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Abstract 
This collaboration bachelor thesis focuses on cancer and how the drug metformin might be a future 

cancer treatment as it interrupt the cells metabolism by inhibition of complex I of the respiratory 

chain and numerous studies have shown that it affect cancer cells in many beneficial ways.  

There are numerous publications available regarding metformin effect in cancer cells, and part of our 

bachelor thesis involved extracting data from 66 scientific articles where metformin was used and 

cells were tested for viability, oxygen consumption rates (OCR) and extracellular acidification rates 

(ECAR) and more, which we organized in a database. The database now includes information of 

which glucose concentration was used in cell growth media, metformin concentration, which cell 

lines were used, viability before and after metformin treatment, treatment time and the results of 

the XF seahorse analyzer; OCR and ECAR which are measurements of cell metabolism.  

The aim was to use these data to create a model, using machine learning, that could predict cell how 

different cells would respond to metformin (viability) based on their metabolic data. Furthermore, 

we used two pancreatic cancer cell lines, Panc-1 and MIA-Pa-Ca-2 in lab experiments to test their 

sensitivity to metformin treatment using two different cell viability assays. 

The two different pancreatic cancer cell lines, Panc-1 and MIA-Pa-Ca-2 was exposed to the biguanide 

drug metformin in three different concentrations. To be within the sensitivity of the assay, three cell 

viability assays was done in advance of the metformin experiment and showed that 10 000 cell/well 

was the best option. Both cell lines were seeded out as 10 000 cell/well on a 96-well plate before 

exposure to metformin. The cells were treated with three different metformin concentrations, 1 mM, 

5 mM and 10 mM respectively, and incubated for 24 hours and 48 hours.  

The results from the metformin treatment of the two cell lines showed that metformin does affect 

the cells as the cell viability decreased when the metformin concentration increased. The cells that 

was treated for 24 hours had much higher viability than those treated for 48 hours, so the most 

efficient treatment time was 48 hours. There were some deviations, especially for the Panc-1 cell 

line, but this was most likely due to errors done when preparing the plates. The MIA-Pa-Ca-2 cell line 

seemed to be more affected by 48 hours metformin treatment than Panc-1 cells, but the Panc-1 cells 

were more affected by 24 hours metformin treatment compared to MIA-Pa-Ca-2 cells based on 

results from this experiment.  

The machine learning part was not very successful as the model did not give good predictions 

compared to the result. These results might have been different if done by someone with more 

experience. Machine learning have great protentional for medical research.     
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1. Introduction  

1.1 Cancer  
Cancer is the name of a collection of diseases that occurs when cells undergo abnormal cell growth 

and proliferation and spread to surrounding tissues. Cancer is one of the leading causes of death by 

disease in the world, so trying to understand this disease is a large field in science. In recent decades, 

the understanding of cancer diseases has developed at an incredible pace (Nature 2021) and the 

development and discovery of new treatments is improving rapidly. Understanding our cell’s life 

cycle and metabolism is crucial for understanding the development of cancer. The cells in our bodies 

are highly complex and their life cycles involve numerous of regulations. When these regulations are 

disrupted, the normal cell processes break down and cancers may develop. Cancer is a genetic 

disease, changes and mutations in the cells genetics that controls certain functions, especially the 

cells life cycle, can cause cancer (National Cancer Institute 2021b).  

The etiology of cancer is still being researched, but carcinogens such as cigarettes or radiation are 

well known to trigger cancer development. Other factors that might cause cancers are viruses and 

other infections, alcohol, poor diet, and little activity. Since cancer is a genetic disease, it can also be 

inherited and thus make some individuals more prone to develop cancer. The disease occurs in all 

age groups, but aging is definitively a risk factor. The elderly population is at greater risk for 

developing the disease. Cancer cells can develop in any kinds of tissues in the body, but the most 

common cancers are lung, breast, and prostate cancer. There are many different cancer therapies 

available, the most common being surgery, radiation, and chemotherapy. Some also gets targeted 

therapy, immunotherapy (see figure 1.1) laser, hormonal therapy and others (MedlinePlus Medical 

Encyclopedia 2021). 

 

 

Figure 1.1: Cancer therapy approaches (Ecancer 2021) 

This figure shows the most innovative cancer therapies, different disciplines combined to get the most efficient 

and personalized therapy for the patient. These therapies are radiomics and pathomics, nanomedicine, 

extracellular vesicles, natural antioxidants, targeted therapy and immunotherapy, gene therapy, thermal and 

magnetic hyperthermia (Ecancer 2021). 
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In this project our focus will be on pancreatic cancer which is one of the deadliest types of cancer. 

This aggressive cancer has the highest mortality rate in developed countries. It is more common for 

patients over 60 to get this type of cancer than middle age patients. The median age are 73 years. 

(Sarnecka et al. 2016).  

Pancreatic cancer normally occurs for two reasons, environmental and genetic risk factors. The 

environmental can be smoking, diabetes, high fat consumption and alcohol abuse. Genetic risk 

factors can be age, family history, ethnicity and genetic factors. (Rawla et al. 2019).  

1.1.1 The pancreas and pancreatic cancer 
The pancreas lies behind the stomach in the upper abdomen. It looks like a 15 centimeters long pear 

on the side, the bigger part is called head, the middle part is called body and the thin last part is 

called tail (National Cancer Institute 2021a) 

The pancreas is a gland, and its two main functions are control energy consumption and metabolism. 

The organ has two parts, one part is the exocrine pancreas and the other is the endocrine islets. The 

exocrine pancreas is a reservoir of digestive enzymes and the endocrine islets are the source of the 

vital metabolic hormone insulin (Zhou and Melton 2018).  

The exocrine pancreas produces acinar cells and ductal cells. Acinar cells produce among other 

lipases, proteinases and amylases. These are secreted and transported to the intestine to break 

down fat, proteins and carbohydrates. 

The endocrine pancreas constitutes less than 5% of the whole pancreas. This endocrine part of the 

pancreas also has more than a billion cells, and the major cells that gets synthesized and secrets are 

insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. Insulin and glucagon are 

released directly into the blood system to regulate the blood glucose levels (Zhou and Melton 2018) 

There are two tumor types of pancreatic cancer that are the most common, it is adenocarcinoma 

who is in the exocrine part (around 85% of the cases) and pancreatic endocrine tumor (less than 5% 

of the cases) (Rawla et al. 2019). The endocrine tumors are called pancreatic neuroendocrine tumors. 

In this project there was studied two pancreatic cancer cell-lines. The first one is Panc-1 from a 56 

year old male, the growth properties were adherent. The other cell-line we used were MIA-Pa-Ca-2 

from a 65 year old Caucasian male, also here the growth properties was adherent. Both cell-lines 

were epithelial, see figure 1.2.   
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Figure 1.2: Location of pancreas in the abdomen (Medicalnewstoday 2020) and picture of two pancreatic cell 

lines 

This figure shows the location of the pancreas in the abdomen and microscope pictures of the two pancreatic 

cells lines Panc-1 (to the right) and Mia-Pa-Ca-2 (to the left). This pancreas is the pink colored organ in the 

figure (Medicalnewstoday 2020). 

 

1.1.2 Cancer metabolism  
Cancer cells alter their metabolism to grow and proliferate rapidly, so they need to utilize glucose for 

generation of adenosine tri phosphate (ATP) differently than normal healthy cells, a phenomenon 

known as the Warburg effect (Warburg et al. 1927). In this section we will describe the basics in how 

normal cells utilize glucose, and then see how cancer cells adapt and changes their metabolic activity 

to support anabolic growth.  

1.1.3 Normal cell metabolism 
Normally cells utilize glucose by cellular respiration, that can be divided into four main steps. That is 

glycolysis, pyruvate oxidation, the citric acid cycle (TCA-cycle) and oxidative phosphorylation. In 

glycolysis the six-carbon sugar glucose is converted into two molecules of pyruvate, a three-carbon 

molecule. Glycolysis requires energy in the form of two ATP, and it generates four ATP, giving a net 

production of two ATPs. Glycolysis also converts two molecules of oxidized nicotinamide adenine 

dinucleotide (NAD+) to Nicotinamide adenine dinucleotide (NADH). In the absence of oxygen, the 

pyruvates formed through glycolysis gets rerouted into a process called fermentation. This process 

requires more NAD+ to keep the glycolysis process going. Thus, fermentation frees up some of the 

NAD+, resulting in the product lactic acid. If oxygen is present, the two molecules of pyruvate 

produced in glycolysis goes into the mitochondrial matrix where its converted into a two-carbon 

molecule bound to Coenzyme A (acetyl CoA). Here carbon dioxide is released and NADH is also 

generated. In the citric acid cycle, the acetyl CoA created by pyruvate oxidation combines with a 

four-carbon molecule, and then it goes through a large series of reactions and ends up with 
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regenerating the four-carbon molecule the circle started with, which can enter a new cycle. This cycle 

of reactions produces ATP, NADH and reduced flavin adenine dinucleotide (FADH2) and releases 

carbon dioxide. The last step in cellular respiration is oxidative phosphorylation. This is where most 

of the ATP is produced. The NADH and FADH2 produced in the earlier steps now deposit their 

electrons into the electron transport chain, see figure 1.3. The electrons move down a chain of 

complexes, releasing energy which is used to pump protons out of the mitochondrial matrix, and into 

the intermembrane space, creating a gradient. The protons then flow back into the matrix through 

the enzyme ATP-synthase and ATP are produced. In the end of the chain, oxygen molecules accept 

the electrons and takes up protons forming water molecules. Oxidative phosphorylation produces up 

to 36 ATP molecules per glucose molecule (Khan Academy 2021).  

