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a b s t r a c t

Increasing international agricultural commodity prices create pressure on tropical forests. We

study the effectiveness of three regulatory policies implemented by Brazil in reducing this

pressure: blacklisting of municipalities, the Soy Moratorium, and conservation zones. We use

a triple difference approach that combines international agricultural commodity prices with

the policies across three million km2 in the Brazilian Amazon. We find that the blacklisting

program is effective, as it reduces deforestation related to the prices by 40%. The Soy Morato-

rium made deforestation in exposed municipalities more sensitive to non-soy prices, in line

with crop substitution. Conservation zones amplify the effect of prices on deforestation on

the remaining unprotected land, consistent with reduced land supply. Our results highlight

that the effect of environmental regulation depends on the economic pressure to use natural

resources.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Land-use change, largely due to tropical deforestation (Mitchard, 2018), is estimated to account for about 10–12% of anthro-

pogenic CO2 emissions in the years 2000–2015 (Le Quéré et al., 2016; Edenhofer et al., 2014). The backdrop of high deforestation
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rates has been strong global economic growth, high global energy prices, subsidies for biofuels and a doubling of the real price

of agricultural commodities like grains (Mitchell, 2008; Alexandratos, 2008). Large scale agriculture accounted for about two-

thirds of deforestation in Latin America and one-third in Africa and Asia in the period 2000–2012 (Kissinger et al., 2012). Around

half of such deforestation can again be attributed to the cultivation of crops for export markets like the EU, China and North

America (Lawson, 2014). In response, countries such as Brazil have committed to an array of command and control and market-

based policies to reduce deforestation. The question addressed in this paper is whether such policies are effective in curbing

deforestation related to higher commodity prices.

We evaluate the effectiveness of three central policy measures implemented in Brazil. The policies vary in terms of the

deforestation they target. Blacklisting of municipalities (PM) targets municipalities with high deforestation rates by the means

of increased monitoring and law enforcement as well as by more stringent conditions for subsidized rural credit.1 This policy

focuses on the total extent of deforestation at the municipality level. The Soy Moratorium (SM) is an industry-driven initiative

that aims to keep the commodity supply chain clean of soybeans that come from recently deforested land. Hence it focuses on

deforestation caused by soy cultivation. Conservation zones (CZ) impose regulation on certain geographic areas. In this paper,

we include three broad categories of protected areas in what we call Conservation Zones, namely indigenous lands, sustainable

use conservations zones and strictly protected conservations zones. We study the deforestation frontier in the Brazilian Legal

Amazon. This is the part of the Amazon, the largest forest left on earth, that is likely to have experienced the most intense

deforestation pressure to date. Our main dataset is a balanced panel of 470 municipalities covering the years 2002–2013 and

about three million km2. The main analysis focuses on deforestation outside of the protected areas.

We begin our analysis by estimating the direct effect of agricultural commodity prices on deforestation. We construct a

municipality-level price index based on international real prices. We use weights based on each municipality’s cultivated area

of the different crops in 2002, the initial year of our sample. Consistent with the finding of Hargrave and Kis-Katos (2013), we

find that higher agricultural commodity prices are associated with higher deforestation. We estimate that a 100% increase in

the prices leads to an increase in deforestation of about 40%. The average 56% higher level of the price index over 2004–2013

compared to 2003 then contributes with 1,700 km2 of additional deforestation each year. This adds up to about 19% of the total

deforestation of 91,000 km2 in our sample over the ten-year period 2004–2013.

Next, we estimate how the effect of international agricultural commodity prices varies with the policies, which represents

the main contribution of the paper. We use the municipality-specific index of prices interacted with policy exposure in a triple

difference model (DDD). This model essentially compares price effects in municipalities exposed to a given policy with price

effects in municipalities not exposed to the policy. Exposure to a policy varies both across municipalities and over time. We

cannot reject common differential trends in deforestation in the pre-policy period, suggesting that our design effectively nets

out potentially confounding factors driving both deforestation and the policy-roll out.

We find that the policy of blacklisting municipalities reduced the impact of commodity prices on deforestation by about 40%,

saving 35 km2 forest per treated municipality per year. In our sample, the total saved forest due to this effect is 9,000 km2. This

is consistent with the expected effect that the policy increases the costs of deforestation. Previous studies have also suggested

that this policy reduced deforestation.2

For the Soy Moratorium, we do not find a robust statistically significant effect for the agricultural commodity price index. This

overall ineffectiveness masks two effects working in opposite directions: the soy price has a lower effect on deforestation under

the Soy Moratorium, while the prices of other crops have a higher effect. This is consistent with the Soy Moratorium reducing

deforestation related to soy cultivation, while the production of alternative crops is moved to or expanded on newly deforested

areas. Corn may be a case in point. We find deforestation to be more sensitive to the price of corn due to the Soy Moratorium,

potentially explaining some of the remarkable increase in corn production seen in the Brazilian Legal Amazon since 2006. We

find that leakage to corn can explain about 20% of the leakage to non-soy crops. Our results suggest that studies of the Soy

Moratorium that have not allowed for substitution across crops may have overestimated its effect on deforestation.3

Finally, we find that conservation zones amplify the effect of agricultural commodity prices. On average, the prices in the

years after zone expansions were 40% higher compared to the years before zone expansions. This led to about 6000 km2 extra

deforestation outside of the conservation zones compared to a situation without the zone expansions. One interpretation of our

finding is that the deforestation could have continued into the new protected lands in the absence of the policy. The effects are

similar if we include deforestation within the protected areas, which historically had low deforestation rates. Conservation zones

take away land from the potential land supply and can thus increase the deforestation pressure on the remaining unprotected

land. Our analysis, based on deforestation in non-conserved areas and explicit deforestation pressure, suggests that conservation

1 The blacklisted municipalities were also called “priority” municipalities. Throughout the paper, we use the terms “priority” list policy and “black-listed”

policy interchangeably.
2 Arima et al. (2014) find that 10,653 km2 of deforestation or 0.123 PgC of emissions were avoided over 2009–2011 in the targeted municipalities. Andrade

and Chagas (2016) study spill overs of the blacklisting policy on non-targeted neighbouring municipalities and find a decrease of 15%–36% in deforestation in

the non-listed neighbours. Koch et al. (2018) also find reduced deforestation in priority municipalities, but no effect on dairy production or crop production. ,

2019b) find that the policy reduced deforestation by 40%, in period 2009–2010, and cut emissions by 39.5 million tons of carbon. PgC (petagrams of carbon)

is the same as gigatonnes of carbon (GtC). The weight of CO2 is equal to 3.67 times the weight of Carbon, assuming that all the carbon is emitted. For more

information on details of conversion of emissions measured in terms of carbon dioxide equivalent into carbon, see section 7.
3 Gibbs et al. (2015) find that deforestation for soy dramatically decreased due to the Soy Moratorium, while Nepstad et al. (2014) find only a marginal effect

of the Soy Moratorium. Svahn and Brunner (2018) find that the Soy Moratorium reduced deforestation in the Brazilian Amazon biome, but only after it was

enforced with satellite monitoring since 2008.
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zones have been less effective in reducing deforestation than existing studies have found.4

What is the cost of reducing carbon emissions through deforestation? We use data on the initial spatial variation in biomass

in combination with deforestation over time to estimate carbon emissions. Comparing these emissions with the average crop

production values that could be generated on deforested land, we arrive at carbon prices of about 6.5 USD/tCO2. This is based

on the unrealistic assumptions that all the carbon held in the cleared forest is emitted and that the mean crop yield per hectare

captures the entire value of the additional agricultural activity. Both these assumptions are likely to imply that our calculated

carbon prices are too low. Compared to other abatement technologies, our carbon prices do indeed suggest that reducing defor-

estation is a cheap abatement technology. For comparison, the High-Level Commission on Carbon Prices suggested that a global

carbon price of USD 40–80/tCO2 by 2020 and USD 50–100/tCO2 by 2030 could allow the goals in the Paris climate agreement to

be met (Stiglitz et al., 2017).

