

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Spring semester, 20......

Open / Restricted access

Writer:

…………………………………………

(Writer’s signature)
Faculty supervisor:

External supervisor(s):

Thesis title:

Credits (ECTS):

Key words:

 Pages: …………………

 + enclosure: …………

 Stavanger, ………………..
 Date/year

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

ii

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Mobile ios/Android app for fake news
detection game

Bachelor’s Thesis in Computer Science
by

Minh Christian Tran
Karam Tamim Yanis

Internal Supervisors

Vinay Jayarama Setty
Supervisor 2

External Supervisors

External Supervisor 1
External Supervisor 2

Reviewers

Reviewer1
Reviewer2

May 14, 2021

“A delayed game is eventually good, but a rushed game is forever bad.”

Shigeru Miyamoto

Abstract

The surge of fake news have risen drastically with the increasing popularity of social
media and forums as of late causing major threats to various agencies and sectors, and
as more fake news starts to take over mainstream media, readers have also become
less critical to what they are reading. This problem has led people to blindly believe
everything they read and in some cases even create their own conspiracy theories about
certain topics. These actions often leads to major misunderstandings and could cause
major damage to everyone if it gets to extreme. In this work we propose a mobile
application that educates the users about detecting fake news in a form of a game. Its
purpose is to make the users more critical to what they are reading as well as educate
the users about current hot topics that flows around in mainstream media.

The point of this mobile application is to create a game where the player has to guess if
the claim is true or false based on the evidence given to the player. Less time needed to
guess the correct answer results in a higher score.

Singleplayer game: A user plays as the guesser while the computer acts as the proposer
that selects hints to show the guesser. At the singleplayer game, you have to ask for the
hints yourself. The proposer uses an algorithm that selects hints at random.

Multiplayer game: A user can either create a new game or join an existing game with
one or several players depending on how big the creator of the lobby chose to make the
lobby. If a new game is created, the user is given the role as proposer and have to wait
until the lobby is full before the game can start.

When the game starts, the proposer is presented with a claim and a hint given by the
proposer. The guesser then have to guess whether the claim is true or false. If the answer
is wrong, the user receive zero points. If the guesser makes a correct answer, the guesser
is rewarded with points that vary on how fast the guesser managed to guess the correct
answer. The proposer gets their score calculated by the average score of the guessers.

Acknowledgements

We would like to thank our supervisor Vinay Jayarama Setty at the Department of
Electrical Engineering and Computer Science at University of Stavanger. Creating
our first ever mobile application without any prior experience seemed really difficult.
Thankfully did his guidance and expertise help us throughout the thesis.

viii

Contents

Abstract vi

Acknowledgements viii

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Outline . 2

2 Theoretical Background 5
2.1 Introduction . 5
2.2 Related Work . 5
2.3 The history of Mobil App and fake news . 5
2.4 Game theory . 6
2.5 Flutter . 7
2.6 Django . 7
2.7 Swagger . 8

3 Server 11
3.1 Introduction . 11
3.2 API . 11

3.2.1 Django Rest Api . 12
3.2.2 Request and Response . 13
3.2.3 POST . 13
3.2.4 GET . 15
3.2.5 PUT . 16

3.3 Docker . 17
3.4 website (Host and Domain) . 18

4 Backend Mobile Application 21
4.1 Data Scraping . 21

4.1.1 Web Scraper . 21

ix

x CONTENTS

4.2 Database . 22
4.2.1 Models . 23
4.2.2 QuerySets . 26

4.3 Design patterns . 31

5 Frontend Mobile Application 37
5.1 Introduction . 37
5.2 Choice of mobile OS and framework . 38
5.3 Script functionalities . 38

5.3.1 Login and register . 38
5.3.2 Home page . 39
5.3.3 Singleplayer . 41
5.3.4 Multiplayer . 45

5.4 Communication between scripts . 47

6 Experimental evaluation 49
6.1 Introduction . 49
6.2 Singleplayer results . 49
6.3 Multiplayer results . 51
6.4 User feedback . 52

7 Discussion 53
7.1 Problems and Challenges . 53

7.1.1 Handle Huge data . 53
7.1.2 Testing and Production ready app . 53
7.1.3 MacBook X-code . 54
7.1.4 Learning flutter/dart . 54
7.1.5 build database and github . 54
7.1.6 Handle new request: Word Tokenizer 55

7.2 Further work . 55
7.2.1 Automation and Deployment . 55

7.3 Conclusion . 56

List of Figures 56

Bibliography 59

Abbreviations

UI User Interface

OS Operating System

API Application Programming Inteface

SDK Software Development Kit

REST REpresentational State Transfer

JSON List Abbreviations Here

CPU Central Processing Unit

PHP Hypertext Preprocessor

SQL Structured Query Language

ORM Object Relational Mapper

URL Uniform Resource Locator

HTTP HHyperText Transfer PProtocol

HTTPS HHyperText Transfer PProtocol Secure

SSL Secure Sockets Layer

xi

Chapter 1

Introduction

1.1 Motivation

In the information era we live in today, where information is crucial among people, being
fed misinformation can cause dangerous situations in our society. As new information
and stories keep getting published at a faster rate without verification, figuring out what
is true and what is false becomes increasingly harder to do. Fake news has gone from
being sent via emails to practically being everywhere on the Internet, especially in social
medias. In the 21th century, the ability to create fake news has never been easier than
before thanks to the popularity of social media. People are able to generate financial
profits through social media by deceiving readers into clicking links, thus maximizing
traffic and profit. Creating fake news has even become a job for some as generating profit
and spreading those fake news has become so easy[1].
According to Dictionary.com, the definition to fake news is: "false news stories, often
of a sensational nature, created to be widely shared or distributed for the purpose of
generating revenue, or promoting or discrediting a public figure, political movement,
company, etc"[2]. Social medias such as Facebook, twitter, Instagram and blogs have
recently become popular news providers, and along with the rise of news on social media,
fake news become more prevalent. Teens, especially, are vulnerable to these fake news as
they tend to use social media to read news and observe what is happening in the world.
Fake news has become frighteningly leaked in many countries of world to spread an
atmosphere of panic and fear of disease or to mix facts about the Corona pandemic and
Corona vaccine, as the period of crisis is the best environment for the emergence of fake
news. As the pandemic is ongoing, having fake news about the pandemic being spread
around is the last thing we need as it will only apply gasoline to the fire. If fake news is
able to carry as much power as it has on a daily basis, it is only a matter of time before

1

Abbreviations Chapter 1 Introduction

society crumbles. People, especially teenagers and future generations should be able to
distinguish the fake news they read on the internet from real ones. This mobile game
should help educate people in a fun and interesting way. Thus, the goal is to create a
mobile game that can educate its users about what trending news is fake and what is
not.

