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Abstract 

As artificial intelligence is steadily rising, the application of machine learning to predict drug 

responses of cancer cells can be of great value in cancer therapy. Although the drug metformin 

was originally developed to treat diabetes, its apparent effect on various cancer cells has been 

widely studied. This study primarily investigates the usage of machine learning algorithms to 

predict the response of cancer cells to metformin. 

A database was constructed from published articles regarding the viability and metabolic 

changes in cancer cells after exposure to metformin. By applying linear regression to the 

database, a weak negative linear correlation of – 0.21 was observed between viability and 

metformin concentration.  

Furthermore, various support vector machine algorithms were applied to find models that could 

make accurate predictions for viability according to the specific variables. From the varying 

levels of accuracy of the different SVM models, it was evident that the best-suited parameters 

and kernel functions must be selected to construct accurate models with high performance.  

In this study, the colorectal cancer cell line, HCT116, was also exposed to metformin for 24 and 

48-hour treatments to directly examine the drug’s influence on cancer cells. To measure 

viability, alamarBlue assay and CCK-8 assays were conducted on cells treated with various 

concentrations of metformin. Here, it was apparent that exposure to metformin at higher 

concentrations for a longer period led to the greatest reduction in cancer cell viability and 

metabolic activity, displayed by the decreasing trend. 

Overall, the usage of machine learning algorithms demonstrated its potential to make highly 

accurate models that could predict cancer cell's response to metformin treatment. This could 

further contribute to establishing new cancer treatments. 
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1 Introduction 

1.1 Cancer & Cancer Metabolism 

While our body is constantly renewing cells by cellular division in a systematic manner, the cells 

that proliferate abnormally and uncontrollably can lead to a collection of diseases, commonly 

known as cancer. Although there have been many advancements in cancer therapy throughout 

the years, it remains a global health concern. Therefore, researchers are constantly seeking new 

approaches for its treatment.  

One of the characteristics of cancer cells that distinguish them from normal cells is a shift in their 

metabolism. This is because cancer cells have the ability to undergo metabolic reprogramming to 

support their high energy demand (Dong and Neuzil 2019). Furthermore, this reprogramming 

supports the synthesis of essential biosynthetic precursors and the regulation of redox balance  

(DeBerardinis and Chandel 2016, p. 12). Thereby, these altered characteristics provide the 

resources and conditions necessary to sustain rapid cell growth and proliferation.  

 

1.1.1 Glucose metabolism 

The glycolytic activity is especially high in cancer cells and is a necessity for their continued 

growth and survival (Yu et al. 2017, p. 3430). This activity is primarily characterized by an 

altered metabolic trait that is frequently observed in these cells, which is their ability to perform 

aerobic glycolysis. While normal cells only metabolize glucose to lactate under anaerobic 

conditions, cancer cells metabolize glucose to lactate even under aerobic conditions 

(Kalyanaraman 2017, p. 835). This altered characteristic is known as the Warburg effect. A 

second altered metabolic trait exhibited by cancer cells is their ability to take up high levels of 

glucose. This is due to the overexpression of certain glucose transporters (GLUTs), primarily 

GLUT1 and GLUT3 (Kalyanaraman 2017, p. 835). The overexpression of GLUTs is often 

induced by the activation of oncogenes such as C-MYC, RAS and SRC (Adekola et al. 2012).  

Although glycolysis only yields 2 ATP molecules per molecule of glucose, their ability to 

perform aerobic glycolysis at a high rate provides a continuous generation of ATP and key 

intermediates (Alam et al. 2016). The glycolytic intermediates drive the pentose phosphate 

pathway, which leads to the generation of ribose-5-phosphate and NADPH (Anderson et al. 
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2018b, p. 998). These intermediates are necessary to synthesize lipids and nucleic acids, which 

further supports cancer cell proliferation. (Ganapathy-Kanniappan and Geschwind 2013, p. 3). 

Overall, the performance of aerobic glycolysis at a high rate sustains the generation of ATP 

while simultaneously providing important intermediates that are necessary for successful cell 

proliferation and growth.  

 

1.1.2 Mitochondrial metabolism 

As the mitochondria exhibit a variety of functions that are both beneficial and necessary for the 

growth and survival of cancer cells, it is a fundamental organelle in cancer metabolism and 

tumorigenesis. In addition to being the major source of ATP through oxidative phosphorylation, 

the mitochondria generate biosynthetic intermediates that are needed for the growth of cancer 

cells (Liu and Shi 2020). It is explicitly the tricarboxylic acid (TCA) cycle that generates these in 

the mitochondrial matrix. These intermediates are essential elements required to synthesize 

macromolecules and to produce electron acceptors and energy (Anderson et al. 2018, p. 217).  

As depicted in Figure 1, the intermediates from the TCA cycle are used to synthesize cholesterol, 

fatty acids, amino acids and nucleotides, which are necessary elements to sustain cell growth and 

proliferation of cancer cells.  

