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1. Introduction

The problem of optimal control consists in finding a control law
for a given system so that some performance criterion is mini-
mized. For a nonlinear generic system, this problem can be solved
using Ponytryagin’s maximum principle or solving the Hamilton-
Jacobi-Bellman (HJ]B) equation [8,13,49]. However, in most of the
cases, obtaining the analytical solution is a hard task, which moti-
vated the search for alternative approaches to perform the above-
mentioned minimization. A quite successful approach is the so-
called guaranteed cost control (GCC), which was proposed first by
Chang and Peng [3] as a way to guarantee the performance for un-
certain systems by requiring it to be below some upper bound.
Early results on GCC were obtained in the 1990s by lan R. Pe-
tersen and his colleagues, who studied the design of robust state-
feedback controllers that minimize an upper bound on a quadratic
cost function [25,26]. A computationally efficient framework for
finding the optimal guaranteed cost controller was provided by lin-
ear matrix inequalities (LMlIs: see [31] for a tutorial), such that sev-
eral approaches were developed, e.g. [6,43]. LMIs were also used
in [19] to achieve GCC in bilateral teleoperation systems which in-
cluded time-varying delays and model uncertainty. Although the
initial attention of the research community was devoted to lin-
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ear time invariant (LTI) systems, soon it was driven towards other
classes of systems which could take into account variability in
time, for example linear systems with varying parameters (LPV)
[28,30] or fuzzy Takagi-Sugeno (TS) systems [9,41,42,46]. GCC is
still a very active field of research, with several works appearing
every year in the literature, mainly dealing with nonlinear systems,
e.g. [11,15,33,39,45].

Strictly related to GCC is the problem of guaranteed cost es-
timation (GCE) in which instead of designing a controller, one
wishes to design a state observer that minimizes some upper
bound on a performance criterion, which is a function of the esti-
mation error and the measurement noise. [25,26] showed that GCE
extended the much celebrated Kalman filter to uncertain systems.
A GCE-based approach was later developed by Petersen [24] us-
ing a class of state estimators that include copies of the globally
Lipschitz system nonlinearities within them. More recently, Ishi-
hara et al. [12] developed an approach based on regularization
and penalty functions to solve the optimal filtering problem for
discrete-time systems with norm-bounded parametric uncertain-
ties.

Another topic that has attracted much attention by the control
theory research community is how to deal with saturation non-
linearities. Saturation can be found everywhere in physical appli-
cations, since real-world actuators are constrained in the number
of deliverable control actions. The control techniques that ignore
these actuator limits can be affected by degraded performance or
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instability of the closed-loop system. Hence, the analysis and syn-
thesis of control systems with saturating actuators has been in-
vestigated by several works, see e.g. [4,20,27,37,38]. The developed
approaches can be divided into two main cathegories: the two-step
paradigm (also referred to as anti-windup compensation [14,50]) ig-
nores the saturation at the controller design step, and handles it by
adding a compensator; on the other hand, the one-step paradigm
(also called direct control design [7,36]) takes into account the satu-
ration during the controller design phase. Among the most recent
results concerning this topic, one may mention [48], where the
problem of input saturation was solved by introducing an auxiliary
design system, Shahri et al. [32], which employed the Lyapunov
direct method for the stability analysis of fractional order linear
systems subject to input saturation, and [29], which proposed a
virtual actuator-based fault tolerant control strategy to deal with
actuator saturations in unstable linear systems.

This work is motivated by the big importance held by the op-
timal design of observer and controller gains in automatic control
systems. The literature review has shown that, although there ex-
ist a few results on GCC for systems with input saturation, e.g.
[17,44,47], the problem of GCE for these systems has not been con-
sidered yet. Hence, this paper aims at developing a design proce-
dure that addresses both the GCE and the GCC for a class of nonlin-
ear saturating systems, while at the same time analysing the case
in which the controller uses the estimate produced by the observer
in order to update the control law.

More specifically, this paper proposes a matrix inequality-based
guaranteed cost estimation and control design procedure for a
class of discrete-time nonlinear systems subject to actuator satura-
tion. This class of systems corresponds to those for which the ori-
gin of the state space is an equilibrium point when null inputs are
considered, and the nonlinearity is differentiable with respect to
the state and linear with respect to the saturated input. It is worth
highlighting that these nonlinearities, which have been considered
previously in the context of fault estimation by Zhu [2,40], encom-
pass cases which cannot be dealt using the traditional bounding
box method [35]. Hence, an alternative approach based on the ap-
plication of the mean value theorem, as described by Lewis et al.
[1,23], must be obtained.

The contributions of the paper can be resumed as follows:

1. a polytopic approach based on the application of the mean
value theorem is described for the characterization of a class
of discrete-time nonlinear systems subject to actuator satu-
ration,;

. sufficient conditions for the synthesis of a state observer
that achieves GCE and a state-feedback controller that
achieves GCC for the above-mentioned class of systems are
provided in the form of an LMI-based feasibility or optimiza-
tion problem;

. it is shown that for the above-mentioned class of systems,
the celebrated separation principle holds only one-way in
the sense that the observer can be designed independently
from the controller, but the converse is not true. Hence,
sufficient conditions for the design of an estimate-feedback
guaranteed cost controller are obtained in the form of bilin-
ear matrix inequalities (BMIs).

