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a b s t r a c t 

The problems of guaranteed cost estimation (GCE) and guaranteed cost control (GCC) concern designing 

a state observer or a controller, respectively, such that some performance is maintained below an upper 

bound. This paper provides a matrix inequality-based observer/controller design procedure to perform 

GCE and GCC in a class of nonlinear systems affected by actuator saturation. In particular, this class of 

systems corresponds to those for which the origin of the state space is an equilibrium point when null 

inputs are considered, and the nonlinearity is differentiable with respect to the state and linear with 

respect to the saturated input. Simulation results obtained using a numerical example and a rotational 

single-arm inverted pendulum are used to illustrate the effectiveness of the proposed design procedure. 
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. Introduction 

The problem of optimal control consists in finding a control law 

or a given system so that some performance criterion is mini- 

ized. For a nonlinear generic system, this problem can be solved 

sing Ponytryagin’s maximum principle or solving the Hamilton- 

acobi-Bellman (HJB) equation [8,13,49] . However, in most of the 

ases, obtaining the analytical solution is a hard task, which moti- 

ated the search for alternative approaches to perform the above- 

entioned minimization. A quite successful approach is the so- 

alled guaranteed cost control (GCC), which was proposed first by 

hang and Peng [3] as a way to guarantee the performance for un- 

ertain systems by requiring it to be below some upper bound. 

arly results on GCC were obtained in the 1990s by Ian R. Pe- 

ersen and his colleagues, who studied the design of robust state- 

eedback controllers that minimize an upper bound on a quadratic 

ost function [25,26] . A computationally efficient framework for 

nding the optimal guaranteed cost controller was provided by lin- 

ar matrix inequalities (LMIs: see [31] for a tutorial), such that sev- 

ral approaches were developed, e.g. [6,43] . LMIs were also used 

n [19] to achieve GCC in bilateral teleoperation systems which in- 

luded time-varying delays and model uncertainty. Although the 

nitial attention of the research community was devoted to lin- 
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ar time invariant (LTI) systems, soon it was driven towards other 

lasses of systems which could take into account variability in 

ime, for example linear systems with varying parameters (LPV) 

28,30] or fuzzy Takagi-Sugeno (TS) systems [9,41,42,46] . GCC is 

till a very active field of research, with several works appearing 

very year in the literature, mainly dealing with nonlinear systems, 

.g. [11,15,33,39,45] . 

Strictly related to GCC is the problem of guaranteed cost es- 

imation (GCE) in which instead of designing a controller, one 

ishes to design a state observer that minimizes some upper 

ound on a performance criterion, which is a function of the esti- 

ation error and the measurement noise. [25,26] showed that GCE 

xtended the much celebrated Kalman filter to uncertain systems. 

 GCE-based approach was later developed by Petersen [24] us- 

ng a class of state estimators that include copies of the globally 

ipschitz system nonlinearities within them. More recently, Ishi- 

ara et al. [12] developed an approach based on regularization 

nd penalty functions to solve the optimal filtering problem for 

iscrete-time systems with norm–bounded parametric uncertain- 

ies. 

Another topic that has attracted much attention by the control 

heory research community is how to deal with saturation non- 

inearities. Saturation can be found everywhere in physical appli- 

ations, since real-world actuators are constrained in the number 

f deliverable control actions. The control techniques that ignore 

hese actuator limits can be affected by degraded performance or 
l Association. This is an open access article under the CC BY license 
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nstability of the closed-loop system. Hence, the analysis and syn- 

hesis of control systems with saturating actuators has been in- 

estigated by several works, see e.g. [4,20,27,37,38] . The developed 

pproaches can be divided into two main cathegories: the two-step 

aradigm (also referred to as anti-windup compensation [14,50] ) ig- 

ores the saturation at the controller design step, and handles it by 

dding a compensator; on the other hand, the one-step paradigm 

also called direct control design [7,36] ) takes into account the satu- 

ation during the controller design phase. Among the most recent 

esults concerning this topic, one may mention [48] , where the 

roblem of input saturation was solved by introducing an auxiliary 

esign system, Shahri et al. [32] , which employed the Lyapunov 

irect method for the stability analysis of fractional order linear 

ystems subject to input saturation, and [29] , which proposed a 

irtual actuator-based fault tolerant control strategy to deal with 

ctuator saturations in unstable linear systems. 

This work is motivated by the big importance held by the op- 

imal design of observer and controller gains in automatic control 

ystems. The literature review has shown that, although there ex- 

st a few results on GCC for systems with input saturation, e.g. 

17,44,47] , the problem of GCE for these systems has not been con- 

idered yet. Hence, this paper aims at developing a design proce- 

ure that addresses both the GCE and the GCC for a class of nonlin-

ar saturating systems, while at the same time analysing the case 

n which the controller uses the estimate produced by the observer 

n order to update the control law. 

More specifically, this paper proposes a matrix inequality-based 

uaranteed cost estimation and control design procedure for a 

lass of discrete-time nonlinear systems subject to actuator satura- 

ion. This class of systems corresponds to those for which the ori- 

in of the state space is an equilibrium point when null inputs are 

onsidered, and the nonlinearity is differentiable with respect to 

he state and linear with respect to the saturated input. It is worth 

ighlighting that these nonlinearities, which have been considered 

reviously in the context of fault estimation by Zhu [2,40] , encom- 

ass cases which cannot be dealt using the traditional bounding 

ox method [35] . Hence, an alternative approach based on the ap- 

lication of the mean value theorem, as described by Lewis et al. 

1,23] , must be obtained. 

The contributions of the paper can be resumed as follows: 

1. a polytopic approach based on the application of the mean 

value theorem is described for the characterization of a class 

of discrete-time nonlinear systems subject to actuator satu- 

ration; 

2. sufficient conditions for the synthesis of a state observer 

that achieves GCE and a state-feedback controller that 

achieves GCC for the above-mentioned class of systems are 

provided in the form of an LMI-based feasibility or optimiza- 

tion problem; 

3. it is shown that for the above-mentioned class of systems, 

the celebrated separation principle holds only one-way in 

the sense that the observer can be designed independently 

from the controller, but the converse is not true. Hence, 

sufficient conditions for the design of an estimate-feedback 

guaranteed cost controller are obtained in the form of bilin- 

ear matrix inequalities (BMIs). 

