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We explore the in-medium properties of heavy-quarkonium states at finite baryochemical potential and
finite transverse momentum based on a modern complex-valued potential model. Our starting point is a
novel, rigorous derivation of the generalized Gauss law for in-medium quarkonium, combining the
nonperturbative physics of the vacuum bound state with a weak coupling description of the medium
degrees of freedom. Its relation to previous models in the literature is discussed. We show that our approach
is able to reproduce the complex lattice QCD heavy quark potential even in the nonperturbative regime,
using a single temperature dependent parameter, the Debye mass mD. After vetting the Gauss law potential
with state-of-the-art lattice QCD data, we extend it to the regime of finite baryon density and finite velocity,
currently inaccessible to first principles simulations. In-medium spectral functions computed from the
Gauss law potential are subsequently used to estimate the ψ 0=J=ψ ratio in heavy-ion collisions at different
beam energies and transverse momenta. We find qualitative agreement with the predictions from the
statistical model of hadronization for the
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p
dependence and a mild dependence on the transverse

momentum.
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I. INTRODUCTION

Heavy quarkonium, the bound states of a charm or
bottom quark, and its antiquark (cc̄ or bb̄) have matured
into a high precision tool for the study of strongly
interacting matter under extreme conditions in the context
of relativistic heavy-ion collisions [1,2]. On the experi-
mental side, the predominant decay of heavy quarkonia
into dileptons makes them well-controlled observables,
probing different stages of the quark gluon plasma
(QGP) created in such collisions. The now iconic mea-
surements of the dimuon spectrum of bottomonium by the
CMS Collaboration [3] lend themselves to a phenomeno-
logical interpretation of the bb̄ pair traversing the medium
as a test particle (see for example [4]), sampling the whole
history of the QCD medium. On the other hand, the more
recent measurement of a finite elliptic flow of the J=ψ
particle by the ALICE Collaboration [5] indicates at least a

partial equilibration of the charm quarks with their sur-
rounding. The inevitable loss of memory about the initial
conditions accompanying equilibration hence positions the
lighter flavor as a probe of the late stages of the collision.
From a theory standpoint the heavy mass of the

constituent quarks opens the door to the powerful effective
field theory (EFT) framework [6] that allow us to simplify
the description of their (non)equilibrium behavior. These
techniques have led to progress both in direct lattice QCD
studies of equilibrated quarkonium and in formulating real-
time descriptions of their nonequilibrium evolution. The
foundation of the EFT strategy is the presence of the natural
separation of scales mQ ≫ mQv ≫ mQv2, with mQ the
heavy quark mass and v its typical velocity. These are
denoted the hard (rest-energy), soft (momentum exchange),
and ultrasoft (binding energy) scales, respectively.
In addition to these three scales, there exists the character-
istic scale of quantum fluctuations ΛQCD and of thermal
fluctuations T.
The construction of an EFT involves first choosing a

cutoff energy above which the physics is not treated
explicitly, before identifying the relevant degrees of free-
dom in the lower energy scale and treating these explicitly
by writing down the most general Lagrangian compatible
with the corresponding symmetries. Each term receives a
complex-valued Wilson coefficient which needs to be
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determined by a matching procedure; that is, we compute a
correlation function in the full microscopic theory and a
correlator with the same physics content in the EFT and
require that they agree below a certain scale. By this
integrating out of higher scales, the results of the micro-
scopic theory can be reproduced in the EFT as long as we
stay within its range of validity at low energies.
For heavy quarkonium this program has been imple-

mented by integrating out the hard scale ∼mQ from the full
QCD Lagrangian to give nonrelativistic QCD (NRQCD), a
theory of nonrelativistic Pauli spinor fields. This can be
achieved in a fully nonperturbative manner. In a further
step, integrating out the soft scale ∼mQv results in potential
nonrelativistic QCD (pNRQCD) [7], where the potential
governing the quarkonium dynamics becomes one of the
Wilson coefficients determined via matching. While the
perturbative derivation of pNRQCD has been successfully
completed, its nonperturbative definition is still an active
field of research. In this work wewill utilize the fact that the
in-medium potential between two static quarks can indeed
be systematically derived from QCD in a nonperturbative
fashion via the language of EFTs [8].
Much progress has been made in understanding the

properties of equilibrated heavy quarkonium in a static
medium from first principles by using lattice QCD compu-
tations. To directly study the in-medium modification of
charmonium it is nowadays possible to deploy fully rela-
tivistic formulations of the heavy quarks (for some recent
works see [11–13]). However, realistic simulations of
bottomonium currently deploy lattice regularized versions
of NRQCD [14,15]. In-medium correlation functions com-
puted from first principles have revealed the presence of
statistically significant in-medium modifications consistent
with our intuition: the hotter the medium, the stronger the
modification, and the more weakly bound the quarkonium
state is in vacuum, the easier it is influenced by the medium.
Going beyond statements of overall in-medium modifi-

cation remains difficult in lattice simulations, as it requires
one to extract the spectral functions of in-medium quarko-
nium from Euclidean time correlators. This amounts to an
exponentially hard ill-posed inverse problem, which
despite concerted efforts of the community so far has only
revealed insight into the properties of the ground state in-
medium properties of different quarkonium channels. The
most recent study of bottomonium and charmonium from
lattice NRQCD has elucidated the change in mass of the
ground state in-medium, concluding that quarkonium
becomes lighter as temperature increases [15].
What all of these studies are still missing is access to the

remnants of excited states in the medium, as well as to the
threshold, which plays an important role in understanding
the stability of the in-medium states. Indeed the in-medium
binding energy is defined from the distance of the in-
medium quarkonium spectral peak to the onset of the
threshold. Currently this information is only accessible in

potential based computations, where a Schrödinger equa-
tion for the spectral functions is solved in the presence of a
nonperturbatively defined in-medium potential.
Important progress in this regard has been made using an

EFT based definition of the in-medium potential between
two static quarks based on the real-time evolution of the
QCD Wilson loop,

VðrÞ ¼ lim
t→∞

i∂tW□ðr; tÞ
W□ðr; tÞ

: ð1Þ

Evaluating this expression in hard-thermal loop (HTL)
resummed perturbation theory revealed [6,16,17] that in
general the proper potential is a complex quantity with a
real part exhibiting Debye screening and an imaginary part
growing monotonously with temperature. The physical
processes contributing to ImV differ according to the
separation of scales present [18]; the scattering of medium
partons with the gluons mediating the heavy quark inter-
action, so-called Landau damping, as well as the gluon
induced transition from a color singlet to octet may both
contribute. At high temperature, Landau damping domi-
nates and the potential reads

VHTLðrÞ ¼ −α̃s
�
mD þ e−mDr

r
þ iTϕðmDrÞ

�
þOðg4Þ;

ð2Þ
where

ϕðxÞ ¼ 2

Z
∞

0

dz
z

ðz2 þ 1Þ2
�
1 −

sinðxzÞ
xz

�
: ð3Þ

Note that this potential describes the real-time evolution
of an unequal time quarkonium correlation function and not
of the wave function itself. Therefore the presence of an
imaginary part is not directly related to the disappearance of
the heavy quarks from the system but instead encodes the
decoherence of the system from its initial state as it evolves
over time in the thermal medium [19,20]. It is important to
keep in mind that when we solve a Schrödinger equation
with this potential, the resulting correlation function can be
used to straightforwardly compute the in-medium quarko-
nium spectral function. The question of how to relate this
complex-valued potential to the real-time evolution of the
wave function is an active field of research, and recent
progress has been made by considering the concept of
open-quantum systems [21–25].
The real-time definition Eq. (1) is not directly amenable

to an evaluation in lattice simulations since they are carried
out in an artificial Euclidean (imaginary) time. Instead a
strategy has been developed to use Bayesian inference to
extract the values of the potential nonperturbatively on the
lattice [26–28]. Many studies have confirmed (see for
example [29]) that at low temperatures the potential is
well described by the Cornell form
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VvacðrÞ ¼ −
α̃s
r
þ σrþ c; ð4Þ

where ᾱs ¼ CFg2=4π is the strong coupling constant (the
factor CF has been absorbed to match the phenomenology
literature), σ is the string tension, and c is an additive
constant that will be used for calibration purposes.
Equation (4) already captures the two most important
features of QCD: asymptotic freedom via the running
coupling at small distances and confinement via the non-
perturbative linear rise.
At finite temperature lattice QCD tells us that not only

the real part weakens gradually as one moves into the
deconfined phase but that above the pseudocritical temper-
ature indeed a finite imaginary part is present [29,30]. To
put these numerical results to use in computations of
quarkonium spectral functions an efficient analytic para-
metrization of the complex valued potential is needed.
Deploying it in a Schrödinger equation gives access to
spectral functions from which we may learn about physi-
cally relevant properties, such as in-medium masses or
decay widths.
To this end, in [31] one of the authors proposed a simple

model of a nonperturbative vacuum bound state immersed
in a weakly coupled medium (see also [32,33]). The former
is described by the Cornell potential, the latter by an in-
medium permittivity evaluated in HTL perturbation theory.
In that model the effects of the medium on the vacuum
potential are incorporated by the application of the gener-
alized Gauss law [34]. Once the vacuum parameters of the
Cornell potential are chosen, the model provides a pre-
diction for the full in-medium values of ReV and ImV
based on a single temperature dependent parameter, iden-
tified as the Debye mass mD. While it is not obvious that
such an ansatz can accommodate the physics of the heavy
quark potential, especially in the nonperturbative regime
close to the crossover temperature, it has been shown that
tuning ofmD reproduces the lattice QCD values of ReV and
the tentative values of ImV quite well. In turn the Gauss law
model has been used to study the in-medium properties of
quarkonium in a thermal medium, as well as to provide an
estimate for the ψ 0=J=ψ ratio at very high energy heavy-ion
collisions at midrapidity and zero transverse momentum.
However, there exists two shortcomings of the Gauss law

model of [31], one technical and one phenomenological,
which limit its utility in exploring heavy quarkonium in
heavy-ion collisions. The technical one is related to the fact
that in order to derive the in-medium modification of the
string part of the Cornell potential, the previous study
introduced an ad hoc assumption about the functional form
of the in-medium permittivity in coordinate space. On the
phenomenological side, the model did not incorporate the
effects of finite baryochemical potential or transverse
momentum, both of relevance to compare to actual data
from heavy-ion collisions.