The mitochondria also produce reactive oxygen species (ROS) which can activate potential 

tumorigenic pathways (Porporato et al. 2018, p. 266). These species are also involved in 

inducing oxidative damage and modifying gene expression, which are necessary for the 

progression of cancer (Yang et al. 2016). However, excessive accumulation of ROS will be fatal 

to cancer cells. To prevent this, copious amounts of NADPH are generated in the mitochondria 

as this will limit the further accumulation of ROS (Weinberg and Chandel 2015). The amount of 

ROS is also kept at stable levels by the expression of antioxidants (DeBerardinis and Chandel 

2016, p. 8). Accordingly, cancer cells require a balance in ROS to prevent potential harmful 

effects.  

The electron transport chain (ETC) in the inner mitochondrial membrane also contributes to 

tumorigenesis. Namely Complex I of the ETC. As the main role of Complex I is to oxidize 

NADH to NAD+, it elevates and maintains the NAD+/NADH ratio in the mitochondrial matrix 
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(Santidrian et al. 2013, p. 1068). Additionally, Complex I supports cancer cell proliferation by 

supplying electron acceptors and by regenerating cofactors (Urra et al. 2017).  

Figure 1: An overview of glycolysis and tricarboxylic acid, including the essential products produced by the 

glycolytic and TCA intermediates.  (Nitzsche and Nishith Gupta 2017) 

 

1.1.3 Targeting the mitochondria 

Considering the various roles of mitochondria in cancer metabolism, targeting this organelle 

would be a clever tactic to limit cancer cell proliferation. Generally, such an approach would 

display inhibited cell respiration, limited proliferation and reduced ATP production 

(Kalyanaraman 2017, p. 840). By particularly targeting Complex I of the ETC, the NAD+/NADH 

ratio would become disproportionate. This would lead to (1) reduction in electron acceptors, (2) 

reduced synthesis of aspartate, (3) limited purine and pyrimidine, (4) lack of materials needed to 

synthesize nucleic acids and macromolecules (Urra et al. 2017). These factors would thereby 

provide inadequate conditions for cell proliferation, resulting in its limitation. 
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1.2 Colorectal Cancer 

1.2.1 What is colorectal cancer? 

Colorectal cancer (CRC) is a form of cancer that occurs when growths called polyps arise in the 

colon or rectum, which has the potential to become cancerous over time (What Is Colorectal 

Cancer? | CDC 2021). It is the third most prevalent gastrointestinal cancer in the world (Liu et al. 

2020, p. 3876). The development of CRC emerges gradually as genetic and epigenetic changes 

accumulate (Binefa et al. 2014). These changes appear in the epithelial cells of the colon, which 

eventually results in the formation of adenocarcinomas (Lao and Grady 2011). 

 

1.2.2 Using cell lines as a model for cancer 

A cell line of colorectal cancer, known as HCT116, will be used as a model for cancer disease in 

this study. The diversity of cancer makes it challenging to understand the disease. Therefore, the 

usage of models to represent cancer disease is very useful when conducting research. More 

specifically, using cancer cell lines can help evolve our knowledge regarding mechanisms of 

cancers, which can then be used to develop treatment methods. Scientists have debated if cancer 

cell lines are an appropriate and truthful model of the disease (Ferreira. D et al. 2013). However, 

it seems that cell lines can preserve genetic properties of the cancer of origin under proper 

conditions. (Mirabelli et al. 2019). Research has also suggested that cell lines from an early stage 

and lower grade of cancer represent more realistic models (Ferreira. D et al. 2013). These factors 

should be taken into consideration when deriving cell lines, to ensure that the cell line is a 

representative model for cancer disease. 

 

1.3 Metformin 

Although the drug metformin is mainly prescribed to treat type II diabetes mellitus, it has 

displayed the ability to influence certain cancer cells. Studies have suggested that metformin 

decreases the development of cancer in diabetes patients while also increasing the survival rate 

among cancer patients (Weinberg and Chandel 2015).  

Metformin particularly influences the mitochondria of cancer cells and accumulates within the 

mitochondrial matrix due to its positive charge (Owen et al. 2000, A611). Here, it acts as a 

complex I inhibitor in the electron transport chain (ETC). Although the exact mechanism for this 
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inhibition is somewhat obscure, it has been proposed that the cysteine-39 loop in the ND3 

subunit of complex I may be the binding site for metformin (Vial et al. 2019, p. 3). 

The inhibition of complex I by metformin have numerous consequences on cancer cells. Firstly, 

it results in rising AMP and declining ATP. The increase in the AMP/ATP ratio leads to the 

activation of adenosine monophosphate-activated protein kinase (AMPK) which promotes 

catabolism and inhibition of fatty acid synthesis (Anderson et al. 2018b). As fatty acids are 

essential for the assembly of cellular membranes in rapidly proliferating cancer cells, this results 

in inhibited tumor growth (Vancura et al. 2018). Secondly, the oxygen consumption rate is 

decreased due to the inhibition of the ETC. Thirdly, the oxidation of NADH to NAD+ is inhibited 

(Vancura et al. 2018). This leads to the accumulation of NADH in the matrix. Studies have also 

shown that the inhibition of complex I lead to reduced cell proliferation when glucose is present, 

and cell death when glucose is limited (Wheaton et al. 2014).  

