implemented according to specifications in 3.1 and is tested to verify

that it behaves as expected (see Figure 3-6). The valve model is constructed in a way that is logi-

cal for users to interpret and thus simplifies the verification. The model is created so that signal

faults are considered first, then actuation and mechanical features, followed by implemented

valve characteristics and flow calculation. The inducing valve fault elements16 are considered to

have root in physical features exposed to operational drift and their rationales follow:

16

 The order of the elements is important.

Classification: Confidential

38

- Different valves have different valve characteristics and different characteristics should be con-

sidered depending on its role in the process, for example a scenario where rapid valve closing is

more important that valve opening.

- The actuator diaphragm can gradually rupture creating a loss of power transferred to the actuator

stem. The valve’s ability to move will be reduced accordingly. Diaphragm leak is considered to be

a variable value as % subtracted from the desired pressure applied to the valve stem.

- The valve is considered to be a first order system, with mechanical movement described by its

transfer function with response time valve_T. Friction on valve stem, weight, actuation method

among others affect the time constant.

- Valve saturation can be changed by erosion, corrosion and replacing of the actual valve present in

the process. Valves are often implemented with fixed valve saturation for e.g. making 85% physi-

cally closed valve correspond to 100% inhibited fluid flow through the valve.

- Stiction is implemented as an S-function in the model. Choudhury’s 2 parameter driven valve stic-

tion algorithm gives a good relation between the parameters and the physical observations.

- The valve can develop internal leakage so that its Kv is higher than listed in its specifications. Fluid

may pass through the valve even in closed position.

- Additional limit blocks in between blocks that may elevate or lower signal values above or below

physically possible values are added to keep the model in bounds.

Classification: Confidential

39

Figure 3-6: Practical valve model implemented in Simulink. Uses three inputs; Controller output, u/op(k), pressure on
input side, P_IN, and pressure on output side, P_OUT.

Characteristics of the diaphragm air outlet are not included in the current model because this

should be more properly modelled, and depends a lot on the throttling element’s capabilities.

The potentially arising air spring effect due to air entrapment in the diaphragm, and also the re-

duced “backward” travel capabilities are considered large.

3.2.4 Level transmitter model

The practical level transmitter model consists of:

- A saturation block. The transmitter’s range of measurements is physically and digitally limited so

that it e.g. outputs 4-20mA for levels 0-4 meters.

- A filter that may or may not be connected (boolean transmitter_filter_enabled). The filter is im-

plemented as a first order continuous low pass filter with its cutoff frequency at transmitter_Tm.

- Transmitter characteristics. The physical transmitter can also be incorrectly calibrated so that the

interpreted fluid level is biased and/or skewed.

- The transmitter has an IO out part, which has a fixed sample rate and a set resolution for quantiz-

ing the bits.

Classification: Confidential

40

Figure 3-7: Transmitter model. Left is the complete transmitter model, while right is the subelements of the Transmit-
ter dynamics block.

3.3 Design of test mechanism components

3.3.1 Matlab flow control and simulation setup

The Monte Carlo simulation (Figure 3-8) is mostly scripted, because the reusability of converting it

to functions is considered small. In addition there are some problems if the programmatic run of

the Simulink model exists within a function and the simulation state is saved, as it will be saved

to the top level workspace and will be unreachable within the function. The script is divided into

small scripts where it is appropriate. The program flow from the main simulation file continues

to scripts with the prefix “component_”.

Classification: Confidential

41

Figure 3-8: Main simulation flow diagram.

The Simulink models are initialized through running the main simulation file

“run_MainSimulation.m” in Matlab. This initializes all the different elements with default set-

tings. The initialization is divided into several files with the prefix “init” in order to make it faster

and more intuitive for users to change process and test mechanism parameters. All automatic

simulation parameters that are meant to be accessed and specified by users are initialized in the

“prep_simulation_parameters.m” file. Among these parameters are the vectors specifying the

fault parameter configurations the Monte Carlo simulation will step through. The main simula-

tion file will then open the correct specified model and wait for user to make the desired choice

of running in automatic mode, which is used for large simulations of many fault and process

Classification: Confidential

42

configurations, or manual mode, which stops the script and lets users manually run the Simulink

model, which is good for quick testing.

After initializing the model and fault parameters the main simulation file will set the reference of

the next simulation, and then set Simulink to output the simulation states at completion. Sim-

ulink simulation is then programmatically started with default parameters. The simulation is au-

tomatically stopped when the process output satisfies the conditions for stationarity. The script

then continues to load the stationary states, set all the simulation parameter settings to all the

pre specified configurations and then start the Simulink simulation again. Each simulation is

stopped by the test mechanism when the indicators are obtained. The obtained results and

some of the simulation values are stored for verification, analysis and post processing. Script

then continues to the sine sweep procedure, which is an extra test to verify the validity of the

main test mechanism (the modified relay test). Stationary state is loaded and then the fault pa-

rameters are set again. Then a pre specified amount of frequencies spanning from lower than

 to higher than are passed through the process model, obtaining gain and phase for

each frequency.

After (and during if the processing takes more than a specified amount of time) all results are writ-

ten to .mat files. The files are stored in a readable manner so one can load them to workspace

and read the obtained results and see the degree of the faults used for each simulation. There

are also some analysis tools for plotting responses and create bode plots for gain and phase re-

sponses obtained during sine sweep.

3.3.2 Simulink design

In the top level of the simulation model, digital processing is separated from the elements repre-

senting the physicality of the process plant. The system that is under control is easily swappable

and is represented as a single block with specified inputs and outputs. Author has developed

two models of the inlet separator in different simulation environments, one in Dymola and one

in Simulink which are described in their own subsections. Most of the work during this thesis has

been spent on the simplified Simulink process model to develop the test mechanism further.

The Dymola model should use most of the same interface connections as the Simulink process

model.

Classification: Confidential

43

Figure 3-9: Top level view of Simulink model organized with subsystems.

The Digital Processing block (Figure 3-10) contains elements that represent the signal processing

side of the control loop. Elements found here are:

- IO in; A calculation from mA to meters. The signal from the level transmitter is connected to its

input port.

- Performance; Contains blocks for integrated absolute error (IAE) and integral of time multiplied

by absolute error (ITAE) performance indicators.

- Reference; Desired level of the closed control loop.

- Stationarity; This block’s objective is to indicate whenever the process has stabilized at a set op-

erating point.

- Actuation; Contains the implementation for the PID controller and relay. Can select if the control-

ler is to be used in series or in parallel with the relay.

- Property measurement; This holds the blocks for the real time control loop property estimation

such as amplitude, phase, frequency and ultimate values.

- IO out; Quantification of the digital signal and conversion to the appropriate signal level on the

physical communication line. Signal from the digital processing is also down sampled to specified

rate handled by the process equipment.

Classification: Confidential

44

Figure 3-10: CD2001_model_vX/Digital Processing.

3.3.3 Detecting quiescence at process output

When Matlab commences a Monte Carlo simulation the process is brought to stationarity before

enabling the relay. Stationarity is defined as the quiescent state of the process output; in other

words where the operational states and the internal state of the controller balance the system

at a fixed set point. The block “stationarity" in Figure 3-10 is responsible for this and outputs a 1

when criteria are satisfied, 0 else. Stationarity is considered to be when the process-output has

stabilized around an operating point with constant process- and equipment- parameters. Sta-

tionarity is considered attained when several conditions are true:

- The average absolute deviation-signal is below a threshold 17

- The average absolute derivate of the deviation-signal is below a threshold

When these conditions are satisfied an element will notify the rest of the simulation model and the

relay will be connected into the closed loop. If the relay is set to run with the controller discon-

nected, the controller output used to hold the process at stationarity is sampled and held, and is

used as an output-bias for the relay. The default setting is to have the relay in series with the

controller so that the relay bias is given by the controller in order to increase robustness toward

disturbances.

17

 The reference-process-output deviation-signal is also down-sampled to the same rate as the measuring
equipment.

Classification: Confidential

45

3.3.4 Detecting asymptotic stability

Detecting when the control system’s performance is so degraded that it would have been manually

noticed by the process operators is important. There is no relevance to run simulations for cases

that will never have the time to develop, and it is important for the Monte Carlo simulation to

not spend unnecessary time on such cases. The asymptotic stability criteria is therefore imple-

mented in the test mechanism by checking if the closed loop process gain is larger than a given

threshold, and in such a case the simulation will be prematurely terminated and marked as un-

stable. Stability properties are:

- Asymptotic stable system:

- Marginally stable system:

- Unstable system:

Interpretation of these properties leads to the asymptotic stability threshold implemented in the

test mechanism:

Asymptotic stable system:

 (17)

Where is the measured process output and is the magnitude of the relay output.

 corre-

sponds to the magnitude of the first harmonic frequency produced by the relay, which is consid-

ered r (reference) for the controller. Following part of the interpretation is that is pro-

duced with zero hysteresis on the relay, which is the case when the test mechanism checks for

stability, and that the definition of is given by:

 () (18)

Giving the implemented limit for stability:

 () |
 ()

 ()
| |

 ()

 ()
|

 (19)

3.3.5 Preventing false relay switch behavior

Classification: Confidential

46

The relay test is susceptible to noise, especially high frequent oscillatory noise while crossing over

the reference-process output zero deviation point with zero hysteresis. This can propagate as

rapid relay switching. The extra relay switching caused by the noise is outside of the process

bandwidth and will not affect the process output at any such degree that it would change the

response, but it has another drawback: It can be tricky to accurately read the frequency from

the process output, and it is therefore read directly from the edges of the relay switch- points. If

the relay then switches multiple times per deviation-zero-crossing this can be a weakness in the

robustness of our test mechanism, even if we make a logical mechanism to ignore extra fast

switching. Such a mechanism is proposed in the Simulink model, although it disabled and not

considered necessary since the rate of the level transmitter and other process equipment con-

nected to the process control and data acquisition system (PCDA) is so low.

Figure 3-11: Setup for showing false relay switch behavior.

Figure 3-12: Left: Ideal relay switching with little or no hysteresis or filter, right: The effect on noise on relay with little
or no hysteresis or filter.

 In scenarios of rapid sample rates a small amount of hysteresis with amplitude larger than the

noise can also be added so that the noise itself is no longer enough to make the relay switch. It

is important to be aware of the issue, but since the simulation model is currently set to the

same rate as of the level transmitter at SFC (Ts = 1), which suppresses the problem for now

Classification: Confidential

47

since the process output is then allowed to rise and fall enough between each sampled level

that the rapid switching seen in Error! Reference source not found. does not occur. If the filter

is enabled, it will affect the phase of the relay signal passed through.

3.3.6 Estimating frequency of process output

An element named “PeriodEst” in the Simulink simulation model is responsible for finding the fre-

quency of the limit cycles. The element is implemented as an S-function block. The block has

several connectors:

Inputs:

- “reset”; Boolean input which resets the block to its initial conditions. This is used when system

parameters have changed, such as the relay hysteresis. Reset is connected to activate whenever

SimcycleOp steps to the next simulation stage.

- “trigger”; Boolean input which causes the block to store the current input at “new_t”.

- “new_t”; The current simulation time, of type double.

- “std_thresh”; The threshold that must be satisfied by the standard deviation of the logged peri-

ods for the output “ready” to be true. Its value is given as a percentage of the mean logged peri-

od value. The threshold is specified by the Matlab workspace variable “T_std_tresh_pct”.

- “memory_in”; The S-function does not have an internal memory so the logged time values from

last simulation time step are fed back as a vector through this input.

Outputs:

- “T_out”; The estimated period of the “trigger” signal. This is the mean value of all the logged pe-

riods. The amount of periods considered is specified by the Matlab workspace variable

“T_n_relay_edges”.

- “std_out_pct”; Outputs the standard deviation of the estimated period. This can be used for veri-

fication and to quantify the threshold value from observations during simulations18 when results

are satisfactory.

18

 Note that when the estimated period is zero, the standard deviation will be NaN and will not be shown on
the scope.

Classification: Confidential

48

- “ready”; Boolean output which is true when following conditions are met:

 Standard deviation < threshold

 “T_n_relay_edges” periods are included in the average

 The time since last period has not exceeded a factor time the current period estimate

- “memory_out”; Current logged time values as a vector.

Figure 3-13: PeriodEst Simulink block. Located in
CD2001_model_v2/property measurement/period estimation/.

3.3.7 Estimating amplitude of process output

We are interested in finding the amplitude of the specific frequency caused by the relay, but we al-

so want to find the frequency response of the whole system for additional analysis purposes,

such as verification of the test mechanism accuracy. For simplicity “frequency of interest” will

be shortened to “FOI”.

The amplitude is defined as the distance between the peak of a period, and an equilibrium, which

can be expected as the middle value of a peak and a valley. Since the process output may con-

sist of multiple (and realistically unknown) frequencies caused by process disturbances in addi-

tion to the FOI, which will affect the height and depth of peaks and valleys consequently, we

need to apply a filter to the signal. Since the frequencies can be anything ranging from lower to

higher than the FOI, we will need a bandpass- filter. In theory the chances that the process dis-

turbances have approximately the same frequency as our FOI is low (and hard to quantify) we

want our passband to be tight around our FOI, with some tolerance toward inaccuracy in its es-

timation. To satisfactory neglect the influence of disturbance frequencies close to our passband

we also want sideband attenuation to be as high as possible. Since we need to find the ampli-

Classification: Confidential

49

tude as accurately as possible, zero passband ripple is desired. Note that there is a tradeoff be-

tween sideband attenuation and passband ripple, and to achieve the filter requirements high

order filters are necessary. There is no filter phase response requirement since the time lag of

the peaks and valleys won’t affect the obtained amplitude readings within each period.

An element named AmpPhaEst in the Simulink simulation model is responsible for finding the am-

plitude of the limit cycles. The element is implemented as an S-function block. The block has

several connectors:

Inputs:

- “reset”; Boolean input which resets the block to its initial conditions. This is used when system

parameters have changed, such as the relay hysteresis. Reset is connected to activate whenever

SimcycleOp steps to the next simulation stage.

- “trigger”; Boolean input which causes the block to store the current maximum and minimum of

the input signal and start the detection of a new max/min.

- “signal”; The input signal of interest.

- “time”; See the next section.

- “Ts”; See the next section.

- “Tp”, See the next section.

- “std_thresh”; The threshold that must be satisfied by the standard deviation of the logged ampli-

tudes for the output “ready” to be true. Its value is given as a percentage of the mean logged

amplitude value. The threshold is specified by the Matlab workspace variable “A_std_tresh_pct”.

- “variables_in”; The current maximum and minimum values of the input signal (and time values of

these; see next section) since last reset/trigger.

- “memory_amp_in”; The S-function does not have an internal memory so the logged amplitude

values from last simulation time step are fed back as a vector through this input. memory_in

holds A_n_relay_edges amplitudes for a mean value.

- “memory_lag_in”; See the next section.

Outputs:

- “amp_out”; The estimated amplitude of the input signal. This is the mean value of all the logged

amplitudes. The amount of periods considered is specified by the Matlab workspace variable

“A_n_relay_edges”.

Classification: Confidential

50

- “pha_out”; See the next section.

- “std_out_pct”; Outputs the standard deviation of the estimated amplitude. This can be used for

verification and to quantify the threshold value from observations during simulations19 when re-

sults are satisfactory.

- “ready”; Boolean output which is true when following conditions are met:

 Standard deviation < threshold

 “A_n_relay_edges” periods are included in the average

- “variables_out”; Current logged min/max values as a vector.

- “memory_lag_out”; See the next section.

- “memory_amp_out”; Current logged amplitude values as a vector.

Figure 3-14: AmpEst Simulink block. Located in
CD2001_model_v2/property measurement/amp & phase estimation/.

3.3.8 Estimating , , ,

The task of SimcycleOp in 20 block is to implement the stepwise procedure of finding the gain- and

phase margins. The procedure in implemented as an S-function block in Simulink. The procedure is

described in the preliminary Bachelor thesis [2] and is summarized as follows:

19

 Note that when the estimated period is zero, the standard deviation will be NaN and will not be shown on
the scope.

Classification: Confidential

51

(1) Perform a relay test without hysteresis (), calculate the gain margin, and .

(2) Calculate first process parameter, .

(3) Perform second relay test with hysteresis . is the relay amplitude

(4) Calculate the hysteresis, that puts the process at the unit circle, () .

(5) Estimated frequency is . Calculate the phase margin, .

The block listens to the amplitude- and period estimators, AmpEst and PeriodEst, which are located in

the same subsystem as SimcycleOp. Whenever gain and period criteria are satisfied the block will

step to the next current simulation stage. The stages implement the summarized procedure and

are:

(1)

- Set

- Wait for amplitude- and period estimators to return true on the ready output.

(2)

-

, where is the amplitude estimate given by AmpEst.

-

, where is read from PeriodEstimate.

-

-

- Wait for amplitude- and period estimators to return true on the ready output.

(3)

-

-

-

- (

)

- Wait for amplitude- and period estimators to return true on the ready output.

(4)

-

- Mark simulation as completed. End simulation.

20

 Located in CD2001_model_v2/property measurement/

Classification: Confidential

52

SimcycleOp starts the procedure by default whenever the process is considered to be stationary at the

operating point.