1.2 Goal

There are websites such as https://www.politifact.com/ who does manual fact check-
ing on mainstream topics and then publish articles that explain why they are fake news
or not. These websites does fact checking by manually gathering evidence and sources as
to whether claims and statements flowing around in the internet is true or not. These
articles can sometimes be a bit tiring and boring to read and are not so appealing to
younger audiences.
The first goal of the present thesis is to create a fun way to read and learn about fake
news. Instead of just reading about the news, the user can instead try out their own
knowledge about the world news and test out their ability to detect fake news. The user
will become more educated about subjects flying around in the internet while still have
fun doing so. The game can be played both alone and with friends, making it a fun party
game where you can test your knowledge against your friends as well as an educational
activity.
The second goal is to collect data about what the average users think is important in
detecting fake news as well as how informed the users are regarding fake news flowing
around the internet.

1.3 Outline

The thesis is outlined as follows:
Chapter 2 introduces the background theory about the thesis. The focus is especially
on tools used in the thesis.
Chapter 3 describes the different components of the server.
Chapter 4 describes the backend of the application.
Chapter 5 describes the frontend of the application.
Chapter 6 is the experimental evaluation
Chapter 7 is the discussion part of the thesis.

https://www.politifact.com/

Abbreviations 3

Link to the github of the project:
Frontend: https://github.com/Mintra99/BachelorOppgave

Backend: https://github.com/karamyanes/fakenews-app.com

API scraper: https://github.com/karamyanes/politifact-scraper

Website: https://fakenews-app.com/admin/

username: karam, password: karam

https://github.com/Mintra99/BachelorOppgave
https://github.com/karamyanes/fakenews-app.com
https://github.com/karamyanes/politifact-scraper
https://fakenews-app.com/admin/

Chapter 2

Theoretical Background

2.1 Introduction

This chapters goal is to present the background material related to this project as well
as an introduction to the frameworks used to create the application. The development of
the application will be explained more in depth later in chapter 4 and 5.

2.2 Related Work

There are some related work in terms of fake news games. Bad News, Fake It to Make It
and Factitious are games that was created to train and sensitize readers to detect and
stay immune to fake news[3–5]. Bad News and Fake It to Make It are games that gives
the players a firsthand experience about what goes into creating fake news and how it is
spread. Factitious is a game more similar to the mobile application we are creating in
that the game gives a real news article the player then have to decide whether the article
is true or not. Researchers and journalists who with their knowledge and experience,
have designed these games to make people more conscious of fake news distribution and
how to detect them.

2.3 The history of Mobil App and fake news

If you go back to the history of mobile apps, you can clearly know that some Java games,
calculator or monthly calendar were all under the mobile app category.
These things weren’t called “applications” at the time, and are generally referred to
as “features” in the “Mobile Office” section of the phone, for example this alarm clock

5

Abbreviations Chapter 2 Theoretical Background

(app). Earlier it was some Java games, calculator, or calendar is all under the mobile
app category, and Nokia is still remembered for the popular Snake game on some of its
older phones.
Then Apple App Store launched with 500 apps, meaning there is no “true” first app.
Then Google followed Apple and launched Google Play.[6]
In 2017, ‘fake news’ became Collins Dictionary’s word of the year and it’s remained in
the headlines ever since. Although the phrase might appear to be a modern invention,
examples of it can be found throughout history.
Propaganda has been used in wars throughout history to try and change people’s views.
This is a type of fake news where false information is used for political gain. It can
help change public opinion by persuading people that their country should go to war, or
convince them the other side is their enemy.
In recent years, there has been an explosion of fake news as false stories are shared widely
on social media without being fact-checked. Cheap and portable access to the internet
across the globe means stories can spread in a matter of seconds and minutes rather
than days or weeks. Many of these stories are completely made up and can make money
from advertising - the more clicks a website gets, the more money it makes.[7]
In Belgium Police clash with April/2021 Fool’s Day party crowd.dispersed some 2,000
people gathered in the "Bois de La Cambre" park in Brussels in defiance of Belgium’s
coronavirus lockdown.Thousands showed up at the fake concert, which promised a perfor-
mance by producer Calvin Harris and a one-off reunion of French band Daft Punk.The
party was announced on Facebook.[8]
The future of fake news is more dangerous because videos were usually a fairly reliable
source of news, as they can’t be faked as easily as a photograph or headline. However,
the reliability of video sources is now under threat from deepfakes. These are videos
that use computer software and machine learning to create a digital version of someone.
Normally it’s used to put the face of a celebrity or politician on to someone else’s body.[7]

2.4 Game theory

Game theory is a study of mathematical models of how the human brain solves problems.
Game theory have applications in fields like social science, logic, system science and
computer science[9]. Game theory was given its first general mathematical formulation by
John Von Neuman and Oskar Morgenstern in 1944 with the intention of understanding
strategy[10]. The main focus of game theory is to serve as a model of interactive situation
among rational players. Interactive decision-making, where the outcome depends on the
action of each participant is key to this theory.

Abbreviations 7

In any situation with more than two participants involved with known payouts or
consequences, game theory can be applied, whether it is a real life situation or not.
Today, most businesses and economics use Game theory as a way to predict future
outcomes and to maximise their profits based on their predicted outcomes. Still, there
are limitations to game theory. The issue with game theory is that it relies on the
assumption that people are rational thinkers with self-interest in mind[11]. Game theory
can therefore not account for situation where people decides not to cooperate with
common logic and do irrational decisions.

2.5 Flutter

Flutter is an open-source UI , software development kit created by Google. It is made
for the purpose of developing applications for OS like Android, iOS, Linux and Windows
to name a few. Flutter apps are written in their own language called Dart. Flutter
also have an engine which is primarily written in C++ and provides low-level rendering
support using Skia graphics library. Flutter was used to create the application as well as
designing the front-end of everything in the application.
Flutter consists of two important parts:
1- An SDK : A collection of tools that are going to help you develop your applications.
This includes tools to compile your code into native machine code (code for iOS and
Android).
2- A Framework UI: A collection of reusable UI elements (buttons, text inputs, sliders,
and so on) that you can personalize for your own needs.
To develop with Flutter, you will use a programming language called Dart. The language
was created by Google in October 2011, but it has improved a lot over these past years.
Dart is a client-optimized language for developing fast apps on any platform. Its goal
is to offer the most productive programming language for multi-platform development,
paired with a flexible execution runtime platform for app frameworks. Dart provides
the Flutter and runtimes that power Flutter apps, but Dart also supports many core
developer tasks like formatting, analyzing, and testing code.

2.6 Django

It is a free and open source web framework. Web frameworks provide tools and libraries
to simplify common web development operation, after that we need to add our piece of
code , so the problem will be solved and this make programming much easier.