The present study sets out to overcome both of these
issues. As a first step we put forward a novel and improved
Gauss law model, based on a more rigorous derivation,
which does not rely on any ad hoc ingredients. Taking into
account string breaking, i.e., the fact that the vacuum
Cornell potential does not rise indefinitely, we are able to
derive well-defined expressions for ReV and ImV. Their
functional form turns out to be simpler than the one
obtained in [31]. Again, ReV and ImV only depend on a
single temperature dependent parameter mD. They further-
more consistently reduce to the HTL result at large values
of the Debye mass parameter (high temperature) and to the
Cornell potential at vanishing mD (vacuum). Using state-
of-the-art lattice QCD results for ReV and ImV we show
that the new model reproduces the nonperturbative values
excellently by an appropriate selection of mD. The relation
of this new Gauss law model to previous model potentials
in the literature is also discussed.
The second improvement is related to extending the

model to settings not accessible to first principle lattice
QCD simulations, i.e., quarkonium in a medium at finite
baryochemical potential, as well as quarkonium traversing
the QGP with a finite velocity. The latter is implemented
via the hot-wind scenario, where the medium moves with a
finite relative velocity with respect to the quarkonium [35].
The extended model will be used to compute the in-
medium spectral functions of both charmonium and botto-
monium states and investigate their in-medium properties
as well as their melting. Modeling the finite baryochemical
potential regime of the QCD phase diagram allows us to
estimate the ψ 0=J=ψ ratio in heavy-ion collisions at lower
beam energies, relevant for future collider facilities, such as
FAIR and NICA. By modeling quarkonium at finite
velocity we give predictions for the ψ 0=J=ψ ratio.

II. THE GAUSS LAW POTENTIAL MODEL

In order to fully utilize the advances in lattice QCD
computations of the in-medium heavy quark potential in
phenomenological studies, an analytic parametrization of
the complex VðrÞ is required. Such a parametrization may
also provide a starting point for modeling heavy quark
interactions in regions of the QCD phase diagram currently
inaccessible to first principles Monte Carlo simulations.
More specifically, we require easily evaluable expres-

sions for both the real and the imaginary parts of the in-
medium heavy-quark potential that provide a faithful
reproduction of nonperturbative lattice data where avail-
able. In particular it must be applicable in the temperature
regime close to and around the crossover transition, where
HTL perturbation theory by itself is not valid. In this study
we deploy a similar physical reasoning as in [29,31] to
construct such an analytic parametrization of the potential,
overcoming the previous shortcoming in that we avoid any
ad hoc assumptions on the linear part of the in-medium
potential.
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The starting point is the fact that the vacuum behavior of
quarkonium bound states is described well by the Cornell
potential of Eq. (4). We then consider this heavy-quark
two-body system immersed in a weakly coupled medium
described by the HTL permittivity. Both the Coulombic and
the stringlike part of the Cornell potential will then receive
in-medium corrections, which we compute using linear
response theory.

A. Constructing the in-medium model

In linear response theory the electric field at finite
temperature, or equivalently the electric potential, can be
obtained from its vacuum counterpart by multiplying it by
the inverse of the static dielectric constant in momentum
space [36],

VðpÞ ¼ VvacðpÞ
εðp; mDÞ

: ð5Þ

The permittivity, defined as an appropriate limit of the real-
time in-medium gluon propagator, imprints the medium
effects onto the potential here. In the following we will
consider separately the Coulomb and stringlike parts of the
Cornell potential in the above relation.
Note that Eq. (5) does not rely on a weak-coupling

assumption and remains valid as long as the vacuum field is
weak enough to justify the linear approximation. Using the
convolution theorem it can be recast in coordinate space as
follows:

VðrÞ ¼ ðVvac � ε−1ÞðrÞ; ð6Þ

where “*” represents the convolution.
To continue we consider the other central building block

of our approach, the generalized Gauss law,

∇ ·

�
Evac

raþ1

�
¼ 4πqδðrÞ; ð7Þ

which holds for electric fields of the form EvacðrÞ ¼
−∇VvacðrÞ ¼ qra−1r̂. This reduces to the well-known form
for Coulombic potentials with a ¼ −1, q ¼ α̃s), while the
linearly rising string case corresponds to (a ¼ 1, q ¼ σ).
For a general a we have

−
1

raþ1
∇2VvacðrÞ þ 1þ a

raþ2
∇VvacðrÞ ¼ 4πqδðrÞ: ð8Þ

Denoting the differential operator on the left-hand side
above as Ga, we now apply it to Eq. (6) to deduce the
general integral expressions for each term in the in-medium
heavy-quark potential,

Ga½VðrÞ� ¼ Ga

Z
d3yðVvacðr − yÞε−1ðyÞÞ

¼ 4πqðδ � ε−1ÞðrÞ
¼ 4πqε−1ðr;mDÞ; ð9Þ

where we have used Eq. (8) and that the convolution
commutes with Ga. For the Coulombic and string cases,
respectively, this gives

−∇2VCðrÞ ¼ 4πα̃sε
−1ðr;mDÞ; ð10Þ

−
1

r2
d2VSðrÞ
dr2

¼ 4πσε−1ðr;mDÞ: ð11Þ

At this point we introduce the explicit expression for the
coordinate space in-medium permittivity obtained from the
perturbative HTL expression in momentum space [36],

ε−1ðp;mDÞ ¼
p2

p2 þm2
D
− iπT

pm2
D

ðp2 þm2
DÞ2

: ð12Þ

The real part of the real space expression can be calculated
via a contour integral and the residue theorem to give

Reε−1ðr;mDÞ ¼ −
m2

De
−mDr

4πr
; ð13Þ

while the imaginary part is expressed by a Meijer-G
function,

Imε−1ðr;mDÞ ¼ −
mDT
4r

ffiffiffi
π

p G2;1
1;3

� − 1
2

− 1
2
;− 1

2
; 0

���� 14m2
Dr

2

�
: ð14Þ

Let us use Eqs. (13) and (14) to solve for the in-medium
modified Coulombic part of the potential. We find that our
ansatz, as expected, reproduces the well-known HTL result
[17,37] given in Eq. (2),

ReVCðrÞ ¼ −α̃s
�
mD þ e−mDr

r

�
; ð15Þ

ImVCðrÞ ¼ −α̃s½iTϕðmDrÞ�; ð16Þ

where ϕ is defined in Eq. (3). The next step is to turn to the
string part, Eq. (11), for which the formal solution can be
straightforwardly written down as

VSðrÞ ¼ c0 þ c1r − 4πσ

Z
r

0

dr0
Z

r0

0

dr00r002ε−1ðr00; mDÞ:

ð17Þ

The constants c0 and c1 will be chosen to ensure the phy-
sically motivated boundary conditions ReVSðrÞjr¼0¼0,
ImVSðrÞjr¼0 ¼ 0, and ∂rImVSðrÞjr¼0 ¼ 0. This leads to
the following analytical form:
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ReVSðrÞ ¼
2σ

mD
−
e−mDrð2þmDrÞσ

mD
; ð18Þ

ImVSðrÞ¼
ffiffiffi
π

p
4

mDTσr3G
2;2
2;4

� −1
2
;−1

2
1
2
;1
2
;−3

2
;−1

����14m2
Dr

2

�
: ð19Þ

With both the Cornell and the string in-medium solutions at
hand we combine the expressions to form the full Gauss law
model

ReV¼ReVCþReVSþc; ImV¼ ImVCþ ImVS: ð20Þ

Let us inspect the properties of each contribution to the
in-medium potential found so far. For the real parts, the
short distance r → 0 limit, corresponding to each heavy-
quark not being able to “see” the intermediate medium,
recovers the vacuum Cornell potential. The zero temper-
ature limit corresponds to mD → 0, which also recovers the
Cornell potential. At large distances the real part exhibits an
exponential flattening off ∼e−mDr, which is the character-
istic and well-known Debye screening behavior. Due to the
extra factor ofmD in the denominator, the string contribution
to the in-medium real-part will become more and more
suppressed at high temperature, eventually giving way to the
pure HTL result. The imaginary part arising from the
Coulombic contribution asymptotes to a constant at large
distances, which is expected for Landau damping. Only the
string imaginary part, Eq. (19), at first sight appears prob-
lematic, as it diverges logarithmically at large r. As we argue
in the next section this is a manifestation of the absence of
string breaking in the Cornell potential, and we will account
for it by introducing a well-motivated regularization.

B. Consistent treatment of string breaking

In the preceding section we found that only the string
imaginary part, Eq. (19), shows an unphysical behavior, in
that it diverges logarithmically at large r. To understand the
origin of this artifact let us consider the ingredients used.
The generalized Gauss law [Eq. (7)] is formally correct, and
the linear-response relation in Eq. (5) is valid under a weak-
field ansatz. However, the vacuum potential and in-medium
permittivity both operate under assumptions that can be
challenged. First, we have utilized a vacuum potential that
contains an unending and unphysical linear rise. Second,
the expression for the complex permittivity given in
Eq. (12) is a hard-thermal-loop result and as such is strictly
only valid at temperatures much larger than Tc. We contend
that the combination of these two assumptions leads to the
unwanted infrared divergence in the final expression for the
string imaginary part.
In our computation, both issues manifest themselves in

Eq. (17), which can be written, after substituting the
imaginary part of Eq. (12) into Eq. (17) and performing
the angular integration of the inverse Fourier transform, as
follows:

ImVSðrÞ ¼ c0 þ c1rþ 2Tσm2
D

Z
r

0

dr0
Z

r0

0

dr00r002

×
Z

∞

0

dpp2
sinðpr00Þ
pr00

p2
1

pðp2 þm2
DÞ2

: ð21Þ

We have arranged the momentum factors as above to
make clear their different origins: the first term (p2) arises
from integrating in spherical coordinates and the second
[sinðpr00Þ=pr00] after completing the polar integration. The
last two terms encapsulate the contribution from the gluon
propagator, and it is the 1=p factor here that we identify as
causing the weak infrared divergence. In order to regularize
this integral, we modify the last term as follows:

1

pðp2 þm2
DÞ2

→
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ Δ2
p

ðp2 þm2
DÞ2

; ð22Þ

where (Δ) will be a suitably chosen regularization scale. In
Eq. (21) the spatial integrals can be carried out analytically,
which combined with the regularization above gives our
new definition of the string imaginary part,

ImVSðr;ΔÞ ¼ 2Tσm2
D

Z
∞

0

dp
2 − 2 cosðprÞ − pr sinðprÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ Δ2
p

ðp2 þm2
DÞ2

;

ð23Þ

where we have also chosen the constant terms to impose
the boundary conditions as before. Equation (23) can be
numerically evaluated very quickly, and the only remaining
step is now to choose the regularization scale Δ.
To this end we propose the following physically moti-

vated scheme. Note that if we rescale momentum via p →
p=mD and rearrange slightly, Eq. (23) takes on a suggestive
form:

ImVSðr;ΔDÞ ¼
σT
m2

D
χðmDr;ΔDÞ; ð24Þ

where

χðxÞ ¼ 2

Z
∞

0

dp
2 − 2 cosðpxÞ − px sinðpxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ Δ2
D

p
ðp2 þ 1Þ2 ð25Þ

and ΔD ¼ Δ=mD. That is, we can express the string
imaginary part as some temperature dependent prefactor
with dimensions of energy, multiplied by a dimensionless
momentum integral. This is identical to the Coulombic
expression, where the integral asymptotes to unity in the
limit r → ∞. We thus impose the same condition for the
string part.
This procedure also recovers the correct behavior at large

T (large mD); i.e., the string contribution to the imaginary
part diminishes while the Coulombic part grows in stature
and we eventually recover the pure HTL result. The value
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of the regularization parameter ΔD can be computed
numerically (the trigonometric terms in Eq. (25) drop
out in the r → ∞ limit). Furthermore, since it is expressed
in terms of the Debye mass, it remains constant and the
computation need be performed only once. We find

ΔD ¼ Δ=mD ≃ 3.0369: ð26Þ
In order to check whether our particular choice of regu-
larization influences the end result we also implemented
instead a factor of tanhðp=Δ0Þ in the integral in Eq. (21).
The hyperbolic tangent rises linearly at small p and
converges exponentially quickly to unity and thus is able
to fix the infrared divergence while leaving the ultraviolet
behavior unchanged. We find that using this alternative
leads to an equivalent Δ0

D that lies within 1% of the value in
Eq. (26), and the subsequent results for ImV are indis-
tinguishable by eye to those obtained via the original
method. That the regularization process is independent
of the exact technique used serves as an encouraging
cross-check.
Figure 1 depicts the values of the real (left column) and

imaginary (right column) part of our novel Gauss law
parametrization at three different realistic combinations of
temperature and Debye mass. The red solid lines corre-
spond to the Coulombic contributions and the green lines to
the string parts. The total is shown as a black solid line. In
the panels for ReV the vacuum Cornell potential is added as
a gray solid line. For completeness the unregularized string
imaginary part is included as a blue line. The figures clearly
show how the perturbative HTL results, i.e., the purely
Coulombic contribution, dominate at high temperatures.