 

Figure 1.3: Normal cell metabolism (Khan Academy 2021) 

This figure shows the main basic steps of how normal cells utilize glucose for energy production through 
aerobic glycolysis, pyruvate oxidation, the TCA cycle and at last oxidative phosphorylation in the electron 
transport chain. In glycolysis the glucose molecule undergoes a series of chemical transformations and is 
converted into two molecules of pyruvate, this process requires ATP and produces ATP and NADH. The 
pyruvate is then oxidized in the mitochondrial matrix and converted into a two-carbon molecule bound to 
acetyl-CoA. CO2 is released and NADH is generated. In the citric acid cycle the acetyl-CoA is combined with a 
four-carbon molecule and undergo a series of reactions that regenerates the four-carbon molecule that can 
combine with a new acetyl-CoA and enter the cycle again. The TCA cycle produces ATP, NADH and FADH2 and 
CO2 is released. Oxidative phosphorylation in the last step in the series of reactions in cells utilization of 
glucose, and this is where the most ATPs are produced. It occurs in the inner membrane of the mitochondria. 
The NADH and the FADH2 releases electrons into the electron transport chain. As the electrons moves down 
the chain, energy is released and protons are pumped into the intermembrane space of the mitochondria, 
creating an electrochemical gradient between the mitochondria matrix and intermembrane space. The protons 
flow back into the matrix trough the enzyme ATP synthase, making ATP. At the end of the electron transport 
chain oxygen accepts electrons and take up protons to form H2O (Khan Academy 2021).   
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1.1.4 Cancer metabolism – the Warburg effect 
Cancer cells on the other hand alter their metabolism to proliferate rapidly. The common feature of 

cancer cells altered metabolism is the increased glucose uptake and fermentation of glucose to 

lactate, even if they have a fully functionating mitochondria and when oxygen is present. This 

phenomenon is known as the Warburg effect and was discovered by the Nobel prize winner Otto 

Warburg in the 1920s (Warburg et al. 1927). The question is, why do proliferating cells switch to a 

less efficient way to produce ATP? Compared to the amount of ATP generated through mitochondrial 

respiration, per unit glucose, aerobic glycolysis is inefficient, but the rate of glucose metabolism in 

aerobic glycolysis is higher. That is, production of lactate from glucose occurs 10-100 times faster 

than the complete oxidation of glucose in the mitochondria (Liberti and Locasale 2016). Hence, this 

way of producing ATP is comparable to complete oxidation of glucose in the mitochondria. A theory 

is that cells with a higher rate, but lower yield of ATP production might have selective advantages 

when competing for nutrients (Liberti and Locasale 2016). A study found that when changes to the 

cells environment were exposed to greatly increase in ATP demand by altering the demand of ATP-

dependent membrane pumps, aerobic glycolysis increased rapidly and oxidative phosphorylation 

remained constant (Liberti and Locasale 2016). This supports the supposed advantages of aerobic 

glycolysis in cancer cells. These metabolic alterations enable cancer cells to live in conditions of 

fluctuating oxygen tension that would be lethal for cells that rely on oxidative phosphorylation 

(Kroemer and Pouyssegur 2008).  

When cancer cells generate lactic acid through glycolysis, such acidic conditions change their 

environment, and thus favor tumor invasion and even suppresses anticancer immune effectors. 

Stromal cells can take up lactic acid produced by tumor cells which regenerate pyruvate that can be 

used to refuel cancer cells or can be used in oxidative phosphorylation (Kroemer and Pouyssegur 

2008). This generates a microecosystem where anaerobic and aerobic components engage in 

complementary metabolic pathways and recycles products of anaerobic metabolism. This sustains 

cancer cells survival and proliferation (Kroemer and Pouyssegur 2008). Tumors can also generate 

nicotinamide dinucleotide phosphate (NADPH) through the pentose phosphate pathway (PPP) by 

metabolizing glucose. NADPH ensures cells antioxidant defense and therefore protects the cells 

(Kroemer and Pouyssegur 2008). NADPH is also used for fatty acid synthesis (Kroemer and 

Pouyssegur 2008). Cancer cells use a large amount of glucose as a carbon source for anabolic 

reactions, and they can also use intermediates of the glycolytic pathway (Kroemer and Pouyssegur 

2008). All these alterations help cancer cells to survive and divide in nutrient deplete conditions and 

proliferate rapidly.  

Tumor mitochondria are usually relatively small, lack cristae and are deficient in the β-F1 unit of the 

ATP-synthase, which defects the oxidative phosphorylation and can help to explain the mechanisms 

of metabolic reprogramming of cancer cells (Kroemer and Pouyssegur 2008). However, the molecular 

mechanisms that underlie metabolic reprogramming of cancer cells are very complex. Mitochondria 

DNA (mtDNA) mutations might contribute to tumor progression or be a result of tumor progression. 

Expression on mutant mtDNA-encoded NADH dehydrogenase subunit 2 as a nuclear, mitochondria-

targeted gene product stimulates aerobic glycolysis, production on reactive oxygen species and 

tumor growth (Kroemer and Pouyssegur 2008). 
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Figure 1.4: Illustration of the Warburg effect (Zhang et al. 2015). 

This figure shows the prominent aspects of the Warburg effect like glycolysis, TCA cycle, lactate fermentation, 

glutamine metabolism, penthouse pyruvate pathway and the intermediates of the TCA cycle used to synthesize 

lipids, nucleotides and amino acids. The yellow boxes show pivotal metabolic pathways and the red circles 

illustrates the enzymes controlling key steps. Abbreviations: GLUTs: glucose transporters; MCT: 

monocarboxylate transporter; PDC: pyruvate dehydrogenase complex; PDKs: pyruvate dehydrogenase kinases; 

LDHA: lactate dehydrogenase A; HIF1: hypoxia inducible factor 1, IDH: isocitrate dehydrogenase; SDH: 

succinate dehydrogenase, FH: fumarate hydratase (Zhang et al. 2015). 

 

1.2 Metformin 
Metformin is a widely used biguanide drug used to treat type 2 diabetes due to its ability to decrease 

plasma glucose. It has been used for over 60 years, has few side effects and is considered safe, 

moreover it has relatively low cost. Discovery of the different effects of metformin have encouraged 

researchers to further study the drug, to see if it might have therapeutic effect on a variety of other 

diseases (Lv and Guo 2020). It is stated that metformin has shown benefits in diseases including 

cancers such as breast cancer, endometrial cancer, bone cancer, colorectal cancer and melanoma (Lv 

and Guo 2020). Metformin also showed benefits in diseases such as obesity, liver diseases, 

cardiovascular disease, renal disease and even in aging (Lv and Guo 2020).   

Metformin is a derivate of galegine which is a natural product from the plant Galega officinalis that 

have been used as an herbal medicine in medieval Europe. In the 1920s galegine was found to be a 

glucose-lowering agent but was also found to be toxic. In this period both Metformin and 

Phenformin were synthesized and tested, and in 1950 they were introduced to clinical use. Galegine 

is chemically an isoprenyl derivate of guanidine. Metformin and Phenformin are biguanides 

containing two coupled molecules of guanidine with additional substitutions, see figure 1.5 (Rena et 

al. 2017). 
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Studies show that physiologically, metformin reduce gluconeogenesis, but not all its effect can be 

explained by this (Rena et al. 2017). The findings are also dose and treatment time dependent, with 

differences between acute and chronic administration. At molecular levels, metformin act via both 

AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. It inhibits 

mitochondrial respiration, but it seems to also inhibit mitochondrial glycerophosphate 

dehydrogenase which is a mechanism involving the lysosomes (Rena et al. 2017). The effects of 

metformin are due to affecting different signaling pathways, however the underlying mechanisms is 

still not fully understood (Lv and Guo 2020).  

 

 

Figure 1.5: Chemical structure of metformin (PubChem 2021) 

This is a 2D figure of the chemical structure of the drug metformin. 

 

1.2.1 Metformin effect on cancer metabolism 
The hypothesis that biguanides could be used for disease treatment was raised when phenformin 

was introduced and used to treat type 2 diabetes (Saraei et al. 2019). Phenformin was later shown to 

be toxic. Further studies raised the question if these types of drugs could be used for cancer 

treatment. Due to the toxicity of phenformin, metformin was the best candidate for cancer 

treatment trials. Recent studies and analysis have shown that metformin can reduce the proliferation 

of cancer cells and that the possibility of malignancies in a variety of cancer types also reduces 

(Saraei et al. 2019). These types include cancers such as breast, colon, prostate and pancreas. It has 

also been shown that metformin can be a promising candidate in combination treatment, along with 

radiotherapy metformin reduced tumor growth in cancers such as ovarian and melanoma. (Saraei et 

al. 2019)  

One of the most intensively studied mitochondrial actions of metformin, which also is important for 

our study, is the inhibition of Complex I of the respiratory chain, see figure 1.6 (Rena et al. 2017). This 

suppresses ATP production from oxidative phosphorylation and affects the cells metabolism and 

triggers the cells adaptive energy-saving measures, involving downregulation of macromolecule 

synthesis. Mitochondrial inhibition also triggers the liver to compensate for the changes and lower 

the glucose release. This reduces the plasma glucose and insulin levels, as well as insulin-like growth 

factors and cytokines. These changes have shown to establish a less favorable environment for 

cancer cells and their proliferation. An important thing to notice is that these observations have not 
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only been seen in patients with diabetes, but it has also been observed in patients without diabetes 

(Rena et al. 2017).  

 

Figure 1.6: Metformin’s effect on cancer cells (Vial et al. 2019)  

This figure shows the mitochondria mechanisms of action of metformin. The drug is taken up by the cell, 

mostly through OCT1 in hepatocytes, and metformin’s primary target is the mitochondria, it exerts specific 

inhibition on complex 1 of the respiratory chain through interaction with the ND3 core subunit and 

mitochondrial glycerophosphate dehydrogenase. When complex 1 is inhibit the NADH oxidation, proton 

pumping across the mitochondrial membrane and oxygen consumption rate decreases. This results in a lower 

gradient across the membrane and reduces proton-driven ATP synthesis from inorganic phosphate and ADP. 