The paper is structured as follows. Section 2 describes the no-
tation and some lemmas which are used in the proofs of the the-
oretical results. In Section 3, the class of considered nonlinear sys-
tems is defined, and the different design problems considered in
this paper are formulated. Section 4 provides LMI-based sufficient
conditions for the design of the state observer. Section 5 is de-
voted to providing LMI-based sufficient conditions for the design
of the state-feedback controller. In Section 6, the state-feedback
control law is replaced by an estimate-feedback control, and BMI-
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based conditions for the design of the controller gain are obtained.
Section 7 summarizes the final procedure for designing and imple-
menting the components of the control system that provide GCC
and GCE. The theoretical results are illustrated by means of an il-
lustrative example in Section 8, whereas an application to a nonlin-
ear rotational single-arm inverted pendulum is given in Section 9.
Finally, the main conclusions are outlined in Section 10.

2. Notation and preliminaries

For a real symmetric matrix A € R™", the notation A >~ 0 (A < 0)
stands for a positive (negative) definite matrix and indicates that
all the eigenvalues of A are positive (negative). Given a matrix A €
R™"™ with A >~ 0, the symbol &, denotes the ellipsoid:

&={xeR":x"Ax < 1}.

The symbol Co{A;,i=1,...,N} denotes the convex hull of a finite
number of N vertex matrices:

N N
CofAii=1,....N} ={> wAil Y pi=1,14;=0Vi=1,... . N¢.

i=1 i=1

Given a vector u € R™, the symbol o(-) denotes the standard
saturation function, such that o (u) = [o(u1),o(u2),...,G(um)]TY
where o (u;) = sgn(u;) min{1, |y;|}. Given a matrix A € R™*"  the
symbol Ls (A) denotes:

Ls(A) = {x e R" : 0 (Ax) = Ax}.
The following lemma are used throughout the paper.

Lemma 1. Given two matrices K, H € R™" and a vector x € R", sup-
pose that |H;x| <1 for j=1,2,...,m, where H; denotes the jth row
of H. Then:

o (Kx) € Co{DiKx+ D Hx,i=1,....2"}, (1)

where the matrices D; are all the possible m x m diagonal matrices
whose diagonal elements are either 1 or 0, and D =1-D;.

Proof. See [10]. O

Lemma 2. Given the matrix H € R™<", if the following inequality
holds for j=1,...,m:

P PHT
]
[HJP 1 } >0,

then |H;x| <1Vx e & 1.

(2)

Proof. See [21]. O

3. Problem formulation

Consider the following discrete-time nonlinear system:
3)
(4)

where x;, € R" is the state, u, € R™ is the control input, y, € RP is
the output, A and C are constant matrices of appropriate dimen-
sions, and the nonlinear function g: R" x R™ — R" is assumed to
satisfy the following assumptions:

Xiey1 = Ay + 8(xp, 0 (Uy)),

Vi = Cxy,

1. g(x, o (u)) is affine in o (u), so that it can be rewritten as:
gx, o)) = fx)+Fx)o (u), (5)

with f:R" - R" and F : R" — R™™M appropriate functions
such that f(0) =0 and F(0) # 0. Note that a consequence of
this fact is that g(0,0) =0;
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2. g(x,0(u)) is differentiable with respect to x with bounded
partial derivatives:

0 < 98X o)

=i, = axj —= *,)

1,...

By applying the mean value theorem [5], the following relation
holds:

ga,o(u)) —g(b,o(u)) =M(a,b,o(u))(a-Db), (7)
for some matrix M(-) obtained as follows:
a
eow)
M(a,b, o (u)) = : : (8)
a
S en o W)
with:
C1,...,cne{ceR":c=aa+PBb,a+pB=1,ap >0}. 9)
Taking into account lower and upper bounds g; ;, @; ; and each pos-
sible permutation of these bounds, matrices M; e R™", i=1,... N,
can be obtained! such that:
M(a,b,0(u)) e M £ Co{M;,i=1,...,N}, (10)
so that:
g(a,o(u)) —g(b,o(u)) e M(a - b). (11)
Moreover, taking into account (5), the following holds:
g(x,0(a)) —gx,0(b)) =F(x)(o(a)—o(b)). (12)

Hereafter, the problems of observer and controller design are for-
mulated.

3.1. State observer design
Let us consider a nonlinear discrete-time observer of the form:

Rt = AR+ &(Re, 0 (W) + Ko (i — CRe), (13)
where X, denotes the estimate of the state x, and K, denotes the
observer gain to be designed. Then, the dynamics of the estimation
error e, = X — X, is given by:

€1 = Xip1 — Xyy1 = A€y + Sy, (14)

where A=A — K,C and s = g(xy, 0 (1)) — g(Ry. 0 () ). Apart from
the asymptotical convergence to zero of the estimation error, a
bound on the following cost function:

Jo=)_eiQey. (15)
k=0

with given Q. > 0, is considered as objective for the design of the
observer. Hence, the GCE design problem can be formulated as fol-
lows.