C. Comparison to other models

Let us compare the expressions derived above from the
Gauss law with other models previously deployed in the
study of heavy quarkonium. Before the realization that
the in-medium potential is a complex quantity, the focus lay
on modeling a real-valued potential. A classic work in this
regard is the study by Karsch, Mehr, and Satz (KMS) [38],
who argued based on the two-dimensional Schwinger
model that the in-medium potential should show both
the standard Debye screening term for the Coulombic term
and an exponential damping factor for the string part:

VKMSðrÞ ¼ σ

mD
ð1 − e−mDrÞ − α̃s

r
e−mDr: ð27Þ

Equation (27) reduces (by construction) to the Cornell
potential in the limit mD → 0. At first sight the exponential
damping of the string part may appear similar to our result
for VSðrÞ. A quantitative inspection, however, shows that
the KMS potential exhibits a stronger dependence on mD;
i.e., for the same value of mD the deviation from the
mD ¼ 0 limit is more pronounced than in our case.

The KMS potential may also be obtained, as presented in
version 1 of [39], by modeling the interquark interactions as
an effective one-dimensional stringlike interaction. In
addition, the authors postulate that entropy may contribute
to the interquark interaction. Their heuristic arguments,
resting on an identification of the real part of the potential
with thermodynamic quantities, leads them to propose for
the in-medium string part

ReVGPDMðrÞ ¼ 2σ

mD
ð1 − e−mDrÞ − σre−mDr: ð28Þ

This expression turns out to be the same as our result,
which in this paper has been systematically derived from
the Gauss law ansatz. We are thus able to offer an
explanation for the presence of the additional r dependent
term that does not rely on the ad hoc identification of the
real part of the potential with either the free or internal
energies of the quarkonium system.
In the context of purely real-valued in-medium potential

models, the generalized Gauss law was used for the first
time in [32]. In this study a first attempt was made to
combine the Gauss law and Debye-Hückel theory to imple-
ment the screening of both the Coulombic and stringlike
parts of the potential. This represented an important step
forward toward a systematic modeling of both terms at finite
temperature. The authors encountered difficulty in using this
parametrization to capture the behavior of the color singlet
free energy in lattice QCD, which was taken as a proxy for
the in-medium real part of the potential. This led to the
introduction of an additional parameter κ to compensate for
these deviations. Unfortunately at that time it was not
possible to relate κ either to the parameters of the Cornell
potential or to the Debye mass.
An important step toward parametrizing the interquark

potential as a complex quantity was taken in [33], where the
authors proposed taking the linear response relation in
Eq. (5) at face value and introduced the same HTL
permittivity as used in this paper to directly carry out
the inverse Fourier transform. Their computation led to the
following proposal for the in-medium potential:

ReVðrÞ ¼ −α̃smD

�
e−mDr

r
þ 1

�
ð29Þ

þ 2σ

mD

�
e−mDr − 1

r
þ 1

�
; ð30Þ

ImVðrÞ ¼ −α̃sTϕðmDrÞ þ
2σT
m2

D
χ0ðmDrÞ; ð31Þ

where ϕ was defined in Eq. (3) and χ0 is given by

χ0ðxÞ ¼ 2

Z
∞

0

dz
zðz2 þ 1Þ2

�
1 −

sinðxzÞ
xz

�
: ð32Þ
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In this approach the modification of the real and imaginary
parts are governed by a single temperature dependent
parameter, just as in our study.
If we inspect the functional form of this parametrization

closer, two properties become apparent which challenge
the validity of the result. One can be remedied but the other
hints at a more foundational difficulty of the approach.

Let us first consider the imaginary part. Just as in our
derivation, the string imaginary part of the potential
diverges logarithmically due to the 1=z term. This diver-
gence may be avoided, as discussed in the previous chapter,
by regularizing the unphysical linear rise to infinity of the
Cornell potential, i.e., by introducing string breaking. On
the other hand, if we take a look at the in-medium real part

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Temperature dependence of the Coulombic (red curves), string regularized (green curves), and string unregularized (blue
curves) imaginary parts. In the high temperature limit we recover the purely Coulombic HTL result.

IMPROVED GAUSS LAW MODEL AND IN-MEDIUM HEAVY … PHYS. REV. D 101, 056010 (2020)

056010-7



arising from the vacuum stringlike potential, we find that it
contains an unscreened 1=r term. Thiswould suggest that the
deconfined color charges are unable to screen the interactions
and a long-range component remains in ReV. Such a
behavior is counterintuitive and does not agree with current
lattice data determinations of the in-medium potential.
The authors of [39] recently proposed a very different

derivation of the real part in Eq. (28). They base it on the
direct Fourier transform of the gluon propagator, which,
however, receives an additional nonperturbative contribu-
tion originally suggested in [40]. The additional term in the
gluon propagator is related to a nonvanishing gluon
condensate, which has previously been used to justify a
a similar real part deployed in the T-matrix approach in
[10]. In addition that study models quarkonium screening
with different screening masses for the Coulombic mD and
stringlike part m0

D and a third parameter cs to take into
account string breaking effects,

ReVRL ¼ −α̃s
e−mDr

r
−

σ

m0
D
e−m

0
Dr−ðcsm0

DrÞ2 : ð33Þ

In [31] the Gauss law was used for the first time in the
context of a complex valued in-medium potential. The study
brought together the ideas of the Debye-Hückel theory from
[32] with the HTL permittivity as used in [33]. However, as
already mentioned in the introductory section, to solve the
Gauss law equations in that paper, the authors introduced
ad hoc assumptions about the string part of the in-medium
potential. The present paper, while using a very similar
combination ofHTLpermittivity and linear response theory,
provides a rigorous derivation of the in-medium expressions
for ReV [Eqs. (15) and (18)] and ImV [Eqs. (16) and (23)]
that forms the central result of this chapter.

D. Vetting with lattice QCD data

The most important benchmark for any parametrization
of the in-medium heavy quark potential is whether it is able
to reproduce the nonperturbative lattice QCD results. Since
our Gauss law approach uses the HTL permittivity to
modify the nonperturbative vacuum potential, it is by no
means obvious that it can capture the physics of the
interquark potential in the nonperturbative regime around
the crossover transition. We will show in this section that it
indeed works excellently even in this regime.
One hint at why the Gauss law may work where HTL

alone is no longer valid is given by the form of the Gauss
law equation of the Coulombic part in coordinate space. As
was discussed in [31], using the HTL permittivity leads to
an expression that has the same form as a linear response
equation for VC as the original Debye Hückel theory, and
the Debye mass parameter governs the strength of the linear
response. This allows one to smoothly connect the expres-
sion at finite T to the unscreened potential at T ¼ 0.

The vetting is carried out using published state-of-the-
art lattice QCD data for the real part of the potential [29,30].
The values for ReV and ImV have been extracted from
simulations of the HotQCD Collaboration on 483 × 12
lattices featuring Nf ¼ 2þ 1 flavors of dynamical light
quarks discretizedwith the asqtad [41] action. The pionmass
on these lattices is larger than physical at mπ ≈ 300 MeV,
with a transition temperatureTc ≈ 175 MeV.As the temper-
ature is changed on these lattices by changing the lattice
spacing, there are zero temperature ensembles available for
calibration purposes.
The first step in applying the Gauss law parametrization

consists of fixing the vacuum parameters α̃s, σ, and c
appearing in the Cornell potential, which characterize the
test charges inserted into the medium. Two sets of low
temperature results for ReV are available [29], to which
Eq. (4) is fitted. The results are given in Table I and shown
in gray in Fig. 2. The naive Cornell ansatz works excel-
lently in describing the lattice data in the phenomenologi-
cally relevant range of distances 0.1 fm < r < 1.2 fm.
Once the vacuum parameters are determined, the Gauss

law parametrization contains a single temperature depen-
dent parameter, the Debye mass mD, which controls both
ImV and ReV. Here we will fit the values of mD using the
real part. As can be seen from the left panel of Fig. 2 the fit
works excellently and the Gauss law parametrization is able
to capture the behavior of the potential from the Coulombic
region, through the intermediate regime and up to the
screening regime at large distances and high temperatures.
This gives us confidence that the derived expressions for
the in-medium potential do capture the relevant physics
encoded nonperturbatively in the lattice data. The best fit
values for the Debye mass parameter are listed in Table II.
Once mD is fixed we can compare the corresponding

Gauss law prediction for the imaginary part with the
tentative values extracted on the lattice. As shown in the
left panel of Fig. 2 we find that the agreement is also
excellent down to T ¼ 164 MeV, which on these lattices
corresponds already to the confined phase. Only at
T ¼ 148 MeV, deep in the hadronic regime, do deviations
start to appear. Note that the imaginary part in the Gauss
law rises more steeply as the temperature increases but the
asymptotic large distance value behaves nonmonotonously
with the temperature, reflecting the competition between
ImV arising from the string and Coulombic parts of the
potential.

TABLE I. Best fit result for the vacuum potential parameters
after fitting to the low temperature lattice QCD data.

β1 ¼ 6.9 β2 ¼ 7.48

α̃s 0.471� 0.047 0.385� 0.027ffiffiffi
σ

p
[GeV] 0.466� 0.017 0.515� 0.014

c [GeV] 1.781� 0.059 2.648� 0.042
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We have compared the best fit of the properly derived
Gauss law expression to that obtained with the legacy
formulation of [29]. Within the combined statistical and
systematic errors, both satisfactorily reproduce the lattice
data. That is, the uncertainty in the available values of ReV
does not yet allow us to favor one over the other. We note
that the two best fit solutions start to deviate from each other
for r≳ 0.6 fm (the QGP phase), leading to differences in
their asymptotic values. This in turn translates into quanti-
tative differences in the precise temperature dependence of
the open-heavy flavor threshold and thus the binding energy
of the in-medium quarkonium states. It will require future
high precision lattice determinations of ReV to distances up
to r ∼ 1 fm) to resolve this phenomenologically relevant
ambiguity.

