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Abstract: Carbon capture and storage (CCS) has been increasingly looking like a promising strategy
to reduce CO2 emissions and meet the Paris agreement’s climate target. To ensure that CCS is safe
and successful, an efficient monitoring program that will prevent storage reservoir leakage and
drinking water contamination in groundwater aquifers must be implemented. However, geologic
CO2 sequestration (GCS) sites are not completely certain about the geological properties, which
makes it difficult to predict the behavior of the injected gases, CO2 brine leakage rates through
wellbores, and CO2 plume migration. Significant effort is required to observe how CO2 behaves
in reservoirs. A key question is: Will the CO2 injection and storage behave as expected, and can
we anticipate leakages? History matching of reservoir models can mitigate uncertainty towards
a predictive strategy. It could prove challenging to develop a set of history matching models that
preserve geological realism. A new Bayesian evidential learning (BEL) protocol for uncertainty
quantification was released through literature, as an alternative to the model-space inversion in
the history-matching approach. Consequently, an ensemble of previous geological models was
developed using a prior distribution’s Monte Carlo simulation, followed by direct forecasting (DF)
for joint uncertainty quantification. The goal of this work is to use prior models to identify a statistical
relationship between data prediction, ensemble models, and data variables, without any explicit
model inversion. The paper also introduces a new DF implementation using an ensemble smoother
and shows that the new implementation can make the computation more robust than the standard
method. The Utsira saline aquifer west of Norway is used to exemplify BEL’s ability to predict the
CO2 mass and leakages and improve decision support regarding CO2 storage projects.

Keywords: uncertainty quantification; carbon storage; Bayesian evidential learning; data assimilation

1. Introduction

Carbon capture and sequestration, also known as carbon capture and storage (CCS),
represents a unique potential strategy to minimize carbon dioxide (CO2) emissions into
the atmosphere. It creates a pathway toward a neutral carbon balance, which cannot be
achieved solely with a combination of energy efficiency and other forms of low carbon
energy. However, it can be achieved if CCS is added as a routine technology to any process
that uses fossil fuels. Thus far, geological reservoirs, such as depleted oil or gas fields,
or deep saline aquifers, have been considered as appropriate geologic formations for
storing CO2 emissions at a depth of several thousand meters [1–3]. Saline aquifers provide
large storage capacities, are broadly distributed geographically, and are more accessible
to capture sites as they facilitate the entire CO2 transport process [4]. Several projects
from the pilot-to commercial-scale have been implemented worldwide [5,6]. Cumulative
injection of CO2 in some countries like the United States, Norway, and Canada, is as high
as 220 million tons (Mt). The majority of this cumulative (about 75%) is associated with
enhanced oil recovery operations [7], and estimates show that geological reservoirs can
store between 8000 to 55,000 Gt of CO2 [8], which is the capacity of over 200 years of current
global CO2 emissions.

Energies 2021, 14, 1557. https://doi.org/10.3390/en14061557 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3720-6734
https://doi.org/10.3390/en14061557
https://doi.org/10.3390/en14061557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14061557
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/6/1557?type=check_update&version=1


Energies 2021, 14, 1557 2 of 18

However, uncertainties in geological models and rock properties affect the flow mod-
eling and CO2 storage capacities, mitigating the risk of CO2 leakage and consequently the
contamination of clean groundwater. Ensuring the CCS is safe and successful requires
both the storage capacity and CO2 plume migration estimation, because they are used
to identifying the significant uncertainty present in geomodel parameters like porosity,
permeability, and caprock elevation. Storage operations monitoring must ensure the CO2
remains trapped within the reservoir after the injection has stopped.

The standard methods for quantifying uncertainty rely on the consideration of many
plausible geological realizations (ensemble model) and quantification of the statistical
measures of the ensemble parameters. Assessment of the static/volumetric capacity within
a large ensemble model can be easily performed. However, creating highly resolved
simulations for all members of a large model ensemble can quickly become computationally
intractable, which can be solved either by reducing the number of members of the ensemble
or accelerating the simulations required for acquiring each geomodel realization. The
uncertainty of specific parameters has been discussed in several previous studies. For
instance, Allen et al. [9] proposed a simplified method to investigate the causality and
impact of uncertain parameters, including rock properties (permeability and porosity), fault
transmissibility, top-surface elevation, and aquifer conditions in term of temperature and
pressure in terms of both static trapping capacity and dynamic plume migration estimation.