Problem 1. (State observer design problem) Given Q. > 0 and a
scalar y, > 1, design K, such that the dynamics of the estimation
error (14) is asymptotically stable with:

Jo < ¥oed Qeeo. (16)

1 In general, N = 2" matrices are obtained using this approach, which is com-
monly named bounding box method, since it generates a hyperbox of matrices [35].
However, if the matrix function M, contains h constant elements which arise from
the linearity of some function g;(x, o (u)) with respect to some state variable x;,
then a reduced number of matrices N = 20’ is obtained.
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3.2. State-feedback controller design

To design a robust controller, let us consider the following con-
trol law:
U, = chk, (17)

where K. is the controller gain to be designed. Substituting the
above equation into (3) gives the following closed-loop system:

(18)

Let us note that, since g(0,0) =0, then g(x;,o (Kcx;)) can be
rewritten as:

g(xk, 0 (Kexy)) = g(xk. 0 (Kexy)) — 8(0, 0 (Kexy))

Xip1 = Axy + 8(Xy 0 (Kexy ).

+ 8(0. 0 (Kexi.)) — g(0, 0). (19)
Taking into account (11) and (12), the following is obtained:
8(xk, 0 (KeXi)) — 8(0, 0 (Kexy)) € Mxy, (20)
8(0. 0 (Kexy)) —8(0,0) = F(0)o (Kexy), (21)
so that:
8(xy, 0 (Kexy)) € Mxy, + F(0)o (Kcxy). (22)

The following objectives are taken into account for the design
of the controller: (i) asymptotical convergence to zero of x, when
Xo belongs to the ellipsoid £ defined by a given matrix Q > 0; and
(ii) bound on the following cost function:

oo

Je= Z (XZQXXI{ + G(uk)TQuU(uk))a

k=0

(23)

with given Qy > 0 and Qy > 0. Hence, the GCC design problem can
be formulated as follows.

Problem 2. (State-feedback controller design problem) Given ma-
trices Q ~ 0, Qx = 0, Qu = 0 and the scalar y. > 1, design K. such
that (18) is asymptotically stable and:

Je < yex{Quxo,

when xg € &.

(24)

3.3. Estimate-feedback controller design

The controller design problem previously formulated (Problem
2) assumes that the real state x,, is available for feedback. However,
a more realistic situation is the one in which the estimated state
should be used instead, i.e. (17) changes into:

Up = KC)?IU (25)

where &, is the estimated state given by the observer (13). In this
case, the question about whether it is possible or not to design the
observer and the controller separately arises.

Let us consider the interconnection of the system (3) and (4),
the observer (13) and the control law (25) such that the overall
system obeys (see Fig. 1 for a block diagram depicting their struc-
tures and interconnections):

€1 = Aey + g(Xi, 0 (KeRy)) — &(Re, 0 (KeRy))). (26)
Xis1 = A+ &(Xe. 0 (KeRy)). (27)
Let us note that:
8(Xe, 0 (Ke&y) ) = g(xi 0 (KeRy)) — 8(0, 0 (Key))

+ 8(0.0 (K%)) - £(0,0). (28)

Taking into account (11):
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System
ey
Uy i B _}@ Xt 1 % Xk c 3 Yk
o i
T |
| g (o, () [—— |
Observer .
3 l K(} i
k g _»@ k1 % k c ]
l l
| : |
! 8 (R, o (ug)) =— |
Controller
w l
: K. ‘
|

Fig. 1. Block diagram of the proposed control and estimation strategy.

2% 0 (Ke&y)) — 2(0, 0 (K&y)) € My, (29)
2%, 0 (Ke&i)) — &(Re. 0 (KcRy)) € M(x, — &) = Mey. (30)
Moreover, due to (12):

(0,0 (K&)) — £(0,0) = F(0)o (KcXy). (31)
Hence:

2(x 0 (Ke&y)) € Mxy + F(0)a (Kc&y), (32)

which means that the overall system can be put in the equivalent
form:

Xk41 € (A + M)Xk + F(O)O’(chk — Kcek), (33)

ek € (A+M)ey, (34)

where X, = x;, — e has been used.

From (33) to (34) it can be seen that, due to the nonlinear term
o (Kcxy, — Kcey,), the separation principle holds only one-way, in the
sense that, while the observer can be designed independently from
the controller, this is not true for the controller, whose design pro-
cedure should be modified to take into account the effect of the
evolution of ey, driven by the specific choice of the observer gain
K,, on the nonlinearity o (-). In order to deal with this situation,
the requirements of Problem 2 are changed by requiring them to
hold for [x{, ef]" € &g s. 57 g, Where the ellipsoid &y 5. g7 ) is de-
fined by a given matrix:

S
[3 Ri| 0,

and that Jo < yc(x§Quxo + el Qxeo). Note that with this choice, in
case xo =0, then J. < yc)?ngio is obtained, whereas if ey = 0, then
the case J. < ycngxxo is recovered. Hence, the GCC design problem
can be modified as follows:

(35)
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Problem 3. (Estimate-feedback controller design problem) Given
matrices Q =0, S, R~ 0, Qx = 0, Q, > 0, the observer gain K, and
the scalar y, > 1, design the controller gain K. such that (33) and
(34) is asymptotically stable and:

Je < ve(x9Qexo + €5 Qeeo),

when [x], el]" € &g 5. 57 g}

(36)

4. Design of the state observer

The objective of this section is to solve Problem 1 by obtaining
sufficient conditions for the synthesis of the state observer (13),
which are given by the following theorem.

