
Convective Heat Transfer and
Pumping Power Analysis of MWCNT +
Fe3O4/Water Hybrid Nanofluid in a
Helical Coiled Heat Exchanger with
Orthogonal Rib Turbulators
Misagh Irandoost Shahrestani 1, Ehsan Houshfar1*, Mehdi Ashjaee1 and
Payam Allahvirdizadeh2*

1School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran, 2Department of Energy and
Petroleum Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway

Utilizing nanofluids in heat exchangers can lead to improved thermal performance.
Nanofluids with suspended carbon nanotubes are specifically desirable in thermal
systems because of their unique capabilities. In this study, convective heat transfer
and required pumping power are studied simultaneously for a helical coiled heat
exchanger with laminar water flow while incorporating 0.1 and 0.3 percent volume
fraction of the hybrid nanofluid MWCNT + Fe3O4/water. Two different geometries of
bare and ribbed tubes are used for the heat exchanger part. The ribs are chosen to be
orthogonal, i.e., 90° with respect to the inclined ones. Three different Reynolds numbers
are selected for investigation, all in laminar flow regime based on the non-dimensional M
number defined in coiled tubes. Computational fluid dynamics is used to study thermal and
fluid behavior of the problem. The convective heat transfer coefficient can serve as a
criterion to measure the effectiveness of utilizing nanofluids in heat exchangers by taking
the pressure drop and pumping power of the system into consideration. Finally, the artificial
neural network curve fitting tool of MATLAB is used to make a good fit in the data range of
the problem. It is shown that for most cases of the study, the pumping power ratio is less
than 1 that can be considered appropriate from energy consumption viewpoint.

Keywords: CFD, helical heat exchanger, hybrid nanofluid, convective heat transfer coefficient, orthogonal rib
turbulator

INTRODUCTION

The present trend of gradual decrease in the size of electronic devices and equipment demands
improvements in heat transfer and cooling methods Ramezanizadeh et al. (2018). The techniques
used for improving heat transfer rate in thermal systems are mainly categorized as passive and active
ones. In active approaches, an external medium such as a fan or a pump is used for heat transfer
enhancement which leads to an increment in the overall cost of the system. The passive approaches
do not require additional components or moving parts, which leads to a further simplicity and cost-
effectiveness and their less energy consumption has gained popularity in recent years Ahmadi et al.
(2020). Among the passive approaches, employing nanofluids has attracted more attention
(Hassanpour et al., 2018; Fallahnezhad and Nazif 2019; Ghalandari et al., 2020). Nanofluids are
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synthesized by dispersing solid particles of nanometer dimension
in a base fluid, which can be pure or mixture of some fluids
Sheremet et al. (2016). Nanofluids improve thermal conductivity
of the working fluid owing to the presence of highly conductive
solid particles (Komeilibirjandi et al., 2019; Maleki et al., 2020a).

Different types of nanofluids have been employed in heat
exchangers with the goal of enhancing heat transfer rate and also
to reduce their size (Hajatzadeh Pordanjani et al., 2019; Aghayari
et al., 2020). It has been shown that implementing nanofluids can
also considerably enhance heat transfer rate of thermal systems
(Eshgarf et al., 2020; Irandoost Shahrestani et al., 2020). There are
different studies which investigated a variety of techniques
including machine learning to predict thermal properties of
fluids and to improve and optimize various thermal systems
(Abdelmalek et al., 2020; Maleki et al., 2020b; Safdari Shadloo
2020; Zheng et al., 2020). Banu et al. (2019) studied the
performance of a micro pin-fin heat exchanger by applying
three fluids including water, CuO/water, and Al2O3/water
nanofluids at different Reynolds numbers. They observed that
using CuO nanoparticles in water was more effective in
improving heat transfer coefficient compared with Al2O3