This paper makes two principal contributions to the growing literature on the drivers of deforestation and the effectiveness of

policies against deforestation.5 First, we focus on the effectiveness of policies explicitly accounting for the pressure to deforest,

as expressed through international agricultural commodity prices.6 Our analysis thus tests the robustness of environmental

regulation when the pressure on natural resource use is high. A positive price shock resembles a positive shift in the demand

curve for agricultural land. The priority list policy and the Soy Moratorium are expected to make the supply curve for agricultural

land steeper, i.e. they increase the marginal cost of expanding agricultural land into forested lands (deforestation). A given

price increase would then lead to a smaller expansion of agricultural land with the policy in place, compared to a situation

without the policy in place. The conservation zones, on the other hand, are expected to shut down parts of the land market. The

residual demand for non-protected land then increases, i.e. a given international price increase imposes a higher pressure on

the remaining unprotected land. This results in a larger land expansion into unprotected lands with than without the policy in

place. Deforestation pressure is discussed in the literature that tests policy effectiveness, e.g. Pfaff et al. (2014) and Assunção et

al. (2015), but we explicitly bring in demand shocks. Based on our estimates, we graphically demonstrate that the effectiveness

of a given policy measure in saving forest, measured in km2, depends on the agricultural commodity prices.7

Second, this paper addresses the issue of policy ineffectiveness due to leakage (Aukland et al., 2003; Harstad and Mideksa,

2017). For the Soy Moratorium, we present evidence in support of substitution across crops, as the impact of non-soy prices

increases under the moratorium. For conservation zones, we find increasing deforestation pressure due to prices when new

areas are put under protection. In contrast, we find that the priority municipality policy is effective in reducing the impact of

prices. Within municipalities, leakage reduces the effectiveness of the two policies that zoom in on specific sub-categories of

deforestation, whereas the policy that targets deforestation irrespectively of its source is effective at the municipality level.8

While the existing empirical literature has pointed to leakage across space, e.g. Pfaff and Robalino (2017) on conservation zones

and Gibbs et al. (2015) on the Soy Moratorium, we are not aware that the leakage due to substitution across crops has been

documented previously.

The remainder of this paper is organized as follows. Section 2 presents the institutional context. Section 3 discusses the data,

the identification strategy and tests of parallel differential pre-trends. Section 4 presents econometric estimates of price effects

and how they vary with respect to policy exposure. Section 5 investigates the impact of soy prices versus the prices of other

crops under the Soy Moratorium. Section 6 presents robustness checks. Section 7 presents calculations of implicit carbon prices.

Section 8 concludes.

4 Assunção et al. (2015) find that about half of the avoided deforestation in the Brazilian Amazon over the period 2005–2009 was due to conservation policies.

Soares-Filho et al., (2010) assign 37% of the reduction in deforestation in the Brazilian Amazon over the period 2004–2006 to expansion of protected areas.

Also Nolte et al., 2013 find that protected areas have contributed to reducing deforestation rates. Anderson et al. (2016) find that conservation zones are mostly

located in areas where agricultural production is likely to be unprofitable. They find that zones reduce deforestation if the incentives for municipalities to reduce

deforestation are high.
5 See Alix-Garcia et al. (2015), Alix-Garcia (2007), Assunção et al. (2015), Assunção et al. (2017), Assunção et al. (2019b), Barbier and Burgess (2001), Burgess

et al. (2012), Burgess et al. (2017), Chomitz and Thomas (2003), Foster and Rosenzweig (2003), Gibbs et al. (2015) Pfaff (1999), Lopez and Galinato (2005),

Rodrigue and Soumonni (2014), Rudel et al. (2005) and Hargrave and Kis-Katos (2013), as well as references therein.
6 There is large empirical literature which has analyzed various impacts of booming commodity prices on commodity-exporting economies, i.e. macroe-

conomic performance and fluctuations (Deaton et al., 1995; Fernández et al., 2017; Drechsel and Tenreyro, 2018), structural adjustment via Dutch disease

mechanisms (Harding and Venables, 2016; Cust et al., 2019) and conflict (Dube and Vargas, 2013; Bazzi and Blattman, 2014).
7 Focusing on the interaction between prices and policies also helps with econometric identification, i.e. separating out the effect of the price-policy-

interaction from the effect of other factors potentially affecting land demand or land supply. Our specifications allow us to control for a large set of observable

and unobservable characteristics, including rich heterogeneity in the effect of prices, and we present evidence that the effect of prices is similar across control

and treatment municipalities in absence of the policies. Existing studies have used several approaches to deal with endogenous placement of policies. Assunção

et al. (2015), use a measure of the tightness of municipal land constraints, which is defined as the share of land that is not legally available to farmers relative

to total municipal land, in order to identify the effect of policies across municipalities. Their approach is based on the argument that policies are effective in

places where land constraints for agricultural production are tight. Assunção et al. (2017) argue that satellite-based enforcement contributed to reductions

in deforestation rates and use cloud cover as an instrument. Assunção et al. (2019a), use a 2008-change in access to rural credit lines conditional on farmers’

environmental compliance in order to show that this policy reduced deforestation rates in municipalities where cattle ranching is a dominant economic activity.
8 We cannot, however, rule out that leakage happened somewhere else, a phenomenon documented previously in the literature (e.g., De Sá et al., 2013).
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2. Background: key anti-deforestation policies in the Brazilian Legal Amazon

Our starting point is that agricultural profits are a major driver of deforestation.9 Since 2004, Brazil has implemented a set

of command-and-control and market-based policies to avoid the high deforestation rates it experienced in the 1990s and early

2000s, which to a large extent were related to expansion of commercial agriculture. Deforestation on private lands is governed

by the Forest Code (FC), which establishes a percentage of rural properties that needs to be preserved in the form of native

vegetation. In the Brazilian Legal Amazon, this fraction has been 80 percent since 2001 (Soares-Filho et al., 2014). In 2004, the

National Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm) was first launched. The

plan set out new procedures for monitoring and environmental control. The first phase covered 2004–2008, the second phase

2009–2011 and the third phase 2012–2015. Arima et al. (2014); Assunção et al. (2015) and others have recognized a significant

role of the different policies in reducing deforestation.

Blacklisting/priority municipalities policy (PM) was the main component of the second phase of the PPCDAm, launched in

2008. The policy defined a list of 36 municipalities to be prioritized in monitoring and law enforcement due to their high defor-

estation rates. The priority municipalities were subject to more intense environmental monitoring and enforcement as well as

to a number of other administrative measures, such as more stringent conditions applied to the approval of subsidized credit.

These measures have increased forest conversion costs and thus reduced incentives to deforest.10 This group of municipalities

accounted for 45% of the deforestation in the Brazilian Amazon in the year before the policy was implemented. More munici-

palities were added to the list later. During 2011–2013, eleven municipalities were allowed to leave the list due to a remarkable

decline in deforestation. In the data section below we describe in more detail the variation in our sample.

The Soy Moratorium (SM) reflects intensive campaigning by non-governmental actors and private sector’s willingness to

adopt sustainable land-use practices. Soy has been Brazil’s most profitable crop, with most of it going to exports; 33% in 1996 to

69% in 2004 and to 75% in 2013 (Karstensen et al., 2013; Lawson, 2014). A rapid expansion of soybean plantations on forested

lands combined with the strong link to downstream markets in the EU and North America raised international awareness and

increased the pressure on soybean producers to reduce deforestation. This led to the announcement of the Soy Moratorium in

2006. Buyers who joined the Soy Moratorium banned the purchase of soybeans planted on farmlands cleared after June 2006.

The SM was extended to remain in place indefinitely in May 2016. The Soy Moratorium increases the costs of producing soy on

newly deforested lands and thus increases the relative attractiveness of alternative uses of deforested lands, which can lead to

substitution from soy to other crops. Supply-chain arrangements are incentive-based instruments and therefore the SM policy

is an example of a market-based policy aimed at promoting environmental protection.

Conservation zones (CZ) expanded significantly in the Brazilian Legal Amazon in the early 2000s, especially during the first

phase of PPCDAm. The areas that we name “conservation zones” in this paper include three types of protected areas: strictly

protected areas (SP), sustainable use zones (SU), and indigenous lands (IL).11 The policy of conservation zones takes away land

from the potential land supply, and is thus expected to increase the value of, and the deforestation pressure on, the remaining

unprotected areas.

CAR The government has made significant progress towards increasing enforcement of the Forest Code (FC) through mapping

properties for environmental registration, first with a number of state-level systems in the Amazon, and more recently with a

national “SiCAR” system.12 The national system was finalized and became operational after 2013, when our sample period ends.

However, CAR systems have been used in the zero-deforestation cattle agreements (Gibbs et al., 2016) and the Brazilian Central

Bank’s (BCB) rural credit policy, mentioned below (Assunção et al., 2019a). Two states, Mato Grosso and Pará, had the most

developed state-level property registration systems preceding the SiCAR (INPE, 2015). To make sure that our results are not

affected by factors correlated with the property registration, we take into account the area of properties registered in CAR in

robustness checks.

Credit In February 2008, the Brazilian Central Bank published Resolution 3545, which conditioned the concession of rural

credit for agricultural activities in the Amazon biome upon proof of borrowers’ compliance with legal titling requirements and

environmental regulation. Resolution 3545 applied to all rural establishments within the Amazon biome. It was obligatory for

all banks and credit cooperatives to implement the terms of the resolution as of July 1st, 2008. As 30% of the resources required

to fund a typical harvest year in Brazil come from the rural credit, Resolution 3545 represented a potentially limiting mechanism

9 Commodity prices may carry not only information about current land use opportunities (forest vs pasture) and manifest through changes in current agri-

cultural profits, but also through expected revenues from future land use. The latter effect manifests itself through a speculative component of the value of the

land. In this paper, we do not differentiate between the effects on deforestation caused by current versus future land opportunities. Furthermore, these policies

could also affect deforestation through mechanisms other than agricultural commodity prices, such as enforcement of the forest code or the value of standing

forest (which in turn depends on timber prices, policy, and enforcement). Our analysis does not capture such other possible mechanisms.
10 In addition to a more stringent system of monitoring and law enforcement, they also became subject to a series of other measures, not officially established

through legislation, such as compromised political reputation of mayors (Abman, 2014), politicians pressuring farmers to comply with environmental legislation.