Theorem 1. Let P > O, ¥, > 1 and U be such that the following holds:

[P(A—%M,-)P—UC —*P] <0, i=1,...,N. (38)

Then, the nonlinear discrete-time observer given by (13), with gain
calculated as K, = P~1U, is such that (14) is asymptotically stable and
Jo < voel Qeeo.

Proof. Let us consider the following inequality [30]:
AVi+elQe, <0 for k=0,..., 00, (39)

where AVy =Vj,q -V, with V, =elPe, P> 0. Since e]Qce >
0Ve,, if inequality (39) holds then AV, < 0, which corresponds to
the Lyapunov condition for asymptotic stability of (14). Then, by
summing (39) from 0 to oo, the following is obtained:

> erQeer =Jo < Vo = efPey, (40)

k=0
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which, due to (37) ensuring that Vp < yoengeo for any initial con-
dition eg, proves that J, < y,elQeeq [22].

The remaining of the proof shows that inequality (39) follows
from (38). In fact, taking into account (13), (39) can be rewritten
as:

AV + e;Qeey = e (ATPA— P+ Qe)ey + ef A" Ps;

+ sTPAey + stPs; < 0. (41)
From (11), it follows that:

Sk = 8(Xk, 0 () — &Ry, 0 (W) € M(xy — &) = Mey, (42)
so that (41) is satisfied if:
ATPA—P+ Q. +ATPM+MTPA+ M'PM <0, VMeM, (43)
which, using Schur complements, leads to:
[P%;I\I;I) (AT :’Y’T)P} <0,  VMeM. (44)
Replacing:
PA = PA — PK,C = PA - UC, (45)
into (44), where U = PK,, leads to:
[p(/i %A;)Pf uc *P] <0, VMeM, (46)

which is satisfied if (38) holds, thus completing the proof. O

Remark 1. The problem of determining the observer gain matrix
described by Theorem 1 can be treated as an optimization problem
in which the cost performance index y, is minimized.

5. Design of the state-feedback controller

The objective of this section is to solve Problem 2 by obtaining
sufficient conditions for the synthesis of the controller (17) for the
system (3)-(4), which are given by the following theorem.

Theorem 2. Let P~ 0, Y. > 1 and I',Z be such that the following
holds:

‘12 II,}zO, (47)
B T
; lei|§0, ji=1,...,m, (48)
| Zi
B —P * *
(A+M)P+F(0)¢;i -P * o i=1..2"

Q%p 0 I % |77 I=1,..N
L éi 0o 0 -

(49)

[VCIQX 113}0’ (50)

with ¢; = D;" + D; Z, where Z; denotes the jth row of the matrix Z,
the matrices D; are all the possible m x m diagonal matrices whose
diagonal elements are either 1 or 0, and D; =1 — D;. Then the state-
feedback control law (17), with gain calculated as K. = T'P~1, is such
that (18) is asymptotically stable and J. < )/ngQXxo when xg € &.

Proof. In order to ensure that Problem 2 is solved, let us define the
function Vj, = xZP*1xk, P> 0, and let us require that the ellipsoid
&q Is contained in £,_1, which is equivalent to Q — P~! > 0 and, by
Schur complements, to (47). Then, to ensure asymptotic stability
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for xg € &g, it is sufficient to ensure it for xy € £,_1, which together
with the constraint on J, leads to the following constraints on Vj:

AVy + XL Quxy + 0 (Kexi) T Quo (Kexy) < 0, (51)
P! —y.Q: <0, (52)
where AV, =V — V.

By defining:
X7 =[x, o(Kex)'1", (53)

and taking into account (22), the inequality (51) is satisfied if:

v )T A(lrl A[lrz v o \T A 05O
(x7) . AS) Xy =X) A%%] <0, VM e M, (54)

where:
A =A+MPTA+M) —P ' +Qy

7 =A+M)TPF(0),
AS, = F(0)"P'F(0) + Qu.
According to Lemmas 1-2, by introducing an auxiliary feedback
matrix He and the constraint (48), which enforces £,_1 € Lo (Hc)
and that is obtained from (2) through the change of variable Z =

H(P, then o (Kx;) can be placed into the convex hull of a group of
linear feedbacks:

o (Kexy) € Co{DiKex + Dy Hexy, i=1...,2™} (55)
Hence, from (55) and by convexity of the function V,, it follows:
ROHTAR < max_ xI A'xy, (56)
where:

A= EIPTE - P+ Qe+ Y Qui (57)
with:

Ei=A+M+F0)Y;. (58)

By requiring that Al <0 fori=1,..., 2™ and applying Schur
complements, with an appropriate congruence transformation, the
following is obtained:

-P PET PQy? Pyl
E;P -P 0 0
Q};zP 0 o o | <0 VM € M, (59)
WP 0 0 -Q;!
which, by replacing:
E;P = (A+ M)P + F(0)y;P
= (A+M)P+ F(0)D;K.P + F(0)D; HcP
=(A+M)P+F(0)D;I" +F(0)D; Z, (60)
where I" = K.P, leads to:
—P * * *
A+ MP+F(0)p; -P = * i=1,...,2m
12 <0, ,
Q/“P 0 I * VM e M
i 0 0 -Q;!
(61)

which is satisfied if (49) holds. By applying Schur complements to
(52), (50) is obtained, which completes the proof. O

Remark 2. Also in this case, the problem of determining the con-
troller gain matrix described by Theorem 2 can be treated as an
optimization problem in which the cost performance index y. is
minimized.
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6. Design of the estimate-feedback controller

The objective of this section is to solve Problem 3 by obtaining
sufficient conditions for the synthesis of the controller (25) for the
system (3) and (4) with state observer (13), which are given by the
following theorem.

Theorem 3. Given the observer gain K, (hence, the matrix A), let P >
0, ¥c > 1 and the matrices K., H. be such that:

¢ e
P—y. [%X gx} <0, (63)
_ HT

P |:—va]:| >0, j=1,...,m (64)
_[Hc.j —Hc,j] 1
T AEM, TFO)$ —F(0) .

|+ up —¢f Quo ’ ll;lN

* P T 2 ’ ’
| _¢,‘ Qu¢l ¢i Ql—ld)l
(65)

hold, where ¢; = DiKc + D Hc, Hc j denotes the j-th row of the matrix
Hc, and the matrices D; are all the possible m x m diagonal matrices
whose diagonal elements are either 1 or 0, and D; =1 — D;. Then the
estimate-feedback control law (25) ensures that (18) is asymptotically
stable when [x], el 1" € &g 5. 57 gy and Je < ye(x§ QeXo + ef Qxeo)-

Proof. Let us consider the function:

T
Ve=| % | p| %
“Tle| e

with P> 0, and let us require that £ s, g7 g S €p, Which is equiv-

alent to (62). Then, to ensure asymptotic stability for [x],el]" e
&qs. s gy it is sufficient to ensure it for [x, el 1™ € &, which to-
gether with the constraint on J., leads to (63) and:

AVy + XL Quxy + 0 (KeX) T Quo (KeXy) < 0. (67)

By performing a reasoning similar to the one in Theorem 2, us-
ing Lemma 2 the constraint (64) ensures that:

(66)

& cL([H -Hc]). (68)
and, according to Lemma 1:
o (K&) € Cod P ¥ [ = Di[Ke K] |
; €k €
_ X
+ Dy [He  —H(] [ej } (69)
so that the following holds:
Xps1 A+M+F(0)¢; ff(O)q&,- Xk
|:ek+1i| € |: 0 A+M (7% ’ (70)

which means that IM;, M, € M such that:

Xkt A+M; +F(0)pi  —F(O)i || x| _ 7| %
|:€k+1} [ 0 A+ M, :| |:€ki| - A[ek]' (1)
Then, (67) leads to:

ATPA—P+ [%X 8] + [_¢£T]Qu[¢i -¢i] <0,
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VM],MZ GM, (72)

which, by means of Schur complements, and an appropriate con-
gruence transformation, leads to:

b P[A+M1+F(0)¢,- —~F<0>¢,~]
0 A+ M, i=1,..,2m
p [Qx+¢fqu¢i —¢TQu¢i] T VML M e
T dlae ol
(73)

which is satisfied if (65) holds, thus completing the proof. O

Note that when applying Theorem 6, the matrix A is consid-
ered to be known, since the observer gain K, is assumed to be
designed beforehand using Theorem 1. Taking the above consid-
erations into account, similarly to previous cases, an optimization
problem concerning minimization of the cost performance index
¥c can be defined. It is worth highlighting that the conditions pro-
vided by Theorem 6 are bilinear matrix inequalities (BMIs) due to
the product between the unknown variables P and ¢;, hence their
resolution suffers from being a non-convex problem.

7. Design and implementation procedure for the guaranteed
cost estimation and control

The problem of determining the state observer and controller
gain matrices is solved using the results given by Theorems 1-3. It
is done by an optimization problem subject to minimization of the
cost performance indexes y, and y,. The design and implementa-
tion procedure can be summarized as follows: Off-line computation:

1. Obtain a representation of the system of interest as in

(3) and (4);

Calculate the Jacobians of the function g(-) with respect to

state and input;

. Compute lower and upper bounds for the elements of the
Jacobians and use them to obtain (10) using the bounding
box approach;

. (Observer design) Obtain the observer gain K, by solving the
optimization problem:

2.

minimize 1y,
subject to subject to (37)-(38)

. (Controller design) Obtain the controller gain K. by solving
the optimization problem:

minimize .
subject to subject to (47)-(50)
On-line computation:

1. Compute the state estimate using (13);
2. Compute the control action using (25).

Remark 3. The above procedure summarizes the necessary steps
for the design of the state observer or the state-feedback controller.
It could be applied to the case of the estimate-feedback controller,
albeit some minor changes.