Several studies have demonstrated the application of a data assimilation and opti-
mization strategy for the minimization and mitigation of risks during CO2 injections as
well as the postinjection period at the storage sites. For instance, Dai et al. [10] introduced
a method of analyzing data by employing the probabilistic collocation-based Kalman
filter (PCKF) for the optimization of the surveillance operations within GCS projects. The
method involves the development of surrogate models with the use of polynomial chaos
expansions (PCE) that act as a replacement of the original flow model, followed by an
assessment of the reduced variance of the field cumulative CO2 leak by analyzing the data.
Subsequently, a comparison of the data-worth values of each monitoring strategy is done in
order to select an optimal monitoring operation scheme. Oladyshkin et al. [11] introduced
a framework using polynomial chaos expansion (PCE) as well as bootstrap filters for the
assimilation of the pressure data to reservoir models and quantifying the uncertainty reduc-
tion of the rate of CO2 leak within the storage sites. Only three uncertainty parameters were
considered: reservoir’s permeability, reservoir’s porosity, and wellbore’s permeability. Sun
and Nicot [12] and Sun et al. [13] utilized probability based collocations for the assessment
of how detectable the CO2 leaks were, with the use of the pressure data from the monitoring
wells, for the heterogeneous aquifers that are not certain. Additionally, Chen et al. [14]
introduced a method that focused on machine learning and filter-based data assimilations
to create a CO2 monitoring design, where one determines the optimal monitoring design
by making a choice from the designs for the boosting of the model’s ability to predict
cumulative CO2 leakage. Chen et al. [15] further introduced a framework that focuses on
the ensemble smoother (ES) with multiple data assimilations (ES-MDA) and the geometric
inflation factor (ES-MDA-GEO) to calibrate the reservoir model and monitor the data from
storage sites to predict CO2 migration or leakage detection. González-Nicolás et al. [16]
made a comparison of the use of ES and the restarting of the ensemble Kalman filter (EnKF)
algorithms to detect pathways of potential CO2 leakage with the use of pressure data. In
this vein, Cameron et al. [17] examined how pressure data works in a zone over the storage
aquifer, identifying and quantifying potential leaks. It also performs CO2 storage by using
a particle swarm optimizing algorithm coupled with Karhunen–Loève representations
porosities for model reductions, which detect the aquifer model that matches historical
data. However, there are still conceptual and computational challenges associated with
data assimilation and optimization procedure proposed in the previous listed methods,
as generating a set of models properly conditioned to all historical data that preserve the
geological realism is very challenging process. The limitations have been well-detailed in
Olivier et al. [18], one issue is that of ensemble collapse, which may result in unrealistic un-
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certainty and difficulty to coverage to the target distribution. Another practical limitation is
to render these approaches relevant for a large variety of problems, such as different prior
distributions, different forward models, etc. That also causes significant computational
implementation challenges. This study attempts to introduce an alternative approach that
can circumvent the different problems associated with model-based approaches.

Recently, several approaches have demonstrated that it is possible to provide the
outcomes of subsurface models without the need for model updating and solving the
inverse problem [19]. In relation to this context, Scheidt et al. [20] with Satija et al. [21]
introduced a new protocol for making decisions under uncertainty called Bayesian eviden-
tial learning (BEL). Based on the description provided in [19,22]. BEL relies mainly on data,
model, prediction, and decision under Bayesianism scientific methodologies. BEL is usu-
ally divided into six main stages : (1) Formulation and definition of the decision problem;
(2) prior model definition and specification ; (3) Monte Carlo simulation and falsification of
the prior uncertainty models; (4) Global sensitivity; (5) Uncertainty reduction using data;
(6) Posterior falsification and decision making. In step 5, one may opt for classical inversion
or direct forecasting (DF) [23]. DF utilizes a combination of statistical learning techniques
and the Monte-Carlo sampling method to ensure direct relationships between the data
and the prediction variables. It should be noted that this method requires no completed
explicit model inversions. This results in it being less expensive by a computational amount
when compared to the standard inversion methods. Despite the applications being still
lower in number, DF was successful in applying case studies related to oil reservoir man-
agement, groundwater resources, and geothermal energy problems [21–25]. For instance,
Satija et al. [23] used DF to forecast the future reservoir performance by mapping prior
predictions into low-dimensional canonical space and estimating the joint distributions of
historical and forecast data through linear Gaussian regression; they conclude by stating
that this method displayed uncertainty estimates for production forecasts that reasonably
agreed with rejection sampling. Yin et al. [22] proposed an extended approach based on di-
rect forecasting, called direct forecasting of sequential model decompositions, in which both
geological model parameters and borehole data are used simultaneously. The posterior
results displayed large reductions of uncertainty both spatially, through a geological model
and using gas volume predictions. In the context of CO2 storage, Sun and Durlofsky [26]
introduced a DF method named data-space inversion (DSI) that quantifies the uncertainties
of CO2 plume locations throughout GCS, where the generation of posterior forecasts of CO2
saturation distributions were through the simulation results of prior model realizations
along with observable data. Notably, the generation of posterior geological models were
not in the DSI method, unlike the traditional methods of assimilating data, which involved
ensemble-based data assimilations.