Abbreviations Chapter 2 Theoretical Background

Django written in the Python programming language, established in 2005, and its main
goals are to facilitate the process of developing complex web sites, in addition to that it
adopts the MVT-MVC architecture system to build projects (models that deal with data,
presentations and determine the data that will be presented, as for Templates determine
how the display appears on the browser). Main advantages of Django:
1- Fast: it won’t take long to code your ideas. Django is an ideal solution for developers
who focus on productivity and get their work done on time without a hassle.
2- Tons of packages: Django includes dozens of extra you can use to handle common
web development tasks.
3- Security: Django is strong in this respect as well, as it creates excellent solutions to
many potential problems, such as SQL injection, fraud vulnerabilities and more.
4- Scalability: Django provides innovative solutions to congestion problems.
5- Versatile: Django is used to build all sort of things from content management systems
to social networks to scientific computing platforms.
There are several other web frameworks that compete with Django now,including those
written in Python as the Flask framework, and others in other languages, the most
important of which are: Laravel written in PHP, and the Ruby on Rails framework for
the programming language.

2.7 Swagger

Swagger UI allows anyone to be it your development team or your end consumers to
visualize and interact with the GlsAPI’s resources without having any of the implemen-
tation logic in place. It’s automatically generated from your Open API (formerly known
as Swagger) Specification, with the visual documentation making it easy for back end
implementation and client side consumption.[12]
Swagger automatically captured the details from the GlsAPI, it reads the various methods
presents in the API and put together in a flexible UI screen and if there is any change in
the REST API it automatically read the updated code and update the swagger UI just
by restarting the application.
Benefits of Swagger:
In addition to its goal of standardizing and simplifying API practices, a few additional
benefits of Swagger are:
1- It has a friendly user interface that maps out the blueprint for GlsAPIs.Documentation
is comprehensible for both developers and non-developers like clients or project managers.
2- Specifications are human and machine readable.
3- Generates interactive, easily testable documentation.

Abbreviations 9

4- Supports the creation of API libraries in over 40 languages.
5- Format is acceptable in JSON and YAML to enable easier edits.
6- Helps automate API-related processes.[13]

Chapter 3

Server

3.1 Introduction

The server served as an API for the mobile application. Requested data such as claims,
sources and hints from the application is gathered by the server and ready to be displayed
to the user when starting a game of fake news detection. This chapter explains how the
server side and API of the application operates.

3.2 API

In a client-server communication, REST suggests to create an object of the data requested
by the client and send the values of the object in response to the user. It is simple and
standardized approach of communication, it is scalable and stateless and it has high
performance and support caching.
Postman is a collaboration platform for API development. Postman’s features simplify
each step of building an API and streamline collaboration so you can create better
APIs—faster.[14]This is done by allowing users to create and save simple and complex
HTTP/s requests. It has the ability to make various types of HTTP requests(GET,
POST, PUT, PATCH), as well as read their responses. The result - more efficient and
less tedious work. Converting the API to code for various languages(like JavaScript,
Python).
As well, Swagger automatically captured the details from the API.

11

Abbreviations Chapter 3 Server

Figure 3.1: Request and Response by using Postman

3.2.1 Django Rest Api

• HTTP requests will be matched by Url Patterns and passed to the Views.

• Views processes the HTTP requests and returns HTTP responses (with the help of
Serializer).

• Serializer serializes/deserializes data model objects.

• Models contains essential fields and behaviors for CRUD Operations with Database.[15]

Abbreviations 13

Figure 3.2: Django Rest Api Architecture

3.2.2 Request and Response

Request start with the end point for example https://fakenews-app.com/api/users/register,
"register" is known as recourse and recourse is important for REST API, Request is send
from the client to the server and the Respond is received back from the server.
CRUD stands for Create, Read, Update, and Delete. But put more simply, in regards to
its use in RESTful APIs, CRUD is the standardized use of HTTP Action Verbs. This
means that if you want to create a new record you should be using “POST.” If you are
trying to read a record, you should be using “GET.” To update a record utilizing “PUT”
or “PATCH.” And to delete a record, using “DELETE”.[16]
Request has an operation (GET,POST,PUT,DELETE), and should has end point
(http://localhost:3000/api/users/register), and might also has parameters or body ("user-
name": "karam","password": "karam", "email": "karam@hotmail.com"), and finally header
this is a special part of API Request which might have things like an API key or some
Authentication data.
Response will come in form of JSON data.

3.2.3 POST

Whenever create a form that alters data server-side, use method="post". The user have
the option to create a lobby when playing multiplayer. When creating the lobby, the
database receive several POST requests from the applications frontend. The first POST
request the database receive from the API when creating the lobby is a POST request

Abbreviations Chapter 3 Server

containing the lobby name, number of players and a list of the claims that are going to
be used in the lobby. This POST request is done by two functions called "createGame"
and "addGameQuestions".
The createGame function is responsible for creating the lobby and sends to the database
lobby name and lobby size.The endpoint for POST method: $serverUrl/game/Endpoint
Name/. Endpoint need a body to enter the data required to determine the name of the
game and the number of players.
Where:

• $serverUrl:"https://fakenews-app.com/api".

• Endpoint Name : game_name.

Body:

• game_name: $game_name that the creator of the game choose it.

• num_of_players: $number the creator of the game decide how many player will
play.

createGame (String game_name , String numPlayers , List listOfClaims) async {

String myUrl = " $serverUrl /game/ new_game /";

final response = await http.post(myUrl , headers : {

’Authorization ’: ’Bearer $value ’

}, body: {

" game_name ": " $game_name ",

" num_of_players ": ’$number ’ ,})}

The addGameQuestions function is responsible for adding the claims to said lobby and
sends the database a list of the claims. This data that the database receive is then used
in the backend to create the lobby and add the creator of the game to the lobby.The
endpoint for POST method: $serverUrl/game/Endpoint Name/. Endpoint need a body
to enter the data required to determine the id to the game that the list of claims will be
add to and the id of claims that the list has.
Where:

• $serverUrl:"https://fakenews-app.com/api".

• Endpoint Name : lobby_question.

Body:

• game_id: $gameId the id of the game that the creator has made it.

Abbreviations 15

• question_id: $question_id the id of questions that add to the game

addGameQuestions (List questions) async {

String myUrl = " $serverUrl /game/ lobby_question /";

final response = await http.post(myUrl , headers : {

’Authorization ’: ’Bearer $value ’

}, body: {

" game_id ": " $gameId ",

" question_id ": " $question_id " ,})}

When joining a lobby in multiplayer, there is also one POST request done to the database.
The function joinGame is called when a player joins a lobby. This function performs
a POST request to the database, giving the database the data about which lobby the
player wants to join for the backend to later add the player to said lobby. Whenever the
user answer correctly on a claim in either singleplayer or multiplayer, a POST request is
sent sending the users updated score to the database. In multiplayer, the updated score
by the guesser is then used by the proposer to update their own score through the same
POST request.

