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ABSTRACT
We propose an importance sampling (IS)-based transport map Hamiltonian Monte Carlo procedure for
performing a Bayesian analysis in nonlinear high-dimensional hierarchical models. Using IS techniques to
construct a transport map, the proposed method transforms the typically highly complex posterior distri-
bution of a hierarchical model such that it can be easily sampled using standard Hamiltonian Monte Carlo. In
contrast to standard applications of high-dimensional IS, our approach does not require IS distributions with
high fidelity, which makes it computationally very cheap. Moreover, it is less prone to the notorious problem
of IS that the variance of IS weights can become infinite. We illustrate our algorithm with applications to
challenging dynamic state-space models, where it exhibits very high simulation efficiency compared to
relevant benchmarks, even for variants of the proposed method implemented using a few dozen lines
of code in the Stan statistical software. The article is accompanied by supplementary material containing
further details, and the computer code is available at https://github.com/kjartako/TMHMC. These are also
supplementary materials for this article are available online.
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1. Introduction
Computational methods for high-dimensional Bayesian
nonlinear/non-Gaussian hierarchical models is an active field
of research, and advances in such methods allow researchers
to build and analyze progressively more complex models.
Existing Markov chain Monte Carlo (MCMC) methods for
such models can broadly classified into four categories. The
first category consists of Gibbs sampling procedures which
are widely used in part because they are easy to implement
(Robert and Casella 2004). However, a naive implementation
updating latent variables in one block and model parameters
in another block can suffer from a very slow exploration of
the target distribution if this joint distribution implies a strong
dependence between the variables in the two blocks (Jacquier,
Polson, and Rossi 1994). The second category includes methods
that jointly update latent variables and parameters and thus
avoid the dependence problem of Gibbs sampling. One such
approach is to use Riemann manifold Hamiltonian Monte
Carlo (RMHMC) methods (Girolami and Calderhead 2011;
Zhang and Sutton 2014; Kleppe 2018). However, they critically
require proposals which are properly aligned with the (typically
fairly variable) local geometry of the target, the generation of
which can be computationally demanding for complex high-
dimensional joint posteriors of the parameters and latent
variables. The third category is pseudo-marginal methods
which bypass the dependence problem of Gibbs sampling
by targeting directly the marginal posterior of theparameters
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(Andrieu, Doucet, and Holenstein 2010; Pitt et al. 2012).
However, they require low variance, unbiased Monte Carlo
(MC) estimates of that marginal posterior, which can often be
computationally extremely demanding for high-dimensional
models (Flury and Shephard 2011). In addition, for models
with many parameters, it can be difficult to select an efficient
proposal distribution for updating the parameters, especially
if the MC estimates for the marginal posterior are noisy
and/or contain many discontinuities, which is typically the
case if the MC estimator is implemented using particle filtering
techniques.

Finally, the fourth category is transport map/dynamic rescal-
ing methods (Parno and Marzouk 2018; Hoffman et al. 2019).
They modify the original (model implied) parameterization
by using a nonlinear transport map (TM). The TM is cho-
sen so that the target distribution in the modified parameter-
ization is better behaved and allows MCMC sampling using
standard techniques. For a specific class of nonlinear hierar-
chical models satisfying fairly restrictive regularity conditions,
the dynamically rescaled Hamiltonian Monte Carlo (DRHMC)
approach of Kleppe (2019) provided a recipe for constructing
such TMs.

In this article, we also adopt a TM approach for high-
dimensional Bayesian hierarchical models which enables HMC
sampling from the joint posterior of the parameters and latent
variables. Specifically, we propose to use TMs for the latent
variables resulting from well-known importance sampling
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(IS) methods. This IS-TM-HMC approach only requires that
the joint posterior distribution is sufficiently smooth and
can be evaluated up to a normalizing constant. Thereby it
bypasses the significant requirements for analytical tractability
that are needed for DRHMC. As a result, our approach is
more automated and can in particular also be applied to a
larger range of nonlinear models than DRHMC. Another
advantageous feature of our IS-TM-HMC approach is that,
unlike conventional high-dimensional IS applications (see, e.g.,
Koopman, Shephard, and Creal 2009), the IS densities used
need not necessarily be of high fidelity for simulation efficiency
as long as they reflect the location and scale of the conditional
posterior distribution of the latent variables. Since our approach
uses HMC simulation to update the parameters and latent
variables simultaneously, it also avoids the slow exploration of
the target, which is characteristic of Gibbs methods. Moreover,
in contrast to RMHMC approaches, our TM method enables
the use of standard HMC and in particular can be implemented
with minimal effort using statistical software like Stan. This
being said, in principle, other MCMC methods with a similar
design as HMC (i.e., joint updates of parameters and latent
variables and applicability in high-dimensional but close to
Gaussian settings) may also be used for sampling the modified
parameterization.

Our approach exploiting IS to construct TMs for standard
HMC sampling on the joint space of the parameters and latent
variables can be interpreted as a special case of the pseudo-
marginal HMC method of Alenlöv, Doucet, and Lindsten
(2016), which uses IS to marginalize the latent variables. This
special case results if, in their approach, the IS simulation
sample size is n = 1. However, Alenlöv, Doucet, and Lindsten
(2016) considered IS estimators using the prior of the latent
variables as IS density which ignores the information about the
location and scale of the latent variables in the data likelihood. In
applications to models with high-dimensional latent variables,
those “brute force” IS estimators are known to suffer from a
prohibitively large variance, even for a very large n (Danielsson
1994). Therefore, pseudo-marginal HMC based on these brute
force IS estimators is in general not well suited for such
models.

The article is organized as follows: In Section 2, we
outline HMC and its application to hierarchical models.
Section 3 introduces IS-based TMs and Section 4 discusses
specific choices for such TMs. Simulation experiments that
examine the tradeoff between fidelity and computational
costs of the various TMs are provided in Section 5 for
models with univariate latent state processes and in Section 6
for a model with a multivariate state process. Section 7
concludes with some discussion. Supplementary material
provides additional details on the key algorithms, and the codes
used for the computations are available at https://github.com/
kjartako/TMHMC.

2. Background

In what follows, we use N (x|μ, �) to denote the probability
density function of a N(μ, �) random vector evaluated at x,
while ∇z and ∇2

z are used, respectively, for the gradient/Jacobian
and Hessian operator with respect to the vector z.

2.1. HMC

Over the past decade, HMC introduced by Duane et al.
(1987) have been extensively used as a general-purpose
MCMC method, often applied for simulating from posterior
distributions arising in Bayesian models (Neal 2011). HMC
produces MCMC chains by using the dynamics of a synthetic
Hamiltonian system as a proposal mechanism. An easy to use
HMC implementation which automatically tunes all tuning
parameters is available in the popular Bayesian modeling
software Stan (Stan Development Team 2019).

Suppose one seeks to sample from an analytically intractable
distribution with a density π(q), q ∈ R

s, and a density
kernel π̃(q) ∝ π(q), which can be pointwise evaluated. To
this end, HMC takes the variable of interest q as the “position
coordinate” of a Hamiltonian system, which is complemented by
an (artificial) “momentum variable” p ∈ R

s. The corresponding
Hamiltonian function specifying the total energy of the dynam-
ical system is given by

H(q, p) = − log π̃(q) + 1
2

pTM−1p, (1)

where M ∈ R
s×s is a symmetric, positive-definite “mass matrix”

representing an HMC tuning parameter. For near-Gaussian tar-
get distributions, for instance, setting M close to the precision
matrix of the target enables HMC to produce proposals that are
close to independent of the current state (see Neal 2011, sec. 4.1
for details). The law of motions under the dynamic system
specified by the Hamiltonian H is determined by Hamilton’s
equations given by

d
dt

p(t) = −∇qH
(
q(t), p(t)

) = ∇q log π̃(q),

d
dt

q(t) = ∇pH
(
q(t), p(t)

) = M−1p. (2)

The dynamics associated with Hamilton’s equations preserves
both the Hamiltonian (i.e., dH

(
q(t), p(t)

)
/dt = 0) and

the Boltzmann distribution π(q, p) ∝ exp{−H(q, p)} ∝
π̃(q) N (p|0s, M), in the sense that if [q(t), p(t)] ∼ π(q, p), then
[q(t + τ), p(t + τ)] ∼ π(q, p) for any (scalar) time increment
τ . Based on the latter property, a valid MCMC scheme for
generating {q(k)}k ∼ π(q) is to alternate between the following
two steps: (i) Sample a new momentum p(k) ∼ N(0s, M) from
the p-marginal of the Boltzmann distribution; and (ii) use the
Hamilton’s equations (2) to propagate [q(0), p(0)] = [q(k), p(k)]
for some increment τ to obtain [q(τ ), p(τ )] = [q(k+1), p∗]
and discard p∗. However, for all but very simple scenarios (like
those with a Gaussian target π(q)) the transition dynamics
according to Equation (2) does not admit closed-form solution,
in which case it is necessary to rely on numerical integrators
for an approximative solution. Provided that the numerical
integrator used for that purpose is symplectic, the numerical
approximation error can be exactly corrected by introducing an
accept-reject (AR) step, which uses the Hamiltonian to compare
the total energy of the new proposal for the pair (q, p) with
that of the old pair inherited from the previous MCMC step
(Neal 2011). Accordingly, each HMC update step consists of the
following individual steps:

https://github.com/kjartako/TMHMC
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• Refresh the momentum p(k) ∼ N(0s, M).