Figure 3-15: The simcycle operator, SimcycleOp, Simulink block.
Located in CD2001_model_v2/property measurement/.

Inputs:

- “amp”; Amplitude estimated by AmpEst is connected to this port.

- “Tp”; Period estimated by PeriodEst is connected to this port.

- “ready”; SimcycleOp will progress to the next stage when this is true.

- “d”; Current specified amplitude of the relay is connected to this port.

- “ctrl”; Control signal which indicates that the process has reached stationarity.

- “Ts”; The simulation time step is connected to this port.

- “minswitchT”; This input port specifies the minimum time between each progress

increment of the procedure.

- “memory_in”; In order for the block to keep track of progress and hold onto neces-

sary variables during runtime, states of the last simulation time step are fed back to

this port.

Outputs:

- “eps”; This port outputs the current hysteresis to be used by relay.

- “complete”; This port outputs true when the procedure is completed, which means

all properties have been estimated. This is default connected to a Simulation Stop

block, which terminates the simulation.

- “memory_out”; Outputs the current block states and internal variables.

Classification: Confidential

53

3.3.9 Alternative estimation methods for further investigation

Ideally all implemented methods should provide equal results for verification, and there may be a

difference of robustness between the proposed methods and other methods that are not men-

tioned in this thesis. Other methods for estimation may be interesting to further investigate for

the final implementation of the test mechanism. Some methods may increase the accuracy of

estimation for overall increased accuracy in results and diagnostics found by the test mecha-

nism.

Finding the most reliable and precise estimation technique was not a topic of this thesis, but it is

important nonetheless. Alternatives can either replace or work in collaboration with the current

estimation techniques. If all methods are proven reliable they can back each other up so if none

provide outlying results one can safely assume that the obtained results are correct, which is an

important aspect for practical application. The amplitude and frequency of the limit cycles in-

duced by the modified relay test can for example be estimated with an extended Kalman filter

[19], or by least squares estimation.

When it comes to the practical appliance of the test mechanism in a physical plant it is advanta-

geous that it is active for as little time as possible, and there will likely be small time windows of

opportunity open for the actual testing. Considering that, letting properties be estimated during

runtime and then let the test mechanism tell when it is complete and then end is a good idea.

When it comes to the sine sweep procedure this is a topic of little concern since the sine sweep

is only used during the simulation study for understanding and verification. In this case estimat-

ing in real time or post simulation does not matter.

3.4 Design of sine sweep components

3.4.1 Estimating amplitude and phase for sine sweep procedure

An estimation technique for obtaining the phase response for the Bode plot for a set configuration

of process and fault parameter settings is required for the simulation study. Three techniques

are suggested, whereas one is focused on a simple way of measuring phase during simulation,

Classification: Confidential

54

the other two are directed toward post simulation estimation. An important notice is that the

first suggestion needs to extend the Simulink model with an additional amplitude- and phase es-

timation block at the controller output. Its strength is its simplicity and. To circumvent adding

extra elements to the Simulink model, the results are obtained post simulation from method

number three (FFT).

During simulation:

The AmpPhaEst block has an increased functionality and also detects the phase shift of the input-

output signals. This is needed for the sine sweep procedure used to verify the results acquired

using the test mechanism. This is done in virtual real time as well. Limitations to the phase esti-

mation using this method is that it is unable to determine if the phase is more than 360°, which

means that if the phase passes 360° during testing will cause it to be read as a much lower val-

ue. This should not be a huge concern though since it is only needed to sine sweep for frequen-

cies between the edge points and .

Algorithmic description of the method:

- If there is a reset signal detected, reset all values to the initial states.

- If there is a trigger signal set time of trigger, peak and valley variables to current time.

- Otherwise:

 If new maximum value, set time of peak to current time value.

 If new minimum value, set time of valley to current time.

- Recalculate output values with new variables

The phase calculation is done by taking the mean of the peak phase lag and the valley phase lag.

This should compensate for constant nonlinearities around an operating point. The resulting

phase is also a mean over the same amount of periods as the amplitude. Since a sine starts in 0

and increases until 1/4th of its period, corresponding to 90°, 90° is subtracted from the peak

phase lag value. Same applies to the valley phase lag, but this is located at 3/4th on a sine with

no phase lag, so that 270° is subtracted from the valley phase lag value.

Since the phase detection functionality is built into the AmpPhaEst block, the same inputs/outputs

apply, although there are some inputs that are specific for the phase detection functionality:

Classification: Confidential

55

- “Ts”; The sample rate of the AmpPhaEst block. This should be equal to the rate of the process

transmitter. Its value is used to correct the estimated phase by subtracting

 from the phase, so

that the theoretically estimated phase is

 with expectancy value 0.

Specific added inputs:

- “time”; The current simulation time.

- “Ts”; The sample time of the test mechanism/process transmitter.

- “Tp”; The currently estimated output signal period.

- “variables_in”; Also contains the time value of trigger/peak and valley.

- “memory_lag_in”; Also contains the A_n_relay_edges last estimated phase lag values for a mean.

Specific added outputs:

- “pha_out”; The currently estimated phase.

- “memory_lag_out”; Currently logged phase lag values.

Post simulation method 1 (sine fitting):

As an alternative to estimating the phase directly during processing, it is also estimated post simu-

lation. There have been some problems with the method described above during the last stages

of the work so that the estimated phase used for the simulation study is derived from the post

simulation. There are numerous ways to estimate phase, but to keep it simple and by using al-

ready obtained results, the phase estimation is done by fitting sine waves on the stored input

and output data. This method is easier to verify since the stored input and output data from

simulation can simply be overlaid with the adapted sine waves. The frequency of the adapted

sine is known since the frequency will remain that of the input, and the amplitude is obtained

from the simulation amplitude estimation, although this can also be easily be read from the

stored data. This leaves only one degree of freedom for the sine wave; the phase. The method

iteratively approximates the input and output signals by overlaying sine waves with the estimat-

ed amplitudes and known frequencies. It then looks for the phase match that minimizes the

sum:

Classification: Confidential

56

∑ (() (

))

 (20)

Where the signal is de trended by removing its mean value. Notice that this method is also limited

to search for phase lag] . The value of t1 is chosen so that the response is stabilized

before the sine approximation.

Figure 3-16: Example of control loop input (top) and output (bottom)
fitted with sine waves to find phase.

3.5 Project component tests

The components of the Simulink model have been tested and analyzed according to an adaptation

of BS 7925-2:1998, «A British standard for testing of software components and techniques for

the design and measurement of that testing». The full standard should be considered for the fi-

nal completion of the test mechanism, but due to the time constraint of this thesis some simpli-

fications have to be done.

Some parts of the system are considered particularly prone to bugs and other faults. These compo-

nents are tested and verified that the outputs for the specified inputs are as expected.

- Amplitude estimation

- Period estimation

- Modified relay method for known system

- Modelled valve behavior

Classification: Confidential

57

The tests will be executed on a windows 7 pc. The components to be tested consist of a combina-

tion of Simulink blocks and Matlab (R2012b) code.

Components shall be tested in isolation with both normal and abnormal inputs on the connectors.

Signals cannot exceed realistic range which is naturally limited by the physicality of the real sys-

tem modelled. System as a whole shall be tested and verified semi- isolated and by locking most

variables.

Primarily there are no dependencies between the components being tested since each component

is tested in isolation. Lower priority components can tolerate more misbehavior than that of

higher priority components. All test setups and scripts are found in the “Component Tests” pro-

ject folder.

3.5.1 Amplitude and phase estimator (“AmpPhaEst”)

AmpPhaEst is located in CD2001_model_v4/Digital Processing/property measurement/Amp &

phase Estimation/. This is considered a critical block for the system’s ability to accurately obtain

the necessary indicators both for the final implementation of the relay test mechanism, but also

to obtain the process footprint for the simulation study and validation of the test mechanism.

Stubs: The Amp & phase Estimation subsystem is isolated from its surroundings. The reset port is

forced to 0.

Driver: A sine wave source on the input of a relay replaces the process feedback which results in the

Pv-Sp deviation signal. The period of the sine waves are controlled by the test script. A different

sine signal with known amplitude and phase acts as the Pv with the properties of interest.

Classification: Confidential

58

Figure 3-17: Test setup for AmpPhaEst with selected stubs and drivers.

Figure 3-18: Upper plot: Current max value as cyan, min value as yellow and measured signal is white.
 Middle plot: Triggers given by positive relay flanks (deviation signal to controller passes 0)
 Bottom plot: Estimated phase. Phase vector is initially NaN and after reset and is therefore not displayed.

The block’s typical behavior can be seen in Figure 3-18. It uses the pre specified amount of cycles

before it outputs the control signal indicating that the output values can be read. The estimated

phase is not used in the modelled test mechanism and “footprint” mapping algorithms, since us-

ing FFT was performing very accurately and reliably.

3.5.2 Period estimator (“PeriodEst”)

Classification: Confidential

59

PeriodEst is located in CD2001_model_v4/Digital Processing/property measurement/Period Estima-

tion/. This is considered a critical block for the system’s ability to accurately obtain the necessary

indicators.

Stubs: The Period Estimation subsystem is isolated from its surroundings. The reset port is forced to

0.

Driver: Sine wave sources on the input of a relay. The period of the sine waves are controlled by the

test script.

Results can be read from the output scope inside the Period Estimation subsystem block. The test is

run for a few sets of different periods. Two different sine waves are applied to the system for

each test run. The sine waves are each run for 7 periods. The estimation is set to average over

the last 3 logged periods. The standard deviation threshold is set to 20%.

PeriodEst should with high accuracy be able to quickly estimate the period of the relay switches, in-

dicating the frequency of the limit cycles induced by the test mechanism. The block should indi-

cate when the standard deviation for the logged periods are below a threshold and output a log-

ical 1 on its ready port accordingly.

Figure 3-19: Test setup for PeriodEst (located in the Period Estimation subsystem).

Classification: Confidential

60

Figure 3-20: Scope from testing PeriodEst with stubs and drivers. Upper plot shows how the estimated period changes
over time. Middle plot shows the standard deviation of the period samples in %. Lower plot shows the output sig-
nal of the ready port.

Normally during simulation with the test mechanism active, the PeriodEst is reset each time the

test mechanism goes to the next stage of the test procedure, but during this test it is interesting

to see how the estimate changes over time. There is implemented a standard deviation thresh-

old of the period samples, which when satisfied will make the block output a logical 1 on the

ready output port.

Exact
Tp [s]

Applied at
time, [s]

Indicating change of Tp
at time (ready = 0)

Time of
ready =1, [s]

Estimated
Tp, [s]

Avg. error,
[%]

15.3 0 NA 46 15.15 0.15 0,99

23 107.1 116 162 23.2 0.2 0,86

Table 2: Limit cycle period/frequency estimator test results.

Indicating the change of Tp is done by setting the ready output to 0 when the standard deviation is

above the threshold. The threshold is set to 20%, but this adjustable. Another improvement

could be to weight the newer samples more than the old ones in order to make it respond faster

to fast new changes. Other than this, the measurements are satisfactory, and their accuracy is

limited by the rate of the test mechanism, which is only allowed to run as the same rate as the

process measurement equipment.

Classification: Confidential

61

There is probably room for some improvements in the mechanic of the component, but its final de-

sign will be decided on a later stage of the technology development.

3.5.3 Valve

The valve has been isolated and tested according to the setup described in Figure 3-21. The valve

model is detailed in 3.2.3.

Figure 3-21: Test setup for testing of complete valve model.

The valve was thoroughly tested with the effects of adjusting the different fault parameters. Figure

3-22 and Figure 3-23 demonstrate the effects of adding slip jump and stick band characteristics

to the valve. The effect the stiction has on the flow through the valve can be seen in Figure 3-24.

Classification: Confidential

62

Figure 3-22: Left plots: Effect on flow by diaphragm leak, respectively (from top) 0%, 15% and 30%. The effect of the
leak is assumed to be proportional with the controller output.
Right plots: Effect on flow by internal leak, respectively (from top) 30%, 15% and 0%. The effect increases the effec-
tive Kv for the valve, increasing throughput. In the case that the valve wants to close, fluid will still flow through.

Figure 3-23: Effect of valve stiction. Plot descriptions from left to right: 0% stickband and slipjump, 10% stickband and
0% slipjump, 0% stickband and 10% slipjump, 10% stickband and 10% slipjump.

Classification: Confidential

63

Figure 3-24: Effect of valve stiction on the flow through the valve.
Plot for 0 stiction (red), and 10% slip jump and stick band in blue.

3.5.4 Modified relay testing

It was need to prove that the modified relay setup actually worked, and there were run several

tests with the setup shown in Figure 3-25. Results were proved to be near identical to those in-

dicated in Figure 3-26. This removes the concern of bugs in this part of the complete Simulink

model and associated code.

Figure 3-25: Modified relay test with additional sine sweep frequency testing
for known system. Results are used to verify the methods used for finding
the signatures (process “footprints”).

Classification: Confidential

64

Figure 3-26: Exact Bode plot characteristics for the known controller and process.

3.5.5 Test of Simulink setup for known system, with relay test and sine sweep

The top level Simulink model with all the components, including relay, sine sweep and estimator

blocks was tested on a known fictional system that replaced the simple Simulink process model.

This was done in order to validate the estimation techniques before applying them to the con-

tinuous and more realistic process models.

Figure 3-27: Left: The exact bode plot for the known system. Right: Frequency response found from sine sweep with
post FFT processing on controller and process output. Note that the axis are not equal.

Classification: Confidential

65

The fictional system created for testing is an under dampened second order system with time de-

lay, in continuous (Laplace) form (step response and pole-zero plot can be seen in appendix):

 (21)

The results obtained from the sine sweep are closely similar. There will be some differences due to

the discretization on the digital processing part of the top level Simulink model (). Addi-

tionally the FFT estimation approach can produce some dissimilarity due to some of the applied

sine wave energy is shifted into other frequency components due to the presence of nonlineari-

ties. The time delay of the fictional system is one such nonlinearity.

Figure 3-28: Left: Exact bode plot for the known controller, R(s). Right: Bode plot for controller and process in series
(open loop), h0 = R(s)P(s). Marked data points are the indicated wc and w180 from the relay test. H0 should be
equal to R(jw) (known) + P(jw) (unknown) for the estimated response, which we see is approximately true.

Obtained indicators from the relay test can be seen in Table 3. There are some slight variances in-

troduced because of the Ts of the digital processing side. Allowing the relay test to run for a

longer amount of time can increase accuracy, but for testing purposes it is kept low with respect

to the required simulation time.

Indicators Relay test From bode plots Error

]]]

]]]

Table 3: Results from the modified relay feedback test versus the exact results from the bode plot for the known sys-
tems.

Classification: Confidential

66

As seen by Table 3, and the phase margin, , are more prone to error than the other readings.

This is because of added sources of errors due to the approximations and estimations used. It is

therefore important to give an extra weight on the techniques used for the final implementation

of the technology.

3.5.6 Test of exactly known system with relay test and relay sweep

The modified relay test was extended with the relay sweep “footprint” estimation techniques. The

transfer functions for the processes tested were:

 ()

 ()

Results can be seen in Figure 3-30. The transport delay sweep was later replaced with FFT, since the

FFT was more accurate and reliable in most cases.

Figure 3-29: Test setup for modified relay test and relay sweep adjusting hysteresis and transport delay.

Classification: Confidential

67

Figure 3-30: Left: Obtained response with relay sweep. Hysteresis was adjusted to obtain the amplitude response and
transport delay from relay was adjusted to obtain the phase response. Right: Exact bode plots. As seen, the ob-
tained values are very similar to the exact values.

Classification: Confidential

68

Chapter 4

Simulation study

4.1 Simulation setup and some regarding comments

For the final simulations the decided estimation techniques to obtain the “process footprint“ was

relay sweep by adjusting the hysteresis between
 and 0 (described in 2.8.2) to obtain the

process gain, and FFT on the Op and Pv signals to find the phase lag. These methods proved reli-

able and effective in combination. This also removed the need for the sine source since the oscil-

lations were generated by the relay alone throughout the simulations. In retrospect, the added

hysteresis should not have been linearly incremented, but rather inverse exponentially incre-

mented. At first, small increments of hysteresis result in larger shifts in logged frequencies, so

the process “footprint” resolution is poorer close to than at .

The simulations were ran for all combinations of the parameters listed in Table 4, except for

 (this would cause reverse flow which is not relevant) and (this

causes the valve to behave like a relay, so that there are now effectively two relays in the loop

during testing; would have been manually detected by process engineers).

Parameter Type Value(s) Run priority

Reference Operational 0.7, 1.2 [m]

Oil flow in Operational 0.05, 0.07 [

]

Pressure CD2001 Operational 19, 27 [barG]

Pressure CD2002 Operational 16, 18 [barG]

Diaphragm leak Technical, valve 0, 10 [%]

Internal leak Technical, valve 0, 10, 20 [%]

Upper saturation Technical, valve 100 [%]

Lower saturation Technical, valve 0 [%]

Time constant Technical, valve 10, 15 [s]

Stick band Technical, valve 0, 10, 20 [%]

Slip jump Technical, valve 0, 10, 20 [%]

Classification: Confidential

69

Filter time constant Technical, transmitter 0, 20, 60 [

]

Bias Technical, transmitter 0, 0.05 [m]

Skew Technical, transmitter 1, 0.9, 1.1 [Factor]

Table 4: “Big” Simulation parameter configurations.