Priority status is determined based on: (a) total deforested area; (b) total deforested area over the past three years; and (c) increase in the deforestation rate

in at least three of the past five years. The middle maps of Fig. 1 show that these municipalities are mainly located in the southern part of the Amazon region,

along the arc of deforestation.
11 In SP: harvesting of trees or settlements are prohibited completely. In SU zones, extraction of forest resources as well as logging are permitted subject to a

sustainable management standard Verissimo et al. (2011). IL are federal territories which are in the permanent possession of indigenous populations, who have

exclusive rights to use the natural resources.
12 Sistema Nacional de Cadastro Ambiental Rural, SiCAR 2016.
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for agricultural production in Brazil. Estimates by Assunção et al. (2019a) indicate that the total observed deforested area from

2009 through 2011 was about 60% smaller than it would have been in the absence of credit restrictions. We thus control for

credit in robustness checks.

Fines The real-time System for Detection of Deforestation (DETER), developed by the National Institute for Space Research

(INPE), has been Central to the PPCDAm’s law enforcement. DETER is a satellite-based system that captures and processes geo-

referenced imagery on forest cover in 15-day intervals. This allows authorities to identify deforestation hot spots and enforce the

law with a much shorter lag. In addition to the adoption of DETER, the PPCDAm promoted institutional changes that enhanced

the monitoring and law enforcement capacity in the Amazon, e.g., through more and better qualified law enforcement person-

nel. Assunção et al. (2017) use the total number of fines issued by Ibama, the Brazilian regulator, in each municipality as a proxy

for the intensity of law enforcement activity. They estimate that deforestation observed from 2007 through 2011 was 75% lower

than it would have been in the absence of the fines. We control for fines in robustness checks.

3. Empirical approach

3.1. Data

Our initial data set is a balanced panel of 771 municipalities in the Legal Brazilian Amazon from 2002 until 2013. We drop

municipalities that on average have zero deforestation, zero remaining forest or a price index equal to zero. In addition, we

drop municipalities with average forest cover below the 1st percentile and above 99th percentile. In our baseline sample, we

focus on municipalities located within the forest frontier, the “arc of deforestation,” which are to a large extent located along

the transition from the Amazon to the Cerrado (tropical savanna) biomes (Levy et al., 2018). Historically, the deforestation in

Brazil started in the south east and has swung in the north-western direction over time. The smooth lines in the two upper

maps of Fig. 1 show the “arc of deforestation”, which includes three areas based on different historical periods of deforestation.

We include all municipalities that have some area that falls within either of the three areas. We end up with a balanced panel

of 470 municipalities covering 11 years (2003–2013, with lagged variables for 2002–2012). For a complete overview of data

sources and the relevant variables used in this paper, see Tables A.1–A.2. Below, we provide more information on the most

central variables.

Forest data For annual data on deforestation and forest cover we use data based on NASA satellite images and processed

by the Brazilian Space Research Agency, Instituto Nacional de Pesquisas Espaciais (INPE). This processing includes filtering out

forest plantations and the data provide the loss of primary forest. We have aggregated the high-resolution forest data (at

250 m × 250 m) to 1 km2 grid cells covering the entire Brazilian Legal Amazon (BLA). For each municipality, we consider the

sum of cells outside of conservation zones, the sum of cells inside of conservation zones, and the sum of cells both inside and

outside of conservation zones. In our main analyses, we focus on areas outside of conservation zones. We measure deforestation

and forest cover in km2. The red dots in the upper right map of Fig. 1 indicate the sum of deforestation over 2002–2013 at the

1 km2 resolution. The left panel of Fig. 2 presents the sum of deforestation over time in our sample of 470 municipalities.

Carbon data We use biomass data from Baccini et al. (2017) and obtain the carbon stock in the year 2000 at the 1 km2

grid-cell level (C2000). Carbon is set to 0.5 of the biomass (like for example in (Saatchi et al., 2007)). For each grid cell, we cal-

culate the carbon stock in year t as the remaining forest, Ft , times the carbon density of the forest in that grid cell in year

2000: Ct = F∗
t

C2000∕F2000. Analogously, we calculate the carbon flow as deforestation, DF, times the carbon density in year 2000:

DCt = DFt
∗C2000∕F2000. We recalculate the carbon to CO2, i.e. multiply the carbon figures by 44/12. We thus assume, for sim-

plicity, that all the carbon in the cleared forest is turned into omitted CO2, which is unrealistically high as, for example, some

forest may be used as building materials. The right panel of Fig. 2 presents the loss of CO2 over time in our sample, again for

the outside of conservation zones and for the total. To further simplify the cost-benefit analysis, we convert carbon to dollars by

valuing the CO2 to 50 USD per tonne (2020-prices). This a simple and seemingly not unreasonable estimate for the social cost of

carbon in 2020 (see for example Howard and Sylvan (2015)).

When we calculate the implicit price of carbon in section 7, we ignore sequestration, i.e. the carbon the forest could have

absorbed continuously if it were kept standing. We do not have precise estimates for it in our data. Hubau et al. (2020) estimate

that “intact old-growth tropical forests” in Amazonia sinks about 0.4 tonne Carbon per hectare per year, which corresponds to

about 1.5 tonnes of CO2 per hectare forest, or USD 75 at 50 USD/tCO2. As our estimates for deforestation and carbon imply CO2

values of about USD 20,000 per hectare, the sequestration would thus add only about 0.4% of the carbon stock per hectare per

year.13 Standing forests do also provide benefits beyond carbon capture and storage, e.g., biodiversity, that we also do not pick

up with our stylized carbon valuation. Finally, if the forest were allowed to grow back instead of the area being turned into non-

forest permanently, regrowth of new forest could mean higher absorption of carbon than the previous forest. In our context,

this is likely to be rare as we focus on the effect of agricultural commodity prices on deforestation.

Data on production values in agriculture IBGE provides data on annual production value for each crop at the municipality-

level. We deflate these values with the deflator used by the World Bank in their Pink Sheet, i.e. the same deflator that is used

13 Clearing a hectare of forest thus corresponds to the removal of a present value of about 750 USD per hectare in terms of lost carbon sequestration at a

discount rate of 10%: 75∕0.10. We would assume that this is the difference between the sequestration of forest and the sequestration of the cleared land.
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Fig. 1. Maps of policies and deforestation. The shapefile for Brazil is from INPE/IBGE and the shapefile for the “arc of deforestation” is from IMAZON.
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Fig. 2. Deforestation and CO2.

to deflate our agricultural commodity prices. We recalculate such that the figures are in real 2020-USD.14 Clearly, there may be

other economic benefits related to expanding the agricultural sector that are not captured by crop production values. We also

ignore the sales of timber.

Priority municipalities The Brazilian Department of the Environment, Ministério do Meio Ambiente, MMA, publishes the list

of municipalities with a “priority” status, including the date they entered the list. The left map in the middle row of Fig. 1 shows

deforestation and the listed municipalities in 2002, long before the policy was implemented, while the map next to it illustrates

the deforestation in 2013. In our sample, a total of 50 municipalities were blacklisted. 33 got on the list in 2008, 8 in 2009, 7 in

2011 and 2 in 2012. None of the municipalities in our sample got off the list during the period we study. The weighted mean

length on the list is 5.5 years in our sample. For the empirical analysis, we generate an “Active” dummy (denoted A) taking one

for the years a municipality was on the list and an “Ever” dummy (denoted E) indicating whether a municipality was blacklisted

at any point in time during the sample period.

Soy Moratorium We classify the treatment group as those municipalities that produced soybeans in 2005, the year before

the Soy Moratorium started. Data on the planted area and production volume of soy are published in the municipal agricultural

report Produção Agrícola Municipal from IBGE (2017). The lower left part of Fig. 1 maps the 190 municipalities in the entire

Brazilian Legal Amazon that planted soy in 2005 according to the IBGE data. For reference, 201 municipalities planted soy in

2013. In our sample, the IBGE data suggest that 147 municipalities planted soy in 2005. We now define the “Ever” variable E as

the log of the area in km2 allocated to soy in 2005. The “Active” dummy A is now simply one for all years after 2005.