When the mitochondrial glycerophosphate dehydrogenase is inhibited it modulates cytosolic and 

mitochondrial redox state which increases cytosolic NADH, adenylate cyclase and fructose-1,6-bisphosphate 

(Vial et al. 2019). 

 

As mentioned earlier in this thesis, the exact mechanisms underlying the actions of metformin are 

still not clearly identified. The effect of the drug can vary due to the way it is used, if it is used alone 

or in a combination treatment with for example chemotherapeutic drugs, and the effect is also dose 

dependent (Chen et al. 2020). What we do know today is that a potent anticancer property of 

metformin is due to the activation of the LKB1-AMP-activated protein kinase (AMPK) signaling 

pathway. The drug increases the ratio of adenosine mono phosphate (AMP) to adenosine tri 

phosphate (ATP) by targeting complex I of the mitochondrial respiratory chain and thus activate the 

upstream kinase LKB1 that phosphorylates and activate AMPK. This activation can suppress 

mammalian target of rapamycin complex which are important in cell growth, proliferation and 

metabolism (Chen et al. 2020). Metformin can also inhibit complex I and mTORC1 activity in an 

AMPK-independent way, and metformin-induced activation of AMPK promotes PD-L1 

phosphorylation which results in endoplasmic reticulum-associated PD-L1 protein degradation, and 

thus allows an cytotoxic T-lymphocyte mediated tumor cell death (Chen et al. 2020).  

From the 2019 study by Saraei et al. there is listed a short brief of six effects of metformin based on 

various reputable published data and articles. See table 1.1 for effects (Saraei et al. 2019). Saraei et al 

also writes that metformin, due to all the benefits listed above, is an ideal candidate for cancer 

prevention, improvement in different treatments and preventing malignancy of tumors. 



16 
 

Table 1.1: the main effects of metformin on cancer cells (Saraei et al. 2019). 

This table lists up the beneficial effects of metformin on cancer cells. All the information was found in the 2019 

article by Saraei et al. 

 The effects of metformin 

1 Reduce the chance of cancer incidence 

2 Reduce mortality of different cancers 

3 When used in combination treatment with 
radiotherapy and chemotherapy, metformin 
increases the response 

4 Reduces tumor malignity 

5 Reduce likelihood for relapse 

6 Reduces the damaging effects of androgen 
derivatives (ADT) 

 

1.3 Database and Citavi 
Metformin’s effect on cancer cells have been researched for a long time, and there have been 

published numerous of scientific articles about the subject. This research holds valuable information 

for our research as well as for future studies. Extracting interesting data from different articles to 

make a database with important information was done by using a computer program named Citavi. 

66 different articles were chosen, all of them having a common denominator being metformin, 

cancer cells metabolism and the “seahorse XF analyzer”, which is an instrument used in measuring 

the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) in live cells. As 

these measurements gives a good indication of how metformin effects the cancer cells metabolism, 

these results were of interest. Other parameter such as glucose concentration, metformin 

concentration, treatment time, viability, cell line and normalization method (of the seahorse XF 

analyzer) was also collected. Machine learning was used to interpret this data. 

1.4 Seahorse XF 
Seahorse XF analyzer is an instrument used in measuring the oxygen consumption rate (OCR) and the 

extracellular acidification rate (ECAR) in live cells. The OCR and ECAR gives information about the 

metabolism in the cells. The OCR gives a measure of mitochondrial function and is a marker of factors 

triggering the switch from healthy oxidative phosphorylation to aerobic glycolysis in cancer cells. The 

ECAR determines glycolysis by measuring the extracellular acidification rate of surrounding tissues, 

the excretion of lactic acid after its conversion from pyruvate (Agilent 2020). 

1.4.1 Modulators in Seahorse XF analyzer 
To find the OCR the seahorse XF analyzer adds modulators of respiration into the wells to find out 

the key parameters of mitochondrial function. The modulators are Oligomycin, Carbonyl cyanid-4 

(trifluoromethoxy) phenylhydrazone (FCCP), Rotenone and Antimycin, see figure 1.7. 
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Figure 1.7: Seahorse XF cell mito stress test profile (Agilent 2020) 

This figure shows the expected oxygen consumption rate in pmol/min in the mitochondrial respiration when 

the modulators oligomycin, FCCP, Rotenone and antimycin A are added (Agilent 2020). 

 

The modulators who been adding are targeting the electron transport chain (ETC) in different ways. 

For example, Oligomycin inhibits complex 5 where ATP synthase is happening. FCCP are uncoupling 

the proton gradient generated by the mitochondrial membrane. The Rotenone are inhibiting the 

complex 1 by blocking the electron transfer from iron-sulfur centers in the complex (Heinz et al. 

2017). Antimycin blocking the passage of electrons from cytochrome b to cytochrome c, thereby it 

inhibits the electron flow true complex 3 (Maria Ahmad et al. 2020), see picture 1.8 for an overview.  

 

Figure 1.8: overview of the electron transport chain (Agilent 2020). 

All modulators from the seahorse XF cell Mito stress test and all complexes in ETC are shown, the signs show 

were the modulators are active and inhibit the complexes.  
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1.5 Machine learning  
Machine learning is an application of artificial intelligence with a primary aim of allowing the 

computer to learn automatically. It enables systems to learn and improve from previously 

experiences without being programmed (Expert.ai 2020). Machine learning holds a collection of 

data-analytical techniques with a purpose for building predictive models from multi-dimensional 

datasets. In medicine, machine learning is a growing field with many resources. It has the ability to 

deal with large and complex data which is often found within the medical field, and possibly is the 

future for biomedical research, personalized medicine, computer-aided diagnosis to significantly 

advanced global health care (Handelman et al. 2018). It is also becoming integral to modern 

biological research as it allows generation of models that learns from very large datasets and can 

make predictions based on these data. (Camacho et al. 2018).   

As mentioned, machine learning gives the computers the ability to learn without first being 

programmed. This is done by introducing algorithms that ingest input data, use computer analysis for 

predicting values within an acceptable range of accuracy, identifying patterns in the data and learn 

for previously experiences. The idea of using machines to elucidate patterns and conclusions that are 

very difficult to reach by conventional statistical methods and that needs to be done manually by 

human operators is extremely relevant for the future. With machine learning this process is 

semiautomated, the computer is provided data and creates complex analytical models using learning 

framework to optimize the accuracy of prediction. (Handelman et al. 2018). Machine learning is not 

very different from conventional statistics, it is based on or adopts statistical underpinnings to how it 

works, but if much more efficient. 

1.5.1 Machine learning basics 
The data used in a machine-learning algorithm typically consists of parameters called “features” and 

“labels” across a set of samples. Features stands for the measurements across all samples and can be 

raw data or be transformed mathematically. Labels stands for the outcome that the models aim to 

predict, the outcome of the model. Machine learning algorithms may also interpret datasets lacking 

labels, see figure 1.9. The general workflow in machine learning is to first process the input data, 

then learn and/or train the model using a set of mathematical formulas and statistics, and at last use 

the model to predict a label of interest. The learning process consists of finding the optimal 

parameters for the model that translates the features from the data to accurate predictions of the 

labels. These parameters are estimated through a series of back and forth steps. Frist estimation, 

then the performance is evaluated, and errors are corrected, and new estimations are made and 

evaluated again. This is the process referred to as “training”, and it will repeat until the model 

performance can’t be further improved, which is assessed my error minimization. When the 

parameters are optimized the model can be used to predict outcomes of the model using new data 

(Camacho et al. 2018), see figure 1.9.    
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Figure 1.9: Machine-learning used to interpret and analyze datasets to build models 

Example of how machine learning can be used to interpret data, here genes, proteins, and metabolites. The 
data consist of features that is measured over many samples and edges within networks. The machine-learning 
approach is selected based on properties of the data. If the data are unlabeled an unsupervised approach 
should be used, and if the data are labeled a supervised approach should be used and will generate a predictive 
model. After applying the most appropriate approach, the predictions made have to be validated. New data 
can be collected and used to refine the learned model and improve the performance (Camacho et al. 2018).        

 

1.6 Muse® Count & Viability kit (200X) 
To count and check the viability of the cells Muse® Count and viability kit (200X) were used. This 

machine finds viable cell count (cells/mL), total cell count (cell/mL) and precent viability of the 

sample. To do so the cell sample need to be mixed with Muse® Count & Viability reagent (200X) to 

get a DNA-binding dye in the reagent so it stains cells. Then it will be showing the result in a dotplot 

on the screen how much viable cells and non-viable cells it is. Another dye in the reagent are a 

membrane-permeant DNA staining dye that will stain all cells with a nucleus this will also be shown 

as a dotplot on the screen, see figure 1.10. This will discriminate cells from cells with a nucleus from 

non-nucleated cells and debri (Luminex Corporation 2020b). 

 

Figure 1.10: Illustration of the screen of the Muse count and viability machine (Luminex Corporation 2020a) 

an illustration of how the result can look like on screen on the Muse Count & Viability machine (Luminex 

Corporation 2020a). The red dots illustrate nucleated cells, live (on the left) and dead (on the right). The green 

area shows the percentage of alive cells. The grey area represents cell debris (Luminex Corporation 2020b).  
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This system is a high-performance cell analyzing using a microcapillary technology. It has laser-based 

fluorescence detection and each cell event can evaluate up to three cellular parameters, see figure 

1.11. (Luminex Corporation 2021). 

 

Figure 1.11: Illustration of how a cell samples viability is measured in the muse count and viability machine 

(Luminex Corporation 2020a) 

The cell sample is loaded in a small tube and inserted into the machine. A green diode laser is used for 

excitation and each cell event can evaluate up to three cellular parameters cell size, detection in red color and 

detection in yellow color channels (Luminex Corporation 2021).  

