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Abstract

Different miRNA profiling protocols and technologies introduce differences in the resulting

quantitative expression profiles. These include differences in the presence (and measurabil-

ity) of certain miRNAs. We present and examine a method based on quantile normalization,

Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple

studies in breast cancer into a single joint dataset for integrative analysis. By pooling multi-

ple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as

statistically significant when separately analyzing these datasets. To merge several data-

sets, as we do here, one needs to overcome both technical and batch differences between

these datasets. We compare several approaches for merging and jointly analyzing miRNA

datasets. We investigate the statistical confidence for known results and highlight potential

new findings that resulted from the joint analysis using AQuN. In particular, we detect sev-

eral miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER

negative samples. In addition, we identify new potential biomarkers and therapeutic targets

for both clinical groups. As a specific example, using the AQuN-derived dataset we detect

hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group,

a phenomenon that was not previously reported. Furthermore, as demonstrated by func-

tional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast can-

cer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together,

these observations suggest a novel functional role for this miRNA in breast cancer.
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Packages implementing AQuN are provided for Python and Matlab: https://github.com/

YakhiniGroup/PyAQN.

Author summary

This work demonstrates a practical approach to the joint-analysis of multiple miRNA

expression profiling datasets acquired with different measurement technologies. The use

of different platforms in miRNA profiling can lead to major differences in results. In par-

ticular, some miRNA species are less amenable to detection and quantification by certain

platforms or designs. Our approach, termed AQuN, combines quantile normalization

with special attention to missing entities, to normalize miRNA expression across datasets,

technologies, designs and platforms. As we show, our proposed approach uncovers pat-

terns of interest that would not have emerged as statistically significant when analyzing

the datasets individually or with other standard-practice normalization methods.
Amongst our findings, we noted a previously undocumented miRNA that is signifi-

cantly over-expressed in samples from estrogen-receptor positive breast cancer patients as

compared to samples from estrogen-receptor negative patients. We further investigated

this miRNA, hsa-miR-193b-5p, and experimentally show, in cell lines, that its expression

level impacts the viability of tumor cells. AQuN is available to the community in the form

of Python and Matlab packages. The joint-processed data is also made available for further

investigation.

Introduction

microRNAs (miRNAs) are endogenous, small non-coding RNAs (~22 nucleotides) that bind

to target-specific sites most often found in the 3’-untranslated regions (UTRs) of target mes-

senger RNAs (mRNAs). Through this binding, miRNAs regulate gene expression by confer-

ring inhibition of mRNA translation or mRNA degradation [1]. miRNA expression profiling

is an important tool for studying tumor biology and classification and serves as a basis for

potential diagnostic and prognostic assessments [2–4]. Increasing technological and economic

viability of expression sampling methods has enabled the systematic study of miRNA expres-

sion in cohorts of hundreds of patients [5–7] and in several cancer types [8, 9]. On the other

hand, inherent measurement noise coupled with complex causes of biological variability affect

the statistical confidence in ascertaining consistent differences of low magnitude between pop-

ulations when limited to small sample sizes. Absolute expression differences are not necessarily

linearly correlated with downstream effects of the expressed miRNA, therefore subtle but con-

sistent differences may be of greater biological importance.

Abnormal miRNA expression in breast cancer has been repeatedly associated with cancer

proteins [10], molecular subtypes [11], progression [12–14] and prognosis [5]. For example, in

one of the first genome-wide characterization studies of miRNA expression in breast cancer

we identified 63 miRNAs differentially expressed between the two main clinically diverse

groups of breast cancer, estrogen receptor (ER) positive and the ER negative tumors [11].

Combining experimentally measured data from multiple sources is both a challenging and

a worthwhile endeavor. Statistical estimation theory formulates a relation between sample size

and variance of estimate via the Fisher information that follows the chain rule for independent

samples. The ability of statistical hypothesis tests to detect subtle, yet consistent and possibly
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genuine, differences between populations is directly related to sample size and is quantified as

a test’s power [15, 16]. Increasingly larger power and statistical significance is hindered by

sampling costs that can prohibit large sample sizes. This, in turn, leads to the incremental

funding of repeated studies aiming to measure the same phenomenon. Follow-up studies tend

to vary from their former, sometimes using newer or alternative experimental protocols,

reagents and technologies, introducing batch differences between samples. Such a ‘batching’

design, inadvertently, introduces distinctions (batch effects) between samples that correlate

with the batch and may overshadow subpopulation differences in their magnitude. Blindly

testing for hypotheses on batch-collected dataset without taking such effects into account can

lead to spurious and erroneous conclusions and can hide significant effects behind batch dif-

ferences. In this work we address joint analysis of data batched using different miRNA profil-

ing technologies that have been shown to have systematic differences [17, 18].

There are various approaches commonly used in practice to address the analysis of com-

bined data containing batch effects. The authors of earlier works [19, 20] showed that applying

standard, parametric, batch correction approaches may introduce bias from uneven sample

sizes of the different groups and data idiosyncrasies. A recent study [21] applied a non-paramet-

ric approach for correcting case-control microbiome studies and showed that it compares favor-

ably with former methods. Their method resembles ours, as we further illustrate below.