The resulting configurations with the exceptions add up to 20’736 simulations. In order to produce

results for analysis for a variety of configurations, the resolution (amount of values for each pa-

rameter) had to be low. This was the last big (thus nicknamed “big”) simulation run producing a

lot of interesting results although there wasn’t enough time to let it finish. Different configura-

tions had different priorities, so those considered to be of higher importance were run first. The

last Monte Carlo simulation finished 308 simulations in approximately 16 hours. This indicates

an optimization issue and it is not feasible to run it for all the listed configurations in its current

state, but there are some things that can be adjusted to further lower it. The most time saving

fix would likely be to compile the Simulink model and run it in either “accelerator” or “rapid ac-

celerator” mode, but this was not investigated due to the time constraint of the thesis. These

modes should only be used when the models are completely finished. This is not something that

was considered since there were still possibilities in tweaking the models first in order to opti-

mize. It is possible to do analysis while the simulations are ongoing since results are stored to

the hard drive for the completion of each simulation loop (depends on simulation settings).

4.2 Results

In order to analyze results some “analyzer” functions were created:

- “combineSegments.m”; During the Monte Carlo simulation, results are as mentioned regu-

larly stored as data packets, or “segments”, (.mat files) in order to prevent loss of results if

a crash occurs or other reasons. For a vast amount of simulations it is more practical to

combine the segments to larger files, which also lowers the processing time required to

search through the data.

- “analyzer_lookupResults.m”; This function is a practical way to search through specified

configurations of technical and operational states. For example one can search for all com-

Classification: Confidential

70

binations of stick band, and require all other parameters to be set to a certain value among

the ones used for the Monte Carlo simulations.

- “analyzer_plotResponses.m”; To verify that signals are behaving as expected during simula-

tions there was need for a tool to quickly visualize signal behaviors from different simula-

tion measurements. Such signals that are constantly logged are Op, Pv and Sp-Pv deviation

etc.

- “analyzer_plotFootprintBode.m”; This function visualizes the data obtained from the re-

laysweep with hysteresis for gain, and post FFT of Op and Pv for phase lag. This is the most

revealing visualization for seeing how different operational and technical states affect the

process of interest. Function also produces a 3D plot with frequency, gain and phase along

the x-,y- and z- axes respectively which simplifies seeing trends in the “footprints”.

- “analyzer_displayResultsAsText.m”; This is a fast way to look up specified parameters and

results for the modified relay test. Indicator values can be read from this text display in the

Matlab command window.

- “analyzer_plotIndicatorXY”; Plots gain- and phase margins along the x- and y axes respec-

tively. These margins are obtained from the test mechanism and plotting them in this way

simplifies seeing trends by adjusting single or combinations of parameters.

4.2.1 Simulation example: Zero fault/“commissioning state”

Parameters Values Units

Reference 0.7 [m]

Oil flow in 0.05 [

]

Pressure CD2001 19 [barG]

Pressure CD2002 16 [barG]

Diaphragm leak 0 [%]

Internal leak 0 [%]

Upper saturation 100 [%]

Lower saturation 0 [%]

Time constant 10 [S]

Classification: Confidential

71

Stick band 0 [%]

Slip jump 0 [%]

Filter time constant 0 [

]

Bias 0 [m]

Skew 1 [factor]

Table 5: Default configuration of all operational and technical parameters. This corresponds to the “commissioning
state”.

Indicators Values (test

mechanism)

Values

(footprint)

Units

Wc 0.0098 (Hz

W180 0.0638 0.0638 Hz

Ampl. margin 30.84 26.82 dB

Phase margin 28.39 47.84 °

Table 6: Indicators obtained from the test mechanism and from the “footprint”. There is some differences in the mar-
gins due to wc being slightly improperly estimated. This could be improved on in the final test mechanism by e.g.
letting the test mechanism have a feedback that adjusts the hysteresis and thus close in on the exact frequence.

Figure 4-1: Gain and phase plots show the response of the process, while the margins XY plot is derived from the test
mechanism. A similar plot can be created for the “footprint”.
Leftmost: 3D plot with XYZ corresponding to frequency, gain and phase respectively.
Middle: Standard Bode plot with gain and phase versus frequency.
Rightmost: Margins XY plot with respectively gain and phase margins along the axis.

Classification: Confidential

72

Figure 4-2: Response from Simulink scope for a typical test mechanism run. In this case, the zero fault run is displayed.
#1 from top: Pv (red) vs Sp (blue)
#2 from top: Pv-Sp deviation
#3 from top: Test mechanism status.
#4 from top: Op response. Notice the relay in series with the controller effect.

4.2.2 (Small) Simulation example: 0-20% stiction, 5% increments

Config.-

index

S [%] J [%] Wc [hz] W180 [hz] Gain. -

margin,

Phase -

margin,

1 0 0 0.0096 0.0638 31.46 37.39

2 5 0 0.0076 0.0268 18.17 31.02

3 5 5 0.0093 0.0435 22.26 33.67

4 10 0 0.0060 0.0168 13.66 27.12

5 10 5 0.0073 0.0226 15.13 32.51

6 10 10 0.0085 0.0273 14.07 35.65

7 15 0 0.0045 0.0109 10.85 19.97

8 15 5 0.0060 0.0153 11.76 25.50

Classification: Confidential

73

9 15 10 0.0068 0.0173 10.00 33.12

10 15 15 0.0086 0.0190 8.34 29.84

11 20 0 Unstable - - -

12 20 5 0.0045 0.0097 8.46 17.57

13 20 10 0.0059 0.0116 6.80 21.75

14 20 15 Unstable - - -

15 20 20 Unstable - - -

Table 7

Figure 4-3:
Upper left: Process footprint for stick band, S, and slip jump, J,each being adjusted for 0 to 20%, with 5% incre-
ments.
Upper right: Margins XY plot for 0-20% stiction with 5% increments.
Lower: 3D representation

Classification: Confidential

74

4.2.3 (Big) Simulation example: Stiction configurations

The simulations were run only for J<=S.

Config.-

index

S [%] J [%] Wc [hz] W180 [hz] Gain. -

margin,

Phase -

margin,

1 0 0 0.0096 0.0638 31.46 37.39

2 10 0 0.0060 0.0168 13.66 27.12

3 10 10 0.0085 0.0273 14 35.65

4 20 0 Unstable - - -

5 20 10 0.0059 0.0116 6.81 21.75

6 20 20 Unstable - - -

Table 8

Classification: Confidential

75

Figure 4-4: Combinations of stiction for the first (big) simulation loops.
The “footprints” are numbered for convenience.

4.2.4 (Big) Simulation example: Different pressures (operational states)

Config.-

index

CD2001 P

[barG]

CD2002

P[barG]

Wc

[hz]

W180

[hz]

Gain. -

margin,

Phase -

margin,

1 19 16 0.0096 0.0638 30.84 28.39

74 19 18 0.0098 0.0698 34.90 27.62

146 27 16 0.0106 0.0577 27.07 31.88

218 27 18 0.0112 0.0714 29.99 27.95

Table 9:

Classification: Confidential

76

Figure 4-5:
Upper left: Gain and phase plot. The FFT misread the phase for some of the sample points for the “footprint” for
these configurations.
Upper right: Margins XY plot.
Lower: 3D representation.

4.2.5 (Big) Simulation example: Different oil flow rates (operational states)

Config.-

index

Oil flow

[

]

Wc [hz] W180 [hz] Gain. -

margin,

Phase -

margin,

1 0.05 0.0096 0.0638 31.46 37.39

290 0.07 0.0119 0.0526 26.04 28.59

Table 10

Classification: Confidential

77

Figure 4-6:

4.2.6 (Big) Simulation example: Diaphragm leak and internleak

Config.-

index

Diaphragm

leak

Intern

leak

Wc

[hz]

W180

[hz]

Gain. -

margin,

Phase -

margin,

1 0 0 0.0096 0.0638 31.46 37.39

13 0 10 0.0060 0.0612 33.12 45.29

25 0 20 DNF - - -

37 10 0 0.0097 0.0625 30.06 30.52

49 10 10 0.0058 00625 33.60 36.66

Classification: Confidential

78

Table 11

Figure 4-7: The FFT misread some of the “footprint” phase samples.

4.2.7 (Big) Simulation example: Stiction (technical) and different pressure

(operational)

This produced a lot of results (24) and weren’t tabulated for this section.

Classification: Confidential

79

Figure 4-8

Classification: Confidential

80

Chapter 5

Conclusion

The obtained results show great promise of being able to separate theeffects of the different oper-

ational and technical states. None of the observed results have been identical in any configura-

tion, which indicates that the configurations are separable. For all observed cases of increased

technical state parameters (faults etc.), the frequency of and go down. This behavior is

as expected, since the bandwidth, and margins, are in practice reduced during operation of the

process plant.

In the case of valve stiction, observed tendencies are that the frequency of goes down, but at a

slower rate than that of . This indicates that is reduced. Additionally, when the

stiction consists purely of slip jump, or if slip jump is gradually applied to the valve, the gain- and

phase margins are increased. The XY- plots are good for looking at the trajectories of margins for

the increase of the technical degradation and change in operational state. For the valve stiction,

the gain margins are reduced, while the phase margins can both increase or decrease depending

on the specific composition of a certain stiction. General tendencies are that the margins change

a lot for small increments of the operational and technical parameters. This is very desirable

since the test mechanism will be more sensitive toward detecting small changes. This also sug-

gests that the test mechanism should run as often as possible (without adding any cost or low-

ered performance).

In the case of the operational state configurations, it seems that the “footprints” mainly parallel

shift, such as an increase of process gain if the differential pressure across the valve is increased

as demonstrated by #218 in Figure 4-5. The change of the inlet oil flow acts in the same manner.

The footprints’ resolutions could be increased for later simulations to increase accuracy and to

open up for some error removal mechanics for samples that are known to be wrong. The FFT es-

timation technique for process phase lag sometimes fails, and there is need to go some in depth

of this to see why, and how to robustify it (The major cause is assumed to be handling of phase

results according to the crossover of unit cycle quadrants).

Classification: Confidential

81

The developed tools prove reliable and very helpful in the understanding of the effects of devel-

oped faults and change of operational states. This will be used to develop the limits required to

separate the presence of multiple technical states and varying operational states from each oth-

er, and to further simplify process plant control and controller retuning. The completed Monte

Carlo simulation setup is handed over to Statoil, and the supervisor receives extensive training

required to use the developed tools.

Classification: Confidential

82

Chapter 6

Bibliography

[1] Statoil, Control Invention Prestudy 2014, Idea reference:K4064.

[2] Espen Svandalsflona, Frode Tuen, Condition Monitoring of Control Loops,

University of Stavanger, Spring 2010.

[3] Horch, Alexander, Condition Monitoring of Control Loops, Stockholm: School of

Electrical Engineering, Royal Institute of Technology, 2000.

[4] Statoil, Råoljeproduksjon, DOCID=1017540.

[5] Haugen, Finn, Regulering av dynamiske systemer, Tapir forlag, 1994.

[6] Shoukat M. A. A. Choudhury, Sirish L. Shah, Nina F. Thornhill, Diagnosis of Process

Nonlinearities and Valve Stiction, Berlin: Springer, 2008.

[7] E. P. Management, Fisher 667 Diaphragm Actuator Sizes 30-76 and 87,

http://www.documentation.emersonprocess.com/groups/public/documents/i

nstruction_manuals/d100310x012.pdf, 2013.

[8] Erin Knight, Matthew Russell, Dipti Sawalka, Spencer Yendell, Valve Modeling,

2006.

[9] Mean time between failures, Wikipedia, the free encyclopedia, 2010.

[10] Wikipedia, the free encyclopedia, "Reliability centered maintenance,"

http://en.wikipedia.org/wiki/Reliability_centered_maintenance, 2014.

[11] R. I. G. Mohamed A. Sharif, Fault Diagnosis in Industrial Control Valves and

Actuators, Minnesota, USA: IEEE Instrumentation and Measurement, 1998.

Classification: Confidential

83

[12] Sanders, D., Control-valve seat leakage, Atlanta, Georgia:

http://www.hydrocarbonprocessing.com/Article/2880440/Control-valve-seat-

leakage.html, 2011.

[13] Rosemount , Rosemount 3051 Pressure Transmitter, 2014:

http://www2.emersonprocess.com/siteadmincenter/PM%20Rosemount%20D

ocuments/00813-0100-4001.pdf.

[14] Haugen, Finn, Anvendt reguleringsteknikk, Trondheim: Tapir forlag, 1990.

[15] Hägglund, K. J. Åström and T., Automatic Tuning of Simple Regulators with

Specifications on Phase and Amplitude Margins, Great Britain: Pregamon Press

Ltd., 1984.

[16] Zhu, Ming-Da Ma & Xin-Jian, Performance Assessment and Controller Design

based on Modified Relay Feedback, Shanghai: Shanghai Jiaotong University,

2005.

[17] Team, MathWorks Support, How do I calculate the amplitude ratio and phase lag

for two sinusoidal signals in MATLAB?, Forum post:

http://www.mathworks.com/matlabcentral/answers/91647-how-do-i-

calculate-the-amplitude-ratio-and-phase-lag-for-two-sinusoidal-signals-in-

matlab, 2013.

[18] Statoil, Process general arrangement for inlet separator CD2001, TIPS: CP-C05-

GD-047.001.

[19] P. K. Dasg, R. K. Jena, G. Panda, and Aurobinda Routray, An Extended Complex

kalman Filter for Frequency Measurement of Distorted Signals, IEEE

transaction on instrumentation and measurement, vol 49, 2000.

[20] O. A. Olsen, Instrumenteringsteknikk, Trondheim: Tapir akademisk forlag, 6.

opplag, 2005.

Classification: Confidential

84

[21] Statoil, Gass rekompresjonstoget, DOCID=1017924.

[22] Christopher B. Lynch, Control Loop Performance Monitoring, Vancouver, Canada:

The University of British Columbia, 1992.

[23] Fritzson, Peter, "Introduction to Modelica," 2001.

[24] Wikipedia, the free encyclopedia, "Statfjord oil field,"

http://en.wikipedia.org/wiki/Statfjord_oil_field, 2014.

1

Chapter 1

Appendix

2

1.1 (Early) Poster presentation of Thesis

3

1.2 List of figures

FIGURE 2-1: INLET SEPARATOR (CD2001) ILLUSTRATION [4]. ... 9

FIGURE 2-2: PRODUCTION TRAIN OVERVIEW FROM THE ASSET SIMULATOR, WHICH IS USED TO SIMULATE REAL

CONDITIONS FOR MIMICKING THE STATFJORD FIELDS. CD2001 IS THE INLET SEPARATOR (TO THE LEFT), WHICH

IS A THREE PHASE SEPARATOR SEPARATING THE CRUDE PRODUCTION FLOW TO OIL, GAS AND WATER. 11

- FIGURE 2-3: LEFTMOST: FISHER 667 SLIDING STEM CONTROL VALVE [7]. THE 667 VALVES ARE REVERSE ACTING,

WHICH MEANS THAT PRESSURE OF APPLIED ON THE BOTTOM OF THE DIAPHRAGM CREATING A FORCE

OPPOSING THE SPRING FORCE. THIS SETUP GIVES A FAIL CLOSED POSITION. THE RIGHTMOST FIGURE IS TAKEN

FROM FINN HAUGEN’S BOOK “REGULERING AV DYNAMISKE SYSTEMER, 1994” [5], AND DESCRIBES THE SAME

WORKING PRINCIPLE AND GENERAL INTERNAL STRUCTURE AS USED IN THE FISHER 667. 14

FIGURE 2-4: ROSEMOUNT 3051 PRESSURE TRANSMITTER [13]. ... 18

FIGURE 2-5: FIGURE IS AN EXCERPT OF AN ILLUSTRATION ADOPTED FROM FINN HAUGEN’S “ANVENDT

REGULERINGSTEKNIKK, 1990” [14], WITH SOME TRANSLATIONS. ... 20

FIGURE 2-6: DESCRIPTIVE DRAWING OF THE TEST MECHANISM IMPLEMENTED ON THE PHYSICAL PLANT. 21

FIGURE 2-7: ILLUSTRATION OF THE RELAY OUTPUT AND ITS CORRESPONDING FIRST HARMONIC FREQUENCY.