Conservation zones Data on implementation dates and locations of protected areas were obtained from the Brazilian Min-

istry of Environment MMA (2017). There are 258 protected areas implemented between 2003 and 2013: 48 strictly protected

zones, 92 sustainable use zones and 118 indigenous lands. The lower right part of Fig. 1 illustrates how they are distributed over

the Brazilian Legal Amazon. In our sample, there were 5 municipalities with at least one of the three types of protected areas

in 2003, covering in total between 2.6% and 10.6% of the municipality areas. In 2013, 136 municipalities had such conservation

zones, covering between 0.4% and 73.4% of the municipality areas. 0.25% of the 3.2 million km2 covered by our sample of 470

municipalities were covered by one of the three types of protected areas that we consider as conservation zones in 2003. In

2013, this number had increased to 17.2%. For the empirical estimation, the variable A is the log of the area in km2 located

in a conservation zone in a municipality. The dummy variable E takes one if the municipality expanded the area covered by

conservation zones in the sample period.

International prices We obtain international crop prices from the World Bank. Data on the land allocated to each crop in

a municipality are provided by an annual survey of agricultural production across all Brazilian municipalities from the IBGE. In

our price index, we include ten internationally traded crops: banana, coffee, groundnut, maize, orange, rice, sorghum, soybean,

sugar cane, and wheat. Together they account for over 80% of the agricultural area in the Amazon region.15 Soy occupies the

most crop-planted area in the Amazon. The area planted with soy increased from 41,965 km2 in 2002 to 66,976 km2 in 2006. It

14 For the commodity prices in nominal and real values, see Pink Sheet, World Bank. The base year in the deflator is 2010. We use the exchange rate 1BR = USD

0.60, as off 30 dec. 2010 (The Federal Reserve).We arrive at 2020-figures by using the accumulated inflation in the US since 2010, i.e. 18.8% (US CPI)).
15 The most frequently (but not most extensively) planted crop in the Amazon, which is not part of our price index, is cassava. Cassava plantation accounted

for less than 4% of the agricultural area in 2013. We exclude cassava since it is not an export crop, but mainly planted for own consumption or the domestic

market.
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Fig. 3. Price indexes.

further increased to 93,504 km2 in 2013, which corresponds to about 53% of all crop fields in the region. Corn, the second largest

crop, increased its share from around 16% in 2002 to over 25% in 2013. Sugar cane is another important monocultural crop that

is mainly produced in the south of Brazil, but is also increasingly being planted on recently deforested land in the legal Amazon

(Martinelli and Filoso, 2008).

We construct our municipality-specific price index as follows:

Pa,it =
∑

j

wij,2002Pjt, wij,2002 =
areaij,2002∑
jareaij,2002

(1)

where Pjt is the international price measured in current $US of crop j at time t, normalized to 1 in year 2000. The weights wij,2002

are calculated based on the size of the planted area of crop j in municipality i in 2002, the initial year in our sample. We use these

predetermined weights to avoid that the price index itself is affected by the farmers’ behavior during the period we study. The

weights sum to one. When we use the soy, non-soy and corn prices separately in the context of the Soy Moratorium, we apply

Equation (1) with weights based on 2005, the year before the introduction of the Soy Moratorium. As the weights are then for a

subset of crops, they do not sum to one. We provide robustness checks with alternative weights, as described in section 6. Fig. 3

presents the price indexes we use.

Controls. We account for: (i) rural credit policy, by including the normalized total value of credit concessions in a given

municipality in a given year; (ii) for overall level of stringency of monitoring and law enforcement, by using the log of the

annual number of environmental fines applied at the municipality level in the previous year.16 In addition, we perform a large

number of other robustness checks in section 6, where we also run robustness with respect to the CAR policy.

16 We are very grateful to Juliano Assunção, Clarissa Gandour, Romero Rocha and Rudi Rocha for sharing with us their data on rural credit and fines.
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3.2. Identification strategy

In our empirical strategy we proceed in three steps. First, we estimate the relationship between commodity prices and

deforestation with the following equation:

DFit = 𝛽1Pa,it−1 + It + Ii + 𝜖it (2)

where DFit denotes the log of the sum of deforestation in municipality i in year t (August t-1 to August t). Pa,it−1 is the log

of the municipality-specific price index of global commodity prices, with area allocated to the respective crops in 2002 as the

weights (see section 2). Ii and It refer to municipality and year fixed effects. The coefficient of interest, 𝛽1, is identified to the

extent the error-term 𝜖it is uncorrelated with Pa,it−1, which is plausible given the pre-determined weights and international

prices.17 Standard errors are clustered at the municipality level.

Second, we estimate how policies aimed at reducing deforestation affect the deforestation’s response to international com-

modity prices. We expand equation (2) with the policy exposure at the municipality level. This amounts to estimating a triple

differences model (DDD). Formally, we estimate DDD-models of the following form:

DFit = 𝛽1Pa,it−1 + 𝛽2Pa,it−1 × Ei × Ait + 𝛽3Pa,it−1 × Edum
i

+ Pa,it−1 × It𝛽4 + 𝛽5Pa,it−1 × Fit−1

+𝛾1Fit−1 + 𝜆1Ei × Ait + Edum
i

× It𝜆2 + It + Ii + 𝜖it (3)

The main parameter of interest is 𝛽2 (the triple difference estimate), indicating how the price-effect depends on the presence

of the policy. Ei × Ait is the policy treatment variable. For the blacklisting policy, it takes one if a municipality is on the blacklist in

a given year and zero otherwise. For the soy moratorium, the policy treatment variable takes zero for the years before 2006 and

then switches to the log area devoted to soy production in the year before the moratorium was introduced. For the conservation

zones, the policy treatment variable is the area allocated to conservation zones in any given year. The variable Edum
i

indicates

whether the municipality is ever directly exposed to the policy. For simplicity, we define it as a dummy for all three policies.

It takes one if the municipality is ever on the blacklist, the area devoted to soybeans in the year before the Soy Moratorium is

larger than zero,18 or there is an expansion of protected areas in our sample period.

We include the interaction between the price and the ever dummy, Ei, allowing for a different price effect across the control

and treated municipalities in all years. A full DDD-model requires the price to be interacted with the post dummy. We use

instead the more flexible specification of interaction between the price and the year dummies, to allow for a differential price

effect across all municipalities over time.19 We include interactions between the ever dummy and the year dummies, to flexibly

allow for different trends between the treatment and control groups. Note that the policy treatment variable Ei × Ait is not

collinear with these time-dummy interactions for the respective reasons: municipalities were put on the blacklist at different

times; the area devoted to soy varies across municipalities; and the size and the timing of the conservation zones varies across

municipalities. Finally, we include log of lagged forest cover, Fit−1, and its interaction with the price index.

To keep the model tractable, we estimate equation separately for each policy. We present estimates where we include all

three policies simultaneously in section 6.20 We there also discuss threats to identification and show robustness to a host of

controls and other policies.

3.3. Testing for parallel pre-trends

Our key identifying assumption is that, in absence of the policies, the treated and non-treated municipalities would have had

the same difference-in-differences in deforestation with respect to high and low price exposure. This identifying assumption

is untestable, but we follow Muralidharan and Prakash (2017) and use the pre-policy data in Table 1. As indicated by the first

row in columns 1–3, we can reject parallel trends for the policies in a DD-specification, i.e. when we compare only across the

control and treatment group. Bringing in the agriculture commodity prices in columns 4–6, however, we cannot reject common

differential trends as seen by the triple interaction term in row 3.

In Tables A.5–A.7, we present pre-trend tests for 12 covariates. The coefficient on the triple interaction term is statistically

insignificant in all cases, with the following few exceptions: the size of the area used for agriculture for the priority list policy;

agriculture productivity and remaining forest for the conservation zones; and one or more credit measure for all three polices.

However, we show in section 6 that our results are robust when we include any of these characteristics as controls.

The pretrend-tests increase our confidence that our key identifying assumption is satisfied.

17 Global commodity prices combined with various local weights have been used in similar specifications in the literature on conflict (Dube and Vargas, 2013;

Bazzi and Blattman, 2014) and in the literature on the Dutch disease (Harding and Venables, 2016; Cust et al., 2019).
18 In Table A.8, we use the log area soy planted in 2005 instead of treatment group dummy for the SM.
19 Note that the direct price effect, 𝛽1, is absorbed by the interactions with the year dummies. Note that 𝛽4 and 𝜆2 are vectors of coefficients.
20 See Appendix Table A.9.
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Table 1

Testing for parallel pre-trends.

