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Chapter 1

Introduction

Many mathematical models are described with the help of differential equa-
tions. In this thesis, the mathematical model which is going to be ana-
lyzed and used is the Lotka-Volterra equations. This is also known as the
predator-prey equations. An interesting question that can be derived from
these equations is what happens with the system’s solutions as time passes
by. An important factor in understanding what happens to the system’s
solutions is the understanding of critial points. Such points correspond to
constant solutions, or equilibrium solutions.

These critical points and systems of differential equations are going to be
explained in more detail later in the thesis. They are of special importance
to the Lotka-Volterra equations. The ”thesis question” is going to be what
happens to the system’s solutions as time passes by where the critical points
of the system are of special importance.

The Lotka-Volterra equations were developed simultaneously but inde-
pendently by Alfred J. Lotka and Vito Volterra. They were developed in
papers by Lotka in 1925 and by Volterra in 1926. Lotka was an American
mathematician, physical chemist and statistician and was born in what is
now Ukraine. He is famous for his work in population dynamics and ener-
getics. Lotka is best known for his work of the predator-prey model and as
Wikipedia writes (Wikipedia, 2021a), this model is still the basis of many
models used in the analysis of population dynamics in ecology. Although he
is best known for the predator-prey model, his main interest was demogra-
phy and he joined the Metropolitan Life Insurance company. From here on
he concentrated on life tables and his passion to bring mathematics to the
problems of biology. Lotka sought out to apply the principles of physical
sciences to biological sciences.

While Volterra was an Italian mathematician and physicist who held pro-
fessorships at Pisa,Turin, and Rome. He is particularly famous for his con-
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CHAPTER 1. INTRODUCTION 5

tributions to mathematical ecology and integral equations. Volterra is one
of the founders of functional analysis. Born in Ancona to a poor jewish
family, Volterra showed early promise in mathematics befor attending the
university of Pisa. Here he became as Wikipedia writes (Wikipedia, 2021b)
a professor in mechanics in 1883. He immediately started working his theory
of functionals which lead to his interest and later contributions in integral
and integro-differential equations. In 1892, he became professor of mechanics
at the University of Turin and in 1900, professor of mathematical physics at
the University of Rome La Sapienza. After World War 1, Volterra started
focusing on the application of his mathematical ideas to biology. An outcome
of this period is the Lotka-Volterra equations.

The Lotka-Volterra equations or predator-prey equations are a pair of
first-order nonlinear differential equations. They are used to describe a situ-
ation in which one species(the predator) preys on the other species(the prey)
while the prey lives on a different source of food. A real life example of
this could be foxes and rabbits living in a closed forest. The foxes hunt
and prey on the rabbits and the rabbits live on the vegetation in the forest.
Volterra himself was motivated by data collected by his son-in-law, Hum-
berto d’Ancona. D’Ancona observed that the percentage of predatory fish
caught in the Adriatic sea had increased during World War 1. This baffled
d’Ancona because the fishing effort had been reduced during these years.
Volterra developed the model and used it to explain D’Ancona observations.
It is important to mention that this is a simple model. A model involv-
ing only two species do not fully describe the complex relationships among
species that actually occur in nature. But the study of simple models is the
first step toward an understanding of more complicated phenomena and is
therefore very important.

The thesis is based mainly on the book Elementary Differential Equations
and Boundary Value Problems. The book is written by William E. Boyce,
Richard C. Diprima and Douglas B. Meade. The theory which is explained
later in the thesis are based mainly on this book. While the examples of
the predator-prey equations are also from the book, they are solved by me.
Every pictures which shows direction fields and trajectories in the examples
are made by me in Mathematica. More details on the prey-predator model
can be found in the book Deterministic mathematical models in population
ecology by H.I.Freedman, 1980. Another book is Mathematical models in
population biology and epidemiology by Brauer and Castillo-Chavez, 2001.
You can also find more information about the predator-prey model in other
books on population biology.



Chapter 2

Theory

2.1 The Lotka-Volterra equations

The Lotka-Volterra equations denote x and y the populations of the prey
and predator at time t. The population change trough time as according to
these equations:

dx

dt
= ax− αxy, dy

dt
= −cy + γxy. (2.1)

There are made following assumptions in constructing this model as Boyce
writes (Boyce et al., 2017, p.426): 1. If there are no predators, y=0, then
the prey grows at a rate proportional to the current population:

dx

dt
= ax, a > 0, (2.2)

when y=0. 2. If the population of the prey is zero, the predator dies out:
thus

dy

dt
= −cy, c > 0, (2.3)

when x=0. 3. The numbers of encounters between these two species is
proportional to the product of their populations. The encounters tends to
promote the growth of the predator and to enhibit the growth of the prey.
Thus the growth rate of the prey is decreased by a term −αxy , while the
growth rate of the predator is increased by a term of the form γxy. α and γ
are positive constants. The prey equation can be interpreted as: the rate of
change of the prey’s population is determined by its own growth rate minus
the rate at which it is preyed upon.

While the predator equation can be interpreted as: the rate of change
of the predator’s population depends on the rate of predation of the prey
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CHAPTER 2. THEORY 7

minus its death rate. The predation rate is similiar between the two species,
but different constants are used. This shows that the rate of the population
growth of the predator is not always equal to the rate at which it consumes
its prey.

Before going into more detail about the predator-prey equations it is im-
portant to explain the basic theory of systems of first-order linear equations.
The predator-prey equations are nonlinear, but it will be apparent later that
first-order linear equations play an important role in solving systems of non-
linear differential equations.