 

1.7 Aseptic cell culturing techniques 
In labs, cells are grown “in vitro”, which means they are grown outside a living organism. Cancer cells 

are typically grown in flasks with growth media containing important ingredients for their survival 

(see section 2). The cells are kept in an incubator at appropriate temperature, human cells at 37°C to 

mimic body temperature. To keep the cells alive and comfortable, one must provide constant 

nutrients, so the medium in the flasks are aspirated regularly and new media is added. The cells are 

also passaged when they approach a certain confluency to avoid competition for nutrients and 

unwanted signaling between the cells. When working on cells in the lab aseptic techniques are used 

to keep the cells free from pathogens and avoid any contamination. The cell lab should be clean and 

kept as sterile as possible. All work should be done in a sterile fume hood. In this project a “LAF 

cabinet” was used. This is a sterile fume hood that has a laminar air flow that protect the cells from 

the user. This cabinet is not connected to a special ventilator that protects user from toxins, but 

when working on cells this is not needed, except when toxins are used as well. This kind of cabinet is 

crucial for working in a complete sterile environment. When working on cells one should also use 

gloves, protection clothing and face mask. Disinfection in the form of ethanol can be used to sterilize 

surfaces and instruments and is widely used in aseptic cell culturing.  
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1.7.1 Phosphate-Buffered Saline (PBS), Trypsin and media  
Phosphate buffered saline (PBS) is used to wash the cells under passaging and is a non-toxic solution 
that prevents cells from shriveling or rupturing due to osmosis (Martin et al. 2006). In the culturing 
flasks cells adhere to the walls by proteins in the extracellular matrix. These proteins need to be 
digested by the enzyme trypsin before cell passage to break up adherent cells. Trypsin is a protease 
found in the digestive system of many vertebrates that hydrolyses proteins to polypeptides. The 
enzyme usually cuts the peptide chains in the carboxyl side in the amino acids’ arginine or lysine. The 
proenzyme for trypsin is secreted from the pancreas and is activated in the duodenum. Trypsin is due 
to its efficacy and low cost used in numerous biotechnological processes (Store medisinske leksikon 
2021). Under cell passaging the trypsin should not be let to digest for too long as this can result in 
damage to the cells. Therefore, inactivation of the enzyme after breaking up adherent cells is 
important. This can be done by fetal bovine serum which is a widely used serum in cell culture 
medium. In this experiment the serum was added to the medium used to contain cells in, that is 
described in the methods section. Fetal bovine serum contains anti-trypsin which is a substance that 
inactivates the trypsin and thus stop the digestion. L-glutamine and streptomycin was also added. L-
glutamine is an amino acid supplement added to support growth in a cell culture and streptomycin is 
an antibiotic that protects the cell culture from bacteria.   
 

1.8 Measuring cell viability 

1.8.1 AlamarBlue 
For over 50 years the reagent alamarBlue has been used for studies of cell viability and cytotoxicity in 

many different biological and environmental systems. The substance is widely used and generally its 

use has been applied to various aspects for monitoring cellular health, cell cycle, apoptosis, test 

compound toxicology in medicine, cytotoxicity and antimicrobial susceptibility testing (Rampersad 

2012). In this project the alamarBlue was used to measure cell viability before and after metformin 

treatment.   

The reagent can monitor the reducing environment of the living cell. Resazurin is the active reagent 

in alamarBlue and this is a water-soluble, non-toxic, stable in culture media and permeable through 

the cell membranes. This makes one able to continuous monitor the cells in the culture. Resazurin is 

a blue non-fluorescent dye that can be reduced to the pink colored, highly fluorescent resorufin, see 

figure 1.12. The reagent also acts as an intermediate electron acceptor in the electron transport 

chain without interfering with the normal functions of the chain. The indicator dye changes from the 

oxidized, non-fluorescent blue form to the reduced pink form when it accepts electrons. (Rampersad 

2012) 

Due to the changes of the resazurin from its oxidized to its reduced state, the reagent is very flexible 

when it comes to quantitative measurements as colorimetric and fluorometric readings, or 

qualitative as there is a visible change in color that indicates the presence of viable cells. The 

spectrometric absorbance can be taken at two wavelengths (570 nm and 600 nm or 540 nm and 630 

nm). The fluorescence signals can be measured at excitation wavelength at 530-560 nm and an 

emission wavelength at 590 nm. (Rampersad 2012)    

The culture media used in this kind of assay must be buffered as the optimal pH for the reagent is 

between 7.0 and 7.4. The optimal temperature for incubating the assay plate is 37°, and incubation 

should be done in the dark as alamarBlue is photosensitive. It is also important that the cell culture 

medium and all other reagents used in the assay does not interact with the assay chemistry. To avoid 

artifacts or false positive signals, the positive and negative controls should be empirically 

determined. The endpoint of the assay depends on which cell density was used. Cells in the assay 
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should be in exponential stage of growth and the medium should be synthetic and defined, but it 

have to allow sufficient growth so that inhibitory or stimulatory effects of compounds tested are not 

exaggerated or underestimated. (Rampersad 2012) 

For this project the alamarBlue assay was very useful for the viability assay as it is easy to use and 

gives good results. The viability in two different cell lines, Panc-1 and MIA-Pa-Ca-2, was measured 

before and after metformin treatment. This was done by measuring the fluorescence signal at 

excitation wavelength at 540-590 nm using a SpectraMax® Paradigm® Multi-Mode Microplate 

reader, see figure 1.12. 

 

 

Figure 1.12: AlamarBlue resazurin reduction and equipment for measuring cell viability (ABP Biosciences 

2021). 

This figure shows the chemical composition of resazurin which is active reagent in alamarBlue. This reagent 

acts as an intermediate electron acceptor in the electron transport chain without interfering with the normal 

functions of the chain. When Resazurin accepts electrons, it is reduced to the pink, highly fluorescent resorufin 

that can be detected by a machine that can detect fluorescence and absorbance. Cell cultures are typically 

seeded out on a plate containing wells shown in the figure. This plate can be inserted to the machine directly 

and shows the results on an external screen (ABP Biosciences 2021).  

 

1.8.2 CCK-8 
The CCK-8 cell counting kit utilizes Dojindo’s highly water-soulable tetrazolium salt and allows for 

very convenient assays. WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4- disulfophenyl)-

2H-tetrazolium, monosodium salt] produces a formazan dye which is very water-soluble and that in 

the presence of an electron mediator is reduced, see figure 1.13. It is nonradioactive and allows 

sensitive colorimetric assays for determination viable cells in cell proliferation and cytotoxicity 

assays. As shown in figure 1.13, WST8 is reduced by dehydrogenases in the cells and gives the orange 

colored product formazan. This product is soluble in the tissue culture medium. The number of viable 

cells is directly proportional to the amount of the formazan dye generated by dehydrogenases in 

cells.  
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Figure 1.13: CCK-8 cell viability kit (Phd 2016) 

The figure describes how the CCK-8 assay affect the cell and shows the chemical structure of the reagent 

before and after reduction. WST-8 (Dojindo’s highly water-soluble tetrazolium salt is reduced to a yellow-color 

formazan dye by dehydrogenase activities in the cells. This dye is soluble in the tissue culture media. The 

number of viable cells is directly proportional to the amount of formazan dye (Phd 2016).   

 

1.9 SpectraMax® Paradigm® Multi-mode Microplate reader 
To measure cell viability a multi-mode microplate reader was used which can read fluorescence or 

absorbance across different wavelengths. These instruments are equipped with a Xenon flash lamp 

that can excite the fluorophore resorufin to be read at the appropriate emission wavelength. For the 

resazurin alamarBlue the machine read at 540 nm through the well and adjusted for background 

using the reference wavelength of 590 nm. Fluorescence can be explained by the absorption of light 

energy and its transformation into emission light. The light that is emitted has longer wavelength and 

is lower in energy than the light which is coming in, that is why the emission light always is higher 

wavelength (BMGLabtech.com 2021b).  

When the machine measures the absorbance, it measures how much light is absorbed when the light 

goes through the sample. The machine quantifies the amount molecules in the solution which been 

absorbed of the light when the rest of the light hitting the detector on the other side 

(BMGLabtech.com 2021a). Formazan dye CCK-8 absorbance is read at wavelength 450 nm.  

1.10 Aim for this project  
In this collaboration bachelor thesis, we will focus on how understanding cancer cells metabolism can 

help us to develop better treatments for cancer patients. The understanding of how cancer cells 

reprogram and utilize glucose differently than normal cells is an important part of the development 

of new cancer treatments. Our main research is to study how the biguanide drug metformin can 

affect the metabolism in cancer cells, and therefore might be a future cancer treatment.  
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2. Materials and methods  

2.1 Materials 
All materials and chemicals used in this project were provided from associate professor Hanne 

Røland Hagland and her lab team. For clarity, everything is listed in tables, see table 2.1 and 2.2. 

Description of how the materials and chemicals was used will be in the coming section.   

 

Table 2.1: Table of all the chemicals used in this project 

This table lists chemicals with the corresponding producer/company and associated product number. 

Product Company Product number 

DMEM (Dulbecco’s Modified 
Eagle’s Media) without 
glucose, L-glutamine and 
sodium pyruvate 

Corning 17-207-CV 

Foetal bovine serum, heat 
inactivated, south American 
origin 

Biowest S181H-500 

Penicillin: Streptomycin 
solution 6,0/10,0 g/L 100X 

Biowest L0022-100 

Trypsin EDTA 1X Corning 25-053-Cl 

L-glutamine, 200mM Corning 25-005-Cl 

PBS tablet ThermoFisher 189112-014 

dH2O   

MIA-Pa-Ca-2  ECACC General Collection ECACC 85062806 

Panc-1  ATCC ATCC® CRL-1469 

AlamarBlue VWR MFCD00005036 

CCK-8 Tebu-bio CK04-05 

Metformin Alfa Aesar N27F021 

  

 

Table 2.2: Materials used in this project 

In this table the most important materials used in this project is listed. 