ILLUSTRATION IS ADOPTED FROM A TEXTBOOK WRITTEN BY FINN HAUGEN [5]. ... 22

FIGURE 2-8: THE STANDARD RELAY FEEDBACK METHOD. THE RELAY AND CONTROLLER ARE RUN IN PARALLEL. 23

FIGURE 2-9: THE MODIFIED RELAY FEEDBACK METHOD. THE RELAY IS NOW IN SERIES WITH THE CONTROLLER. 23

FIGURE 2-10: FREQUENCY RESPONSE OF A PI(D) CONTROLLER WITH KP=4, TI=100 AND TD=0. THIS IS THE

CONTROLLER SETUP USED IN THE MONTE CARLO SIMULATION IN CHAPTER 4. ... 24

FIGURE 2-11: APPLYING SINE WAVES ON THE REFERENCE WHILE THE PROCESS IS QUIESCENT AT THE OPERATING

POINT. ... 26

FIGURE 2-12: ILLUSTRATION OF THE ADJUSTED HYSTERESIS RELAY SWEEP SETUP (IN SIMULINK THE HYSTERESIS IS IN

REALITY PART OF THE RELAY BLOCK, HENCE ITS BLOCK DRAWING). .. 27

FIGURE 2-13: ILLUSTRATION OF THE ADJUSTED TRANSPORT DELAY RELAY SWEEP SETUP. ... 28

FIGURE 3-1: PRINCIPLE DRAWING OF THE SIMULINK MODEL CONTAINING THE ACTUATOR, PROCESS AND

EQUIPMENT MODELS. DATA FLOW WITH MATLAB IS ALSO INCLUDED. .. 31

FIGURE 3-2: GEOMETRY OF THE INLET SEPARATOR. ... 34

FIGURE 3-3: BOTH EDGE SPHERES HAVE BEEN COMBINED TO A WHOLE SPHERE FOR CALCULATIONS. RADIUS OF THIS

SPHERE AT OIL HEIGHT H(T) IS THE SAME AS THE WIDTH/2 OF THE CYLINDER AREA (WITH LENGTH C+E). 34

FIGURE 3-4: THE SIMPLIFIED SIMULINK MODEL PRODUCED ACCORDING TO THE EQUATIONS DESCRIBING THE

INPUT-OUTPUT- AND VALVE DYNAMICS. ... 35

FIGURE 3-5: DYMOLA MODEL PRODUCED. THIS WAS NOT IMPLEMENTED IN SIMULINK DUE TO THE TIME

CONSTRAINT OF THE THESIS. .. 37

4

FIGURE 3-6: PRACTICAL VALVE MODEL IMPLEMENTED IN SIMULINK. USES THREE INPUTS; CONTROLLER OUTPUT,

U/OP(K), PRESSURE ON INPUT SIDE, P_IN, AND PRESSURE ON OUTPUT SIDE, P_OUT. ... 39

FIGURE 3-7: TRANSMITTER MODEL. LEFT IS THE COMPLETE TRANSMITTER MODEL, WHILE RIGHT IS THE

SUBELEMENTS OF THE TRANSMITTER DYNAMICS BLOCK. ... 40

FIGURE 3-8: MAIN SIMULATION FLOW DIAGRAM. ... 41

FIGURE 3-9: TOP LEVEL VIEW OF SIMULINK MODEL ORGANIZED WITH SUBSYSTEMS. .. 43

FIGURE 3-10: CD2001_MODEL_VX/DIGITAL PROCESSING. ... 44

FIGURE 3-11: SETUP FOR SHOWING FALSE RELAY SWITCH BEHAVIOR. .. 46

FIGURE 3-12: LEFT: IDEAL RELAY SWITCHING WITH LITTLE OR NO HYSTERESIS OR FILTER, RIGHT: THE EFFECT ON

NOISE ON RELAY WITH LITTLE OR NO HYSTERESIS OR FILTER. ... 46

FIGURE 3-13: PERIODEST SIMULINK BLOCK. LOCATED IN CD2001_MODEL_V2/PROPERTY MEASUREMENT/PERIOD

ESTIMATION/. ... 48

FIGURE 3-14: AMPEST SIMULINK BLOCK. LOCATED IN CD2001_MODEL_V2/PROPERTY MEASUREMENT/AMP &

PHASE ESTIMATION/. .. 50

FIGURE 3-15: THE SIMCYCLE OPERATOR, SIMCYCLEOP, SIMULINK BLOCK. LOCATED IN

CD2001_MODEL_V2/PROPERTY MEASUREMENT/. .. 52

FIGURE 3-16: EXAMPLE OF CONTROL LOOP INPUT (TOP) AND OUTPUT (BOTTOM) FITTED WITH SINE WAVES TO

FIND PHASE. .. 56

FIGURE 3-17: TEST SETUP FOR AMPPHAEST WITH SELECTED STUBS AND DRIVERS. .. 58

FIGURE 3-18: UPPER PLOT: CURRENT MAX VALUE AS CYAN, MIN VALUE AS YELLOW AND MEASURED SIGNAL IS

WHITE.

MIDDLE PLOT: TRIGGERS GIVEN BY POSITIVE RELAY FLANKS (DEVIATION SIGNAL TO CONTROLLER PASSES 0)

BOTTOM PLOT: ESTIMATED PHASE. PHASE VECTOR IS INITIALLY NAN AND AFTER RESET AND IS THEREFORE

NOT DISPLAYED. 58

FIGURE 3-19: TEST SETUP FOR PERIODEST (LOCATED IN THE PERIOD ESTIMATION SUBSYSTEM). 59

FIGURE 3-20: SCOPE FROM TESTING PERIODEST WITH STUBS AND DRIVERS. UPPER PLOT SHOWS HOW THE

ESTIMATED PERIOD CHANGES OVER TIME. MIDDLE PLOT SHOWS THE STANDARD DEVIATION OF THE PERIOD

SAMPLES IN %. LOWER PLOT SHOWS THE OUTPUT SIGNAL OF THE READY PORT... 60

FIGURE 3-21: TEST SETUP FOR TESTING OF COMPLETE VALVE MODEL. ... 61

FIGURE 3-22: LEFT PLOTS: EFFECT ON FLOW BY DIAPHRAGM LEAK, RESPECTIVELY (FROM TOP) 0%, 15% AND 30%.

THE EFFECT OF THE LEAK IS ASSUMED TO BE PROPORTIONAL WITH THE CONTROLLER OUTPUT. RIGHT PLOTS:

EFFECT ON FLOW BY INTERNAL LEAK, RESPECTIVELY (FROM TOP) 30%, 15% AND 0%. THE EFFECT INCREASES

THE EFFECTIVE KV FOR THE VALVE, INCREASING THROUGHPUT. IN THE CASE THAT THE VALVE WANTS TO

CLOSE, FLUID WILL STILL FLOW THROUGH. .. 62

5

FIGURE 3-23: EFFECT OF VALVE STICTION. PLOT DESCRIPTIONS FROM LEFT TO RIGHT: 0% STICKBAND AND SLIPJUMP,

10% STICKBAND AND 0% SLIPJUMP, 0% STICKBAND AND 10% SLIPJUMP, 10% STICKBAND AND 10% SLIPJUMP. ... 62

FIGURE 3-24: EFFECT OF VALVE STICTION ON THE FLOW THROUGH THE VALVE. PLOT FOR 0 STICTION (RED), AND

10% SLIP JUMP AND STICK BAND IN BLUE. ... 63

FIGURE 3-25: MODIFIED RELAY TEST WITH ADDITIONAL SINE SWEEP FREQUENCY TESTING FOR KNOWN SYSTEM.

RESULTS ARE USED TO VERIFY THE METHODS USED FOR FINDING THE SIGNATURES (PROCESS “FOOTPRINTS”). ... 63

FIGURE 3-26: EXACT BODE PLOT CHARACTERISTICS FOR THE KNOWN CONTROLLER AND PROCESS. 64

FIGURE 3-27: LEFT: THE EXACT BODE PLOT FOR THE KNOWN SYSTEM. RIGHT: FREQUENCY RESPONSE FOUND FROM

SINE SWEEP WITH POST FFT PROCESSING ON CONTROLLER AND PROCESS OUTPUT. NOTE THAT THE AXIS ARE

NOT EQUAL. .. 64

FIGURE 3-28: LEFT: EXACT BODE PLOT FOR THE KNOWN CONTROLLER, R(S). RIGHT: BODE PLOT FOR CONTROLLER

AND PROCESS IN SERIES (OPEN LOOP), H0 = R(S)P(S). MARKED DATA POINTS ARE THE INDICATED WC AND

W180 FROM THE RELAY TEST. H0 SHOULD BE EQUAL TO R(JW) (KNOWN) + P(JW) (UNKNOWN) FOR THE

ESTIMATED RESPONSE, WHICH WE SEE IS APPROXIMATELY TRUE. ... 65

FIGURE 3-29: TEST SETUP FOR MODIFIED RELAY TEST AND RELAY SWEEP ADJUSTING HYSTERESIS AND TRANSPORT

DELAY. ... 66

FIGURE 3-30: LEFT: OBTAINED RESPONSE WITH RELAY SWEEP. HYSTERESIS WAS ADJUSTED TO OBTAIN THE

AMPLITUDE RESPONSE AND TRANSPORT DELAY FROM RELAY WAS ADJUSTED TO OBTAIN THE PHASE

RESPONSE. RIGHT: EXACT BODE PLOTS. AS SEEN, THE OBTAINED VALUES ARE VERY SIMILAR TO THE EXACT

VALUES. ... 67

FIGURE 4-1: GAIN AND PHASE PLOTS SHOW THE RESPONSE OF THE PROCESS, WHILE THE MARGINS XY PLOT IS

DERIVED FROM THE TEST MECHANISM. A SIMILAR PLOT CAN BE CREATED FOR THE “FOOTPRINT”. LEFTMOST:

3D PLOT WITH XYZ CORRESPONDING TO FREQUENCY, GAIN AND PHASE RESPECTIVELY. MIDDLE: STANDARD

BODE PLOT WITH GAIN AND PHASE VERSUS FREQUENCY. RIGHTMOST: MARGINS XY PLOT WITH RESPECTIVELY

GAIN AND PHASE MARGINS ALONG THE AXIS. ... 71

FIGURE 4-2: RESPONSE FROM SIMULINK SCOPE FOR A TYPICAL TEST MECHANISM RUN. IN THIS CASE, THE ZERO

FAULT RUN IS DISPLAYED. #1 FROM TOP: PV (RED) VS SP (BLUE) #2 FROM TOP: PV-SP DEVIATION #3 FROM

TOP: TEST MECHANISM STATUS. #4 FROM TOP: OP RESPONSE. NOTICE THE RELAY IN SERIES WITH THE

CONTROLLER EFFECT. ... 72

FIGURE 4-3: UPPER LEFT: PROCESS FOOTPRINT FOR STICK BAND, S, AND SLIP JUMP, J,EACH BEING ADJUSTED FOR 0

TO 20%, WITH 5% INCREMENTS. UPPER RIGHT: MARGINS XY PLOT FOR 0-20% STICTION WITH 5%

INCREMENTS. LOWER: 3D REPRESENTATION ... 73

FIGURE 4-4: COMBINATIONS OF STICTION FOR THE FIRST (BIG) SIMULATION LOOPS. THE “FOOTPRINTS” ARE

NUMBERED FOR CONVENIENCE. .. 75

6

FIGURE 4-5: UPPER LEFT: GAIN AND PHASE PLOT. THE FFT MISREAD THE PHASE FOR SOME OF THE SAMPLE POINTS

FOR THE “FOOTPRINT” FOR THESE CONFIGURATIONS. UPPER RIGHT: MARGINS XY PLOT. LOWER: 3D

REPRESENTATION. .. 76

FIGURE 4-6: .. 77

FIGURE 4-7: THE FFT MISREAD SOME OF THE “FOOTPRINT” PHASE SAMPLES. .. 78

FIGURE 4-8 ... 79

7

1.3 Main()

1.3.1 “run_MainSimulation.m”

% ***MainSimulation governs the entire simulation procedure***
%---
% Description and comments:
% Script is divided into three components. Simulation state object is
% automaticly stored in the outer workspace making attempts at clustering
% relevant code together in functions hard as long as the 'sim()' is
% located in the function.
%---
% DO:
% -Add simulation loop index to each stored data segment.
% -Add the stopcause and store in data segment
% -Store the test matrix in the segment folder
% -Save controller setup

%% Program initialization
if exist('TEMP.progressbar_handle','var'), if ishandle(TEMP.progressbar_handle),

close(TEMP.progressbar_handle); end, end % Prevent multiple progress bars
% clear all;
close all; clc;
warning('off','Simulink:Engine:SimStateParameterChecksumMisMatch') % turns off

unnecessary warning

% Directories
addpath('Program functions') % essential
addpath('S-Functions') % essential
addpath('Init files') % essential
addpath('Simulink models') % essential
addpath('Analysis functions')
addpath('Script components') % essential (will be gradually converted to func-

tions)
if ~(exist('Simulation results','dir')==7), mkdir('Simulation results'); end
addpath('Simulation results') % essential for automatic procedure
if ~(exist('Simulation restore files','dir')==7), mkdir('Simulation restore

files'); end

%% Initialize model
disp('Started..')
run('init_default_values.m');
run('prep_simulation_parameters.m'); % simulation adjustable parameters
run('init_other_parameters.m'); %
run('init_CD2001.m'); % matlab init file
run('init_valve_complete.m'); % lv20024A
run('init_transmitter.m'); % init before controller
run('init_contr_and_rel.m'); %

openModels = find_system('SearchDepth', 0); % get current open models
if ~ismember(USERPARAM.mdl,openModels) % check if selected model is open, else

open
 statusdisp(['Opening model ',USERPARAM.mdl,'...'],2)
 open(USERPARAM.mdl);
 % remove old open scopes for cleanliness

8

 shh = get(0,'ShowHiddenHandles');
 set(0,'ShowHiddenHandles','On');
 hscope = findobj(0,'Type','Figure','Tag','SIMULINK_SIMSCOPE_FIGURE');
 close(hscope);
 set(0,'ShowHiddenHandles',shh);
 clear('shh','hscope');
 statusdisp('Done',2)
end
set_param(USERPARAM.mdl, 'LoadInitialState', 'off'); % prevents loading at first

run
clear('openModels')

% Pause and ask for permission to continue
dlgansw = questdlg('Continue processing (Automatic)?','Initialization complet-

ed','Yes','No','Yes');
if strcmp(dlgansw,'No')
 clear('dlgansw')
 return
else clear('dlgansw')
end

%% Simulation
component_simloops2; %(DATA,MODEL,USERPARAM);

%% Summary
if exist('TEMP.progressbar_handle','var'),close(TEMP.progressbar_handle), end

if USERPARAM.mail.notify_by_mail && ~(isempty(USERPARAM.mail.address) || is-

empty(USERPARAM.mail.pw))
 message = 'Processing complete';
 notifyEmail(message,USERPARAM.mail.address,USERPARAM.mail.pw)
end

1.4 Init files

1.4.1 “prep_simulation_parameters.m”

%% INFOPANEL
% unique() makes sure each vector is optimized by removing repeating values
% linspace(a,b,c) creates c values equally spaced between a and b

%% Global
global GLOBALDATA
GLOBALDATA.display_priority_requirement = inf; % default inf -> displays all

messages. 1 is highest priority normal messages, 0 is error.