8. Numerical example
Let us consider the following system:

x1(k+1) = ayx1 (k) —0.5%, (k) + 0.1x3 (k)

cos (x1 (k))oq (uq (k)
3x3 (k) +2 ’

o3 (U2 (k))

k+1) = —0.2x; (k k) +0.1x5 (k) + =22
X(k+1) x1 (k) 4 axnx; (k) + x3()+2+x§(k)
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x3(k+1) = 0.1x1 (k) — 0.1x5 (k) + as3x3(k),

where the state variable x; (k) is assumed to be measured, which
can be reshaped in the form (3) and (4) by considering:

cos(x1)oq (u1)

an —-0.5 0.1 3X%+2
A=1|-0.2 (159 0.1 |, g() = o (Up)

01 -01 as. 26x5
C= [1 0 0].

The nonlinear function g(-) is differentiable with respect to x and
o(u):

_ 3sin(xq )x% +6cos(xq1)x1 +2sin(xq)

og() _ G e2? me )’ ’
ox 0 —WO'Z(UZ) 0|
0 0 0
cos(xy)
2
ag() _ 3x7 (0k)+2 o F(x)
do (1) 7 '

Note that the following holds:

~ 3sin(x )X2 + 6 .c0os(X1)X1 + 2 sin(x)

—0.52 0.52,
< (3)(% 12)2 o1(uy) <
2X2

-023 < fmaz(uz) <0.23.
Also, g(0,0) = 0 and:

0.5 0
F(O)=| 0 0.5].

0 0

Taking into account the above computed bounds, it is possible
to obtain the set defined in (10) as the convex combination of the
following four matrices:

—0.52 0 0 —0.52 0 0
M, = 0 -023 0], M; = 0 023 0],
0 0 0 0 0 0
0.52 0 0 0.52 0 0
Mz;=| 0 -0.23 0], Myg=| O 023 0].
0 0 0 0 0 0

8.1. Open-loop stable equilibrium

In this subsection, we will assume that ay; = ay; = asz3 = 0.6,
so that the origin of the state-space is an open-loop stable equi-
librium point. Let us consider Q. = I, and three different observer
gains K¢, K and K¢, where K¢ has been obtained through the min-
imization of y, using Theorem 1 [16,34], whereas K> and K¢ are
observer gains designed by requiring only the stabilization of the
estimation error dynamics. The observer gains are as follows:

0.82 0.63 1.03
-047|, Kb=|-088| K =|-124 [,
0.21 -0.10 0.18

which deliver minimized values of y, as follows: y& =3.70, y? =
70.78, y§ = 442.73. In order to validate the proposed design tech-
nique, different simulations starting from initial conditions xy on
the unit sphere S, with Xy = 0, have been performed. Then, Fig. 2
shows the evolution of the following signals:

Ko

k
—— . o
(k|K)) = ‘,}}Sé‘;ef Qeer |k =K, (74)
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with i € {a, b, ¢}, that confirms that K¢ is the best performing ob-
server gain (see blue line). This can be seen also in Fig. 3, where
the upper and lower envelopes of the estimation error trajectories
are plotted, showing that K provides a faster convergence to zero
of the estimation error.

Subsequently, selecting Q = 100! (initial conditions in the
sphere of radius 0.1, denoted in the following as &) and:

[50 0 O 1 0 O
Q=0 1 0|, Q=|0 50 0],
L0 0 1 0 0 1
1 0 O
=0 1 0| Q= [(1) (1’ }
|10 0 50
three different controller gains have been designed, as follows:
K — (122 1.00 -0.20]
¢ 031 -0.76 -0.07 |
o [~1.04 139 -0.26]
¢ [ 041 -1.20 -0.18Y
K = (115 111 —0.82]
¢ 0.61 -1.12 075 |
each one solving the minimization problem described in

Section 5 [16,34], obtaining yd =3.34, y?=3.71 and y¢ =851,
respectively. Next, using:

k X

Z(j)x[Q;xk + ul Quuy
f(k|K') = max = :
J(kIKD) X XTQi

Xo€S

with i€ {a, b, ¢}, the validation of the proposed controller design
technique can be performed, as shown in Fig. 4, where Ji(k|K!) <
v/ is satisfied in all simulations. As expected from the chosen val-
ues for Q¢, QF, QS, the controller gain K¢ provides a faster conver-
gence to zero of the state variable x; (k), K? a faster convergence
of x,(k), and K¢ of x3(k), respectively, as shown in Fig. 5, where
the upper and lower envelopes of the state trajectories for initial
conditions on the frontier of § are plotted.