In this work we apply a non-parametric, quantile-based, batch normalization approach,

Adjusted Quantile Normalization (AQuN). We use this method for jointly analyzing miRNA

expression data in four breast cancer cohorts to obtain increased statistical confidence and

power. We demonstrate that, coupled with appropriate non-parametric statistics, our normali-

zation approach lowers the confounding impact of batch effects. We observe stronger statisti-

cal evidence of differential expression between ER positive and ER negative clinical groups in

multiple miRNAs when compared to individually analyzing the cohorts. Moreover, our

approach provides interpretable results and is advantageous to direct interpretation of the

data, conducive to individual examination of findings, as demonstrated herein. Our differen-

tial expression analysis supports the use of AQuN by surfacing known cancer-related miRNAs,

as well as providing evidence of potential new ones.

In particular, previous studies have showed hsa-miR-193b-3p regulates breast cancer

migration [22] and can function as a metastatic suppressor [23]. Here we discovered that hsa-

miR-193b-5p is significantly over-expressed in ER positive, compared to ER negative clinical

groups. We propose that this difference is of functional significance and further show it leads

to decreased cell viability and increased apoptosis.

Results

We apply the Adjusted Quantile Normalization (AQuN) process to the datasets described in

[5, 11, 24–26] and illustrate the benefit and effects of this normalization step as related to data

properties and to various downstream analysis steps in the subsections below.

AQuN is a novel variant of quantile normalization which utilizes quantization in its nor-

malization process, thereby offering an added degree of control over noise that affects sample

ranking and is evidently prevalent in miRNA datasets. Details of this method are available in

the Materials and Methods section. Below we illustrate AQuN’s advantage over standard nor-

malization methods in uncovering, otherwise nascent, signals in the joint dataset.

Differential expression reveals novel breast-cancer associated miRNA

We performed a differential expression analysis comparing clinically relevant subgroups of

breast cancer. We measured differential expression of a specific miRNA on a pair of sample
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subpopulations (e.g. ER positive vs ER negative). Fold-change was defined as the ratio (log2)

between median expression of both sets. We applied Wilcoxon Rank-Sum (WRS) 1-tailed tests

and resulting p-values were corrected across miRNAs using false discovery rates (FDR). Figs

1–3 showcases our differential expression analysis results for ER status. In Fig 1 scatter plot, we

observe that the AQuN normalized dataset yields more significant results (lower Q-values) for

most miRNAs (482/655). Fig 2 volcano plot illustrates that the increase in significance is not

necessarily correlated with effect size (i.e. fold change), and that we gain confidence on lower

effect sizes as anticipated by our power analysis (more details in the 4th paragraph of the Dis-

cussion section). In Fig 3 cumulative distribution function (CDF) plot we depict the overall

trend of increased statistical significance, contrasted by even lower statistical significance that

would be obtained from performing the differential expression analysis on each dataset sepa-

rately (shown as dashed lines). In addition, we present the CDF plots that would be obtained

Fig 1. Differential miRNA expression between ER positive and negative. A scatter plot of differential expression p-values (-log10, Wilcoxon Rank-

sum) for the unnormalized (x) vs normalized (y) joint dataset. Title contains sample size details and dataset distribution.

https://doi.org/10.1371/journal.pcbi.1008608.g001
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by (individually) applying four commonly used normalization methods (shown as dotted

lines). Evaluated normalization methods include:

• Mean ratio: scales each sample byM i; jð Þ ¼ Mði;jÞ
Avg Mð:;jÞ.

• Median subtraction: subtracts the median of each sample, then sets the minimum of each

sample to the (global) minimum across samples. I.e.:

M(i,j) =M(i,j)−Medial M(:, j). minM(:,j) minM(:,:)

• Vanilla quantile: MATLAB’s implementation of Quantile Normalization also known as

Quantile Standardization [27].

• ComBat [28]: empirical Bayes batch effect mitigation employing a design matrix that

includes dataset batching along with clinical labels and status of Tumor grade, Subtype,

ER, PR, HER2 and TP53. We apply the QR decomposition [29] to mitigate any co-linear-

ity in the design matrix.

Fig 2. Differential miRNA expression between ER positive and negative. Volcano plot showing the fold change and corresponding

Wilcoxon Rank-sum FDR corrected Q value ratio between the normalized and unnormalized datasets. Dashed arrow connects the

unnormalized (gray circles) and normalized (red circles) results on a particular miRNA. High absolute values in X axis correspond to

substantial difference in median expression between ER negative over ER positive samples (for a particular miRNA). High values in Y axis

correspond to miRNAs that present substantial difference �after� normalization but not before. Low values in Y axis correspond to miRNAs

that present substantial difference �before� normalization but not after. Vertical dashed lines represent a Fold change threshold of 2x (log2(2) =

1) and horizontal dashed lines represent a Q-value threshold of 0.05 (-log10(0.05)ffi1.3).

https://doi.org/10.1371/journal.pcbi.1008608.g002
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In Figs 4 and 5 we demonstrate the impact of normalization on single miRNAs (hsa-miR-