3.2.4 GET

Playing either the singleplayer or multiplayer game mode triggers a GET request
from the frontend of the application to the server asking for the hint that are stored
up in the database. The endpoint for GET method: $serverUrl/game/Endpoint-
Name/$gameId/$claimId/
Where:

• $serverUrl:"https://fakenews-app.com/api".

• Endpoint Name : get_hint.

• gameId: is the current game number.

• claimID: is the current claim number.

getHint (int claimId) async {

String myUrl = " $serverUrl /game/ get_hint / $gameId / $claimId /";

if (claimId != null) {

final response = await http.get(myUrl , headers : {

’Authorization ’: ’Bearer $value ’})}

Abbreviations Chapter 3 Server

Algorithm 3.1 GET request for claims
mapResponse: claim, hint, source _usernameController ← TextEditingController()
_passController← TextEditingController()
procedure fitchData(URL)
mapResponse← responseBody

cm, hnt, sorce

The API response contained article metadata, claims, sources and hints.

When playing as the proposer in the multiplayer game mode, a GET request is triggered
at the end of each claim. This GET request gathers the points of the guessers in the
lobby from the database. The gathered score is then used to give the proposer its own
score based on the collective performance of the guessers.

Algorithm 3.2 GET request for score
mapResponse: claim, hint, source userStatus← String status userID← int id
procedure getScore(userStatus, userID)
mapResponse← responseBody

score

.
..
...
....

3.2.5 PUT

Put is used for updating an object. This is an example used the PUT "HTTP method".
For sending claim’s hint, in-case the 1st player (proposer) wants to send a hint for the
other players (guessers) , so they can choose the correct answer for the claim.

Scenario:

• proposer will create a new game ..

• claims will be add by default to start the game and both players will see the same
claims.

• proposer will see a button to send hint to guesser

• Send hint button is a "PUT Method"

Abbreviations 17

• Calls the API with ‘QuestionID‘, ‘GameID‘ and ‘hint‘.

• Method will append the text sent in "Hint" to the API and it will be saved in db,
then guesser will be able to see hint if requested.

The "PUT" method has a body like post method. Also in our case we are keeping our
endpoints restful as much as possible. The endpoint for the send hint "PUT" method:
$serverUrl/game/EndpointName/gameId/claimID/.Endpoint need a body to enter the
data required.

Where:

• $serverUrl:"https://fakenews-app.com/api".

• EndpointName: lobbyDoc.

• gameId: is the current game number.

• claimID: is the current claim number.

body:

• "doc_hint": $docHint to enter the text and saved in db.

addGameClaim (int claimId , String docHint) async {

if (claimId != null) {

final response = await http.put(myUrl , headers : {

’Authorization ’: ’Bearer $value ’

}, body: {

// " game_id ": " $gameId ",

// " question_id ": " $claimId ",

" doc_hint ": " $docHint ",

})}

3.3 Docker

Docker is a tool designed to make it easier to create, deploy, and run applications by
using containers. Containers allow a developer to package up an application with all of
the parts it needs, such as libraries and other dependencies, and deploy it as one package.

Docker is completely compatible with any operating system and most of the program-
ming languages environments. Docker container can deploy to any machine without any
compatibility issue, these containers running in computer or server and act like little

Abbreviations Chapter 3 Server

micro computers with very specific jobs, each with their own operating system and their
own isolated CPU, memory and network resources, and because of this they can be easily
added, removed, stopped and started again without effecting the host machine.
Dockerfile is simple text document that instructs the Docker image that will be built,
image start with word ’FROM’ which can find a container to use from the Dockerhub
and command ’RUN’ to do downloading, installing and running software.

In our case we used containers for:

• Api Python container, which is used for the API REST Methods.

• Database MySQL container, which is used for saving data in MySQL DB using
python API in a local network between API Container MySQL BD container.

• Adminer container, which is used for managing MySQL database.

3.4 website (Host and Domain)

Android studio does not accept API which has local hostURL, so it is necessary to buy
host and domain. Domain Name is website address that people type in the browser bar
to visit site. In other words, if we assume that your website is a home, then your domain
will be its address.A domain name can contain words that make it easy to remember
website addresses, IP address is a combination of numbers separated by point. Usually,
the IP addresses look like this: 66.249.66.1 people cannot remember these numbers and
use them to log onto websites.
Domain names and web hosting are two different services. However, they do work
together.Without domain names, it will be difficult for people to find a website and
without web hosting, no one can create a website in the first place. When someone enters
site’s domain into the browser, the domain (domain name) is converted to the IP address
of the web hosting company’s computer. This computer contains the files for website,
and sends those files back to the users’ browsers.
To let the frontend call the backend by using API, it need Webhosting and since Android
studio connect only with website with a webserver, webhosting is necessary to make the
connection.
Game application is hosted on a Linux servers and on domain name https://fakenews-app.

com/admin/.
Application is working as the following:

• Domain: http://fakenews-app.com/admin/

https://fakenews-app.com/admin/
https://fakenews-app.com/admin/

Abbreviations 19

• PuTTY is a tool , to access server.

• Host: Linux server connected to domain with name servers.

• SSL certificate installed on Linux server.

• Dockers, containers includes our Python API application.

PuTTY is a software terminal emulator for Windows and Linux. It provides a text user
interface to remote computers running any of its supported protocols, including SSH and
Telnet.[17] This tool is used to access, manage and deploy :

• API and MySQL containers .

• Git and git branches from remote github repo.

• SSL certificate and renewing it

Chapter 4

Backend Mobile Application

4.1 Data Scraping

4.1.1 Web Scraper

Data scraping, also known as web scraping, is the process of importing information from
a website into a spreadsheet or local file saved on your computer[17]. It’s one of the most
efficient ways to get data from the web.
In the absence of API for the web that we want to get data from, web scraper is very
important tool for data scientist because the entire internet becomes in form of database.
Sincehttps://www.politifact.com/ has no API to picking up some data, web scraper
will be a great idea to bring the data from https://www.politifact.com/.
Python Beautiful Soup (Bs4) https://pypi.org/project/beautifulsoup4/) li-
brary is specialized for pulling data out of HTML and XML files. Python Beautiful Soup
library makes it easy to scrape information from web pages. It sits atop an HTML or XML
parser, providing Pythonic idioms for iterating, navigating, searching, and modifying the
parse tree. It works with your favorite parser. It commonly saves programmers hours or
days of work.[18]

-

Web Scraper Usage

:
As previously explained that politifact.com does not have an API, the Python Beautiful
Soup (Bs4) output needed for adding the recent and scrapped data from politifact.com

21

https://www.politifact.com/
https://www.politifact.com/
https://pypi.org/project/beautifulsoup4/

Abbreviations Chapter 4 Backend Mobile Application

to the Game. Saving Beautiful Soup output in JSON format. Which was perfect so-
lution in current case, JSON format makes the importing data in Python API more easier.

