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Abstract
Main conclusion  This work reveals information about new peroxisomal targeting signals type 1 and identifies tre-
halose-6-phosphate phosphatase I as multitargeted and is implicated in plant development, reproduction, and stress 
response.

Abstract  A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme 
C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme 
was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289–1304, 2014). Here 
we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. 
Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting 
to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both 
cases. The homozygous T-DNA insertion line of TPPI showed a pleiotropic phenotype including smaller leaves, shorter roots, 
delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, 
and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an 
essential role for TPPI in development, reproduction, and cell signaling.
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Abbreviations
IBA	� Indole-3-butyric acid
OPDA	� Proto-methyl-jasmonic acid
PTD	� Peroxisomal targeting domain
PTS1	� Peroxisomal targeting signals type 1
SnRK1	� SNF1-related protein kinase 1
T6P	� Trehalose-6-phosphate
TPP	� Trehalose-6-phosphate phosphatase
TPS	� Trehalose-6-phosphate synthase

Introduction

Knowledge of the localization of enzymes, metabolites, and 
regulators is crucial for understanding their cellular func-
tion. Subcellular localization of metabolic pathways is one 
of the principal forms of regulation and is still an ongo-
ing endeavor in plants. Although the subcellular localiza-
tion of major metabolic pathways is established, bypass or 
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backup in alternative compartments are still being identified 
(Sweetlove and Fernie 2013). Even the spatial organization 
of the main metabolic pathways suggests multi-tasking. For 
example, some enzymes that are part of the oxidative pen-
tose phosphate pathway in cytosol and plastids were recently 
also found in peroxisomes, where they most likely provide 
a source of NADPH using sugar phosphates as substrates 
(Meyer et al. 2011). Peroxisomes have specialized carriers 
for transport of cofactors such as NAD+, ADP, and AMP 
(Bernhardt et al. 2012), and pore-forming, anion-selective 
channels facilitate the diffusion of carboxylic acids (Hu et al. 
2012). Transport of trehalose and trehalose-6-phosphate 
(T6P) has to our knowledge not been studied, but it possibly 
occurs through active transporters as well as by facilitated or 
regular diffusion, depending upon the organelle. Trehalose 
has a molecular mass of 342 Da, and trehalose phosphate 
has a molecular mass of 422 Da. Trehalose, at least, is a 
candidate to easily diffuse across the peroxisomal membrane 
since this membrane is assumed to allow free diffusion of 
molecules up to 300–400 Da and shares a common pool 
of small metabolites with the cytoplasm (Antonenkov and 
Hiltunen 2012).

Trehalose is a disaccharide that accumulates and protects 
cells from drought, salt, or low-temperature stress in most 
prokaryotic and eukaryotic microorganisms (Crowe et al. 
1992; O’Hara et al. 2013). In higher plants, sucrose may 
have taken over many of the functions of trehalose. With 
the exceptions known from lower plants, trehalose and T6P 
are only present in trace amounts in plants. Perturbation of 
trehalose metabolism does, however, lead to a wide range 
of different effects in higher plants, such as altered stress 
tolerance, leaf morphology, and embryo lethality, hence tre-
halose metabolites are believed to have critical regulatory 
roles (Vandesteene et al. 2012; Lunn et al. 2014).

T6P is synthesized by trehalose-6-phosphate synthase 
(TPS) from glucose-6-phosphate and UDP-glucose in the 
cytosol according to a scheme similar to sucrose-phosphate 
synthesis (Ruan 2014). Subsequently, T6P is dephosphoryl-
ated by trehalose-6-phosphate phosphatase (TPP) to form 
trehalose. Although higher plants do not accumulate high 
levels of trehalose, they encode large families of genes (puta-
tively) involved in the synthesis of trehalose, indicating cru-
cial functions of trehalose and trehalose metabolites also 
in plants. Arabidopsis has eleven genes encoding TPS and 
ten genes encoding TPP. The TPP genes are named TPPA-J 
(Blazquez et al. 1998; Vandesteene et al. 2012; Lunn et al. 
2014), and investigations into TPPI localization and function 
are presented here.

The primary developmental transition in angiosperms is 
the switch from vegetative meristem, producing leaves and 
stem into a floral meristem, producing flowers that complete 
the plant life cycle. In higher plants, efficient sexual repro-
duction and ensuring optimal development of seed set and 

fruits depend on the transition to flowering at an appropri-
ate time. This needs coordinating of flowering time with 
seasonal and developmental cues (Simpson and Dean 2002; 
Amasino 2010). Arabidopsis contains one repressor pathway 
responding to endogenous signals (autonomous inhibition 
pathway) and six promoting pathways among which three 
are responding to endogenous signals (autonomous induc-
tion pathway, gibberellic acid, and aging pathways) and the 
other three (vernalization, ambient temperature, and pho-
toperiodic pathways) are responding to exogenous signals 
(Heidari et al. 2013). The nutritional status of the plant, 
including sucrose status, is known to be a critical factor in 
the flowering time regulations (Corbesier et al. 1998; Tsai 
and Gazzarrini 2014). T6P, as an indicator of sucrose status, 
plays a vital role in the floral transition. T6P promotes flow-
ering through induction of FLOWERING LOCUS T (FT) 
(photoperiodic pathway) in the leaves and SQUAMOSA 
PROMOTOR-LIKE (SPL) in the shoot apical meristem 
(Wahl et al. 2013; Tsai and Gazzarrini 2014).