The decrease in ATP production triggered by metformin also exhibits other inhibitory effects on 

cancer cells. A kinase known as mTORC1 is frequently present in signaling pathways of cancer 

cells and is essential for the proliferation of cells (Vancura et al. 2018). However, the decrease in 

ATP production leads to diminished mTOR activity (Weinberg and Chandel 2015). This decline 

in mTORC1 results in decreased cell growth and proliferation. Also, increased AMP/ATP ratio 

inhibits pyruvate carboxylase, which further results in the inhibition of gluconeogenesis (Owen 

et al. 2000, p. 613).  

 

1.4 Databases & Machine Learning 

1.4.1 Machine Learning 

To predict the response of cancer cells to metformin, machine learning (ML) algorithms that 

involve analyzing and learning data can be applied to generate mathematical models. ML 

algorithms are capable of recognizing significant patterns within given data and are therefore 

considered to be a form of artificial intelligence (Erickson et al. 2017, p. 505). ML is primarily 

divided into two categories: supervised learning and unsupervised learning (Sidey-Gibbons and 

Sidey-Gibbons 2019). In this study, the main focus will be supervised learning which requires 

both input data (features) and desired output data to train the algorithm (Goel 2018). To achieve 

successful training of the algorithm, the data should be separated into training data and testing 
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data. Both data will consist of a random selection of features and their outcomes (Sidey-Gibbons 

and Sidey-Gibbons 2019). Data enrichment and labeling are also necessary for the training data 

(CloudFactory). First, the algorithm is trained by understanding the relationship between selected 

features and their outcomes. By applying this trained algorithm to the testing data, their 

outcomes can be predicted based on the relationships observed in the training data. Thereby, the 

accuracy of the model can be determined. 

There have been applied various supervised machine learning models to generate accurate drug 

response predictions (Huang et al. 2017). These include support vector machines (SVM), linear 

regression and decision trees. Support vector machine is a model that can generate predictions of 

both linear and non-linear data (Uddin et al. 2019). In this model a variety of kernel functions 

can be applied, including linear kernel, Gaussian radial basis (RBF) kernel and polynomial 

kernel (Savas and Dovis 2019). It is essential to choose the best-suited kernel function according 

to an individual database to ensure optimal performance. Frequently, RBF kernels are selected as 

they are less likely to be affected by noise and function well for both smaller and larger 

databases (Sun 2019). Linear regression is a model that assumes that there is a linear relationship 

between the input variables (x) and the output variable (y) (Olawale 2020). Thus, this model can 

be used to predict the relationship between various cancer metabolism parameters and metformin 

exposure. Decision trees are another frequently used method of supervised machine learning. 

This model is constructed as a tree and involves decision-making. The tree begins at the root 

node, which branches into internal nodes, representing the possible choices, until it reaches the 

leaf nodes that contain the final outcomes (Song Yan-yan and LU 2015, p. 131).  

As evidence has suggested that cancer pathways are not necessarily defined by the origin of the 

tumor, applying machine learning models across various cancer types generates more accurate 

predictions (Huang et al. 2017)). Accordingly, one should not explicitly use data from specific 

cancers when building models to predict the drug response of a particular form of cancer.  

 

1.4.2 Databases 

These various supervised machine learning models can be applied to specifically predict the 

response of cancer cells to metformin treatment. First, data collection involving the responses of 
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various cancers to metformin must be collected to train the algorithm. As stated earlier, the 

collected data should be from a wide variety of cancer forms, to ensure accurate predictions. 

In order to apply the machine learning algorithms, the database must be imported into Pandas 

DataFrame which uses the programming language Python. By importing the collected data, the 

databases get organized into a format that is appropriate for analysis. This format involves a two-

dimensional structure consisting of labeled rows and columns, aligned by arithmetic operations 

(pandas.DataFrame 2021).  

 

1.5 Seahorse Analyzer 

As the drug metformin seems to influence the mitochondria in cancer cells, a Seahorse XF 

Analyzer can be used to measure changes in their mitochondrial activity after metformin 

exposure. Seahorse XF Analyzer is an instrument that can directly measure fundamental 

mitochondrial parameters, including oxygen consumption rate (OCR), extracellular acidification 

rate (ECAR) and ATP production (Agilent Technologies, Inc., p. 5).  