Sterile bench  Microscope 

Rack for tubes 96-wells plate  

50 mL tube T75 flasks 

15 mL tube  Water bath  

Eppendorf tube Incubator 

Automat pipette Fridge 

Pipettes for automat pipette  Freezer 

Pipette controller Aspiration-machine 

Serological pipettes Vortex mixer 
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2.2 Methods 

2.2.1 Metformin seahorse XF dataset 
In this project a dataset containing information on metformin effect on various cell lines was 

collected as mentions in section 1.3. The aim was to create a model that possible could help to 

predict the viability of the different cells when exposed to different concentrations and treatments 

times of metformin. This work was done in google collaborator and the coding library Pandas was 

used. The dataset was first uploaded here and then it was “cleaned”, which means rows in the 

dataset lacking very much information was removed. A decision tree regression model was used, and 

validation of the model was done by splitting the dataset intro a training set and a testing set. The 

training set was used to fit the model and the testing set was used as validation data. The model 

made in this project was far from precise in predicting outcomes, but was more of a training exercise 

for understanding how machine learning works, and see the possibilities of this kind of work when 

done correctly by someone with good skills in this subject.  

2.2.2 Media 
The composition of complete cell culture media used is listed in table 2.3. 

 

Table 2.3: All components to fix a DMEM complete media on a total volume of 562,22 mL, the result is a low 

glucose media (5 mM). 

Components Amount in mL  

Dulbecco’s Modified Eagle’s Media, without 
glucose, L-glutamine and sodium pyruvate) 

500 

Foetal bovine serum, heat inactivated, South 
American origin 

50 

Penicillin; Streptomycin solution 6,0/10,0 g/L 
100X 

5 

L-glutamine, 200 mM 5 

Glucose, 2,4 mM  2,22 

 

Foetal bovine serum is blood serum drawn from a bovine fetus and is one of the most used serum for 

growing cells in vitro in the lab, due to its high level of growth factors and low level of antibodies. 

This makes it usable for growing many different cell types. Penicillin is added to prevent bacterial 

growth in the cell culture, and glucose and glutamine are nutrients and amino acids the cells utilizes 

as an energy source and macromolecular synthesis respectively.  

2.2.3 Media replacement   
The cell media was changed every second day to ensure that the cells had enough nutrient. This was 

done in a sterile cabinet by aspirating the current medium and replacing it with 10 ml new DMEM 

complete medium pre-heated to 37°C.     

2.2.4 Cell passaging 
When the cell density in the culture flask (see figure 2.1) approach a certain confluency, they might 

start unwanted signaling that can interfere with experiments as well as stop growing and compete 

for space. The cells in this experiment was passaged routinely and the flasks the cells were contained 

in was changed once a week. 
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The cells were passaged when they approached 70-90% confluency. This was done in a sterile cabinet 

to avoid any contamination. All reagents and media used was heated to 37°C to match the 

temperature of the incubator the cells were contained in. The media in the flasks was aspirated and 

2 ml PBS was added for cleaning. The PBS was aspirated carefully to not harm the cells, and 1 ml of 

trypsin was added. The trypsin was let to react for a couple of minutes. A microscope was used to 

closely watch the trypsin work and to determine when it was time to stop the digesting by adding 4 

ml of complete DMEM media. The DMEM/trypsin mix was mixed using a pipette and then a volume 

of this was added to a new flask, or a certain volume was kept in the flask and the rest was removed, 

depending on the split ratio and if the cells needed a new flask. The flask was changed approximately 

1 time each week to keep a clean environment for the cells. At last, DMEM complete media was 

added to have a total volume of 10 ml in the flask.  

 

Figure 2.1: Cell culturing flask (Lifeline Cell Tech Team 2020). 

This figure shows a cell culturing flask like the ones used in this project and a pipette that can be used to add 

the DMEM media.  

 

2.2.5 Cell viability assay 
The alamarBlue cell viability assays were done in a sterile cabinet to avoid any contamination. In the 

first step the medium in the flask was aspirated and the cells were rinsed with 2 ml PBS. After 

removing the PBS, 1 ml of trypsin was added and let to work, time depending on cell line, but 

approximately 1-2 minutes. The process was closely watched using a microscope. When the trypsin 

had broken up adherent cells, 4 ml of DMEM complete media was added and the culture was mixed 

carefully with a pipette. The trypsin/DMEM mix was transferred to a 15 ml tube to keep the cells 

from adhering. The cell density was measured using Muse cell viability kit and if the density was low, 

the tube was centrifuged so dead cells and cell debris could be removed. After centrifugation the cell 

will appear as a pellet in the bottom of the tube, and thus the media containing dead cells and debris 

could be removed and new medium was added. The volume of new medium was calculated to adjust 

the cell concentration to 500 000 cell/ml, making the calculation for the dilutions used in the assay 

easier. Five dilutions were made, containing 10 000, 15 000, 20 000, 25 000 and 30 000, respectively, 

see figure 2.2. Three parallels of each dilution (10 µl) were seeded out on a 96 well plate. 110 µl PBS 

was seeded out in the remaining empty wells, except for the four outermost corners. The plate was 

left to incubate for 48 hours in a cell incubator at 37°C. 
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After incubation, 10 µl of 484 µM resazurin at 37°C was added to each of the three parallels of each 

dilution, mixing with the pipette or shaking the plate to mix the reagent with the cell cultures. 110 µl 

of a positive control containing autoclaved medium and resazurin was seeded out in the four empty 

outermost corners for the alamarBlue assay. The plate was left to incubate for 4 hours in the cell 

incubator at 37°C. After incubation the plate was read by a SpectraMax® Paradigm® Multi-Mode 

Microplate reader to measure the fluorescence at 540-590 nm and hence the cell concentration.  

Only alamarBlue assay was done for finding the cell density that showed the most accurate rising 

trend and should be used in the metformin experiment, both alamarBlue and CCK-8 assays was used 

in the metformin experiment. The CCK-8 assay is preformed the same way as the alamarBlue, except 

incubation time is two hours and one should measure the absorbance at 450 nm. 

 

 

Figure 2.2: Plate layout alamarBlue cell viability assay 

This figure shows the locations of the different concentrations of cell suspensions of three cell lines, only Mia-

Pa-Ca-2 and Panc-1 was used in this experiment. It also shows the four positive controls (it says medium not 

positive control, as the medium was seeded out first and then replaced with positive control) in the outermost 

corners and the rest filled with PBS. 

 

2.2.6 Muse® Count & Viability kit (200X) 
Before start 0.5 mL of cell sample were poured into an ependorftube. In a 1.5-mL microcentrifuge 

tube 10 µL of cell sample who were mixed by pipetting and 190 µL Muse® Count & Viability reagent 

were add, the dilutions factor was 20. The tube with both components were mixed well by vortexing 

so no purple color was left. The tube with sample was incubated in room temperature for 5 minutes 

before loading it into the instrument. All steps were shown at the screen on the instrument and the 

result were noted 
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2.3 Metformin trial 

2.3.1 Calculations  
The trial start with the calculations, all volumes were measured for three cell-lines whereas two were 

used in this trial. Metformin comes in powder form and was mixed with MQ-water to make the 250 

mM metformin stock. 

700 µL Metformin stock per cell-line:  

700 × 3 = 2100 𝜇𝐿 = 2,1 𝑚𝐿 

Two tests → 2,1 × 2 = 4,2 𝑚𝐿 

Metformin in grams:  

𝒏 = 𝑪 × 𝑽 

𝐶 = 250𝑚𝑀 = 0,250𝑀 

𝑉 = 4,2 𝑚𝐿 = 0,0042 𝐿 

𝑛 = 0,250 × 0,0042 = 0,00105 𝑚𝑜𝑙 

𝒎 = 𝒏 × 𝑴 

𝑛 = 0,00105 𝑚𝑜𝑙 

𝑀 = 129,16 𝑔/𝑚𝑜𝑙 

𝑚 = 0,00105 × 129,16 = 0,135618 𝑔𝑟𝑎𝑚 = 135,618 𝑚𝑔 

250 mM metformin in volume: 

𝑪𝟏 × 𝑽𝟏 = 𝑪𝟐 × 𝑽𝟐 

𝐶1 = 250 𝑚𝑀 

𝑉1 = 𝑋 

𝐶2 = 1, 5 𝑜𝑟 10 𝑚𝑀 

𝑉2 = 4200 𝜇𝐿 

 

𝑽𝟏 =
𝑪𝟐 × 𝑽𝟐

𝑪𝟏
 

𝑉10𝑚𝑀 =
10𝑚𝑀 × 4200 𝜇𝐿

250𝑚𝑀
= 168 𝜇𝐿 

𝑉5𝑚𝑀 =
5𝑚𝑀 × 4200 𝜇𝐿

250𝑚𝑀
= 84 𝜇𝐿 

𝑉1𝑚𝑀 =
1𝑚𝑀 × 4200 𝜇𝐿

250𝑚𝑀
= 16,8 𝜇𝐿 ≈ 20 𝜇𝐿 
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Table 2.3: Calculated values for making metformin/DMEM media solutions 

Metformin and media volumes for right concentrations, total volume 4200 µL.   

 Metformin in µL Complete media in µL 

10 mM 168 4032 

5 mM 84 4116 

1 mM 20 4180 

 

 

2.3.2 Preparation of plate 
The cells were measured using the MUSE count and viability kit (200X): depends on how much 

cells/mL it is, dilution after table 2.4 is needed.  

 

Table 2.4: Table of correct volumes of muse reagent contra cell suspension for measuring cell viability 

This table was collected from the website/protocol? of company that provides the muse count and viability 

machine and reagents. It shows what volume of the muse reagent to use for different concentrations of cell 

suspensions and what dilution factor this corresponds to (Luminex Corporation 2020a) 

Conc. Of orginal cell 
suspension 

Dilution factor Cell suspension 
volume 

Count and viability 
volume 

1 × 105 𝑡𝑜 1
× 106 𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 

10 25 µL 225 µL 

1 × 106 𝑡𝑜 1
× 107 𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 

20 10 µL 190 µL 

> 1 × 107  𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 40 10 µL 390 µL 

 

If the density in the sample is low, it is possible to centrifuge the tube. It helps to remove some of the 

dead cells and debris, also it decreases trypsin in the sample. After centrifuging most of the viable 

cells will appear as a pellet in the bottom of the tube, all media over this pellet was aspirated off and 

new fresh media was added before the pellet was resuspended.  