Localization and transport of trehalose and T6P are still 
disputed (Ruan 2014), and the enzyme catalyzing the last 
step of trehalose synthesis, TPP, was recently found to be 
localized in different subcellular compartments, i.e., cytosol, 
nucleus/nucleolus, and chloroplasts (Krasensky et al. 2014). 
Krasensky et al. (2014) demonstrated both TPPD and TPPE 
are chloroplast localized. The present work shows that TPPI 
localizes to both plastids and peroxisomes, in both Arabi-
dopsis mesophyll cells and onion epidermal cells. Peroxi-
somal targeting was demonstrated by in silico studies, and 
molecular cytological analyses using modified versions of 
the C-terminal peroxisomal targeting signal. Physiologi-
cal examination of Arabidopsis tppi knockout showed the 
importance of this gene for flowering time, salt stress, and 
plant development.

Materials and methods

Gene cloning for in planta expression

Arabidopsis TPPI, variant 1, cDNAs were amplified from 
isolated RNA (isolated from roots and flowers) using the 
primers (F: GCG​GCC​GCTAT​GTC​AGC​TAG​TCA​AAA​
CAT and R: GAG​CTC​TCA​CAT​TCT​TGG​CTG​CAT​TT) 
and (F: ATGAG​CTC​TCA​TGT​CAG​CTA​GTC​AAA​ACA​
TTG​TCG and R: ATGCG​GCC​GCCAT​TCT​TGG​CTG​
CAT​TTG​TTTCC) to clone them in the back and front of 
enhanced yellow fluorescent protein (EYFP), respectively. 
The C-terminal peroxisomal targeting domain (PTD), 
comprising C-terminus 10 residues of TPPI, (PRM >) con-
struct was amplified from the EYFP template using (F: 
CACCA​TGG​CAA​TGG​TGA​GCA​AGG​GCG​AGGAG and 
R: TATG​TCT​AGA​GTCAcattcttggctgcatttgtttccattccacCTT​
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GTA​CAG​CTC​GTC​CAT​GCC). The PTD (PKM >) was 
re-amplified from the PTD (PRM >) construct using the 
primers (F: CACCA​TGG​CAA​TGG​TGA​GCA​AGG​GCG​
AGGAG and R: CAAG​TCT​AGA​GTC​ACA​TTT​TTG​GCT​
GCA​TTTGT). The deletions of c-terminal two residues 
were done using the combination with the reverse primer 
(R: CAAG​TCT​AGA​GTCA​TGG​CTG​CAT​TTG​TTT​CCA​
TTC​) for both the full-length cDNA and the PTD. The 
deletion of N-terminal 10 residues was done using the 
combination with the reverse primer (ATGAG​CTC​TCA​
TGG​AGA​CTA​CAA​TGT​CAA​GTA​TCATC). The cDNAs 
were cloned in pGEMT-Easy, and subsequently subcloned 
into pCAT-EYFP vector (Ma et al. 2006; Ma and Reumann 
2008) to create N-terminal or C-terminal protein fusions 
with EYFP. All the subcloning vectors are under the con-
trol of a 35S promoter of cauliflower mosaic virus.

RT‑PCR

Total RNA was extracted using the RNeasy Plant Mini 
Kit (Qiagen) according to the manufacturer’s protocol. 
First-strand cDNA synthesis was performed using Super-
script III reverse transcriptase (Invitrogen) in a 20-µl 
standard reaction mixture containing gene-specific prim-
ers. PCR amplification was done using the Expand High 
FidelityPLUS PCR System (Roche), using 200 ng RNA 
equivalents of cDNA per reaction. The primers used for 
expression analysis of TPPI are F: TCA​TGT​CAA​GCA​
AGA​TGA​GAA​GAA​CAGT that is spanning exon 2 and 3, 
and R: TCG​ACG​CAG​CGA​AAG​TGC​AC that is located 
in exon 6.

Bioinformatics

Sequencing of the recombinant constructs was accom-
plished by Microsynth Seqlab GmbH (Göttingen, Ger-
many) using their facility of Extended Hotshots reactions. 
The general promoters T7, SP6, 35S, and NOS terminator 
primers were used for sequencing in pGEM-T Easy and 
EYFP-containing plasmids. Sequence analysis was done 
using Vector NTI (Invitrogen) in combination with web-
based programs for reversing DNA (https​://www.bioin​
forma​tics.org/SMS/rev_comp.html) and protein transla-
tion (https​://us.expas​y.org/tools​/dna.html). The prediction 
site used for predicting peroxisomal targeting signal type 
1 (PTS1) scores is PredPlantPTS1, https​://ppp.gobic​s.de/ 
(Lingner et al. 2011; Reumann et al. 2012). Phylogenetic 
relationships were inferred by preferential alignments of 
the protein sequences obtained from NCBI. This was done 
using the program MEGA6 (Tamura et al. 2013) and vec-
tor NTI (Invitrogen).