-

Data Cleaner / Python Tokenize

:
As mentioned previously that Beautiful Soup output in JSON format, So it was very
important to do clean the data before processing it to the format needed in the Python
"data importing process".
Cleaner.py is a simple algorithm that cleans the data generated by Bs4 then applying a
function to tokenize the document hints that will be sent from the Proposer (player1) to
the Guesser (player2).

Here is a sample of cleaner.py script:
import json

import nltk

import time

timestr = time. strftime ("%Y%m%d -%H%M%S")

nltk. download (’punkt ’)

nltk. download (’ averaged_perceptron_tagger ’)

def tokenize (doc_text):

sentences = nltk. sent_tokenize (doc_text)

return sentences

with open (" politifact_claims .json", "r") as jsonFile :

data = json.load(jsonFile)

for d in data:

new_doc = tokenize (d[’fields ’][’doc ’])

if new_doc :

d[’fields ’][’doc ’] = new_doc

else:

d[’fields ’][’doc ’] = ’empty hint ’

jsonFile = open (" politifact_ %s.json" % timestr , "w+") # generating file with timestamp

jsonFile . write (json. dumps (data))

jsonFile . close ()

Now .. Data is ready to be imported synced in Python API database.

4.2 Database

SQL is the language we use to issue command to database

Abbreviations 23

• Create / Insert data

• Read / Select some data

• Update data

• Delete data

Django use ORM which allow us to to map tables to objects and columns, this objects
used to store and retrieve data from the database and commands and run those ORM
improve probability across database dialects (SQlite, MySQL, Postgres, Oracel)

4.2.1 Models

For Django API project, in each application there is a model.py file.
In current case: there is game/models.py note that game application folder.
Main and First class called Lobby and refers to the name of table in SQL with extend
or inherent (models.model) which give a lot of fixtures and functionalities, and then
create a couple of fields that basically says character field models is needed or integer
field models is needed or other kind of models could be needed.
This example model define a Lobby which has game_name, num_of_player , cur-
rent_players and created_at:

from django .db import models

class Lobby (models . Model):

game_name = models . CharField (max_length =20)

num_of_players = models . IntegerField (default =2)

current_players = models . IntegerField (default =0)

created_at = models . DateTimeField (auto_now_add =False , null=True)

python manage .py makemigrations ‘

python manage .py migrate ‘

game_name, num_of_player, current_players and created_at are fields of the model.
Each field is specified as a class attribute, and each attribute maps to a database column.
No need to care about primary key because Django by default gives each model an
auto-increment primary key.
In class answer choices are a sequence of 2-tuples to use as choices for this field. If this is
given, the default form widget will be a select box instead of the standard text field and
will limit choices to the choices given

Abbreviations Chapter 4 Backend Mobile Application

class Answer (models . Model):

STATUS =(

(’true ’,’true ’),

(’ barely true ’,’ barely true ’),

(’false ’,’false ’),

(’ mostly true ’,’ mostly true ’),

(’ pants on fire ’,’ pants on fire ’),

(’half -true ’,’half -true ’),

)

answer_text = models . CharField (max_length =256 , choices = STATUS)

questionid = models . ForeignKey (Question , on_delete = models .CASCADE ,

verbose_name = " related to Question ")

is_correct = models . BooleanField (default = False)

The first element in each tuple is the value that will be stored in the database. The
second element is displayed by the field’s form widget.[19]
where models is class, and CharField is a method within that class and the next step is
to build by called:

• python manage.py run migration then Django will make this table.
manage.py is like the file that start up every thing migration a set of migration
scripts and see that is making these files and their actual files like 0001 initial.py,
and to continue building by called:

• python manage.py run migrate which is reading the migration and changing the
database.

They are kind of Django internal files that no need to write them by the programmer,
but the migrate will read the 0001 initial.py file and actually generated SQL commands
and run those SQL commands for the developer.

Django REST Framework DRF which is a powerful and flexible toolkit built for Django
framework and it used for building and developing restful Web API. Rest Framework help
to get the data from database and output it into format can be read by other technology
like mobile application, so basically this happen when we convert data to json by help
from serializers and postman helps to work test these data.

There are some reasons to use Django REST_Framework:

1. It has a web browsable API is a huge usability win for developers.

Abbreviations 25

2. It has authentication policies

3. It has Serialization that supports both ORM and non-ORM data sources.

4. It has a good documentation and great community support.

Serializer is very important to send data to user which first convert the data to json.
Serializer also provide deserialization, allowing parsed data to be converted back into
complex types.
The first thing creating migration and migrate is to provide a way of serializing and
deserializing the model into representations such as json.There is two main types of
serializer:

• General serializers (serializers class).

• ModelSerializers.

ModelSerializers is less customise than serializers class, but more simple to use.
fields = ’ __all__ ’ to have a serialzer representing all the fields of Lobby model.

from . models import Lobby , Player , Question , Answer , LobbyQuestion

from rest_framework import serializers

class LobbySerializer (serializers . ModelSerializer):

class Meta:

model = Lobby

fields = " __all__ "

Abbreviations Chapter 4 Backend Mobile Application

Figure 4.1: Database

4.2.2 QuerySets

Once data models has been created, Django automatically gives a database-abstraction
API that lets you create, retrieve, update and delete objects.[20]

Create or Post

To create an object, instantiate it using keyword arguments to the model class. At the
first Permission is needed to be sure that only permit user can make Post, Get or Put.
permission_classes = [permissions . IsAuthenticated]

Call is_valid during deserialization process before write data to DB. is_valid perform
validation of input data and confirm that this data contain all required fields and all
fields have correct types. raise_exception=True, this exception and return 400 response
with the provided errors in form of list or dictionary
def post(self , request , *args , ** kwargs):

serializer = self. get_serializer (data= request .data)

serializer . is_valid (raise_exception =True)

Getting the parameter sent in the POST method , and assigning it into question_id
object, getting the parameter sent in the POST method , and assigning it into game_id

Abbreviations 27

object

question_id = request .POST[’ questionid ’]

game_id = request .POST[’game_id ’]

To make query on Question table by primary key is question_id, and query on Player
table where game_id is the game_object that has been get from the parameter sent in
the POST method and user is the current user, and query on Lobby table where primary
key is game_id

current_user = self. request .user

player_obj = Player . objects .get(game_id =game_id , user= current_user)

obj_question = Question . objects .get(pk= question_id)

lobby_obj = Lobby . objects .get(pk= game_id)

Then the guesser will press right or wrong answer, and both possibility should be
checked by getting guesser answer that sent in the POST method and assigning it in
the answer_text object and check this answer with the correct answer that coming from
Question table.Then call save() to save answer to the database.
if request .POST[’ answer_text ’] == obj_question . correct_answer :

answer = serializer .save ()

answer . is_correct = True

answer .save ()

return Response ({

" message " : "your answer is correct ",

" answer " : AnswerListSerializer (answer ,

context =self. get_serializer_context ()). data ,

})

if request .POST[’ answer_text ’] != obj_question . correct_answer :

answer = serializer .save ()

answer . is_correct = False

answer .save ()

return Response ({

" message " : "your answer is wrong " ,

})

The guesser will call this class to submit his answer by endpoint path("answer_game/",
api.MultiPlayerAnswer.as_view()), path in file called game/url.py in the application
folder

Abbreviations Chapter 4 Backend Mobile Application

Figure 4.2: Create or Post

Retrieve or Get

To retrieve objects from database, construct a QuerySet. To retrieve all the available
games that the Player want to join it to start playing, QuerySet is needed.