• Use L symplectic integrator steps with time-step size ε to
approximate the dynamics (2) starting from (q(0), p(0)) =
(q(k), p(k)) and obtain (q∗, p*) ≈ (q(Lε), p(Lε)).

• Set q(k+1) = q∗ with probability α̃ = min(1, exp(H(q(k),
p(k)) − H(q∗, p∗)) and q(k+1) = q(k) with probability 1 − α̃.

The most commonly used symplectic integrator is the Störmer-
Verlet or leapfrog integrator (Leimkuhler and Reich 2004; Neal
2011). When implementing numerical integrators with AR-
corrections it is critical that the selection of the step size accounts
for the inherent tradeoff between the computing time required
for generating AR proposals and their quality reflected by their
corresponding acceptance rates. (q, p)-proposals generated by
using small (big) step sizes tend to be computationally expensive
(cheap) but are typically numerically stable (unstable) and imply
small (large) energy errors and thus high (low) acceptance rates
(see, e.g., Leimkuhler and Reich 2004, chap. 2.6 for a discussion
of stability). For a given step size, the numerical stability and the
size of energy errors of symplectic integrators typically strongly
depend not only on the dimension of the target distribution but
also on its shape. Here, we adopt the general rule of thumb that
high-dimensional targets with large deviations from a Gaus-
sian shape typically require smaller step sizes and more steps
for efficient simulation than high-dimensional near-Gaussian
targets.

2.2. Hierarchical Models and HMC

Consider a stochastic model for a collection of observed data y
involving a collection of latent variables x ∈ R

D and a vector
of parameters θ ∈ R

d with prior density p(θ). The conditional
likelihood for the observations y given a value of x is denoted by
p(y|x, θ) and the prior for x by p(x|θ). This latent variable model
is assumed to be nonlinear and/or non-Gaussian so that both
the joint posterior for (x, θ) as well as the marginal posterior
for θ are analytically intractable. It is further assumed that
p(θ), p(x|θ) and p(y|x, θ) can be evaluated pointwise and have
computable continuous derivatives in (x, θ) up to order two.

The joint posterior for (x, θ) under such a latent variable
model, given by p(x, θ |y) ∝ p(y|x, θ)p(x|θ)p(θ), can have a
complex dependence structure. This is especially the case when
the scale of x|θ , y varies substantially as a function of θ in high-
density regions of p(θ |y), which leads to a “funnel-shaped” joint
posterior (see Kleppe 2019, Fig. 1). In such cases, standard HMC
for q = (xT , θT)T must be tuned for the regions of the target
distribution with the most extreme scale in order to ensure a
numerically stable exploration of the full target distribution.
This in turn leads to a computationally wasteful exploration of
regions with a less extreme scale, since standard HMC rules out
that tuning parameters adapt to the value of q. Furthermore,
the integrator step sizes (and mass matrices) found in an initial
tuning phase depend crucially on the region with the most
extreme scaling that was visited in this phase. If the regions
where the target distribution has its most extreme scale are not
visited during the tuning phase, then HMC may not explore
them at all.

3. Transport Maps Based on IS Densities

In order to avoid the above-mentioned tuning problems of
standard HMC, while bypassing computationally intensive q-
dependent tuning such as used by RMHMC, our proposed
approach “preconditions” the original target by using TMs, so
that the resulting modified target is close to Gaussian. This
makes it suitable for statically tuned standard HMC. Such pre-
conditioning, which aims at producing more tractable target
distributions for MCMC methods has a long tradition, and
prominent examples are the affine reparameterizations common
for Gibbs sampling in regression models (Gelman et al. 2014,
chap. 12). More recent such approaches are the semi-parametric
TM procedure of Parno and Marzouk (2018) and the neural
TM technique as described by Hoffman et al. (2019). Both
approaches require that some samples from the original poste-
rior are available for fitting or training (possibly several times)
the TM. The TM approach followed here is based on analytical
arguments rather than such posterior samples and therefore
has similarities with the DRHMC method of Kleppe (2019).
DRHMC constructs the TMs using a-priori knowledge about
the precision and Fisher information matrices associated with
the different conditional distributions of the model. However,
the invertibility of the TMs in DRHMC necessitates that the
model’s conditional distributions have the so-called constant-
information parameterization, which may be difficult to find for
nonstandard distributions. Our strategy for constructing TMs
exploits the IS principle, which does not require the availability
of precision matrices or special parameterizations, and is there-
fore applicable to a larger class of nonlinear hierarchical models
than DRHMC.

3.1. Transport Maps for Bayesian Hierarchical Models

A TM is a smooth bijective mapping � which relates the original
parameterization q ∼ πq(q) and a modified parameterization q′
via q = �(q′). If q′ is a random draw from the “pullback density”
πq′(q′) = πq(�(q′))|∇q′�(q′)|, then it can be transformed into
a draw from πq by simply applying the TM to q′. The objective
associated with the use of TMs is to select a map � so that
the resulting πq′ is better suited for MCMC sampling than the
original target πq. For an introduction of the concept of TMs
to improve MCMC sampling efficiency, see Parno and Marzouk
(2018, sec. 2). When applied to HMC sampling, this objective
can be formulated as constructing the TM � such that πq′ comes
as close as possible to a normal distribution with independent
elements.

For our application to Bayesian hierarchical models, we con-
sider TMs that are only non-trivial for the latent variables such
that

q =
[

θ

x

]
= �(q′) =

[
θ

γθ (u)

]
, q′ =

[
θ

u

]
.

The component of the TM specific to the latent variables, γθ :
R

D → R
D is assumed to be a smooth bijective mapping for

any admissible θ . We also assume that γθ is smooth in θ so that
the complete map � is smooth and bijective. Since ∇uθ = 0,
it follows that |∇q′�(q′)| = |∇uγθ (u)|, and thus the modified
target distribution (the pullback of p(x, θ |y) under �) has the
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form:

π(θ , u|y) ∝ |∇uγθ (u)|p(θ)
[
p(y|x, θ)p(x|θ)

]
x=γθ (u)

. (3)

Notice that the evaluation of Equation (3) for a specific (θ , u)-
value requires to compute the corresponding value in the origi-
nal parameterization of the latent variables (θ , x) = (θ , γθ (u)).
Thus, MCMC simulations of (θ , u) targeting (3) provide MCMC
samples of (θ , x) at no additional costs.

Now, let m(x|θ) denote the “pushforward density” of
a N(0D, ID) for u under γθ , that is, the density of x =
γθ (u) when u ∼ N(0D, ID). Then the Jacobian determi-
nant in Equation (3) can be expressed as |∇uγθ (u)| =
N (u|0D, ID)/ [m(x|θ)]x=γθ (u), so that the modified target can
be represented as follows:

π(θ , u|y) ∝N (u|0D, ID)p(θ)ωθ (u),

ωθ (u) =
[

p(y|x, θ)p(x|θ)

m(x|θ)

]
x=γθ (u)

. (4)

Representation (4) reveals that ωθ (u) = p(y|θ) ∀ u if the
pushforward density m(x|θ) as a function in x is equal to
the conditional posterior of the latent variables p(x|y, θ) ∝
p(y|x, θ)p(x|θ). In this case, the modified target would be
reduced to π(θ , u|y) ∝ N (u|0D, ID)p(θ |y), so that the param-
eters and latent variables would be completely “decoupled”
(see also Alenlöv, Doucet, and Lindsten 2016, for a similar
discussion). Provided that the posterior of the parameters p(θ |y)

is reasonably well-behaved, such an “ideally” modified target
would be well suited for HMC sampling. Of course, such an
ideal modification of the target is infeasible when the model
under consideration is nonlinear/non-Gaussian since neither
p(θ |y) nor p(x|y, θ) will have an analytically tractable form.
However, this motivates our proposed approach to achieve
a high HMC sampling efficiency. It consists in choosing the
TM γθ so that the ratio ωθ (u) is roughly flat in the regions
where N (u|0D, ID) has a significant probability mass, so as to
approximate the ideally modified target with θ and u completely
decoupled. This requires the construction of γθ so that the
resulting pushforward density m(x|θ), as function of x, is a
sufficiently accurate approximation of p(x|y, θ).