The paper is structured as follows. Section 2 describes the no- 

ation and some lemmas which are used in the proofs of the the- 

retical results. In Section 3 , the class of considered nonlinear sys- 

ems is defined, and the different design problems considered in 

his paper are formulated. Section 4 provides LMI-based sufficient 

onditions for the design of the state observer. Section 5 is de- 

oted to providing LMI-based sufficient conditions for the design 

f the state-feedback controller. In Section 6 , the state-feedback 

ontrol law is replaced by an estimate-feedback control, and BMI- 
120 
ased conditions for the design of the controller gain are obtained. 

ection 7 summarizes the final procedure for designing and imple- 

enting the components of the control system that provide GCC 

nd GCE. The theoretical results are illustrated by means of an il- 

ustrative example in Section 8 , whereas an application to a nonlin- 

ar rotational single-arm inverted pendulum is given in Section 9 . 

inally, the main conclusions are outlined in Section 10 . 

. Notation and preliminaries 

For a real symmetric matrix A ∈ R 

n ×n , the notation A � 0 ( A ≺ 0 )

tands for a positive (negative) definite matrix and indicates that 

ll the eigenvalues of A are positive (negative). Given a matrix A ∈ 

 

n ×n with A � 0 , the symbol E A denotes the ellipsoid: 

 A = 

{
x ∈ R 

n : x T Ax ≤ 1 

}
. 

he symbol Co { A i , i = 1 , . . . , N} denotes the convex hull of a finite

umber of N vertex matrices: 

o { A i , i = 1 , . . . , N} = 

{ 

N ∑ 

i =1 

μi A i | 
N ∑ 

i =1 

μi = 1 , μi ≥ 0 ∀ i = 1 , . . . , N 

}

iven a vector u ∈ R 

m , the symbol σ (·) denotes the standard 

aturation function, such that σ (u ) = [ σ (u 1 ) , σ (u 2 ) , . . . , σ (u m 

) ] 
T 

, 

here σ (u i ) = sgn (u i ) min { 1 , | u i |} . Given a matrix A ∈ R 

m ×n , the

ymbol L σ (A ) denotes: 

 σ (A ) = { x ∈ R 

n : σ (Ax ) = Ax } . 
The following lemma are used throughout the paper. 

emma 1. Given two matrices K, H ∈ R 

m ×n and a vector x ∈ R 

n , sup-

ose that | H j x | ≤ 1 for j = 1 , 2 , . . . , m , where H j denotes the jth row

f H. Then: 

(Kx ) ∈ Co 

{
D i Kx + D 

−
i 

Hx, i = 1 , . . . , 2 

m 

}
, (1) 

here the matrices D i are all the possible m × m diagonal matrices 

hose diagonal elements are either 1 or 0, and D 

−
i 

= I − D i . 

roof. See [10] . �

emma 2. Given the matrix H ∈ R 

m ×n , if the following inequality 

olds for j = 1 , . . . , m : 

P P H 

T 
j 

H j P 1 

]
� 0 , (2) 

hen | H j x | ≤ 1 ∀ x ∈ E P −1 . 

roof. See [21] . �

. Problem formulation 

Consider the following discrete-time nonlinear system: 

 k +1 = Ax k + g ( x k , σ (u k ) ) , (3) 

 k = Cx k , (4) 

here x k ∈ R 

n is the state, u k ∈ R 

m is the control input, y k ∈ R 

p is

he output, A and C are constant matrices of appropriate dimen- 

ions, and the nonlinear function g : R 

n × R 

m → R 

n is assumed to 

atisfy the following assumptions: 

1. g(x, σ (u )) is affine in σ (u ) , so that it can be rewritten as: 

g(x, σ (u )) = f (x ) + F (x ) σ (u ) , (5)

with f : R 

n → R 

n and F : R 

n → R 

n ×m appropriate functions 

such that f (0) = 0 and F (0) 
 = 0 . Note that a consequence of

this fact is that g(0 , 0) = 0 ; 
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2. g(x, σ (u )) is differentiable with respect to x with bounded 

partial derivatives: 

a i, j ≤
∂g i (x, σ (u )) 

∂ x j 
≤ a i, j , i = 1 , . . . , n, j = 1 , . . . , n. (6)

By applying the mean value theorem [5] , the following relation 

olds: 

 ( a, σ (u ) ) − g ( b, σ (u ) ) = M(a, b, σ (u ))(a − b) , (7) 

or some matrix M(·) obtained as follows: 

(a, b, σ (u )) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∂g 1 
∂x 

( c 1 , σ (u )) 

. . . 
∂g n 

∂x 
( c n , σ (u )) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (8) 

ith: 

 1 , . . . , c n ∈ { c ∈ R 

n : c = αa + βb, α + β = 1 , αβ ≥ 0 } . (9) 

aking into account lower and upper bounds a i, j , a i, j and each pos- 

ible permutation of these bounds, matrices M i ∈ R 

n ×n , i = 1 , . . . , N,

an be obtained 

1 such that: 

(a, b, σ (u )) ∈ M � Co { M i , i = 1 , . . . , N } , (10) 

o that: 

 ( a, σ (u ) ) − g ( b, σ (u ) ) ∈ M (a − b) . (11) 

oreover, taking into account (5) , the following holds: 

 ( x, σ (a ) ) − g ( x, σ (b) ) = F (x)(σ (a ) − σ (b)) . (12) 

ereafter, the problems of observer and controller design are for- 

ulated. 

.1. State observer design 

Let us consider a nonlinear discrete-time observer of the form: 

ˆ 
 k +1 = A ̂

 x k + g 
(

ˆ x k , σ (u k ) 
)

+ K o (y k − C ̂  x k ) , (13) 

here ˆ x k denotes the estimate of the state x k and K o denotes the 

bserver gain to be designed. Then, the dynamics of the estimation 

rror e k = x k − ˆ x k is given by: 

 k +1 = x k +1 − ˆ x k +1 = 

˜ A e k + s k , (14) 

here ˜ A = A − K o C and s k = g ( x k , σ (u k ) ) − g 
(

ˆ x k , σ (u k ) 
)
. Apart from 

he asymptotical convergence to zero of the estimation error, a 

ound on the following cost function: 

 o = 

∞ ∑ 

k =0 

e T k Q e e k , (15) 

ith given Q e � 0 , is considered as objective for the design of the 

bserver. Hence, the GCE design problem can be formulated as fol- 

ows. 

roblem 1. (State observer design problem) Given Q e � 0 and a 

calar γo > 1 , design K o such that the dynamics of the estimation 

rror (14) is asymptotically stable with: 

T 

 o < γo e 0 Q e e 0 . (16) 

1 In general, N = 2 n 
2 

matrices are obtained using this approach, which is com- 

only named bounding box method , since it generates a hyperbox of matrices [35] . 

owever, if the matrix function M x,u contains h constant elements which arise from 

he linearity of some function g i ( x, σ (u ) ) with respect to some state variable x j , 

hen a reduced number of matrices N = 2 (n −h ) 2 is obtained. 