E. Extension to a running coupling

In anticipation of upcoming high resolution lattice QCD
computations of the in-medium heavy quark potential, it is
prudent to consider the effects of a running coupling in the
Gauss law parametrization. While in the simulation data
deployed in the previous section the short distance regime
was still well described by a naive Cornell potential, more
recent lattice studies of heavy quark interactions [42] have
shown that at shorter resolved distances the running will
manifest itself. Thus we consider the strong coupling

parameter of our Cornell potential to become a function
of distance α̃s → α̃sðrÞ and write

α̃sðrÞ ¼ � � � þ α̃ð−1Þs

r
þ α̃ð0Þs þ α̃ð1Þs rþ α̃ð2Þs r2 þ � � � : ð34Þ

Note that in the context of the vacuum potential in Eq. (4),

we have already implicitly included the terms α̃ð1Þs and α̃ð2Þs

by absorbing them into the other vacuum parameters.
In a thermal setting, this would necessitate including ra

terms other than a ¼ −1; 1 in the formulation of the in-
medium potential. To do this, we must use the generalized
Gauss law operator Ga given in the left-hand side of Eq. (8),
but with a modified right-hand side that includes the real-
space complex permittivity (following the procedure in
Sec. II A)

−
1

raþ1
∇2VðrÞ þ 1þ a

raþ2
∇VðrÞ ¼ 4πqε−1ðr;mDÞ: ð35Þ

With the real space expressions given in Eqs. (13) and (14),
a computer algebra program will give a general solution for
general a as follows:

ReVaðrÞ ¼ c0 þ ca
ra

a

−
q

ðmDÞa
½Γða;mDrÞ þ Γð1þ a;mDrÞ�; ð36Þ

TABLE II. Results for the in-medium potential parameters.

β 6.8 6.9 7 7.125 7.25 7.3 7.48

T=Tc 0.86 0.95 1.06 1.19 1.34 1.41 1.66
mD=

ffiffiffi
σ

p
0.153(13) 0.403(33) 0.537(42) 0.769(56) 1.062(72) 1.081(72) 1.297(79)

mD=T 0.473 1.143 1.401 1.818 2.273 2.229 2.334

FIG. 2. (Left) The real part of the Gauss law model fitted to lattice QCD results. The three vacuum parameters are determined from
T ¼ 0 lattice data (gray). The finite temperature lattice data (colored points) are reproduced by tuning themD parameter. Solid lines give
the best fit results and the shaded regions the corresponding errors that arise from uncertainty both in the initial lattice data and in our
vacuum parameters. (Right) Prediction of the in-medium imaginary part from the Gauss law model (solid lines) fixed by the values of
mD obtained from ReV. Tentative lattice QCD results for ImV show excellent agreement.
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ImVaðrÞ ¼ c0 þ
1

mD

�
ca

mDra

a

−
ffiffiffi
π

p
qraTG2;2

2;4

�
1
2
; 1 − a

2
3
2
; 3
2
; 0;− a

2

���� 14m2
Dr

2

��
; ð37Þ

where G is again the Meijer-G function and Γ is the upper
incomplete Gamma function defined via

Γðs; xÞ ¼
Z

∞

x
dtts−1e−t: ð38Þ

Note that the imaginary part of the HTL solution expressed
via the integral Eq. (3) is equivalent to Eq. (37) with
(a ¼ 1), as noted by the authors in [17].
Two remarks are in order: first, there is nothing in

principle that prohibits the expressions above from being
used throughout the remaining analysis in this chapter. We
have decided not to do so because currently published
lattice data on the in-medium potential does not yet reach
the regime where the running is significant. Second, for
a ≤ 1 the imaginary part exhibits a divergence. In order to
employ Eq. (37) in a phenomenological study one would
need to carry out a regularization procedure similar to that
discussed in the last section, which is in principle possible,
but we have not investigated this further.
Keeping in mind that the Gauss law approach

can straightforwardly be extended to accommodate a

running coupling we nevertheless proceed to use its
naive formulation (a ¼ −1; 1 only) to investigate the in-
medium properties of heavy quarkonium in subsequent
chapters.

F. Extension to finite velocity

In preparation for the study of heavy quarkonium at
finite transverse momentum we need to consider how to
extend the Gauss law model to treat a heavy quarkonium
bound state moving through the plasma at finite velocity.
To this end we will follow the ideas laid out in [43]. That
is, one considers a QCD plasma in thermal equilibrium
and a reference frame in which the medium moves at
velocity v with respect to the bound state at rest, a so-
called hot wind scenario. It then becomes necessary to
distinguish two separate alignments: one in which the
medium velocity is parallel to the dipole axis of the bound
state and another in which it is perpendicular. This leads to
distinct self-energies with different angular dependencies
and, correspondingly, different expressions for the poten-
tial in each of the alignments. As reviewed in detail in
Appendix the corresponding in-medium permittivity can
be computed for both alignments and used to set up a
finite-velocity Gauss law model in the same manner as in
Sec. II A.
For the parallel alignment case, we find for the real and

imaginary parts of the Coulombic part, respectively:

ReVCðr k vÞ ¼ c − α̃smD −
α̃s
r
þ α̃s

Z
π=2

0

dθ sinðθÞRe
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Π k
R ðθ; vÞ

q i
e
−Re

h ffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ;vÞ
p i

r cosðθÞ
; ð39Þ

ImVCðr k vÞ ¼ 2α̃sT
Z

π=2

0

dθ sinðθÞ ð1 − v2Þ3=2ð2þ v2sin2ðθÞÞ
2ð1 − v2sin2ðθÞÞ5=2

m2
D

2iImΠ k
R ðθ; vÞ

×

��
sinh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q �

Shi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q �

− cosh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q �

Chi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q ��

−
�
sinh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q �

Shi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q �

þ cosh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q �

Chi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q ��	

: ð40Þ

The retarded self-energy Π k
R is given in Eq. (A14) and

the functions ShiðxÞ and ChiðxÞ are defined in Eqs. (A30)
and (A31). For the perpendicular case the results are
identical after the replacements

Z
π=2

0

dθ →
Z

π=2

0

dθ
Z

2π

0

dϕ
2π

; ð41Þ

Π k
R ðθ; vÞ → Π⊥

R ðθ;ϕ; β; vÞ; ð42Þ

where Π⊥
R is given in Eq. (A15).

For the string part, we invite the reader to consult
Appendix. The method is identical to the static case in
the sense of the integration in Eq. (17), now with a modified
finite-velocity permittivity. Since the resulting expressions
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offer no further intuition, we omit them here, but note that
the constants are again set to impose the same physical
boundary conditions as in the static case.
In Fig. 3 we show a selection of finite-velocity potentials

at T ¼ 155 MeV in both the parallel and the perpendicular
alignments. Let us focus on the real part first. The velocity
dependence for the two alignments is significantly differ-
ent. While for the case r k v the real part is weakened with
increasing v, the opposite happens for r⊥ v and one
eventually recovers the Cornell potential. As had been
pointed out in [44] the reason for this nontrivial behavior is
the fact that the quarkonium state encounters a different
effective temperature

Teffðθ; vÞ ¼
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

1 − v cosðθÞ ; ð43Þ

depending on the magnitude and orientation of the velocity
relative to the medium. The higher the velocity, the more the
effective temperature deviates from its v ¼ 0 value, with a
hotter region in the forward direction and a cooler region in
the backward direction. Since in the permittivity one
integrates over the orientation θ, it seems that for r k v
the hotter region dominates,while for r⊥ v the colder region
contributes more significantly. The fact that the real part
becomes negative at large distances is not troubling, as it
simply tells us that similar to the centrifugal barrier present
in P-wave states, there is now a finite probability of the in-
medium S-wave tunneling into an unbound configuration.
The r k v imaginary part of the potential behaves in a

well-defined manner up to v ¼ 0.9c, in that it shows

nonmonotonicity but stays positive at all distances. Once
ImV becomes negative (in the sign convention used here) it
may in principle introduce an instability when being used in
a Schrödinger equation, rendering the computation unre-
liable. Even though the potential does show excursions of
that manner for v > 0.9c, in practice we have not encoun-
tered any numerical difficulty when solving for the corre-
sponding spectra presented in Sec. IV C. For r⊥ v the
imaginary part diminishes at higher velocity, as if the
quarkonium state encounters a cooler and cooler surround-
ing, consistent with the real part in that scenario.
In the subsequent chapters we will explore how this

nontrivialmodificationof the potential translates into changes
in the in-medium spectral functions and attempt to gain a first
glimpse into production yields of heavy quarkonium in
heavy-ion collisions at finite transverse momentum.
We note that in order to comprehensively capture the

physics of heavy quarkonium with a finite center of
momentum motion, a genuine nonequilibrium real-time
approach eventually has to be developed. Efforts in this
direction in the context of the open-quantum-system
approach to heavy quarkonium are ongoing and will
eventually incorporate information from the Gauss law
model developed here.

III. QUARKONIUM SPECTRAL PROPERTIES
AT FINITE TEMPERATURE

A. Continuum corrections

Before we can embark upon studying the in-medium
properties of heavy quarkonium based on the lattice vetted

FIG. 3. The Gauss law potential model at T ¼ 155 MeV for different relative velocities of the heavy quarkonium system. The top row
contains the outcome for a parallel alignment of the dipole with the velocity on the bottom row for the perpendicular alignment. We show
ReV in the left column and ImV on the right.
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Gauss law model, we have to acknowledge the fact that the
lattice data used in the previous section were not continuum
extrapolated. While there is activity in the community to
bring the extraction of the potential closer to the continuum
limit [45], no truly extrapolated results are available today.
Thus we need to manually correct for the discrepancy
between the discrete lattice results and those that eventually
will lead to agreement with experiment.
To this end we follow the strategy laid out in [29]. The

idea is first to determine a phenomenological set of vacuum
parameters that, via solving the Schrödinger equation,
reproduce the masses of the known quarkonium ground
state particles. In addition we will then use an appropriately
rescaled version of the lattice-fitted Debye mass to imple-
ment the finite temperature effects.
The starting point is the bottomonium system, which

due to the large mass of the bottom quark is the most
amenable to the potential description. Furthermore, since
the bottommass is much larger thanΛQCD), the matching of
pNRQCD with QCD can be carried out perturbatively in
vacuum and one finds that the appropriate mass to use in
the Schrödinger equation is the so-called renormalon
subtracted mass [46]

mRS0
b ¼ 4.882� 0.041 GeV: ð44Þ

This allows us to solve a Schrödinger equation for the
energy eigenstates and in turn deduce the mass of the
bottomonium states, which are compared to the PDG
listings [47]. With such a procedure in place, we fit the
values of α̃s, σ, c such that the masses of the lowest four
S-wave states ϒð1SÞ −ϒð4SÞ are reproduced to within a
given accuracy. The averaged mass of the P-wave triplet
χb0ð1PÞ − χb0ð3PÞ can then be used as a cross-check. We
find that

α̃s ¼ 0.513� 0.0024; ð45Þ
ffiffiffi
σ

p ¼ 0.412� 0.0041 GeV; ð46Þ

c ¼ −0.161� 0.0025 GeV ð47Þ

are able to reproduce both the S-wave and the P-wave states
very well (see Table III).
The next step is to consistently determine the only

remaining unknown parameter—the charm quark mass.