3.2. Relation to IS and Pseudo-marginal methods

Observe that the ratio ωθ (u) in Equation (4) defines an unbiased
IS estimator for the marginal likelihood p(y|θ) based on the
IS density m(x|θ) when u ∼ N(0D, ID) and the IS simulation
sample size is n = 1. This observation is important for at
least three reasons. First, it implies that the large literature on
IS and related methods for hierarchical models (including, e.g.,
Shephard and Pitt 1997; Richard and Zhang 2007; Rue, Martino,
and Chopin 2009; Durbin and Koopman 2012) can be leveraged
to choose suitable IS densities m(x|θ) in order to construct
a map γθ (u). Specific choices are discussed in more detail in
Section 4.

Second, it is well known that IS likelihood estimators such
as ωθ (u) may have infinite variance and thus become unreli-
able, in particular in high-dimensional applications (Koopman,
Shephard, and Creal 2009). This occurs when the tails of m(x|θ)

are thinner than those of the target p(x|θ , y), making ωθ (u)

unbounded as a function of u. However, under the modified
target (4) the likelihood estimator is combined with the thin-
tailed standard normal density in u, which counteracts the
potential unboundedness of the IS weight in the u-direction.
This enhanced robustness with respect to the infinite-variance
problem is also evident in the representation (3) of the target.
Affine TMs γθ (u) result in thin-tailed Gaussian IS densities
m(x|θ) and lead to a Jacobian determinant |∇uγθ (u)| which
is constant with respect to u. Consequently, in this case, the
tail behavior of (3) with respect to u will be the same as the
tail behavior of p(θ , x|y) in x. In the simulation experiments
discussed further below, it is shown that the proposed method
may produce reliable results even when implemented using IS-
densities resulting in very large variance of the IS-weights.

Finally, our proposed approach can be seen as a special case
of the pseudo-marginal HMC (PM-HMC) method of Alenlöv,
Doucet, and Lindsten (2016). PM-HMC relies on joint HMC
sampling of MC estimates of the marginal likelihood p(y|θ) and
the random variables (u(i)) used to generate those estimates,
where the MC likelihood estimates are the average of n ≥ 1 sim-
ulated IS weights {ωθ (u(i))}n

i=1 as given in Equation (4). Alenlöv,
Doucet, and Lindsten (2016) show that for an increasing simu-
lation sample size n, the resulting variance reduction in the MC
likelihood estimates lead to an increasing decoupling of θ and
{u(i)} under the PM-HMC target, so that PM-HMC moves to
HMC sampling on the marginal space of θ . However, since this
also leads to an increase in the size of {u(i)}, this is at the expense
of increased computational cost per evaluation of the PM-HMC
target. In their PM-HMC applications to static models with
moderate-dimensional latent variables and a low signal-to-noise
ratio, Alenlöv, Doucet, and Lindsten (2016) used m(x|θ) =
p(x|θ) and find a sufficiently strong decoupling already for the
modest size of n. It is well known, however, that in dynamic
high-dimensional latent variable models, such brute-force IS
estimators using the prior of x as IS density, which ignores the
information about x in the data likelihood p(y|x, θ), typically
suffer from a prohibitively large variance for any practical n
(Danielsson 1994). Therefore, we propose to use IS densities
with higher fidelity than the prior of x and then reduce the
simulation sample size to n = 1, in which case the PM-HMC
target has the form as given in Equation (3) or Equation (4).

Alenlöv, Doucet, and Lindsten (2016) also proposed a sym-
plectic integrator for approximating the Hamiltonian transition
dynamics (2), which is specifically designed for HMC simula-
tion of target distributions of the form Equation (4) with almost
complete decoupling. For the ideally modified target with a
complete decoupling (which results when u �→ ωθ (u) ∝
1), this integrator reduces to a standard leapfrog integrator
in the dynamics of θ , whereas the dynamics of the (typically
high-dimensional) u is simulated exactly. Hence, this integrator,
which is referred to below as the ADL integrator, appears to
be well suited to be combined with our proposed IS-TM-HMC
approach. (For further details on the ADL integrator, see the
supplementary material, Section A1.)

4. Specific Choices of m(x|θ) and γθ (u)

As alluded to above, the use of m(x|θ) = p(x|θ) to con-
struct TMs can give satisfactory results in cases where the data
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y are rather uninformative about the latent variables x (see,
e.g., Stan Development Team 2019, sec. 2.5). However, as illus-
trated in Kleppe (2019), such procedures can produce mislead-
ing MCMC results if y provides significant information about
x. An even more challenging situation for m(x|θ) = p(x|θ) is
when one or more elements of θ determine how informative
y is with respect to x (e.g., σ when yi|xi ∼ N(xi, σ 2)), as this
may lead to a funnel-shaped target density. On the other hand,
as illustrated by Kleppe (2019), rather “crude” TMs that only
roughly reflect the location and scale of p(x|y, θ) can lead to
dramatic gains in simulation efficiency and cope with funnel-
shaped targets. In the following, two strategies for locating
TMs are discussed. Both are well known in the context of IS
procedures.

4.1. m(x|θ) and γθ (u) Derived from Laplace
Approximations

Assume that x �→ log p(x|y, θ) is concave for all admissible θ

(as is the case, e.g., when x|θ is Gaussian and x �→ log p(y|x, θ)

is concave). Then one way to design a TM γθ for x that accounts
for the location and scale of p(x|y, θ) is to construct it from
an IS density m(x|θ) obtained from a local Gaussian Laplace
approximation to p(x|y, θ). (For the use of such IS densities;
see, e.g., Shephard and Pitt 1997.) Such a Laplace approximation
obtains from a second-order expansion of log[p(x|y, θ)] around
its mode, such that m(x|θ) = N (x|hθ , G−1

θ ), where (Rue,
Martino, and Chopin 2009)

hθ = arg max
x

log
[
p(y|x, θ)p(x|θ)

]
,

Gθ = − ∇2
x log

[
p(y|x, θ)p(x|θ)

]
x=hθ

. (5)

The mode hθ can be computed iteratively by using Newton’s
method, which consists of the recursion h[j]

θ = h[j−1]
θ +

(G[j−1]
θ )−1∇x log

[
p(y|x, θ)p(x|θ)

]
x=h[j−1]

θ

, (j = 1, 2, . . .),

initialized by some guesses h[0]
θ and G[0]

θ for hθ and Gθ . The
matrix G[j]

θ is the negative Hessian of log p(x|y, θ) (or some
approximation thereof), evaluated at h[j]

θ . Under the assumed
concavity, the (exact) Hessian is positive definite, so using it
for computing G[j]

θ ensures stable convergence of the Newton
iterations. Notice that the Laplace approximation based on hθ

and Gθ is a function of θ so that the maximal pointwise accuracy
of the approximation requires that the Newton iterations be
repeated for any new θ value.

For a given θ and a fixed number of Newton iterations J =
0, 1, 2, . . ., this Laplace approximation provides a TM of the
following form:

γθ (u) = h[J]
θ +

(
L[J]

θ

)−T
u, (6)

where L[J]
θ is the lower triangular Cholesky factor of G[J]

θ . The
resulting Jacobian determinant of γθ , which is required to eval-
uate the modified HMC target in its representation (3), is simply
given by |∇uγθ (u)| = |L[J]

θ |−1. For models that imply that the
latent variables in x under p(y|x, θ)p(x|θ) have Markovian prop-
erties, the negative Hessian Gθ is sparse. This may be exploited
by using a sparse numerical Cholesky factorization, which leads
to a significant reduction in computational costs, especially

in high-dimensional applications (see, e.g., Rue, Martino, and
Chopin 2009).

As noted above, the Laplace TM (6) must be recomputed for
each of the numerical integrator steps during HMC sampling of
the target in Equation (3) or Equation (4), as in each of those
steps a new θ value is visited (see Section 2.1). However, rerun-
ning the Newton algorithm for each such step until convergence
of h[J]

θ to a value close to hθ can be computationally costly,
especially for poorly chosen initial values h[0]

θ and G[0]
θ .

It is therefore recommended, if this is possible for the model
under consideration, to choose for h[0]

θ and G[0]
θ values that

result from simple closed-form analytical approximations. For
this, we use in the first two of our experiments below the
standard Bayesian posterior update formulas for the mean and
the precision under Gaussian approximations of the likelihood
p(y|x, θ) and a Gaussian prior p(x|θ). (Details on these formulas
are found in the supplementary material, Section A2, which also
provides further details on the implementation of the Laplace
TM for all models considered.) If this is not possible, then choos-
ing some fixed initial iterate, say h[0]

θ = 0D may be resorted to.
Finally, it should be noted that even if a convergence of h[J]

θ to
a value very close hθ is generally preferable, the reduction in
computational costs achieved if Newton’s recursion is iterated
only for a rough approximation to hθ may compensate for the
associated loss in accuracy of h[J]

θ and G[J]
θ in reflecting the loca-

tion and scale of p(x|y, θ). The optimal choice of J which leads
to a balanced tradeoff between the quality of the HMC MCMC
samples (determined by the degree of decoupling between θ

and u) and per evaluation computational cost depends on the
model under consideration. Such a choice of J remains an open
problem that requires further investigation.