In this instrument, OCR and ECAR are measured while successively adding the electron 

transport chain (ETC) inhibitors oligomycin, FCCP, Rotenone, and antimycin A (Tan et al. 2015, 

p. 240). While oligomycin inhibits ATP synthase (complex V), FCCP disturbs the mitochondrial 

membrane potential, and Rotenone and antimycin A inhibits complex I and III, respectively 

(Kalyanaraman et al. 2018, p. 318). By adding these ETC inhibitors one can measure the 

mitochondrial parameters of basal respiration, ATP-linked respiration, proton leak, maximal 

respiratory capacity and non-mitochondrial oxygen consumption.  

The changes in the oxygen consumption rate after the addition of the ETC inhibitors can be 

observed in figure 2. Here, the inhibition of ATP synthase by oligomycin and the inhibition of 

Complex I and II by Rotenone and antimycin A leads to a rapid decline in OCR. Meanwhile, the 

addition of FCCP causes a rapid increase in OCR. 
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Figure 2: The change in oxygen consumption rate (OCR) after the successive addition of the ETC inhibitors: 

oligomycin, FCCP, Rotenone and antimycin A. These additions show the measurements for the mitochondrial 

parameters: basal respiration, ATP-linked respiration, proton leak, maximal respiratory capacity and non-

mitochondrial oxygen consumption. Image: (Agilent Technologies, Inc., p. 5) 

 

1.6 Aims  

The primary aim of this study is to build a database using peer-reviewed articles involving the 

effect of metformin on the viability and mitochondrial activity of cancer cells. It is intended to 

further use this database to train machine learning algorithms to assess their ability to make 

predictions. The secondary aim is to examine the effects of metformin on cancer cells by 

conducting various viability tests on a colorectal cancer cell line treated with metformin.  

 

2 Materials & Methods 

2.1 Cell Line & Culture 

2.1.1 Cell Line & Medium Preparation 

The human colonic cancer cell line, HCT116, was obtained from the European Collection of 

Authenticated Cell Cultures (ECACC). This particular cell line was a strain of malignant cells 

isolated from a male with colonic carcinoma. (ECACC General Cell Collection: 91091005 HCT 

116). The cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) enriched with 

fetal bovine serum, penicillin: streptomycin solution, L-Glutamine, and glucose. The appropriate 

volumes of the various components are presented in Table 1. 
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Table 1: The components and volumes used to prepare a complete Dulbecco’s Modified Eagle’s 

Medium.  

Components Volume 

Dulbecco’s Modified Eagle’s Medium without glucose, L-Glutamine and 

sodium pyruvate – Corning® 

500 ml 

Fetal bovine serum, heat-inactivated, South American origin – Biowest  50 ml 

Penicillin : Streptomycin solution 6,0/10,0 g/L 100X – Biowest 5 ml 

L-Glutamine, 200mM – Corning® 5 ml 

Glucose, 2.5 M 2.22 ml (1g/L) 

 

2.1.2 Cell Culture Maintenance 

For cell culture maintenance in the T75 flask, the medium was replaced every two days and the 

HCT116 cell suspension was split 1:10 at 50% confluence. The components required for 

maintenance, complete DMEM, PBS and trypsin, were all warmed in a water bath at 37 °C for 5 

minutes before use. The PBS solution was made by dissolving a 5 g Gibco® PBS Tablet in 500 

mL of distilled water, followed by autoclaving.  

When splitting the suspension 1:10, the present medium was aspirated, and 1 ml PBS was gently 

swished over the cells for washing. After aspirating the PBS, 1 ml of Trypsin EDTA 1X (0.25% 

Trypsin, 2.21 mM EDTA) from Corning® was added. The flask was then rocked to distribute the 

trypsin, followed by incubation at 37 °C for 1 minute until the cells detached from the flask wall.  

Thereafter, 4 ml complete DMEM was added and mixed with the cells by pipetting up and down. 

4.5 ml of the cell suspension was aspirated, leaving 0.5 ml in the flask. 9.5 ml fresh medium 

(DMEM) was added and the flask was left to incubate at 37 °C.  

When transferring the cell suspension to a new T75 flask, the steps above were repeated but 

rather than leaving 0.5 ml suspension in the old flask it was extracted and transferred to the new 

flask. The 9.5 ml fresh medium was then added to this new flask before incubation.  
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2.2 Muse® Count & Viability Reagent 

2.2.1 Principle 

The Muse Count and Viability Kit was used to determine cell count & viability. As the Muse 

Count & Viability Reagent contains two different DNA staining dyes, it distinguishes viable 

cells from non-viable cells. While the DNA-binding dye stains the nucleus of dead/dying cells 

that have lost membrane integrity, the membrane-permanent DNA staining dye stains all 

nucleated cells to distinguish cells from debris (Muse® Count & Viability Kit (200X) User’s 

Guide 2020, p. 2) 

 

2.2.2 Procedure 

HCT116 cell suspension (25 μl) was added to a capless microcentrifuge tube along with Muse 

Count & Viability Reagent (225 μl). The sample was incubated for 5 minutes at room 

temperature to allow for cell staining to occur. After mixing the sample using a vortex mixer, the 

tube with stained cells was analyzed using the Guava Muse Cell Analyzer. The results from this 

procedure were used to make proper volume calculations for the alamarBlue Assay experiment. 