particles. Moreover, it was found that at higher Reynolds
numbers, the differences in heat transfer coefficients of heat
exchangers become more significant. Qi et al. (2019)
experimentally evaluated the performance of double tube heat
exchanger by using TiO2/water nanofluid. Different nanofluid
concentrations of 0.1, 0.3, and 0.5 wt% were considered in their
research. They observed that the highest enhancement in heat
transfer rate was in case of using the nanofluid with 0.5 wt%
concentration which yielded approximately 14.8% higher heat
transfer rate compared to the case of pure water. Helically coiled
heat exchangers can intensify heat transfer coefficient due to the
formation of secondary flow inside the tube Fsadni et al. (2017).
Due to centrifugal and torsion effects, the behavior of flow in
helical heat exchangers is considerably different from flow in
straight tubes Che et al. (2020). Naik and Vinod (2018) carried
out a study on the impact of using various nanostructures on the
performance of a shell and helical coil heat exchanger. In their
research, aqueous carboxymethyl cellulose solution was used as
the base fluid and CuO, Al2O3 and Fe2O3 nanoparticles were
dispersed in it. They concluded that higher concentrations would
result in better thermal performance, for all the tested nanofluids;
moreover, using CuO caused the highest increase in the heat
transfer rate. In a study by Shiravi et al. (2020), entropy
generation and heat transfer coefficient of carbon black
nanofluid inside a helical heat exchanger were investigated
experimentally. The flow regime was turbulent and effect of
Reynolds number and concentration of the nanofluid on
friction factor as well as convective heat transfer coefficient
were evaluated. It was shown that at 0.21 percent mass of
nanofluid where Nusselt number is maximum, entropy
generation is minimized. Thanks to the relatively higher
thermal conductivity of carbonic material, they are attractive
candidates for heat transfer intensification purposes. Various
structures of carbonic material such as graphene, graphite, and
carbon nanotubes (CNTs) have already been studied in recent
years. Many studies have demonstrated considerable potential of

carbonic materials for thermal performance enhancement. For
instance, according to a study performed by Fares et al. (2020),
using 0.2% graphene/water nanofluid in a shell and tube heat
exchanger can improve heat transfer coefficient by up to 29%
compared to pure water. Sarafraz et al. (2016) investigated the
performance of a counter-current double pipe heat exchanger by
using CNT/water nanofluid. According to their study, using
nanofluid with 0.3 wt% concentration improved the overall
heat transfer rate of the investigated heat exchanger by up to
46.5% in comparison with the case of pure water.

Based on the literature review, using CNT-based nanofluids
can significantly enhance heat transfer rate of a heat exchanger.
The use of CNT-based nanofluids in helically coiled heat
exchangers with bare and orthogonal ribbed tubes has
limitedly been investigated while taking into consideration
both thermal (convective heat transfer) and flow (pumping
power) features. This paper aims at addressing this gap and
it can be considered as a criterion for effectiveness evaluation of
hybrid nanofluids for helical heat exchangers with or without rib
turbulators. In this study, computational fluid dynamics is
employed to numerically evaluate heat transfer rate and
pumping power ratio in a helical coiled heat exchanger by
using MWCNT + Fe3O4/water hybrid nanofluids in three
volume fractions of 0 (pure water), 0.1% and 0.3%. In
addition to the concentration of the hybrid nanofluid,
Reynolds number is another operating factor with a key role,
and is chosen to be 2,000, 2,500 and 3,000. To preserve the
accuracy of the model, the thermophysical properties of the
operating fluid are temperature-dependent. Moreover, effect of
adding orthogonal ribs on the tube side of the heat exchanger
was also investigated. Utilization of MATLAB curve fitting
feature can be considered as an appropriate tool for
evaluation of effectiveness of nanofluids in heat exchangers at
different working conditions while considering both thermal
and hydraulic parameters of convective heat transfer coefficient
and pumping power.

METHODOLOGY

Siemens NX 10.0 is used to produce the geometrical model of the
helical coiled heat exchanger. Two geometries of bare tubes and
tubes with orthogonal ribs are generated. Details of the studied
geometry are presented in Table 1. The pitch of the ribs is 50 mm
and it has a rectangular cross section with 4 mm length
(streamwise) and 2 mm width (normal to the tube surface).
The heat exchanger has a total of 163 rib turbulators. The
schematics of the geometries are illustrated in Figure 1.

The mesh is generated by ANSYS ICEM CFD 16.0. The
schematic of mesh elements for the case of tube with rib

TABLE 1 | Geometrical dimensions of the helical coiled heat exchanger.

di (mm) Di (mm) Do (mm) n Pitch (mm) δ Turning
direction

20.8 274.6 300 9.5 29.15 0.076 Right hand
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turbulators can be seen in Figure 2. Computational fluid
dynamics has long been used to model heat transfer and fluid
flow of different systems under various operating conditions
(Hasanpour et al., 2018; Maleki et al., 2020c). ANSYS CFX
16.0 is utilized to solve the governing equations. For the
criteria of convergence, X-momentum, Y-momentum,
Z-momentum, energy, and continuity equations are
defined to have RMS residuals less than 10–5. To assure
the convergence of the solution, mass flow average of
temperature and velocity at the outlet of the domain and
mass flow average of total pressure at the inlet as well as area
average of temperature on the surface of the tubes are all
monitored during the solution process. Total energy model
for heat transfer, including the viscous work term, is
considered in the simulations. The process is steady-state
and has a laminar flow regime.