To make query on Lobby table by filtering the available games in the lobby table, the
filter will check:

• The games which has place for one extra new player, so the the number of players
already join the game should be less that the number of players that the Lobby’s
creator decide.

• The games which have been made for less than one hour

Abbreviations 29

Games that meet the two conditions mentioned above, is available and the player how
want to join he can find it in the frontend. F() expressions, all Python does, through
Django’s F() class, is create the SQL syntax to refer to the field and describe the
operation.
class ListAvailableGames (generics . ListAPIView):

serializer_class = LobbySerializer

def get(self , request):

time_diff = datetime . datetime .now () - datetime . timedelta (hours =1)

queryset = Lobby . objects . filter (

current_players__lt =F(’ num_of_players ’),

created_at__gt = time_diff

)

The object that queryset return it, should convert to serializable Json Object to get
response with out error, and we load the converted object (tmpJson). The player will
call this class by endpoint path("available_game/", api.ListAvailableGames.as_view()).
path in file called game/url.py in the application folder.
tmpJson = serializers . serialize (" json", queryset)

result = json. loads (tmpJson)

if queryset :

return Response ({

" message " : " Games listed successfully ",

" games " : result ,

" status ": status . HTTP_201_CREATED

})

Abbreviations Chapter 4 Backend Mobile Application

Figure 4.3: Get available games

Update or Put

To make query on Lobby table by the question_id (claim_id) and game_id. Whereas,
the id of the game that the players play and the question id (claim id) that appears
to the proposer will determine the field to which the sentence will be added that will
help the guesser to know the correct answer. Getting the parameter sent in the POST
method and assigning it into doc_hint which corresponds with question_object.
question_object = LobbyQuestion . objects .get(question_id = question_id , game_id = game_id)

question_object . doc_hint = request .POST[’doc_hint ’]

question_object .save ()

return Response ({

Abbreviations 31

" message " : "doc updated sucsessfuly ",

" status ": status . HTTP_201_CREATED ,

" doc_hint ": request .POST[’doc_hint ’] ,})

The player will call this class by endpoint path(’lobby_doc/<game_id>/<question_id>/’,
api.LobbyQuestionUpdate.as_view(), name=’LobbyQuestionUpdate’). path in file called
game/url.py in the application folder.

Figure 4.4: Update or Put

4.3 Design patterns

Design patterns are used to represent the pattern used in web / API application. These
patterns are selected based on the requirement analysis. The patterns describe the
solution to the problem, when and where to apply the solution and the consequences of
the implementation.

Structure of a design pattern The documentation of design pattern is maintained in
a way that focuses more on the technology that is used and in what ways. The following

Abbreviations Chapter 4 Backend Mobile Application

diagram explains the basic structure of design pattern documentation.

Python Design Patterns Python is an open source scripting language, which is

Figure 4.5: Design Pattern

high-level, interpreted, interactive and object-oriented. It is designed to be highly read-
able. The syntax of Python language is easy to understand and uses English keywords
frequently.

Features of Python Language In this section, we will learn about the different features
of Python language.

• Interpreted
Python is processed at run-time using the interpreter. There is no need to compile
program before execution. It is similar to PERL and PHP.

• Object-Oriented
Python follows object-oriented style and design patterns. It includes class definition
with various features like encapsulation, polymorphism and many more.

Abbreviations 33

• Portable
Python code written in Windows operating system and can be used in Mac operating
system. The code can be reused and portable as per the requirements.

• Easy to code
Python syntax is easy to understand and code. Any developer can understand
the syntax of Python within few hours. Python can be described as “programmer-
friendly”

• Extensible
If needed, a user can write some of Python code in C language as well. It is also
possible to put python code in source code in different languages like C++. This
makes Python an extensible language.

Pattern Name: (Model View Controller Pattern)
Model View Controller is the most commonly used design pattern. Developers find it
easy to implement this design pattern. It describes the pattern in short and effective
manner.
Benefits of using design pattern:

• Patterns provide developer a selection of tried and tested solutions for the specified
problems.

• All design patterns are language neutral.

• Patterns help to achieve communication and maintain well documentation.

• It includes a record of accomplishment to reduce any technical risk to the project.

• Design patterns are highly flexible to use and easy to understand.

How MVC structure works

• Model
It consists of pure application logic, which interacts with the database. It includes
all the information to represent data to the end user.

• View
View represents the HTML files, which interact with the end user. It represents
the model’s data to user.

• Controller
It acts as an intermediary between view and model. It listens to the events triggered
by view and queries model for the same.

Abbreviations Chapter 4 Backend Mobile Application

Python code:
This is an example for object called “User” and create an MVC design pattern.

Model
It calls for a method, which fetches all the records of the User table in database. The
records are presented in JSON format.

Algorithm 4.1 model.py
import json
class User(object): def __init__(self, first_name = None, last_name = None):
self.first_name = first_name
self.last_name = last_name
#returns User name, ex: John Doe
def name(self):
return (" (self.first_name,self.last_name))

ècssmethod

#retrnspeopensdedb.ttsstoƒUserobjects

deƒget_(seƒ) :
dtbse = open(′db.tt′,′ r′)

rest = []

json_st = json.ods(dtbse.red())
ƒortemnjson_st :
tem = json.ods(tem)

ser = User(tem[′ƒ rst_nme′], tem[′st_nme′])

rest.ppend(ser)

retrnrest

View
It displays all the records fetched within the model. View never interacts with model;
controller does this work (communicating with model and view).

Abbreviations 35

Algorithm 4.2 view.py
from model import User def show_all_view(list):
print ’In our db we have
for item in list:
print item.name()
def start_view():
print ’MVC the simplest example’
print ’Do you want to see everyone in my db?[y/n]’
def end_view():
print ’Goodbye!’

Controller
Controller interacts with model through the get_all() method which fetches all the
records displayed to the end user.