190b and hsa-miR-18a-5p, accordingly) across samples and on their differential expression in

the context of ER status. This is done by detailing expression values for each sample in the

joint dataset prior to (top row) and following (bottom row) AQuN normalization. We present

the medians of each clinical group (dashed horizontal lines) and a breakdown of how samples

of both clinical groups are distributed when sorted by value and when compared to a uniform

null model. This provides a qualitative view of the effect normalization has on both individual

samples and datasets in the context of the investigated differential expression. Previous studies

[30] have shown hsa-miR-190b to be linked to ER status and further suggested its use as a

potential biomarker. Similarly, hsa-miR-18a-5p is an oncogene and prognostic biomarker

[31]. As we have shown in the volcano plot in Fig 2, hsa-miR-190b would not have been identi-

fied as differentially expressed in ER positive vs negative samples prior to normalization. Simi-

lar plots for the top 40 differentially expressed miRNA (post-normalization) are available

compressed in S1 Data.

When inspecting the differential expression results of all normalization methods, the

unnormalized data and each dataset separately, there are 33 unique miRNAs that are only

shown as significantly (Q value<0.05) differentially expressed in ER positive vs ER negative as

identified by our normalization method (S2 Fig, S2 Text, list in S6 Table). Contrastingly, other

approaches yield far fewer significantly differentially expressed miRNAs. Of the 33 miRNAs

uniquely detected by our method, we present four in Table 1 that have fold change greater

than 0.15 (absolute log2 > 0.15, which translates to> 10% change between median expression

of ER positive and ER negative tumors).

Fig 3. Differential miRNA expression between ER positive and negative. A CDF plot showing many more substantially differentially

expressed miRNAs after normalization (red line) than before normalization (blue line), and substantially more than would be expected at

random (compared to 20 random permutations of labels, dashed black lines). Also shown are dashed colored lines corresponding to each

appropriate single-dataset Q values exemplifying the advantage of a joint-dataset analysis. Note that at Q = 10−18 we can find 10 miRNAs

under AQuN but none under other normalization approaches or per dataset analyses.

https://doi.org/10.1371/journal.pcbi.1008608.g003
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To study any breast cancer related functional significance of these top differentially

expressed miRNAs we performed miRNA gain-of-function studies in the MCF-7 breast cancer

cell line. Here, cell viability was measured as an endpoint after overexpression of the miRNAs.

Indeed, one of the miRNAs, hsa-miR-193b-5p, showed a significant reduction in cell viability

compared to miRNA negative controls (Fig 6). Furthermore, we looked into data from another

functional experiment previously published [32] in the HER2 positive breast cancer cell line

KPL4 and here we found that hsa-miR-193b-5p induced apoptosis (as measured by the levels

of cleaved PARP), and downregulated the levels of HER2 and phosphorylated ERK upon over-

expression. Altogether, these results suggest that miR-193b-5p may exert a tumor-suppressor

function in breast cancer, both in an ER+ and a HER2+ context. Interestingly, the other

miRNA originating from the same precursor, hsa-miR-193b-3p has been previously shown to

directly target ESR1 mRNA and is thus a direct regulator of the ER [33].

Further investigation of the three other top differentially expressed miRNAs shows prior

evidence linking them to cancer. For example, hsa-miR-601 is a known prognostic marker and

potential tumor-suppressor in breast cancer [34] and hsa-miR-936 was identified as a potential

tumor-suppressor miRNA in ovarian cancer [35]. While these findings do not directly validate

our findings in ER differential expression, they support the potential association of these

miRNA through related mechanisms of cancer pathogenesis.

Joint analysis with mRNA data

A similar pipeline to the one described in subsection “Dataset pre-processing and coverage”

was used to parse the Oslo2 cohort mRNA expression data, using Limma.

Fig 4. Visualizing expression of hsa-miR-190b across datasets and samples and in regard to estrogen receptor (ER) positive (pos) vs. negative

(neg) differential expression. (A, D) Expression values (log2) of each sample before quantile normalization. Samples are ranked by ER status label,

then by dataset and finally by ascending expression value. (A, B)-Unnormalized joint dataset. (C, D)-Normalized joint dataset. (B, C) Actual vs

expected (via a uniform null model) rank distribution of ER negative (neg) vs positive (pos). Diagonal straight lines bounding a polygon represent

a null uniform distribution of positive and negative samples (when ranked by expression value). The colored surface area represents the magnitude

of deviation from a uniform distribution. The boundary of the surface is calculated by the cumulative number of ER negative (x axis) vs ER positive

(y axis) samples in the ranked (descending) expression vector. Top-illustrating the rank distribution per-dataset (without normalization). Bottom-

comparing the joint-dataset distributions when ranking before or after normalization.

https://doi.org/10.1371/journal.pcbi.1008608.g004
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We wanted to assess the effect of AQuN normalization on the results of enrichment analysis

as performed using both mRNA and miRNA data. To this end we first formed a ranked list of

transcripts as follows. For each miRNA, μ, we ranked all mRNAs according to the (ascending)

Spearman correlation between the miRNA expression pattern across the entire dataset and the

mRNA expression pattern across the entire dataset (paired on matching samples). We denote

the resulting ranked gene list, with μ as a pivot, as Gm.