Transformation and microscopy

Arabidopsis (Col-0) WT seeds were sown on soil and strati-
fied for two days, then transferred to 12 h light/12 h dark 
conditions, and irrigated once a week by complete Hoagland 
solution. Plants three- to four-week-old were used for proto-
plast isolation. For transformation analysis in Arabidopsis 
mesophyll protoplasts, amplified constructs, and peroxiso-
mal marker proteins were co-transformed into protoplasts 
using polyethylene glycol transformation protocols (Yoo 
et al. 2007). For transformation analysis in onion epidermal 
cells and leaves, plasmids were transiently introduced by 
a helium-driven particle accelerator (PDS/1000; Bio-Rad) 
with all necessary adjustments set according to the manu-
facturer’s recommendations. The bombarded tissues were 
incubated for one to two days in the dark at room tempera-
ture and then observed under the microscope. Four-week-
old tobacco leaves were used for transient transformation of 
EYFP-TPPI by agroinfiltration, and confocal imaging was 
performed as described previously (Kataya et al. 2016).

Peroxisomal markers used were gMDH-CFP (Fulda et al. 
2002) that contains 50 N-terminal amino acids (including 
the peroxisomal targeting signal type 2 (PTS2): a nonapep-
tide with a prototype Arg-Leu-(X)5-His-Leu located at the 
N-termini of proteins) from Cucumis sativus glyoxysomal 
malate dehydrogenase linked with a cyan fluorescent pro-
tein (Kim and Smith 1994). Microscopy was carried out 
using a Nikon TE-2000U inverted fluorescence microscope 
equipped with an Exfo X-Cite 120 fluorescence illumina-
tion system and filters for CFP (exciter S436/10, emitter 
S470/30), YFP (exciter HQ500/20, emitter S535/30), Texas 
red filter set for RFP or OFP: 31,004 (exciter D560/40 × , 
emitter D630/60 m), and a particular red chlorophyll auto-
fluorescence filter (exciter HQ630/39, emitter HQ680/40; 
Chroma Technologies). Images were captured using a 
Hamamatsu Orca ER 1394 cooled CCD camera. Images 
were subsequently processed for optimal presentation with 
Adobe Photoshop version 9.0.

Plant growth

Arabidopsis mutant lines for the TPPI (SAIL-354-D09 
(tppi), SAIL_1245_A06, and GK-480G12) were obtained 
from the European Arabidopsis Stock Centre (Nottingham, 
UK). Mutant selection was done by PCR using primers 
(SAIL_354_D09-LP: TTC​AAT​CAT​TGG​ACG​GAT​TTC, 
SAIL_354_D09-RP: ACG​ACA​GAT​GCA​ACA​TCC​TTC, 
SAIL_1245_A06_LP: TTC​AAT​CAT​TGG​ACG​GAT​TTC, 
SAIL_1245_A06_RP: ACG​ACA​GAT​GCA​ACA​TCC​TTC, 
GABI_480G12_LP: CAA​TGC​ATT​CAT​AAT​CTG​TGGG, 
GABI_480G12_RP: AGA​CGA​ACC​TTG​CTT​GAC​ATG) 
for T-DNA insertion lines recommended at the SALK insti-
tute website SIGnAL (https​://www.signa​l.salk.edu/tdnap​

https://www.bioinformatics.org/SMS/rev_comp.html
https://www.bioinformatics.org/SMS/rev_comp.html
https://us.expasy.org/tools/dna.html
https://ppp.gobics.de/
https://www.signal.salk.edu/tdnaprimers.2.html
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rimer​s.2.html). The pex14 mutant (Orth et al. 2007; Zhang 
and Hu 2010) seeds were kindly provided by Prof. Jianping 
Hu, MSU, USA. Wild type (WT) Arabidopsis seeds were 
obtained from the Arabidopsis Biological Resource Center 
(ABRC, Columbus, Ohio, USA). For plant material grown 
on soil, seeds were sown directly in a regular soil–plant mix. 
Seeds were stratified at 4 °C for two days and then trans-
ferred to standard growth conditions. During germination 
and growth, plants were placed at 22 °C under artificial light 
in short days 8 h light/16 h dark, 12 h light/12 h dark, or long 
days 16 h light/8 h dark regimens.

Generation of transgenic lines

To generate an overexpressor line of N-terminally fused pro-
tein, gene-specific primers were used to amplify full-length 
Arabidopsis cDNA of TPPI, and cloned in the pGEMT-
EYFP vector using the primers (F: aaTTA​ATT​AACAT​
GTC​AGC​TAG​TCA​AAA​CAT​TGT​C and R: aaACT​AGT​
TCA​CAT​TCT​TGG​CTG​CAT​TTG​TTT​). Subsequently, the 
available EYFP-TPPI was excised and subcloned into the 
pBA002 vector. The construct was transformed into A. tume-
faciens strain ABI-1 via the freeze–thaw method. A. thaliana 
Col-0 was transformed by the floral dip method (Clough and 
Bent 1998). Seeds were screened on half MS agar plates 
containing 10 µg ml−1 phosphinotricin (PPT). PPT resist-
ant seedlings were selected 10 to 14 days after germination. 
The successful transformation was validated by isolation of 
the genomic DNA of the primary transformants and using 
primers upstream (forward) and downstream (reverse) of the 
insert.