Since the heavy quark potential is a universal quantity in the
sense that at lowest order in pNRQCD the same expression is
used for both heavy quark families, we expect the vacuum
values in Eq. (45) to remain the same for charmonium.
Thus by reverse engineering the procedure used above, we
can “fit” the charm mass to reproduce the lowest S-wave
states ðJ=ψ ;ψ 0Þ for our vacuum parameters. The best-fit
value reads

mfit
c ¼ 1.4692 GeV: ð48Þ

Since finite mass corrections are more important for char-
monium, we expect the agreement to be worse in this case,
which is indeed observed in Table IV. All necessary
parameters required for describing the T ¼ 0 physics of
quarkonium within the potential approach are now set.
The next step is to consider how the lattice discretization

affects the fitted values of the Debye mass parameter mD.
In lattice calculations the light quark masses do not take on
their physical values and the chiral crossover temperature is
increased. For the lattice spacings used in this study,
T lat
c ¼ 172.5 GeV. The goal is now to undo the difference

between this and the physical crossover temperature by
an appropriate rescaling. To this end we consider a
dimensionless ratio of the lattice fittedmDðtÞ=

ffiffiffiffiffiffiffiffi
σðtÞp

where
t ¼ T=Tc. The slight dependence of the lattice string
tension on the lattice spacing is taken into account in this
ratio. The continuum corrected value of the Debye mass is
then taken to be

mphys
D ðt ¼ T=T lat

c Þ ¼ mDðtÞffiffiffiffiffiffiffiffi
σðtÞp ffiffiffiffiffiffiffiffiffi

σcont
p

; ð49Þ

where mDðtÞ=
ffiffiffiffiffiffiffiffi
σðtÞp

is given in Table I and σcont

from Eq. (45).
In order to explore the changes in the heavy quark

potential at different temperatures, it is useful to also

TABLE III. Bottomonium family.

ϒð1SÞ ϒð2SÞ ϒð3SÞ ϒð4SÞ χb0ð1PÞ χb0ð2PÞ χb0ð3PÞ
m [GeV] 9.4603 10.023 10.355 10.569 9.931 10.273 10.534
mPDG [GeV] 9.4603 10.023 10.355 10.579 9.888 10.252 10.534
hri [fm] 0.2918 0.5878 0.8697 1.0999 0.48 0.786 1.017
m̄PDG

BB̄ −m [GeV] 1.1 0.535 0.203 −0.011 0.627 0.286 0.024

TABLE IV. Charmonium family.

J=ψ ψ 0 χc0ð1PÞ χc0ð2PÞ
m [GeV] 3.0969 3.6632 3.5079 3.775
mPDG [GeV] 3.0969 3.6861 3.4939 3.9228
hri [fm] 0.565 1.249 0.672 1.109
m̄PDG

DD̄ −m [GeV] 0.642 0.076 0.231 −0.036

DAVID LAFFERTY and ALEXANDER ROTHKOPF PHYS. REV. D 101, 056010 (2020)

056010-12



parametrize the temperature dependence of the Debye mass
itself. Let us first look at the perturbative expression for the
Debye mass. With dynamical quark massesmu;d set to zero,
the leading order result for SUðNcÞ with Nf fermions at
zero baryon chemical potential is [48]

mphys
D ¼ TgðΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

3
þ Nf

6

r
; ð50Þ

where Λ ¼ 2πT is the renormalization scale. It is well
established that the Debye mass can only be calculated up
to leading order plus a logarithmic correction at next to
leading order before truly nonperturbative contributions
come into play [49]. For the purposes of this study, we
account for this via two additional terms:

mphys
D ¼ TgðΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

3
þ Nf

6

r

þ NcTgðΛÞ2
4π

log

�
1

gðΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

3
þ Nf

6

r �
þ κ1TgðΛÞ2 þ κ2TgðΛÞ3: ð51Þ

The nonperturbative constants κ1 and κ2 will be fixed by
performing a fit against the continuum corrected lattice
results in Eq. (49). For the running coupling we utilize the
four loop result given in [50] with ΛQCD ¼ 0.2145 GeV.
The best fit results are

κ1 ¼ 0.686� 0.221; κ2 ¼ −0.317� 0.052: ð52Þ

The resulting plot of Eq. (51) is shown in Fig. 4 together
with the continuum corrected Debye mass points. Note that
the perturbative leading order result in Eq. (50) leads to an
increase inmD=T when we approach Tc from above. As we

eventually need to recover the T ¼ 0 Cornell potential
below Tc the true behavior needs to exhibit a downward
trend eventually, as it does in the lattice determination. This
deviation from the perturbative behavior is easily captured
by κ1 and κ2.

B. In-medium spectral functions

Spectral functions provide the quantum field theoretical
answers to questions about particle properties, i.e., their
masses and decay widths. Our goal is to learn about
the in-medium properties of quarkonium from an inspec-
tion of the thermal spectral functions computed from the
Gauss law potential. To this end we follow the Fourier
space method introduced in [51], where the following
Schrödinger equation is established in describing the time
evolution of the vector channel unequal-time point-split
meson-meson correlator D>ðt; r; r0Þ:
½Ĥ ∓ ijImVðrÞj�D>ðt; r; r0Þ ¼ i∂tD>ðt; r; r0Þ; t ≷ 0;

ð53Þ
with

Ĥ ¼ 2mQ −
∇2

r

mQ
þ lðlþ 1Þ

mQr2
þ ReVðrÞ: ð54Þ

The correlator in frequency space is obtained from the
Fourier transform

D̃ðω; r; r0Þ ¼
Z

∞

−∞
dt eiωtD>ðt; r; r0Þ ð55Þ

from which the vector channel spectral function follows by
taking the limit

ρVðωÞ ¼ lim
r;r0→0

1

2
D̃ðω; r; r0Þ: ð56Þ

A detailed discussion on how to explicitly compute the
spectral functions from Eq. (53), both formally and practi-
cally, can be found in Appendix A of [51]. Furthermore, the
pseudoscalar and axial vector channels were shown not to
include any qualitatively new structures, with

ρP ≃ −
1

3
ρV; ρA

0 ≃ −
1

3
ρV; ρA ≃ 2ρV: ð57Þ

In this study we focus on the S-wave quarkonium spectral
functions and show in Fig. 5 the results from the improved
Gauss law model for both the bottomonium (top) and the
charmonium (bottom) vector channel. The gray dashed lines
correspond to the vacuum spectral functions, which exhibit
three well-defined bound states for bottomonium and two
for charmonium below threshold. Qualitatively similar to
what has been reported in the literature [29], we find
characteristic changes as temperature increases. Both a

FIG. 4. Interpolated Debye mass via the HTL inspired inter-
polation formula (51) as a function of temperature. The error
bands (purple) arise from the corresponding uncertainty in the
lattice fit points.
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broadening of the peaks and a shift of their central value to
smaller frequencies is observed. We note that the strength of
the change is clearly ordered with the vacuum binding
energy of each individual state, where Ebind is defined from
the distance between the spectral peak and the threshold. Just
as intuition predicts, the more deeply the state is bound the
less susceptible it is to medium effects. This behavior is
observed consistently in potential based computations and is
also in agreement with recent studies of directly recon-
structed bottomonium and charmonium spectral functions
from lattice QCD [15].
To more quantitatively explore the in-medium properties

we can consult scattering theory. If a narrow resonance pole
lies close to the real frequency axis, then its spectrum can
be described by a Breit-Wigner distribution. On the other
hand, if it features a significant decay width we may
employ a skewed Breit-Wigner of the form

ρðω ≈ EÞ ¼ C
ðΓ=2Þ2

ðΓ=2Þ2 þ ðω − EÞ2 þ 2δ
ðω − EÞΓ=2

ðΓ=2Þ2 þ ðω − EÞ2
þ C1 þ C2ðω − EÞ þOðδ2Þ; ð58Þ

which is able to disentangle the bound state signal from the
background continuum. Here, E denotes the energy of the
resonance, Γ its width, and δ the phase shift. The constant

terms C1 and C2 model artifacts beyond the spectral peak
we are interested in.
For completeness we plot in Figs. 6 and 7 the in-medium

masses, as well as the threshold behavior for charmonium
and bottomonium, respectively. The values obtained here,
while qualitatively consistent with studies based on the
legacy formulation of the Gauss law model [29], show a
somewhat higher stability of in-medium quarkonium. The
reason lies in the extrapolation ambiguity of the fitted ReV
to distances r > 1 fm, where the lattice data are currently
unable to constrain the functional form. High precision
lattice determinations of ReV would be required to resolve
this ambiguity.

IV. APPLICATIONS TO HEAVY-ION COLLISIONS

The computation of the in-medium spectral functions has
already provided us with vital insight on the properties of
heavy quarkonium in thermal equilibrium. The question,
however, remains of how to connect this information to
actual measurements carried out in heavy-ion collision
experiments. Contrary to light mesons, where a direct link
exists between in-medium spectral functions and the
measured decay leptons, for heavy quarkonium we do
not measure their thermal decay. Instead, at hadronization a
number of vacuum states are created whose decay is
recorded long after the QGP has ceased to exist. Thus

FIG. 5. Representative examples of in-medium S-wave spectral functions for vector channel bottomonium (top) and charmonium
(bottom). The gray dashed lines denote the T ¼ 0 stable bound states below the threshold, calculated from the (T ¼ 0) Schrödinger
equation after calibrating the string breaking radius to 1.25 fm. At finite temperature a characteristic broadening and shifting to lower
frequencies is observed, consistent with previous potential based studies.
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we need to translate all in-medium information into
abundances of vacuum states to connect to experiment.
In previous studies the Gauss law model has been

deployed to investigate the production of quarkonium in
heavy-ion collisions in the simplest possible scenario,
where the quarks are almost at rest with the surrounding
medium. In addition, since lattice QCD simulations have
not yet produced results for the heavy-quark potential at
finite baryon density, only predictions for highest energy
LHC collisions have been presented.
Here we will go beyond these results by modeling

heavy quarkonium production both at finite baryochemical
potential, relevant for lower-energy heavy-ion collisions
at RHIC, FAIR, and NICA, and at the finite transverse
momentum.