2.2 Systems of first order linear equations

The general theory of a system of n first order linear equations

x′1 = p11(t)x1 + ...+ p1n(t)xn + g1(t) (2.4)

... (2.5)

x′n = pn1(t)x1 + ...+ pnn(t)xn + gn(t), (2.6)

closely parallels that of a single linear equation of nth order. We write the
system (2.5) in matrix notation to discuss it most effectively. That mean we
consider x1 = x1(t), ..., xn = xn(t) to be components of a vector x=x(t);Also,
g1(t), ..., gn(t) are components of a vector g(t), and p11(t), ..., pnn(t) are ele-
ments of an n*n matrix P(t). Then the equation (2.5) takes the form:

x′ = P (t)x+ g(t). (2.7)

This use of vectors and matrices saves a great deal of space and facilitates cal-
culations, but it also emphasizes the similarity between system of differential
equations and single(scalar) differential equations. ”A vector x = x(t) is a
solution to (2.7) if its components satisfy the system of equations(2.5)” Boyce
et al. (2017). It is appropriate to consider first the homogeneous equation

x′ = P (t)x, (2.8)

which is obtained from equation (2.7) be letting g(t) = 0. And just as in
single linear differential equation of any order, there are several different ways
to solve the non-homogeneous equation (2.7) once the homogeneous equation
has been solved. We use the notation

x1(t) =


x11(t)
x21(t)

...
xn1

 , . . . , xk(t) =


x1k(t)
x2k(t)

...
xnk(t)

 , (2.9)
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for specific solutions of the system (2.8). The structure of solutions of system
(2.8) are given in two theorems. The first one says:

Theorem 1. If x1 and x2 are vector functions that are solutions of the
system (2.8), then the linear combination c1x

1 + c2x
2 is also a solution for

any constants c1 and c2

This theorem is called the Principle of Superposition. The other theorem
transforms complex valued solutions into real valued:

Theorem 2. Consider the system (2.8) x′ = P (t)x, where every element of
P is a real valued continuous function. If x = u(t)+ iv(t) is a complex-valued
solution of equation (2.8), then its real part u(t) and its imaginary parts v(t)
are also solutions of this equation.

It is assumed that P and g are continuous on some interval α < t < β. By
using theorem 1 we can conclude that if x1, ..., xk are solutions of equation
2.8, x = c1x

1(t) + ... + ckx
k(t) is also a solution for any constants c1, ....ck.

This shows that every finite linear combination of solutions of equation (2.8)
is also a solution. A question that now arises is whether all solutions of
equation (2.8) can be found this way. It is reasonable to expect that for the
system (2.8) of n first-order differential equations it is sufficient to form linear
combinations of n properly chosen solutions. Let’s consider the matrix X(t)
whose columns are the vectors x1(t), ..., xn(t) and let x1, ..., xn be n solutions
of system (2.8). The matrix:

X(t) =


x11(t) · · ·x1n(t)

...
...

xn1(t) · · ·xnn(t)

 . (2.10)

The columns of X(t) are linearly independent for a given value of t if and
only if detX 6= 0 for that value of t. This determinant is called the Wron-
skian of the n solutions x1, ..., xn and could also be denoted by W [x1, ..., xn]:
W [x1, ..., xn](t) =detX(t). If and only if W [x1, ..., xn] is not zero at a point,
then the solutions x1, ..., xn are linearly independent at that point. This leads
to the following theorem:

Theorem 3. If the vector functions x1, ..., xn are linearly independent solu-
tions of the system (2.8) for each point in the interval α < t < β, then each
solution x=x(t) of the system (2.8) can be expressed as a linear combination
of x1, ..., xn

x(t) = c1x
1(t) + · · ·+ cnx

nt (2.11)

in exactly one way
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This means that all solutions of equation (2.8) can be written in the form
(2.11). It is also customary to call the equation (2.11) the general solution if
the constants are thought of as arbitrary because then it includes all solutions
of the system (2.8). Any set of solutions x1, ..., xn of equation (2.8) that is
linearly independent at each point in the interval α < t < β is called a
fundamental set of solutions for that interval. The next theorem provides us
with facts that saves a lot time and computation:

Theorem 4. If x1, ..., xn are solutions of equation (2.8) on the interval α <
t < β, then this interval W [x1, ..., xn] either is identically zero or else it never
vanishes.

This is Abel’s theorem and this means we do not need to evaluate the
Wronskian at every point in the interval α < t < β. It enables us to determine
if x1, ..., xn form a fundamental set of solutions by evaluating the Wronskian
at any point in the interval. The last theorem concerning the theory of
systems of first-order linear equations states that the system (2.8) always
has at least one fundamental set of solutions. The theorem is:

Theorem 5. Let

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , ..., e(n) =


0
0
...
0
1

 ; (2.12)

further, let x1, ..., x(n) be the solutions of the system (2.8) that satisfy the
initial conditions x1(t0) = e1, ..., x(n)(t0) = e(n) respectively, where t0 is any
point in α < t < β. Then x1, ..., x(n) form a fundamental set of solutions of
system (2.8).