It is interesting to note that our proposed IS-TM-HMC
approach using Laplace TMs is closely related to the approx-
imate pseudo-marginal MCMC method of Gómez-Rubio and
Rue (2018) (see also Margossian et al. 2020). The latter is based
on the conventional Laplace approximation of p(y|θ) (see, e.g.,
Tierney and Kadane 1986). This approximation is given by
ωθ (0D) (subject to the implicit approximation of the mode and
Hessian). Replacing ωθ (u) by ωθ (0D) in our modified HMC
target (4) and then integrating analytically with respect to u
results in the approximate MCMC target of Gómez-Rubio and
Rue (2018). Therefore, our approach can be seen as an extension
of the Gómez-Rubio and Rue (2018) method which consists in
correcting the error in their approximate MCMC target.

4.2. m(x|θ) and γθ (u) Derived from the Efficient
Importance Sampler

As an alternative to the Gaussian Laplace approximation to
p(x|y, θ), we consider the efficient importance sampling (EIS)
method of Richard and Zhang (2007) for the construction of
TMs. While Laplace IS densities are local approximations of
p(x|y, θ), EIS constructs IS densities by least-square (LS) regres-
sions that aim at globally approximating p(x|y, θ) on its full
support.

For the application of EIS to the present context, it is assumed
that there exists a partition of x and y into x = (x1, . . . , xN) and
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y = (y1, . . . , yN), so that the conditional likelihood p(y|x, θ)

and the prior p(x|θ) can be factorized into low-dimensional
densities according to p(y|x, θ) = ∏N

t=1 p(yt|xt , θ) and
p(x|θ) = ∏N

t=1 p(xt|x(t−1), θ), where x(t′) = (x1, . . . , xt′) and
p(x1|x(0), θ) ≡ p(x1|θ). Such factorizations can be found for a
broad class of Bayesian hierarchial models, including dynamic
state-space models (SSMs) for time series. Conformably with
the factorization of the prior p(x|θ), the IS density is decom-
posed into m(x|a) =

[∏N
t=2 mt(xt|x(t−1), at)

]
m1(x1|a1), with

conditional densities mt such that

mt(xt|x(t−1), at) = m̃t(x(t), at)

χt(x(t−1), at)
,

χt(x(t−1), at) =
∫

m̃t(x(t), at)dxt , (7)

where M = {m̃t(·, at), at ∈ At}, is a preselected parametric
class of density kernels indexed by auxiliary parameters at and
with integrating factors χt which are pointwise computable. As
required for the proposed TM HMC approach, it is assumed
that the IS density m(x|a) as defined in Equation (7) pro-
vides a smooth, invertible mapping x = γθ ,a(u) with u =
(u1, . . . , uN) ∼ N(0D, ID) for any admissible a = (a1, . . . , aN),
which is obtained recursively as

x1 = γθ ,a1(u1), xt = γθ ,at (x(t−1), ut), t = 2, . . . , N.
(8)

With the assumed factorizations of p(y|x, θ), p(x|θ) and
m(x|a) the IS weights can be written as

p(y|x, θ)p(x|θ)

m(x|a) = χ1(a1)
N∏

t=1

×
[

p(yt|xt , θ)p(xt|x(t−1), θ)χt+1(x(t), at+1)

m̃t(x(t), at)

]
,

χN+1(·) ≡ 1, (9)

and in order to get a close approximation of m(x|a) to
p(y|x, θ)p(x|θ), EIS aims at selecting a value for a that
sequentially minimizes for each t the variance of the ratio
given in brackets of Equation (9) with respect to m(x|a). For an
approximate solution to this minimization problem, EIS solves
for the preselected parametric class of kernels M the following
back-recursive sequence of LS problems:

(ĉt , ât) = arg min
at ,ct

r∑
i=1

×
{

log
[

p(yt|x(i)
t , θ)p(x(i)

t |x(i)
(t−1), θ)χt+1(x(i)

(t), ât+1)
]

−ct − log m̃t
(
x(i)
(t), at

)}2
, t = N, N − 1, . . . , 1, (10)

where ct represents an intercept, and {x(i)}r
i=1 denote r iid

draws simulated from m(x|a) itself. Thus, the optimal values
for the auxiliary parameters â = (â1, . . . , âN) result as a fixed-
point solution to the sequence {â[0], â[1], . . .} in which â[b] is
obtained from Equation (10) under draws from m(x|â[b−1]). In
order to ensure convergence to a fixed-point solution all the x
draws simulated for the sequence {â[b]} must be generated by
using one single set of Gaussian (common) random numbers

(CRNs) {z(i)}r
i=1 with z(i) = (z(i)

1 , . . . , z(i)
N ) ∼ iid N(0D, ID)

so as to transform them according to Equation (8) into x(i) =
γθ ,â[b](z(i)). Since â is implicitly a function of θ , EIS optimality
requires reruns of the LS regressions (10) for any new θ value.
The EIS TM for a given θ and B EIS fixed-point iterations is
then obtained by substituting in Equation (8) the EIS value â[B]
for a.

Assume (as is the case in our applications below) that xt �→
log p(yt|xt , θ) is concave and that x is Gaussian with a Marko-
vian structure so that p(xt|x(t−1), θ) = p(xt|xt−1, θ). Then
a natural choice for the m̃t ’s is to use Gaussian density ker-
nels for xt and xt−1. For this choice the EIS approximation
problems (10) take the form of simple low-dimensional linear
LS problems. (The corresponding details are provided in the
supplementary material, Section A3.1; EIS implementations for
applications where x has priors which are multimodal or exhibit
a non-Markovian structure are found in Kleppe and Liesenfeld
(2014) and Liesenfeld, Richard, and Vogler (2017). For the selec-
tion of corresponding starting values â[0] , it is recommended
to use values which result from second-order expansions of
log[p(yt|xt , θ)p(xt|x(t−1), θ)χt+1(x(t), â[0]

t+1)].
Notice that the EIS values for the parameters of the IS density

â[B] are random variables as they depend via the LS regressions
(10) on the CRNs {z(i)}. This calls for specific rules for the
implementation of EIS which ensure that the resulting map
γθ ,â[B] meets the qualification required for its use as a TM for
HMC simulation. First, the CRNs {z(i)} must kept fixed during
each HMC update step k with its L numerical integrator steps in
which the TM is evaluated for different θ values. This together
with the number of fixed-point iterations B, which is fixed across
all θ values, ensures that γθ ,â[B] as a function of â[B] is smooth
in θ . The fact that B must be fixed for smoothness of γθ ,â[B]
is a limitation since it can be expected that the convergence
speed of the EIS fixed-point iterations depends on θ . Second, the
CRNs {z(i)} need to be included in the Markov kernel defined
by the HMC update step, so that it leaves the target posterior
p(x, θ |y) invariant and results in a valid HMC. This is achieved
by drawing for each HMC update step k a new set of CRNs
{z(i)}. (For a discussion of the validity, see Section A3.2 of the
supplementary material).

With regard to the choice of the EIS tuning parameters r
and B, there is a similar tradeoff between the per evaluation
computational costs and the degree of decoupling between θ

and u as for the choice of the Laplace tuning parameter J. In
our applications below, for which good starting values â[0] are
readily available, the tradeoff suggest only a few EIS iterations B
(B ≤ 2), and r being around two times the number of estimated
parameters in Equation (10). However, further investigations
are required in order to analyze the optimal choice of (r, B) for
any given model, and also to explore the prerequisites that would
allow dynamic (θ-dependent) choices of B.

In applications to high-dimensional SSMs, it has been shown
that the EIS approach, with the aim of approximating p(x|y, θ)

globally, provides IS densities that are more efficient in terms of
the variance of the IS weights than those resulting from local
Laplace approximations (Bos 2012; Kleppe and Skaug 2012;
Koopman, Lucas, and Scharth 2015). This higher fidelity of the
EIS IS densities comes at the expense of higher computational



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

costs, and whether it is worthwhile will be examined in our
simulation experiments below.

4.3. Implementation and Tuning Parameters

In our simulation experiments below, we consider the following
four versions of the proposed IS-TM-HMC approach:

• Stan-Laplace: HMC with the Laplace TM for simulating the
target as given in Equation (3) using the leapfrog integrator;
This we implemented using Stan.

• ADL-Laplace: HMC with the Laplace TM for simulating
the target (3) using the ADL-integrator (as described in
Section A1 of the supplementary material).

• ADL-EIS: HMC with the EIS TM for simulating the target
(4) using the ADL-integrator.

• Stan-Prior: HMC with a TM, which is defined by m(x|θ) =
p(x|θ), for simulating the target (3) with the leapfrog integra-
tor; This we also implemented in Stan.