In this work, our intended contribution is to demonstrate how BEL protocol can be
used in designing an uncertainty reduction strategy in predictions and minimizing the risk
of CO2 leakages, facing various sources in uncertainty in terms of permeability, porosity,
temperature, pressure, and caprock depth. Here, we will use a case study problem based
on the Utsira sand reservoir, which is a saline aquifer located in the Norwegian continental
shelf (NCS). This paper also makes a key contribution in extending the DF procedure
through implementing ES-MDA [26] and demonstrating that the DF with ES-MDA [27]
is more robust than the standard procedure proposed in Satija et al. [21]. It also provides
appropriate posterior uncertainty quantification with results that can be compared to
those of the methods proposed in Yin et al. [22]. The paper is structured in multiple
sections. In the following section, we present BEL framework and the associated statistical
methods used to quantify uncertainty. Then, the proposed methodology can be tested
by implementing it in Utsira CO2 storage site involving many uncertainties. Finally, we
provide some concluding remarks and recommend possible future research directions.
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2. Methods: Uncertainty Quantification Framework

In this section, we will introduce the BEL procedure for the data assimilation. The
BEL procedure is based on a Bayesian formulation in the data space, aiming to sample the
conditional/posterior distribution of the interest quantities (in our case, the distribution
of CO2 mass and leakage in the top layer at a future time). BEL can usually be divided
into six main stages [22]: (1) Formulation and definition of the decision problem; (2) prior
model definition and specification; (3) Monte Carlo simulation and falsification of the
prior uncertainty models; (4) Global sensitivity; (5) Uncertainty reduction using data;
(6) Posterior falsification and decision making. Since this paper presents a hypothetical
(but realistic) case study problem, we will focus on steps 2, 3, and 5.

2.1. Prior Model Definition

The prior sampling aims to identify the possible range of model parameterization
and probability distribution for each geological parameter. Let m refer to the vector of
uncertain parameters of a reservoir model using a historical data variable (CO2 saturation
near wellbore region, etc.) as vector d. The forecast (quantity of CO2 mass and CO2 leakage)
is represented by h. The nonlinear function of m through both observed and forecast data
forward model is defined as:

d = Gd(m) and h = Gh(m) (1)

The functions, Gd and Gh, are generated through the use of a reservoir simulator and
by forwarding them to prior geological model realizations, we obtain a set of N samples of
both data and forecast variables.

d = (d1, d2, d3, . . . . . . . . . dN), and h = (h1, h2, h3, .........hN) (2)

Note that we refer dobs as the vector of observation and acquired data.

2.2. Prior Model Falsification

Once the prior samples (both historical and forecast data) are extracted, it is important
to check whether the observed (reference) prior data can predict posterior distribution
that appertains to the prior range. Otherwise, there is a risk that the prediction may be
erroneous. If the prior model is false, suggesting data inconsistency, we must revise the
prior data distribution herein to assess the prior model’s quality and ability to predict the
posterior data [19]. A statistical procedure based on Mahalanobis distance (MD) [28] is
used that handles high dimensional and different types of data measurements with the
primary objective of detecting outliers and determining whether the prior model is false or
not. The MD for each data variable realization d or dobs can be computed as follows:

MD (d) =
√
(d− ρ)β−1((d− ρ), f or n = 1, 2, 3.........., N (3)

Here ρ, and β are the mean and covariance of the data d. Assuming that the dis-
tribution of the data is multivariate Gaussian, the distribution of [MD(dn)]2 would be
chi-squared x2

d. We set the 95th percentile of the x2
d as the tolerance threshold for the

multivariate dimensional point dn. If MD (dobs) falls outside the tolerance threshold
(MD (dobs) > MD (dn), the dobs would be regarded as outliers, and the prior model would
be determined as false, as it would mean that it has a very small probability. It should
also be noted that this method requires data distribution to be Gaussian; if it is not, other
outlier detection techniques such as local outliers detection [29], isolation forest [30], and
One-Class Support Vector Machines [31] are highly recommended.