Effect on gene target enrichment. For the first analysis we investigated the impact of

AQuN normalization on correlations between miRNA and the expression levels of their

expected mRNA targets in the Oslo2 dataset. We expect stronger negative correlation after

normalization to direct gene targets. To validate this hypothesis, we applied a non-parametric,

rank-based analysis using the MiTEA [36, 37] approach. MiTEA is used to evaluate the statisti-

cal association between Gm and Cn, where Cn is a ranked list of genes wherein the ranking is

based on the affinity of the gene as a target candidate for the miRNA ν, taken from TargetScan

[38]. A short overview of MiTEA’s algorithm is available in the Materials and Methods section.

We declare a matching if MiTEA returns a significant (�0.001) P-value when ν = μ. To

recapitulate, a matching occurs if the top of two lists of genes overlap to a high degree: the

Fig 5. Visualizing expression of hsa-miR-18a across datasets and samples and in regard to estrogen receptor (ER) positive (pos) vs. negative

(neg) differential expression. Caption description matches the one provided in Fig 4.

https://doi.org/10.1371/journal.pcbi.1008608.g005

Table 1. Top differentially expressed miRNA sorted by fold change.

miRNA Fold Change (log2) Q-value

hsa-miR-601 -0.18 0.048

hsa-miR-424-3p -0.17 0.0003

hsa-miR-936 -0.15 0.027

hsa-miR-193b-5p 0.19 0.0002

We apply AQuN normalization on the joint dataset and not detected by other approaches. Fold change is defined as

log
2

Median ER positive
Median ER negative.

https://doi.org/10.1371/journal.pcbi.1008608.t001
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prominent predicted gene targets (by TargetScan) of miRNA μ and the list of genes ranked

according to their sample-wise anti-correlation with their matched expression levels of

miRNA μ. When applying this procedure on a non-normalized miRNA expression we find no

matchings. When applying the same procedure on AQuN normalized data we find 6 match-

ings as detailed in Table 2. For each matched miRNA we also provide supporting evidence of

several studies describing its role in breast cancer. We included an extension of this analysis

across other datasets and normalization approaches in S2 Table.

We show one such analysis in detail for hsa-miR-29b in Figs 7 and 8. Here we follow

MiTEA’s approach to obtain a statistical assessment of target enrichment for μ = ν = hsa-miR-

Fig 6. Functional experiment results. Breast cancer cell lines were transfected with miRNA mimics (20nM) and assayed for functional effects 72

hours after transfection. A) Cell viability measured in MCF7 breast cancer cells. B) Apoptosis measured by levels of cleaved PARP (cPARP),

HER2 and phosphorylated ERK (pERK) protein levels measured in KPL4 cells. The dashed lines indicate cut-off points that were considered

significant (see Materials and Methods). Asterisks denote significant effects. Original data from b) are taken from [32].

https://doi.org/10.1371/journal.pcbi.1008608.g006

Table 2. Resulting MiTEA matchings on normalized miRNA expression.

miRNA P-value Q-value Corroborating studies

hsa-miR-29b 1.28E-08 1.73E-06 [39–41]

hsa-miR-106b 1.96E-06 1.11E-04 [42–44]

hsa-miR-200b 1.06E-04 5.54E-03 [45–47]

hsa-miR-30d 4.38E-04 1.19E-02 [48, 49]

hsa-miR-96 9.02E-05 1.53E-02 [50, 51]

hsa-miR-182 4.58E-04 4.43E-02 [52, 53]

P and Q values are color coded by magnitude where from green (more significant results) to red (less significant

results). None of these statistically significant associations between pivot miRNAs and their targets is observed when

using the raw, un-normalized data. Nor is any other matching miRNA target enrichment observed in the

unnormalized data.

https://doi.org/10.1371/journal.pcbi.1008608.t002
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29b and B ¼ f1; . . . ; jCnjg binary vectors Bðm; n;BÞ. We present the results on various Bs and

the optimal B� for both unnormalized and normalized miRNA expression.

Effect on gene ontology (GO) enrichment. We applied GOrilla [36] to identify gene

ontology enrichment in Gm on both unnormalized miRNA expression and on normalized

miRNA expression. Given a ranked list Gm, GOrilla produces a binary vector BðGm;oÞ for each

gene ontology term, ω, in which a gene is labeled as binary ‘1’ if it belongs to ω. Next, GOrilla

computes mHG p-values, correcting them across GO terms. Fig 9 is a scatterplot comparing

between our results on unnormalized and normalized hsa-miR-29b lists. The findings from

this analysis are in line with previous studies that have linked the miR-29 family with tumor

growth and metastasis [40, 54, 55].