Continuity equation is defined as:
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and the energy equation is:
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the thermophysical properties of the operating fluid is
considered as temperature-dependent variables, as can be seen
in Table 2 Sundar et al. (2014).

Reynolds number is defined as:

Re � ρVdi
μ

(6)

where density and viscosity are considered at inlet of the tubes.
Mass flow rate of the working fluid at different Reynolds numbers

FIGURE 1 | Schematic of the helical heat exchanger. (A) Bare tube (B) Tube with rib turbulators.

FIGURE 2 | The mesh structure used in the study (A) Surface mesh (B) Volumetric mesh.
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and volume fractions are given in Table 3. It is worth noting that
the variation of mass flow rate at constant Reynolds number is
due to change in thermophysical properties of the working fluid
at different volume fractions.

Mujawar and Rao (1978) defined a dimensionless number that
can serve as a criteria of transition between laminar and turbulent
regimes in coiled tubes. The effect of curvature of the tubes is
taken into consideration and for Newtonian fluids it is defined as:

M � Re0.64

0.26(a/R)0.18 (7)

in which a is the radius of the tube and R is the radius of the
coil. Based on their findings, the flow can be considered as
laminar if M is below 2,100. Convective heat transfer
coefficient is defined by the following equation Shiravi et al.
(2020):

h � q
Tw − Tm

(8)

where q is the heat flux of the surface which is equal to 5000W/
m2 K and Tw is the wall average temperature and finally the
average temperature Tm is defined as:

Tm � Tin + Tout

2
(9)

The constant heat flux can be considered as outer medium’s
boundary condition for the heat exchanger and it is assumed that
it is applied on the inner surface of the tube and thus conjugate
heat transfer is not solved. The flow approaches the heat
exchanger with constant temperature. Zero back pressure is
considered at the outlet of the heat exchanger. Although
nanofluids can enhance thermal performance of the system,

this is at the expense of higher pressure drop and
consequently higher energy consumption to run the system.
To evaluate the pressure drop of the heat exchanger, the
required pumping power is evaluated by:

W � _VΔP (10)

where _V is the volumetric flow rate of the fluid and ΔP is the
overall pressure drop over the heat exchanger.

RESULTS AND DISCUSSION

To validate the numerical method used in this study, the
outcomes of the model are compared with the results of
Pawar and Sunnapwar (2014). For this purpose, the outlet
temperature of the fluid is considered as the comparison
criteria. As can be seen in Figure 3, a good agreement exists
between the two set of results. The maximum error corresponds

TABLE 2 | Thermophysical properties of different working fluids Sundar et al. (2014).

Volume fraction
of MWCNT
+ Fe3O4/water
(%)

Mass fraction
(%)

Temperature (°C) Dynamic viscosity
(m Pa s)

Density (kg/m3) Specific heat
capacity (J/kg-K)

Thermal conductivity
(W/m-K)

Φ � 0 0 20 0.79 998.5 4,182 0.602
40 0.54 992.0 4,179 0.631
60 0.30 983.16 4,176 0.650

Φ � 0.1 0.486 20 0.91 1,017 4,165 0.6734
40 0.61 1,011 4,162 0.720
60 0.39 1,002 4,159 0.7891

Φ � 0.3 1.460 20 1.01 1,055 4,131 0.6856
40 0.76 1,048 4,128 0.7656
60 0.45 1,040 4,125 0.8389

TABLE 3 | Mass flow rate (Kg/s) of working fluid at different Re and volume
fractions.

Re = 2,000 Re = 2,500 Re = 3,000

Pure water 0.026 0.032 0.039
0.1% nanofluid 0.030 0.037 0.045
0.3% nanofluid 0.033 0.041 0.049

FIGURE 3 | Comparison of the results from current numerical study with
the experimental investigation of Reference Pawar and Sunnapwar (2014).
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to the dimensionless M number of 2,190 and is equal to 4.9
percent.