 

2.3 Alamarblue® Cell Viability Assay Reagent  

2.3.1 Principle 

To find suitable seeding densities for the cell line HCT116, the alamarBlue viability test was 

conducted using the alamarBlue Cell Viability Reagent, which contains the REDOX indicator 

resazurin. This indicator displays fluorescence and colorimetric change from blue (oxidized 

form) to pink (reduced form), resulting from the metabolic activity caused by cellular growth 

(ThermoFisher, alamarBlue® Assay). 

 

2.3.2 Procedure  

The HCT116 cells were split using Trypsin in a T75 flask and the suspension (4.5 ml) was 

poured into a 15 ml tube. This tube was centrifuged for 5 minutes to separate the cell pellet. The 

remaining medium was extracted from the tube. A new calculated volume of medium was added 

using results from the Muse count viability test. Appropriate cell suspension volumes for 10 000, 
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15 000, 20 000, 25 000 and 30 000 viable cells/mL were found by further calculations. These 

were added to six Eppendorf tubes numbered 0, 10, 15, 20, 25 and 30.  

Thereafter, cell suspensions of 100 μl were added to their assigned wells in a 96-well plate with 

increasing cell number downwards. PBS (110 μl) was added to all remaining wells except for the 

four corner wells. The cell plate was incubated at 37 °C for 48 hours. After incubation, 

alamarBlue (300 μl) was added into an Eppendorf tube and incubated at 37 °C for 5 minutes. 10 

μl of this reagent was then added to the wells containing cell suspension and the content was 

mixed by gently tapping the plate. Resorufin, positive control (110 μl), was added to the four 

corner wells.  

After 4 hours of incubation at 37 °C, the plate was analyzed using a SpectraMax Paradigm 

Multi-Mode Microplate Reader. Here, the fluorescence was measured with excitation 

wavelength at 540 nm and emission wavelength at 590 nm.  The results were plot into excel to 

generate graphs.  

 

2.4 Cell Counting Kit-8 (CCK-8) 

The Cell Counting Kit-8 (CCK-8) was used to determine cell viability in HCT116 cells subjected 

to metformin treatment. This viability assay contains the highly water-soluble tetrazolium salt 

(WST-8), which can be reduced by dehydrogenases in cells to form the orange product 

formazan. From this, the number of viable cells can be determined by the intensity of the orange 

color, as they are proportional to one another (Dojindo, Cell Counting Kit-8 - Technical 

Manual). 

 

2.5 Metformin Treatment 

2.5.1 Preparation of Metformin 

1.4 ml metformin stock solution of 250 mM was prepared in MQ water. Thereafter, 1 mM, 5 

mM and 10 mM metformin solution was made in complete medium.  

The following formulas were used for the calculations: 

𝑛 = 𝐶 𝑥 𝑉    (1) 

𝑚 = 𝑛 𝑥 𝑀    (2) 
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𝐶1𝑉1 = 𝐶2𝑉2     (3) 

Moles of metformin was calculated using formula (1): 

𝑛 = 0.250 𝑥 0.0014 𝐿 = 0.00035 𝑚𝑜𝑙𝑒𝑠 

Mass of metformin was calculated using formula (2): 

𝑚 = 0.00035 𝑥 129.164 = 0.0452074 𝑔𝑟𝑎𝑚𝑠 

1 mM metformin using formula (3): (repeated for 5 mM and 10 mM) 

250 𝑥 𝑉1 = 1 𝑥 1.4    𝑉1 =
1 𝑥 1.4

250
= 0.0056 𝑚𝑙 = 5.6 µl 

 1 𝑚𝑀 𝑀𝑒𝑡𝑓𝑜𝑟𝑚𝑖𝑛 = 1394.4 µl medium + 5.6 µl Metformin 

 

2.5.2 Procedure 

The HCT116 cells were seeded at a density of 5.0 × 103 cells/well in two 96-well plates. This 

was determined as an appropriate seeding density by the previous AlamarBlue assay 

experiments. It was added 5000 cells/100µl to 30 wells in each plate. After allowing the cells to 

attach for 24 hours, the medium was removed from these wells.  

Thereafter, fresh complete DMEM was added along with the various treatments to a total volume 

of 100µl/well. It was added six replicates of each treatment. This included six replicates of 

complete DMEM, complete DMEM with MQ water, 1 mM Metformin, 5 mM Metformin and 10 

mM Metformin, as shown in Figure 3. To the four corner wells 110µl positive control 

(Resorufin) was added. 110µl PBS was added to all the remaining wells.  

The first 96-well plate was treated for 24 hours. Thereafter, the suspensions in the 30 wells were 

subjected to two different viability assays, alamarBlue and CCK-8, after removing the 

treatments. AlamarBlue (10µl) and medium (100µl) were added to the top three replicates of 

each treatment, indicated by the blue color in Figure 3. CCK-8 (10µl) and medium (100µl) were 

added to the bottom three replicates of each treatment, indicated by the pink color in Figure 3. 