Sugar dependence and 2,4‑DB, IBA, and OPDA 
response assays

For sugar dependence analysis, seeds of WT Col-0 and 
mutant were sown on ½ Linsmeier and Skoog (LS) medium 
with vitamins (LS; Caisson Labs, Smithfield, UT, USA) with 
or without 1% (w/v) sucrose and stratified in the dark at 
4 °C for two days before being transferred to darkness or 
short-day conditions (8 h light/16 h dark) at 20 °C. Six-day-
old seedlings were scanned using a CANON scanner, and 
hypocotyls length were measured using ImageJ (Schneider 
et al. 2012) (https​://rsb.info.nih.gov/ij/). To study response to 
protoauxins, 2,4-DB (2,4-dichlorophenoxyacetic acid), IBA 
(indole-3-butyric acid), or OPDA (proto-methyl-jasmonic 
acid) were added to ½ LS agar medium with 1% (w/v) 
sucrose. Methyl-jasmonic (MeJA) acid was used as a con-
trol for OPDA conversion. Seeds were sown and stratified for 
two days then kept in continuous light for six to seven days. 
The length of the primary root was measured using ImageJ 
(Zolman et al. 2001; Zhang and Hu 2010).

Salt stress experiments

Surface-sterilized seeds were allowed to grow on half-
strength LS agar media with 1% sucrose for 4  days in 
16 h:8 h of light: dark. Afterward, seedlings were transferred 
to LS containing 0, 50, 100 or 150 mM salt (NaCl or KCl) 
and allowed to grow for another 6 or 12 days. The stt3a-
2 T-DNA insertion mutant (ecotype Col-0) was described 
by Koiwa et al. (2003). The seedlings of stt3a-2 are hyper-
sensitive to NaCl, KCl, and mannitol (Koiwa et al. 2003). 
The length of the primary root was measured using ImageJ.

Flowering time phenotyping

Plants were observed daily. The number of rosette leaves and 
flowering time were recorded. Flowering time was measured 
using the appearance of the first open flower as an indicator 
of transition from inflorescence meristem to floral meristem 
(Heidari et al. 2013). Characterizing of flowering pheno-
types was repeated at least three times and in successive 
generations, for the tppi mutant to assure that observations 
are repeatable, and phenotype is stable during generations.

Results

TPPI has conserved PTS1‑like tripeptides

The major targeting signal that is responsible for the locali-
zation of nuclear-encoded peroxisomal proteins is the PTS1 
(Reumann 2004). Identifying low-abundant peroxisomal 
proteins depends mostly on bioinformatic predictions and 
discovering the non-canonical, rare PTS1s (Reumann 2004; 
Lingner et al. 2011; Wang et al. 2017; Reumann and Chowd-
hary 2018). Using recent prediction methods (Lingner et al. 
2011; Wang et al. 2017), we identified a putative signal 
comprising of the tripeptide PRM > in the C-terminus of 
Arabidopsis TPPI. The PTS1 prediction score for the TPPI 
sequence was 0.618 and is above the threshold 0.412 (the 
min./max. score for Arabidopsis is 1.966/1.188, https​://ppp.
gobic​s.de) (Lingner et al. 2011; Reumann et al. 2012). Inter-
estingly, PRM > was not previously described as a PTS1 and 
seems to be a non-canonical signal because it is only present 
at the C-terminus of TPPI in all of the Arabidopsis proteome 
(Fig. 1).

Using the BLAST search tool (protein BLAST, NCBI), 
several homologs of TPPI from only flowering plants showed 
conservation of known functional PTS1s (such as SRM > , 
PRL > , SRV > , SKV > , SAL >), and the putative PRM > . 
Additionally, another putative PTS1 PKM > was located 
at the TPPI homolog from Eutrema salsugineum (Fig. 1, 
Supplementary Fig. S1). The prediction score for Eutrema 
TPPI sequence was found to be 6.06, which indicates the 

https://www.signal.salk.edu/tdnaprimers.2.html
https://rsb.info.nih.gov/ij/
https://ppp.gobics.de
https://ppp.gobics.de
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Fig. 1   Evolutionary relationship 
of full-length TPPI homologs 
that harbors a conserved PTS1. 
The tripeptide PRM > (high-
lighted with a green triangle) is 
conserved in flowering plants. 
However, a change of PRM > to 
PKM > (highlighted with a red 
triangle) in Eutrema salsug-
ineum from the family/tribe 
Brassicaceae/Camelineae also 
gave a high prediction to be a 
functional peroxisomal signal. 
Nevertheless, a conserved PTS1 
represented by other known 
PTS1s was found in the TPPI 
homologs. The phylogram was 
generated by MEGA6 (Tamura 
et al. 2013) using the Neighbor-
Joining method of Saitou and 
Nei. The tree is drawn with 
branch lengths in the same units 
as those of the evolutionary 
distances used to infer the phy-
logenetic tree. The evolutionary 
distances were computed using 
the Poisson correction method 
and are in the units of the num-
ber of amino acid substitutions 
per site
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functionality of its C-terminal tripeptide as a PTS1. To sum 
up, these data indicate that the TPPI has functional peroxi-
somal domains that terminate with PRM > in Arabidopsis 
and PKM > in Eutrema.