Discussion

We have presented an integrative analysis technique and applied it to jointly analyze human

breast cancer miRNA expression datasets spanning different studies and utilizing different

measurement technologies. Our approach is powerful in its ability to increase statistical power

without apparent adverse effects on precision, as exemplified by several downstream analysis

results. Our normalization method (AQuN) is based on a slight adaptation to standard (a.k.a.

vanilla) quantile normalization. Vanilla quantile normalization averages values across samples

with the same rank, while our method averages values across samples within the same percen-

tiles (computed per sample). This has the effect of lowering the impact of within-quantile

noise when computing rank-based statistics. Additionally, our method, as defined, can support

normalization of multiple cohorts that contain only partial overlaps in their evaluated miR-

NAs. Correctly applying AQuN requires a basic understanding of the impact it has on down-

stream statistics. In this work we focused on applying nonparametric rank-based statistics to

downstream analyses. Our normalization approach can apply to parametric analyses as well.

Further discussing parametric analysis is out of scope for this work. We offer a short discussion

Fig 7. Impact of normalization on the correlation between hsa-miR-29b expression and its in-silico predicted targets according to

TargetScan. (A) AQuN normalized vs Unnormalized (B) miRNA showing normalized is more negatively correlated to the prominent hsa-

miR-29b targets in TargetScan as evident in stronger enrichment values.

https://doi.org/10.1371/journal.pcbi.1008608.g007
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on the impact of normalization on intra-sample rankings and intra-miRNA rankings (see S3

Text and S3 Fig).

The first point to address, in terms of impact on downstream statistics is in the context of

differential expression. We focus the discussion on ER related differential expression. When

comparing the normalized joint dataset with per-dataset analyses we observe stronger p-val-

ues, yielding more statistically significant candidates after applying multiple hypothesis correc-

tion procedures. In Fig 3, we illustrate this result through a shift in the cumulative distribution

of Wilcoxon Rank-sum FDR corrected Q-values calculated for the differential expression of

ER positive and negative samples. In Fig 10 we present a per dataset drill-down in to the analy-

sis presented in Fig 2. For some miRNAs, we observe a tradeoff between higher absolute fold-

change and higher rank-sum -log10 Q-values. For example note hsa-miR-135b that has>−8×
fold change for Stavanger, but at a fairly low -log10 Q-value < 4 while after joint analysis it

demonstrates only >−2× fold change but at -log10 Q-value > 18.

A second important point is the increase in statistical power that is afforded through the

integration of several datasets. One of the main motivating reasons for jointly analyzing

Fig 8. Impact of normalization on the correlation between hsa-miR-29b expression and its in-silico predicted targets according to TargetScan.

Scatter plot of spearman correlation on normalized miRNA or unnormalized miRNA expression. If the target mRNA appears in TargetScan it is

highlighted in orange. The marginal distributions are shown parallel to the axes and corresponding Kolmogorov-Smirnov test p-values display an

overall lowered correlation for TargetScan candidates on normalized data.

https://doi.org/10.1371/journal.pcbi.1008608.g008
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datasets collected in different places, times and possibly using different measurement technol-

ogies is the fact that the combined dataset supports higher statistical power. As we have shown

in Fig 3, this increase of power is not attainable when naively joining the dataset or when nor-

malizing with the presented alternatives.

We present a theoretical statistical a-priori power analysis [56] to put in context the advan-

tage of jointly analyzing the datasets investigated in the current work. Remember that power is

used in statistics to quantify the recall of a statistical test, i.e. the probability of correctly reject-

ing the null hypothesis. The test evaluated in this analysis is Wilcoxon rank-sum as applied for

our differential expression analysis in the results section under subsection “Differential expres-

sion reveals novel breast-cancer associated miRNA”. Power is only meaningful in the context

of an expected effect size (measured herein using Cohen’s d [57]), as larger differences and less

variance in samples implies a smaller sample size is required to decide there is a difference

between two populations. For the purpose of this analysis we assume allocation ratio = 1 (i.e.

equal group sizes), while in the ER examples shown in Fig 11 actual ratios of Negative vs Posi-

tive ER samples are 0.44, 0.24, 0.63 0.23 and 0.32 for DBCG, Oslo2, Micma, Stavanger and

Joint, accordingly–further reducing expected power. We overlay the theoretical plot with

empirical effect sizes measured per dataset in hsa-miR-29b-3p and has-miR-18a-5p which we

have identified as miRNAs of interest in Table 2 and Figs 4 and 5, accordingly.

A potential line of inquiry to follow up on from this study is to compare AQuN results on

other sets of cohorts and with other normalization approaches. We have applied a preliminary

analysis on a second set of cohorts, consisting of the TCGA [58] and Tahiri [14] cohorts. We

performed a differential expression analysis comparing cancer and control samples and

include a 5th normalization method previously referenced which is relevant in the context of

case-vs-control experimental setups. Our results are presented in S4 Fig. When sorting

miRNA according to their differential expression -log10(Q-value), we observe many known

oncomiRs [59] are ranked higher and have more significant Q-values (S1 Table).