Stan-Laplace, ADL-Laplace, and ADL-EIS are the main focus of
the article. The brute-force Stan-prior version with a TM based
on the prior p(x|θ) is used as a benchmark for the Laplace and
EIS TMs that are designed to take into account the geometry
of p(x|y, θ). The comparison of Stan-Laplace and ADL-Laplace
allows us to examine the benefits of moving from the leapfrog
to the ADL integrator that is designed for HMC targets with
almost complete decoupling. We refrained from an EIS-TM-
HMC implementation in Stan, as the implementation of the EIS
algorithm in Stan has proven to be impractical.

The tuning parameters for the implementation of the ADL
versions (ADL-Laplace, ADL-EIS) are chosen as follows: For the
mass matrix in the Hamiltonian (1) with q = (θT , uT)T and
p = (pT

θ , pT
u )T , we use

M =
[

M̂θ 0d×D
0D×d ID

]
. (11)

Here, the mass matrix specific to θ , M̂θ , is an approxima-
tion to −∇2

θ log
[
p̂(y|θ)p(θ)

]
θ=θ̂

(which in turn represents an
approximation to the precision matrix of p(θ |y)), where p̂(y|θ)

is a high-precision IS estimate of p(y|θ) based on EIS, and θ̂

is the simulated maximum posterior probability (MAP) value
arg maxθ log

[
p̂(y|θ)p(θ)

]
. Obtaining θ̂ and M̂θ is very cheap

and requires minimal additional coding effort as the gradients
of log(p̂(y|θ)p(θ)) with respect to θ are readily available via the
automatic differentiation (AD) (Hogan 2014). The columns of
the mass matrix M̂θ obtain as first order finite difference approx-
imations applied to the AD-based gradient of log(p̂(y|θ)p(θ)).
The mass matrix specific to u is set equal to the identity so
that it matches the precision of the N(0D, ID) density for u
in Equations (3) and (4). The complete mass matrix (11) is
therefore an approximation to the optimal matrix under a Gaus-
sian posterior p(θ |y) and perfect decoupling of θ and u. As
for the integrator step size ε and the number of integrator
steps L, we use L for tuning, while the total integration time

εL for an HMC update step is set to approximately π/2. This
choice is informed by the expectation that π(θ , u|y) in Equation
(3) and (4) is nearly Gaussian with a precision matrix (11).
Moreover, whenever π(θ , u|y) is Gaussian with precision (11),
the Hamiltonian dynamics according to Equation (2) is periodic
with period t = 2π , and choosing a quarter of such a cycle
leads to an AR proposal q∗ in the HMC update step which
is independent from the previous HMC draw q(k) (Neal 2011;
Mannseth, Kleppe, and Skaug 2018). Finally, L is tuned such that
the acceptance rate for the AR proposals is about 0.9.

For the implementation of all four versions of the IS-TM-
HMC, the gradients of the log of the targets (3) and (4) with
respect to both θ and u are computed using AD. In Stan used
for Stan-Laplace and Stan-Prior, this is done automatically and
hidden from the user, whereas for ADL-Laplace and ADL-EIS,
the Adept C++ AD software library (Hogan 2014) is applied.
ADL-Laplace and ADL-EIS are implemented in C++ and inter-
faced to R (R Core Team 2018) using the Rcpp (Eddelbuettel
and François 2011) package. Stan is used through its R inter-
face rstan (Stan Development Team 2018), version 2.21.2.
The same C++ compiler was used in all implementations. All
computations are performed using R version 4.0.2 on a PC with
an AMD Ryzen 5 1500X processor running at 3.50 GHz.

5. Simulation Experiments

In this section, we examine the simulation efficiency of our IS-
TM-HMC approach for applications to three univariate non-
Gaussian/nonlinear SSMs exhibiting different signal-to-noise
ratios. In the experiments we analyze the performance of the
Stan-Laplace, ADL-Laplace and ADL-EIS versions of the TM-
HMC approach and compare them to the brute-force Stan-
Prior implementation. Since the SSMs used for the experi-
ments assume that the state innovations η = (η1, . . . , ηN) are
standard-normally distributed, Stan-Prior with a TM defined
by m(x|θ) = p(x|θ) corresponds to a standard HMC for the
(θ , η)-parameterization. As an additional benchmark method,
we consider a modified version of the DRHMC procedure of
Kleppe (2019). It uses for HMC simulation of the target in
Equation (3) an affine TM of the form

γθ (u) = hF + L−T
F u, LFLT

F = GF , GF = Gx|θ + Fy|x,θ ,
(12)

where Gx|θ is the precision of the prior p(x|θ) and Fy|x,θ the
Fisher information of the data likelihood p(y|x, θ) with respect
to x given by −E[∇2

x log p(y|x, θ)]. While the original DRHMC
uses TMs, which are non-trivial for θ as well as x, the TM of the
modified version considered here is non-trivial only for x. This
procedure we have implemented in Stan and is referred to below
as Stan-Fisher.

For the purpose of comparing the competing methods, we
use the effective sample size (ESS) (Geyer 1992) and the ESS per
second of CPU time (ESS/s).

We run the TM-HMC algorithms implemented with the
ADL integrator for 10,500 MCMC iterations, where the first
500 are discarded as burn-in. For the algorithms implemented
with the leapfrog integrator in Stan, 11,000 iterations with 1000
burn-in steps are used. There the burn-in iterations are also used
for automatic tuning of ε (integrator step size) and M (mass
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Table 1. Results for the posterior analysis of the SV model in Equations (13) and (14).

ADL-EIS Stan-Prior ADL-Laplace Stan-Laplace Stan-Fisher PMMH

Min Mean Min Mean Min Mean Min Mean Min Mean Min Mean

CPU time (s) 4023 4031 241 263 137 137 166 180 144 145 639.4 655.7
log(ω) std. 2.2 193 3.0 61
log(ω) iESS 5.9 1 3.5 1

γ

Post. mean −0.021 −0.021 −0.021 −0.021 −0.021 −0.021
Post. std. 0.011 0.011 0.011 0.011 0.011 0.011
ESS 2597 3104 1862 2451 2546 3185 3286 4481 2624 3219 183 224
ESS/s 0.6 0.8 6.7 9.5 18.6 23.3 19.8 24 9.8 18.5 0.3 0.3

δ

Post. mean 0.98 0.98 0.98 0.98 0.98 0.98
Post. std. 0.01 0.01 0.01 0.01 0.01 0.01
ESS 2131 3401 1750 2186 2697 3266 3032 4208 2451 3111 159 195
ESS/s 0.5 0.8 5.5 8.5 19.7 23.9 18.2 22.4 9.3 17.9 0.2 0.3

v
Post. mean 0.15 0.15 0.15 0.15 0.15 0.15
Post. std. 0.03 0.03 0.03 0.03 0.03 0.03
ESS 3422 4683 1876 2468 4316 4932 3206 4258 2481 2904 152 213
ESS/s 0.9 1.2 5.9 9.7 31.5 36 19.1 22.9 9.3 16.7 0.2 0.3

NOTES: ESS is the effective sample size (for 10,000 MCMC draws) and ESS/s is the ESS produced per second of computing time. The figures in the columns “Min”and “Mean”
are the values of the minimum and the average across eight independent replications of the algorithms. The tuning parameters are (B, r, ε, L) = (2, 6, 0.4, 4) for ADL-EIS,
(J, ε, L) = (2, 0.4, 4) for ADL-Laplace, and J = 0 for Stan-Laplace. log(ω) std. (iESS) is the standard deviation (importance sample effective sample size per 1000 samples)
for the log of the IS weights ωθ in Equation (4) computed at (γ , δ, v) = (−0.021, 0.98, 0.14).

matrix). For the tuning parameters (L, J) of the ADL-Laplace,
(L, B, r) of ADL-EIS and J of Stan-Laplace, we tried different
settings. The results reported below are those found for the
respective settings that produced the largest ESS/s values. The
reported computing times refer to 10,000 MCMC iterations for
all implementations. The assumed priors for the parameters of
the three example models together with model specific details
related to the implementation of the TMs are provided in the
supplementary material, Section A4.

5.1. Stochastic Volatility Model

The first example model is the discrete-time stochastic volatility
(SV) model for financial returns given by Taylor (1986)

yt = exp(xt/2)et , et ∼ iid N(0, 1), t = 1, . . . , N, (13)
xt = γ + δxt−1 + νηt , ηt ∼ iid N(0, 1), t = 2, . . . , N,

(14)

where yt is the return observed on day t, xt is the latent log-
volatility with initial condition x1 ∼ N(γ /[1 − δ], ν2/[1 −
δ2]), while et and ηt are mutually independent innovations. The
data consist of daily log-returns on the U.S. dollar against the
U.K. Pound Sterling from October 1, 1981 to June 28, 1985
with N = 945.