Next, a machine learning dimension reduction method is applied (e.g., functional
principal component analysis (FPCA) [32] and canonical functional component analysis
(CFCA) [33]) are applied to generate reduced dimension vectors in canonical, dc and hc,
where dimension(dc) << dimension(d); and dimension(hc, ) << dimension(h).
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2.3. Direct Forecasting

Direct forecasting (DF) is a prediction-focused analysis [21,23,25], the main objective
is to build a statistical relationship between the observed data and prediction without re-
solving any geological model inversion problem. More precisely, the main idea behind DF
is to make an estimation of the conditional distribution f (h|d) from the prior Monte-Carlo
sampling. This conditional distribution can be used to generate posterior samples h. In this
paper, we introduce the method proposed in Satija and Caers (2017) [21], which has been
successfully used in a variety of previous studies [19,24,25]. This learning strategy depends
on mapping the problem into a lower-dimensional space through bijective transformations
using machine learning reduction techniques- principal component analysis (PCA) and
canonical correlation analysis (CCA) to maximize linearity between both data and predic-
tion varaibles and then fitting the data through multivariate Gaussian distribution. In the
multivariate Gaussian, all the conditional distributions can be identified analytically and
described as follows:

The linear relationship between data variables and forecast implies that:

dc = Gc
h (4)

G is the linear coefficient that maps hc to dc. Then, the Gaussian likelihood model is
formulated as:

L(hc) = exp(−1
2
(Ghc − dc

obs)
TC−1

dc (Ghc − dc
obs)) (5)

Here, Cdc is the data covariance matrix of the canonical space. Since the prior and
likelihood data are multivariate Gaussian, the posterior is as well Gaussian, and the
posterior mean and covariance are easily computed using the standard methods [34]. With
the likelihood and prior data and a linear model being multivariate Gaussian, the posterior
distribution f (hc|dobs) is also multivariate Gaussian with mean h̃c and covariance model
C̃H that has an analytics solution:

h̃c = h̄c
prior + ChGT(GChGT + Cdc) + CT)

−1(dc
obs + Gh̄c

prior) (6)

C̃h = Ch − ChGT(GChGT + Cdc + CT)
−1GCh (7)

where CT is the error covariance that occurs as a result of the linear fitting. Thus, we can
generate the posterior data by simply sampling from this multivariate Gaussian.

One key element of DF is the way a sufficient Monte-Carlo samples of size N are
determined. Following the results of previous studies on hydrogeophysics [25], and on
oil reservoirs [23], the range of the realizations size N is generally between 100 and 1000.
DF can also be modified. Instead of using linear Gaussian, we can integrate the ensemble
smoother with multiple data assimilation (ES-MDA).

2.4. Direct Forecasting-ES-MDA (DF-ES-MDA)

ES-MDA is an ensemble-based method introduced by Emerick and Reynolds in
2013 [27], as an alternative to the sequential data assimilation scheme of EnKF. ES-MDA has
successfully improved the performance of history matching, and it is simple to implement.
In its simplest form, the method employs the standard smoother analysis equation a
predefined number of times along with the covariance matrix of the measured data error
that is multiplied by a coefficient a. The coefficients must be selected in a way that the
following equation is satisfied.

Na

∑
k=1

1
ak

= 1 (8)

Here, Na is the number of times the analysis is repeated. The standard ES-MDA
analysis that is applied to a vector of model parameters, m, can be written as:
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mi = mb
i + Cmd(Cdd + apCD)

−1(dobs − dsim,i), f or i = 1 . . . . . . .N (9)

Here, the subscript i refers to the ith ensemble member, Cmd is the cross-covariance
matrix between the vector of model parameters m and predicted data d; Cdd is the auto co-
variance matrix of the predicted data d; ap is the coefficient that inflates CD, the covariance
matrix of the observed data measurement error; dobs is the observation data perturbed by
the inflated observed data measurement error; dsim the simulated data based on the previ-
ous simulation models; and N is the ensemble size (i.e., number of reservoir models in the
ensemble). Conventionally, the ensemble-based history matching simultaneously updates
N reservoir models. Cmd(Cdd + apCD)

−1 refers to Kalman gain K which is computed with
regularization by SVD using 99.9% of the total energy in singular values. Refer to [27,35]
for more information about the method.