L

g

T

121 
.2. State-feedback controller design 

To design a robust controller, let us consider the following con- 

rol law: 

 k = K c x k , (17) 

here K c is the controller gain to be designed. Substituting the 

bove equation into (3) gives the following closed-loop system: 

 k +1 = Ax k + g ( x k , σ (K c x k ) ) . (18) 

et us note that, since g(0 , 0) = 0 , then g ( x k , σ (K c x k ) ) can be

ewritten as: 

 ( x k , σ (K c x k ) ) = g ( x k , σ (K c x k ) ) − g ( 0 , σ (K c x k ) ) 

+ g ( 0 , σ (K c x k ) ) − g(0 , 0) . (19) 

aking into account (11) and (12) , the following is obtained: 

 ( x k , σ (K c x k ) ) − g ( 0 , σ (K c x k ) ) ∈ M x k , (20) 

 ( 0 , σ (K c x k ) ) − g(0 , 0) = F (0) σ (K c x k ) , (21) 

o that: 

 ( x k , σ (K c x k ) ) ∈ M x k + F (0) σ (K c x k ) . (22) 

The following objectives are taken into account for the design 

f the controller: (i) asymptotical convergence to zero of x k when 

 0 belongs to the ellipsoid E Q defined by a given matrix Q � 0 ; and

ii) bound on the following cost function: 

 c = 

∞ ∑ 

k =0 

(
x T k Q x x k + σ (u k ) 

T Q u σ (u k ) 
)
, (23) 

ith given Q x � 0 and Q u � 0 . Hence, the GCC design problem can 

e formulated as follows. 

roblem 2. (State-feedback controller design problem) Given ma- 

rices Q � 0 , Q x � 0 , Q u � 0 and the scalar γc > 1 , design K c such

hat (18) is asymptotically stable and: 

 c < γc x 
T 
0 Q x x 0 , (24) 

hen x 0 ∈ E Q . 

.3. Estimate-feedback controller design 

The controller design problem previously formulated (Problem 

) assumes that the real state x k is available for feedback. However, 

 more realistic situation is the one in which the estimated state 

hould be used instead, i.e. (17) changes into: 

 k = K c ̂  x k , (25) 

here ˆ x k is the estimated state given by the observer (13) . In this 

ase, the question about whether it is possible or not to design the 

bserver and the controller separately arises. 

Let us consider the interconnection of the system (3) and (4) , 

he observer (13) and the control law (25) such that the overall 

ystem obeys (see Fig. 1 for a block diagram depicting their struc- 

ures and interconnections): 

 k +1 = 

˜ A e k + g 
(
x k , σ (K c ̂  x k ) 

)
− g 

(
ˆ x k , σ (K c ̂  x k ) 

)
, (26) 

 k +1 = Ax k + g 
(
x k , σ (K c ̂  x k ) 

)
. (27) 

et us note that: 

 

(
x k , σ (K c ̂  x k ) 

)
= g 

(
x k , σ (K c ̂  x k ) 

)
− g 

(
0 , σ (K c ̂  x k ) 

)
+ g 

(
0 , σ (K c ̂  x k ) 

)
− g(0 , 0) . (28) 

aking into account (11) : 
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Fig. 1. Block diagram of the proposed control and estimation strategy. 
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(
x k , σ (K c ̂  x k ) 

)
− g 

(
0 , σ (K c ̂  x k ) 

)
∈ M x k , (29) 

 

(
x k , σ (K c ̂  x k ) 

)
− g 

(
ˆ x k , σ (K c ̂  x k ) 

)
∈ M 

(
x k − ˆ x k 

)
= M e k . (30) 

oreover, due to (12) : 

 

(
0 , σ (K c ̂  x k ) 

)
− g(0 , 0) = F (0) σ (K c ̂  x k ) . (31) 

ence: 

 

(
x k , σ (K c ̂  x k ) 

)
∈ M x k + F (0) σ

(
K c ̂  x k 

)
, (32) 

hich means that the overall system can be put in the equivalent 

orm: 

 k +1 ∈ (A + M ) x k + F (0) σ ( K c x k − K c e k ) , (33) 

 k +1 ∈ ( ̃  A + M ) e k , (34) 

here ˆ x k = x k − e k has been used. 

From (33) to (34) it can be seen that, due to the nonlinear term 

( K c x k − K c e k ) , the separation principle holds only one-way, in the 

ense that, while the observer can be designed independently from 

he controller, this is not true for the controller, whose design pro- 

edure should be modified to take into account the effect of the 

volution of e k , driven by the specific choice of the observer gain 

 o , on the nonlinearity σ (·) . In order to deal with this situation, 

he requirements of Problem 2 are changed by requiring them to 

old for [ x T 
0 
, e T 

0 
] T ∈ E [ Q S ; S T R ] , where the ellipsoid E [ Q S ; S T R ] is de-

ned by a given matrix: 

Q S 

S T R 

]
� 0 , (35) 

nd that J c < γc 

(
x T 0 Q x x 0 + e T 0 Q x e 0 

)
. Note that with this choice, in 

ase x 0 = 0 , then J c < γc ̂  x T 
0 

Q x ̂  x 0 is obtained, whereas if e 0 = 0 , then

he case J c < γc x 
T 
0 Q x x 0 is recovered. Hence, the GCC design problem

an be modified as follows: 
122 
roblem 3. (Estimate-feedback controller design problem) Given 

atrices Q � 0 , S, R � 0 , Q x � 0 , Q u � 0 , the observer gain K o and

he scalar γc > 1 , design the controller gain K c such that (33) and

34) is asymptotically stable and: 

 c < γc 

(
x T 0 Q x x 0 + e T 0 Q x e 0 

)
, (36) 

hen [ x T 
0 
, e T 

0 
] T ∈ E [ Q S ; S T R ] . 