The theory which has been described so far about systems of first order
linear equations is important in solving homogeneous linear systems with
constant coefficients. That is the systems of the form

x′ = Ax, (2.13)

where A is a constant n × n matrix. The theory behind solving these ho-
mogeneous linear systems is important in understanding the Lotka-Volterra
equations. When n = 0, the system reduces to a single first-order equation

dx

dt
= ax, (2.14)
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this solution is x(t) = ceat. x=0 is the only critical point when a6=0. Critical
points are of special importance and that is when the right hand side of equa-
tion (2.14) is equal to zero. These points correspond to constant solutions, or
equilibrium solutions of equation (2.14) and are often called critical points.
For system (2.13), points where Ax = 0 correspond to equilibrium solutions
and they are again called critical points. We often assume that detA 6= 0,
so x = 0 is the only equilibrium solution.

When A is a 2× 2 constant matrix and x is a 2× 1 vector, we can solve
the system (2.13) by seeking solutions of the form

x = ξert, (2.15)

where the exponent r and the vector ξ are to be determined. Substituting
the equation (2.15) for x in the system (2.13) gives

rξert = Aξert. (2.16)

Canceling ert we obtain
(A− rI)ξ = 0, (2.17)

Where I is the n×n identity matrix. Then to solve the system of differential
equations (2.13), we must solve the system of equations (2.17). When we
solve this, we determine the eigenvalues and eigenvectors of the matrix A. The
vector x given by equation (2.15) is a solution to (2.13) if r is an eigenvalue
and ξ an associated eigenvector of the coefficient matrix A. The nature of
the eigenvalues and the corresponding eigenvectors determines the nature of
the general solution of the system (2.13).

The following possibilities for the eigenvalues of A are: 1. All eigenval-
ues are real and different from each other. 2. Some eigenvalues occur in
complex conjugate pairs. 3. Some eigenvalues, either real or complex, are
repeated. We will see later that in our case of the predator-prey equations, it
is eigenvalues that are real and different, and eigenvalues in complex conju-
gate pairs that are relevant. The corresponding solutions to the differential
system (2.13) if the n eigenvalues are all real and different are

x1(t) = ξer1t, ..., xn(t) = ξnernt. (2.18)

And the general solution of equation (2.13) is

x = c1ξe
r1t + · · ·+ cnξ

(n)ernt. (2.19)

If A is real and symmetric, then all the eigenvalues r1, ..., rn must be real.
And solutions arising from complex eigenvalues are complex-valued. If A is
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complex, the complex eigenvalues need not occur in conjugate pars, and the
eigenvectors are often complex-valued even though the associated eigenvalue
may be real-valued. In general though, if A is complex, then all the solutions
are complex valued and the general solutions of the differential equation
(2.13) are of the form (2.18).

2.3 The phase plane

When A is a 2×2 constant matrix and x is a 2×1 vector, it can be visualized
in the x1x2 plane. This is called a phase plane. If we evaluate Ax at a large
number of points and plotting the resulting vectors, we obtain a direction
field of tangent vectors to solutions of the system of differential equations.
We could obtain a qualitative understanding of the behavior of solutions
from a direction field. However, a more precise information can be obtain by
including some solution curves, or trajectories.

Solution of equation (2.13) is a vector function x = x(t) that satisfy the
differential equation. This function can be viewed as a parametric represen-
tation for a curve in the x1x2-plane. This curve is useful to regard as the
trajectory, whose velocity dx

dt
is specified by the differential equation. The

representative set of trajectories is referred to as a phase portrait. In ana-
lyzing the system (2.13), we characterize the differential equation according
to the geometric pattern formed by its trajectories in the phase portrait.
These trajectories vary depending on the nature of the eigenvalues of A. The
trajectories are the basic ingredients of the qualitative theory of linear and
nonlinear differential equations. These qualitative methods can be applied
to more difficult nonlinear systems which is important in the predator-prey
equations.

The behaviour of the trajectories for the first case which we are going
to analyze are when the eigenvalues are real and have opposite sign. The
second case is when the eigenvalues are pure imaginary.

2.3.1 Real Eigenvalues of Opposite Sign

In this case, the general solution of equation (2.13) is

x = c1ξ
(1)er1t + c2ξ

(2)er2t, (2.20)

where r1 > 0 and r2 < 0. If a solution starts at an initial point on the
line trough the eigenvector ξ(1), then c=0. Now the solution stays on the
line trough ξ(1) for all t, and since r1 > 0, x → ∞ as t → ∞. However if
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a solution starts at an initial point on the line trough ξ(2), then it always
remains on that line and x→ 0 as t→∞ because r2 < 0.

For solutions starting on other initial points,they approach infinity asymp-
totic to the line determined by the eigenvector ξ(1) corresponding to the pos-
itive eigenvalue r1. That is because the positive exponential in the equation
(2.20) is the dominant term for large t. As Boyce writes (Boyce et al., 2017,
p.388), the only solutions approaching the critical point at the origin are
those that start precisely on the line determined by ξ(2). For large negative
t, it is the negative exponential which is dominant. A typical solution is
asymptotic to the line trough the eigenvector ξ(2) as t → −∞. The excep-
tions are the solutions that lie exactly on the line trought the eigenvector
ξ(1). These solutions approach the origin as t→∞. These characteristics of
the critical point is called a saddle point in this case. This point is unstable.

2.3.2 Pure Imaginary Eigenvalues

In this case the eigenvalues are λ − iµ and λ + iµ, but λ = 0. This reduces
the eigenvalues to iµ and −iµ and the system

x′ =

(
λ µ
−µ λ

)
x (2.21)

reduces to

x′ =

(
0 µ
−µ 0

)
x. (2.22)

The trajectories in this case are circles with center at the origin and are
traversed clockwise if µ > 0 and counterclockwise if µ < 0. A complete
circuit about the origin is made in a time interval of length 2π/µ and then
all solutions are periodic with period 2π/µ. The critical point is called a
center. It is possible to show that, in general, the trajectories are ellipses
centered at the origin when the eigenvalues are pure imaginary. The critical
point is stable.