A. ψ 0 to J=ψ production ratio

Among the currently most highly sought observables at
the LHC heavy-ion program is the ratio of ψ 0 to J=ψ
produced in Pb-Pb collisions. In contrast to the nuclear
modification factor RAA for each individual species, this
ratio promises to be highly discriminatory between differ-
ent phenomenological models for quarkonium production

in heavy-ion collisions. Our goal is therefore to estimate
this ratio.
Following the ideas laid out in [29], we utilize the in-

medium spectral functions computed in the preceding
sections andwill assume kinetic thermalization of the charm
quarks in the late stages of a collision. The idea is to convert
in a meaningful fashion the in-medium spectral information
about ψ 0 and J=ψ into the number of produced vacuum
states. The assumption behind this step is that of an
instantaneous freeze-out, where at T ¼ Tc the in-medium
particles abruptly change into vacuum particles.
To translate in-medium spectral peaks into vacuum states

we consider the relation between the dilepton emission rate
and the in-medium spectral function [52]:

dRll̄

dP4
¼ −

Qqα
2
e

3π2P2
nBðp0ÞρVðPÞ: ð59Þ

Here, nB denotes the Bose-Einstein factor, Qq the electric
charge of the heavy quark in units of e, and αe the QED
coupling constant. The four-momentum is denoted
P ¼ ðp0;pÞ, and the finite mass of the leptons has been
neglected. Equation (59) relates the weighted area under the

FIG. 7. Thermal mass (left) and spectral width (right) of bottomonium as a function of temperature. The error bands denote the Debye
mass uncertainty arising from the fitting procedure. The continuum threshold energy on the left figure is defined as ReVðr → ∞Þ.

FIG. 6. Thermal mass (left) and spectral width (right) of charmonium as a function of temperature. The error bands denote the Debye
mass uncertainty arising from the fitting procedure. The continuum threshold energy on the left figure is defined as ReVðr → ∞Þ.
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in-medium peak to the rate of dileptons emitted from that
state. Thus, integrating the right-hand side above gives the
number of in-medium lepton pairs produced by each of the
states. The prefactors drop out if only the ratio is computed,
leaving

Rll̄ ∝
Z

dp0d3p
ρVðPÞ
P2

nBðp0Þ: ð60Þ

Let us emphasize again that this quantity is not what is
measured in experiment. Since the plasma is diluted away
long before the charmonium states decay, the number of
dileptons eventually measured originate from the vacuum-
state remnants of the in-medium structures observed here.
Thus we must project the states corresponding to the

finite temperature peaks onto the (T ¼ 0) vacuum states.
The computation proceeds as follows. At leading order the
vector channel spectral function ρV depends only on
P2 ¼ p2

0 − p2; after performing a change of variables to
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − p2

p
, Eq. (60) becomes

Rll̄ ∝
Z

dωd3p
ρVðωÞ
ω2

nB

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 þ p2

q � ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ p2

p : ð61Þ

In this expression, the contribution from each bound state
arises from the corresponding peak area in ρVðωÞ=ω2. We
fit each peak structure with the skewed Breit-Wigner in
Eq. (58), thus allowing the different contributions to be
distinguished and the thermal massMn and width of each to
be ascertained. Now, the projection onto the vacuum states
is implemented by writing ρVðωÞ=ω2 ¼ An δðω −MnÞ;
that is, we allow the in-medium states to collapse into delta
peaks that represent the vacuum states, while retaining the
peak area An to account for the different contributions. We
have also confirmed numerically that it is indeed possible to
approximate the Breit-Wigner peak by a delta function in
this manner. Imposing this on Eq. (61) and carrying out the
now trivial ω integral then gives

Rψn

ll̄
∝ An

Z
d3pnB


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n þ p2

q � Mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mn þ p2

p : ð62Þ

Switching to spherical coordinates in momentum then
leaves only a dp integral that can be easily evaluated
numerically.
Finally, in order to obtain the total number density we

must divide by the electromagnetic decay rate of the
vacuum state, which is proportional to the square of the
wave function at (r ¼ 0) divided by the square of the mass
of the state [53]. These values we calculate ourselves using
the corresponding wave functions from the spectroscopic
fitting performed in Sec. III A. The final expression is

Nψ 0

NJ=ψ
¼ Rψ 0

ll̄

RJ=ψ
ll̄

·
M2

ψ 0 jψJ=ψ ð0Þj2
M2

J=ψ jψψ 0 ð0Þj2 : ð63Þ

B. Finite μB phenomenology

In order to make use of Eq. (63) in connecting to
experiment, we require a prescription to evaluate our
Gauss law potential model (and hence the resulting spectral
functions) at a given center-of-mass energy.
The strategy here is twofold. First, we note that the

successful statistical hadronization model provides a well-
established scheme with which to estimate the thermal
parameters of the produced medium at chemical freeze-out
resulting from a collision at a given

ffiffiffiffiffiffiffiffi
sNN

p
. Starting from

the grand canonical partition function of known hadrons,
one is able to reproduce the measured yields by adjusting
the three parameters of the model: collision volume,
temperature, and baryochemical potential (μB). The most
recent values [54] are

Tð ffiffiffiffiffiffiffiffi
sNN

p Þ ¼ 158 MeV
1þ expð2.60 − lnð ffiffiffiffiffiffiffiffi

sNN
p Þ=0.45Þ ; ð64Þ

μBð
ffiffiffiffiffiffiffiffi
sNN

p Þ ¼ 1307.5 MeV
1þ 0.288

ffiffiffiffiffiffiffiffi
sNN

p ; ð65Þ

where
ffiffiffiffiffiffiffiffi
sNN

p
is the dimensionless numerical value of the

center-of-mass energy measured in GeV. These are plotted
in Fig. 8. In this model the freeze-out temperature quickly
asymptotes to the limiting temperature of 158 MeV while
μB drops monotonously to almost zero at high collision
energies such as those probed at RHIC and LHC. Second,
note that the medium effects in our potential model are
captured entirely by the value of the Debye mass mD.
Equation (51) gives our interpolated continuum-corrected
expression at μB ¼ 0, denoted now as mDðT; μB ¼ 0Þ. We
now postulate how to extend that formula into the realm of

FIG. 8. The most recent values of temperature (green curve)
and baryochemical potential (blue curve) extracted from the
statistical model of hadronization for different beam energiesffiffiffiffiffiffiffiffi
sNN

p
. To estimate the ψ 0=J=ψ ratio we translate these values into

a corresponding Debye mass parameter mDðT; μBÞ for the Gauss
law model (purple curve).
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the finite baryochemical potential. At leading order, the
Debye mass can be directly calculated perturbatively at
finite baryochemical potential [48]. We propose to add this
μB dependence to the temperature-only dependence of
Eq. (51). This is valid only for small values of μB and
at leading order. On the other hand, at very large values of
μB the chemical potential itself becomes the only relevant
scale, and we expect from dimensional grounds that it again
enters mD linearly. Thus our modeling assumption is to
adopt the following at all values of μB:

mDðT; μBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

DðT; 0Þ þ T2g2
Nf

18π2
μ2B
T2

s
: ð66Þ

Here, the renormalization scale is also modified to
Λ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2B=π

2
p

. It is important to point out that
progress has been made in computing the Debye mass
perturbatively at next-to-leading order in the chemical
potential [60], which would modify Eq. (66). However,
as a naive first approximation we employ Eq. (66) in its
current form to extend the Gauss law parametrization into
the finite baryochemical potential regime. Additionally, in
the absence of reliable lattice data at the nonzero quark
chemical potential, we hold the nonperturbative constants
κ1 and κ2 in mDðT; 0Þ the same as in Eq. (52). Under these
assumptions we may explore the domain of finite μB and
via the information provided from the statistical model, also
at different

ffiffiffiffiffiffiffiffi
sNN

p
[i.e., via Eq. (65)].

With all ingredients in place, we may now proceed with
calculating the ψ 0 to J=ψ ratio over a range of center-of-
mass energies. The results from this entire procedure are
plotted in Fig. 9, as well as a comparison with the statistical
hadronization model prediction and the most up-to-date
experimental data for Pb-Pb collisions and the pp baseline.
This extends previously available computations, valid only

at the highest beam energies, to those relevant for NICA
and FAIR.
Our analysis is based on in-medium spectral functions

and is independent from that performed by the statistical
hadronization model. The only information shared among
the two are the values for T and μB extracted from the yields
of light hadrons. We find as expected from the previous
Gauss law studies that the results at vanishing μB lie very
close to the prediction from the statistical model. In the
lattice fits carried out using the new and improved Gauss
law model we have been more conservative in the estima-
tion of our uncertainties, which is why the present results
are fully compatible with the statistical model. Note that
while different in form, both approaches share that they
consider a fully kinetically thermalized scenario. A good
agreement between the two and the experimental data thus
further supports the interpretation that charmonium at LHC
has reached a significant degree of kinetic equilibration
with its surrounding.
We find that extending our Gauss law model to finite μB,

i.e., lower
ffiffiffiffiffiffiffiffi
sNN

p
, the agreement with the statistical model

persists. Even though our assumptions to do so were rather
crude, they lead to both a qualitatively and an even
quantitatively very similar trend for ψ 0=J=ψ. On the other
hand, the full validity of these results when compared to
experimentally measured data is somewhat questionable.
Whether charmonium can be considered as kinetically
thermalized in collisions as low as

ffiffiffiffiffiffiffiffi
sNN

p ∼ 40 MeV, for
example as carried out at RHIC, remains to be seen, in
particular in light of the difficulties of measuring a finite
elliptic flow for J=ψ there.

C. Finite transverse momentum

Not long after the initial interest in quarkonium as a
probe of the QGP, the first works began to appear that
considered how the naive Coulombic Debye screening
description could be extended to account for quarkonium
moving with a finite velocity [61]. Recent years have seen a
revival of interest in this direction, with new approaches
employing modern effective field theory techniques to
tackle the problem [43,44,62,63].
The phenomenological motivations are clear; quarkonia

produced in heavy-ion collisions traverse the hot medium
before being measured with finite transverse momenta pT ,
and accounting for this may lead to qualitatively new QGP
phenomena such as the formation of wakes [64–66]. In
order to take a first step toward realistic phenomenology
based on the finite velocity Gauss law model constructed in
Sec. II F, we require a prescription for converting from a
general medium velocity v to the transverse momenta pT
commonly measured in heavy-ion collisions. Such a
prescription has been described in [63], which we briefly
review here. Consider a heavy quarkonium traversing the
QGP with a momentum Pμ ¼ ðp0;pÞ measured in the lab
frame. The QGP will also have a velocity in that frame,

FIG. 9. The prediction of this work (green curve) for the relative
production yield of ψ 0 to J=ψ . We also include the statistical
hadronization model prediction [54] (purple curve) and exper-
imental data measured by the NA50 [55], ALICE [56], and CMS
[57,58] Collaborations (red symbols) for Pb-Pb collisions as well
as the pp baseline [54,59] (orange symbols).
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denoted w, and it is the relative motion that needs to be
estimated and subsequently employed as v in the Gauss law
potential. Assuming a central collision and constant w
throughout, a typical value for the LHC is w ∼ w⊥ ∼ 0.66.
Further assuming a thermalized and isotropic system, the
modulus of the relative velocity will be given as

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð1 − w2ÞM2

M2 − 2p0w · pþ ðw · pÞ2 þ p2

s
; ð67Þ

where M is the heavy quarkonium mass. Note that this
depends on the angle φ between the QGP velocity w and
the quarkonium three-momentum p.
Following the same procedure as the preceding sections,

we may now calculate finite velocity spectral functions.