Under this model, the data density p(yt|xt , θ) =
N (yt|0, exp{xt}) is fairly uninformative about the states xt , with
a Fisher information (with respect to xt) which is independent
of θ and given by −E[∇2

xt log p(yt|xt)] = 1/2, whereas the states
are fairly volatile under typical estimates for θ . The resulting
low signal-to-noise ratio together with a shape of the data
density which is independent of the parameters implies that
the conditional posterior of the state innovation vector η given
θ is close to a normal distribution regardless of θ . This leads to a
correspondingly well-behaved joint posterior of θ and η, so that
a comparatively good performance of the Stan-Prior benchmark
sampling on the joint space of θ and η can be expected. For the

TM of Stan-Fisher in (12), we use hF = 0N (as suggested by the
results of Kleppe 2019), and the scaling GF corresponds to the
value of the Bayesian update formula which is used for G[0]

θ to
initialize the Newton search for the Laplace TM.

Table 1 shows the MCMC posterior mean and standard
deviation of the parameters for the TM-HMC procedures. They
are the sample averages computed from eight independent
replications running the algorithms under eight different
seeds. Also reported are the corresponding sample average and
minimum of the ESS and ESS/s values. For comparison, Table 1
also provides the results for the pseudo-marginal Metropolis-
Hastings (PMMH) algorithm implemented in the Bayesian
software LibBi (Murray 2015). PMMH is an MH procedure
targeting the marginal posterior of the parameters and uses a
particle filter for marginalizing the latent variables (Andrieu,
Doucet, and Holenstein 2010). The PMMH results are based on
11,000 MH iterations where the first 1000 are discarded (see the
supplementary material, Section A4.1 for further details).

It is seen from Table 1 that the five TM-HMC methods
produce MCMC estimates for the posterior moments of the
parameters that are very close to each other and the ESS values
indicate that they all explore the marginal posterior of the
parameters well. The ESS values also show that not much is
gained by moving from the prior TM to the Fisher, Laplace,
or the EIS TM. This finding is in agreement with the results
reported in Kleppe (2019) and was to be expected, since the data
density is fairly uninformative regarding the states. To assess the
fidelity of the IS densities used for constructing the TMs, Table 1
provides the standard deviations for the log of the simulated IS
weights ωθ (see Equation 4) and the (IS) effective sample size
per 1000 draws (iESS) (see, e.g., Doucet and Johansen 2011).
They show that ADL-Laplace and ADL-EIS with the ADL-
integrator require TMs from IS densities with a much higher
fidelity than Stan-Laplace with the leapfrog integrator in order
to achieve their ESS/s optimum. The lowest fidelity we observe
for the brute-force IS density of Stan-Prior with a standard
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Table 2. Results for the posterior analysis of the Gamma model in Equations (15) and (16).

ADL-EIS Stan-Prior ADL-Laplace Stan-Laplace

Min Mean Min Mean Min Mean Min Mean

CPU time (s) 13,207 13,226 2112 2167 755 758 699 833
log(ω) std. 2.8 25,816 3.2 14
log(ω) iESS 5.7 1 16 1

τ

Post. mean 0.13 0.13 0.13 0.13
Post. std. 0.006 0.006 0.006 0.006
ESS 8345 9793 1652 1745 10,000 10,000 7002 8613
ESS/s 0.6 0.7 0.7 0.8 13.1 13.2 9.6 10.5

β

Post. mean 2.7 2.8 2.6 2.8
Post. std. 0.8 0.9 0.8 1
ESS 3404 4652 880 2057 1379 5170 286 2823
ESS/s 0.3 0.4 0.4 1 1.8 6.8 0.4 3.3

δ

Post. mean 0.98 0.98 0.98 0.98
Post. std. 0.004 0.004 0.004 0.004
ESS 4588 5633 1830 2284 3685 6196 1855 6996
ESS/s 0.3 0.4 0.9 1.1 4.9 8.2 2.6 8.3

ν

Post. mean 0.22 0.22 0.22 0.22
Post. std. 0.01 0.01 0.01 0.01
ESS 7886 9710 1206 1359 10,000 10,000 5656 7698
ESS/s 0.6 0.7 0.6 0.6 13.1 13.2 8.1 9.2

NOTES: ESS is the effective sample size (for 10,000 MCMC draws) and ESS/s is the ESS produced per second of computing time. The figures in the columns “Min”and “Mean”
are the values of the minimum and the average across eight independent replications of the algorithms. The tuning parameters are (B, r, ε, L) = (2, 5, 0.64, 3) for ADL-
EIS, (J, ε, L) = (1, 0.64, 3) for ADL-Laplace, and J = 0 for Stan-Laplace. log(ω) std. (iESS) is the standard deviation (importance sample effective sample size per 1000
samples) for the log of the IS weights ωθ in Equation (4) computed at (τ , β , δ, ν) = (0.13, 2.8, 0.98, 0.22).

deviation of the log IS weights as large as 193 and an iESS value
as low as one (indicating that to machine precision, a single
importance weight will account for the complete IS estimate
based on 1000 samples). The good performance of Stan-prior
and Stan-Laplace, achieved even at low-fidelity IS densities, is
in sharp contrast to the performance that can be expected in
standard IS application to the marginalization of latent variables.
There such IS densities with standard deviations of the log IS
weight of the order of say 10 and larger are useless for accurately
approximating, for example, a marginal likelihood. With regard
to ESS/s, there is no method that is consistently the best, but
it turns out that the computational overhead for positioning
the EIS TM is clearly not worthwhile for this model compared
to the cheaper construction of the Laplace and Fisher TMs.
Finally, we find that PMMH is clearly outperformed by the
other methods in terms of ESS. Since PMMH was run on a
different (though similar) computer than the other methods,
its reported ESS/s values are only approximately comparable to
the other ESS/s figures. Still, the substantial differences in the
ESS/s values suggest that PMMH cannot compete with the TM-
HMC methods based on the Laplace and prior TM in terms of
simulation efficiency.

5.2. Gamma Model for Realized Volatilities

The second example model is a dynamic SSM for the realized
variance of asset returns (see, e.g., Golosnoy, Gribisch, and
Liesenfeld 2012, and references therein). It has the form

yt = β exp(xt)et , et ∼ iid G(1/τ , τ), t = 1, . . . , N, (15)
xt = δxt−1 + νηt , ηt ∼ iid N(0, 1), t = 2, . . . , N, (16)

where yt is the daily realized variance measuring the latent
integrated variance β exp(xt), and G(1/τ , τ) denotes a

Gamma-distribution for et normalized such that E(et) = 1 and
var(et) = τ . The innovations et and ηt are independent and
the initial condition for the log-variance is x1 ∼ N(0, ν2/[1 −
δ2]). The data are taken from Golosnoy, Gribisch, and Liesenfeld
(2012) and consists of daily realized variances for the American
Express stock from January 1, 2000 to December 31, 2009 with
N = 2, 514.

In contrast to the SV model, the Gamma model has both
a considerably higher signal-to-noise ratio and a shape of the
data density p(yt|xt , θ) which depends on the parameters. In
particular, the Fisher information of its data density is 1/τ with
an estimate of τ � 0.13 (see Table 2), while the estimated
volatility of the states is roughly as large as under the SV model.
Hence, it can be expected that the conditional posterior of
the innovations η given θ deviates distinctly from a Gaussian
distribution and exhibits nonlinear dependence on θ , which
makes the Gamma model a more challenging scenario for the
Stan-Prior benchmark than the SV model.

As for the SV model, we use the Bayesian update formulas
for h[0]

θ and G[0]
θ in the Laplace-TM implementations, and again

the resulting G[0]
θ is equal to the scaling GF in the Fisher TM.

Since the Fisher TM with hF = 0N leads to poor results, we
set hF = h[0]

θ (see also Kleppe 2019, eq. 20). As a result, Stan-
Fisher corresponds to Stan-Laplace with J = 0. This number of
Newton iterations also turned out to be optimal for Stan-Laplace
in terms of ESS/s.

The results of the experiment for the Gamma model are sum-
marized in Table 2. They reveal a significant improvement in
the ESS when replacing the brute-force prior TM by the Laplace
or EIS TM. This improvement is mainly due to the substantial
amount of information in the data density about the states that
the EIS and Laplace TM take into account in modifying the
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target. In terms of ESS/s, ADL-Laplace, and Stan-Laplace are
the best performing methods, and again it is not beneficial for
the TM design to move from the Laplace approximation to the
presumably more accurate but computationally more expensive
EIS approximation. Finally, we observe that, as in the SV model,
Stan-Laplace gives reliable MCMC results even with a TM from
an IS density with a fairly large variance in the IS weight, while
ADL-Laplace requires an IS density with higher fidelity.

5.3. Constant Elasticity of Variance Diffusion Model

The third example model is a time-discretized version of the
constant elasticity of variance (CEV) diffusion model for interest
rates (Chan et al. 1992), extended by a measurement error to
account for microstructure noise (Aït-Sahalia 1999). Under this
model the interest rate yt observed at day t with a corresponding
latent state xt > 0 , is described as

yt = xt + σyet , et ∼ iid N(0, 1), t = 1, . . . , N, (17)

xt = xt−1 + �(α − βxt−1) + σxxγ
t−1

√
�ηt ,

ηt ∼ iid N(0, 1), t = 2, . . . , N, (18)

where et and ηt are mutually independent and � = 1/252. The
initial condition assumed for the state is x1 ∼ N(y1, 0.012). The
data consist of N = 3082 daily 7-day Eurodollar deposit spot
rates from January 2, 1983 to February 25, 1995.