%% Simulation setup
USERPARAM.simulation_timeout = 20000;
USERPARAM.mdl = 'CD2001_model_v4'; % simulink model
USERPARAM.system = 1; % 1:simple, 2:advanced,

3:fictional
USERPARAM.include_sinesweep = 0; % default 1
USERPARAM.include_relaysweep = 1; % default 1

9

USERPARAM.include_transportdelaysweep = 0; % default 0, not necessary with

post fft for phase
USERPARAM.save_results = 1; % default 1
USERPARAM.prevent_load_states = 0; % default 0
USERPARAM.START_AT_IDX = 49; % default 1

USERPARAM.ERROR_LIMIT = 1; % default 1. Amount of errors before ter-

minating
USERPARAM.perform_save_frequency = 0; % default 0 [min], save after every run
USERPARAM.save_minimum_loops = 1; % default 1. Least amount of loops before

a save

% does currently not work on the Statoil network
USERPARAM.mail.notify_by_mail = 0; % send default message that the processing is

completed to selected recipient upon simulation completion
USERPARAM.mail.address = ''; % mail client address. Gmail is accepted
USERPARAM.mail.pw = ''; % client password

%% Operational states
DATA.oper.reference = unique(linspace(0.7,1,2));
DATA.oper.oilflow_in = [0.05 0.07];
DATA.oper.cd2001_P = [19 27];
DATA.oper.cd2002_P = [16 18];

%% Valve
% Relevant values in [%]
DATA.valve.diaphragmleak = unique(linspace(0,10,2)); % default lin-

space(0,0,1) % partly blockage of air intake/supply
DATA.valve.internleak = unique(linspace(0,20,3)); % default lin-

space(0,0,1) % internal leakage / bypass
DATA.valve.uppersaturation = unique(linspace(100,100,1)); % default lin-

space(100,0,1)
DATA.valve.lowersaturation = unique(linspace(0,0,1)); % default lin-

space(0,0,1)
DATA.valve.T = unique(linspace(10,15,2)); % default lin-

space(10,10,1) % Too low value will cause problems in valve model
DATA.valve.S = unique(linspace(0,20,3)); % default lin-

space(0,0,1) % Stiction
DATA.valve.J = unique(linspace(0,20,3)); % default lin-

space(0,0,1) % Slipjump

%% Transmitter
DATA.transmitter.Tm = [0 20 60]; % default 0
DATA.transmitter.bias = [0 0.05]; % [m] b, default 0
DATA.transmitter.skew = [1 0.9 1.1]; % [unit] a, default 0, y = ax + b

%% Sine sweep (only applicable if include_sinesweep==1)
DATA.sinesweep.amplitude = 0.1; % [m]
DATA.sinesweep.resolution = 16; % number of sine sweeps performed for verifi-

cation, wc and w180 is automaticly added
DATA.sinesweep.wcfactor = 0.7; % lowest frequency of sine sweep equals 0.7 *

wc
DATA.sinesweep.w180factor = 1.1; % highest frequency of sine sweep equals 1.1

* w180

10

%% Summary
statusdisp(['simulating system : ',num2str(USERPARAM.system)])
statusdisp('initialized prep simulation parameters');

1.4.2 “init_CD2001.m”

%% CD2001
MODEL.oilflow_in = 0.05;% [m^3/s], oil in

MODEL.cd2001_rho_oil = 836; %[kg/m^3] Density of oil in separator
MODEL.cd2001_weirheight = 1.8; %[m] Height of weir
MODEL.cd2001_hsl = 1.2+1.222; %length of drum lightside of weir west side

+ east side
MODEL.cd2001_d = 3.8; %internal diameter of drum

MODEL.cd2001_P=19;
MODEL.cd2002_P=16;
%%
statusdisp('initialized CD2001',1);

1.4.3 “init_default_values.m”

DEFAULT = struct();

% Operational
DEFAULT.oper.refhigh = 0.7;
DEFAULT.oper.oilflow_in = 0.05;
DEFAULT.oper.cd2001_P = 19;
DEFAULT.oper.cd2002_P= 16;

% Valve
DEFAULT.valve.diaphragmleak = 0;
DEFAULT.valve.internleak = 0;
DEFAULT.valve.uppersaturation = 100;
DEFAULT.valve.lowersaturation = 0;
DEFAULT.valve.T = 10;
DEFAULT.valve.S = 0;
DEFAULT.valve.J = 0;

% Transmitter
DEFAULT.transmitter.Tm = 0;
DEFAULT.transmitter.bias = 0;
DEFAULT.transmitter.skew = 1;
DEFAULT.transmitter.filter_enabled = 1;

% Summary
disp('initialized default values');

1.4.4 “init_contr_and_rel.m”

11

%% Relay parameters
%relay and controller in series
MODEL.relay_d_fixed = 0.05; % [m] was 0.1 until 24.06.14. d_fixed corresponds to

the 'e' that the controller sees. For relay in series with controller.

%% Controller parameters

%D portion- filter
w_f = 100; %filter any frequencies with higher frequence than bandwidth of our

system
MODEL.T_f = 2 * pi / w_f; % corresponding filter time constant
clear('w_f')

%Default PID params

% simple system contr param, found by testing
MODEL.controller_invert = 1;
Kp1 = 4;
Ti1 = 100;
Td1 = 0;

% fictional system contr param, found by pidtool(sys) + adjustment by trial and

error
% pidtool(fictionalsys);
Kp2 = 0.0073806; % 0.5867 from pidtool
Ki2 = 0.0063453; % 0.0034824 from pidtool
Ti2 = Kp2/Ki2; % Kp2/Ki2 if using pidtool
Td2 = 0;

MODEL.system = USERPARAM.system;
if USERPARAM.system == 1
 MODEL.Kp = Kp1;
 MODEL.Ti = Ti1;
 MODEL.Td = Td1;
elseif USERPARAM.system == 2
 MODEL.Kp = Kp2;
 MODEL.Ti = Ti2;
 MODEL.Td = Td2;
end
clear('Kp1','Ti1','Td1','Kp2','Ki2','Ti2','Td2')

num = MODEL.Kp*[MODEL.Ti*MODEL.Td MODEL.Ti 1];
den = [MODEL.Ti 0];
TEMP.R = tf(num,den);
clear('num','den')

% IO
MODEL.controller_range_low = 0;
MODEL.controller_range_high = 1;
MODEL.controller_signal_low = 4;
MODEL.controller_signal_high = 20;
MODEL.controller_resolution = 16; % [bits]
MODEL.controller_quant_interval = (MODEL.controller_range_high - MOD-

EL.controller_range_low)/(2^MODEL.controller_resolution);
MODEL.controller_IO_rate = 1; % [hz], frequency of IO update

12

MODEL.unit_to_mA = (MODEL.transmitter_signal_high-

MODEL.transmitter_signal_low)/...
 (MODEL.transmitter_range_high-MODEL.transmitter_range_low);
MODEL.mA_to_unit = 1 / MODEL.unit_to_mA;

%% Summary
% plots
if false
 figure()
 h = bodeplot(TEMP.R);
 p=getoptions(h); % Create a plot options handle p.
 p.FreqUnits = 'Hz'; % Modify frequency units.
 setoptions(h,p); % Apply plot options to the Bode plot and render.
end

% text output
str = '';
if MODEL.Kp ~= 0, str = [str,'P']; end
if MODEL.Ti < inf, str = [str,'I']; end
if MODEL.Td ~= 0, str = [str,'D']; end
if MODEL.controller_invert, statusdisp('controlled input inverted',2), end
statusdisp([str,' controller selected'],2), clear('str')
statusdisp('initialized controller and relay',1);

1.4.5 “init_other_parameters.m”

%% Comment section
% Find unlinearity dynamics as linear dynamics in textbook and implement in

model.
% Move nonparameter sections to functions. Generalize the input-output
% relation algorithm.
%
% Acquire data for 'oilflow_in'
%

%% Simulation
MODEL.simsteptime=0.01; % simulation resolution / accuracy
MODEL.simstoptime = USERPARAM.simulation_timeout; % max simulation time
MODEL.stop_at_OP = 0; % default continue
MODEL.quiescence_limit = 30; % maximum allowed time without a change of output

value

%% Reference
MODEL.refsteptime=50;%Time of step for reference (N/A for sinus)
MODEL.reflow=0;%Lowest output amplitude of reference
MODEL.refhigh = 0.7;

%% Property measurement general parameters
MODEL.property_measurement_Ts = 1; % [s] Should match transmitter rate. Sample

time of property measurement elements
% MODEL.property_measurement_Ts = MODEL.simsteptime;
MODEL.Extra_n_relay_edges = 4; % Should be 3-4. Count extra before logging values

in the simcycle operator

13

%% Relaysweep
MODEL.eps = 0;
MODEL.relay_Tdelay_enabled = 0; % use this to disconnect the transport delay
MODEL.relay_Tdelay = MODEL.simsteptime; % must always be > than 0, else loading

states won't work because the block changes behavior when switching from 0 to ~0
MODEL.relaysweep = 0;

%% Sinesweep
MODEL.sinesweep_enabled = 0; % [bool] default 0/false
MODEL.sinesweep_amplitude = 0.1; % [m]
MODEL.sinesweep_frequency = 0.064; % [Hz]
if USERPARAM.system == 1; MODEL.sine_phase = pi;
else MODEL.sine_phase = 0;
end

%% Filter on physical side, for sinesweep
Fs = 1/MODEL.simsteptime;
Ws = MODEL.sinesweep_frequency / (Fs/2);
[MODEL.sinesweep.num,MODEL.sinesweep.den] = createLowPass(Ws,0.2);
% fvtool(MODEL.sinesweep.num,MODEL.sinesweep.den)
clear('Fs','Ws')

%% fictional system
K = 1.2;
w0 = 1/50;
zhetta = 0.6;
MODEL.fiction_timedelay = 3;
MODEL.fiction_num = K*w0^2;
MODEL.fiction_den = [1 2*zhetta*w0 w0^2];

%% World
MODEL.g = 9.81;%gravitational constant

%% Control performance
MODEL.performance_integratefrom = MODEL.refsteptime;

%% Stationarity
MODEL.stationarity_startevalat = MODEL.refsteptime;

% MODEL.stationary_absdedt_threshold = 0.015; % (e2-e1)/(t2-t1) < tresh
% MODEL.stationary_abse_threshold = 0.02; % [m]
MODEL.stationary_absdedt_threshold = 0.2*10^-3;
MODEL.stationary_abse_threshold = 0.002;

MODEL.moving_average_length = 50;%[s] This average is downsampled by 1/Ts

%% Period prefilter
MODEL.perprefilt_smallestontime = 2; % [s] Smallest amount of time the relay must

output high for output to be caused by true zero crossing and not noise. For

equal on/off time this value equals T/2 or 2*F

%% Automaticly find T from relay
MODEL.T_n_relay_edges = 4; %Was 10, which took a lot of time for low frequencies.
MODEL.T_std_tresh_pct = 20;%[%]

14

%% Find Gain
%filter with passband located at frequency from relay

% Chebyshev filters
% nfilters = 100;
% Fs = 1/MODEL.property_measurement_Ts; % Sample frequence
% bwoverlap = 0.5; % Bandwidth overlapping between target frequencies
% [MODEL.filter_ws,MODEL.numerators,MODEL.denominators] = createBandpassFil-

ters2(nfilters,bwoverlap,Fs); % ,'plot'
MODEL.filter_ws = 0;
MODEL.numerators = 0;
MODEL.denominators = 0;
% clear('nfilters','Fs','bwoverlap')

%Gain
MODEL.gainfilter_sampletime = MODEL.simsteptime;

%Gain2
MODEL.A_n_relay_edges = MODEL.T_n_relay_edges;
MODEL.A_std_tresh_pct = 30; %[%]

%% Simcycle operator
MODEL.simcycle_minswitchT = 30;%[s] cannot step more often than this

%% Summary
statusdisp(['T std treshold : ',num2str(MODEL.T_std_tresh_pct),', A std treshold

: ',num2str(MODEL.A_std_tresh_pct)],2)
statusdisp(['T average over : ',num2str(MODEL.T_n_relay_edges),', A average over

: ',num2str(MODEL.A_n_relay_edges)],2)
if MODEL.sinesweep_enabled, statusdisp('Sinesweep is forced on, default is off

for automatic',2); end
statusdisp('initialized ''other'' parameters',1);

1.4.6 “init_transmitter.m”

%% Measurement
%--
MODEL.transmitter_disconnected = 0; % Level measured is the exact real level
MODEL.transmitter_filter_enabled = 0; % Enable filter in measurement equipment or

not
%---

f_m = 5; % [Hz] Measure equipment bandwidth
MODEL.transmitter_bias = 0; % [m] b
MODEL.transmitter_skew = 1; % [] a, 1 = zero skew, y = ax + b
MODEL.transmitter_Tm = 1/f_m; % Corresponding time constant of 1st order filter
MODEL.transmitter_range_low = 0; % [m]
MODEL.transmitter_range_high = 1; % [m]
MODEL.transmitter_signal_low = 4; % [mA]
MODEL.transmitter_signal_high = 20; % [mA]
MODEL.transmitter_resolution = 16; % [bits]

15

MODEL.transmitter_quant_interval = (MODEL.transmitter_range_high-

MODEL.transmitter_range_low)/(2^MODEL.transmitter_resolution);
MODEL.transmitter_IO_rate = 1; % [hz], frequency of IO update
clear('f_m')

if ~MODEL.transmitter_disconnected
 MODEL.meter_to_mA = (MODEL.transmitter_signal_high-

MODEL.transmitter_signal_low)/...
 (MODEL.transmitter_range_high-MODEL.transmitter_range_low); % adjustment

according to transmitter
else meter_to_mA = 1;
end
MODEL.mA_to_meter = 1 / MODEL.meter_to_mA;

%% Summary
if MODEL.transmitter_disconnected, statusdisp('Measurement equipment is discon-

nected',2);
else
 statusdisp('Measurement equipment is connected',2);
 if MODEL.transmitter_filter_enabled, statusdisp('Transmitter filter is ena-

bled',2);
 else statusdisp('Transmitter filter is not enabled',2);
 end
 statusdisp('initialized level transmitter',1);
end

1.4.7 “init_valve_complete.m”

%% Complete with choudhury's:
% Comments:
% Unable to respond for relay test (instant steps) if 'valve_T'=0 due to
% stiction model. Set it low rather than 0 for instant valve response.

MODEL.lv20024_Kv=565;

MODEL.valve_IO_rate = 1; % [s], frequency of IO update

MODEL.valve_diaphragmleak = 0; % [%] of lost force
MODEL.valve_T = 10; % Cannot be 0 (Unknown why...), must be very small instead

(for ideal valve!)

MODEL.valve_uppersaturation=100;
MODEL.valve_lowersaturation=0;
MODEL.valve_internleak=0;

%valve characteristics
R=20;%[20-50]
x=0:0.01:1;
%equal percentage flow characteristic
MODEL.valve_characteristiclookup=(R.^(x-1)-R^-1) * (1/(1-R^-1))*100; % 0-100%
%plot(x,MODEL.valve_characteristiclookup);
clear('R','x')

16

%controlsignal convertion
MODEL.controlsignal_low = 0;
MODEL.controlsignal_high = 1;
MODEL.controloutput_to_percentage_lookup = 0:100;%control output 0-1->0-100%

MODEL.valve_S = 0;% [%] stickband
MODEL.valve_J = 0;% [%] slipjump

%%
statusdisp('initialized oil fluid valve');

1.5 Script components

1.5.1 “component_create_testmatrix.m”

% pre
pcm_index.transmitter_Tm = 1;
pcm_index.transmitter_bias = 2;
pcm_index.transmitter_skew = 3;
pcm_index.oper_oilflow_in = 4;
pcm_index.oper_cd2001_P = 5;
pcm_index.oper_cd2002_P = 6;
pcm_index.valve_diaphragmleak = 7;
pcm_index.valve_internleak = 8;
pcm_index.valve_uppersaturation = 9;
pcm_index.valve_lowersaturation = 10;
pcm_index.valve_T = 11;
pcm_index.valve_S = 12;
pcm_index.valve_J = 13;
parameter_configuration_matrix = zeros(1,13);
simulation_order_index = 1;
% generate test matrix
for prep_transmitter_Tm = DATA.transmitter.Tm
 for prep_transmitter_bias = DATA.transmitter.bias
 for prep_transmitter_skew = DATA.transmitter.skew
 % operational
 for prep_oper_oilflow_in = DATA.oper.oilflow_in
 for prep_oper_cd2001_P = DATA.oper.cd2001_P
 for prep_oper_cd2002_P = DATA.oper.cd2002_P
 % valve
 for prep_valve_diaphragmleak = DATA.valve.diaphragmleak
 for prep_valve_internleak = DATA.valve.internleak
 for prep_valve_uppersaturation = DA-

TA.valve.uppersaturation
 for prep_valve_lowersaturation = DA-

TA.valve.lowersaturation
 for prep_valve_T = DATA.valve.T
 for prep_valve_J = DATA.valve.J
 for prep_valve_S = DATA.valve.S
 % special case; J
 % cannot be higher than
 % S due to double relay
 % behavior.