In this work, we modified ES-MDA to generate samples of both historical and pre-
dicted data variables d = [dc, hc]T , given that the vector of observations dc

obs are considered
after applying PCA and CCA. Thus, we can write the DF-ESMDA update equation as:

dk+1
i = dk

i + Kk(dc
obs − dc,k) (10)

Kk = Chcdc(Cdcdc + apCe)
−1 (11)

Cdcdc =
1

Ne − 1

Ne

∑
i=1

(dc
i − d̄c)(dc

i − d̄c)T (12)

Cddc =
1

Ne − 1

Ne

∑
i=1

(di − d̄c)(d− d̄c)T (13)

Here, Ne is the number of components (selected dimension); K refers to the Kalman
gain; Cddc is the cross-covariance matrix between the vector d and historical data; and Cdcdc

is the auto covariance matrix historical data.

2.5. Direct Forecasting on a Sequential Model Decomposition (DF-SMD)

DF can also be extended by replacing the prediction variable h with geological model
variable m (porosity, permeability, etc.) to update the geological model variables and
to obtain f (m|dobs) without traditional iterative model inversions. We employ the same
method of [22] which has been successfully applied to update geological uncertainty with
borehole data. In case of a reservoir, the geological model m consists of structural model s,
rock types r, petrophysical model p, and subsurface fluid distribution f , m = (s, r, p, f ).

The prior model uncertainty is defined as the sequential decomposition of specific
model variables. In order to condition these model variables to wellbore data, we propose
the following direct forecasting equation in a sequential scheme:

f (m|dobs) = f (s, r, p, f |dobs) = f ( f |sposterior, rposterior, pposterior, dobs, f )

f (p|, sposterior, rposterior, dobs, p)

f (p|sposterior, dobs, p) f (s|dobs, p)

From the equation above, the joint uncertainty quantification is equivalent to a se-
quential uncertainty quantification. Furthermore, the uncertainty quantification of a model
component is conditioned to the near wellbore region data and posterior models of the
previous components. Unlike the standard DF of a sequential model decomposition
technique, the posterior realizations p and prior realizations f will aid in determining a
conditional distribution f ( f |pposterior); subsequently, we assess this using near wellbore
region observations dobs of f .

Moreover, due to the high dimensionality of the model variables, distance-based
generalized sensitivity analysis (DGSA) method [36,37] is performed to investigate the
effect of model variables m on the data variables and select a subset with m parameters
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that have the largest impact on the data variables. The main advantage of DGSA is that it
does not require a functional form and it is easy to use and requires relatively low amount
of simulations [19]. For more details, see [36–38].

2.6. Uncertainty Reduction Analysis

The uncertainty reduction analysis is considered as one of the important elements of
decision assessment, and it is employed after the three methods of direct forecasting are
completed. In this paper, we have conducted uncertainty reduction in two metric interests,
including CO2 mass and leakage.

Taking Mc as CO2 mass and the prior probability density function (PDF) of Mc as
P(Mc). P(Mc) is evaluated based on the prior reservoir models. We refer to the number of
uncertainty distributions U(P(Mc)) in a CO2 mass P(Mc) as the following:

U(P(Mc)) = P90P(Mc)− P10P(Mc) (14)

Here, P90P(Mc) and P10P(Mc) are the 90th and 10th percentiles, respectively. The
posterior PDF of P(Mc|dobs) is computed using DF techniques. Therefore, the uncer-
tainty reduction, UR, is specified as the difference between prior uncertainty and posterior
uncertainty in the model outcomes:

UR = U(P(Mc))−U(P(Mc|dobs)) (15)

3. Materials
3.1. Model Description

We test the performance level of the proposed methodology in the Utsira sand, which
is a saline reservoir located beneath the central and northern North Sea as displayed in
Figure 1. In this location, there are over 20 reservoir formations (producing oil and gas
fields, abandoned oil and gas fields and geological formations such as saline aquifers). We
simply use the reservoir dataset provided by the Norwegian Petroleum Directorate (NPD),
which only consists of top-surface and thickness maps and average rock properties. Utsira
formation consists of weakly consolidated sandstone with interlayered shale beds that act
as baffles for the upward migration of the injected CO2, and it has an average top-surface
depth of almost 800 m below the seabed (within the range of 300–1400 m). The storage
capacity of the Utsira system is estimated to be 16 Gt, with a prospectivity of 0.5–1.5 Gt [39].
The boundaries of the aquifers are considered open. An open boundary means that there
is communication between the aquifer and anything that lies adjacent to it, be it another
aquifer or the sea bottom. The corresponding permeabilities in the Utsira geomodel range
from 0.5 to 2.5 darcys. Another study Singh et al. [40] suggested that permeability could
represent within the range of 1.1–5 darcys. Furthermore, In the NCS public datasets, there
is no information about possible leakage through open boundaries or through the caprock.
We acknowledge that these are important factors, but despite these limitations we have
decided to use the Utsira available data to demonstrate BEL framework and discuss its
advantages and potential benefits in future CCS operations. It is important to emphasize
that in our study, some of the injected CO2 can leave the computational domain during
the simulation; these are considered as leaked volumes. Nonetheless, this cannot be the
resulting CO2 that has leaked back into the atmosphere; it will in most instances continue
to migrate beyond the simulation model inside the rock volume.
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Figure 1. Utsira formation. Location of along the Norwegian Continental Shelf (left). Maps of
geomodel depths in meters (below the seabed) (right) [9].