The second plate was treated for 48 hours before performing the same viability assays as 

explained above.  

After performing the viability assays, the plates were incubated for 4 hours of incubation at 37 

°C. Thereafter, they were analyzed in a SpectraMax Paradigm Multi-Mode Microplate Reader. 
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Here, the fluorescence of the cells treated with alamarBlue was measured with excitation 

wavelength at 540 nm and emission wavelength at 590 nm. The absorbance of the cells treated 

with CCK-8 was measured at 450 nm. 

Figure 3: Layout of the 96-well plate and the various treatments performed on HCT116 cells (5000 cells/well). 

The treatments were DMEM (control), DMEM & MQ water, 1 mM Metformin, 5 mM Metformin and 10 mM 

Metformin. Two different viability assays were conducted, AlamarBlue (blue) and CCK-8 (pink), on three 

replicates of each treatment. 

 

2.6 Databases & Machine Learning  

For data collection, an assortment of published peer-reviewed articles, exploring metformin as an 

anticancer agent, were studied. The articles mainly involved exposing metformin-treated cancer 

cells to a mitochondrial stress test using a Seahorse Analyzer. In addition, the viability of these 

cells was included. Relevant data were collected from the selected data variables and plotted into 

Excel. The selected data variables were Metformin concentration; Treatment time; Media 

glucose concentration; Viability; OCR basal; OCR oligo; OCR FCCP; OCR ROT/AA; ECAR.  

To analyze the collected data, it was imported into Pandas DataFrame in Python using Google 

Colaboratory. Thereafter, various machine learning models were applied to assess their 

performance and accuracy. First, a linear regression model presenting the relationship between 

metformin concentration and viability was constructed using python and machine learning. This 

was to assess any existing trends that could be further used to make predictions regarding the 

cellular response to metformin. The correlation between each variable in the dataset was also 

found by creating a correlation matrix. To train support vector machine algorithms, 70 % of the 
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data was divided into training sets, while 30 % of the data was divided into testing sets. 

Thereafter, SVM with various kernels was applied and the accuracy of each model was 

determined.   

 

3 Results 

3.1 AlamarBlue Assay – Seeding Density  

To find the appropriate seeding density of HCT116 for the metformin treatments, AlamarBlue 

assay was performed on cells of various seeding densities. It was observed that the fluorescence 

rapidly increased until they reached a seeding density of approximately 10 000 cells/well (Fig.4). 

Thereafter, the fluorescence remained quite steady with only slight rises at various points. As the 

graph particularly showed a rapid increase at 5000 cells/well, it was determined as an appropriate 

seeding density to use for the upcoming metformin treatments. 

 

3.2 Metformin Treatment of HCT116 

The influence of metformin on the metabolic activity and viability of HCT116 cells was 

determined by performing AlamarBlue and CCK-8 assays to measure fluorescence and 

Figure 4: Measurement of fluorescence in HCT116 cells seeded at 0, 10000, 15000, 20000, 25000 and 30000 

cells/well. The cell suspensions were incubated at 37°C  for 48 h, before being incubated with AlamarBlue Viability 

Assay reagent for 4 h. Fluorescence was measured at wavelengths 540 nm (excitation) and 590 nm (emission) using 

a SpectraMax Paradigm Multi-Mode Microplate Reader. Three trials were performed. 
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absorbance, respectively.  In the first trial, there was an evident decreasing trend in cell viability 

as metformin concentration increased, although some inconsistencies were observed (Fig.5).  

After 24 hours of treatment using AlamarBlue assay, the viability displayed a slow and gradual 

decreasing trend (Fig.5A). The cells treated with 10 mM metformin diverged slightly from this 

trend as they displayed somewhat higher viability than those treated with 5 mM metformin. 

Meanwhile, after 48 hours of treatment, there was a more pronounced decrease in viability.  

Viability measured after 24 hours using CCK-8 assay also displayed a slow and steady decrease 

(Fig.5B). There were some inconsistencies as the viability increased slightly at 5 mM metformin 

treatment before decreasing again at 10 mM metformin treatment, most likely due to technical 

errors.  After 48 hours of treatment, there was a rapid decrease in viability of cells treated with 1 

mM metformin compared to treatment with MQ water. However, this decrease stabilized as the 

metformin concentration was further increased.  

 

In the second trial, the viability displayed somewhat irregular trends (Fig.6). Here, the 

measurements after 24 hours using AlamarBlue Assay showed how viability decreased in cells 

treated with 1 mM and 5 mM metformin while increasing after treatment with 10 mM (Fig.6A). 