17

 if ...
 prep_valve_J <=

prep_valve_S &&...
 prep_oper_cd2002_P <

prep_oper_cd2001_P
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.transmitter_Tm) =

prep_transmitter_Tm;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.transmitter_bias) =

prep_transmitter_bias;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.transmitter_skew) =

prep_transmitter_skew;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.oper_oilflow_in) =

prep_oper_oilflow_in;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.oper_cd2001_P) =

prep_oper_cd2001_P;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.oper_cd2002_P) =

prep_oper_cd2002_P;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_diaphragmleak) =

prep_valve_diaphragmleak;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_internleak) =

prep_valve_internleak;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_uppersaturation)

= prep_valve_uppersaturation;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_lowersaturation)

= prep_valve_lowersaturation;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_T) =

prep_valve_T;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_S) =

prep_valve_S;
 parame-

ter_configuration_matrix(simulation_order_index,pcm_index.valve_J) =

prep_valve_J;
 simulation_order_index =

simulation_order_index + 1;
 end % end special case
 end % valve S
 end % valve J
 end % valve T
 end % valve lower saturation
 end % valve upper saturation
 end % valve internal leak
 end % valve diaphragm leak
 end % CD2002 pressure
 end % CD2001 pressure
 end % oilflow in

18

 end % transmitter skew
 end % transmitter bias
end % transmitter Tm

1.5.2 “component_simloops2.m”

%% 'save' ID setup
default_simulation_ID = createSimID(USERPARAM.mdl); % create a default simula-

tion ID which should be satisfactory to distinguish between sessions
valid = 0;
string = 'Create an ID (name) for the simulation:';
while ~valid
 dlganswer = inputdlg({string},'ID dialogue',1,{default_simulation_ID}); %

prompt user
 if isempty(dlganswer), return
 elseif ~(exist(['Simulation results/',dlganswer{1}],'dir') == 7)
 TEMP.simulation_ID = dlganswer{1}; % assign user input
 valid = 1;
 else string = 'ID (name) already in use. Please choose another:';
 end
end
clear('string','valid','dlganswer','default_simulation_ID');

%% Initalizations
TEMP.segmentnum = 1; % init
TEMP.last_save_tic = tic; % init
TEMP.simOut = 0;

TEMP.error_count = 0; % init
TEMP.last_param_loop_duration = nan; % init
TEMP.last_sinesweep_loop_duration = nan; % init
TEMP.time_of_start = tic; % init
results_container = {}; % init
CURRENT_CONFIGURATION_IDX = 0; % init
TEMP.not_saved_count = 0;

if USERPARAM.START_AT_IDX == 1
 TEMP.zero_fault_run = 1; % init, first run with zero faults. Assuming

that the first simulation will be with default settings
else TEMP.zero_fault_run = 0;
end
% create configuration matrix
component_create_testmatrix;

%% Status
total_configurations_count =

length(DATA.oper.reference)*size(parameter_configuration_matrix,1);
% Create progress bar / update info
if exist('TEMP.progressbar_handle','var')
 if ishandle(TEMP.progressbar_handle)
 waitbar(0,TEMP.progressbar_handle,'...');
 else TEMP.progressbar_handle = waitbar(0,'...');
 end
else TEMP.progressbar_handle = waitbar(0,'...');

19

end

statusdisp('> > > Simulation started < < <',1);
statusdisp([' Will process for ',num2str(total_configurations_count),' config-

uration(s)'],2);

%% Loops
% reference / operating points loop
% Note: depth of loop decides priority
current_ref_conf_idx = 0;
for prep_refhigh = DATA.oper.reference
 % reset configuration matrix pointer
 CURRENT_CONFIGURATION_IDX = USERPARAM.START_AT_IDX;
 current_ref_conf_idx = current_ref_conf_idx + 1;
 MODEL.refhigh = prep_refhigh;
 if ~USERPARAM.prevent_load_states
 set_param(USERPARAM.mdl, 'LoadInitialState', 'off'); % prevents loading

at first run
 MODEL.stop_at_OP = 1; % this will notify simulation to stop once operat-

ing point has been reached

 %save simulation state
 TEMP.op_state = [USERPARAM.mdl '_SimState']; % name of stationary state

data holder
 set_param(USERPARAM.mdl, 'SaveFinalState', 'on', 'FinalStat-

eName',TEMP.op_state,'SaveCompleteFinalSimState', 'on');

 if ishandle(TEMP.progressbar_handle)
 wait-

bar((CURRENT_CONFIGURATION_IDX*current_ref_conf_idx)/total_configurations_count,T

EMP.progressbar_handle,'Simulating to stationary response..')
 end

 TEMP.successful_completion = 0;
 try
 TEMP.simOut = sim(USERPARAM.mdl); % starts simulation
 TEMP.successful_completion = 1;
 catch err,
 TEMP.error_count = inf;
 statusdisp('Failed to reach stability and terminated..',0);
 end

 if TEMP.successful_completion == 1
 % check cause of termination
 [TEMP.checkstate,str] = checkTerminationCause(si-

mout_stopcause_OP,simout_stopcause_simcycle,...
 si-

mout_stopcause_sinesweep,simout_stopcause_drumcapacity,simout_stopcause_instabili

ty,simout_stopcause_timeoutnochange,TEMP.simOut, MODEL.simstoptime);
 statusdisp(str,2), clear str

 set_param(USERPARAM.mdl, 'SaveFinalState', 'off'); % prevent over-

writing
 if ishandle(TEMP.progressbar_handle)

20

 wait-

bar((CURRENT_CONFIGURATION_IDX*current_ref_conf_idx)/total_configurations_count,T

EMP.progressbar_handle,['Currently processing from stationary.. Last loop

time:',num2str(TEMP.last_param_loop_duration),'s'])
 end
 end
 else statusdisp('Simulating response (Skipping load of states)',2)
 end
 if TEMP.successful_completion
 while CURRENT_CONFIGURATION_IDX <=

size(parameter_configuration_matrix,1)...
 && TEMP.error_count < USERPARAM.ERROR_LIMIT
 % Simulations preparation sets parameters after loading stationary

states
 TEMP.successful_completion = 0;
 %% Set params
 if ~USERPARAM.prevent_load_states
 set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'Initial-

State', TEMP.op_state); % load operating point
 end
 component_simloops_setparams2; % subscript for setting prep parame-

ters after state has been loaded
 MODEL.sinesweep_enabled = 0;
 MODEL.stop_at_OP = 0;

 %% Simulation resumes (default) / starts (if load is inhibited)
 try
 statusdisp(['Simulating from stationarity

[',num2str(CURRENT_CONFIGURATION_IDX),'/',num2str(total_configurations_count),']'

],2)
 TEMP.time_of_loop_start = tic;
 TEMP.simOut = sim(USERPARAM.mdl); % start simulation
 TEMP.last_param_loop_duration =

round(toc(TEMP.time_of_loop_start));
 str = calcVirtualTimeToRealTimeFactor(

TEMP.simOut,TEMP.last_param_loop_duration);
 statusdisp(str,2);
 clear('str')
 TEMP.successful_completion = 1;
 catch err
 statusdisp('Error occured during inner loop simulation..',0);
 TEMP.error_count = TEMP.error_count + 1;
 end
 % check cause of termination
 [TEMP.checkstate,str] = checkTerminationCause(si-

mout_stopcause_OP,simout_stopcause_simcycle,...
 si-

mout_stopcause_sinesweep,simout_stopcause_drumcapacity,simout_stopcause_instabili

ty,simout_stopcause_timeoutnochange,TEMP.simOut, MODEL.simstoptime);
 statusdisp(str,2)

 %% Store results
 rundata = struct;
 rundata.stopcause = str; clear str
 if TEMP.successful_completion
 rundata.successful = 1;

21

 else
 rundata.successful = 0;
 rundata.error = err;
 end
 TEMP.time = round(clock);
 rundata.timestamp = TEMP.time(4:6);

 %-------------------
 % parameters
 rundata.parameters.refhigh = MODEL.refhigh;
 rundata.parameters.oilflow_in = MODEL.oilflow_in;
 rundata.parameters.cd2001_P = MODEL.cd2001_P;
 rundata.parameters.cd2002_P = MODEL.cd2002_P;

 % valve
 rundata.parameters.valve_diaphragmleak = MODEL.valve_diaphragmleak;
 rundata.parameters.valve_internleak = MODEL.valve_internleak;
 rundata.parameters.valve_uppersaturation = MOD-

EL.valve_uppersaturation;
 rundata.parameters.valve_lowersaturation = MOD-

EL.valve_lowersaturation;
 rundata.parameters.valve_T = MODEL.valve_T;
 rundata.parameters.valve_S = MODEL.valve_S;
 rundata.parameters.valve_J = MODEL.valve_J;
 % transmitter
 rundata.parameters.transmitter_filter_enabled = MOD-

EL.transmitter_filter_enabled;
 rundata.parameters.transmitter_bias = MODEL.transmitter_bias;
 rundata.parameters.transmitter_skew = MODEL.transmitter_skew;
 rundata.parameters.transmitter_Tm = MODEL.transmitter_Tm;

 %-------------------
 if TEMP.successful_completion
 % store signals
 rundata.results.signal.e = simout_vector_e;
 rundata.results.signal.ym = simout_vector_lowrate_ym;
 rundata.results.signal.c = simout_vector_lowrate_c;
 rundata.results.signal.ref = simout_vector_lowrate_ref;
 if TEMP.checkstate == 6 % unstable
 rundata.stability = 0;
 rundata.timeout = 0;
 elseif TEMP.checkstate == 7 % timeout
 rundata.stability = 1;
 rundata.timeout = 1;
 else
 rundata.stability = 1;
 rundata.timeout = 0;

 % results
 A_m = simout_property_A_m.Data(end);
 phi_m = simout_property_phi_m.Data(end);
 wc = simout_property_wc.Data(end);
 w180 = simout_property_w180.Data(end);
 rundata.results.A_m = A_m;
 rundata.results.phi_m = phi_m;
 rundata.results.wc = wc;

22

 rundata.results.w180 = w180;
 if TEMP.zero_fault_run % first run with process at commis-

sioning state
 TEMP.wc_comm = wc;
 TEMP.w180_comm = w180;
 TEMP.wc_eps = simout_property_epswc.Data;
 statusdisp(['Commissioning w180 : ',num2str(w180)],3)
 statusdisp(['Commissioning wc : ',num2str(wc)],3)
 statusdisp(['Commissioning A_m : ',num2str(A_m)],3)
 statusdisp(['Commissioning phi_m : ',num2str(phi_m)],3)
 rundata.results.commissioning_state = 1;
 else rundata.results.commissioning_state = 0;
 end
 rundata.results.wc_commissioning = TEMP.wc_comm;
 rundata.results.w180_commissioning = TEMP.w180_comm;

 %% Footprint
 % sinesweep
 if USERPARAM.include_sinesweep && TEMP.error_count <

USERPARAM.ERROR_LIMIT
 DATA.sinesweep.testvector = createSweepVec-

tor(TEMP.wc_comm,DATA.sinesweep.wcfactor,...
 TEMP.w180_comm, DATA.sinesweep.w180factor, DA-

TA.sinesweep.resolution,wc,w180);
 component_simloops_sinesweep; % enter subscript
 if TEMP.sinesweepsuccessful
 rundata.sinesweep.postestimation =

TEMP.postestimation;
 rundata.sinesweep.testfrequencies = DA-

TA.sinesweep.testvector;
 rundata.sinesweep.source_amplitude = DA-

TA.sinesweep.amplitude;
 rundata.sinesweep.signal = TEMP.signal;
 end
 end
 % relaysweep
 if USERPARAM.include_relaysweep && TEMP.error_count <

USERPARAM.ERROR_LIMIT
 statusdisp('Mapping frequency response (Relaysweep)',2)
 % Estimate process gain by
 % adjusting relay hysteresis
 component_hysteresis_relaysweep;
 rundata.relaysweep.gain_process_vec = gain_process_vec;
 rundata.relaysweep.w_hyst_vec_hz = w_hyst_vec_hz;
 rundata.relaysweep.hystsignals = hystsignals;
 % Estimate process phase by adjusting
 % time delay
 if USERPARAM.include_transportdelaysweep
 component_transportdelay_relaysweep;
 rundata.relaysweep.pha_process_vec = pha_process_vec;
 rundata.relaysweep.w_delay_vec_hz = w_delay_vec_hz;
 rundata.relaysweep.delaysignals = delaysignals;
 end
 MODEL.relaysweep = 0;
 end

23

clear('simout_A_m','simout_phi_m','simout_wc','simout_w180','A_m','phi_m','wc','w

180');
 end
 end
 TEMP.zero_fault_run = 0;

 %% End of cycle
 if TEMP.successful_completion
 TEMP.not_saved_count = TEMP.not_saved_count + 1;
 end
 results_container{length(results_container)+1,1} = rundata;
 clear('rundata')
 if 60 * USERPARAM.perform_save_frequency <

toc(TEMP.last_save_tic)...
 && 0 < TEMP.not_saved_count
 TEMP.perform_save = true;
 else TEMP.perform_save = false;
 end
 if TEMP.perform_save && USERPARAM.save_results
 component_save;
 end
 statusdisp(['Completed simulation step,

loop:',num2str(CURRENT_CONFIGURATION_IDX+1)],2)

 % count the loop
 CURRENT_CONFIGURATION_IDX = CURRENT_CONFIGURATION_IDX + 1;
 if ishandle(TEMP.progressbar_handle)
 wait-

bar((CURRENT_CONFIGURATION_IDX*current_ref_conf_idx)/total_configurations_count,T

EMP.progressbar_handle,['Currently processing from stationary.. Last loop

time:',num2str(TEMP.last_param_loop_duration),'s'])
 end
 end
 end % WHILE configurations
end % reference
clear('prep_refhigh','prep_valve_diaphragmleak','prep_valve_internleak','prep_val

ve_uppersaturation',...

'prep_valve_lowersaturation','prep_valve_T','prep_valve_S','prep_valve_J','prep_s

inesweep_frequency')

%% Completed
statusdisp('> > > Completed all simulations < < <',1);
if 0 < TEMP.not_saved_count && USERPARAM.save_results
 component_save;
end
clear('results_container')

TEMP.total_duration = toc(TEMP.time_of_start);
waitbar(1,TEMP.progressbar_handle,['Processing completed after

',num2str(round(TEMP.total_duration)),'sec!'])

1.5.3 “component_simloops_setparams2.m”

24

% reset states
MODEL.eps = 0; % default
MODEL.relay_Tdelay_enabled = 0; % default

% operational states
MODEL.refhigh = prep_refhigh;
MODEL.oilflow_in = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.oper_oilflow_in);
MODEL.cd2001_P = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.oper_cd2001_P);
MODEL.cd2002_P = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.oper_cd2002_P);

% valve properties
MODEL.valve_diaphragmleak = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_diaphragmleak)

;
MODEL.valve_internleak = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_internleak);
MODEL.valve_uppersaturation = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_uppersaturatio

n);
MODEL.valve_lowersaturation = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_lowersaturatio

n);
MODEL.valve_T = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_T);
MODEL.valve_S = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_S);
MODEL.valve_J = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.valve_J);

% transmitter properties
if 0 < parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_Tm)
 MODEL.transmitter_filter_enabled = 1;
 MODEL.transmitter_Tm = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_Tm);
else
 MODEL.transmitter_filter_enabled = 0;
 MODEL.transmitter_Tm = 0.2; %must be ~0, else model changes and 'state'

can't be loaded
end
MODEL.transmitter_bias = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_bias);
MODEL.transmitter_skew = parame-

ter_configuration_matrix(CURRENT_CONFIGURATION_IDX,pcm_index.transmitter_skew);

1.5.4 “component_hysteresis_relaysweep.m”

M = MODEL.relay_d_fixed;

hyst_reso = 16;
A_out_vec = nan(hyst_reso,1);

25

T_out_vec = nan(hyst_reso,1);
hystvec = linspace(0,TEMP.wc_eps,hyst_reso);
hystsignals = cell(16,1);
for i = 1:hyst_reso
 set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'InitialState',

TEMP.op_state);
 component_simloops_setparams2;
 MODEL.sinesweep_enabled = 0;
 MODEL.stop_at_OP = 0;
 MODEL.relaysweep = 1;
 MODEL.relay_Tdelay_enabled = 0;

 MODEL.eps = hystvec(i);
 statusdisp(['Relaysweep (hysteresis)

[',num2str(i),'/',num2str(hyst_reso),']'],2);
 sim(USERPARAM.mdl)
 A_out_vec(i) = simout_property_A.Data;
 T_out_vec(i) = simout_property_T.Data;

 signal = struct;
 signal.c = simout_vector_lowrate_c;
 signal.ym = simout_vector_lowrate_ym;
 hystsignals(i) = {signal};
end
w_hyst_vec_hz = 1./flipdim(T_out_vec,1);
w_hyst_vec_rad = w_hyst_vec_hz*2*pi;
a_hyst_vec = flipdim(A_out_vec,1);
gain_hyst_vec_dB = 20*log10(a_hyst_vec/(4*M/pi));
hystsignals = flipdim(hystsignals,1);

[g_r,~] = bode(TEMP.R,w_hyst_vec_rad);
gain_reg_vec_dB = 20*log10(squeeze(g_r(1,1,:)));
gain_process_vec = gain_hyst_vec_dB - gain_reg_vec_dB;

1.5.5 “component_sinesweep.m”

sw_vec_length = length(DATA.sinesweep.testvector);
% create empty containers
TEMP.postestimation.gain_vector = nan(sw_vec_length,1);
TEMP.postestimation.phase_vector = nan(sw_vec_length,1);
% output signals
TEMP.signal.e = cell(sw_vec_length,1);
TEMP.signal.highrate_y = cell(sw_vec_length,1);
TEMP.signal.lowrate_ym = cell(sw_vec_length,1);
TEMP.signal.highrate_ref = cell(sw_vec_length,1);
TEMP.signal.lowrate_ref = cell(sw_vec_length,1);
TEMP.signal.lowrate_c = cell(sw_vec_length,1);
%
TEMP.sinesweep_idx = 1;
for prep_sinesweep_frequency = DATA.sinesweep.testvector
 if TEMP.error_count < USERPARAM.ERROR_LIMIT
 if ~USERPARAM.prevent_load_states, set_param(USERPARAM.mdl, 'LoadInitial-