Fig 9. GOrilla enrichment analysis comparison of hsa-miR-29b correlation with gene expression before and after miRNA

normalization with AQuN. Showing scatter of GO term Q-values before and after AQuN. Red dots depicted with “�P98” are above the

98th percentile of Normalized–Unnormalized Q-values (-log10) and green dots are for Unnormalized–Normalized. Right side panel shows

a list of GO terms in the�P98 group.

https://doi.org/10.1371/journal.pcbi.1008608.g009
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Overall, we provide multiple lines of evidence supporting the joint analysis of miRNA

expression using nonparametric statistics. Our analysis yields potential novel biomarkers as

exemplified by hsa-miR-193b-5p and its potential tumor-suppressor role in breast cancer.

While these results require further validation, we demonstrate how stronger statistical evi-

dence can be obtained in suggesting candidates and in prioritizing follow-up studies.

Materials and methods

Ethics statement

The Stavanger cohort was approved by REC Region West, approval number 2010/2014. By

this approval, none of the patients were required to provide written informed consent to par-

ticipate. All insights in a patient’s journal were monitored electronically, and all except the

treating physician were required to state the reason why they needed to read that patient’s

journal. This log was always open for the patient to view.

Overview

We used miRNA expression data from three previously published breast cancer datasets along

with a newly released, fourth, miRNA dataset. These datasets were acquired from fresh-frozen

Fig 10. Volcano plot of per-dataset Differential Expression of ER positive vs ER negative from Fig 1. Here we include a both joint

normalized and per dataset results. We observe an overall increase in statistical significance as dark points tend to be higher on the y-axis than

their corresponding-colored points (indicated by dashed lines), as would be expected from the increase in statistical power. In some miRNA

this can come at the cost of a lower detected fold-change as compared to some individual datasets.

https://doi.org/10.1371/journal.pcbi.1008608.g010
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material with different minimal number of tumor cells criteria, using different technologies

and experimental protocols as overviewed in Table 3. In addition, we utilized mRNA expres-

sion to further investigate the effect of normalization using one of the cohorts. We examine

miRNA normalization also in the context of jointly analyzing these measurements. Below we

elaborate our considerations in the selections made during the normalization process and our

means of providing evidence for validating these results.

Fig 11. Statistical power as a function of sample size and expected effect size (measured in Cohen’s d [66]). Dotted line plots illustrate an a-priori

power analysis for one-tailed Wilcoxon Rank Sum (WRS) test for different effect sizes. Overlaid in squares and triangles are effect sizes, d, for the

differential expression of hsa-miR-18a-5p and hsa-miR-29b-3p, accordingly, in ER positive vs ER negative samples as estimated empirically over the joint

dataset on non-normalized data. Power values are estimated via (linear, 2D) interpolation on different dataset sizes.

https://doi.org/10.1371/journal.pcbi.1008608.g011

Table 3. Technical details of platforms used for expression measurements for the four different cohorts.

Color

code

Dataset Manufacturer Technology Version Accession

number

Number of

samples

DBCG[25]–

miRNA

Agilent Human miRNA Microarray Kit (V2 G4470B) design id

019118

GSE46934 149

Oslo2[15]–miRNA Agilent Human miRNA Microarray Kit (V2) v14 Rev.2 design id 029297 GSE81000 425

Oslo2[15]–mRNA Agilent SurePrint G3 Human GE 8x60K

Microarray

(Probe Name Version)

028004

GSE80999 381

Micma[11]–

miRNA

Agilent Human miRNA Microarray Kit (V2 G4470B) design id

019118

GSE19536 101

Stavanger–miRNA Exiqon miRCURY LNA Array v.11.0 109

Datasets are color coded consistently throughout the paper. miRNA expression colors are highlighted compared to mRNA measurements.

https://doi.org/10.1371/journal.pcbi.1008608.t003
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Dataset pre-processing and coverage

Each miRNA dataset is read from a single-channel image analysis output file acquired from

their corresponding GEO repositories (referenced in Table 3) and preprocessed in R using the

Limma [60] package. We note that while Stavanger (Exiqon) data contains a pooled-reference

second channel, this measurement is not utilized in our analysis (further discussed in S1 Text).

Initially, control probes are removed, and the data is corrected by background intensity nor-

malization [61]. Same-probe replicate samples are replaced by their median value. Probe ids

are mapped to their corresponding miRbase v22 accession using miRBaseConverter [62].

Missing or deleted accession IDs are discarded. Multiple probes that map to the same miRNAs

are again replaced by their median value. Next, we apply arrayQualityMetrics [63] (resulting

Quality Control reports are available compressed in S2 and S3 Data) and filter out samples

that are marked as outliers by all three outlier detection criteria (L1-Distance between arrays,

Boxplot, MA plot). We thereby filtered out 6, 30, 12 and 2 outliers from DBCG, Oslo2, Micma

and Stavanger, respectively. Next, we apply minimum subtraction to avoid log scaling issues

with negative numbers where applicable. The joint dataset table is then compiled by applying a

“full outer-join” relational operation on the miRbase accession IDs as key. The resulting

miRNA cross-dataset table is visualized in Fig 12 (and available in S3 Table as raw data and S4

Table as normalized data with corresponding clinical labels in S5 Table).