. Design of the state observer 

The objective of this section is to solve Problem 1 by obtaining 

ufficient conditions for the synthesis of the state observer (13) , 

hich are given by the following theorem. 

heorem 1. Let P � 0 , γo > 1 and U be such that the following holds:

 − γo Q e ≺ 0 , (37) 

Q e − P ∗
P (A + M i ) − UC −P 

]
≺ 0 , i = 1 , . . . , N. (38) 

hen, the nonlinear discrete–time observer given by (13) , with gain 

alculated as K o = P −1 U, is such that (14) is asymptotically stable and 

 o < γo e 
T 
0 

Q e e 0 . 

roof. Let us consider the following inequality [30] : 

V k + e T k Q e e k < 0 for k = 0 , . . . , ∞ , (39)

here �V k = V k +1 − V k , with V k = e T 
k 

Pe k , P � 0 . Since e T 
k 

Q e e k >

 ∀ e k , if inequality (39) holds then �V k < 0 , which corresponds to

he Lyapunov condition for asymptotic stability of (14) . Then, by 

umming (39) from 0 to ∞ , the following is obtained: 

∞ 

 

k =0 

e T k Q e e k = J o < V 0 = e T 0 P e 0 , (40) 



D. Rotondo and M. Buciakowski European Journal of Control 61 (2021) 119–132 

w  

d

f

a

�

s  

s

A  

w[
R

P

i[
w

R

d

i

5

s

s

T  

h[
[

⎡
⎢⎣

[
w  

t

d  

f  

t

P

f  

E
S

f  

w  

�  

P

w

x

a

(  

w

�

�

�

A

m

a

H  

l

σ  

H

(

w

�

w

�

 

c

f⎡
⎢⎣
w

�

w⎡
⎢⎣

w

(

R

t

o

minimized. 
hich, due to (37) ensuring that V 0 < γo e 
T 
0 

Q e e 0 for any initial con-

ition e 0 , proves that J o < γo e 
T 
0 Q e e 0 [22] . 

The remaining of the proof shows that inequality (39) follows 

rom (38) . In fact, taking into account (13), (39) can be rewritten 

s: 

V k + e T k Q e e k = e T k 
(

˜ A 

T P ̃  A − P + Q e 

)
e k + e T k 

˜ A 

T P s k 

+ s T k P ̃
 A e k + s T k P s k < 0 . (41) 

From (11) , it follows that: 

 k = g(x k , σ (u k )) − g( ̂  x k , σ (u k )) ∈ M (x k − ˆ x k ) = M e k , (42)

o that (41) is satisfied if: 

˜ 
 

T PA − P + Q e + 

˜ A 

T P M + M 

T P ̃  A + M 

T P M ≺ 0 , ∀ M ∈ M , (43)

hich, using Schur complements, leads to: 

Q e − P 
(

˜ A 

T + M 

T 
)
P 

P 
(

˜ A + M 

)
−P 

]
≺ 0 , ∀ M ∈ M . (44) 

eplacing: 

 ̃

 A = PA − P K o C = PA − UC, (45) 

nto (44) , where U = P K o , leads to: 

Q e − P � 

P 
(

˜ A + M 

)
− UC −P 

]
≺ 0 , ∀ M ∈ M , (46) 

hich is satisfied if (38) holds, thus completing the proof. �

emark 1. The problem of determining the observer gain matrix 

escribed by Theorem 1 can be treated as an optimization problem 

n which the cost performance index γo is minimized. 

. Design of the state-feedback controller 

The objective of this section is to solve Problem 2 by obtaining 

ufficient conditions for the synthesis of the controller (17) for the 

ystem (3) - (4) , which are given by the following theorem. 

heorem 2. Let P � 0 , γc > 1 and 	, Z be such that the following

olds: 

Q I 
I P 

]
� 0 , (47) 

P Z T 
j 

Z j 1 

]
� 0 , j = 1 , . . . , m, (48) 

 

 

 

−P ∗ ∗ ∗
( A + M l ) P + F (0) φi −P ∗ ∗

Q 

1 / 2 
x P 0 −I ∗
φi 0 0 −Q 

−1 
u 

⎤ 

⎥ ⎦ 

≺ 0 , 
i = 1 , . . . , 2 

m 

l = 1 , . . . , N 

, 

(49) 

γc Q x I 
I P 

]
� 0 , (50) 

ith φi = D i 	 + D 

−
i 

Z, where Z j denotes the jth row of the matrix Z,

he matrices D i are all the possible m × m diagonal matrices whose 

iagonal elements are either 1 or 0, and D 

−
i 

= I − D i . Then the state-

eedback control law (17) , with gain calculated as K c = 	P −1 , is such

hat (18) is asymptotically stable and J c < γc x 
T 
0 

Q x x 0 when x 0 ∈ E Q . 

roof. In order to ensure that Problem 2 is solved, let us define the 

unction V k = x T 
k 

P −1 x k , P � 0 , and let us require that the ellipsoid

 Q is contained in E P −1 , which is equivalent to Q − P −1 � 0 and, by 

chur complements, to (47) . Then, to ensure asymptotic stability 
123 
or x 0 ∈ E Q , it is sufficient to ensure it for x 0 ∈ E P −1 , which together

ith the constraint on J c , leads to the following constraints on V k :

V k + x T k Q x x k + σ (K c x k ) 
T Q u σ (K c x k ) < 0 , (51)

 

−1 − γc Q x ≺ 0 , (52) 

here �V k = V k +1 − V k . 

By defining: 

¯
 

σ
k = [ x T k , σ (K c x k ) 

T ] T , (53) 

nd taking into account (22) , the inequality (51) is satisfied if: 

 ̄x σk ) 
T 

[
�σ

11 �σ
12 

∗ �σ
22 

]
x̄ σk = ( ̄x σk ) 

T �σ x̄ σk < 0 , ∀ M ∈ M , (54)

here: 

σ
11 = (A + M) T P −1 (A + M) − P −1 + Q x , 

σ
12 = (A + M) T P −1 F (0) , 

σ
22 = F (0) T P −1 F (0) + Q u . 

ccording to Lemmas 1 –2 , by introducing an auxiliary feedback 

atrix H c and the constraint (48) , which enforces E P −1 ⊆ L σ (H c ) 

nd that is obtained from (2) through the change of variable Z = 

 c P , then σ (K c x k ) can be placed into the convex hull of a group of

inear feedbacks: 

(K c x k ) ∈ Co { D i K c x k + D 

−
i 

H c x k , i = 1 . . . , 2 

m } . (55)

ence, from (55) and by convexity of the function V k , it follows: 

 ̄x σk ) 
T �σ x̄ σk ≤ max 

i =1 , ... , 2 m 
x T k �

i x k , (56) 

here: 

i = �T 
i P 

−1 �i − P −1 + Q x + ψ 

T 
i Q u ψ i , (57) 

ith: 

i = A + M + F (0) ψ i . (58) 

By requiring that �i ≺ 0 for i = 1 , . . . , 2 m , and applying Schur

omplements, with an appropriate congruence transformation, the 

ollowing is obtained: 
 

 

 

−P P �T 
i 

P Q 

1 / 2 
x P ψ 

T 
i 

�i P −P 0 0 

Q 

1 / 2 
x P 0 −I 0 

ψ i P 0 0 −Q 

−1 
u 

⎤ 

⎥ ⎦ 

≺ 0 , ∀ M ∈ M , (59) 

hich, by replacing: 

i P = ( A + M ) P + F (0) ψ i P 

= ( A + M ) P + F (0) D i K c P + F (0) D 

−
i 

H C P 

= ( A + M ) P + F (0) D i 	 + F (0) D 

−
i 

Z, (60) 

here 	 = K c P , leads to: 