Finally, we have considered the design of the estimate-feedback
controller using Theorem 3. To this end, it has been assumed that
the estimated state is computed using the observer gain K, and
that the region of possible initial conditions is described by ma-
trices Q = 100! and R = 10%I. At first, the performance of the pre-
viously designed controllers K¢, Ki, K¢ has been evaluated using
Theorem 3 as an analysis tool (hence, converting the BMIs into
LMIs due to the decision variable K. and H, becoming known ma-
trices), obtaining values of y, as follows: 7% = 379.2, ¥ = 41.2 and
7§ =55.0. Then, Theorem 3 has been employed as a design tool,
with the solver PENLAB used to solve the BMIs. In this case, no
solution was found for Qx = QF and Qx = Qg (the solver got stuck
indefinitely), whereas the following controller gain was obtained

for Qy = Q}:

2 [—0.75
b2 —
yielding the improved upper bounds 772 = 19.8.

K. = K, (75)

0.90
—0.82

—-0.21

0.30 0.06

8.2. Open-loop unstable equilibrium

In this subsection, we will assume that a;; = 1.2, a;; = 1.2 and
as3 = 0.7, so that the origin of the state-space is an open-loop un-
stable equilibrium point. Let us consider Q. = I, and three different
observer gains K¢, K¢ and K, where K¢ has been obtained solving
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Fig. 2. Evolution of j(k|K}), i € {a, b, c}, and upper bound y&el Qeeo (open-loop stable).
1 1.5 1
—K; —K; —K:
— K — Ky ||
0.8y —— K¢ ] 0.8} —
0.6} 1 0.6} |
0.4r ' 1 0.4t . .
0.2f b 0.2r J
< of of
)
—0.2+ 1 -0.2r 1
-0.4r b -0.41 1
—0.61 1 -0.6r 1
-0.8f b -0.81 ]
-1 ! -1.5 : -1 .
0 5 10 0 5 10 0 5 10
Sample [k] Sample [k] Sample [k]

Fig. 3. Envelopes of the error e(k) with observer gains K¢, K2, K¢ (open-loop stable).

the minimization of y, using Theorem 1, whereas K¢ and Kof are
observer gains designed by requiring only the stabilization of the
estimation error dynamics. The observer gains are as follows:

2.12 2.11 2.14
Kd=|-233| K¢=|-237| Ki=|-241 |,

0.43 0.41 0.43
which deliver minimized values of y, as follows: yd =199.09,
v = 5528, yof = 1686.8. Let us note that in this case, if compared
to the open-loop stable one, very small changes in the elements of

the observer gains cause big variations in the values of the com-
puted upper bounds. Moreover, Fig. 6, which shows the evolution
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of the signal (74), i € {d, e, f}, illustrates the increase in conserva-
tiveness of the proposed methodology when open-loop unstable
plants are considered. For the sake of completeness in the presen-
tation of the results, the upper and lower envelopes of the estima-
tion error trajectories are shown in Fig. 7.

Subsequently, selecting Q = 100, Q¢ = Q¢, Q¢ =Qb, Qf = Q¢
and Qu = I, the following controller gains have been designed:

Kd — -238 1.02 -0.20
¢c~1029 -185 =015
Ke — -240 105 -031
¢ 1043 -234 -018})
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Fig. 4. Evolution of Ji(k|K!) and upper bounds ¥/, i € {a, b, c} (open-loop stable, state-feedback).
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— K¢ — K
b b
0.08} Ko 0.08 0.08} K|
— K¢ — K¢
0.061 1 0.06 0.061 1
0.04}+ : 1 0.04 0.041 ‘ 1
0.02f 1 0.02 0.02f 1
= =T of 1
8 8
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Fig. 5. Envelopes of x(k) with controller gains K¢, K, K¢ (open-loop stable, state-feedback).
velopes of the state trajectories for initial conditions on the frontier
; [-234 134 -076 of S.
K = 0.74 210 065 |’ This can be seen also from Fig. 3, where the upper and lower

each one solving the minimization problem described in Section 5,
obtaining y4 = 7.37, ¥¢ = 9.81 and ycf = 16.40, respectively. Fig. 8
shows the signal calculated using (75), i € {d, e, f}, which demon-
strates that jI(k|K!) < p! is satisfied in all simulations. As in the
previous case, the controller gain that provides a faster conver-
gence to zero of the state variable x; (k) is K9, whereas K¢ and k7
provide a faster convergence of x,(k) and x3(k), respectively. For
the sake of completeness, Fig. 9 shows the upper and lower en-
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envelopes of the estimation error trajectories are plotted, showing
that K§ provides a faster convergence to zero of the estimation er-
TOor.

9. Application to a rotational single-arm inverted pendulum

Let us consider the following nonlinear system describing the
dynamics of a rotational single-arm inverted pendulum [18]:

x1(k+1) = x1 (k) + Tsxa (k).
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Fig. 6. Evolution of f(k|K!) and upper bounds yode(T,QEeo, ie{d, e, f} (open-loop unstable).
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Fig. 7. Envelopes of the error e(k) with observer gains K¢, K¢, Kof (open-loop unstable).