Batch effects in joint data. We tested for rank-order consistency of miRNA expression in

pairs of datasets (Fig 13). For each miRNA we take the median of its expression, or similarly,

intra-sample percentile, across all samples belonging to the same dataset. We display the

resulting values for each pair of datasets in a scatterplot matrix considering the miRNAs

(n = 655) present in all four cohorts. This analysis shows that the Stavanger data appears to

Fig 12. Overview of the miRNA coverage in the dataset. Each row represents one miRNA. Each entry represents the

intensity (log10) in a specific sample. Dashed vertical lines separate between samples from the four datasets. Dashed

horizontal lines separate between groups of miRNAs by their dataset availability. Blank (white) entries correspond to

miRNAs that are missing from a dataset.

https://doi.org/10.1371/journal.pcbi.1008608.g012
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behave differently, presumably due to its fundamentally different measurement technology

(Exiqon LNA—Locked Nucleic Acids vs Agilent Microarray).

We further visualize the batch-clustering behavior of the unnormalized joint dataset in Fig

14. On the left panel (A) we present hierarchical clustering of the data. Edges of sub-trees in

the dendrogram are color-coded by the dataset when all leaves in the subtree belong to samples

from the same original dataset. We observe a visual clustering of colors, especially evident for

yellow (Stavanger) being clustered as an outgroup. In the middle panel (B) we show a silhou-

ette plot, depicting the clustering consistency according to dataset. We observe a substantial

portion of samples that are well assigned to their cluster with large silhouette values, and only a

small portion are mis-assigned, again showcasing how batch effects dominate sample pair-

wise-distance pattern behavior. Finally, on the right panel (C) we present a visualization of the

Fig 13. Scatterplot matrix of quantile normalized data showing miRNA expression reproducibility across dataset pairs.

Each subplot depicts a pair of datasets. In the upper-diagonal-subplots, each point corresponds to a single miRNA’s median

(across samples) rank (intra-sample) in each dataset. Similarly, the bottom-diagonal shows median log2 expressions in place of

ranks. A second degree polynomial curve is fitted and prediction intervals at confidence level 0.8 are plotted as dashed lines.

Spearman correlation is given for each subplot. Figures at the diagonal show percentile plotted against expression and a circle

represents the dataset colorcode as related to other figures in the paper.

https://doi.org/10.1371/journal.pcbi.1008608.g013
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sample-wise pairwise Euclidean distance matrix with dashed lines separating between samples

of the same dataset. The block-diagonal structure that evidently results from coloring accord-

ing to distances corresponds well to the dashed lines separating samples from different data-

sets. This analysis demonstrates the prevalence of batch effects in the joint datasets.

Adjusted quantile normalization (AQuN)

In this section we describe our quantile-normalization-based strategy for analyzing combined

cross-technology miRNA datasets.

LetM be a batch collected, joint dataset.M2Rn×m whereM(i,j) is the log measured intensity

value of miRNA i in sample j. We note that the j-th column ofM, denotedM(:,j), corresponds

to the j-th sample and that the i-th row,M(i,:) corresponds to the i-th miRNA in the joint

dataset.

Define β(M(:,j)) = k as the experiment batch id during which sample j was collected.

We note the following distinction between missing values inM:

Mði; jÞ ¼

nan miRNA i was not sampled in bðMð:; jÞÞ

0 miRNA i was sampled in bðMð:; jÞÞ but not detected in sample j

� 0 otherwise

8
><

>:

LetMFP(i,j) = 1 if miRNA i is missing from platform β(M(:,j)) andMFP(i,j) = 0 otherwise

(indicates if i is missing in the platform j was measured in).

Fig 14. Visualizing batch effects in the combined cross-tech miRNA dataset considering the unnormalized data. (A) Dendrogram with

edges colored by dataset. Note that the tree root is outside the displayed axis range. (B) Silhouette plot [67] showing that most samples cluster

according to the dataset they originate from. (C) Pairwise Euclidean distances showing a block structure that agrees with the sample dataset of

origin.

https://doi.org/10.1371/journal.pcbi.1008608.g014

Adjusted Quantile Normalization (M):

1. D M þ Nð0; �Þ JitterM to break rank ties.

2. Let P(i,j) = the percentile of Dði; jÞ within

Dð:; jÞ.
nans are ignored in percentile computation. Note: P(i,j)2
[0,100]

3.
Q i; jð Þ ¼

median

1 � t � m
fDðs; tÞ : Pðs; tÞ ¼ pði; jÞg

Transforms values to the cross-sample-median of the

corresponding per-sample-quantile.

4. Q(i,j) = nan ifMFP(i,j) = 1

https://doi.org/10.1371/journal.pcbi.1008608.t004
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A description of this process in words is that it replaces all present expression values with

the corresponding median value of all samples within the same percentile. The underlying

assumption is that a measured expression is volatile due to technical differences and measure-

ment noise, however, (sample-based) percentiles are assumed to be stable up to the biological

differences between samples. In addition—platform coverage differences are addressed.

The overall impact of applying AQuN to the distribution of expression values and to quan-

tified batch effects as measured by the silhouette coefficient is further presented in S1 Fig.