Some representative examples are shown for charmonium
in Fig. 10. The qualitative difference in the potential for
parallel (top) and perpendicular (bottom) alignments man-
ifests itself also in the behavior of the spectral function. In
the perpendicular case, going to higher velocities is
reminiscent of increasing temperatures in that the peak,
generally speaking, is broadened and shifted to lower
frequencies. Note, however, that this trend is eventually
reversed at ultrarelativistic velocities. When investigating
the physics of bottomonium at finite velocity in an EFT
picture [44], a similar phenomenon was encountered with
increasing velocity leading to spectral modifications similar
to an increased temperature. In contrast, the parallel case
exhibits a shift to higher frequencies with little or no effect
on the width.
We may also use the procedure of the preceding sections

to estimate the ψ 0 to =J=ψ production ratio at finite velocity
and through Eq. (67) can relate this to a simplified
description of a heavy-ion collision. In Eq. (67) we replace
p with pT and further assume a uniform distribution over φ
(see left panel of Fig. 11) before taking the mean. The
results of this method at large center-of-mass energies are
shown in the right panel of Fig. 11. We find that the effect
of the finite center of momentum motion on the quarko-
nium state in the fully thermal Gauss law model is
moderate. Up to the pT ¼ 25 GeV considered here, we
find an 11% increase in the production ratio for a parallel
alignment of the dipole and up to 17% for a perpendicular
alignment. We have to keep in mind that the values
obtained here rely on many simplifying assumptions, for
example that the expansion of the fireball was taken to be
isotropic with a constant velocity. What may help us is that
if the production of quarkonium really is dominated by the
physics around the freeze-out, as suggested by the stat-
istical model of hadronization, then we indeed only need to
track the shells of the QCD medium, which at a given
moment are close to T ¼ Tc. How well the model pre-
sented here captures the physics of quarkonium in a heavy-
ion collision will be testable at the upcoming Run 3 at the

FIG. 11. (Left) The angular dependence of the relative velocity for different transverse momenta, given by Eq. (67). The distribution is
symmetric around φ ¼ π. (Right) The prediction of this work for the relative production yield of ψ 0 to J=ψ particles as a function of
transverse momentum pT for both the parallel (purple curve) and the perpendicular (green curve) alignments, at (T ¼ 158 MeV and
μB ¼ 0 corresponding to a large center-of-mass energy.

FIG. 10. Representative examples of charmonium finite veloc-
ity spectra, for both the parallel (top) and the perpendicular
(bottom) cases, at T ¼ 158 MeV and μB ¼ 0. The gray curve
shows the static result. Note that the y-axis scale varies slightly
between the two panels.
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LHC, where the first accurate experimental values for
ψ 0=J=ψ are expected to become available.
A recent estimate [67] of the pT dependence of the ratio,

combining the statistical model with a more realistic
evolution of the temperature profile in the collision center
and careful separation of the core and corona of the
collision, predicts a strong change up to a factor of 3–4.

V. CONCLUSION

Heavy quarkonium is a vital tool in developing our
understanding of strongly interacting matter and connect-
ing experimental results to the fundamental theory of QCD.
On the one hand, progress in effective field theories
has demonstrated rigorously the validity of describing their
in-medium behavior with an effective potential in an
appropriately defined Schrödinger equation; on the other,
advancements in lattice techniques continue to provide
nonperturbative results against which such approximations
can be checked.
The main conceptual result of this work is a rigorously

derived model for the in-medium heavy quark potential
based on the generalized Gauss law in linear response
theory. It describes the in-medium modification of the
vacuum Cornell potential by self-consistently incorporating
a weakly coupled medium described by the HTL permit-
tivity. The resulting analytic expressions depend only on a
single temperature dependent parameter and are able to
reproduce the lattice results for the real part of the potential
even in the nonperturbative regime close to Tc. The string
imaginary part showed an unphysical logarithmic diver-
gence, which we attribute to the equally unphysical
unending linear rise of the vacuum Cornell potential. By
considering the presence of string breaking it is possible to
regularize this artifact, and we were able to give physically
sound predictions for the imaginary part of the potential
that qualitatively matched the lattice data. The presented
work has improved on the conceptual clarity and technical
robustness of the Gauss law model compared to other
potential models described in the literature. In preparation
of upcoming high resolution lattice QCD data for the
interquark potential, the straightforward extension of the
Gauss law model with a running coupling has been
discussed.
Using a combination of weak-coupling computations

and dimensional analysis, we introduced an extension of
the Gauss law model to finite baryochemical potential. The
extension to quarkonium moving relative to the QCD
medium required us to consider two separate alignments
of the quark-antiquark dipole with respect to the velocity
when computing the corresponding in-medium permittiv-
ity. The resulting expressions for the in-medium potential,
while lengthy, could be provided in explicit form. Both
extensions of the model are required to step toward
describing phenomenologically relevant scenarios in

heavy-ion collisions, which are not yet amenable to direct
lattice QCD simulations.
A continuum correction on the vacuum parameters, as

well asmD, was performed that allowed physically realistic
spectral functions to be computed in the S-wave channel,
which formed the basis of our phenomenological inves-
tigation. Similar to previous studies based on the previous
Gauss law model, we find the characteristic broadening and
shifting of spectral features to lower frequencies with
increasing temperature. The strength of the in-medium
modification is hierarchically ordered with the vacuum
binding energy. A skewed Breit-Wigner was fitted to each
resonance peak in order to obtain quantitative results for in-
medium masses and thermal width, which are consistent
with previous studies.
The first phenomenological result of this work lies in

extending the calculation of the ψ 0 to J=ψ production yield
to finite baryochemical potential and subsequently to lower
beam energies relevant for NICA and FAIR. By assuming
an instant freeze-out at around the chiral crossover temper-
ature, we found an excellent agreement with the statistical
hadronization model, and our prediction aligned with the
latest results from ALICE and CMS to within the exper-
imental errors. As our approach, based on in-medium
spectral functions, is largely independent of the statistical
model of hadronization but shares the idea of a fully
kinetically thermalized quarkonium, the agreement corrob-
orates the interpretation of charm quarks becoming equili-
brated in the hot fireball before transitioning into vacuum
states at the freeze-out boundary.
The second phenomenological result is our estimate of

the change in the ψ 0 to J=ψ production yield for finite
transverse momentum. We find increases between 11% and
17% for an increase in pT from zero to 25 GeV, which is
moderate compared to predictions based on the statistical
model which foresees an increase by a factor of 3–4.
We are confident that the availability of this cleanly

derived and lattice-vetted complex potential model will be
of use to the quarkonium phenomenology community. The
Gauss law model described here is future proof, as it is
ready to accommodate the upcoming high precision and
high resolution lattice data on the interquark potential,
where for example a running coupling will be relevant.
While in this study we were only able to access the
information contained in thermal in-medium spectral func-
tions, we are looking forward to seeing the complex
potential inform simulations in the open-quantum-systems
framework for heavy quarkonium, where a more detailed
analysis of the in-medium real-time evolution and recom-
bination dynamics at freeze-out are possible.
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APPENDIX: HEAVY QUARK POTENTIAL
AT FINITE VELOCITY

The work of [63] first investigated nonrelativistic QED
bound states moving with finite velocity in a background
thermal bath via a rigorous effective field theory approach.
This was then generalized to QCD and heavy quarkonium
in [44], which forms the starting point of our analysis. The
general framework is as follows. We assume that the QCD
plasma is in thermal equilibrium at temperature T and
consider a reference frame in which the medium moves
with velocity v with respect to the heavy quark bound state
ðQQ̄Þ at rest. This frame has been used successfully in the
past [68]. The particle distribution functions are given by

fðβμPμÞ ¼
1

exp ½βμPμ� � 1
; ðA1Þ

where the plus (minus) sign refers to bosons (fermions) and

βμ ¼ γ

T
ð1; vÞ ¼ uμ

T
: ðA2Þ

Here, γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor with v ¼ jvj and

the four-momentum is P ¼ ðp0;pÞ. The study of a bound
state in a moving thermal medium is equivalent to studying
a bound state in nonequilibrium field theory [69]; in such a
formalism the Bose-Einstein or Fermi-Dirac distributions
are generalized, which in our case are given by the boosted
versions in Eq. (A1). For a thermal medium of massless
(anti)particles, nonequilibrium field theory gives

βμPμ ¼ p
1 − v cosðθÞ
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ðA3Þ

where p ¼ jpj and θ denotes the angle between p and v.
The distribution functions in Eq. (A1) then become

fðp; T; θ; vÞ ¼ 1

exp ½p=Teffðθ; vÞ� � 1
; ðA4Þ

where the effective temperature is defined

Teffðθ; vÞ ¼
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

1 − v cosðθÞ : ðA5Þ

Intuitively, Eq. (A5) can be understood as a Doppler effect.
For v ≪ 1 it is shown in [44] that Teff ∼ T for all directions
θ, while for v ∼ 1 the temperature felt by the bound state
varies more significantly. The new scales introduced
by considering a thermal medium can be understood via
light-cone coordinates by defining a maximum ðTþÞ and
minimum ðT−Þ measurable temperature with T−<T <Tþ.

The subsequent discussion assumes T− ∼ Tþ, which is
strictly not true as v → 1; however, in [63] it was found that
correct results were obtained for QED by a simple
extrapolation.
The authors in [44] then proceed with an inspection

of the hierarchy of scales in the formalism outlined above.
The details will not be included here; however, the
argumentation follows the construction of pNRQCDHTL.
In the regime T ≫ 1=r ≫ mD ≫ Ebinding, one may employ
the HTL real-time formalism and extend the computation
of the heavy quark potential at finite temperature to include
the presence of a moving thermal bath. This was first
performed for the real Coulombic part in [61,65] before
being extended to the newly understood imaginary part in
[63,70]. More recently, these results were combined with
the linear response ansatz in order to model the in-medium
and finite-velocity modifications to the string as well as the
Coulombic part of the Cornell potential [43].
We will now briefly review the real-time HTL calcu-

lation, following the procedure in [43], before applying our
model prescription. The physical component of the longi-
tudinal component of the gluon propagator can be written
in terms of the corresponding retarded, advanced, and
symmetric propagators,

D11ðp0 ¼ 0;p; uÞ ¼ 1

2
½DRðp; uÞ þDAðp; uÞ þDSðp; uÞ�;

ðA6Þ

where each propagator can be obtained from its corre-
sponding self-energy. Note that we have made explicit the
velocity dependence, since these represent different quan-
tities to those discussed previously. In this framework, the
symmetric propagator is given as

DSðp; uÞ ¼
ΠSðp; uÞ

2iImΠRðp; uÞ
½DRðp; uÞ −DAðp; uÞ�; ðA7Þ

where ΠRðSÞðp; uÞ is the retarded (symmetric) self-energy.
In the frame where the bound state is at rest, the retarded
self-energy can be parametrized as