Algorithm 4.3 api.py
from model import User import view
def show_all():
#gets list of all User objects
people_in_db = User.get_all()
calling view
return view.show_all_view(people_indb)

def start():
view.start_view()
input = raw_input()
if input == ’y’:
return show_all()
else:
return view.end_view()

if __name__ == "__main__":
running controller function
start()

Chapter 5

Frontend Mobile Application

5.1 Introduction

Mobile application or mobile app for short is a computer software or software program
designed to run on mobile devices such as a phone, tablet or smartwatch. Mobile appli-
cations are usually downloaded from application distribution platforms like App Store
or Google Play Store. Mobile apps were originally created to offer general productivity
and information retrieval like email, calendar, contacts, the stock market and weather
information. However, the public demand and the rise of popularity of mobile applications
led to a rapid expansion into other categories. Today, a smartphone have practically
all the functions of a computer thanks to all the different mobile applications that have
been created and studies have showed that more people tend to use apps rather than
web browsers when browsing the net. Researchers found that the use of mobile apps
strongly correlates with user context and their whereabouts and time of the day.
Mobile applications are often categorised in three categories: Native apps, Hybrid apps
and Web-based apps.
Native apps are apps that are targeted toward a particular mobile platform and therefore
only exclusive to that mobile platform. The main purpose of creating such apps is to
guarantee the best user experience can consistency for that specific mobile operating
system.
Hybrid apps are a mix of native and web-based apps. These apps are made to support
both web and native technologies across multiple platforms. They also tend to be both
faster and easier to develop than their counterparts because of their use of single code
base which work in multiple mobile operating systems.
Web-based apps are coded in HTML, CSS or Javascript and require internet to function.
Web-based apps require less memory space compared to their counterparts since all the

37

Abbreviations Chapter 5 Frontend Mobile Application

personal databases are saved in the Internet servers.

5.2 Choice of mobile OS and framework

When creating a mobile application, it is desirable to create a mobile app that works
for as many mobile operating systems as possible. Android is the most used mobile OS,
having a market share of 71.81% worldwide. The second largest market share, iOS has a
market share of 27.43%. Using a framework like Flutter, that supports both iOS and
android apps, the mobile application reaches up to 99.24% of mobile OS usage, thus
making the app available for most mobile users worldwide.

5.3 Script functionalities

The frontend is written by flutters own language, Dart and is responsible for creating
and displaying the data from the server to the UI when the mobile application is in use.
The frontend consists of a login, register, home page and settings plus game modes like
singleplayer and multiplayer.

On startup, the application start at the login site where the user is able to register
themselves and log in to the game where they enter the home page. The homepage
consists of a game mode page, settings page. In the game mode page, the user can choose
between playing single player mode or multiplayer mode.

5.3.1 Login and register

The login site is the first site the user sees when the user start up the app. The login
site consists of a username input and a password input the user can fill in if he have an
existing account. If the user does not have an account, he can press the register button
where he is then redirected to the register page which consists of a form the user have
to fill in. The form has a username, email, password and confirm password field. Each
field have a certain requirement that has to be filled for it to pass. If one of the input
requirements are not filled, an alert box will be displayed for the user informing them of
what input is wrong and has to be changed in the register form. All fields have to be
filled for the account to be created.

Abbreviations 39

Figure 5.1: Login page Figure 5.2: Register page

Algorithm 5.1 Login
0: procedure Login(sernme,pssord)
0: databaseHelper← DatabaseHelper()
0: _usernameController← username
0: _passController← password
0: if _sernmeControer.sNotEmpty&&_pssControer.sNotEmpty

then
0: databaseHelper.login← _usernameController, _passController
0: if dtbseHeper.errorMessge then
1: return error
1: else if dtbseHeper.errorMessge 6= tre then
1: Redirect to Homepage
1: else
2: return error

=0

5.3.2 Home page

Home page is the main page that connects all the other pages together in the mobile
application. The homepage consists of a game mode tab and an Options tab. In the
game mode tab, there are three buttons: singleplayer, multiplayer and how to play. Each
single button redirects their respective pages. The options tab have a logout button that
upon pressing will redirect the user back to the login page. Login page, back button on

Abbreviations Chapter 5 Frontend Mobile Application

Algorithm 5.2 Register
0: procedure Register(sernme, em, pssord, conƒPssord)
0: databaseHelper← DatabaseHelper()
0: _usernameCtrl← username
0: _emailCtrl← email
0: _passCtrl← password
0: _confPassCtrl← confPassword
0: if _sernmeCtr&&_pssCtr&&_emCtr&&_conƒPssCtr then
0: databaseHelper.registerData← _usernameCtrl, _emailCtrl, _passCtrl
0: if dtbseHeper.errorMessge 6= n then
0: Creteccont
0: else if dtbseHeper.errorMessgen then
1: return Msg
1: else
2: return error

=0

the start game page, leave lobby button on the waiting lobby page and endscreen page
all redirects the user to the Home page.

Figure 5.3: Game mode page Figure 5.4: Settings page

Abbreviations 41

5.3.3 Singleplayer

The singleplayer consists of seven functions as well as a widget that makes up the UI. In
the singleplayer game mode, the player plays with the program. The claims displayed to
the player is picked at random from the database by the program.The player is given 10
claims that the player have to guess whether is true or false based on the evidence given
by the program. The set of answers the user can pick between are:

• True

• Barely true

• False

• Mostly true

• Pants on fire

• Half true

If the player does not manage to find the answer fit for the claim, the score will not
change, but if the player manage to answer correctly, the score will be increased by:

score = 10∗ tmer "timer" is the amount of time the user has left

The functions in the singleplayer game is:

• FitchData

• Shuffle

• ShuffleHint

• ShowQuestion

• nextQuestion

• checkanswer

• starttimer

Abbreviations Chapter 5 Frontend Mobile Application

The function FitchData is a function that retrieves metadata from the database that is
later used to creates variables for the singleplayer game to use. FitchData is ran upon
entering the singleplayer page and will run shuffle and showQuestion after collecting the
data.
Shuffle is a function that shuffles the order of the datalist that is retrieved from FitchData.
This is done so that the questions that is displayed in the UI is randomized. ShuffleHint
does the same thing except that it just shuffles the list hints for each claim it is attached
with.
ShowQuestion runs upon start of the page as well as whenever the user has pressed the
button NextQuestion. ShowQuestion uses an if loop that runs up to 10 times as that is
the amount of rounds we want the user to play. In the if loop, claims, sources, hints and
answers are retrieved from the map created in FitchData and creates the variables:

• Claim

• Answer

• Hint

• Source

Each of these variables are then either displayed in the UI or used in another function.
The nextQuestion function is the function that updates the question variable for the
application to display in the UI as well as resets all changes made in the UI such as the
changing the colour button back to its default button and resets the timer back to 45
seconds. This function runs on startup of the page as well as whenever the user clicks
the next question button.
The checkanswer function is called upon whenever the user have pressed one of the
available answers displayed in the UI. Upon clicking the answer, a string is then sent
to the checkanswer function where it is compared with the correct answer of the claim.
If the answer is correct, the score will update and the button the user clicked will turn
green, but if the user answers wrong, the button will instead turn red.