To examine grid independency of the model, four different
mesh settings are considered for each of the cases of the heat
exchanger with and without rib turbulators. Number of elements
for heat exchanger with and without rib turbulators as well as the
average heat transfer coefficient (h) for pure water at Reynolds
number of 2,000 can be seen in Figure 4. Based on the results,
changes in h are negligible for Grid 2, Grid 3, and Grid 4.
Therefore, the second one is selected for further simulations.

Figure 5 depicts convective heat transfer coefficient at
different Reynolds numbers of 2000, 2,500, and 3,000. Based
on dimensionless M number, the flow regime is laminar. Three
different hybrid nanoparticle volume fractions of 0, 0.1 and 0.3
percent are considered. In all volume fractions, as the Reynolds
number increases, an increment in convective heat transfer rate is
observed. Furthermore, in all Reynolds numbers and volume
fractions, heat transfer rate of the ribbed tube is higher than the
bare tube. The highest increase is 14.2 percent for pure water at

Reynolds number of 2,000. To investigate the heat transfer
augmentation due to the utilization of the hybrid nanofluid
of MWCNT + Fe3O4/Water, convective heat transfer at three
different Reynolds numbers of 2,000, 2,500, and 3,000 is
illustrated in Figure 6. Clearly, increase in the
nanoparticle volume fraction leads to an increase in the
heat transfer rate. This enhancement is more significant
when volume fraction of the hybrid nanoparticle is at the
highest level, i.e., 0.3%.

Ratio of convective heat transfer rate of the hybrid nanofluid
(h) to that of the pure water (h0) is a useful parameter to measure
nanoparticles effectiveness. This ratio is illustrated in Figures 7, 8
for different cases. Figure 7A reveals that for the ribbed tube case
at constant volume fraction of 0.1%, the ratio h/h0 roughly equals
1 at three different Reynolds numbers. Therefore, utilization of
nanofluid is not beneficial from the heat transfer point of view.
This is because the heat transfer rate is more considerably affected
by the presence of the ribs and the turbulence in the flow induced
by them. As such, nanoparticles barely have any effect in the
ribbed tubes. It is worth noting that the ratio remains constant as
the Reynolds number increases. However, for bare tube the ratio
of h/h0 is about 1.06 leading to 6% growth in heat transfer rate.
This ratio is rather constant for all the three Reynolds numbers of
2,000, 2,500, and 3,000. From Figure 7B, it is apparent that 3
percent volume fraction of nanoparticles has a positive heat
transfer impact. At all Reynolds numbers, the increment is
about 5 and 11 percent for ribbed and bare tubes,
respectively. Even in the case of 0.3 percent volume fraction,
the ratio of h/h0 is higher for bare tube than for the ribbed one.
This can be attributed to the fact that ribs dominate the flow and
heat transfer patterns at their presence, while the presence of
nanoparticles is less consequential. Figure 8 shows h/h0 at
different volume fractions for Reynolds numbers of 2,000,
2,500, and 3,000. Interestingly, h/h0 is always higher for bare
tube compared to the ribbed one since the dominant parameter
in ribbed tubes is the effect of local turbulence in the flow. In
fact, the flow is exposed to attachment and reattachment
between successive ribs resulting in local turbulence which
ultimately leads to less thermal resistance and larger local
heat transfer rates.

One important factor to be investigated in any thermal system
consisting a flow, and especially in heat exchangers, is the amount
of pressure drop. Higher pressure drop can lead to more energy

FIGURE 4 | Grid independency study for bare and ribbed tube heat
exchangers.

FIGURE 5 | Convective heat transfer coefficient at different Reynolds numbers for volume fractions equal to (A) 0 (pure water), (B) 0.1 and (C) 0.3%.
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consumption as the pumping power required to deliver the
desired amount of mass flow rate would increase. The ratio of
pumping power of the nanofluid at different Reynolds numbers
and volume fractions (W) to that of pure water (W0) is depicted in
Figures 9, 10. These graphs provide the designer a very good
insight to the corresponding pressure drop and consequently
pumping power attributed to each case. This would assist the
designer to effectively determine the appropriate nanofluid
volume fraction. The pumping power for laminar fluid flow
inside a tube with constant heat flux is defined as follows
Mansour et al. (2007):

W
W0

� ( μ

μ0
)(ρ0

ρ
)

2

(11)

The ratio of pumping power is dependent on thermo-
physical properties of the fluid. When this ratio is less than
1, the heat transfer augmentation is coupled with less energy
consumption of the system. From Figure 9 it can be seen that
except for 0.3 percent volume fraction of the nanofluid for bare
tube, in all other cases the pumping power ratio is less than 1,
which is desirable. Figure 10 shows that increasing the
nanofluid volume fraction from 0.1 to 0.3 percent leads to an

FIGURE 6 | Convective heat transfer coefficient at different volume fractions for Reynolds numbers of (A) 2,000, (B) 2,500 and (C) 3,000.