 

 

 

−P ∗ ∗ ∗
( A + M ) P + F (0) φi −P ∗ ∗

Q 

1 / 2 
x P 0 −I ∗
φi 0 0 −Q 

−1 
u 

⎤ 

⎥ ⎦ 

≺ 0 , 
i = 1 , . . . , 2 

m 

∀ M ∈ M 

, 

(61) 

hich is satisfied if (49) holds. By applying Schur complements to 

52), (50) is obtained, which completes the proof. �

emark 2. Also in this case, the problem of determining the con- 

roller gain matrix described by Theorem 2 can be treated as an 

ptimization problem in which the cost performance index γc is 
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. Design of the estimate-feedback controller 

The objective of this section is to solve Problem 3 by obtaining 

ufficient conditions for the synthesis of the controller (25) for the 

ystem (3) and (4) with state observer (13) , which are given by the

ollowing theorem. 

heorem 3. Given the observer gain K o (hence, the matrix ˜ A ), let P �
 , γc > 1 and the matrices K c , H c be such that: 

Q S 

S T R 

]
− P � 0 , (62) 

 − γc 

[
Q x 0 

0 Q x 

]
≺ 0 , (63) 

 

 

P 

[
H 

T 
c, j 

−H 

T 
c, j 

]
[
H c, j −H c, j 

]
1 

⎤ 

⎦ � 0 , j = 1 , . . . , m (64) 

 

 

 

 

P P 

[
A + M l 1 + F (0) φi −F (0) φi 

0 

˜ A + M l 2 

]

� P −
[

Q x + φT 
i 

Q u φi −φT 
i 

Q u φi 

−φT 
i 

Q u φi φT 
i 

Q u φi 

]
⎤ 

⎥ ⎥ ⎦ 

� 0 , 

i = 1 , . . . , 2 

m 

l 1 = 1 , . . . , N 

l 2 = 1 , . . . , N 

, 

(65) 

old, where φi = D i K c + D 

−
i 

H c , H c, j denotes the j-th row of the matrix

 c , and the matrices D i are all the possible m × m diagonal matrices

hose diagonal elements are either 1 or 0, and D 

−
i 

= I − D i . Then the

stimate-feedback control law (25) ensures that (18) is asymptotically 

table when [ x T 0 , e 
T 
0 ] 

T ∈ E [ Q S ; S T R ] and J c < γc 

(
x T 0 Q x x 0 + e T 0 Q x e 0 

)
. 

roof. Let us consider the function: 

 k = 

[
x k 
e k 

]T 

P 

[
x k 
e k 

]
, (66) 

ith P � 0 , and let us require that E [ Q S ; S T R ] ⊆ E P , which is equiv-

lent to (62) . Then, to ensure asymptotic stability for [ x T 
0 
, e T 

0 
] T ∈

 [ Q S ; S T R ] , it is sufficient to ensure it for [ x T 
0 
, e T 

0 
] T ∈ E P , which to-

ether with the constraint on J c , leads to (63) and: 

V k + x T k Q x x k + σ (K c ̂  x k ) 
T Q u σ (K c ̂  x k ) < 0 . (67)

By performing a reasoning similar to the one in Theorem 2 , us- 

ng Lemma 2 the constraint (64) ensures that: 

 P ⊆ L 

([
H c −H c 

])
, (68) 

nd, according to Lemma 1 : 

( K c ̂  x k ) ∈ Co 

{
˜ ψ i 

[
x k 
e k 

]
= D i 

[
K c −K c 

][x k 
e k 

]

+ D 

−
i 

[
H c −H c 

][x k 
e k 

]}
. (69) 

o that the following holds: 

x k +1 

e k +1 

]
∈ 

[
A + M + F (0) φi −F (0) φi 

0 

˜ A + M 

][
x k 
e k 

]
, (70) 

hich means that ∃ M 1 , M 2 ∈ M such that: 

x k +1 

e k +1 

]
= 

[
A + M 1 + F (0) φi −F (0) φi 

0 

˜ A + M 2 

][
x k 
e k 

]
= Ā 

[
x k 
e k 

]
. (71) 

hen, (67) leads to: 

Ā 

T P Ā − P + 

[
Q x 0 

0 0 

]
+ 

[
φT 

i 

−φT 
i 

]
Q u 

[
φi −φi 

]
≺ 0 , 
124 
∀ M 1 , M 2 ∈ M , (72) 

hich, by means of Schur complements, and an appropriate con- 

ruence transformation, leads to: 

 

 

 

 

P P 

[
A + M 1 + F (0) φi −F (0) φi 

0 

˜ A + M 2 

]

� P −
[

Q x + φT 
i 

Q u φi −φT 
i 

Q u φi 

−φT 
i 

Q u φi φT 
i 

Q u φi 

]
⎤ 

⎥ ⎥ ⎦ 

� 0 , 
i = 1 , . . . , 2 

m 

∀ M 1 , M 2 ∈ M 

, 

(73) 

hich is satisfied if (65) holds, thus completing the proof. �

Note that when applying Theorem 6 , the matrix ˜ A is consid- 

red to be known, since the observer gain K o is assumed to be 

esigned beforehand using Theorem 1 . Taking the above consid- 

rations into account, similarly to previous cases, an optimization 

roblem concerning minimization of the cost performance index 

c can be defined. It is worth highlighting that the conditions pro- 

ided by Theorem 6 are bilinear matrix inequalities (BMIs) due to 

he product between the unknown variables P and φi , hence their 

esolution suffers from being a non-convex problem. 

. Design and implementation procedure for the guaranteed 

ost estimation and control 

The problem of determining the state observer and controller 

ain matrices is solved using the results given by Theorems 1 –3. It 

s done by an optimization problem subject to minimization of the 

ost performance indexes γo and γc . The design and implementa- 

ion procedure can be summarized as follows: Off-line computation: 

1. Obtain a representation of the system of interest as in 

(3) and (4) ; 

2. Calculate the Jacobians of the function g ( ·) with respect to 

state and input; 

3. Compute lower and upper bounds for the elements of the 

Jacobians and use them to obtain (10) using the bounding 

box approach; 

4. (Observer design) Obtain the observer gain K o by solving the 

optimization problem: 

minimize γo 

subject to subject to (37)-(38) 

5. (Controller design) Obtain the controller gain K c by solving 

the optimization problem: 

minimize γc 

subject to subject to (47)-(50) 

On-line computation: 

1. Compute the state estimate using (13) ; 

2. Compute the control action using (25) . 

emark 3. The above procedure summarizes the necessary steps 

or the design of the state observer or the state-feedback controller. 

t could be applied to the case of the estimate-feedback controller, 

lbeit some minor changes. 