(1) (2) (3) (4) (5) (6)

PM DD SM DD CZ DD PM DDD SM DDD CZ DDD

TreatGr = 1 × Trend −0.065∗

(0.038)

0.094∗

(0.054)

−0.124∗∗

(0.056)

−0.129

(0.091)

−0.053

(0.108)

−0.116

(0.111)

TreatGr = 1 × L.Price 2.670

(1.859)

−4.198

(2.556)

−1.030

(2.100)

TreatGr = 1 × Trend × L.Price −0.147

(0.398)

1.039

(0.680)

0.387

(0.620)

Trend × L.Price −0.194

(0.145)

−2.737∗∗∗

(0.376)

−2.597∗∗∗

(0.489)

L.Price 1.870∗∗∗

(0.586)

8.700∗∗∗

(1.289)

8.030∗∗∗

(1.633)

Observations 2350 1410 1410 2350 1410 1410

Municipalities 470 470 470 470 470 470

R-sq 0.27 0.03 0.03 0.28 0.10 0.10

Note: The dependent variable is log of deforestation in a municipality in the years before the policy was implemented. DD indicates

difference-in-difference versus DDD indicates triple differences, where the price variable represent the third difference. The price index is

calculated by Equation (1) and included in the log-form. All area sizes used for the price-weights are measured at the municipality level

for the year 2002, the initial year in our sample. Trend is a trend variable, defined as Year-2001. TreatGr indicates if a municipality is in

the control or treatment group. In columns 1 and 4, the assessed policy is the blacklisting policy (2002–2007), in columns 2 and 5 it is

the Soy Moratorium (2002–2005) and in columns 3 and 6 it is the conservation zones (2002–2005). We take 2006 as the treatment year

for conservation zones since it was the year with the highest expansion in protected areas. Includes municipality and year fixed effects.

Standard errors are in parenthesis and clustered at the municipality level.

Table 2

Baseline results prices and policies.

Prices only

(1) (2) (3)

Price Price Price

L.Price 0.491∗∗∗

(0.190)

0.654

(0.469)

4.222∗∗∗

(0.553)

L.Forest cover 2.382∗∗∗

(0.147)

L.Forest cover × L.Price −0.305∗∗∗

(0.020)

Observations 5170 5170 5170

Municipalities 470 470 470

R-sq 0.41 0.41 0.48

I x P Yes

Total price effect

dydx(P) 0.49 0.49 0.47

p-value 0.01 0.01 0.01

Note: The dependent variable is log deforestation in areas outside of conser-

vation zones. The price index is calculated by Equation (1) and included in

the log-form. All area sizes used for the price-weights are measured at the

municipality level for the year 2002, the initial year in our sample. Models are

versions of Equation (2), where column 2 includes trend and trend interacted

with the price and column 3 includes interactions between year dummies and

the price. All columns include municipal and year fixed effects and the stan-

dard errors shown in parentheses are clustered on the municipality level. The

bottom rows give the price effects. The p-values are from an hypothesis test

where H0 is that the effect listed above is zero. The marginal effects and the

p-values are calculated with the margins package in stata.

4. Agricultural commodity prices and policy impact

Table 2 presents versions of equation (2), which confirm that higher agriculture commodity prices exert higher pressure on

the forest. Column 1 simply includes municipality and year fixed effects in addition to the municipality specific price index.

Column 2 adds time trend interaction with the price and column 3 adds time fixed effects interaction, lagged forest cover and

interaction between the price and the lagged forest cover.21 The results show that a one percent increase in the price index

21 The price effect is stronger in municipalities with lower levels of remaining forests, as shown in column 3. Such heterogeneity is not surprising given that

our sample covers 470 municipalities and about 3 million square km.
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Fig. 4. Deforestation under different prices and treatments.

increases deforestation by 0.47 percent. As the level of the price index over 2004–2013 was on average 56% higher than in 2003,

this estimate implies that the annual deforestation was on average 23% higher than it would have been with the 2003-prices.

The higher prices led to about 3.7 km2 higher annual deforestation per municipality on average, corresponding to a total of

about 17,200 km2 across the 470 municipalities over the 10 years (see Table A.4).22 The upper left panel of Fig. 4 presents the

estimated relationships between percentage increases in the price index and percentage increases in deforestation, with the

observed price increase of 56% indicated with the vertical dashed line.

Our main question is whether the priority municipality list (PM), the Soy Moratorium (SM), and conservation zones (CZ)

reduce the pressure of higher commodity prices on deforestation. Table 3 presents our baseline estimates: Columns 4–6, based

on Equation (3). Columns 1–3 correspond to the DDD-specification in the pre-trend test Table 1 and are included for complete-

ness. The main parameter of interest is the triple-difference estimate (captured by variable TreatGr × Active × L.Price). We

present the total price effect with and without the policy in the two bottom rows of the table, together with the difference

between them and the p-value for the hypothesis test that this difference is equal to zero. Fig. 4 shows the total price effects

with and without the policies and illustrate the main point of this paper: the effect of the regulatory policies depends critically

22 To compute the overall level of deforestation, we multiply the average reduction in deforestation due to the higher prices (ΔYcf ) with the total number of

treated municipalities over the period of the policy (N).

11



T. Harding, J. Herzberg and K. Kuralbayeva Journal of Environmental Economics and Management 108 (2021) 102452

Table 3

Baseline results prices and policies.

Policies (trend) Policies (Eqn 3)

(1) (2) (3) (4) (5) (6)

PM SM CZ PM SM CZ

TreatGr x Active × L.Price −1.473∗∗

(0.574)

−0.154∗∗∗

(0.037)

0.088∗∗

(0.038)

−1.301∗∗

(0.595)

0.027

(0.036)

0.168∗∗∗

(0.031)

L.Forest cover 2.335∗∗∗

(0.145)

2.578∗∗∗

(0.155)

2.249∗∗∗

(0.149)

L.Forest cover × L.Price −0.286∗∗∗

(0.022)

−0.285∗∗∗

(0.020)

−0.376∗∗∗

(0.022)

Observations 5170 5170 5170 5170 5170 5170

Municipalities 470 470 470 470 470 470

R-sq 0.42 0.44 0.41 0.49 0.52 0.50

I x P Yes Yes Yes

Total price effects, policy off/on

dydx(P) policy off 0.74 0.80 0.16 3.68 0.07 0.06

p-value 0.12 0.02 0.56 0.00 0.85 0.84

dydx(P) policy on −0.73 −0.06 0.67 2.38 0.29 1.02

p-value 0.15 0.81 0.00 0.01 0.40 0.00

Difference in total price effect

Difference −1.47 −0.86 0.50 −1.30 0.22 0.96

p-value 0.01 0.00 0.02 0.03 0.45 0.00

Note: The dependent variable is log deforestation in areas outside of conservation zones. The price index is calculated by Equation (1) and included in

the log-form. All area sizes used for the price-weights are measured at the municipality level for the year 2002, the initial year in our sample. Columns

include policies as indicated in the column headings. Ever and Active is defined according to the policy type as described in section 3. Columns 1–3

include time trends interacted with the price index as well as with the ever-treated dummy. Columns 4–6 are based on Eqn 3 and include interactions

between the price and year dummies and interactions between the ever-treated dummy and year dummies. All columns include municipal and year

fixed effects and the standard errors shown in parentheses are clustered on the municipality level. The bottom rows give the price effects, with and

without the policy for the treated when relevant. The p-values are from an hypothesis test where H0 is that the effect listed above is zero. The marginal

effects and the p-values are calculated with the margins package in stata.

on the underlying deforestation pressure.

Comparing the effect of agriculture commodity prices on deforestation with and without the policies, as listed in the bottom

rows in Table 3, we find that the priority list reduces the effect by about 1.3 percentage points (3.68–2.38). The effect is statis-

tically significant. The price increase of 52% from the pre-policy period 2003–2007 to the post policy period 2008–2013 would

have led to a 370% increase in deforestation in the treatment group in absence of the policy. With the policy in place, the price

increase leads instead to a 172% increase in deforestation. Using the actual observed deforestation for the municipalities in the

treatment group over the period 2008–2013, the priority list saved 35 km2 of forest in every treated municipality on average

per year, which sums up to about 9,100 km2 overall (see Table A.4 for the details of these calculations). The upper right chart of

Fig. 4 illustrates how the policy contributes to avoiding large increases in deforestation when the price growth is high.

The Soy Moratorium does not have a statistically significant effect on how commodity prices affect deforestation, and the

sign of the estimated coefficient actually suggests that the Soy Moratorium raised the deforestation pressure. This can also be

seen in the lower left chart of Fig. 4. We further explore the effects of the Soy Moratorium for the soy price, non-soy prices and

the corn price in section 5.

Conservation zones amplify the price effect, which can be seen in the lower right chart of Fig. 4. For illustration, we use the

average price in the pre-policy years and the average price in the post policy years, i.e. 1.31 and 1.83, where the pre and post

policy years vary at the municipality level. Due to this 40% increase in the price index, expansion of zones increased annual

deforestation outside of zones by 6.1 km2 per municipality or a total of about 6,100 km2 (see Table A.4). These results are

consistent with zones taking away land from the land supply and hence they increase the pressure on the remaining land. It

is also possible that establishing conservation zones increases rivalry for remaining land and thus increases deforestation as a

means of taking land into possession.23

Fig. 4 makes clear that we in this paper study the effect of the policies through agricultural commodity prices, i.e. through

the change in the opportunity cost of farming forested land. The policies may also work via other channels. For instance, the

policies may simply increase the cost of deforestation through higher risk of, or higher penalties for, getting caught for illegal

deforestation, which are separate from the opportunity cost of agriculture. Similarly, the value of the standing forest may also

23 As mentioned in section 2, property rights in the Amazon are not well defined or defended. Thus, deforestation is still seen as a practice to obtain land

titles which otherwise could be lost through invasion or expropriation (Fearnside, 2001). For completeness, we present estimates where the dependent variable

is the deforestation within conservation zones only (lower column 4 in Tables A.10–A.15) and deforestation in the entire municipality (lower column 5 in

Tables A.10–A.15). For deforestation inside zones, we do not find any significant differences in the price effect. The results based on deforestation in the entire

municipality are very similar to the baseline results.
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Table 4

Soy moratorium with different price indexes.