Xo(k+1) = Ts% sin(x; (k) + (1 — TS%)xz(k) + %a(m ®)). c=[1 o]

The nonlinear function g(-) is differentiable with respect to x
where T; = 0.01][s] is the sampling time, m = 0.2[kg] is the mass of and o (u):
the pendulum, [ = 0.15[m] is the length of the pendulum, whereas
b =0.0067[kgm3s~'] and g = 9.81[ms2] are the friction coefficient 9g(-) 0 0
and the gravitational acceleration, respectively. Assuming that the “ox | T g cos(x;(k)) 0]
state variable x; (k) (angle of the pendulum) is measured, the pen- !
dulum model can be reshaped as:

1 T. 0 ag(-) 0 }
_ S N = TS ZF(X)
A= [0 1_”’}’ 8() = [ngsinm(kmnf;zo(ul(k))]’ 9o () anz

mi2 l
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Fig. 8. Evolution of the signals Ji(k|K!) and upper bounds y/, i € {d, e, f} (open-loop unstable, state-feedback).
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Fig. 9. Envelopes of the state trajectories x(k) with different controller gains K¢, K¢, K.

Note that the following holds:
—0.6540 < TS‘% cos(x; (k) < 0.6540,

Also, g(0,0) =0 and:

0
F0) = [2.2222 }

Taking into account the above computed bound, it is possible to
obtain (10) as the convex combination of the following matrices:

0

0 0
My = |:0.6540 o]’

0
M, = [—0.6540 0}
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Taking into consideration Q. =1, three different observer gain K§,
KP and K¢ have been obtained:

Ko — [1.0378] & [0.4750} Ko — [0.5750

0 3.7197 |0 ¢ 49875 °° 7.8375
where K has been obtained through the minimization of y, using
Theorem 1 and whereas K? and K¢ provide only the stabilization of
the estimation error dynamics. Using initial conditions xq, Fig. 10,
shows the evolution of (74) for i € {a, b, c}. Also for this case, con-
firms that observer gain matrices K¢ provide the best performance

(see blue line). Moreover, Fig. 11 shows the upper and lower en-
velopes of the estimation error trajectories, confirms, that K pro-
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Fig. 11. Envelopes of the error e(k) with observer gains K¢, K2, K¢.
16000 T T T T T T T T T
----- (kK
14000 —% :
- S (RIKY)
—_ b
12000} Ve H
______________________________________________________________ 4= JURIKD) |
S c
10000 : L% H
1
I
8000 |
I
6000 - 1
4000} .
2000
0—’_‘__1 """" [l - r - - T - s T r - - -
0 0.5 1 1.5 2 25 3 35 4 4.5 5

Sample [k]
Fig. 12. Evolution of Ji(k|K!) and upper bounds ¥/, i € {a, b, ¢} (state-feedback).
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Fig. 13. Envelopes of x(k) with controller gains K¢, K?, K¢ (state-feedback).

vides the smallest estimation error with respect to time and initial
condition.

Subsequently, selecting Q. = diag(10, 10000), Qb =
diag(0.0001, 0.0001), QS = diag(0.001, 0.001) and Q¢=Q?
Qg = 0.01], the following controller gains have been designed:

K¢ =[-1.1967 —0.2703],
K¢ =[-1.1578 —0.2968].
K¢ =[-1.0410 —0.3750],

with p2=15279, y?=19996 and yf=501.74, respectively.
Fig. 12 shows the signal calculated using (75), i € {a, b, c}, which
demonstrates that Ji(k|K!) < y/ is satisfied in all simulations. For
this example, the controller gain that provides a faster convergence
to zero of the state variable xq (k) and x; (k) is K. Finally, Fig. 13
shows the upper and lower envelopes of the state trajectories for
initial conditions on the frontier of S.

10. Conclusions

This paper has discussed the design of a state observer and a
state-feedback controller that provide guaranteed cost estimation
and guaranteed cost control, respectively, for a class of nonlinear
systems affected by actuator saturations. The considered systems
correspond to those for which the origin of the state space is an
equilibrium point when null inputs are considered, and the non-
linearity is differentiable with respect to the state and linear with
respect to the saturated input.

It has been shown that when both designs are considered sep-
arately, the procedure consists in solving LMIs, which is efficient
to do using available solvers. The simulation results have shown
the main characteristics of the proposed guaranteed cost design
method, and the fact that less conservative solutions are found
when the origin is an open-loop stable equilibrium.

On the other hand, it has been shown that in the more realistic
situation in which a state estimate-feedback should be used, e.g.,
due to the lack of availability of some state variables for measure-
ment, it is not possible to design the controller without taking into
account the observer. In this case, the design procedure relies on
bilinear matrix inequalities (BMIs). Some experiments using a BMI
solver have shown that, although the proposed design procedure
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is viable in some cases, it suffers in returning a solution due to
non-convexity issues.

In spite of the advantages of the proposed approach, the per-
formance of the closed-loop system is affected by the conserva-
tiveness brought by the use of a quadratic Lyapunov function with
constant Lyapunov matrix and constant observer/controller ma-
trices. Future work will explore other types of Lyapunov func-
tions which can decrease the conservativeness of the design
procedure and the use of gain-scheduled (state-dependent) ob-
server/controller gains. Moreover, other important directions for
further research are the conversion of the BMIs obtained for com-
puting the estimate-feedback controller gain into more computa-
tionally convenient LMIs, and the development of a procedure for
the joint design of the observer and controller gain for estimate-
feedback guaranteed cost estimation and control.
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