2.4 Stability and Instability

Before going into the theory of using the characteristics of an appropriate
linear system to approximate a nonlinear system, we are going to define
stability and instability. The importance of critical points are also going to
be discussed.

The system x′ = Ax where A is a 2× 2 matrix is a two-dimensional au-
tonomous system if the elements of the coefficient matrix A are not a function
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of the independent variable t. To give a precise mathematical definition of
stability and instability, we are going to be using the autonomous system of
the form

x′ = f(x). (2.23)

We are using the notation |x| to designate the magnitude of the vector x.
Points, if any, where f(x)=0 are called critical points of the autonomous sys-
tem (2.23). As we have seen before at such points, x′ = 0 also, so critical
points correspond to constant, or equilibrium solutions of the system of dif-
ferential equations. As Boyce writes (Boyce et al., 2017, p.397), a critical
point x0 of the system (2.23) is said to be stable if, given any ε > 0, there is
a δ > 0 such that every solution x = x(t) of the system

dx

dt
= F (x, y)

dy

dt
= G(x, y), (2.24)

which at t = 0 satisfies
|x(0)− x0| < δ (2.25)

both exists for all positive t and satisfies

|x(t)− x0| < ε, (2.26)

for all t ≥ 0. These mathematical statements say that all solutions that start
”sufficiently close” (within the distance of δ) to x0 stay ”close” (within the
distance of ε) to x0. A critical point that is not stable is said to be unstable.
There is also a condition where a critical point x0 is said to be asymptotically
stable. However, this is not relevant in our predator-prey equations.

Now let’s look at an example. In this example we are going to draw di-
rection fields and sketch trajectories corresponding to the solution satisfying
the specified initial conditions. It is a two-dimensional autonomous system
which is going to be solved:

dx

dt
= F (x, y),

dy

dt
= G(x, y); x(0) = 4, y(0) = 2. (2.27)

We are also going to indicate the direction of motion for increasing t. The
two-dimensional autonomous system are dx

dt
= −x and dy

dt
= −3y. The first

thing we have to do is finding the critical points. We do this by setting
dx
dy

= 0 and dy
dt

= 0. This leads to −x = 0 and −3y = 0. The only solution

is therefore x = 0 and y = 0 and the only critical point is (0,0). Solving
the initial condition for x, dx

dt
= −x x(0) = 4 gives → x = 4e−t. Doing

the same for y, dy
dt

= −3y y(0) = 2 gives → y = 2e−3t. Here we get a
situation we have not looked at. The eigenvalues are real and unequal of the
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Figure 2.1: Direction fields and trajectory to system (2.28)

same sign. r1 and r2 are both negative and this case all solutions approach
the critical point at the origin as t→∞. The last thing is to determine the
trajectories. The trajectories of the system (2.27) can sometimes be found

by solving a related first-order differential equation. By setting dy
dx

= G(x,y)
F (x,y)

which is a first-order differential equation in the variables x and y. In our
case this gives

dy

dx
= 3y/x, x(0) = 4, y(0) = 2. (2.28)

This leads to y = x3/32. This equation is an equation for the family of
trajectories of the system (2.28). Since the eigenvalues are negative, real and
unequal, the critical point is asymptotically stable. Then the trajectory we
have found is said to be attracted by the critical point. This is because a
point P in the xy-plane that the trajectory is passing trough approaches the
critical point as t → ∞. The set of all such points P is called the region of
asymptotic stability of the critical point. Now the figure 2.1 shows that all
solutions approach the critical point (0,0) as t → 0. The critical point is a
node and we naturally also see that the trajectory which correspond to our
initial condition also approaches the critical point. If we had zoomed in on
the critical point, we would have seen that the direction field and pattern
of trajectories would have resembled those for a linear system with constant
coefficients. It exists visual evidence that a nonlinear system behaves very
much like a linear system, at least in the neighborhood of a critical point.

For linear homogeneous systems with constant coefficients, x′ = Ax, the
nature of the critical point at the origin determines to a large extent the
behaviour of the trajectories throughout the xy-plane. For predator-prey
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equations this is no longer true. This is because they are nonlinear au-
tonomous systems. That means that there may be several critical points
that are competing, for influence on the trajectories. Furthermore, the non-
linearities in the system are of great importance, especially far away from
the critical points. But critical points of nonlinear autonomous systems can
be classified just as for linear systems. It is also a fact as we have discussed
that nonlinear system behaves very much like a linear system, at least in the
neighborhood of a critical point. This will be the next topic of discussion
and is important in our understanding of the predator-prey equations.

2.5 Locally Linear Systems

An important theorem which can be derived from the definition of instability,
stability and asymptotically stability from the system (2.13) is:

Theorem 6. The critical point x=0 of the linear system (2.13) 1. is asymp-
totically stable if the eigenvalues r1, r2 are real and negative or have negative
real part. 2. is stable, but not asymptotically stable, if r1, r2 are pure imag-
inary; and 3. is unstable if r1, r2 are real and either is positive, or if they
have positive real part.