Total viable cells in original sample = X, to adjust the cell concentration to 500 000 cell/mL, Y = 

volume of medium to add in the tube: 

𝑋

500 000
= 𝑌 𝑚𝐿  

When the tube contains 500 000 cells/mL, 840 µL was added to a new tube and 3360 µL Complete 

media was added (total 4200 µL). The final concentration was 10 000 cells/100µL.  

100 µL will be seeded out in the colored wells on the plate, see figure 2.3.  
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Figure2.3: Figure of the plate layout of the 96-wells plate used in metformin experiment 

This figure shows the placement of the controls and the three different metformin treatments. 10 000 cells of 

the Panc-1 and MIA-Pa-Ca-2 cell lines (1 cell liner per plate) was seeded out in each of the colored wells in the 

figure. After letting the cells adhere, medium was aspirated and the different treatments of control with 

medium, control with media and MQ water and three different metformin concentrations in medium (1 mM, 5 

mM and 10 mM) was added. The plate was incubated for 24 or 48 hours. In the blue wells alamarBlue reagent 

was added and in the pink wells CCK-8 reagent was added before incubating and measuring fluorescence and 

absorbance. 

 

Controls 

Control with distillated water was made as the highest concentration of metformin, table 2.3 showed 

168 µL of distillated water and 4032 µL Complete media was mixed and added in the wells. Figure 

2.3 shows place in plate.  

Control was the cells who only been exposed to media, positive controls was autoclaved resazurin 

and in the empty cells around the occupied wells were filled with PBS. Figure 2.3 shows place in 

plate.  

Stock concentration with metformin 

A tube with metformin and distillated water was made. Metformin was weighed to 135,6 mg and 4,2 

mL distillated water was added, the final concentration was 250mM.  

From the stock with 250mM metformin three new tubes was diluted to a concentration of 1, 5 and 

10 mM, total volume was 4200 µL in each tube, see figure 2.4.  

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 
Pos. 
Control           

 Pos. 
control          

B   Control 
Control 
MQ 

1mM 
Met 

5mM 
Met 

10mM 
Met             

C   Control 
Control 
MQ 

1mM 
Met 

5mM 
Met 

10mM 
Met             

D   Control 
Control 
MQ 

1mM 
Met 

5mM 
Met 

10mM 
Met             

E   Control 
Control 
MQ 

1mM 
Met 

5mM 
Met 

10mM 
Met             

F   Control 
Control 
MQ 

1mM 
Met 

5mM 
Met 

10mM 
Met             

G   Control 
Control 
MQ 

1mM 
Met 

5mM 
Met 

10mM 
Met             

H 
Pos. 
Control           

 Pos. 
control          
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Figure 2.4: Illustration of making dilutions of different metformin concentrations in DMEM media 

This figure shows an overview of how to dilute 250 mM metformin into 1 mM, 5 mM and 10 mM 

concentrations in DMEM media.  

 

Second day was all media aspirated and 100 µL new fresh media with metformin was added. Media 

with metformin solution was made the day before.  

Third (24 hours plate) and fourth day (48 hours plate) was all media with metformin aspirated and 

new fresh media was added. Four hours before the plate was read in SpectraMax Paradigm Multi-

mode microplate reader the blue wells in figure 2 was aspirated and 100 µL new fresh media mixed 

with 10 µL alamarBlue was added and then incubated.  

2,5 hours before the plate was read the pink wells in figure 2 was aspirated and 100 µL fresh media 

mixed with 10 µL CCK-8 was added before incubating until the reading of plate.  

When the plate was read it was done two times, first the alamarBlue wells was read at fluorescence 

at 590 nm, and after the CCK-8 wells was read at absorbance at 450 nm.  

 

3. Result  

3.1 Pancreatic cancer cell growth and optimal seeding density 
The pancreatic cell lines in this experiment were MIA-Pa-Ca-2 (Figure 3.1) and Panc-1 (Figure 3.2). 

Both cell lines survived, proliferated and was free for any contamination when contained in the 

DMEM complete low glucose media throughout the experiments. The routinely passaging when 

approaching approximately 70% confluency worked well for both cell lines. We found that the Panc-1 

cell line grew slower than MIA-Pa-Ca-2 and was therefore passaged at a lower ratio to make sure the 

density of cells was kept at the number needed to complete our experiments.  
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Figure 3.1: MIA-Pa-Ca-2 

Microscope picture of the MIA-Pa-Ca cell line. The morphological features of MIA-Pa-Ca-2 are a longer form 

with sharp corners 

 

 

Figure 3.2: Panc-1 

Microscope picture of the Panc-1 cell line. The morphological features of Panc-1 were more oval and smaller 

than MIA-Pa-Ca-2. 
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To find the optimal seeding density to be used for drug treatment experiments we seeded different 

cell numbers in 96 well cell culture plates to be read using the alamarBlue viability assay. The first cell 

seeding results are shown in figure 3.3. Here we see that there is an increase in fluorescence 

according to increasing cell density in both MIA-Pa-Ca-2 and Panc-1.  

In this experiment it seemed like the MIA-Pa-Ca-2 reached a plateau with regards to the fluorescence 

at 10 000 cells/well that did not further increase in the higher cell numbers. The same trend was not 

seen for Panc-1 as there was a slight increase in fluorescence from 10 000 cells/well to 20 000 

cells/well. The standard deviation for the Panc-1 cell line showed that there was low variation in cell 

density in the three well parallels. The wells that should contain 25 000 and 30 000 cell/well was 

empty on the plate containing Panc-1 cells as there were not enough cells for the experiment.  

 

 

Figure 3.3: AlamarBlue cell viability assay results week 1 

Results from alamarBlue cell viability assays done on the cell lines Panc-1 and MIA-Pa-Ca-2. Both cell lines were 

seeded out on a 96-well plate in the densities 10 000, 15 000, 20 000, 25 000 and 30 000 cells/well. The cells 

were let to adhere and after this 10 µl of the reagent was added. The reagent was let to work for 4 hours. 

Fluorescence was measured at 540-590 nm. 

 

The second assay showed slightly different results from the first experiment where there was an 

increase in fluorescence according to cell density for the cell line MIA-Pa-Ca-2, see figure 3.4. The cell 

density rose evenly from the wells containing 10 000 cell/ well to the wells containing 30 000 

cells/well. In this experiment the Panc-1 fluorescence did not change much ranging from 10 000 

cells/well to the 30 000 cells/well. The standard deviation showed that the cell density of the 

parallels varies more for the Panc-1 cell line than the MIA-Pa-Ca-2 but was relatively low for both cell 

lines. 
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Figure 3.4: AlamarBlue cell viability assay results week 2 

Results from alamarBlue cell viability assays done on the cell lines Panc-1 and MIA-Pa-Ca-2. Cells were seeded 

out on a 96-well plate in the densities 10 000, 15 000, 20 000, 25 000 and 30 000 cells/well. The cells were let 

to adhere and after this 10 µl of the reagent was added. The reagent was let to work for 4 hours. Fluorescence 

was measured at 540-590 nm. 

 
The final cell seeding experiment was performed on MIA-Pa-Ca-2 cell line alone as there were issues 

with the Panc-1 cell seeding and these wells were not used for further assay analysis.  

This third assay confirmed that MIA-Pa-Ca-2 shows an increase in fluorescence according to cell 

density up to 30 000 cells/well, see figure 3.5.  
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Figure 3.5: AlamarBlue cell viability assay results week 3 

Results from alamarBlue cell viability assays done on the cell line MIA-Pa-Ca-2. The cells were seeded out on a 

96-well plate in the densities 10 000, 15 000, 20 000, 25 000 and 30 000 cells/well. The cells were let to adhere 

and after this 10 µl of the reagent was added. The reagent was let to work for 4 hours. Fluorescence was 

measured at 540-590 nm. 

 

As we wanted to be within the sensitivity of the assay when performing our drug screening, we chose 

to use 10 000 cells/well for both cell lines in the continuing experiments.  

 

3.2 Metformin treatment in pancreatic cancer cell lines 

3.2.1 MIA-Pa-Ca-2  
All results were normalized to control containing DMEM media only. 

AlamarBlue and CCK-8 assay after metformin treatment, 24 hours plate MIA-Pa-Ca-2 

On the 24 hours plate for MIA-Pa-Ca-2 shows from week 1 and week 2 a similar pattern on both 

fluorescence at 590 nm with alamarBlue and on absorbance at 450 nm with CCK-8. This actively 

means that it is not much derivation on the two plates consider the seeding of cells in wells and the 

adding of alamarBlue and CCK-8. See figure 3.6. In week 2 CCK-8 assay there is a small increase in 

viability from the water control to the 1 mM metformin treatment. The standard deviation for both 

weeks is low, meaning that there is consistency in our set up of the plates.  

From the graphs it shows a small decrease in cells alive when metformin concentration increase. 
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Figure 3.6: Results from cell viability assay of the MIA-Pa-Ca-2 cell line after 24 hours of metformin treatment  

This figure shows two cell viability assays done on the MIA-Pa-Ca-2 cell line after treatment with 1 mM, 5 mM 

and 10 mM metformin for 24 hours. The experiment was done twice, week 1 and week 2. For each week two 

96-wells plates were prepared by seeding out 10 000 cell/ well of the MIA-Pa-Ca-2 cell line. There was prepared 

one control with DMEM media only, and one with DMEM media and MQ-water. For the alamarBlue assay 

positive control was added. Six parallels on each plate were treated with the different metformin 

concentration. Half of the parallels were treated with alamarBlue reagent, and the other three were treated 

with the CCK-8 cell viability reagent. The figure to the left shows the fluorescence measured at 540-590 nm 

after addition of alamarBlue reagent. The figure on the right shows the absorbance measured at 450 nm after 

addition of the CCK-8 reagent. The results were normalized to the DMEM only control. 