The tripeptides PRM > and PKM > are novel plant 
PTS1s

To test the functionality of the PRM > as a peroxisomal tar-
geting signal, we fused the putative domain comprising the 
C-terminal ten residues of Arabidopsis TPPI to EYFP. The 

extended fusion protein targeted organelle-like structures 
that coincided with labeled peroxisomes, when expressed 
in Arabidopsis mesophyll protoplasts (Fig. 2i) and onion 
epidermal cells (Fig. 2iia). In both plant expression sys-
tems, targeting efficiency was high with little fluorescence 
in the cytosol indicating that PRM > is a strong PTS1. We 
were also eager to investigate the functionality of Eutrema 
TPPI domain. Because it harbors the same peptide sequence 
as Arabidopsis apart from the single residue change 
(PKM > instead of PRM >), we mutated the extended fluo-
rescent protein (EYFP-X7-PRM >) to (EYFP-X7-PKM >). 

a4: bright fielda1: EYFP-TPPI-PTD 
(X7-PRM>)

a3: merge (a1+a2)a2: gMDH-CFP

5 μm

a1: EYFP-TPPI-PTD 
(X7-PRM>)

a3: merge (a1+a2)a2: gMDH-CFP

20 μm

i

ii

b1: EYFP-TPPI-PTD 
(X7-PKM>)

b3: merge (b1+b2)b2: gMDH-CFP

20 μm

20 μm

c1: EYFP-TPPI-PTD 
(X7-P>)

c3: merge (c1+c2)c2: gMDH-CFP

Fig. 2   Subcellular localization analysis of TPPI PTDs. To investi-
gate the functionality of the tripeptide PRM > and PKM > as a PTS1, 
EYFP was extended C-terminally by TPPI PTD comprising the 
C-terminus 10 residues (Arabidopsis: VEWKQMQPRM, ia, iia) and 
(Eutrema: VEWKQMQPKM, iib). The extended reporter proteins 
targeted peroxisomes during transient expression in i Arabidopsis 
mesophyll protoplasts upon polyethylene glycol-mediated transfor-

mation or in ii onion epidermal cells upon biolistic bombardment. 
Additionally, two residues were removed from the TPPI EYFP-PTD 
iic, and the fusion protein remained in the cytosol and approved the 
importance of RM > or KM > for the functionality of the PTS1 signal. 
Peroxisomes were labeled with gMDH-CFP (Fulda et al. 2002), and 
the cyan fluorescence was converted to red
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Similarly, the newly mutated fusion targeted organelle-
like structures that coincided with labeled peroxisomes 
(Fig. 2iib). We also deleted the C-terminal two residues 
from the extended protein to investigate the importance 
of RM > or KM > for the targeting pattern (Fig. 2iic). As 
expected, the modified fluorescent protein remained in the 
cytosol and failed to target peroxisomes. Taken together, 
these data show the functionality of TPPI domains from 
both Arabidopsis and Eutrema and show the functionality 
of PRM > and PKM > as novel PTS1s.

Arabidopsis TPPI targets peroxisomes, nucleus, 
and nucleolus

To investigate the peroxisomal targeting of the full-length 
TPPI by PRM > , we amplified the cDNA from RNA that 
was isolated from flowers and roots. The full-length cDNA 
was then fused N-terminally with EYFP. The fusion protein 
was further expressed in Arabidopsis mesophyll protoplasts 
and tobacco leaves where it was mostly found in the nucleus 
and nucleolus (Fig. 3ia, ib). The fusion protein was also 
localized in organelle-like structures that resemble peroxi-
somes (Fig. 3ia, ib). Subsequently, the full-length fusion 
protein was expressed simultaneously with a peroxisomal 
marker and confirmed the targeting of the fusion protein to 
peroxisomes, as well as nucleus and nucleolus (Fig. 3ic). We 
also noticed the multitargeting of the fusion protein in onion 
epidermal cells where the fusion protein targeted nucleus, 
the labeled nucleolus (Fig. 3iia), and labeled peroxisomes 
(Fig. 3iib). To confirm that the full-length peroxisomal tar-
geting is PTS1 (PRM >)-dependent, we deleted the c-termi-
nal RM > and further fused the truncated TPPI N-terminally 
with EYFP. The truncated fusion protein failed to target per-
oxisomes and localized to the nucleus (Fig. 3iic).

Arabidopsis TPPI targets plastids

TPPI is highly predicted to also target plastids by ChloroP 
1.1 server (Emanuelsson et al. 1999) with a score of 0.512 
and a cleavage site at N-9. To investigate this prediction, 
we fused the full-length TPPI C-terminally with EYFP and 
investigated its subcellular localization. The fusion protein 
was found to target chloroplasts in Arabidopsis mesophyll 
protoplast (Fig. 4ia). Additionally, nucleus and nucleolus 
targeting were also noticeable (Fig. 4ib). Besides, we also 
confirmed its targeting in onion epidermal cells that lack 
photosynthetic pigments. As expected, the fusion protein 
targeted leucoplasts (Fig.  4iia) with its clear stromules 
(known stroma-filled tubules that extend from the surface 
of all plastid types (Natesan et al. 2005). Multitargeting of 
the fusion protein to leucoplasts, nucleus, and nucleolus 
was also observed (Fig. 4iib). We also deleted the N-ter-
minal 10 residues and replaced them with methionine. The 

subsequent fusion protein was also targeted to plastids in 
onion epidermal cells (data not shown). We subjected the 
protein sequence without the N-terminal residues to another 
prediction server [TargetP 1.1 (Emanuelsson et al. 2000)] 
that determined a second plastid signal with a cleavage site 
of 30. Taken together, these data and predictions show the 
plastid targeting of TPPI.