The estimated standard deviation of the measurement error
σy is very small with an estimate of 0.0005 (see Table 3) so
that the data density xt �→ p(yt|xt , θ) is strongly peaked at

xt = yt and by far more informative about xt than in the SV
and Gamma model with a Fisher information given by 1/σ 2

y .
Also, the volatility of the states is not constant and depends,
unlike in the previous models, nonlinearly on the level of the
states. This leads to a posterior for η and θ which strongly
deviates from a Gaussian distribution. As a result, Stan-Prior
fails to produce meaningful MCMC results so that we refrain
from reporting them. Moreover, since the prior of x is nonlinear
and its precision matrix does not have closed-form, the use of
the Fisher TM in (12) is not feasible.

Table 3 reports the results for ADL-EIS, ADL-Laplace, and
Stan-Laplace. It is seen that they all lead to a reliable exploration
of the marginal posterior of the parameters with fairly large
values of the ESS. For this, ADL-Laplace needs substantially
less computing time than ADL-EIS and Stan-Laplace as it is
indicated by the ESS/s values. The reason for the observed
large differences in the ESS/s values between ADL- and Stan-
Laplace is that the leapfrog integrator for Stan-Laplace requires
considerably more steps than the ADL-integrator used for ADL-
Laplace. Finally, we find that not only ADL-EIS and ADL-
Laplace use quite high-fidelity IS densities for the TM but also
Stan-Laplace, which is related to that p(x|y, θ) is very close to
Gaussian distribution.

The CEV model with the same data as here is also considered
by Kleppe (2018, sec. 5), who compare the modified Cholesky
Riemann manifold HMC algorithm and a Gibbs sampling pro-
cedure. Both methods were implemented in C ++, and therefore
the order of magnitudes of the ESS/s values reported there are
comparable to those given in Table 3. The ESS/s comparison

Table 3. Results for the posterior analysis of the CEV model in Equations (17) and (18).

ADL-EIS ADL-Laplace Stan-Laplace

Min Mean Min Mean Min Mean

CPU time (s) 36,640 45,201 901 902 9413 9458
log(ω) std. 0.3 0.5 3.2
log(ω) iESS 930 812 13

α

Post. mean 0.01 0.01 0.01
Post. std. 0.01 0.01 0.01
ESS 8974 9658 9305 9748 10,000 10,000
ESS/s 0.2 0.2 10.3 10.8 1.1 1.1

β

Post. mean 0.17 0.17 0.17
Post. std. 0.17 0.17 0.17
ESS 9471 9872 9330 9801 10,000 10,000
ESS/s 0.2 0.2 10.3 10.9 1.1 1.1

γ

Post. mean 1.18 1.18 1.18
Post. std. 0.06 0.06 0.06
ESS 8778 9408 9614 9930 7009 9134
ESS/s 0.2 0.2 10.7 11 0.7 1

σx
Post. mean 0.41 0.41 0.41
Post. std. 0.06 0.06 0.06
ESS 8356 9334 9263 9815 7235 9295
ESS/s 0.2 0.2 10.3 10.9 0.8 1

σy
Post. mean 0.0005 0.0005 0.0005
Post. std. 0.00002 0.00002 0.00002
ESS 9211 9508 9316 9711 10,000 10,000
ESS/s 0.2 0.2 10.3 10.8 1.1 1.1

NOTES: ESS is the effective sample size (for 10,000 MCMC draws) and ESS/s is the ESS produced per second of computing time. The figures in the columns “Min”and “Mean”
are the values of the minimum and the average across eight independent replications of the algorithms. The tuning parameters are (B, r, ε, L) = (1, 7, 0.57, 3) for ADL-
EIS, (J, ε, L) = (2, 0.57, 3) for ADL-Laplace, and J = 1 for Stan-Laplace. log(ω) std. (iESS) is the standard deviation (importance sample effective sample size per 1000
samples) for the log of the IS weights ωθ in Equation (4) computed at (α, β , γ , σx , σy) = (0.01, 0.17, 1.18, 0.41, 0.0005).
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shows that for the most critical parameters with regard to the
ESS (γ and σx), ADL-Laplace is about two orders of magnitude
faster than the Riemann manifold HMC procedure and about
three orders of magnitude faster than the Gibbs sampler.

5.4. Summary of Results

For dynamic SSMs with a signal-to-noise ratio greater than
that in the SV model, our proposed IS-TM-HMC approach sig-
nificantly accelerates the exploration of the marginal posterior
of the parameters compared to the benchmarks (or enables a
reliable exploration as in the case of the CEV model). Due to
its high computational cost, the EIS TM turned out to be not
competitive compared to the Laplace TM. For the Laplace-TM
approach, when it is implemented in Stan with the leapfrog inte-
grator, a rather low fidelity IS density (as can be obtained from
relatively few Newton-search iterations) is optimal in an ESS-
per-time-unit perspective. This is partly due to the very flexible
tuning of Stan. When implemented with the ADL integrator,
which relies on the preselected mass matrix (11), the Laplace-
TM procedure requires more accurate IS densities. Overall, and
in line with Kleppe (2019), this shows that fairly rough repre-
sentations of the location and scale of p(x|y, θ) are sufficient
when IS-TM-HMC is combined with a flexible tuning of the
HMC parameters. In addition, this result illustrates the second
point discussed in Section 3.2: Due to the thin-tailed Gaussian
distribution entering representation (4) of the modified target,
the rule of thumb for standard IS applications that the IS density
should provide high-fidelity approximations to p(x|y, θ) is less
relevant for our IS-TM-HMC approach.

With respect to the choice of the integrator, it turned out
that the leapfrog integrator in Stan and the ADL integrator
produce similarly large ESSs for HMC based on the Laplace
TM. For this, the ADL integrator requires significantly fewer
integrator steps than its leapfrog counterpart. For example, the
reported (automatically tuned) Stan-Laplace results for the CEV
model required on average about 60 leapfrog steps whereas
the corresponding (manually tuned) number of steps for ADL-
Laplace was 3.

6. Simulation Experiment for a High-Dimensional
Application

6.1. Model

To illustrate the IS-TM-HMC approach in a high-dimensional
application, we consider the dynamic inverse-Wishart model
for the realized covariance matrix of a set of G asset returns as
proposed in (Grothe, Kleppe, and Liesenfeld 2019). It assumes
for the G × G realized covariance matrix Yt observed in period
t a conditional inverted Wishart distribution with density

p(Yt|�t , ν) ∝|Yt|−(ν+G+1)/2 exp
(

−1
2

tr
(
�tY−1

t
))

,

t =1, . . . , N, (19)

where �t is a latent time-varying positive-definite scale matrix
and ν > G + 1 the degrees of freedom. The scale matrix
is taken to depend on a Gaussian autoregressive state vector

(x1,t , . . . , xG,t) in the form

�t =HDtHT , Dt = diag(exp(x1,t), . . . , exp(xG,t)), (20)
xg,t =μg + δg(xg,t−1 − μg) + σgηg,t , ηg,t ∼ iid N(0, 1),

g =1, . . . , G, (21)

with xg,1 ∼ N(μg , σ 2
g /(1 − δ2

g )). The matrix H is a lower-
triangular matrix with unit diagonal elements and unrestricted
parameters hg,� (g > �, 1 ≤ � < G) below the main diagonal.
In total, the model contains 1 + 3G + G(G − 1)/2 parameters
given by θ = (ν, μ1, δ1, σ1, . . . , μG, δG, σG, h2,1, . . . , hG,G−1).

A fortunate property of this inverse-Wishart SSM is that the
G individual univariate state processes xg = (xg,1, . . . , xg,N),
g = 1, . . . , G, are mutually independent under their joint
conditional posterior given θ , so that this posterior factorizes
into p(x|Y, θ) = ∏G

g=1 p(xg |Y, θ), where x = (x1, . . . , xG) and
Y = (Y1, . . . , YN). The individual conditional posteriors for the
G state processes are given by

p(xg |Y, θ) ∝p(xg |θ)

N∏
t=1

exp
(

ν

2
xg,t − ỹg,t

2
exp(xg,t)

)
,

ỹg,t =hT
g Y−1

t hg , g = 1, . . . , G, (22)

where hg denotes the gth column of the matrix H and p(xg |θ)

is the prior of xg defined by the Gaussian autoregressive
process in Equation (21). This factorization implies that
we can construct a TM for x from an IS density, which
is decomposed conformably with the conditional posterior
p(x|Y, θ) into m(x|Y, θ) = ∏G

g=1 mg(xg |θ), where each mg
is constructed as an approximation to Equation (22). This
yields a TM γθ (u) for x which is split into G independent
maps, one for each state process, say xg = γθ ,g(ug) with
ug = (ug,1, . . . , ug,N) ∼ N(0N , IN), g = 1, . . . , G. Then the
complete TM is γθ (u) = [γθ ,1(u1)

T , . . . , γθ ,G(uG)T]T and
the Jacobian determinant in the modified target (3) obtains
as |∇uγθ (u)| = ∏G

g=1 |∇ug γθ ,g(ug)|. Obviously, this utilization
of the conditional independence of the state processes simplifies
the implementation of the IS-TM-HMC approach in this
high-dimensional application. However, it should be pointed
out that this approach per-se can also be used without such
independence.