State', 'on', 'InitialState', TEMP.op_state); end
 % set sinesweep parameters

26

 component_simloops_setparams;
 MODEL.sinesweep_frequency = prep_sinesweep_frequency;
 MODEL.sinesweep_enabled = 1;
 MODEL.stop_at_OP = 0;
 % update progress bar
 if ishandle(TEMP.progressbar_handle)
 wait-

bar(TEMP.loopcount/TEMP.total_loop_count,TEMP.progressbar_handle,['Sinesweep

[',...
 num2str(TEMP.sinesweep_idx),'/',num2str(sw_vec_length),...
 '].. Last loop

time:',num2str(TEMP.last_sinesweep_loop_duration),'s'])
 end
 try
 TEMP.sinesweepsuccessful = false;
 % start simulation
 TEMP.time_sinesweep_loop = tic;
 TEMP.simOut = sim(USERPARAM.mdl); % start simulation
 % save signals
 TEMP.signal.e(TEMP.sinesweep_idx) = {simout_vector_e}; % unnecessary
 TEMP.signal.highrate_y(TEMP.sinesweep_idx) = {si-

mout_vector_highrate_y}; % unnecessary
 TEMP.signal.highrate_ref(TEMP.sinesweep_idx) = {si-

mout_vector_highrate_ref}; % unnecessary
 TEMP.signal.lowrate_ym(TEMP.sinesweep_idx) = {si-

mout_vector_lowrate_ym};
 TEMP.signal.lowrate_ref(TEMP.sinesweep_idx) = {si-

mout_vector_lowrate_ref};
 TEMP.signal.lowrate_c(TEMP.sinesweep_idx) = {si-

mout_vector_lowrate_c};
 % save phase and amplitude
 x = TEMP.signal.lowrate_c{TEMP.sinesweep_idx}.Data;
 y = TEMP.signal.lowrate_ym{TEMP.sinesweep_idx}.Data;
 [TEMP.gain,TEMP.phas_rad] = post_fft_estAmpPha(x,y);
 TEMP.phas_deg = TEMP.phas_rad*180/pi;
 if 0<TEMP.phas_deg, TEMP.phas_deg=TEMP.phas_deg-360; end
 TEMP.postestimation.gain_vector(TEMP.sinesweep_idx) = TEMP.gain;
 TEMP.postestimation.phase_vector(TEMP.sinesweep_idx) = TEMP.phas_deg;
 % cause of termination
 [TEMP.checkstate,str] = checkTerminationCause(si-

mout_stopcause_OP,simout_stopcause_simcycle,...
 si-

mout_stopcause_sinesweep,simout_stopcause_drumcapacity,simout_stopcause_instabili

ty,simout_stopcause_timeoutnochange,TEMP.simOut, MODEL.simstoptime);
 statusdisp([str,'[',num2str(TEMP.sinesweep_idx),']'],2), clear str
 % mark successful sinesweep (could check termination cause and
 % check correct termination state)
 TEMP.sinesweepsuccessful = true;
 TEMP.last_sinesweep_loop_duration =

round(toc(TEMP.time_sinesweep_loop));
 catch err
 statusdisp('Error occured during sinesweep simulation..',0);
 TEMP.error_count = TEMP.error_count + 1;
 end
 end
 TEMP.sinesweep_idx = TEMP.sinesweep_idx + 1; % update index
end

27

MODEL.sinesweep_enabled = 0; % back to default

1.5.6 “component_save.m”

% pre/create sub directory
if ~(exist(['Simulation results/',TEMP.simulation_ID],'dir')==7),

mkdir('Simulation results',TEMP.simulation_ID); end
TEMP.savefilename = ['Simulation Results\',TEMP.simulation_ID,'\results-

segment#',num2str(TEMP.segmentnum)];
% save results
save(TEMP.savefilename,'results_container');
% backup workspace(overwrite last)
save(['Simulation restore files\backup_',TEMP.simulation_ID])
% post/summary
results_container = {};
TEMP.last_save_tic = tic;
statusdisp(['Performed save operation. Saved results as : ',TEMP.savefilename],1)
TEMP.segmentnum = TEMP.segmentnum + 1;
TEMP.not_saved_count = 0;

1.5.7 “component_transportdelay_relaysweep.m”

relaysweep = 1;
lastloggedfreq = inf;

targetresolution = 16;
A_out_vec = nan(targetresolution,1); % allocation of memory
T_out_vec = nan(targetresolution,1);
T_delay_vec = nan(targetresolution,1);
delaysignals = cell(16,1);
i = 1;
MODEL.relay_Tdelay = MODEL.property_measurement_Ts;

multTdelay = 0.1; % This should be dynamicly found (different from each process

and configuration)
if TEMP.zero_fault_run
 while TEMP.wc_comm < lastloggedfreq
 set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'InitialState',

TEMP.op_state);
 component_simloops_setparams;
 MODEL.sinesweep_enabled = 0;
 MODEL.stop_at_OP = 0;
 MODEL.relaysweep = 1;
 MODEL.eps = 0;
 MODEL.relay_Tdelay_enabled = 1;

 MODEL.relay_Tdelay = MODEL.relay_Tdelay + (i-1)*multTdelay;
 statusdisp(['Relaysweep (timedelay)

[',num2str(i),'][',num2str(wc),'(wc)<',num2str(lastloggedfreq),'][',num2str(MODEL

.relay_Tdelay),']'],2);
 T_delay_vec(i) = MODEL.relay_Tdelay;

28

 sim(USERPARAM.mdl)
 A_out_vec(i) = simout_property_A.Data;
 T_out_vec(i) = simout_property_T.Data;
 lastloggedfreq = 1/T_out_vec(i);
 i = i+1;

 signal = struct;
 signal.c = simout_vector_lowrate_c;
 signal.c1 = simout_vector_lowrate_c1;
 signal.ym = simout_vector_lowrate_ym;
 delaysignals(i) = {signal};
 end
 TEMP.T_delay_vec = T_delay_vec;
else
 for i = 1:length(TEMP.T_delay_vec)
 set_param(USERPARAM.mdl, 'LoadInitialState', 'on', 'InitialState',

TEMP.op_state);
 component_simloops_setparams;
 MODEL.sinesweep_enabled = 0;
 MODEL.stop_at_OP = 0;
 MODEL.relaysweep = 1;
 MODEL.eps = 0;
 MODEL.relay_Tdelay_enabled = 1;

 MODEL.relay_Tdelay = TEMP.T_delay_vec(i);
 statusdisp(['Relaysweep (timedelay)

[',num2str(i),'][',num2str(wc),'(wc)<',num2str(lastloggedfreq),'][',num2str(MODEL

.relay_Tdelay),']'],2);
 T_delay_vec(i) = MODEL.relay_Tdelay;
 sim(USERPARAM.mdl)
 A_out_vec(i) = simout_property_A.Data;
 T_out_vec(i) = simout_property_T.Data;
 lastloggedfreq = 1/T_out_vec(i);

 signal = struct;
 signal.c = simout_vector_lowrate_c;
 signal.c1 = simout_vector_lowrate_c1;
 signal.ym = simout_vector_lowrate_ym;
 delaysignals(i) = {signal};
 end
end
delaysignals = flipdim(delaysignals,1);

w_delay_vec_hz = 1./flipdim(T_out_vec(~isnan(T_out_vec)),1);
w_delay_vec_rad = w_delay_vec_hz*2*pi;
a_delay_vec = flipdim(A_out_vec(~isnan(A_out_vec)),1);
pha_delay_vec = -flipdim(T_delay_vec(~isnan(T_delay_vec)),1).*w_delay_vec_hz*360;

[~,p_r] = bode(TEMP.R,w_delay_vec_rad);
pha_reg_vec = squeeze(p_r(1,1,:));
pha_process_vec = -180 - pha_reg_vec - pha_delay_vec;

29

1.6 Program functions

1.6.1 “post_fft_estAmpPha.m”

function [amplitude_ratio, phase_lag] = post_fft_estAmpPha(x,y)
x = x - mean(x);
y = y - mean(y);
% FFTs
X=fft(x);
Y=fft(y);
% location
[mag_x,idx_x] = max(abs(X));
[mag_y,idx_y] = max(abs(Y));
%
px = angle(X(idx_x));
py = angle(Y(idx_y));
phase_lag = py - px;
%
amplitude_ratio = mag_y/mag_x;

1.6.2 “checkTerminationCause.m”

function [checkstate,str] = checkTerminationCause(...
 simout_stopcause_OP,simout_stopcause_simcycle,...
 simout_stopcause_sinesweep,simout_stopcause_drumcapacity,...
 simout_stopcause_instability,simout_stopcause_timeoutnochange,simOut, sim-

stoptime)

%CHECKTERMINATIONCAUSE Summary of this function goes here
% checkstate can be used to create specific handlers for events by
% outside program

descript_str = '<Stopcause>: ';
if simOut(end) == simstoptime
 checkstate = 1;
 cause_str = 'Simulation timed out.';
elseif simout_stopcause_simcycle.Data
 checkstate = 2;
 cause_str = 'Simulation stopped by completion of simcycle.';
elseif simout_stopcause_sinesweep.Data
 checkstate = 3;
 cause_str = 'Simulation stopped by completion of sinesweep.';
elseif simout_stopcause_drumcapacity.Data
 checkstate = 4;
 cause_str = 'Simulation stopped because separator reached capacity limit.';
elseif simout_stopcause_OP.Data
 checkstate = 5;
 cause_str = 'Simulation stopped by reaching operating point.';
elseif simout_stopcause_instability.Data
 checkstate = 6;
 cause_str = 'Simulation stopped due to asymptotic instability.';
elseif simout_stopcause_timeoutnochange.Data
 checkstate = 7;

30

 cause_str = 'Simulation stopped due to timeout (output did not change)';
else
 checkstate = 0;
 cause_str = 'Unknown error. Should be considered by user.';
end
str = [descript_str,cause_str];
end

1.6.3 “createSimID.m”

function [string_out] = createSimID(mdl)
%CREATESIMID Summary of this function goes here
% Detailed explanation goes here

time = round(clock);
bsymb = '+'; % break symbol
msymb = '@'; % model symbol
dsymb = '-'; % date symbol
tsymb = '-'; % time symbol
datestring = [num2str(time(3)),dsymb,num2str(time(2)),dsymb,num2str(time(1))];
timestring = [num2str(time(4)),tsymb,num2str(time(5)),tsymb,num2str(time(6))];
string_out = ['Sim',msymb,mdl,bsymb,datestring,bsymb,timestring];
end

1.6.4 “post_find_P.m”

function [P_K,P_phase] = post_find_P(R,f,in_x,in_y)
f_rad = 2*pi*f;
%
excerptsize = 70; % uses last 70[%] of datasamples (needs time to settle at

first)
fac = (100-excerptsize)/100;
idx1 = max([1,fac*length(in_x)]);
idx2 = length(in_x);
elements = round(idx1:idx2);
x = in_x(elements);
y = in_y(elements);
% figure,plot(x),hold on,plot(y,'r'),hold off
%
[yx_gain,pha_rad] = post_fft_estAmpPha(x,y);
s2 = yx_gain*exp(1i*pha_rad);
%
[mag_R,pha_deg_R,~] = bode(R,f_rad); % gain and phase of R
R_jw = mag_R*exp(1i*pha_deg_R*pi/180);
%
abs_R_jw = abs(R_jw);
% abs_R_jw_dB = 20*log10(abs_R_jw);
%

31

% yx_gain = rt_amp; % test
P_K = abs(yx_gain) / abs((1-yx_gain)*abs_R_jw);
P_phase = angle(s2 / ((1 - s2)*R_jw))*180/pi;
end

1.6.5 “createSweepVector.m”

function [sweepvector] = createSweepVector(

wc_comm,wcfac,w180_comm,w180fac,res,wc,w180)
%CREATESWEEPVECTOR Summary of this function goes here
% Detailed explanation goes here

lin2log = @(x)log(x)./log(10);
lowfreq = wc_comm * wcfac;
highfreq = w180_comm * w180fac;
uselogspace = true; % can use linspace or logspace for vector
if uselogspace, sweepvector = logspace(lin2log(lowfreq),lin2log(highfreq),res-2);
else sweepvector = linspace(lowfreq,highfreq,res-2); %subtracting 2

from res since wc and w180 are also added
end
sweepvector(end+1:end+2) = [wc,w180]; % add wc and w180 freq
sweepvector = sort(unique(sweepvector)); % resort in ascending order

and remove identical entries
statusdisp(['Will sinus sweep with ',num2str(length(sweepvector)),...
 ' frequencies from ',num2str(lowfreq),' to ',num2str(highfreq)],2)
end

1.6.6 “calcVirtualTimeToRealTimeFactor.m”

function [string] = calcVirtualTimeToRealTimeFactor(simOut,looptime)
%CALCVIRTUALTIMETOREALTIMEFACTOR Summary of this function goes here
% Detailed explanation goes here

factor = (simOut(end) - simOut(1)) / looptime;
string = ['Processed in average ',num2str(factor),' virtual seconds per real sec-

ond.'];
end

1.6.7 “postFindPhase.m”

function [phase_out] = postFindPhase(a_est,f,signal,t,addphase)
%POSTFINDPHASE Summary of this function goes here
% Detailed explanation goes here

sign_detrend = detrend(signal);
minphase = 0;
maxphase = -359;
phavec = linspace(minphase,maxphase,360);
minsum = inf;

32

for phase = phavec
 cmpsin = a_est*sin(2*pi*f.*t + (addphase + phase)*pi/180);
 sumdiff = sum((cmpsin - sign_detrend).^2);
 if sumdiff < minsum
 phase_out = phase;
 minsum = sumdiff;
 end
end

if false
 figure
 plot(sign_detrend); title('signal out')
 hold on
 plot(a_est*sin(2*pi*f.*t + (addphase + phase_out)*pi/180),'r'); title('approx

out')
 hold off
end
end

1.7 Analysis functions

1.7.1 “analyzer_displayResultsAsText.m”

function [] = analyzer_displayResultsAsText(varargin)
%READRESULTS_DISPLAYTEXT Summary of this function goes here
% Detailed explanation goes here
% Outputs measured phase and amplitude margin

results_container = [];
idx_list = [];
R = [];
if nargin == 0
 try
 [results_container,idx_list] = loadResults();
 catch e
 return
 end
else
 % input
 while 0 < length(varargin)
 removeentries = 1;
 if isa(varargin{1},'char')
 switch(varargin{1})
 case 'container'
 results_container = varargin{2};
 case 'indexes'
 idx_list = varargin{2};
 case 'controller'
 R = varargin{2};
 otherwise, disp('Unknown field ''',varargin{2},'''')
 end
 if removeentries, varargin(1:2) = []; end
 else
 varargin(1) = [];

33

 warning('Each input should have a descripting string first')
 end
 end
end

dowarn1 = true;
for i=1:length(idx_list)
 idx=idx_list(i);
 disp(['**********Configuration ',num2str(idx),'**********'])
 disp(' Parameters: ')
 disp(results_container{idx}.parameters)
 if results_container{idx}.successful
 % test mechanism
 disp(' Results:')
 disp(results_container{idx}.results)
 % footprint
 if ~isempty(R)
 try
 % wc
 wc = results_container{idx}.relaysweep.w_hyst_vec_hz(1);
 [gain_R_wc,pha_R_wc] = bode(R,wc*2*pi);
 % gain
 gain_P_wc = results_container{idx}.relaysweep.gain_process_vec(1);
 gain_RPM_wc = 10^(gain_P_wc/20) + gain_R_wc;
 % phase
 wc_signals = results_container{idx}.relaysweep.hystsignals{1};
 [~, wc_pha_rad] =

post_fft_estAmpPha(wc_signals.c.Data,wc_signals.ym.Data);
 pha_P_wc = 180/pi*wc_pha_rad;
 if 0<pha_P_wc,pha_P_wc=pha_P_wc-360; end
 pha_RPM_wc = pha_P_wc + pha_R_wc;

 % w180
 w180 = results_container{idx}.relaysweep.w_hyst_vec_hz(end);
 [gain_R_w180,pha_R_w180] = bode(R,w180*2*pi);
 % gain
 gain_P_w180 = re-

sults_container{idx}.relaysweep.gain_process_vec(end);
 gain_RPM_w180 = 10^(gain_P_w180/20) + gain_R_w180;
 % phase
 w180_signals = results_container{idx}.relaysweep.hystsignals{end};
 [~, w180_pha_rad] =

post_fft_estAmpPha(w180_signals.c.Data,w180_signals.ym.Data);
 pha_P_w180 = 180/pi*w180_pha_rad;
 if 0<pha_P_w180,pha_P_w180=pha_P_w180-360; end
 pha_RPM_w180 = pha_P_w180 + pha_R_w180;

 fpresults.gainmargin = abs(gain_RPM_w180-gain_RPM_wc);
 fpresults.phasemargin = abs(pha_RPM_w180-pha_RPM_wc);
 disp(' Results (footprint)')
 disp(fpresults)
 catch err % likely to be missing relay sweep
 end
 elseif dowarn1
 dowarn1 = false;

34

 warning('Could not show results from footprint since the used control

parameter were not given as input')
 end
 else disp(' Incomplete')
 end
 disp(['------------- End ',num2str(idx),' -------------'])
 disp(' ')
 disp(' ')
end
end

1.7.2 “analyzer_lookupResults.m”

function analyzer_lookupResults(varargin)
%LOOKUPRESULTS Summary of this function goes here
% Detailed explanation goes here

% initialize other
results_container = [];
R = [];

% initialize param
refhigh = [];
oilflow_in = [];
cd2001_P = [];
cd2002_P = [];
valve_diaphragmleak = [];
valve_internleak = [];
valve_uppersaturation = [];
valve_lowersaturation = [];
valve_T = [];
valve_S = [];
valve_J = [];
transmitter_filter_enabled = [];
transmitter_bias = [];
transmitter_skew = [];
transmitter_Tm = [];

% input
while 0 < length(varargin)
 removeentries = 1;
 if isa(varargin{1},'char')
 switch(varargin{1})
 case 'container'
 % container
 results_container = varargin{2};
 case 'controller'
 %controller
 R = varargin{2};
 % param
 case 'refhigh'
 refhigh = varargin{2};
 case 'oilflow_in'
 oilflow_in = varargin{2};