The tppi mutant seedlings show a sugar dependent 
phenotype in short days

Fatty acid degradation is essential for early seedling devel-
opment, and seedling growth is halted in mutants defective 
in degrading fatty acids unless another energy source (ex. 
sucrose) is provided (Mano and Nishimura 2005; Cassin-
Ross and Hu 2014). Homozygous mutants of T-DNA inser-
tion lines were isolated by genotyping for TPPI (Supplemen-
tary Fig. S2a). Using expression analysis, TPPI was found to 
be knocked out in the tppi mutant seedlings (Supplementary 
Fig. S2b). Subsequently, the tppi mutant was used to study 
the effects of sucrose. The pex14 mutant that is deficient in 
the peroxisomal membrane protein PEX14 was used as a 
sugar dependence control (Orth et al. 2007; Zhang and Hu 
2010). In short days, on sucrose-free medium, hypocotyl 
elongation was strongly inhibited in pex14 and tppi seed-
lings relative to sucrose-containing medium, as compared 
with WT (Fig. 5a and Supplementary Fig. S3). The sugar 
dependence was not apparent for tppi seedlings in continu-
ous darkness (Fig. 5b). We also investigated the effects of the 
proto-auxins (IBA, 2,4-DB) and OPDA, which are processed 
in peroxisomes (Zolman et al. 2001; Mano and Nishimura 
2005; Cassin-Ross and Hu 2014). The tppi mutant did not 
show IBA resistance (Fig. 5c) and responded similarly to 
WT for the OPDA treatment (Fig. 5d), hence apparently it 
is not impaired in peroxisomal metabolism of these com-
pounds. The mutant plants show an apparent phenotype 
when grown on soil, where they show a relatively slower 
growth as seen after two-to-eight weeks (Supplementary 
Fig. S4).

The tppi mutant seedlings are hypersensitive to salt 
stress

The importance of trehalose metabolism in plant stress toler-
ance is well documented (Vandesteene et al. 2012; Delorge 
et al. 2014). In Arabidopsis, the tppf knockout mutant has 
decreased tolerance to drought (Lin et al. 2019), and tppd is 
hypersensitive to high-salt stress (Krasensky et al. 2014). In 
that regard, we investigated the role of TPPI in response to 
abiotic stress. WT seedlings were germinated on standard 
nutrient medium and then transferred to medium containing 
NaCl. The tppi seedlings showed hypersensitivity to higher 
salt concentrations represented by the reduced root growth 
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b1: EYFP-TPPI b3: merge (b1+b2)b2: gMDH-CFP

a1: EYFP-TPPI a3: merge (a1+a2)a2: PRH75-RFP

i

ii

20 μm

20 μm

c1: EYFP-TPPI (ΔRM>) c3: merge (c1+c2)c2: bright field

20 μm

a2: bright fielda1: EYFP-TPPI

5 μm 15 μm

15 μm

c4: merge (c3+Plastids)c1: EYFP-TPPI c3: merge (c1+c2)c2: gMDH-CFP

b2: Plastidsb1: EYFP-TPPI

Fig. 3   Full-length TPPI with a free C-terminus targets peroxisomes. 
Arabidopsis TPPI was fused N-terminally with EYFP to form 
EYFP::TPPI that was expressed transiently in ia Arabidopsis meso-
phyll protoplasts upon polyethylene glycol-mediated transformation, 
ib-c in tobacco leaves by agroinfiltration or ii onion epidermal cells 
upon biolistic bombardment. i The fusion protein was observed in the 
nucleus and nucleolus, and punctate structures a–c that co-localized 
with labeled peroxisomes c. ii The fusion protein was observed in 

nucleus, nucleolus a, and peroxisomes a, b. Moreover, two residues 
were removed from the EYFP::TPPI iic, and the fusion protein did 
not target peroxisomes and instead targeted nucleus and nucleolus, 
and decidedly little cytosol. Peroxisomes and nucleolus were labeled 
with gMDH-CFP and PRH75-RFP (in orange color iia2), respec-
tively. The cyan fluorescence was converted to red. ib, ic Stacks of 
25–30 images captured in Z-stack
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and higher death rate in 100 mM NaCl (Supplementary Fig. 
S5), and when treated with KCl (Supplementary Fig. S6). 
The tppi seedlings responses to high salt were comparable to 
the salt-hypersensitive stt3a mutant which was incorporated 
as a control (Supplementary Fig. S6) (Koiwa et al. 2003).