 

AlamarBlue assay after metformin treatment, 48 hours plate MIA-Pa-Ca-2 

In the 48 hours metformin treatment there is a sharp decline in viability at the 5mM metformin 

concentration for MIA-Pa-Ca-2 which further decreases at the 10mM metformin concentration, see 

figure 3.7. Week 1 shows a larger decrease in alive cells when metformin concentration gets higher 

than week 2, especially after 1 mM.  

CCK-8 assay after metformin treatment 48 hours plate MIA-Pa-Ca-2 

Water control and 1 mM for both weeks are following the same curve, then it’s a big jump from 1 

mM to 5 mM and it is a big difference between week 1 and 2. From week 1 the metformin 

concentration from 5 mM to 10 mM have almost the same viability of cells, but for week 2 there is a 

large decrease.  
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Figure 3.7: Results from cell viability assay of the MIA-Pa-Ca-2 cell line after 48 hours of metformin treatment  

This figure shows two cell viability assays done on the MIA-Pa-Ca-2 cell line after treatment with 1 mM, 5 mM 

and 10 mM metformin for 48 hours normalized to control containing DMEM medium only. The experiment was 

done twice, week 1 and week 2. For each week two 96-wells plates were prepared by seeding out 10 000 cell/ 

well of the MIA-Pa-Ca-2 cell line. There was prepared one control with DMEM media only and one with DMEM 

media and MQ-water. Positive control was added for the alamarBlue assay. Six parallels on each plate were 

treated with the different metformin concentration. Half of the parallels were treated with alamarBlue 

reagent, and the other three were treated with the CCK-8 cell viability reagent. The figure to the left shows the 

fluorescence measured at 540-590 nm after addition of alamarBlue reagent. The figure on the right shows the 

absorbance measured at 450 nm after addition of the CCK-8 reagent.  

 

A picture was taken at the wells with some deviation after the plate was read, see figure 3.8 and 3.9. 

The pictures show a large bubble in the left corner which can act to obscure the reading, see figure 

3.8. The other wells had a more evenly spread in the cells, as shown in figure 3.9 are more compact 

on top of each other in some places.  
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Figure 3.8: Microscope picture of MIA-Pa-Ca-2 in a 96 wells plate 

This figure shows a picture of one of the wells who had a deviation who was visible for the eye to see. In the 

left down corner, it shows a big bubble who can be the result of some deviation in the measurement and made 

a bigger standard deviation in the graphs.  

 

 

Figure 3.9: Microscope picture of MIA-Pa-Ca-2 cell line on a 96 wells plate 

This figure shows a visible deviation for the eye to see with the lighter color in this well. As shown the cells look 

more compact and in a larger colony in the upper part of the well, this can be the result of the deviation in the 

measurement and made a bigger standard deviation in the graphs.  
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To sum up everything that has been stated so far, this research shows the metformin have an impact 

on MIA-Pa-Ca-2 cells, when the metformin concentration increases up to 10 mM the cells alive are 

decreased.  

3.2.2 Panc-1 cells 
All results were normalized to control. The week 1 plate lacked control with DMEM media only and 

was therefore normalized to the control containing DMEM medium and MQ-water.   

Alamarblue assay after metformin treatment, 24 hours plate Panc-1 

The first week the results showed a decrease in viability from the control with MQ-water to the first 

metformin treatment (1 mM). From 1 mM to 5 mM the viability decreased, but from 5 mM to 10 mM 

it increased as shown in figure 3.10. The second week the viability increased when treated with 1 

mM compared to the MQ-water control, but then decreased continuously from 1 mM to 10 mM 

metformin treatment. The standard deviations were very high in the first assay compared to the 

second one.  

CCK-8 assay after metformin treatment, 24 hours plate Panc-1 

In this assay the viability decreased from the MQ-water controls to the first metformin treatment of 

1 mM in both weeks. The first assay done (week 1) had a decrease in viability from 1 mM to 5 mM, 

but likewise the alamarBlue assay, the viability increased from the wells treated with 5 mM to 10 

mM. The second week the viability decreased continuously from 1 mM treatment to 10 mM 

treatment. The standard deviations were higher for the second week assay compared to the first 

week, especially in the three parallels containing 5 mM metformin, see figure 3.10.  

  

Figure 3.10: Results from cell viability assays of the Panc-1 cell line after 24 hours of metformin treatment 

This figure shows two cell viability assays done on the Panc-1 cell line after treatment with 1 mM, 5 mM and 10 

mM metformin for 24 hours. The experiment was done twice, week 1 and week 2. For each week two 96-wells 

plates were prepared by seeding out 10 000 cell/ well of the Panc-1 cell line. There was prepared one control 

with DMEM media only (missing on week 1 plate due to errors), and one with DMEM media and MQ-water. For 

the alamarBlue assay positive control was added. Six parallels on each plate were treated with the different 

metformin concentration. Half of the parallels were treated with alamarBlue reagent, and the other three were 

treated with the CCK-8 cell viability reagent. The figure to the left shows the fluorescence measured at 540-590 

nm after addition of alamarBlue reagent. The figure on the right shows the absorbance measured at 450 nm 

after addition of the CCK-8 reagent. The results for week 1 are normalized to control with MQ-water, and the 

week 2 results are normalized to the DMEM media only control. 
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AlamarBlue assay after metformin treatment, 48 hours plate Panc-1 

The first assay done (week 1) showed a small decrease in cell viability from the control with MQ-

water to the first metformin treatment of 1 mM. It had the highest decrease in cell viability from 1 

mM to 5 mM metformin treatment, and from 5 mM to the 10 mM the cell viability was almost 

constant, see figure 3.11. The second assay done also had a decrease in viability from MQ-water 

control to the 1 mM metformin treatment. This assay also had the highest decrease in viability going 

from 1 mM treatment to 5 mM treatment, see figure 3.11. The cell viability decrease flattens out and 

is almost constant from 5 mM to 10 mM of metformin treatment, like the first week. The standard 

deviations were very high, especially for the week 2 assay and shows that there was a lot of variation 

between the three parallels.  

CCK-8 assay after metformin treatment 48 hours plate Panc-1 

The first assay done (week 1) had a large increase in cell viability in the control parallels with media 

and MQ-water to the first metformin treatment (1 mM), see figure 3.11. From 1 mM to 5 mM 

treatment the viability decreases a lot in week 1, but from 5 mM to 10 mM the viability decreases 

less in this assay. The second assay (week 2) have a continuously linear decrease in cell viability from 

the control with MQ-water to the 5 mM metformin treatment, but also here the curve flattens out 

going from 5 mM to 10 mM, see figure 3.11. The standard deviations were relatively low in the week 

1 assay, but in the week 2 assay there was a lot of variation between the three parallels. The 1 mM 

wells in week 1 had the highest standard deviation, see figure 3.11.   

 

  

Figure 3.11: Results from cell viability assay of the Panc-1 cell line after 48 hours of metformin treatment  

This figure shows two cell viability assays done on the Panc-1 cell line after treatment with 1 mM, 5 mM and 10 

mM metformin for 48 hours normalized to control containing DMEM media only. The experiment was done 

twice, week 1 and week 2. For each week two 96-wells plates were prepared by seeding out 10 000 cell/ well of 

the Panc-1 cell line. There was prepared one control with DMEM media only (missing in week 1), and one with 

DMEM media and MQ-water. Positive control was added for the alamarBlue assay. Six parallels on each plate 

were treated with the different metformin concentration. Half of the parallels were treated with alamarBlue 

reagent, and the other three were treated with the CCK-8 cell viability reagent. The figure to the left shows the 

fluorescence measured at 540-590 nm after addition of alamarBlue reagent. The figure on the right shows the 

absorbance measured at 450 nm after addition of the CCK-8 reagent.  
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4. Disscussion  

4.1 AlamarBlue cell viability assays 

Week 1 assay MIA-Pa-Ca-2 

This cell line had high concentration of cells, but some unexpected variation was observed, see figure 

3.3. One should expect a rising cell viability from 10 000 to 30 000 cell/wells, but the results show a 

higher cell viability in the 10 00 cell/well than in the 15 000 cells/well. The cell viability also decreases 

continuously from the 20 000 cell/well to the 30 000 cell/well. This is most likely due to not mixing 

the cell suspension enough before seeding out on the plate. It can also be due to more proliferation 

in some wells than others. The standard deviations show some variations, but none of the parallels 

differed so much that they had to be removed.    

Week 1 assay Panc-1 

The results show that the Panc-1 assay from week 1 had very low cell density, see figure 3.3. This 

could be due to errors like seeding out less cells than 10 000 cell/well. There might have been done 

mistakes in calculations, probably in the first steps as there is a rising cell viability even if it has lower 

density than expected and compared to the MIA-Pa-Ca-2 cell line. Other errors can be that the cell 

suspension was not mixed properly so the cells sink to the bottom of the tube and hence is not 

transferred to the plate. The standard deviations show that there were relatively low variations in 

the parallels.   

The Panc-1 was also lacking the two last columns on the plate (25 000 cell/well and 30 000 cells/well) 

as there was not enough cell suspension, see figure 3.3. When adjusting the concentration to 

500 000 cell /ml after centrifugation, the volume of added medium was not enough to complete the 

plate due to low confluency in the flask when starting the experiment. The cells should not have 

been passaged at a low ratio the days before the experiment, but this was done. 

Week 2 assay MIA-Pa-Ca-2 

This assay went very well for the MIA-Pa-Ca-2 cell line and shows a continuously rising cell viability 

and have low standard deviations witch one exception in the 15 000 cell/well. Here there was some 

variation between the three parallels. These results show that the calculations and the techniques 

used when preparing the plate was done correct, see figure 3.4. 