SM: Different Prices (Eqn 3)

(1) (2) (3)

Psoy Pnon-soy Pcorn

TreatGr x Active × L.Price −0.055∗∗

(0.023)

0.104∗∗∗

(0.024)

0.017∗

(0.009)

L.Forest cover 2.629∗∗∗

(0.630)

2.600∗∗∗

(0.153)

2.150∗∗∗

(0.154)

L.Forest cover × L.Price −0.363∗∗∗

(0.037)

−0.292∗∗∗

(0.019)

−0.224∗∗∗

(0.016)

Observations 1584 5170 5137

Municipalities 144 470 467

R-sq 0.64 0.52 0.50

I x P Yes Yes Yes

Total price effects, policy off/on

dydx(P) policy off 0.84 −1.13 3.97

p-value 0.19 0.00 0.05

dydx(P) policy on 0.39 −0.28 4.11

p-value 0.54 0.31 0.05

Difference in total price effect

Difference −0.45 0.85 0.14

p-value 0.02 0.00 0.05

Note: The dependent variable is log deforestation in areas outside of conservation

zones. The table repeats column 5 of Table 3, but with alternative prices: Column

1 is based on the area of soy planted times the soy price. Column 2 is based on

the agricultural price index excluding soy, using the area sizes allocated to each

crop as weights (following Equation (1)). Column 3 is based on the area of corn

planted times the corn price. All area sizes used for the price-weights are mea-

sured at the municipality level for the year 2005, the year before the soy mora-

torium was introduced. All the price-variables are included in the log-form. All

columns include municipal and year fixed effects. Standard errors are clustered

at the municipality level. The bottom rows give the price effects, with and with-

out the policy for the treated when relevant. The p-values are from an hypothesis

test where H0 is that the effect listed above is zero. The marginal effects and the

p-values are calculated with the margins package in stata.

change due to the policies, as expected timber prices or the expected surrounding landscapes may change. In this paper, we do

not seek to identify these other potential channels.

5. Soy moratorium and different crops

An important finding of this paper is that the Soy Moratorium does not reduce the impact of commodity prices on defor-

estation. This seems to stand in contrast to the influential study by Gibbs et al. (2015), which found that the Soy Moratorium

is effective in reducing deforestation. The authors studied the extent to which soy has been cultivated on newly deforested

land after the Soy Moratorium was introduced. In this section we show that the Soy Moratorium reduced the responsiveness of

deforestation to the soy price, but that this was counteracted by an increased responsiveness to the price of other crops.

In Table 4, we present estimates of our triple difference model, again based on (3), for the Soy Moratorium under different

commodity price indexes. In column 1 we use a soy price index, in column 2 a price index excluding the soy price and in column

3 a corn price index. The negative and statistically significant coefficient of the triple interaction term in column 1 suggests that

the Soy Moratorium significantly reduced deforestation related to the soy price. The magnitude means that the policy reduced

annual deforestation by 2.3 km2 per treated municipality and by about 2,650 km2 in total (see Table A.4 for the details).

Column 2, however, indicates that the impact of non-soy prices on deforestation increased significantly in the presence of

the Soy Moratorium. The deforested area increased by 5.1 km2 annually per municipality and about 5,850 km2 in total due to

higher prices of other crops. As a result, the net increase in deforestation due to the policy is estimated at about 3,200 km2

(Table A.4).

Corn is a non-soy crop that has experienced remarkable expansion in recent years. While corn was a minor crop in the

Brazilian Legal Amazon in 2006, corn production has since then quadrupled and become the second most important crop in

the Legal Amazon in terms of export share, after soy (IBGE, 2017). In recent years, soy and corn combined accounted for over

95% of the vegetable exports of the region (SECEX, 2017). Corn has been found to grow under the same climatic and geological

conditions as soy, and substitution between soy and corn in the soy producing areas is thus feasible (Jantalia et al., 2007). The

Soy Moratorium might therefore have contributed to corn expansions. Our estimates suggest that leakage to corn can account

for 20% of the deforestation leakage related to non-soy crops. Specifically, the estimated elasticity of deforestation with respect
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to the corn price increased by 0.14. This led to 1.0 km2 higher annual deforestation on average across the treated municipalities

and a total of about 1150 km2 in our sample (Table A.4).

These results point to a novel form of leakage related to the Soy Moratorium, which to the best of our knowledge has not been

documented in the existing literature. The previous studies identify two other forms of leakage associated with this industry-

driven initiative. First, high deforestation rates during the preceding years made it possible that over 90% of soybean field exten-

sion occurred on land that had been previously cleared between 2006 and 2010 (Macedo et al., 2012). Second, the Soy Morato-

rium comprises only the Biome of the Legal Amazon, and increasing deforestation rates in the neighbouring Cerrado biome may

have been linked to the Soy Moratorium (Gibbs et al., 2010).24

6. Robustness checks

In this section, we present robustness checks for the results presented in Tables 3 and 4.

Alternative specifications for baseline models We first present our baseline model for the SM with a continuous treat-

ment variable in Table A.8, and the results stay the same. We then present our baseline model with all three policies included

simultaneously, in Table A.9. We find qualitatively robust and consistent results for PM and CZ. For SM, the soy and corn price

results become insignificant. The main results that the SM did not change the effect of the overall price index, but did make

deforestation more sensitive to non-soy prices remain robust.

In Tables A.10–A.15, we control for a large set of omitted variables, check robustness to different samples and to different

specifications. As we have more limited coverage for some of the control variables, column 1 in Tables A.10–A.15 presents

our baseline model on the limited sample for comparison. We investigate robustness in terms of alternative definitions of the

dependent variable and geographic characteristics in Tables A.16–A.19.

Agriculture The municipalities in our sample differ in terms of how developed their agriculture sector already is, which

may affect the pressure to deforest further and the implementation of the policies. In columns 2 and 3 in Tables A.10–A.15, we

address this by controlling for lagged areas allocated to agriculture and for agricultural productivity. In column 4, we control for

population. These controls do not affect the conclusions of this study.

Other policies The three policies we focus on in this paper may be correlated with other policy efforts implemented by

Brazil, as discussed in section 2. In columns 5–9 in Tables A.10–A.15, we control for agricultural credits, given to crop production

or cattle production, or the stringency of monitoring and law enforcement measured as the number of fines issued by the

environmental police. If anything, our results for PM and CZ become stronger with these controls.

Furthermore, the three policies that we consider may in certain municipalities overlap with and complement each other. For

example, Abman (2014) points out that international beef and soy companies withdraw from buying these commodities from

municipalities with priority status, suggesting a channel through which the policy worked that is similar to the Soy Moratorium.

Seeking to insulate the effect of the different policies, column 10 in Tables A.10–A.15 include the two other policies. Our results

remain robust to these specifications.

Finally, column 11 in Tables A.10–A.15 presents the results where we include as control variables the area registered in CAR

at the municipality level interacted with year dummies. The CAR-variable is based on the CAR-registry as published in 2016 and

is time-invariant. The results are very similar to the main results.

Alternative specification In our baseline specification, we include the lagged remaining forest and its interaction with the

price as control variables. The purpose is to account for heterogeneity related to the potential for deforestation and earlier

development. When we exclude these controls in column 12 in Tables A.10–A.15, we obtain similar results as for the baseline.

SM is now associated with lower deforestation from the overall price index, but we find no effect of SM for the soy price and the

non-soy price, and a positive effect for the corn price.

Sample size Our baseline sample excludes municipalities outside of the forest frontier, or the so-called arch of deforestation

(Levy et al., 2018). In column 1 in the lower panel of Tables A.10–A.15, we show that our baseline results are robust to including

the other municipalities in the Brazilian Amazon for which we have the necessary data.

Could Brazil influence the world market price of soy? Throughout our study period, Brazil was the second largest soy

producer in the world, with a market share of minimum 23.5% in 2002 and maximum of 29.3% in 2013 (FAO, 2018). The number

one producer was the US, with a market share of 36.4% on average. The production of soy in our study area, the Brazilian

Amazon, constituted only 34% of the total production of soy in Brazil in 2013. While 60% of the total soy exports of Brazil were

destined for Europe in 2002, about 75% of all exports went to China in 2013 (SECEX, 2017). To deal with the concern that Brazil

is large enough to influence the world market price for soy, and hence potentially violating the assumption that the world price

is exogenous to events in Brazil, we run robustness checks excluding the municipalities with the largest soy production in the

Brazilian Amazon in column 2 in the lower panel of Tables A.10–A.15. In our study period, those municipalities were responsible

for up to 35% of the total Brazilian Amazonian soy production. In column 3, we exclude instead the 10% municipalities with the

highest deforestation rates. Our results are robust to excluding either of these two types of large actors, although we loose some

statistical significance for the SM in combination with the specific price indexes.