We generated TPPI overexpressor (OEX) and comple-
mentation plants. TPPI OEX lines were produced by trans-
forming a plasmid coding for either TPPI or EYFP-TPPI 
fusion into WT plants. To rescue the TPPI knockout, the 
tppi mutant was transformed with a construct containing 
the TPPI CDS. All OEX and complementation lines were 
proved to have higher expression in leaves than WT (data 
not shown). The tppi + 35S-TPPI complementation line 
was unable to rescue the salt-stress phenotype, and the two 
OEX lines showed a similar NaCl response as WT (data 

not shown). In addition, the tppi mutant showed similar 
tolerance as WT to chloroplast oxidative stress induced by 
methyl viologen and osmotic mannitol-induced stress (data 
not shown). In conclusion, TPPI seems to play a role in the 
salt stress response but does not appear to be essential for 
oxidative and osmotic stress.

The tppi mutant plants display late‑flowering 
phenotype

The tppi plants also showed delayed flowering, and the 
TPPI expression is specifically higher in flowers and roots 
(data not shown), which aligns with the available microar-
ray experiments (Supplementary Fig. S7). That said, plants 
were grown to test the number of days to flowering. The 

a4: bright fielda1: TPPi-EYFP a3: merge (a1+a2)a2: autofluorescence

5 μm

b4: bright fieldb1: TPPi-EYFP b3: merge (b1+b2)b2: autofluorescence

5 μm

a3: bright fielda1: TPPi-EYFP a2: gMDH-CFP b: TPPi-EYFP

20 μm20 μm

i

ii

Fig. 4   Full-length TPPI with a free N-terminus targets plastids. 
Arabidopsis TPPI was fused C-terminally with EYFP to form 
TPPI::EYFP that was expressed transiently in i Arabidopsis meso-
phyll protoplasts and ii onion epidermal cells. The fusion protein tar-
geted plastids-like structures in ia protoplasts, as well as ib nucleus 

and nucleolus. Fitting with targeting in protoplasts, the fusion protein 
targeted iia, iib leucoplasts-like structures, as well as iib nucleus and 
nucleolus in onion epidermal cells. Chloroplasts were captured by 
chlorophyll autofluorescence. Peroxisomes were labeled with gMDH-
CFP, and the cyan fluorescence was converted to red
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mutant plants tppi and tppi + 35S-TPPI were observed in 
8 h days, 12 h days, and 16 h days and showed that the first 
flower appeared later in tppi than in WT in both 8 h days 
and 12 h days (Fig. 6a–c). In the tppi mutant, the first flower 
appeared 10 and 7 days after WT in 8 and 12 days, respec-
tively. The tppi + 35S-TPPI plants showed flowering time 
very similar to WT under all conditions (Fig. 6). The late-
flowering phenotype of tppi mutant is illustrated in Fig. 7. 
These experiments implicate a role for TPPI in flowering and 
verify the ability of 35S-TPPI to complement the flowering 
phenotype.

Discussion

In this study, we identified a new, non-canonical but 
also strong PTS1 (PRM >) at the extreme C-terminus of 
Arabidopsis TPPI which aligns with the predicted plant 
PTS1 motif ([SAPC][RKNMSLH][LMIVY] >) (Lingner 

et al. 2011). In silico search for homologs of TPPI har-
boring a PTS1 showed that such a signal is widespread 
in higher plants (Fig. 1). Changing PRM > to PKM > , 
which is found in Eutrema’s TPPI (Fig. 1; a close Arabi-
dopsis ortholog), helped the verification of the functional-
ity, to our knowledge, of a new PTS1. The N-terminally 
fused full-length TPPI targeted nucleus/nucleolus, and 
peroxisomes. Our data agrees partially with Krasensky 
et al. (2014), where the nucleus and nucleolus only were 
reported for TPPI localization. Krasensky et al. (2014) 
could not report the peroxisomal targeting because they 
masked TPPI-C-terminus PRM > in the C-terminally fused 
TPPI. The utilization of two plant systems allowed us to 
verify the ability of the C-terminally fused TPPI to target 
plastids. Interestingly, TPPI possessed a redox-sensitive 
cysteine as also found in TPPD and TPPE (Krasensky 
et al. 2014) and may be redox-regulated by the thioredoxin 
system in plastids (Lillo 2008; Meyer et al. 2009).

Fig. 5   The effect of TPPI knockout on seedlings. a, b Sucrose 
dependence assay of tppi mutant. Hypocotyl length of seedlings 
grown a for 6 d in 8 h light/16 h dark or b in the dark on one-half-
strength Linsmeier and Skoog (LS) medium with or without 1% Suc. 
The experiments were repeated three times; error bars represent SE. 
Columns marked with stars indicate a significant difference between 
no sucrose and 1% sucrose treatment in Student’s t test. Two stars 
P < 0.01, and 3 stars P < 0.001. c, d Effects of IBA and OPDA on pri-