There was also an increase in viability after MQ treatment compared to control. In the viability 

measured after 48 hours, the cells treated with MQ water and 1 mM MET exhibited higher 

Figure 5: First trial of seeding HCT116 cells with MQ water, 1mM metformin, 5mM metformin and 10 mM metformin for 24 h (blue) 

and 48 h (purple). The cell viability was determined by performing AlamarBlue Assay (A) and CCK-8 Assay (B). All values were 

normalized to control. Relative standard deviation (%) is included. 
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viability than the control. Thereafter, the viability decreased gradually at higher metformin 

concentrations.  

The viability measured after 24 hours using CCK-8 Assay displayed a slowly decreasing trend, 

apart from cells treated with 10 mM metformin that exhibited slight elevations in viability 

(Fig.6B). In cells treated for 48 hours, the viability decreased at higher concentrations of 

metformin. However, it appears that cells treated with MQ water displayed a greater decrease in 

viability in comparison to those treated with 1 mM metformin.  

 

3.3 Databases – Machine Learning Models 

Table 2: The variables in the database used to generate machine learning models, including 

descriptions of all its statistical functions. 

To achieve a better understanding regarding the effect of metformin concentrations on cell 

viability, their relationship was examined by a linear regression model developed using machine 

Figure 6: Second trial of seeding HCT116 cells with MQ water, 1mM metformin, 5mM metformin and 10 mM metformin for 24 h 

(blue) and 48 h (purple). The cell viability was determined by performing AlamarBlue Assay (A) and CCK-8 Assay (B). All values 

were normalized to control. Relative standard deviation (%) is included. 
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learning (Fig.7). The model displayed a slight negative correlation between these variables. By 

developing a correlation matrix in Python, the correlation coefficients between each variable in 

the dataset were established (Fig.8). The correlation coefficient (r) between viability and 

metformin concentration was found to be -0.21. As expected, this matrix also displays the 

positive correlation between the OCR values from the mitochondrial stress test using Seahorse 

Analyzer.  

Figure 7: Simple linear regression model between viability (%) and metformin concentration (mM) 

collected from various published articles regarding metformin treatment of cancer cells.   

 
Figure 8: A correlation matrix developed using Python which displays the correlation coefficients between 

each variable in the database. 
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Support vector machine algorithms were applied after the data was divided into training and 

testing sets. As presented in table 3, the application of different SVM algorithms exhibited 

different accuracies depending on the kernel function. The application of the default linear kernel 

led to the highest accuracy of 86.9 %. Meanwhile, the usage of a polynomial kernel resulted in 

the lowest accurate model with 56.6 %. Algorithms with a default hyperparameter and RBF 

kernel displayed similar accuracies of ≈ 70%. 

 

Table 3: The accuracy of support vector machine algorithms when applied to the database. 

 

4 Discussion 

4.1 Metformin Treatment of HCT116 

After determining 5000 cells/well to be a suitable seeding density for the HCT116 cells, 

AlamarBlue and CCK-8 assays were performed on cells treated with MQ water and varying 

concentrations of metformin. For both these assays, two trials were performed and the cell 

viability was examined after 24 and 48 hours after treatment. As mentioned in the methods 

section, alamarBlue assay and CCK-8 measure viability in two different forms. While 

alamarBlue assay quantitatively measures metabolic activity, CCK-8 directly determines the 

number of viable cells. By taking this into consideration, the results of these assays can be better 

understood. In the first trial, a clear decreasing trend was observed in the 24-hour and 48-hour 

treatments of both assays (Fig.5). There appeared to be a correlation between decreasing 

metabolic activity/viability in cells and increasing metformin concentration. It was also apparent 

that the decrease in viability was at a greater extent in cells treated for a longer period. Unlike the 

gradual decrease after 24-hour treatments, the cells treated for 48 hours displayed a more 

pronounced decrease in viability. While viability was only reduced to ≤ 80% after 24 hours of 10 

mM metformin treatment, 48-hour treatments reduced the viability to ≤ 60 %.  Also, the viability 

Support vector machine algorithms Accuracy of model  

Default hyperparameter 70 % 

Default linear kernel 86.9 % 

RBF kernel 69.7 % 

Polynomial kernel 56.6 % 
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measured with CCK-8 assay after 48-hours was especially lower than that of alamarBlue assay. 

Based on this, it can be presumed that cancer cells treated with metformin may still exhibit 

somewhat high metabolic activity even though less viable cells are present.  

Despite the decreasing trend in the first trial, there were some instances where cells treated with 

5 mM and 10 mM displayed a slight increase in viability. However, these rises were marginal 

and presumably due to technical errors. There were possibly some variations in the number of 

cells seeded into the wells. This may have occurred when aspirating the medium before adding 

the treatments, as some cells may also have been removed from the wells, which could have 

resulted in more cells being present in some of the wells.   