35

 case 'cd2001_P'
 cd2001_P = varargin{2};
 case 'cd2002_P'
 cd2002_P = varargin{2};
 case 'valve_diaphragmleak'
 valve_diaphragmleak = varargin{2};
 case 'valve_internleak'
 valve_internleak = varargin{2};
 case 'valve_uppersaturation'
 valve_uppersaturation = varargin{2};
 case 'valve_lowersaturation'
 valve_lowersaturation = varargin{2};
 case 'valve_T'
 valve_T = varargin{2};
 case 'valve_S'
 valve_S = varargin{2};
 case 'valve_J'
 valve_J = varargin{2};
 case 'transmitter_filter_enabled'
 transmitter_filter_enabled = varargin{2};
 case 'transmitter_bias'
 transmitter_bias = varargin{2};
 case 'transmitter_skew'
 transmitter_skew = varargin{2};
 case 'transmitter_Tm'
 transmitter_Tm = varargin{2};
 otherwise, disp('Unknown field ''',varargin{2},'''')
 end
 if removeentries, varargin(1:2) = []; end
 else
 varargin(1) = [];
 warning('Each input should have a descripting string first')
 end
end

% load if not prespecified
if isempty(results_container)
 [results_container,idx_list,~] = loadResults();
end

% lookup routine
dowarn1 = true;
dowarn2 = true;
indexlist = [];

%tmp fix
orig.cd2001_P = cd2001_P;
orig.cd2002_P = cd2002_P;
orig.oilflow_in = oilflow_in;
orig.transmitter_bias = transmitter_bias;
orig.transmitter_skew = transmitter_skew;
orig.transmitter_Tm = transmitter_Tm;
orig.transmitter_filter_enabled = transmitter_filter_enabled;
for idx=idx_list
 param = results_container{idx,1}.parameters;

36

 if idx==290
 disp('')
 end

 % handle bug in old version (some missing fields)
 cd2001_P = orig.cd2001_P; % part of tmp fix
 cd2002_P = orig.cd2002_P;
 oilflow_in = orig.oilflow_in;
 transmitter_bias = orig.transmitter_bias;
 transmitter_skew = orig.transmitter_skew;
 transmitter_Tm = orig.transmitter_Tm;
 transmitter_filter_enabled = orig.transmitter_filter_enabled;
 warstr = '';
 if ~isfield(param,'cd2001_P'), cd2001_P=[]; param.cd2001_P=[]; war-

str=[warstr,'cd2001_P ']; end
 if ~isfield(param,'cd2002_P'), cd2002_P=[]; param.cd2002_P=[]; war-

str=[warstr,'cd2002_P ']; end
 if ~isfield(param,'oilflow_in'), oilflow_in=[]; param.oilflow_in=[]; war-

str=[warstr,'oilflow_in ']; end
 if ~isfield(param,'transmitter_bias'), transmitter_bias=[];

param.transmitter_bias=[]; warstr=[warstr,'transmitter_bias ']; end
 if ~isfield(param,'transmitter_skew'), transmitter_skew=[];

param.transmitter_skew=[]; warstr=[warstr,'transmitter_skew ']; end
 if ~isfield(param,'transmitter_Tm'), transmitter_Tm=[];

param.transmitter_Tm=[]; warstr=[warstr,'transmitter_Tm ']; end
 if ~isfield(param,'transmitter_filter_enabled'), transmit-

ter_filter_enabled=[]; param.transmitter_filter_enabled=[]; war-

str=[warstr,'transmitter_filter_enabled ']; end
 if ~isempty(warstr) && dowarn1, warning(['Some parameter fields were missing

and ignored by default [',warstr,']']),dowarn1=false; end

 % special case of transmitter
 if transmitter_Tm == 0
 transmitter_Tm = param.transmitter_Tm;
 transmitter_filter_enabled = 0;
 else
 transmitter_filter_enabled = 0;
 if dowarn2
 warning('Ambiguity since transmitter Tm was larger than 0, but filter

was disabled')
 dowarn2 = false;
 end
 end

 % check if result is interesting
 if ...
 (isempty(refhigh) || isequal(refhigh,param.refhigh)) &&...
 (isempty(oilflow_in) || isequal(oilflow_in,param.oilflow_in)) &&...
 (isempty(cd2001_P) || isequal(cd2001_P,param.cd2001_P)) &&...
 (isempty(cd2002_P) || isequal(cd2002_P,param.cd2002_P)) &&...
 (isempty(valve_diaphragmleak) || ise-

qual(valve_diaphragmleak,param.valve_diaphragmleak)) &&...
 (isempty(valve_internleak) || ise-

qual(valve_internleak,param.valve_internleak)) &&...
 (isempty(valve_uppersaturation) || ise-

qual(valve_uppersaturation,param.valve_uppersaturation)) &&...

37

 (isempty(valve_lowersaturation) || ise-

qual(valve_lowersaturation,param.valve_lowersaturation)) &&...
 (isempty(valve_T) || isequal(valve_T,param.valve_T)) &&...
 (isempty(valve_S) || isequal(valve_S,param.valve_S)) &&...
 (isempty(valve_J) || isequal(valve_J,param.valve_J)) &&...
 (isempty(transmitter_filter_enabled) || ise-

qual(transmitter_filter_enabled,param.transmitter_filter_enabled)) &&...
 (isempty(transmitter_bias) || ise-

qual(transmitter_bias,param.transmitter_bias)) &&...
 (isempty(transmitter_skew) || ise-

qual(transmitter_skew,param.transmitter_skew)) &&...
 (isempty(transmitter_Tm) || ise-

qual(transmitter_Tm,param.transmitter_Tm))
 indexlist(end+1,1) = idx;
 end
end
disp(['Found ',num2str(length(indexlist)),' matches for your query'])

% visualize results
analyzer_plotBode('container',results_container,'indexes',indexlist)

% display margins XY plot
analyzer_plotIndicatorXY('container',results_container,'indexes',indexlist)

% display results as text
analyzer_displayResultsAsText('contain-

er',results_container,'indexes',indexlist,'controller',R)

end

1.7.3 “analyzer_plotBode.m”

function [] = analyzer_plotBode(varargin)
%READRESULTS_PLOTBODE Summary of this function goes here
% Detailed explanation goes here

lin2log = @(x)log(x)./log(10); % anonymous function to convert from linear space

to log space
colorvec = 'gbmck';
R = [];
progresstate = 1;
figno = [1 2];
text_on = false;
results_container = [];
idx_list = [];
post_phase = 1;
% General code for reading variable input
while 0 < length(varargin)
 removeentries = 1;
 if isa(varargin{1},'char')
 switch(varargin{1})
 case 'container'
 results_container = varargin{2};
 case 'indexes'

38

 idx_list = varargin{2};
 case 'plottext'
 text_on = cell2mat(varargin{2});
 case 'figure'
 figno = varargin{2};
 case 'controller'
 R = varargin{2};
 case 'rtphase'
 removeentries = 0;
 varargin(1) = [];
 post_phase = 0;
 otherwise, disp('Unknown field ''',varargin{2},'''')
 end
 if removeentries, varargin(1:2) = []; end
 else
 varargin(1) = [];
 disp('Each input should have a descripting string first')
 end
end

if isempty(results_container)
 [results_container,idx_list,progresstate] = loadResults();
end

%% Process
% open/create figure
h1=figure(figno(1));
subplot(2,1,1)
title('Gain and phase, Bode plot')
whitebg([.3 .4 .4])
h2=figure(figno(2));
title('Gain and phase, Bode plot (3D)')
view(3)
whitebg([.3 .4 .4])

for idx = 1 : length(idx_list)
 cont_idx = idx_list(idx);
 % points along the x dimension
 try
 cont = results_container{cont_idx}.relaysweep;

 gain_dB = cont.gain_process_vec;
 f_gain = cont.w_hyst_vec_hz;
 f_gain_base10 = lin2log(f_gain); % logarithmic 10 base axis

 if ~post_phase
 phase = cont.pha_process_vec;
 f_pha = cont.w_delay_vec_hz;
 f_pha_base10 = lin2log(f_pha);
 else
 phase = nan(16,1);
 for i = 1:length(cont.gain_process_vec)
 x = cont.hystsignals{i}.c.Data;
 y = cont.hystsignals{i}.ym.Data;
 [~, pha_rad] = post_fft_estAmpPha(x,y);
 pha_deg = pha_rad*180/pi;

39

 if 0 < pha_deg, pha_deg = pha_deg - 360; end
 phase(i) = pha_deg;
 end
 f_pha_base10 = f_gain_base10;
 end
% phase = flipdim(phase,1); % bug in earlier version of saved

signals (fixed now)

 % plots
 comm_state = results_container{cont_idx}.results.commissioning_state;
 if comm_state, color = 'r';
 else color = colorvec(mod(cont_idx-1,length(colorvec))+1);
 end
 figure(figno(1))
 subplot(2,1,1), hold on, plot(f_gain_base10,gain_dB,color), yla-

bel('Amplitude [dB]'), grid on
 subplot(2,1,1), plot(f_gain_base10,gain_dB,'oy')
 if comm_state, legend('Commissioning state'); end
 subplot(2,1,2), hold on, plot(f_pha_base10,phase,color), ylabel('Phase

[degrees]'), xlabel('frequency [Hz], base 10'), grid on
 subplot(2,1,2), plot(f_gain_base10,phase,'oy')

 % 3d plot
 figure(figno(2)), hold on, plot3(f_gain_base10,gain_dB,phase,color),
 xlabel('frequency [Hz], base 10'), ylabel('Gain [dB]'), zlabel('Phase

[degrees]')
 grid on
 plot3(f_gain_base10,gain_dB,phase,'oy')

 figure(figno(1))
 subplot(2,1,1),

text(f_gain_base10(end),gain_dB(end),['s:',num2str(cont_idx)])
 subplot(2,1,2),

text(f_pha_base10(end),phase(end),['s:',num2str(cont_idx)])
 figure(figno(2)),

text(f_pha_base10(end),gain_dB(end),phase(end),['s:',num2str(cont_idx)])
 catch err
 end
end
end

1.7.4 “analyzer_plotIndicatorXY.m”

function analyzer_plotIndicatorXY(varargin)
%ANALYZER_PLOTINDICATORXY Summary of this function goes here
% Detailed explanation goes here

colorvec = 'gbmck';
results_container = [];
idx_list = [];
while 0 < length(varargin)
 removeentries = 1;
 if isa(varargin{1},'char')
 switch(varargin{1})

40

 case 'container'
 results_container = varargin{2};
 case 'indexes'
 idx_list = varargin{2};
 otherwise, disp('Unknown field ''',varargin{2},'''')
 end
 if removeentries, varargin(1:2) = []; end
 else
 varargin(1) = [];
 warning('Each input should have a descripting string first')
 end
end

if isempty(results_container)
 [results_container,idx_list,~] = loadResults();
end

figure
xlabel('Gain margin (dB)')
ylabel('Phase margin (degrees)')
title('Margins XY plot')
for i = 1 : length(idx_list)
 idx = idx_list(i);
 results = results_container{idx}.results;
 try
 XdB = 20*log10(results.A_m);
 Ydeg = results.phi_m;

 if results.commissioning_state, col='r';
 else col = colorvec(mod(idx-1,length(colorvec))+1);
 end

 hold on
 plot(XdB,Ydeg,['o',col])
 text(XdB,Ydeg,num2str(idx))
 hold off
 catch err
 end
end
end

1.7.5 “analyzer_plotResponses.m”

function analyzer_plotResponses(varargin)
%PLOTRESPONSES (varargin) plots inputs of type 'timeseries'
% Accepts variable size input of type timeseries
% Not very good code... should be refined

figno = [];
% General code for reading variable input
while 0 < length(varargin)
 if isa(varargin{1},'char')
 switch(varargin{1})

41

 case 'signals'
 signals = varargin{2};
 case 'figure'
 figno = varargin{2};
 otherwise, disp('Unknown field ''',varargin{2},'''')
 end
 varargin(1:2) = [];
 else
 varargin(1) = [];
 disp('Each input should have a descripting string first')
 end
end

if isempty(figno), figure
else figure(figno)
end
whitebg([0 .5 .6])
colorvec = 'rgbmck';
legends = {};
for i = 1 : size(signals,1)
 color = colorvec(mod(i-1,length(colorvec))+1);
 prop = signals(i);
 if isa(prop,'timeseries')
 hold on, plot(prop.Time,prop.Data,color), hold off
 legends{i} = prop.Name;
 elseif isa(prop,'cell')
 hold on, plot(prop{1}.Time,prop{1}.Data,color), hold off
 legends{i} = prop{1}.Name;
 end
end
legend(legends)
end

1.7.6 “lookup_footprint_script.m”

clc
% Script for analysing results
Kp=4;
Ti=100;
Td=0;
num = Kp*[Ti*Td Ti 1];
den = [Ti 0];
R = tf(num,den);
% set parameter configurations of interest
refhigh = DEFAULT.oper.refhigh;
oilflow_in = DEFAULT.oper.refhigh;
cd2001_P = [];
cd2002_P = [];
valve_diaphragmleak = DEFAULT.valve.diaphragmleak;
valve_internleak = DEFAULT.valve.internleak;
valve_uppersaturation = DEFAULT.valve.uppersaturation;
valve_lowersaturation = DEFAULT.valve.lowersaturation;
valve_T = DEFAULT.valve.T;
valve_S = DEFAULT.valve.S;
valve_J = DEFAULT.valve.J;

42

transmitter_filter_enabled = DEFAULT.transmitter.filter_enabled;
transmitter_bias = DEFAULT.transmitter.bias;
transmitter_skew = DEFAULT.transmitter.skew;
transmitter_Tm = DEFAULT.transmitter.Tm;

% lookup function
analyzer_lookupResults(...
 'controller',R,...
 'refhigh',refhigh,...
 'oilflow_in',oilflow_in,...
 'cd2001_P',cd2001_P,...
 'cd2002_P',cd2002_P,...
 'valve_diaphragmleak',valve_diaphragmleak,...
 'valve_internleak',valve_internleak,...
 'valve_uppersaturation',valve_uppersaturation,...
 'valve_lowersaturation',valve_lowersaturation,...
 'valve_T',valve_T,...
 'valve_S',valve_S,...
 'valve_J',valve_J,...
 'transmitter_filter_enabled',transmitter_filter_enabled,...
 'transmitter_bias',transmitter_bias,...
 'transmitter_skew',transmitter_skew,...
 'transmitter_Tm',transmitter_Tm...
)

1.7.7 “combineSegments.m”

function [] = combineSegments()
%COMBINDSEGMENTS Summary of this function goes here
% Detailed explanation goes here
% Combines result file segments into one larger file

% browse for files
disp('User must select multiple files to merge')
[filename,pathname] = uigetfile('*.mat','Select a .m file that holds results from

a completed simulation','MultiSelect','on');
if isequal(filename,0) || isequal(pathname,0)
 disp('User selected Cancel')
 return
end
if ~isa(filename,'cell')
 disp('User did not select multiple files to merge')
 return
end

% combine data
results_container = {};
for i = 1 : length(filename)
 tmp = load([pathname,filename{i}]);
 if isfield(tmp,'results_container')
 for j = 1 : length(tmp.results_container)
 % prevent duplicates from being added
 is_included = 0;
 for k = 1 : length(results_container)

43

 if isequal(results_container(k),tmp.results_container(j))
 is_included = 1;
 disp('Result was already part of structure')
 end
 end
 % add if not already added
 if ~is_included
 results_container(end+1,1) = tmp.results_container(j);
 end
 end
 else disp(['Missing field results_container in ',filename{i}])
 end
end

% save
[filename2, pathname2] = uiputfile([pathname,'*.mat'],'Save as','Combined.mat');
if isequal(filename2,0) || isequal(pathname2,0)
 disp('User selected Cancel')
else
 try
 savename = fullfile(pathname2,filename2);
 save(savename,'results_container');
 disp(['Saved as ',savename])
 catch err
 disp('Error occured')
 end
end
end

1.7.8 “loadResults.m”

function [results_container,idx_list,progresstate] = loadResults()
%LOADRESULTS Helper function that loads a results container

results_container = [];
%% load
progresstate = 0;
[filename,pathname] = uigetfile('*.mat','Select a .m file that holds results from

a completed simulation');
if isa(filename,'char')
 load([pathname,filename]);
 if exist('results_container','var')
 cont_length = length(results_container);
 if 1 < cont_length
 prompt1 = ['Index of first simulation results you want to display.

Min 1'];
 prompt2 = ['Index of last simulation results you want to display. Max

',num2str(cont_length)];
 answer = inputdlg({prompt1,prompt2},'Plot di-

alog',1,{num2str(1),num2str(cont_length)});
 if isempty(answer)
 disp('User cancelled')
 return
 else

44

 % check if several results are specified

 % evaluation of each result index
 idx_1 = str2double(answer{1});
 idx_2 = str2double(answer{2});
 if idx_1 < 1 || cont_length < idx_2
 disp('Index out of bounds')
 return
 else idx_list = idx_1 : idx_2;
 end
 end
 else idx_list = 1;
 end
 progresstate = 1;
 else disp('The file contained an unfamiliar structure')
 end
else disp('No .mat file returned from browser')
end
end