Functional experiments

Functional experiments were performed as previously described [32, 33] with the breast cancer

cell lines MCF7 and KPL-4. The lysate microarray data measuring apoptosis in the form of

cleaved PARP (cPARP), HER2 and phosphorylated ERK (pERK) protein levels after 72 hours

were previously published (data taken from S2 Table of referenced paper and provided as S7

Table herein) [32]. Values ±2 × standard deviation (SD) were considered as significant, which

corresponded to a threshold of |1.96|. For the cell viability data, MCF7 cells were transfected

with the Dharmacon miRIDIAN microRNA mimic library v.10.1 (20 nM) and incubated for

72 hours. The cell viability was measured with CellTiter-Glo assay (Promega Corp, Madison,

WI, USA) according to manufacturer’s protocol. The experiments were done with two biologi-

cal replicates. The data were normalized by a Loess method [64] and log2-transformed. Values

±2 × SD, were considered as significant, which corresponded to a threshold of |0.2|. In both

experiments the average of two different miRNA mimic controls from two replicates was used

as negative controls (miRIDIAN microRNA Mimic Negative Control #1 from Dharmacon

and pre-miR negative control #2 from Ambion). The transfection efficiency of miRNA mimics

has been determined previously [33].

MiTEA algorithm overview

Briefly, for each prefix PBðCnÞ of Bmost-prominent candidate targets in Cn, MiTEA produces

a binary vector, Bðm; n;BÞ, such that, gi, the i-th gene in Gm is labeled “1” if and only if it is in

the candidate prefix, i.e. gi 2 PBðCnÞ. MiTEA then computes an approximate minimum hyper-

geometric (mHG [36, 57]) P-value to quantify whether the B proposed targets are enriched at

the top of the Gm list or not. Finally–MITEA applies an FDR correction (using the Benjamini-

Hochberg procedure [65]) across evaluated νs and reports the set of miRNAs associated with

the ranked target list Gm and their associated Q-values.

Supporting information

S1 Data. A zip file containing figures for the top 40 differentially expressed miRNA (post-

normalization) on ER clinical label. Contains additional figures per miRNA pertaining to the

analysis presented in Fig 2.

(ZIP)

S2 Data. A zip file containing quality control reports for miRNA datasets. Generated by the

arrayQualityMetrics package, as described in “Dataset pre-processing and coverage”. Open

index.html in either folder to view the detailed report data.

(ZIP)

S3 Data. A zip file containing quality control reports for mRNA datasets. Generated by the

arrayQualityMetrics package, as described in “Dataset pre-processing and coverage”. Open
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index.html in either folder to view the detailed report data.

(ZIP)

S1 Fig. Top) Kernel density estimates of each sample colored by their corresponding dataset.

The resulting normalized distribution is overlaid in black. Bottom) Impact of normalization

on per-sample silhouette coefficient measured for clustering by dataset. 602/745 samples have

lower silhouette coefficients after normalization in comparison to before normalization, dem-

onstrating an overall alleviation of batch effect per dataset. Marginal distributions are shown

to highlight differences between datasets.

(TIF)

S2 Fig. Venn diagram comparing the number of differentially expressed miRNAs surfaced

by different normalization approaches. We observe a larger set of unique miRNAs detected

by our normalization approach compared to other approaches.

(TIF)

S3 Fig. Histograms of Sample-wise and miRNA-wise Spearman correlation coefficient (ρ)

between expression before and after normalization.

(TIF)

S4 Fig. Differential expression analysis on TCGA, Tahiri cohorts (Cancer vs. Normal tis-

sue). The results shown here follow the same analysis described in Fig 3 in the manuscript. We

note the additional evaluated method “Percentile Normalization” was added as it is only rele-

vant in a case-vs-control setup, as evaluated here. Note that the “Percentile Normalization”

curve is overlaid by the random permutation curves (dashed black curves).

(TIF)

S1 Table. A set of known oncomirs (Wikipedia) their Q-value (cells conditionally formatted

from green to red) and ranks (cells conditionally formatted from blue to red) when sorted

according to the differential expression Q-value from the analysis shown in S4 Fig. We observe

a higher set of oncomirs return as differentially expressed, and many are more highly ranked

(including very prominent ones such as miR-21, miR-18a).

(XLSX)

S2 Table. An extension of the analysis presented in Table 2 which includes a comparison

with an additional normalization method (Vanilla quantile) and across two more datasets

(Micma and Stavanger).

(XLSX)

S3 Table. Joint dataset table raw measurement data as depicted in Fig 12.

(XLSX)

S4 Table. Joint dataset table from S3 Table, normalized by AQuN.

(XLSX)

S5 Table. Corresponding clinical labels for S3 Table and S4 Table.

(XLSX)

S6 Table. A list of 33 unique differentially expressed miRNAs between ER positive vs ER

negative as identified by our normalization method.

(XLSX)
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S7 Table. Functional experiment results table presented as S2 Table published in Leivonen

S-K et al. [32].

(XLSX)

S1 Text. Discussion on joint one-color and two-color analysis of available Stavanger data.

(DOCX)

S2 Text. Caption for S2 Fig–Venn diagram of differential expression results.

(DOCX)

S3 Text. Caption for S3 Fig and discussion on AQuN impact on data rankings.

(DOCX)
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