The second trial displayed somewhat varying trends, although a decreasing trend was observed 

in certain areas (Fig.6). There was a gradual decrease in viability in those treated with 1 mM and 

5 mM for 24 hours. However, in both charts (Fig.6A and Fig.6B), the cells treated with 10 mM 

metformin exhibited higher viability than those treated with 5 mM. As this was primarily 

observed in the AlamarBlue assay, this increase does not necessarily mean that there were more 

viable cells in the 10 mM, but rather that these cells were exhibiting higher levels of metabolic 

activity.  

The correlation between declining viability and increasing metformin concentration was more 

evident in the 48-hour treatments of the second trial. Yet, it was also observed that the cells 

treated with 1 mM metformin for 48 hours hardly seemed to be affected. In one instance, the 

cells treated with 1 mM metformin even exhibited higher viability than the untreated control 

cells (Fig.6A). This could imply that HCT116 cells are not very sensitive to metformin at lower 

concentrations. In the viability measured by performing a CCK-8 assay (Fig.6B), there appeared 

to be a more accelerated decrease in viability at higher concentrations of metformin. Here, a 10 

mM treatment for 48 hours resulted in a viability of 35 %, which is considerably lower than the 

60 % viability that was observed in the first trial.  

 

4.2 Machine Learning  

The negative linear relationship between metformin concentration and cellular viability was 

found using linear regression (Fig.7). As the correlation coefficient was found to be -0.21, it can 
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be established that this was a weak negative correlation. The graph seemed to be somewhat 

cluttered with numerous inconsistencies. These inconsistencies can be explained by the fact that 

the database included data from various cell lines of different organisms. From this, it can be 

presumed that cells of different origins display varying tolerance to metformin concentration. In 

the dataset, the highest metformin concentration was 75 mM, which is an unachievable dosage in 

humans (Table 2). If the data were organized according to the organism, perhaps a more 

representative model could be developed. This model could then be used to find possible 

treatments for humans. Furthermore, such models could also be used to find suitable drug 

combinations that would result in the best inhibition of cancer cell proliferation. 

To find suitable SVM models that could be used to make accurate predictions, SVM algorithms 

with different kernels functions were applied. The polynomial kernel function led to the model 

with the poorest performance and lowest accuracy of 56.6 %. Also, while RBF kernel functions 

are often preferred, it exhibited slightly poor performance in this case with an accuracy of 69.7 

%. These reduced performances may be due to the underfitting of the data. The database 

contained multiple gaps, which could have prevented these algorithms from perceiving a proper 

trend. It was the SVM algorithm with the default linear kernel that had the highest accuracy of 

86.9 %. While this algorithm displays high performance, the model could be further improved by 

collecting larger samples of data. The variations in the performance of different SVM algorithms 

display how essential it is to pick the right kernel function to produce a model that can make 

predictions of high accuracy. From the high performance of the SVM algorithm with default 

linear kernel, it can be understood that machine learning has great potential to predict accurate 

drug responses of cancer cells.  

5 Conclusion 

5.1 Conclusion 

By applying different machine learning algorithms to the database it was evident that predictions 

could be made regarding the response of cancer cells to metformin. From the weak negative 

correlation observed between cell viability and metformin concentration, it can be predicted how 

the cells would respond at higher concentrations of metformin. Support vector machine models 

also showed that they can be trained to make accurate predictions provided that the best-suited 
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kernel function is used. As the highest accuracy was 86.9 %, it is apparent that there is scope for 

improvement. It could especially be improved by adding larger amounts of data to the database, 

as this would enhance the clarity of the trend.  

The effect of metformin on the viability of cancer cells observed in the dataset was also 

confirmed by exposing the colorectal cell line HCT116 to metformin. HCT116 established 

sensitivity to metformin treatment by displaying a decline in cell viability. It was notably evident 

that exposure to metformin for a longer period had a greater effect, as there were fewer viable 

cells present after 48-hours-treatments. Furthermore, there was predominantly a decreasing trend 

in viability as metformin concentrations were increased.  

In conclusion, while the machine learning models displayed great potential to make predictions 

regarding cellular response, it was implied that various factors must be considered to ensure the 

development of an accurate model. 

 

5.2 Future Perspectives 

The implementation of machine learning models to predict the drug response of cancer cells can 

lead to formulations of new potential cancer treatments. It can be predicted how cell lines 

respond to individual drugs in comparison to a combination of drugs. The drug responses can 

also expand our knowledge regarding various mechanisms in cancer cell metabolism. As 

machine learning enables the usage of multiple variables, prediction models of greater accuracy 

can be developed. This can further be enhanced by combining multiple collections of databases. 

Going forward, more data can be collected as increasing numbers of studies are conducted. 

Subsequently, machine learning algorithms can be trained to create highly accurate models.  
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7 Appendices 

7.1 Coding – Support Vector Machines 

Figure 7.1.1: The coding used to find the accuracy of various SVM models when applied to the database. 
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Figure 7.1.2: The coding used to divide the data into training and testing sets, before training the data. 

 

7.2 Coding - Linear Regression and Correlation matrix 

Figure 7.2.1: The coding used to develop a linear regression model and a correlation map. 
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