. Numerical example 

Let us consider the following system: 

 1 (k + 1) = a 11 x 1 (k ) − 0 . 5 x 2 (k ) + 0 . 1 x 3 (k ) 

+ 

cos ( x 1 (k ) ) σ1 ( u 1 (k ) ) 

3 x 2 
1 
(k ) + 2 

, 

 2 (k + 1) = −0 . 2 x 1 (k ) + a 22 x 2 (k ) + 0 . 1 x 3 (k ) + 

σ2 ( u 2 (k ) ) 

2 + x 2 (k ) 
, 
2 
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a  

s

o

 3 (k + 1) = 0 . 1 x 1 (k ) − 0 . 1 x 2 (k ) + a 33 x 3 (k ) , 

here the state variable x 1 (k ) is assumed to be measured, which 

an be reshaped in the form (3) and (4) by considering: 

 = 

[ 

a 11 −0 . 5 0 . 1 

−0 . 2 a 22 0 . 1 

0 . 1 −0 . 1 a 33 , 

] 

, g(·) = 

⎡ 

⎣ 

cos (x 1 ) σ1 (u 1 ) 
3 x 2 

1 
+2 

σ2 (u 2 ) 
2+ x 2 

2 

0 

⎤ 

⎦ , 

 = 

[
1 0 0 

]
. 

he nonlinear function g(·) is differentiable with respect to x and 

(u ) : 

∂g(·) 
∂x 

= 

⎡ 

⎢ ⎢ ⎣ 

− 3 sin (x 1 ) x 
2 
1 

+6 cos (x 1 ) x 1 +2 sin (x 1 ) 

(3 x 2 
1 

+2) 2 
σ1 (u 1 ) 0 0 

0 − 2 x 2 

(2+ x 2 
2 
) 2 

σ2 (u 2 ) 0 

0 0 0 

⎤ 

⎥ ⎥ ⎦ 

, 

∂g(·) 
∂σ (u ) 

= 

⎡ 

⎣ 

cos (x 1 ) 
3 x 2 

1 
(k )+2 

0 

0 

1 
2+ x 2 

2 

0 0 

⎤ 

⎦ = F (x ) . 

ote that the following holds: 

0 . 52 ≤ −3 sin (x 1 ) x 
2 
1 + 6 cos (x 1 ) x 1 + 2 sin (x 1 ) 

(3 x 2 
1 

+ 2) 2 
σ1 (u 1 ) ≤ 0 . 52 , 

0 . 23 ≤ − 2 x 2 

(2 + x 2 
2 
) 2 

σ2 (u 2 ) ≤ 0 . 23 . 

lso, g(0 , 0) = 0 and: 

 (0) = 

[ 

0 . 5 0 

0 0 . 5 

0 0 

] 

. 

Taking into account the above computed bounds, it is possible 

o obtain the set defined in (10) as the convex combination of the 

ollowing four matrices: 

 1 = 

[ −0 . 52 0 0 

0 −0 . 23 0 

0 0 0 

] 

, M 2 = 

[ −0 . 52 0 0 

0 0 . 23 0 

0 0 0 

] 

, 

 3 = 

[ 

0 . 52 0 0 

0 −0 . 23 0 

0 0 0 

] 

, M 4 = 

[ 

0 . 52 0 0 

0 0 . 23 0 

0 0 0 

] 

. 

.1. Open-loop stable equilibrium 

In this subsection, we will assume that a 11 = a 22 = a 33 = 0 . 6 ,

o that the origin of the state-space is an open-loop stable equi- 

ibrium point. Let us consider Q e = I, and three different observer 

ains K 

a 
o , K 

b 
o and K 

c 
o , where K 

a 
o has been obtained through the min-

mization of γo using Theorem 1 [16,34] , whereas K 

b 
o and K 

c 
o are 

bserver gains designed by requiring only the stabilization of the 

stimation error dynamics. The observer gains are as follows: 

 

a 
o = 

[ 

0 . 82 

−0 . 47 

0 . 21 

] 

, K 

b 
o = 

[ 

0 . 63 

−0 . 88 

−0 . 10 

] 

, K 

c 
o = 

[ 

1 . 03 

−1 . 24 

0 . 18 

] 

, 

hich deliver minimized values of γo as follows: γ a 
o = 3 . 70 , γ b 

o = 

0 . 78 , γ c 
o = 442 . 73 . In order to validate the proposed design tech-

ique, different simulations starting from initial conditions x 0 on 

he unit sphere S , with ˆ x 0 = 0 , have been performed. Then, Fig. 2

hows the evolution of the following signals: 

˜ 
 (k | K 

i 
o ) = max 

x 0 ∈S 

k ∑ 

t=0 

e T t Q e e t | K o = K 

i 
o , (74) 
125 
ith i ∈ { a, b, c} , that confirms that K 

a 
o is the best performing ob-

erver gain (see blue line). This can be seen also in Fig. 3 , where

he upper and lower envelopes of the estimation error trajectories 

re plotted, showing that K 

a 
o provides a faster convergence to zero 

f the estimation error. 

Subsequently, selecting Q = 100 I (initial conditions in the 

phere of radius 0.1, denoted in the following as ˜ S ) and: 

 

a 
x = 

[ 

50 0 0 

0 1 0 

0 0 1 

] 

, Q 

b 
x = 

[ 

1 0 0 

0 50 0 

0 0 1 

] 

, 

 

c 
x = 

[ 

1 0 0 

0 1 0 

0 0 50 

] 

, Q u = 

[
1 0 

0 1 

]
, 

hree different controller gains have been designed, as follows: 

 

a 
c = 

[
−1 . 22 1 . 00 −0 . 20 

0 . 31 −0 . 76 −0 . 07 

]
, 

 

b 
c = 

[
−1 . 04 1 . 39 −0 . 26 

0 . 41 −1 . 20 −0 . 18 

]
, 

 

c 
c = 

[
−1 . 15 1 . 11 −0 . 82 

0 . 61 −1 . 12 0 . 75 

]
, 

ach one solving the minimization problem described in 

ection 5 [16,34] , obtaining γ a 
c = 3 . 34 , γ b 

c = 3 . 71 and γ c 
c = 8 . 51 ,

espectively. Next, using: 

˜ 
 

i (k | K 

i 
c ) = max 

x 0 ∈ ̃ S 

k ∑ 

t=0 

x T 
k 

Q 

i 
x x k + u 

T 
k 

Q u u k 

x T 
0 

Q 

i 
x x 0 

| K c = K 

i 
c , (75) 

ith i ∈ { a, b, c} , the validation of the proposed controller design

echnique can be performed, as shown in Fig. 4 , where ˜ J i (k | K 

i 
c ) <

i 
c is satisfied in all simulations. As expected from the chosen val- 

es for Q 

a 
x , Q 

b 
x , Q 

c 
x , the controller gain K 

a 
c provides a faster conver-

ence to zero of the state variable x 1 (k ) , K 

b 
c a faster convergence

f x 2 (k ) , and K 

c 
c of x 3 (k ) , respectively, as shown in Fig. 5 , where

he upper and lower envelopes of the state trajectories for initial 

onditions on the frontier of ˜ S are plotted. 