24 The Brazilian Cerrado is another type of forest biome that covers much of Mato Grosso state. Mato Grosso in turn, is a state in the Southern part of the

Amazon region, which hosts many of the large-scale farms and soybean producers.
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The Global Forest Change dataset In our analysis, we use Brazil’s National Space Research Institute’s (INPE) data on defor-

estation. The Brazilian government uses these data to monitor deforestation in the Brazilian Amazon. Richards et al. (2017)

argue that the decision to use these data as a policing tool has incentivized landowners to find other ways to deforest and avoid

compliance with Brazil’s official monitoring and enforcement system. They provide evidence of divergence between PRODES

and other deforestation indicators after 2008, which implies that INPE’s dataset might overestimate the impacts of the policies

on deforestation. In column 6 “Hansen” in Tables A.10–A.15, we therefore use instead the Global Forest Change (GFC) dataset

(Hansen et al., 2013). These data cover the entire municipalities. For comparison, we include estimates for deforestation “In

zones” only in column 4 and for the “Entire” municipality in column 5. The “Entire”-column is thus comparable to the “Hansen”-

column, and they show qualitatively the same effects as our baseline estimates, with two exceptions. First, the SM is found to

increase forest loss related to the general commodity price index when forest loss is measured with the GFC data. Second, and

consistent with the first, the SM is not found to reduce the impact of the soy price on forest loss when measured with the GFC

data. These two discrepancies are consistent with the observation of Richards et al. (2017) regarding adaptation of different

deforestation patterns. However, one caveat is that we do not find similar deviations for PM. Another caveat is that the robust-

ness results for SM with the soy price in general are statistically less robust than our other results. For completeness, we note

that all coefficients in the column “In zones” across Tables A.10–A.15 are statistically insignificant, which may not be surprising

given that the areas within the conservation zones have seen low levels of deforestation.

Exogenous weights in the price index? As weights in the municipality specific price indexes, we use the share of agricultural

land devoted to each crop. The weights need to balance two concerns. On the one hand, they need to be relevant and reflect

the exposure of each municipality to the international commodity prices. On the other hand, they should be exogenous to

unobserved factors determining deforestation and the policies. Our price index thus has similarities with Bartik instruments,

which are created by interacting local shares (such as initial industry shares) with a national time-varying variable (such as

industry growth rates). Goldsmith-Pinkham et al. (2018) highlight the importance of exogenous local weights for identification

in Bartik applications. Throughout this paper, we follow Bazzi and Blattman (2014) and use the land allocations in the initial

year, 2002, to make the weights pre-determined.

To scrutinize the relevance of our price index, we use the average share of the crop areas over the entire sample period as

weights instead of the weights from the initial year. These weights should better reflect the actual exposure to the international

prices, especially if municipalities have seen large expansions or contractions in the area allocated to different crops. The results

are presented in column 7 in the lower panel of Tables A.10–A.12. Second, we use weights based on the crop area in 2005

in column 8, the year before the introduction of the SM (note that we for the soy, non-soy and corn prices always use the

agricultural areas in 2005 for the weights).

To scrutinize the exogeneity of our price index, we show results for an agricultural price index weighted by potential yields

(WPY) in column 9. Out of the 10 crops that we use in our baseline price index, we have the data to do this for 7 crops: Rice,

Soybeans, Corn, Sugar cane, Banana, Citrus fruits and Cotton. Potential yields is a measure provided by the FAO GAEZ database,

which calculates potential production based on geological and climatic conditions and is available at a pixel level. The data

measure PY in kilograms per hectare for a crop in a given location and we constructed the mean PY at the municipality level by

statistical zoning in QGIS. To create a sample-wide reference point for crop j, we calculated the mean PY across all municipal-

ities: PYj =
∑N

i=1
PYj∕N. We then calculated the relative PY for crop j in each municipality i: rPYij = PYij∕PYj. rPYij reflects the

productivity of the soil in municipality i in producing crop j, relative to the average of the Brazilian Amazon. We use rPY as the

weights in the price index, which for municipality i over all crops j can be expressed as: PPY ,it =
∑

jrPYij
∗Pjt , where Pjt is our

standard price from the world bank (set to 1 in 2000). As we use the log of the price index in the regressions, it does not matter

that the weights do not necessarily sum to one.

Across all these three alternative weighing schemes, our results remain qualitatively and quantitatively stable (see columns

7–9 in Tables A.10–A.12). Again, the notable exception is the Soy Moratorium, for which the triple interaction takes a negative

coefficient in all three cases but is (marginally) statistically significant only with Potential Yield weights.

Spatial correlation In our baseline specification, we cluster the standard errors at the municipality level to deal with serial

correlation. In addition, there might be spatial correlation across neighbouring municipalities.25 We follow Cameron et al. (2011)

and use two-way clustered standard errors (on municipality and state-year) in the second most right column in the lower panel

of Tables A.10-–A.15. In the most right column, we include instead state-year fixed effects as control variables. These robust-

ness test do not change the conclusions of this study, although the triple interaction for the Soy Moratorium loses statistical

significance for some of the separate price regressions.

Controlling for geographical characteristics. In our setting, characteristics that affect the profitability of agriculture may

affect both the pressure to deforest and where the government choose to implement the policies. To test whether our triple-

difference estimates pick up the effects of geographic characteristics that may affect the profitability of agriculture, we include

interactions between the prices and the following five geographic characteristics: nutrient(1) concentration refers to soil fertility

that is particularly important for low input farming; nutrient(2) concentration is particularly relevant for the effectiveness of

fertiliser application; oxygen availability in the soil is particularly important for root development; root refers to soil volume

limitations of a soil unit, affecting penetration and constraining yield formation; and access provides the estimated travel time

to the nearest city with 50,000 or more inhabitants and plausibly also accounts for transportation costs. Tables A.18 and A.19

25 Municipalities within a Brazilian state do not only share geographical proximity but also political, legislative and cultural commonalities.
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Table 5

Carbon loss.

Carbon loss

(1) (2) (3) (4)

Price PM SM CZ

TreatGr x Active × L.Price −1.274∗∗

(0.617)

0.025

(0.041)

0.167∗∗∗

(0.034)

L.Initial × L.Price −0.256∗∗∗

(0.022)

−0.243∗∗∗

(0.024)

−0.245∗∗∗

(0.022)

−0.330∗∗∗

(0.024)

L.Initial 2.711∗∗∗

(0.175)

2.675∗∗∗

(0.174)

2.993∗∗∗

(0.186)

2.539∗∗∗

(0.181)

Observations 5170 5170 5170 5170

Municipalities 470 470 470 470

R-sq 0.46 0.47 0.49 0.48

I x P Yes Yes Yes Yes

Total price effects, policy off/on

dydx(P) policy off 0.93 3.63 0.14 0.45

p-quant 0.00 0.00 0.69 0.19

dydx(P) policy on 2.35 0.34 1.40

p-quant 0.02 0.35 0.00

Difference in total price effect

Difference −1.27 0.21 0.95

p-quant 0.04 0.54 0.00

Note: Dependent variable is log carbon loss in areas outside of conservation zones. Column 1 is

based on equation (2) and includes interactions between the price and year dummies as well

as interactions between the policy dummy and year dummies. Columns 2–4 are based on equa-

tion Eqn 3 and include interactions between the price and year dummies as well as interactions

between the policy dummy and year dummies. All columns include municipal and year fixed

effects and the standard errors shown in parentheses are clustered on the municipality level.

Section 3.1 explains the carbon data.

present the results for the models in Tables 3 and 4, respectively. We conclude that our results are robust and do not reflect

variation in these geographic characteristics.

7. The implicit price of carbon

To calculate the implicit price of carbon in our setting, we compare the value of a hectare of forest in terms of carbon storage

against the alternative value of the hectare of land in agricultural crop production. The implicit price will simply be the ratio of

present value agricultural profit to carbon density.26

For agricultural profits, we start out with the observed revenue from crop production per hectare, R∕ha, measured in 2020-

USD. We assume a 15% profit margin and a 10% discount rate. We need the latter to calculate the present value, as it is the value

over the life time of the plot that matters.27

To get at the relevant carbon density, we obtain estimates of the effect of prices and policies on carbon emissions. Table 5

presents estimates of our baseline models, equation (2) and equation (3), with carbon loss as the dependent variable. There is

a difference between carbon and forest, simply because the forest varies in terms of carbon density across municipalities.28 We

find similar effects as for deforestation being the dependent variable. In column 1, we estimate that a one percent increase in the

general price index increases carbon loss by 0.93 percent. In columns 2–4, we find that PM reduces the price effect, CZ amplifies

the price effect and SM makes no difference on the overall price effect.