Week 2 assay Panc-1 

In this assay the Panc-1 cell line had much higher density of cells compared to the first week. This 

implies that there was done mistakes in the first assay when seeding out the cells. This second assay 

had some unexpected values in the 10 000 cells well and the 30 000 cells well. This is most likely due 

to wrong techniques in pipetting and not being completely exact when making the dilutions. There is 

also a possibility that the cells have proliferated more in some wells than others, or proliferation 

have been inhibited by unknown contamination. From the wells with 15 000 cells to 25 00 cells there 

was a rising trend in cell viability, see figure 3.4.  

Week 3 assay MIA-Pa-Ca-2 

In this assay the MIA-Pa-Ca-2 cell line had a continuously rising cell viability. The largest standard 

deviation was seen in the three parallels containing 10 000 cells/well and 20 000 cells/well, see figure 

3.5. This can be due to seeding out the suspension unevenly (not mixing enough) so that some of the 

wells contained less cells than others. It can also be contamination that prevents cell proliferation or 

not adding the same amount of the alamarBlue reagent. 
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Conclusion 

The optimal seeding density was 10 000 cell/well for both cell lines and hence this concentration was 

used in the metformin experiment.  

 

4.2 Metformin trial results 
Both two cell lines MIA-Pa-Ca-2 and Panc-1 was affected by the metformin treatment as the cell 

viability decreased as the metformin treatment increased. The most effective treatment time was 48 

hours. There were some deviations in the results, most likely due to errors done under preparation 

of the plates. 

4.2.1 Mia-Pa-Ca-2 

MIA-Pa-Ca-2 metformin trial discussion 

With the result from these two weeks it looks like metformin have an impact on MIA-Pa-Ca-2 cells. 

The 24-hour metformin treatment shows for both weeks, that there is little effect on viability, which 

could mean that the metformin has not started to affect the cells yet. It looks like the seeding out of 

the cells were even in each well. The differences from 1mM metformin to 5 mM metformin is not 

that big, but it is a small decrease. From 5 mM to 10 mM metformin it is a little bigger decrease but 

still not much. On the CCK-8 test it looks like the cells got more affects from the control with water 

than from 1 mM metformin, but de standard deviation is a little bigger from both weeks, especially 

week 2 and that can have affect on the result.  

The 48-hour metformin treatment start the same and then it shows a deviation that increase in size 

until 5 mM and then decrease at 10 mM again.  When the plate had incubated enough it was 

possible to see some deviation in the colors in the wells, and some closer look in the microscope 

shows as the picture says in the result that it was a bubble in the corner of one well and some 

strange growth on another well. It can indicate the bigger deviation in the result for the 10 mM wells 

because both deviations were therefrom.   

From week 1 the standard deviation isn’t visible in the graphs it’s because they were so small. The 

standard deviation from week 2 are a little bit larger which can mean the either the cells weren’t 

spread in the wells evenly or when alamarBlue/CCK-8 was added it wasn’t mixed good enough so it 

wasn’t equal spread in the wells. It is also hard to say if the cells were growing like that before the 

metformin was added or if it happened when metformin start to affect the cells, the wells were only 

checked after they had incubated.  

In the CCK-8 assays there was bigger standard deviation than in the alamarBlue assays, this might be 

because CCK-8 is more sensitive than alamarBlue. 

 

4.2.2 Panc-1 

Panc-1 metformin trial discussion 

Based on this experiment the Panc-1 cell line seems to be affected by metformin as the viability 

decreases when treated with metformin in vitro. The dose of metformin that decreased the cell 

viability the most was 10 mM. This seems to be a trend in most of the Panc-1 cell viability assays 

after addition of metformin. The most dramatic decrease in cell viability was shown going from 1 mM 

to 5 mM, but there was also some further decrease from 5 mM to 10 mM in most of the assays. Due 

to high variation and some errors done when preparing the plates, it will be hard to conclude this. 

More assays should be done before making a conclusion. From the results it shows that in the 
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alamarBlue assay week 2 and the CCK-8 assay week 1 the cell viability increases when treated with 1 

mM metformin compared to the control. This does not seem logic as metformin is expected to 

decrease viability and does decrease viability in most of the results with 1 mM compared to control, 

hence this is most likely due to errors done when preparing the plate. There might have been seeded 

out more than 10 00 cell/well. When pipetting cell suspension into the wells the suspension should 

be mixed carefully with the pipette, so the cells does not sink to the bottom of the tube. This might 

cause this unexpected rise in cell viability as the control might have less cells then the wells treated 

with 1 mM metformin. Also, the cell proliferation might differ between the wells and cause 

variations. Other errors can be that the tube containing metformin mixed in medium was not mixed 

properly so the actual concentration of metformin was lower than 1 mM. The variation seen in the 

results, especially in the week 2 assays can also be caused by not mixing the metformin solution or 

the cell suspension enough.  

All the week 1 assays lacked control with DMEM media only, but the week 2 assay showed that MQ-

water had little effect on the cells, so this result was normalized to the MQ-water control. The plates 

that was treated for 48 hours had more decrease in viability than the ones treated for 24 hours, 

hence longer treatment time seems more effective. The week 1 alamarBlue assay had a relatively 

high increase in viability going from 5 mM to 10 mM, this can also be due to errors. In all the other 

assays the curve flattens out going from 5 mM to 10 mM metformin treatment. This induce that the 

most effective concentration of metformin is 5 mM for the Panc-1 cell line, based on these results. 

Other errors that might have affected the results is that there was not added enough reagent 

(alamarBlue/CCK-8). The reagent was mixed in DMEM media before it was added to the wells. If this 

solution was not properly mixed there can be variations in the concentration of added reagent which 

affect the results. When adding the CCK-8 reagent there was a small bubble in the week 1 48 hours 

plate. This can cause errors when measuring absorbance. There can also have been contaminations 

like small particles from clothes etc. that can have affected the behavior of the cells and hence the 

results.  

MIA-Pa-Ca-2 and Pan-1 are affected by metformin treatment 

Both cell lines were affected by the drug, but the MIA-Pa-Ca-2 cell line had the most decrease in 

viability when treated with metformin. The MIA-Pa-Ca-2 also had lower standard deviations 

compared to the Panc-1 and had a more accurate trend in the results. This was most likely due to 

more errors done when executing the experiments for the Panc-1 cell line.   

This is a good indication that metformin can work as a cancer treatment but results like these alone 

are far from enough to conclude if it is worth using metformin on cancer patients. Cells kept in vitro 

in a controlled environment like the cell lines in this experiment may act very different then the same 

cell lines in vivo, in tumors. The human body are highly complex and cells in the body are a part of a 

signaling network that affect the cells, hence differently than cells kept in vitro. In vivo experiments 

are needed to find out if a drug can be used for certain purpose or not.  

Metformin on the other hand is a drug that are already approved for medical use as it is widely used 

to treat type 2 diabetes. It is considered highly safe and with little side effects. This makes it easier to 

do human trials to see if the drug might have other beneficial effects than the already known effects. 

Metformin is widely studied and there are numerous of published scientific articles on its effects, 

many of these are studies on metformin’s effect on cancer. In this project 66 different scientific 

articles on metformin’s effect on various types of cell lines were included, and most of these articles 

focused in on cancer. Many of these articles concluded that metformin might have a beneficial effect 

on cancer cells.   
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4.3 Database creation and machine learning 
Extracting information from previous experiments can be a good way to improve one’s own research 

and can be a way to validate results as well as getting new knowledge on a subject. As done in this 

experiment, extracting what information we though would be important, and organizing it so it could 

be applied to a machine learning algorithm is a very effective way to store knowledge and also make 

predicting models based on the previous experiments done. As beginners in the machine learning 

and coding world the model made in this project did not give good predictions, but if correctly done, 

this way of doing research might be the future. 

The knowledge is out there, finding good sources on metformin’s effect on cancer cells was not 

difficult. What was challenging was extracting the information and get it ready for the machine 

learning part. Using machine learning and artificial intelligence to improve research seems to be the 

future as the technology improves rapidly. Maybe there should be a golden standard for how to 

design a publishment, so it is more appliable for machine learning algorithms? And making an online 

machine learning library of extracted information on different subjects could be very useful. Articles 

that are already published should also be in this library so there is lots of work needed to make this 

possible.  

 

5. Conclusion and future perspectives  
From this experiment alone the conclusion is that metformin does influence pancreatic cancer cell 

lines as it decreases their viability. Based on the results from this experiment the dosage that seemed 

to have the best effect on both cell lines was 10 mM metformin and the most effective treatment 

time for decreasing viability was 48 hours.  

Experiments like the ones done in this project is a useful tool when testing drugs as there is no risk 

factor as in experiments done on animals or humans. To further test metformin effect in pancreatic 

cancer cell line the experiment should have been done several times, but there was not time for this 

in this project.  

When it comes to metformin and its effect on cancer, one could use machine learning to predict how 

different cancer cells will be affected by the drug, in vitro and in vivo. To get the best predictions one 

should gather as many as possible of previous experiments and knowledge and have someone 

capable of creating a good machine learning model. The predictions of the model should also be 

verified upon results of traditional experiments, and should not be used to make decisions alone, but 

be a tool for improving decisions. 

Also, it could be interesting to create a model that simulates the human body and tumors, this could 

be very helpful when testing new medicines and treatments. This might be very challenging because 

the human body is highly complex, and all its functions are not fully understood yet, but this kind of 

models could contribute to more effective and safe testing of new drugs. Computers are extremely 

effective and can run many tests simultaneously, including previously research. A problem with this 

kind of models is that researchers might discover new functions of the human body and then the 

model can be wrong, but if the model is used as a tool combined with standard research methods, 

these errors can be discovered. Humans can react different to treatments as well, so the model 

might not fit for everyone, but still would be a useful tool in general. Models could also be 

personalized to a specific disease and specific tumors. Machine learning seems to be more used in 

many different fields as well as in science and holds very interesting possibilities for the future.  
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