3.2. The General Setup

A total number of N = 200 prior geological realizations were generated using normal
Gaussian distribution. There were uncertainties in terms of porosity, permeability, caprock
elevation, temperature, and pressure. Following the case study by Nilsen et al. [3], which
tested the sensitivity of CO2 migration to many input parameters, it was found that porosity
differences would influence the total volume of rock that the plume comes into contact
with. Increasing the thickness of the pore decreases the overall volume of rock occupied
by the plume, reducing the migration so that the plume does not move far. Permeability
impacts the behavior of CO2 plume flow by changing its speed and direction, creating
a thinner plume that reaches further upslope. As shown in Figure 2, uncertain aquifer
temperature and pressure may also affect the CO2 density, which further impacts plume
migration and storage ability estimates.

Figure 2. Impact of pressure and temperature gradient in CO2 storage capacity.

Moreover, we assume that the Utsira reservoir has one injection well at 1012 m depth.
Then, an injection rate of 10 Mt per year is considered for a period of 40 years, followed by
a 3000-year migration (postinjection) period. Every flow simulation is performed by using
the open-source software MRST-CO2 lab developed by SINTEF [41], the Department of
Applied Mathematics. CO2 lab Computational tools in MRST was specifically designed for
studying the long-term and large-scale storage of CO2.
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4. Results and Analysis
4.1. Scenario 1: Uncertainty Reduction Using Direct Forecasting

Prior Model. A set of N = 200 prior reservoir models is generated by using Monte-
Carlo to the prior distributions. The selected number of models make certain that the
prior distributions are adequately sampled. In all cases, a “reference” model, which is not
incorporated in the set of N prior models, is considered. The prior models are forward
modeled using a MRST-CO2 lab over 3000 years. The CO2 saturation data is collected at
near wellbore region during the 40-year injection period. We intend to assess the quantity
of CO2 mass during the postinjection period and the corresponding CO2 leakage at the
end of time tracking period (3000 years). The prior distribution of modeled of the data
variables for the injection well as well as the forecasts are shown in Figures 3 and 4. From
both figures, we notice a large amount of uncertainties is involved.

Figure 3. Prior measurement data variables.

Figure 4. Prior distribution of prediction data variables—3000 years. The red dashed line is the prior probability den-
sity function.

Falsification. To assess the quality of the prior models, data variables (CO2 saturation)
of the injection well of 200 prior models are used with dobs by employing the MD outlier
detection. The MD of dobs is found to be 2.261, which is below the 95-percentile threshold,
which suggests that the prior model is correct. Figure 5 shows the comparison of MD with
dobs and MD with 200 prior models.

Dimension Reduction and Linearization. To establish a relationship between the
data and forecast variables, it is first necessary to ensure low dimensionality in both
variables. For this purpose, we perform FPCA on the data variables d and h by selecting the
principal components (PCs) that preserve 90 % variance. Accordingly, three dimensions are
retained for both the data and forecast variables (CO2 mass and CO2 leak). The choice of
the three dimensions is based on a compromise—it is important to keep as much variance
as possible while ensuring maximum reduction of the problem’s dimensionality. Thereafter,
CCA is conducted to the reduced data and prediction sets to maximize linearity between
the reduced data and forecast. As shown in Figures 6 and 7, the relationship between the
components in the functional domain is not linear; the application of CCA subsequently
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increases the correlation between the components in the canonical space, except the third
dimension as displayed in Figure 6—CCA fails to establish a unique linear relationship.

Figure 5. Prior falsification using Mahalanobis Distance (MD). The red square is the MD for dobs.
Circle dots Refer the MD Results of 200 data variable samples, and the red dashed line is the 95th
percentile of the Chi-Squared distributed MD.

(a) PCA correlation analysis.

(b) PCA correlation analysis in canonical space.
Figure 6. Functional components correlation analysis. Red lines correspond to the observed (CO2 mass).