By combining our estimates for deforestation and carbon, we can obtain an estimate of the carbon density of the affected

forest. For deforestation, we found 35.4 km2 saved forest loss per municipality due to PM (Table A.4). The corresponding estimate

of the value of CO2 measured at 50 USD/tCO2 is 78 million USD. Combining the two, yields a value in terms of CO2 of USD 22,000

per hectare. For the SM and CZ policies, the corresponding figures are USD 18,000 and USD 24,000, respectively. For reference,

the mean and median in our raw data for year 2000 are USD 17,000 and USD 20,000.

26 PCO2
= Present value agricultural profits per hectare

CO2 density per hectare

27 As an example, our data suggest a yield of about 3 tonne soy per hectare per year and a price of about 400 USD per tonne. The present values are then

12,000 USD of the revenues (3 × 400∕0.10) and 1800 USD of the profits (12, 000 × 0.15). See Busch and Engelmann (2017) and the discussion in the Appendix

regarding our assumptions.
28 See section 3 for more details on the carbon data. For simplicity, we have measured carbon density in dollars, valued at 50 USD per tonne of CO2 in 2020-USD.
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For PM, the implied price of CO2-emissions, PCO2
, is 6.2 USD/tCO2.29 In other words, this is the amount needed to make a

farmer indifferent between this size of payment or clearance. The figures derived from the SM and CZ policies are 6.2 USD/tCO2

and 6.7 USD/tCO2, respectively.30

Our stylized calculations are informative on the cost of avoided deforestation as an abatement technology. Our figures of

about 6.5 USD per tonne of CO2 are lower than some of the values in the literature. Busch and Engelmann (2017) report figures

on agricultural revenue, forest loss and carbon density from which we can back out an average shadow value of 11 USD per tonne

of CO2 for Latin America over 2001–2012, when CO2 is valued at USD 50 per tonne.31 Using integrated assessment modelling

and quantifying the economic opportunity cost of deforestation in terms of lost crop production value, Overmars et al. (2014)

find that the price per tonne CO2 saved via avoided deforestation is between USD 2 and 9 per tonne in Central and South America

and between 20 and 60 USD per tonne in Southeast Asia (on average, over the 2005–2030 period).32 Using detailed panel data on

land use and the stock of carbon in the Brazilian Amazon together with dynamic discrete choice modelling, Araujo et al. (2020)

find that a perceived value of USD 7.3 per tonne of CO2 can rationalize farmers’ land use decisions. They use a 5% discount rate.

Gillingham and Stock (2018) report costs of different abatement policies based on a compilation of economic studies. The costs

show huge variation, with reforestation at 1–10 2017-USD/tCO2 and reducing federal coal leasing at 33–68 2017-USD/tCO2, as

two examples. Compared to their list, our calculations suggest that reducing deforestation in Brazil may be a cheap alternative.

Our stylized calculation rests on the assumption that the observed R∕ha is a good proxy for the counterfactual R∕ha, i.e.

what would have been the revenue per hectare in the treated municipalities if the policy had not been implemented. If the

policies affect the opportunity cost, then the R∕ha in the treated municipalities may not be a good proxy for the counterfactual

opportunity cost. Our measure of opportunity cost rests on strong assumptions. A more precise quantification of the counter-

factual opportunity cost requires a richer analysis of agricultural production, which we regard to be beyond the scope of our

stylized calculation.33 Table A.20 presents summary statistics for R∕ha for the treatment and control groups, before and after

the policies were implemented. The upper row of Fig. A.1 presents the development of R∕ha over time for the control and

treatment groups. For all three policies, R∕ha in the two groups follow each other closely throughout the period. The two lower

rows of Fig. A.1 present the distributions of R∕ha in the control and treatment groups before and after the three policies where

implemented. The shape of the distributions appear similar before and after the policies were implemented. Although we cannot

rule out that the policies have affected our measure of opportunity cost, the presented descriptive statistics suggest that the

opportunity costs have not shifted dramatically due to the policies. As a 1% change in R∕ha translates to a 1% change in our

implicit prices, it is easy to recalculate them for alternative values of R∕ha. Based on Fig. A.1, the relevant band of R∕ha in our

data is 500–3000 USD/ha.

Our stylized calculations shed light on to which extent the cost of cutting CO2-emissions by reducing deforestation has

been harmonized across space in Brazil. Our figures suggest remarkably similar carbon prices across the three policies. Both the

carbon density and the actual value creation per hectare are behind these results. The same marginal costs everywhere may be

indicative of cost efficiency; cost-minimizing agents would reduce emissions where it is cheapest to do so, until marginal costs

are harmonized. Assuncao et al. (2019b) study optimal counterfactual targeting of municipalities under the PM-policy, given

that the authorities aim at minimizing deforestation subject to a monitoring resource constraint. They consider constraints in

terms of either the total area that can be monitored or the total number of municipalities that can be on the list. The forgone

economic value of protecting a given stock of carbon should also be considered by the authorities to achieve economic efficiency.

Given the stylized nature of our calculations, the resulting implicit carbon price should be used with caution. We leave it to

future research to evaluate the broader economic effects of deforestation, which will help in establishing the actual abatement

costs of reduced deforestation.

8. Conclusion

Agricultural commodity prices may be high in the coming decades as growth in crop yields may stagnate due to climate

change (Iizumi et al., 2017; Wiebe et al., 2015), as the use of land regulation policies may increase (Harstad and Mideksa, 2017),

and as the world’s population and incomes will increase (FAO, 2017). In this paper, we investigated the effectiveness of two

29 For the calculation of the implicit CO2-price, we consider the estimated carbon loss for one year. This is conceptually comparable to the present value of

agricultural profits. Emission of the carbon stock already stored in forest is a one time emission. As discussed in section 3, we ignore carbon sequestration, i.e.

the carbon the forest could have sinked if it were kept standing, as it accounts for less than 0.5% of the carbon stock per year.
30 Based on the ten crops included in this study, the mean value of crop production per hectare are for the treated groups in the treated years as follows:

1,812 USD/ha (PM); 1,509 USD/ha (SM); 2,123 USD/ha (CZ). If we use PM as an example, the present value of land profits with a 15% profit margin and a 10%

discount rate is 2,718 USD/ha ((1,812 USD/ha)/0.10∗0.15). The carbon density in the PM-case is 440 tCO2/ha ((22,000 USD/ha)/(50 USD/tCO2)). The resulting

implicit price of carbon is PCO2
= (2, 718 USD∕ha)∕(440 tCO2∕ha) = 6.2 USD∕tCO2. This is based on the assumption that the entire estimated deforested area is

used for overall crop production. We follow the same procedure for the other policies. Table A.21 presents the numbers.
31 Busch and Engelmann (2017) report potential agricultural revenue of USD 2978 per hectare per year in Latin America. With a profit margin of 15% and a

10% discount rate, this amounts to a present value of about USD 4500 per hectare. In their estimates, 49.2 million hectare deforestation correspond to 19.2 Giga

tonnes of CO2-emissions in Latin America over 2001–2012. This results in about 11 USD per tonne of CO2: 49.2 × 106 × 4467∕(19.2 × 109) = 11.4. Their

carbon emissions per hectare of forest corresponds to about USD 19,500 when valued at USD 50 per tonne of CO2.
32 Kindermann et al. (2008) also find that the cost of reducing emissions through avoided deforestation is lowest in Africa and highest in South East Asia, with

Central and South America in between. They find that avoiding deforestation can be cost effective compared to other abatement technologies.
33 We discuss our measure of opportunity cost in the appendix.
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command-and-control policies and one market-based policy in protecting tropical forests confronted with higher agricultural

commodity prices. We studied the Brazilian Legal Amazon, part of the world’s largest tropical rainforest and a key supplier

of agriculture commodities such as soy and corn to the world market. Our results showed that protection of specific areas

(conservation zones) and targeting of a specific crop (Soy Moratorium) induce leakages within municipalities. Prioritizing entire

municipalities in monitoring and law enforcement efforts (blacklisting) is, in contrast, effective in reducing deforestation related

to international agricultural commodity prices. We illustrated the implicit carbon price in our setting, using data on crop pro-

duction values and carbon loss.

Our analysis sheds light on the challenge of avoiding conversion from forests to agricultural production. Our results indi-

cate that countries need broad-ranging policies to achieve a fully sustainable agricultural production. Each policy, however, is

associated with its own pros and cons and thus future analysis could investigate the intricate links between deforestation and

economic development. This could help local and international policy makers to weight deforestation against other abatement

policies. It could also help in designing policies to dampen the negative local economic effects of reduced deforestation or to

compensate local stakeholders through transfers.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jeem.2021.102452.
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