Finally, we have considered the design of the estimate-feedback 

ontroller using Theorem 3 . To this end, it has been assumed that 

he estimated state is computed using the observer gain K 

a 
o , and 

hat the region of possible initial conditions is described by ma- 

rices Q = 100 I and R = 10 4 I. At first, the performance of the pre-

iously designed controllers K 

a 
c , K 

c 
b 
, K 

c 
c has been evaluated using 

heorem 3 as an analysis tool (hence, converting the BMIs into 

MIs due to the decision variable K c and H c becoming known ma- 

rices), obtaining values of γc as follows: ˜ γ a 
c = 379 . 2 , ˜ γ b 

c = 41 . 2 and

˜ c c = 55 . 0 . Then, Theorem 3 has been employed as a design tool,

ith the solver PENLAB used to solve the BMIs. In this case, no 

olution was found for Q x = Q 

a 
x and Q x = Q 

c 
x (the solver got stuck

ndefinitely), whereas the following controller gain was obtained 

or Q x = Q 

b 
x : 

 

b2 
c = 

[
−0 . 75 0 . 90 −0 . 21 

0 . 30 −0 . 82 0 . 06 

]
, 

ielding the improved upper bounds ˜ γ b2 
c = 19 . 8 . 

.2. Open-loop unstable equilibrium 

In this subsection, we will assume that a 11 = 1 . 2 , a 22 = 1 . 2 and

 33 = 0 . 7 , so that the origin of the state-space is an open-loop un-

table equilibrium point. Let us consider Q e = I, and three different 

bserver gains K 

d 
o , K 

e 
o and K 

f 
o , where K 

d 
o has been obtained solving 
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Fig. 2. Evolution of ˜ J (k | K i o ) , i ∈ { a, b, c} , and upper bound γ a 
o e 

T 
0 Q e e 0 (open-loop stable). 

Fig. 3. Envelopes of the error e (k ) with observer gains K a o , K 
b 
o , K 

c 
o (open-loop stable). 

t
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w
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t

t
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t

p

t

t
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K

K

he minimization of γo using Theorem 1 , whereas K 

e 
o and K 

f 
o are 

bserver gains designed by requiring only the stabilization of the 

stimation error dynamics. The observer gains are as follows: 

 

d 
o = 

[ 

2 . 12 

−2 . 33 

0 . 43 

] 

, K 

e 
o = 

[ 

2 . 11 

−2 . 37 

0 . 41 

] 

, K 

f 
o = 

[ 

2 . 14 

−2 . 41 

0 . 43 

] 

, 

hich deliver minimized values of γo as follows: γ d 
o = 199 . 09 , 

e 
o = 5528 , γ f 

o = 1686 . 8 . Let us note that in this case, if compared

o the open-loop stable one, very small changes in the elements of 

he observer gains cause big variations in the values of the com- 

uted upper bounds. Moreover, Fig. 6 , which shows the evolution 
126 
f the signal (74) , i ∈ { d, e, f } , illustrates the increase in conserva-

iveness of the proposed methodology when open-loop unstable 

lants are considered. For the sake of completeness in the presen- 

ation of the results, the upper and lower envelopes of the estima- 

ion error trajectories are shown in Fig. 7 . 

Subsequently, selecting Q = 100 I, Q 

d 
x = Q 

a 
x , Q 

e 
x = Q 

b 
x , Q 

f 
x = Q 

c 
x 

nd Q u = I, the following controller gains have been designed: 

 

d 
c = 

[
−2 . 38 1 . 02 −0 . 20 

0 . 29 −1 . 85 −0 . 15 

]
, 

 

e 
c = 

[
−2 . 40 1 . 05 −0 . 31 

0 . 43 −2 . 34 −0 . 18 

]
, 
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Fig. 4. Evolution of ˜ J i (k | K i c ) and upper bounds γ i 
c , i ∈ { a, b, c} (open-loop stable, state-feedback). 

Fig. 5. Envelopes of x (k ) with controller gains K a c , K 
b 
c , K 

c 
c (open-loop stable, state-feedback). 
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d

x

 

f 
c = 

[
−2 . 34 1 . 34 −0 . 76 

0 . 74 −2 . 10 0 . 65 

]
, 

ach one solving the minimization problem described in Section 5 , 

btaining γ d 
c = 7 . 37 , γ e 

c = 9 . 81 and γ f 
c = 16 . 40 , respectively. Fig. 8

hows the signal calculated using (75) , i ∈ { d, e, f } , which demon-

trates that ˜ J i (k | K 

i 
c ) < γ i 

c is satisfied in all simulations. As in the

revious case, the controller gain that provides a faster conver- 

ence to zero of the state variable x 1 (k ) is K 

d 
c , whereas K 

e 
c and K 

f 
c 

rovide a faster convergence of x 2 (k ) and x 3 (k ) , respectively. For

he sake of completeness, Fig. 9 shows the upper and lower en- 
127 
elopes of the state trajectories for initial conditions on the frontier 

f ˜ S . 
This can be seen also from Fig. 3 , where the upper and lower 

nvelopes of the estimation error trajectories are plotted, showing 

hat K 

a 
o provides a faster convergence to zero of the estimation er- 

or. 

. Application to a rotational single-arm inverted pendulum 

Let us consider the following nonlinear system describing the 

ynamics of a rotational single-arm inverted pendulum [18] : 

 1 (k + 1) = x 1 (k ) + T s x 2 (k ) , 
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Fig. 6. Evolution of ˜ J (k | K i o ) and upper bounds γ d 
o e 

T 
0 Q e e 0 , i ∈ { d, e, f } (open-loop unstable). 