This theorem shows that it is the eigenvalues r1 and r2 of the coefficient
matrix A that determines the type of critical point at x = 0 and its stability
characteristics. The eigenvalues of the system (2.13) depends on the coeffi-
cients in the system (2.13). If a such a system arises in some applied field,
the coefficients comes from the measurements of certain physical quantities.
These measurements contains uncertainties, so it is of interest to investigate
whether small changes (perturbations) in the coefficients can affect the sta-
bility or instability of a critical point and/or significantly alter the pattern of
trajectories. It is possible to show that small perturbations in some or all of
the coefficients are reflected in small perturbations in the eigenvalues. This
will not be shown in this thesis.

To sum it up simply, it is only two cases which small perturbations in the
coefficients change the stability or instability and/or type of critical point.
The first case is the most sensitive one and that is when r1 = iµ and r2 = −iµ.
In this case the trajectories almost always change from ellipses to spirals. The
system is asymptotically stable if λ′ < 0, but unstable if λ′ > 0. In this case,
small perturbations in the coefficients may well change a stable system into
an unstable one and may be expected to change the trajectories from ellipses
to spirals. The second case is when r1 and r2 are equal. If the separated roots
are real, then the critical point is an node and it remains a node. But if the
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separated roots are complex conjugates, the the critical point changes to a
spiral point. The stability of the system in this case is not affected by small
perturbations in the coefficients. In all other cases, the stability or instability
of the system is not changed, nor the critical point, by small perturbations
in the coefficients of the system.

2.6 Linear Approximations to Nonlinear Sys-

tems

Lets consider a nonlinear autonomous two-dimensional system

x′ = f(x). (2.29)

The main object in this section is to investigate the behaviour of trajectories
of the system (2.29) near a critical point x0. From earlier we stated that
the pattern of trajectories of a nonlinear system close to a critical point
resembled the pattern of trajectories of a certain linear system. This suggests
that near a critical point we may able to approximate the nonlinear system
(2.29) by an appropriate linear system. This is important in our solving of
predator-prey equations. The crucial point is whether and how we can find
an approximating linear system whose trajectories closely match those of the
nonlinear system near the critical point. It is convenient to choose the critical
point to be the origin.

First, we consider what it means for a nonlinear system (2.29) to be
”close” to linear system (2.13). Suppose that

x′ = Ax+ g(x), (2.30)

and that x=0 is an isolated critical point of the system (2.29). This means
that there is some circle about the origin within which there are no other
critical points. Furthermore, we assume that detA 6= 0, so that x=0 is also
an isolated critical point of the linear system x′ = Ax. For the nonlinear
system (2.30) to be close to the linear system x′ = Ax, we assume that g(x)
is small. We assume that the components of g have continuous first partial
derivatives and satisfy the limit condition

|g(x)|
|x|

→ 0 as x→ 0; (2.31)

which is, |g(x)| is small in comparison to |x| itself near the origin. This system
is called a locally linear system in the neighborhood of the critical point x=0.
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As Boyce points out in the book, it may be helpful to express the condition
(2.31) in scalar form using polar coordinates. After some computation it
follows that condition (2.31) is satisfied if and only if

g1(rcosθ, rsinθ)

r
→ 0,

g2(rcosθ, rsinθ)

r
→ 0 as r → 0 for all 0 ≤ θ ≤ 2π.

(2.32)
Now let’s look at the general nonlinear system (2.29), which we write in
scalar form

x′ = F (x, y), y′ = G(x, y); (2.33)

That is, x = (x, y)T and f(x) = (F (x, y), G(x, y))T . Boyce writes an impor-
tant theorem concerning the system (2.33) which is:

Theorem 7. The system (2.33) is locally linear in the neighborhood of a
critical point (x0, y0) whenever the functions F and G have continuous partial
derivatives up to order two.

This theorem means that if the functions F and G are twice differentiable,
then the system (2.33) is locally linear. It also means that the linear system
that approximates the nonlinear system (2.33) near the critical point (x0, y0)
is given by:

d

dt

(
u1
u2

)
=

(
Fx(x0, y0) Fy(x0, y0)
Gx(x0, y0) Gy(x0, y0)

)(
u1
u2

)
, (2.34)

where u1 = x−x0 and u2 = y−y0. Equation (2.34) gives a simple and general
method for finding the linear system corresponding to a locally linear system
near a given critical point. The matrix

J = J [F,G](x, y) =

(
Fx(x, y) Fy(x, y)
Gx(x, y) Gy(x, y)

)
, (2.35)

which appears as the coefficient matrix in equation (2.34), is called the Jaco-
bian matrix of the functions F and G with respect to x and y. It is assumed
that det J is not zero at (x0, y0) so that this point is also an isolated critical
point of the linear system (2.34).

Now lets return to the locally linear system (2.30). Since the nonlinear
term g(x) is small compared to the linear term Ax when x is small, it is
reasonable to hope that the trajectories of the linear system (2.13) are good
approximations to those of the nonlinear system (2.30), at minimum near
the origin. This is true in many, but not all cases as Boyce points out in a
theorem:
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Theorem 8. Let r1 and r2 be the eigenvalues of the linear system (2.13),
x′ = Ax, corresponding to the locally linear system (2.30). Then the type and
stability of the critical point (0,0) of the linear system (2.13) and the locally
linear system (2.30) are as shown in a table.