Reconstruct Posterior Model. After a linear correlation in low dimensions has been
established, we calculate the posterior distribution of the forecast components. First, we
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use the linear Gaussian regression equation that has been explained in one of the previous
sections, for which hc must be first transformed using a normal score to get hc

gauss. Thus,
Gaussian regression generates a multivariate normal posterior f (hc

gauss|dobs) which can
be easily used to sample forecast components that are conditioned to dc

obs. Second, we
apply modified ES-MDA explained in one of the previous sections to generate the posterior
distribution of forecast variables hc. Moreover, we used Na = 4MDA iterations. It must
be noted that we have added random Gaussian noise to dc

obs, with a mean of zero and a
standard deviation of 10%.

(a) PCA correlation analysis.

(b) PCA correlation analysis in canonical space.
Figure 7. Functional components correlation analysis. Red lines correspond to the observed (CO2 Leak).

Once the posterior distribution of the prediction in the latent dimension space is
established, it can be easily sampled and transformed back into the original initial space,
where the posterior distribution of the prediction is shown in Figures 8 and 9; we notice
that the DF with Gaussian regression techniques predicts a larger uncertainty range for
both CO2 mass and leakage after 3000 years compared to DF with ES-MDA, for which
results are reasonable and data match is excellent, the uncertainty bands are reduced
for both CO2 mass and leakage at the end of 3000 years. The results stipulate that the
proposed DF-ESMDA is more robust than the original DF. Both methods are fast in terms of
computation, but they require running reservoir simulations of the prior ensemble, which
definitely consumes a lot of the computational time.

(a) DF. (b) DF-ES-MDA.
Figure 8. Reconstruct posterior CO2 mass.
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(a) DF. (b) DF-ES-MDA.

Figure 9. Reconstruct posterior CO2 leak.

4.2. Scenario 2: Uncertainty Reduction Using Direct Forecasting on a Sequential
Model Decomposition

We use the same generated prior model used in Scenario 1, but as discussed in the
previous section, we replace the prediction variable h with geological model variable m to
obtain f (m|dobs).

Dimension Reduction. We perform PCA on the model variable m, which consists
of permeability, porosity, temperature, and pressure; we select the PCs that preserve 90%
variance. As displayed in Figure 10, 102 dimensions are retained for both permeability and
porosity, and 165 dimensions are kept for temperature and pressure, respectively.

(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.

Figure 10. Cumulative sum of the PCA eigenvalues for the model m variables.

Global Sensitivity Analysis. In the next step, we would intend to find which PCA
components impact the data prediction such that we can purpose a strategy for reducing the
uncertainty of prediction variables. We apply DGSA based on a Euclidean distance to assess
global sensitivity. Figure 11 outlines the main effects on a Pareto plot in which DGSA identi-
fies the nonsensitive (measure of sensitivity < 1) and sensitive (measure of sensitivity > 1)
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effects. In total, 18 sensitive principal components exist from the pressure spatial model, 22
for temperature, 11 for porosity, and 16 for permeability. These sensitive principal component
and global variables scores are now assigned for uncertainty quantification.

(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.

Figure 11. Global sensitivity of model parameters to measured data.

Linearization. After all sensitive model variables have been mapped into a lower-
dimensional space, we require the application of CCA to establish a useful relationship
between model variables and data variables. Figure 12 indicates that the primary canonical
components d and m exhibit much stronger correlations.

(a) Permeability.
(b) Porosity.

(c) Pressure. (d) Temperature.
Figure 12. First canonical covariates of data and model variables. Red dashed lines correspond to the observed data.
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Reconstruct Posterior Model. Once the linear correlation is maximized in low di-
mensions, it becomes easy to sample the posterior distribution and transform back lower-
dimensional scores into original permeability, porosity, temperature, and pressure dimen-
sion scores. Figure 13 depicts the posterior distribution model realizations by comparing
it to the following prior model, indicating that the model uncertainty range has reduced.
We compare the score of both prior and posterior distribution along the two sensitive PCs
with the highest score. From Figure 14, we notice that the prior samples’ uncertainty has
remarkably reduced. Note that the uncertainty quantification includes all the PCs sensitive
score variables.