mary root elongation of tppi mutant seedlings. Relative root lengths 
(treated versus untreated) of 7-day-old seedlings grown on medium 
supplemented with 250  nM OPDA or 10  µM methyl-jasmonic 
(MeJA) acid are shown in d. Plants were grown for 7 days in light on 
one-half-strength LS medium supplemented with 0.5% Suc and dif-
ferent concentrations of c IBA and d OPDA. The experiments were 
repeated three times; error bars represent SE
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Trehalose metabolites, especially T6P, clearly have a 
strong influence on plant growth and development (Schluep-
mann and Paul 2009). TPS1 expression was necessary to 
obtain normal root growth. Roots of 8-day-old seedlings 
grown on a medium, both with and without sucrose were 
almost wholly inhibited unless TPS1 was induced by dexa-
methasone (Van Dijken et al. 2004), indicating that the pre-
cursor of T6P and/or trehalose are essential for root growth. 
TPPI is expressed primarily in roots and leaf primordial 
(Vandesteene et al. 2012; Van Houtte et al. 2013). In support 
of these general roles for TPP, the tppi mutant shows mul-
tiple phenotypes such as aberrations in root growth, plant 
growth, and development.

Mutation of the TPPI had significant effects on levels 
of starch and sucrose, apparently more effective than any 
of the other TPPs (Vandesteene et al. 2012). In this study, 
we also find tppi seedlings to exhibit sucrose-dependence 
phenotype during early germination. At the same time, 
decreased TPPI activity should lead to higher levels of 
T6P, which acts as a signaling molecule in metabolic 

0
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WT tppi tppi-35S-TPPI

Days to Flowering (12hD)

**

a b

c

Fig. 6   Flowering time phenotyping. a–c Flowering time for WT, tppi 
and tppi + 35S-TPPI plants grown in 8 h day, 12 h day, and 16 h day 
was calculated based on the appearance of the first flower. Columns 

marked with two stars are significantly different from WT at P < 0.01, 
(Student’s t test)

Fig. 7   Visible phenotypes of representative tppi mutants. Representa-
tive plants of WT, tppi, and tppi + 35S-TPPI. Plants were grown in 
8 h days
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regulation (Paul 2008; Vandesteene et al. 2012). It has 
been shown that some effects of T6P may occur through 
its inhibitory effect on the SNF1-related protein kinase 
1 (SnRK1) kinase, which belongs to the SNF1/AMPK 
group of kinases (Schluepmann and Paul 2009; Zhang 
et  al. 2009; Nuccio et  al. 2015). In plants, SnRK1 is 
involved in the regulation of primary metabolism by 
inhibiting critical enzymes in sucrose synthesis, nitrogen 
assimilation and isoprenoid synthesis (Lillo 2008; Wur-
zinger et al. 2018). SnRK1 inhibits carbohydrate synthe-
sis (sucrose-phosphate synthetase, SPS), nitrogen assimi-
lation (nitrate reductase, NR), and isoprenoid synthesis 
(3-hydroxy-3-methylglutaryl CoA reductase, HMGR). 
Inhibition of SnRK1 by T6P will, therefore, support acti-
vation of these enzymes, and promote primary (anabolic) 
metabolism. These enzymes are located in the cytosol, 
and to our knowledge, it is not known if or how regulation 
by T6P would be relevant in peroxisomes or chloroplasts. 
Future studies utilizing a complemented tppi mutant with 
TPPI that lacks a PTS1 could help us get more insights 
into the function of TPPI targeting and trehalose metabo-
lites in peroxisomes.

TPPI is highly expressed in roots and flowers and 
the GUS-stained seedlings show downregulation of its 
expression in root tips upon light and sucrose absence 
(Vandesteene et  al. 2012; Van Houtte et  al. 2013). 
Increased tolerance to abiotic stress has, however, previ-
ously been observed in plants overexpressing TPP or TPS 
genes (Van Dijken et al. 2004; Delorge et al. 2014). Since 
the role of TPP enzymes is to convert T6P into trehalose, 
reduced TPPI expression would lead to reduced trehalose 
levels in salt-stressed Arabidopsis. Trehalose is a stress 
protectant (Elbein et al. 2003) and its metabolism has a 
critical role in plant stress tolerance (Schluepmann et al. 
2003; Delorge et al. 2014). The salt stress sensitivity of 
tppi raises the question if this is a result of the trehalose 
levels aberration.

Previously, it has been shown that T6P regulates flow-
ering time where a reduction in T6P level delays flower-
ing, while an increase in T6P level promotes flowering 
(Schluepmann et al. 2003; Wahl et al. 2013). Loss of TPS1 
causes extremely late flowering time in Arabidopsis and 
overexpression of TPS1 results in a very early flowering 
phenotype (Wahl et al. 2013). Here we found that mutation 
in the TPPI gene delays flowering time in 12 h days and 
under noninductive (8 h days) condition. This shows that 
for the regulation of flowering time in Arabidopsis, it is 
probable that not only T6P is sensed but also downstream 
products of the T6P pathway; for example, trehalose, are 
also measured. Complementation of tppi mutant with 
35S-TPPI can rescue the late flowering, which proves that 
the observed late-flowering phenotype is caused by the 
mutation in the TPPI gene.

Conclusion

Arabidopsis TPPI, a member of the TPP family, can target 
multiple subcellular organelles and harbors a novel PTS1. 
The knockout mutant shows multiple phenotypes, includ-
ing flowering delay, and emphasizes the complexity and 
redundancy between the TPP family members.
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