ΠRðp; uÞ ¼ aðzÞ þ bðzÞ
1 − v2

ðA8Þ

with

aðzÞ ¼ m2
D

2

�
z2 − ðz2 − 1Þ z

2
log

�
zþ 1þ iϵ
z − 1þ iϵ

��
; ðA9Þ

bðzÞ ¼ ðz2 − 1Þ
�
aðzÞ þm2

Dðz2 − 1Þ

×

�
1 −

z
2
log

�
zþ 1þ iϵ
z − 1þ iϵ

���
ðA10Þ
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for

z ¼ P · uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP · uÞ2 − P2

p ����
p0¼0

: ðA11Þ

The QQ̄ dipole is always considered to lie along the z axis,
which gives rise to two separate alignments. First, if the
velocity direction is parallel to the axis of the dipole,
Eq. (A11) becomes

z k ¼ v cosðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2 sin2ðθÞ

p ; ðA12Þ

where θ is now simply the polar angle of the momen-
tum vector. One should keep in mind that the momenta

here are associated with the mediating gluons and thus
align with the dipole direction. In the second case the
velocity of the medium lies in the x − y plane and
makes an angle β with the x axis. Labeling the
azimuthal angle of the momentum vector as ϕ,
Eq. (A11) then becomes

z⊥ ¼ v sinðθÞ cosðϕ − βÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2 − v2 sinðθÞ cosðϕ − βÞ

p : ðA13Þ

After some manipulations, Eqs. (A8)–(A13) can be
combined to give the complex retarded gluon self-energy
in the parallel and perpendicular directions:

Πk
Rðθ;vÞ¼

m2
D

2

�
2−2v2−v4cos2ðθÞsin2ðθÞ

ð1−v2 sin2ðθÞÞ2 −
ð2þv2 sin2ðθÞÞð1−v2ÞvcosðθÞ

2ð1−v2 sin2ðθÞÞ5=2 log

�
vcosðθÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2 sin2ðθÞ

p
vcosðθÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þv2 sin2ðθÞ

p ��
; ðA14Þ

Π⊥
R ðθ;ϕ; β; vÞ ¼ m2

D

2

�
2 − 2v2 − v4 sin2ðθÞ cos2ðϕ − βÞð1 − sin2ðθÞ cos2ðϕ − βÞÞ

ð1 − v2 þ v2 sin2ðθÞ cos2ðϕ − βÞÞ2

−
2þ v2 − v2 sin2ðθÞ cos2ðϕ − βÞð1 − v2Þv sinðθÞ cos2ðϕ − βÞ

ð1 − v2 þ v2 sin2ðθÞ cos2ðϕ − βÞÞ5=2

× log

�
v cosðϕ − βÞ sinðθÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2 þ v2 sin2ðθÞ cos2ðϕ − βÞ

p
v cosðϕ − βÞ sinðθÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2 þ v2 sin2ðθÞ cos2ðϕ − βÞ

p ��
: ðA15Þ

With these expressions, the retarded propagator is obtained via

D k ð⊥ Þ
R ðp; uÞ ¼ 1

p2 þ Π k ð⊥ Þ
R ðp; uÞ

: ðA16Þ

Furthermore, the advanced self-energy can be obtained with the relation

D k ð⊥ Þ
A ðp; uÞ ¼ ðD k ð⊥ Þ

R ðp; uÞÞ�: ðA17Þ

Similarly, one can calculate the symmetric self-energy for both cases [63]. The result is

Π k
S ðp; uÞ ¼ i

2πm2
DTð1 − v2Þ3=2ð1þ v2

2
sin2ðθÞÞ

pð1 − v2 sin2ðθÞÞ5=2 ðA18Þ

and

Π⊥
S ðp; uÞ ¼ i

2πm2
DTð1 − v2Þ3=2ð1þ v2

2
þ v2

2
sin2ðθÞ cos2ðϕ − βÞÞ

pð1 − v2 þ v2 sin2ðθÞ cos2ðϕ − βÞÞ5=2 : ðA19Þ

We now have all of the ingredients to assemble Eq. (A7). From Eq. (A17) we attain

D k ð⊥ Þ
R ðp; uÞ −D k ð⊥ Þ

A ðp; uÞ ¼ 1

p2 þ Π k ð⊥ Þ
R ðp; uÞ

−
1

p2 þ ðΠ k ð⊥ Þ
R ðp; uÞÞ�

¼ 2iImΠ k ð⊥ Þ
R ðp; uÞ

½p2 þ Π k ð⊥ Þ
R ðp; uÞ�½p2 þ ðΠ k ð⊥ Þ

R ðp; uÞÞ��
:

ðA20Þ
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Thus, the symmetric propagator for the parallel case is found as

D k
S ðp; uÞ ¼

−2πim2
DTð1 − v2Þ3=2ð2þ v2 sin2ðθÞÞ

2pð1 − v2 sin2ðθÞÞ5=2½p2 þ Π k
R ðp; uÞ�½p2 þ ðΠ k

R ðp; uÞÞ��
ðA21Þ

and for the perpendicular case as

D⊥
S ðp; uÞ ¼ −2πim2

DTð1 − v2Þ3=2ð2þ v2 − v2 sin2ðθÞ cos2ðϕ − βÞÞ
2pð1 − v2 þ v2 sin2ðθÞ cos2ðϕ − βÞÞ5=2½p2 þ Π⊥

R ðp; uÞ�½p2 þ ðΠ⊥
R ðp; uÞÞ�� : ðA22Þ

The in-medium permittivity can now be calculated from

ε−1ðp; uÞ ¼ − lim
p0→0

p2D11ðp0;p; uÞ; ðA23Þ

where D11 is given in Eq. (A6). From Eq. (A17) it is seen
that the real part is given by

Reε−1ðp; uÞ ¼ −Re
�

p2

p2 þ ΠRðp; uÞ
�
; ðA24Þ

where the retarded self-energies for the parallel and
perpendicular cases are given in Eqs. (A14) and (A15),
respectively. The imaginary part of the permittivity arises
entirely from the symmetric propagator in Eqs. (A21) and
(A22). One notices that other than the trigonometric
angular factors, the momentum structure takes a very
similar form to that given in Eq. (12), with the Debye
mass being replaced by the retarded self-energies. Indeed it
is easily checked that taking the (v → 0) limit recovers the
static expression.
With the entire framework now in place, we can apply

our procedure of modeling the potential via the generalized
Gauss law and linear response ansatz. This is again where
our analysis takes a different path from the existing litera-
ture. As for the static case, our method requires solving two
ordinary differential equations [Eqs. (10) and (11)] but now
with a modified right-hand side that includes the in-
medium finite-velocity complex permittivity. The first step
is to ascertain the real-space expression ε−1ðr; uÞ. This
proves to be somewhat trickier than in the static case, due to
the inherited angular dependence of the self-energies. For
the parallel case, the integrand for the real part can be
manipulated to

Reε−1ðr; uÞ ∼
Z

π=2

0

dθ
Z

∞

−∞
dpp2 sinðθÞhðθ; uÞ

× Re

�
p2

p2 þ ΠRðp; uÞ
�
eipr cosðθÞ; ðA25Þ

where hðθ; uÞ contain the appropriate angular factors.
A similar expression exists for the perpendicular case,
with an extra integral over the azimuthal angle. Our
attempts to compute this integral via the usual contour

techniques led to an ill-defined limit. Thus we instead
propose to follow the steps in [43]; that is, we solve for the
Coulombic part of the potential in momentum space before
Fourier transforming back to attain the real space expres-
sion. This is formally correct and does not conflict with any
other part of our procedure. We then assume that the
deduced ReVC satisfies our defining in-medium equation,

−∇2VCðr; uÞ ¼ 4πα̃sε
−1ðr; uÞ; ðA26Þ

and apply the derivatives in order to acquire the in-medium
permittivity to be used for the string part. This procedure is
further justified since the resulting real part of the real-
space permittivity reduces to the correct expression in the
v → 0 limit. The final expression for the parallel case is
given in the main text [Eq. (39)], which leads to

Reε−1ðr k vÞ ¼ 1

4πr

Z
π=2

0

dθ sinðθÞ cosðθÞ

× Re
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Π k
R ðθ; vÞ

q �
2

e
−Re

h ffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ;vÞ
p i

r cosðθÞ

×

�
Re

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q �

r cosðθÞ − 2

�
: ðA27Þ

For the perpendicular case the results are identical after the
replacements in Eqs. (41) and (42).
These expressions merit some discussion. First, we

highlight that the potentials here differ slightly from those
in [43]. In the computation of Eq. (39), one is faced with a
momentum integral such as

ReVC ∼
Z

d3p hðθ; uÞRe
�

1

p2 þ ΠRðθÞ
�
; ðA28Þ

where the self-energy contains an angular dependence. The
strategy is first to exploit a symmetry present inΠR, namely
that it is symmetric around θ ¼ π=2. After some manip-
ulations this allows the dp integral to be extended over the
entire real domain, such that a contour integration can be
performed by continuing p into the complex plane. One can
see in the denominator in Eq. (A28) that the poles exist at
�i

ffiffiffiffiffiffi
ΠR

p
. Thus taking the real part—in accordance with the

retarded propagator definition—must be done after the
identification of the pole location. In [43] the taking of the
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real part was performed on the entire result of the contour
integral, which can be seen in the discrepancy between
Eqs. (34) and (35) in that text. We have also checked this
numerically and confirmed that our expressions are correct.
The second rather technical detail that arises from perform-
ing the contour integral is that closing in the upper-half
plane gives a nonvanishing contribution. This leads to the
term ∼1=r in Eq. (39) that is necessary to ensure the correct
expression is recovered in the limit v → 0.
The computation of the imaginary part of the real-space

permittivity is somewhat simpler. It amounts to inverse

Fourier transforming Eqs. (A21) and (A22) with an extra
factor of p2. The momentum integrals can be performed
analytically, and the resulting expressions are angular
integrals as we have just seen. In practice we have found
that carrying out the same procedure as for the real part, i.e.,
computing Imε−1ðr; uÞ by taking appropriate derivatives of
the existing ImVC in [43], leads to an expression that gives
the same result as the direct transform; however, it is
numerically more stable and faster to evaluate. The final
result for the parallel case is

ImVCðr k vÞ ¼ 2α̃sT
Z

π=2

0

dθ sinðθÞ ð1 − v2Þ3=2ð2þ v2 sin2ðθÞÞ
2ð1 − v2 sin2ðθÞÞ5=2

m2
D

2iImΠ k
R ðθ; vÞ

×

��
sinh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q �

Shi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q �

− cosh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q �

Chi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ
q ��

−
�
sinh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q �

Shi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q �

þ cosh

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q �

Chi

�
r cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π k

R ðθ; vÞ�
q ��	

; ðA29Þ

where ShiðxÞ and ChiðxÞ are defined, respectively, by

ChiðxÞ ¼ γE þ logðxÞ þ
Z

x

0

dt
coshðtÞ − 1

t
; ðA30Þ

ShiðxÞ ¼
Z

x

0

dt
sinhðtÞ

t
: ðA31Þ

The perpendicular alignment is again obtained by the
replacements in Eqs. (41) and (42). We do not include
the corresponding expression for Imε−1ðr; uÞ since it is

rather long and does not provide any intuition. With a
computer algebra program, it can easily be obtained by
acting the Laplacian on Eq. (A29) or the perpendicular case
equivalent.
Finally, our expressions for the string part in-medium

finite-velocity potential are then achieved in the same
manner as for the static case, that is, via

VSðr; uÞ ¼ c0 þ c1r − 4πσ

Z
r

0

dr0
Z

r0

0

dr00r002ε−1ðr00; uÞ:

ðA32Þ
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