The table is not going to be written in this thesis, because not all of these
linear systems are relevant to our predator-prey equations. The nonlinear
terms are small and do not effect the stability and type of critical point as
determined by the the linear terms, except for two cases. On of these cases
are relevant in our case and that is when r1 and r2 are pure imaginary. Then
the small nonlinear term may change the stable center into a spiral point,
which may be either asymptotically stable or unstable. It is reasonable to
suspect that the small nonlinear term in equation (2.30) might have similar
effect in this case. This is so, and that also includes when the eigenvalues
are real, equal and positive or real, equal and negative. But theorem 8 tells
us that in all other cases the small nonlinear term does not alter the type or
stability of the critical point. The second case in our predator-prey equations
are when the eigenvalues are real, unequal and have opposite signs. Then
the linear system is the same as the locally linear system.

The essential understanding from this discussion is this: Except in two
sensitive cases, the type and stability of the critical point of the nonlinear
system (2.30) can be determined from a study of the much simpler linear
system x′ = Ax.

In the next part, a study of two examples of the predator-prey equations
are going to be shown. In solving these equations, we are going to be using
the theory which has been covered so far.



Chapter 3

The predator-prey equations

3.1 The first example

In the first example of the predator prey equations, the system which is going
to be analysed is given by

F =
dx

dt
= x(2− 0.5y), G =

dy

dt
= y(−0.5 + x). (3.1)

From the general equations of the predator-prey equations,

dx

dt
= ax− αxy = x(a− αy),

dy

dt
= −cy + γxy = y(−c+ γx) (3.2)

we see that a = 2 and α = 0.5 for dx
dt

and c = 0.5 and γ = 1 for dy
dt

. The first
step in our analysis of this system is drawing a direction field in Mathematica.
From the figure (3.1), it looks like the trajectories encircle the point (1/2, 4).
Whether the trajectories are indeed closed curves, or whether they slowly
spiral in or out, cannot be determined from the direction field. The origin
looks like to be a saddle point.

The next step in the analysis is finding the critical points of the system.
The critical points of this system are the solutions of the algebraic equations:

x(2− 0.5y) = 0, y(−0.5 + x) = 0. (3.3)

If we assume x = 0, then y also have to be zero because we get the equation
−0.5y = 0. So the first critical point is the origin (0, 0). The second critical
point can be solved by solving the equation inside the parentheses. This
leads to:

2− 0.5y = 0 → y = 4.− 0.5 + x = 0 → x = 0.5. (3.4)

19
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Figure 3.1: Direction field for system (3.1)
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The critical points are therefore (0, 0) and (0.5, 4). The next step is finding
a corresponding linear system for each critical point. We need to find the
eigenvalues and eigenvectors of this linear system and classify each critical
point as to type. The critical points stability are also going to be determined.
To find the linear system, we need to examine the local behavior of solutions
near each critical point. Let’s start with the origin. Let’s use the Jacobian
matrix J for the system (3.1):

J =

(
Fx(x, y) Fy(x, y)
Gx(x, y) Gy(x, y)

)
=

(
2− 0.5y −0.5x

y −0.5 + x

)
(3.5)

For (0, 0) we obtain the corresponding linear system

d

dt

(
x
y

)
=

(
2 0
0 −0.5

)(
x
y

)
(3.6)

Finding the eigenvalues leads to:

d

dt
=

(
2− r 0

0 −0.5− r

)
(3.7)

This gives (2 − r)(−0.5 − r) = 0 → r1 = 2 and r2 = −0.5. Then the
eigenvectors are

ξ1 =

(
0
1

)
, ξ2 =

(
1
0

)
. (3.8)

The general solution is(
x
y

)
= c1

(
0
1

)
e2t + c2

(
1
0

)
e−0.5t. (3.9)

Since the eigenvalues are real and have opposite signs, the origin is a saddle
point both of the linear system (3.6) and of the nonlinear system (3.1) and
is unstable. As we can see from the figure (3.1), one trajectory enters the
origin along the y-axis(not every point in y) and all other trajectories depart
from the neighborhood of the origin.

Now let’s find the linear system for the critical point (0.5, 4). We use the
Jacobian matrix again

J =

(
Fx(x, y) Fy(x, y)
Gx(x, y) Gy(x, y)

)
=

(
2− 0.5y −0.5x

y −0.5 + x

)
. (3.10)

For (0.5, 4) we obtain the linear system

d

dt

(
u
v

)
=

(
0 −0.25
4 0

)(
u
v

)
(3.11)
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This leads to the eigenvalues r1 = i and r2 = −i. This system gives

d

dt
u = −0.25v,

d

dt
v = 4u. (3.12)

The eigenvectors then becomes

ξ1 =

(
i/4
1

)
, ξ2 =

(
−i/4

1

)
(3.13)

Since the eigenvalues are pure imaginary, the critical point (0.5, 4) is a stable
center for the linear system. But now we have a situation where the behaviour
of the linear system may, or may not carry over to the nonlinear system. So
the behaviour of the point (0.5, 4) for the nonlinear system (3.1) can not
be determined from this information. To find the trajectories for the linear
system (3.11) we can divide the second of equations (3.12) by the first to
obtain the differential equation

dv

du
=
dv/dt

du/dt
=

4u

−0.25v
= −16u/v. (3.14)

This can be written as 16udu+ dvv = 0 and this gives

8u2 + 1/2v2 = k (3.15)

Here is k a nonnegative constant of intergration. The trajectories of the linear
system (3.11) are ellipses centered at the critical point and is elongated in
the vertical direction.