The Fisher information of the density p(ỹg,t|xg,t , θ) for the
standardized realized covariance observations ỹg,t defined in
(22) is ν/2. For the data used in this experiment, the estimate for
ν is 33.61 (see supplementary material, Table A1), so the signal-
to-noise ratio is similar to that of the fitted Gamma model in
Section 5.2. Since the results of ADL- and Stan-Laplace turned
out to be similar for the Gamma model, we only consider Stan-
Laplace for the inverse-Wishart model, which can be imple-
mented with a few dozen lines of Stan code and fully automated
tuning. ADL-EIS was found not to be competitive and is not
considered here.

6.2. Results

The data consists of N = 2, 514 daily realized covariance
matrices for G = 5 stocks (American Express, Citigroup, Gen-
eral Electric, Home Depot, IBM) spanning January 1, 2000 to
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Table 4. ESS for the parameters and the first-period states xg,1 and ug,1 of the inverse Wishart model in Equations (19)–(21).

Stan-Prior Stan-Laplace Stan-Laplace Stan-Laplace
J = 0 J = 1 J = 2

CPU time (s) 142,506 20,067 25,940 31,180

ν ESS 3750 10,000 10,000 10,000
hg,� ESS (min, max) (8316 , 10,000) (10,000 , 10,000) (10,000 , 10,000) (10,000 , 10,000)
μg ESS (min, max) (2600 , 10,000) (10,000 , 10,000) (10,000 , 10,000) (10,000 , 10,000)
δg ESS (min, max) (2103 , 5205) (10,000 , 10,000) (9291 , 10,000) (10,000 , 10,000)
σg ESS (min, max) (2372 , 3476) (10,000 , 10,000) (10,000 , 10,000) (10,000 , 10,000)
xg,1 ESS (min, max) (9887 , 10,000) (10,000 , 10,000) (10,000 , 10,000) (10,000 , 10,000)
ug,1 ESS (min, max) (3059 , 10,000) (10,000 , 10,000) (10,000 , 10,000) (10,000 , 10,000)

NOTES: Parameters and states are grouped (with g = 1, . . . , 5 and � < g, 1 < � < 5), and reported ESS figures are the minimum and maximum in each group. All figures
are averages across 8 independent replications of the algorithms. Under the Prior TM, ug,1 is identical to ηg,1 in Equation (21).

Figure 1. MCMC posterior mean and standard deviation of u1 for the inverse Wishart model in Equations (19)–(21) under Laplace TM with J = 0. The results are for a
single representative simulation replication with 1000 MCMC iterations. Corresponding plots for the remaining ugs may be found in the supplementary material.

December 31, 2009 (Golosnoy, Gribisch, and Liesenfeld 2012).
The ESS values for the parameters and the first-period states
{xg,1}5

g=1 and {ug,1}5
g=1 are found in Table 4. They are reported

for Stan-Prior and Stan-Laplace with J = 0, 1, and 2 iterations
used for the Newton search of the Laplace TM. This search has
been initialized by using the Bayesian update formulas for h[0]

θ ,g
and G[0]

θ ,g (see the supplementary material, Section A4.4, which
also provides the MCMC posterior estimates of the parameters).
The results in Table 4 show that Stan-Laplace outperforms the
Stan-Prior benchmark, both with respect to CPU time and ESS.
In fact, the ESS achieved by Stan-Laplace with J = 0 per CPU
time unit for the parameters ν and {σg}, which are the most
critical in terms of ESS, is at least one order of magnitude greater
than for Stan-Prior. We also see that the additional computa-
tional cost of increasing J to one or two to get TMs that more
accurately reflect the location and scale of p(x|Y, θ) is not worth
it. This again corroborates our previous results in Section 5, that
for an efficient exploration of the target, it is sufficient if the TM
only roughly reflects the geometry of p(x|Y, θ).

Figure 1 plots the time series of the MCMC posterior means
and standard deviations of each u1,t , for Stan-Laplace with
J = 0. The results for g = 2, . . . , G are qualitatively similar
and are presented in Figure A1 (supplementary material). The
posterior means and standard deviations should be zero and

one, respectively, if θ and u are completely decoupled under
the modified target (4). It is seen that the MCMC standard
deviations fluctuate very closely around the reference value of
one, which indicates that any funnel-shaped form of the original
target distribution has been removed by using the Laplace TM
to move to the modified target. However, the MCMC means are
systematically lower than the reference value. This is due to the
fact that, on the one hand, the location parameters h[0]

θ ,g of the
Laplace TM with J = 0 (as they result from the Bayesian update
formula) only provide rough approximations to the actual posi-
tions of the conditional posteriors p(xg |Y, θ) in Equation (22)
and, on the other hand, that these posteriors are non-Gaussian,
so that TMs from Gaussian IS density approximations cannot
completely decouple θ and u. If J is increased to J = 2 and
J = 10, the posterior means of ug,t come closer to the refer-
ence value of zero but systematically remain below because of
the non-Gaussian form of the conditional posteriors (22) (see
supplementary material, Figures A2 and A3).

The inverse-Wishart model in Equations (19)–(21) with the
data as here is also considered by Grothe, Kleppe, and Liesen-
feld (2019). They use a Gibbs sampling procedure that gener-
ates MCMC draws from the conditional posterior of the states
p(x|Y, θ), which are as good as iid. The comparison of the ESS
values in Grothe, Kleppe, and Liesenfeld (2019) with those in
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Table 4 reveals considerable gains by Stan-Laplace compared
to this Gibbs method in exploring the posterior of the param-
eters, especially for the most critical parameters (ν and {σg}).
Although the computing times are not directly comparable
due to the different programming environments used, a cor-
responding estimate shows that Stan-Laplace is also about an
order of magnitude faster than the Gibbs approach. Equally,
important for this comparison is to weigh the minimal coding
effort required in Stan to fit a model with 26 parameters and
12,570 latent variables in a few minutes of CPU time against
the typically time-consuming and error-prone development of
a model-tailored Gibbs algorithm.

7. Discussion

In this article, we have proposed a TM-HMC approach based
on IS for Bayesian hierarchical models. This approach uses off-
the-shelf IS strategies for high-dimensional latent variables to
modify the target distribution so that it can be easily sampled
using (fixed metric) HMC. We have illustrated that the pro-
posed approach can significantly accelerate the exploration of
the posterior distribution for models with high-dimensional
latent variables relative to relevant benchmarks, while being
easily implemented using, for example, the software Stan. We
considered two high-dimensional IS algorithms (Laplace and
EIS), and used them to analyze in simulation experiments the
optimal tradeoff for HMC simulation efficiency between the
degree of fidelity the IS density exhibits and computational costs.
The main insight that was gained from these experiments is
that only rather crude IS densities are required when these are
combined with the HMC algorithm implemented in Stan. This
finding contradicts the general experience with IS documented
in the literature that reliable MC estimates used to marginalize
high-dimensional latent variables typically require very accurate
IS densities.

There are several avenues for future research related to our
approach. One would be to generalize the decomposition of a
high-dimensional TM into several low-dimensional ones (as we
have used it to exploit the independence structure of the inverse-
Wishart model in Section 6) to applications with conditional
dependence structures (Spantini, Bigoni, and Marzouk 2018).
In this way, more complex models, for example, with multiple
layers of latent variables, may also be treated by a composite of
low-dimensional TMs that are constructed from IS densities.
Based on our results regarding the required accuracy of the
IS densities, another direction for future research is to con-
sider other methods of approximating the conditional posterior
of the latent states p(x|y, θ). These may include computation-
ally fast variational methods, and in cases where p(x|y, θ) is
multimodal, fitting Laplace-type TMs to tempered versions of
p(x|y, θ). Another strategy worth exploring is to fit a normal-
izing flow model to initial samples generated from p(x, u, θ |y)

by our method (see, e.g., Hoffman et al. 2019). Then this fitted
model can be used for the TM construction instead of recalcu-
lating the map for each new value of θ .

Finally, we plan to develop software in which the proposed
methodology is implemented in a user-friendly manner for a
large class of models. In particular, such software should include

sparse Cholesky algorithms for more general sparsity structures
so that Laplace TMs for multivariate latent state dynamic models
and spatial models can also be considered. Further research on
how to leverage the ADL integrator in a more automatically
tuned manner, similarly to Stan, is also planned.
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