Fig. 7. Envelopes of the error e (k ) with observer gains K d o , K 
e 
o , K 

f 
o (open-loop unstable). 

x

w  

t  

b  

a

s

d

A

C

a

 2 (k + 1) = T s 
g 

l 
sin (x 1 (k )) + (1 − T s 

b 

ml 2 
) x 2 (k ) + 

T s 

ml 2 
σ (u 1 (k )) , 

here T s = 0 . 01[ s ] is the sampling time, m = 0 . 2[ kg] is the mass of

he pendulum, l = 0 . 15[ m ] is the length of the pendulum, whereas

 = 0 . 0067[ kgm 

2 s −1 ] and g = 9 . 81[ ms −2 ] are the friction coefficient

nd the gravitational acceleration, respectively. Assuming that the 

tate variable x 1 (k ) (angle of the pendulum) is measured, the pen- 

ulum model can be reshaped as: 

 = 

[ 

1 T s 

0 1 − T s b 

ml 2 

] 

, g(·) = 

[ 

0 

T s g 

l 
sin (x 1 (k )) + 

T s 

ml 2 
σ (u 1 (k )) 

] 

, 
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 = 

[
1 0 

]
. 

The nonlinear function g(·) is differentiable with respect to x 

nd σ (u ) : 

∂g(·) 
∂x 

= 

[ 

0 0 

T s 
g 

l 
cos (x 1 (k )) 0 

] 

, 

∂g(·) 
∂σ (u ) 

= 

[ 

0 

T s 

ml 2 

] 

= F (x ) . 
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Fig. 8. Evolution of the signals ˜ J i (k | K i c ) and upper bounds γ i 
c , i ∈ { d, e, f } (open-loop unstable, state-feedback). 

Fig. 9. Envelopes of the state trajectories x (k ) with different controller gains K d c , K 
e 
c , K 

f 
c . 

N

−

A

F

T

o

M

T

K

K

w

T

t

s  

fi

(

ote that the following holds: 

0 . 6540 ≤ T s 
g 

l 
cos (x 1 (k )) ≤ 0 . 6540 , 

lso, g(0 , 0) = 0 and: 

 (0) = 

[
0 

2 . 2222 

]
. 

aking into account the above computed bound, it is possible to 

btain (10) as the convex combination of the following matrices: 

 1 = 

[
0 0 

0 . 6540 0 

]
, M 2 = 

[
0 0 

−0 . 6540 0 

]

v

129 
aking into consideration Q e = I, three different observer gain K 

a 
o , 

 

b 
o and K 

c 
o have been obtained: 

 

a 
o = 

[
1 . 0378 

3 . 7197 

]
, K 

b 
o = 

[
0 . 4750 

4 . 9875 

]
, K 

c 
o = 

[
0 . 5750 

7 . 8375 

]
, 

here K 

a 
o has been obtained through the minimization of γo using 

heorem 1 and whereas K 

b 
o and K 

c 
o provide only the stabilization of 

he estimation error dynamics. Using initial conditions x 0 , Fig. 10 , 

hows the evolution of (74) for i ∈ { a, b, c} . Also for this case, con-

rms that observer gain matrices K 

a 
o provide the best performance 

see blue line). Moreover, Fig. 11 shows the upper and lower en- 

elopes of the estimation error trajectories, confirms, that K 

a 
o pro- 
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Fig. 10. Evolution of ˜ J (k | K i o ) , i ∈ { a, b, c} , and upper bound γ a 
o e 

T 
0 Q e e 0 . 

Fig. 11. Envelopes of the error e (k ) with observer gains K a o , K 
b 
o , K 

c 
o . 

Fig. 12. Evolution of ˜ J i (k | K i c ) and upper bounds γ i 
c , i ∈ { a, b, c} (state-feedback). 
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Fig. 13. Envelopes of x (k ) with controller gains K a c , K 
b 
c , K 

c 
c (state-feedback). 
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ides the smallest estimation error with respect to time and initial 

ondition. 

Subsequently, selecting Q e = diag (10 , 10 0 0 0) , Q 

b 
x = 

iag (0 . 0 0 01 , 0 . 0 0 01) , Q 

c 
x = diag (0 . 0 01 , 0 . 0 01) and Q 

a 
u = Q 

b 
u =

 

c 
u = 0 . 01 I, the following controller gains have been designed: 

 

a 
c = 

[
−1 . 1967 −0 . 2703 

]
, 

 

b 
c = 

[
−1 . 1578 −0 . 2968 

]
, 

 

c 
c = 

[
−1 . 0410 −0 . 3750 

]
, 

ith γ a 
c = 15279 , γ b 

c = 19996 and γ c 
c = 501 . 74 , respectively. 

ig. 12 shows the signal calculated using (75) , i ∈ { a, b, c} , which

emonstrates that ˜ J i (k | K 

i 
c ) < γ i 

c is satisfied in all simulations. For 

his example, the controller gain that provides a faster convergence 

o zero of the state variable x 1 (k ) and x 2 (k ) is K 

c 
c . Finally, Fig. 13

hows the upper and lower envelopes of the state trajectories for 

nitial conditions on the frontier of ˜ S . 

0. Conclusions 

This paper has discussed the design of a state observer and a 

tate-feedback controller that provide guaranteed cost estimation 

nd guaranteed cost control, respectively, for a class of nonlinear 

ystems affected by actuator saturations. The considered systems 

orrespond to those for which the origin of the state space is an 

quilibrium point when null inputs are considered, and the non- 

inearity is differentiable with respect to the state and linear with 

espect to the saturated input. 

It has been shown that when both designs are considered sep- 

rately, the procedure consists in solving LMIs, which is efficient 

o do using available solvers. The simulation results have shown 

he main characteristics of the proposed guaranteed cost design 

ethod, and the fact that less conservative solutions are found 

hen the origin is an open-loop stable equilibrium. 

On the other hand, it has been shown that in the more realistic 

ituation in which a state estimate-feedback should be used, e.g., 

ue to the lack of availability of some state variables for measure- 

ent, it is not possible to design the controller without taking into 

ccount the observer. In this case, the design procedure relies on 

ilinear matrix inequalities (BMIs). Some experiments using a BMI 

olver have shown that, although the proposed design procedure 
131 
s viable in some cases, it suffers in returning a solution due to 

on-convexity issues. 

In spite of the advantages of the proposed approach, the per- 

ormance of the closed-loop system is affected by the conserva- 

iveness brought by the use of a quadratic Lyapunov function with 

onstant Lyapunov matrix and constant observer/controller ma- 

rices. Future work will explore other types of Lyapunov func- 

ions which can decrease the conservativeness of the design 

rocedure and the use of gain-scheduled (state-dependent) ob- 

erver/controller gains. Moreover, other important directions for 

urther research are the conversion of the BMIs obtained for com- 

uting the estimate-feedback controller gain into more computa- 

ionally convenient LMIs, and the development of a procedure for 

he joint design of the observer and controller gain for estimate- 

eedback guaranteed cost estimation and control. 
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