Let’s return to the nonlinear system (3.1). Dividing the second of equa-
tions (3.1) by the first, we get

y(−0.5 + x)

x(2− 0.5y)
=
dy

dx
. (3.16)

This becomes a separable equation and this leads to

2 ln y − 0.5y + 0.5 lnx− x = C. (3.17)

This can be shown for a fixed C that the graph is a closed curve surrounding
the critical point (0.5,4). The critical point is also a center for the nonlinear
system (3.1) and the predator and prey populations exhibit a cyclic variation.
Now we can draw some trajectories for the system (3.1) by using the solution
(3.17). We see from the figure (3.2) that when t goes to infinity and y = 0
then x will go to infinity. This was expected from our previous calculations.
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Figure 3.2: Trajectories for system (3.1)
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When both y > 0 and x > 0 then some trajectories are almost elliptical in
shape, but is elongated in the vertical direction. x and y are periodic function
of t and they must be since the trajectories are closed curves. For other
initial condition, the behaviour of the trajectories differ from ellipses. The
oscillation of the predator lags behind of the prey. In the biggest trajectory
in the figure (3.2), we begin with both of the prey and predator population as
pretty small. We see from the figure that the prey first increase because there
is little predation. After a while, the predator population increase because
of a bigger food supply. This decreases the prey population as we see in the
figure. With less abundant of prey, the predator population decrease again
and the system returns to its original state. Then the trajectory begins to
repeat itself.

3.2 The second example

The second example is characterized by these equations:

F =
dx

dt
= x(1− 0.5y), G =

dy

dt
= y(−0.25 + 0.5x) (3.18)

By using the general equations given by (3.2). we see that a = 2 and α = 0.5
for dx

dt
. While c = 0.25 and γ = 0.5 for dy

dt
. Now we draw a direction field for

this system just like we did in the first example. The next step is trying to
analyse how solutions seems to behave in this direction field. The origin looks
like a saddle point. While the point (0.5, 2) looks to be a center. However,
just as in the first example, we can not determine this for certain by only
looking at the direction field.

Let’s find the critical points of the system. We see that the point (0,0)
is a critical point. If x = 0 then y have to be zero. The next one we find by
solving both of the parentheses of system (3.18). 1− 0.5y = 0→ y = 2 and
−0.25 + 0.5x = 0→ x = 0.5. The critical points are (0, 0) and (0.5, 2). The
next step is finding a corresponding linear system and finding the eigenvalues
and eigenvectors of this linear system. After that we can classify the critical
points as to type and its stability. We go by the same method as we did in
the first example. Let’s use the Jacobian matrix for the two critical points:

J =

(
Fx(x, y) Fy(x, y)
Gx(x, y) Gy(x, y)

)
=

(
1− 0.5y −0.5x

0.5y −0.25 + 0.5x

)
(3.19)

For the point (0,0) we obtain

d

dt

(
x
y

)
=

(
1 0
0 −0.25

)(
x
y

)
(3.20)
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Figure 3.3: Direction field for system (3.18)
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Finding the eigenvalues leads to

d

dt
=

(
1− r 0

0 −0.25− r

)
(3.21)

This leads to (1− r)(−0.25− r) and eigenvalues are r1 = 1 and r2 = −0.25.
The eigenvectors are:

ξ1 =

(
0
1

)
, ξ2 =

(
1
0

)
(3.22)

The general solution for the origin is:(
x
y

)
= c1

(
0
1

)
et + c2

(
1
0

)
e−0.25t (3.23)

Since the eigenvalues are real, unequal and have opposite signs the origin is
a saddle point both for the linear system (3.20) and the nonlinear system
(3.18). The point is unstable. For the point (0.5, 2) we obtain the linear
system: (

x
y

)′
=

(
0 −0.25
1 0

)
(3.24)

Finding the eigenvalues leads to r2 + 0.25 = 0 which gives r1 = i/2 and
r2 = −i/2.

u = −1/4v, v′ = u (3.25)

The eigenvectors become

ξ1 =

(
−1
2i

)
, ξ2 =

(
−i/2

1

)
(3.26)

Both of the eigenvalues are pure imaginary so the point is a center for the
linear system (3.24). Since the eigenvalues are pure imaginary it is not certain
that the behaviour of the linear system carry over to the nonlinear system
(3.18). Let’s find the trajectories of the linear system (3.24) by dividing the
second equation by the first in system (3.25).

dv

du
=
dv/dt

du/dt
=

u

−1/4v
(3.27)

This can be written as dv0.25v = −duu → dv0.25v + duu = 0. This can
be written as 1/8v2 + 1/2u2 = k. Here is also k a nonnegative constant of
integration. The trajectories of the linear system (3.24) are ellipses centered
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at the critical point. Now let’s find the trajectories for the nonlinear system
(3.18). Dividing the second of equations (3.18) by the first, we obtain:

−0.25y + 0.5xy

x− 0.5xy
=
dy

dx
(3.28)

This leads to
ln y − 0.5y + 0.25 lnx− 0.5x = C (3.29)

Just like in the first example, this is a closed curve under a fixed C sur-
rounding the critical point (0.5, 2). The critical point is also a center for the
nonlinear system (3.18). Now we can draw trajectories for the system (3.18)
by using the equation (3.29). We see from the trajectories in figure (3.4) that
we get a similar pattern as in the first example. When there is no predator,
we see that the prey will grow indefinitely and will grow proportional to the
current population. For some initial conditions, the trajectories represent
small variations in x and y about the critical point and is almost elliptical in
shape. This is apparent near the critical point (0.5, 2).