Figure 15 compares the Empirical CDF of the ensemble means of the sampled posterior
log-perm, porosity, pressure, and temperature to their counterparts in the prior models.
The results suggest a slight change on the distribution posterior model. Moreover, the
uncertainty reduction is achieved, as the posterior samples are conditioned to the data
variables of the well that are held in within the prediction domain. For verifying this
results, we forward the posterior samples model m for simulation and extract the CO2
mass and CO2 leak posterior samples, and indeed, the posterior prediction distribution
from evidential analysis accordingly reduces the uncertainty on the CO2 mass and CO2
leak as displayed in Figure 16; hence, this provides the input information required on
the distribution of the data regarding CO2 leakage at the end of migration tracking time
(3000 years). From Table 1, it can be observed that integration of DF with ES-MDA would
result in higher uncertainty reduction of CO2 leakage (29.82–66.40 Mt) than the other
techniques at both 40 years (after which we stop injection) and 3000 years.

(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.
Figure 13. Posterior and prior distributions of model variables (first canonical components).
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(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.
Figure 14. Prior and posterior distribution of the scores of the two sensitive PCs with the highest variances.

Figure 15. Empirical CDF computed from ensemble means of prior and posterior parameters.

Table 1. Uncertainty Reduction (UR) of CO2 leak (Mt).

Methods UR—40 Years UR—3000 Years

DF 26.11 51.563
DF-ES-MDA 29.82 66.40

DF-SMD 28.35 56.83
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Figure 16. Posterior distribution of CO2 mass and leakage at 3000 years using DF-SMD. Black dashed lines correspond to
the observed data.

5. Discussion and Concluding Remarks

This paper makes a contribution by showing a novel approach to quantify uncertainty
during the injection of CO2 for its storage and migration in deep saline aquifers by applying
a Bayesian evidential learning (BEL) framework that involves falsification, global sensitivity
analysis, and direct forecasting (DF). We presented a new DF implementation coupled
with ES-MDA. The proposed DF-ES-MDA was compared with the original DF proposed
in [21,23] and DF with sequential model decomposition in [22]. Both of the original methods
mitigate the uncertainty reduction to a linear problem by reducing the high dimensionality
of the original data using PCA and CCA; then, we established a statistical relationship
between the data and forecast for DF and among the model, data, and forecast for DF-SMD.
This estimated relationship combined with Bayesian Gaussian regression is thus used to
generate a statistical forecast of the interest quantities—in our study, CO2 mass and leakage.
The new implementation preserves the main advantage of the original DF—its ability to
provide an ensemble of CO2 mass and leakage forecasts without iterative data inversion
or history matching problems that can be computationally expensive and difficult. The
three methods are advantageous even though the time to execute the reservoir simulations
for the prior models tends to be time consuming. We compared the DF-ES-MDA with the
original DF and DF-SMD of a real field case. Moreover, we showed that the accuracy of
the DF-ES-MDA was consistently enhanced and a higher degree of uncertainty reduction
could be achieved.

However, some criteria must be addressed to ensure the high-quality formulation
of the three methods, in that a key for successful BEL framework application is the defi-
nition of the prior model, which should retain geological realism, as an unrealistic large
uncertainty range may impact the data-prediction relationship and minimize accuracy.
As such, a multivariate outlier detection method is employed to examine the quality of
the prior model distribution compared to the observed case. Furthermore, the dimension
reduction method should be selected based on the nature of the variable itself. Accordingly,
we observed that FPCA was practical in our study for smoothly diversified time-series
dataset (CO2 saturation around near wellbore region), while eigen-image analysis proved
useful in reducing the dimension of the spatial maps, such as permeability, porosity, etc.
Moreover, PCA was mainly chosen as it is simple and bijective. Notably, multiple dimen-
sion reduction techniques, such as auto-encoder [42] and Gaussian process latent variable
models (GPLVM) [43,44], can be included in the BEL framework. Additionally, the choice
of regression technique is guided by the type, dimension, and relationship of the measure-
ments, data, and forecast variables (linear or nonlinear). Due to the high-dimensionality
problems, parametric regression is usually chosen instead of nonparametric techniques,
except that large number of prior samples are available [19]. This work could be improved
and extended in several ways. It is important to note that for this study, we have only
considered quantities such as CO2 saturation through wellbores and their respective CO2
mass and leakage. This approach can be applied to examine the effectiveness of monitoring
and the monitoring duration to lower uncertainty in risk metrics, such as top-layer CO2
saturation and plume mobility and seismic time-lapse data. Accordingly, it will also be
useful to apply the DF procedures to more complex geological models, such as bimodal
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channelized systems, which can be challenging for traditional (model-based) history match-
ing methods, kernel density estimation [45], and extensions of CCA [46] can be included
in the BEL framework to tackle more complex nonlinear inverse problems. Finally, using
data space inversion (DSI), as described by Sun and Durlofsky [26], CO2 leakage detection
under uncertainty should also be considered.
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