FIGURE 7 | Convective heat transfer coefficient ratio at different Reynolds numbers for volume fractions of (A) 0.1% and (B) 0.3%.

FIGURE 8 | Convective heat transfer coefficient ratio at different volume fractions for Reynolds numbers of (A) 2000, (B) 2,500 and (C) 3,000.
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FIGURE 9 | Pumping power ratio at different Reynolds numbers for volume fractions of (A) 0.1% and (B) 0.3%.

FIGURE 10 | Pumping power ratio at different volume fractions for Reynolds numbers of (A) 2000, (B) 2,500 and (C) 3,000.

FIGURE 11 | Curve fitting of convective heat transfer coefficient vs. Re and phi for heat exchangers without rib turbulators (left) and with rib turbulators (right).

FIGURE 12 | Curve fitting of pumping power vs. Re and phi for heat exchangers without rib turbulators (left) and with rib turbulators (right).
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increase of the pumping power ratio. However, this ratio is still
below 1 for the heat exchanger with ribbed tubes at different
Reynolds numbers.

To provide a good fit within the data range, curve fitting tool of
MATLAB is used. Therefore, a machine learning method is
implemented by using different inputs and outputs while
taking goodness of the curve fitting into consideration,
Figures 11, 12. The following form of polynomial is
considered for the curve fitting. It is of degree 2 for inputs of
the problem, i.e., Reynolds number and volume fraction:

f (x, y) � p00 + p10x + p01y + p20x
2 + p11xy + p02y

2 (12)

in which x is the volume fraction (φ) in percent and y is the
Reynolds number and finally f is the output of the problem,
i.e., the convective heat transfer coefficient (h) in Wm−2 K−1 and
pumping power of the heat exchanger (W) in mW. The relevant
coefficients are provided inTable 4. Notably, that the curve fitting
equation is valid in data range of the problem, i.e., Re number
between 2,000 and 3,000 and volume fraction of the nanofluid
between 0 and 0.3 percent.

CONCLUSION

Helical coiled heat exchangers with bare and 90-degree inclined
ribbed tubes at different Reynold numbers of 2,000, 2,500, and
3,000 and MWCNT + Fe3O4/water hybrid nanofluid with volume
fractions of 0 (pure water), 0.1, and 0.3% were investigated in this
study. Based on the dimensionless M number, the flow regime is
laminar. Computational fluid dynamics (CFD) was used to
investigate the forced convective heat transfer coefficient, heat
transfer ratio and the pumping power ratio. Results of this
study can serve as a criterion to determine the hybrid nanofluid
effectiveness while keeping an eye on the pumping power of the
heat exchanger for both cases of bare and ribbed tubes. The results
revealed that for the heat exchanger with ribbed tubes at 0.3 percent
volume fraction of nanoparticles the ratio of convective heat
transfer to that of the pure water equals to about 1 which
means that the nanofluid is not increasing performance of the
system. It was also shown that except for heat exchangers with bare
tube at 0.3 percent volume fraction of nanoparticles, all other cases
lead to pumping power ratios of less than 1 that can be considered
as favorable from energy consumption point of view.
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NOMENCLATURE

a Radius of tube, m

cp Specific heat at constant pressure, J/kg K

D, d Inner and outer diameter, m

h Convective heat transfer coefficient, W/m2 K

k Thermal conductivity, W/m K

_m Mass flow rate, kg/s

M Dimensionless number, Ref (Fsadni et al., 2017)

n Number of turns

P Pressure, Pa

q Heat flux, W/m2

R Radius of coil, m

Re Reynolds number

T Temperature, K

u, v, w Velocity at different directions, m/s

_V Volumetric flow rate, m3/s

W Pumping power, W

x, y, z Coordinate directions, m

Greek Symbols
Φ Particle volume fraction, %

μ Viscosity, Pa s

ρ Density, kg/m3

ΔP Pressure drop, Pa

Subscripts
0 Related to pure water

i Inner

in Inlet

out Outlet

o Outer

Acronyms
CFD Computational fluid dynamics

CNT carbon nanotubes

MWCNT Multi-walled carbon nanotube
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