For other initial conditions, the shape of the trajectories differ form an
ellipse. An example is the biggest trajectory in figure (3.4). The oscillation of
the predator population lags behind of the prey. In this trajectory, both the
prey and predator population starts relatively small. The prey start grow-
ing first because of little predation. Then the predator population increase
because there is an abundance of prey. This causes heavier predation and
the prey starts to decrease. Finally, with a less food supply, the predator
population also decreases and the system returns to its original state. And
from here the trajectory starts to repeat itself.

3.3 The general system

The predator-prey equations showed very similar traits in both of the exam-
ples. Both of the examples had one critical point which was a saddle point
in the origin and another one which was a center. The trajectories were also
very much a like. The general system (3.2) can be analyzed in exactly the
same as in the examples. The critical points of the system (3.2) are the
solutions of

x(a− αy) = 0, y(−c+ γx) = 0, (3.30)

that is the points (0, 0) and ( c
γ
, a
α

). Let’s first analyze the solutions of the
corresponding linear system near each critical point. In the neighborhood of
the origin, the corresponding linear system is

d

dt

(
x
y

)
=

(
a 0
0 −c

)(
x
y

)
(3.31)



CHAPTER 3. THE PREDATOR-PREY EQUATIONS 28

Figure 3.4: Some trajectories for the system (3.18)
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The eigenvalues and eigenvectors are

r1 = a, ξ1 =

(
1
0

)
; r2 = −c, ξ2 =

(
0
1

)
(3.32)

and so the general system becomes(
x
y

)
= c1

(
1
0

)
eat + c2

(
0
1

)
e−ct. (3.33)

Hence the origin is a saddle point and is unstable. This is true for the general
system (3.2). All trajectories depart from the neighborhood of the critical
point except along the positive y-axis. Along the positive y-axis trajectories
”move” towards the critical point. The next critical point is ( c

γ
, a
α

). The
Jacobian matrix is

J =

(
a− αy −αx
γy −c+ γx

)
(3.34)

Evaluating J at this point, we obtain the approximate linear system

d

dt

(
x
y

)
=

(
0 −αc

γ
γa
α

0

)(
u
v

)
. (3.35)

The eigenvalues of system (3.35) are r = ±
√
ac, so the critical point is a

stable center of the linear system. Just as in the examples, we can find the
trajectories of the system (3.35) by dividing the second of equations by the
first to obtain

dv

du
=

dv
dt
du
dt

= −
γa
α
u

αc
γ
v
, (3.36)

or can be written as
γ2audu+ α2cvdv = 0. (3.37)

This gives
γ2au2 + α2cv2 = k, (3.38)

where k is a nonnegative contant of integration. The trajectories are ellipses
in the linear system (3.35), just as in the two examples.

Now looking at the nonlinear system (3.2), it can be reduced to the single
equation

dy

dx
=
y(−c+ γx)

x(a− αy)
(3.39)

The equation (3.39) is separable and has the solution

a ln y − αy + c lnx− γx = C, (3.40)



CHAPTER 3. THE PREDATOR-PREY EQUATIONS 30

where C is a constant of integration. It is possible to show that for a fixed
C, the graph of equation (3.40) is a closed curve surrounding the critical
point ( c

γ
, a
α

). Thus this critical point is also a center for the general nonlinear

system (3.2).
We get the same critical points and general linear system for both the

examples and the general system.
The cyclic variations of predator and prey as predicted by equations (3.2)

has been observed in nature. One example is based on the records of the
Hudson’s Bay Company of Canada. This shows the abundance of lynx and
snowshoe hare, as indicated by the number of pelts turned in over the period
1845-1935. The records shows a distinct periodic variation with a period of
9 to 10 years. The peaks of abundance are followed by very rapid declines
and the peaks of abundance of the lynx and hare are out of phase, with that
of the hare preceding that of the lynx by a year or more.
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Conclusion

When Lotka wanted to bring mathematics into biology and Volterra wanted
to explain the observations of D’Ancona (see Introduction), they ultimately
developed a very important mathematical model. The product of their re-
search and study resulted into the predator-prey equations which is still being
taught to this day. As mentioned before, it is a rather simple model, but it
gave the basis for more complicated equations which describes situations
more precisely. It was one of the first mathematical models applied to ecol-
ogy and the model proved to be a useful teaching tool and a starting point
for more complex analysis.

As we saw in the examples, the behaviour of the predator-prey model’s
solutions as time passes by were depended on the initial conditions. When
there was no predator, we saw that the prey would grow at a rate propor-
tional to its current population. If there were no prey, then the predator
would die out. And one of the critical points were the origin which was an
unstable saddle point. For other initial conditions, some trajectories were al-
most elliptical in shape and this was apparent near the second critical point.
These trajectories were periodic functions of time, and they must be since the
trajectories were closed curves. For other initial conditions, the oscillations
in x and y were more pronounced and the pattern of the trajectories were
different from an ellipse. The trajectories near the second critical point were
cyclic where the predator lagged behind that of the prey. The predator also
lagged behind that of the prey when the trajectories were different from an
ellipse.

Criticisms of this model which I could not go into detail in this thesis
became apparent in the study of this model. One of these is the critical
point ( c

γ
, a
α

), since this point is a center, small perturbations of the predator-
prey equations may lead to solutions that are not periodic. This has led to
many attempts to replace the predator-prey equations by other systems that

31
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are less receptive to the effects of small perturbations. Another criticism is
that in the absence of the predator, the prey will grow without bound. This
can be fixed by allowing for the natural inhibiting effect that an increasing
population has on the growth rate of that population. If y = 0 in equations
(3.2), the first of equations can be modified so that it reduces to a logistic
equation for x.
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