Abbreviations 43

Figure 5.5: Singleplayer page
UI

Figure 5.6: Hint displayed
for guesser

Abbreviations Chapter 5 Frontend Mobile Application

Algorithm 5.3 Singleplayer Guesser
0: procedure Singleplayer Guesser
0: mapResponse← json.decode(response.body)
0: question← first question in map of shuffled mapResponse
0: questionid← first questionID in map of shuffled mapResponse
0: answer← first answer in map of shuffled mapResponse
0: score← 0
0: timer← 45
0: canceltimer← false
0: colortoshow← Colors.indigoAccent;
0: right← Colors.green;
0: wrong← Colors.red;
0: if nser = qeston then
0: procedure checknser()
0: cncetmer ← true
0: coortosho← right
0: score← 10*timer
0: procedure netqeston()
0: coortosho← Colors.indigoAccent;
0: tmer ← 45
0: cncetmer ← false
0:
0: procedure checknser()
0: cncetmer ← true
0: coortosho← wrong
0: procedure netqeston()
0: coortosho← Colors.indigoAccent;
0: tmer ← 45
0: cncetmer ← false
0:

Abbreviations 45

5.3.4 Multiplayer

In multiplayer, the user can either choose between creating their own lobby or join an
existing lobby. If the user choose to create their own lobby they have to first choose how
many players is going to play and the name of the lobby. At default, the lobby has a size
of two, one guesser and one proposer. After the lobby has been created, the user who
created the lobby gets to choose what Statements the guesser has to debunk.

The multiplayer game mode consists of five pages; createlobby, joinlobby, waitinglobby,
guesser and proposer. Each page have their own functionalities that makes up the
multiplayer game mode for the application.

The createlobby page conists of two input lines, one for lobby size and one for lobby
name. In this page, the user is able to create a lobby simply by inserting lobby size
and lobby name. After filling in the input lines and pressing "create lobby", the data
that the user have given the application from the UI is then proccessed in the backend
and creates a lobby for other players to see. After creating the lobby, the user is then
automatically redirected to the waitinglobby page, of which is a page specifically created
that lobby. In the waitinglobby page there are two buttons in the UI that the user can
click, Start game and leave lobby. Clicking either one of them will either redirect them to
the proposer page or guesser page depending on what role the user has, or be redirected
back to the homepage.

Figure 5.7: Waitinglobby Figure 5.8: Createlobby page

Abbreviations Chapter 5 Frontend Mobile Application

The joinlobby page is a page that consists of a list of lobbies that has been created by
other players. Clicking on one of the lobbies, will send data to the backend and inform
the database that the user wants to join said lobby. The user is then redirected to the
waitinglobby page of that lobby. Users gets their role in the multiplayer game mode when
joining the lobby. If the user created the lobby, they will receive the role of proposer and
will be redirected to the proposer page when they press "start game" in waitinglobby. If
the user joins a lobby through the joinlobby however, they will receive the role of guesser
and will be redirected to the guesserpage upon starting the game. As guesser, the user
have to guess the fitting answer to the statement given. The score system is like the one
of singleplayer where if you answer correct the score is increased by:

10∗ tmer

The user will not lose any points if the answer is wrong.

As proposer, the user has a selection of hints, the user can choose from to display to the
guessers. The proposers job is to get as many guessers to answer correct. The proposers
score is calculated by:

10∗ coecteGesserScore

totPyers

Figure 5.9: Joinlobby page Figure 5.10: Proposer page

Abbreviations 47

5.4 Communication between scripts

Figure 5.11: Flowchart

Chapter 6

Experimental evaluation

6.1 Introduction

This chapter shows the results from four users playing both the singleplayer game mode
and the multiplayer game mode. Average game time, average score, how many correct
answers they got as well as user feedback is documented.

6.2 Singleplayer results

In the singleplayer game mode, the user is tasked to detect fake news out of the given
10 claims with the help from the program through hints the program have chosen. In
the singleplayer game mode, the average completion time was 3 minutes and 25 seconds,
meaning an average of 20,5 seconds per question. The average score in the singleplayer
game mode was 630. The highest score documented was a score of 2200 with a time of 2
minutes and 36 seconds, which also was the fasted time recorded. It was recorded two
games where the user was unable to answer correctly in any of the claims and therefore
ended up with a score of 0. The charts below shows how the score is distributed between
each playthrough and the amount of correct answers.

49

Abbreviations Chapter 6 Experimental evaluation

Figure 6.1: Bar chart of singleplayer score

Figure 6.2: Bar chart of singleplayer correct answers

Abbreviations 51

6.3 Multiplayer results

In multiplayer game mode, we have two roles, guesser and proposer. The guesser is
tasked to try and guess whether given claims are true or not, while the proposer is tasked
to help the guesser out by giving the guesser hints the proposer believes will help out the
guesser. In the multiplayer game mode, the average game time was 3 minutes and 12
seconds, with an average score of 820. This means that the average time used and score
per claim was 19,2 seconds and 82 respectively. In multiplayer, it was only recorded a
zero point game once, while the highest score was recorded at 2400 with a time of 3
minutes and 52 seconds. The charts below shows how the scores were distributed between
each game as well as the amount of correct answers the guesser got.
Note that in this experiment, the proposer and guesser got the same score as only two
players were playing together in each game meaning that they got the same score and
therefore the scores below shows the scores gathered from each lobby instead of each
player.

Figure 6.3: Bar chart of multiplayer score

Abbreviations Chapter 6 Experimental evaluation

Figure 6.4: Bar chart of multiplayer correct answers

6.4 User feedback

Some of the most common problem the players had when playing the game was the
fact that most if not all of the claims where USA related, something not many of the
players where informed about. Another problem was the fact that in singleplayer, the
claims where sometimes too bad for the players to be able to determine whether the
claim was true or not. It was also really hard to differentiate a claim from being for
example "false" or "pants on fire" and "true" , "half true" or "mostly true" where often
punished because of it. In multiplayer, most of those problem where the same but not all
of them. For instance, in multiplayer, the proposer was able to pick the hint he thought
was the best available hint, while in singleplayer it was still a variety between good and
bad hints. Such results are easily seen in the bar charts above (figure 5.1 and 5.2), where
the average score in multiplayer is higher.
A thing that one of the players noticed was that whenever the hint contained facebook
or had its source from facebook, the answers where always "Pants on fire". Hints that
did not contain facts or statistics where usually never "True" according to some of the
players. The same went for whenever the hint contained a quote from the person in
question.

Chapter 7

Discussion

7.1 Problems and Challenges

7.1.1 Handle Huge data

A problem is that from the hundreds of claims we were able to gather from https:

//www.politifact.com/, we were only able to fit 81 of those claims with their answer,
sources, hints, etc. This caused the game to be quite repetitive as the same claims would
pop up after a couple playthroughs. This also caused the answers to the different claims
to be badly distributed to the point where most of the answers were false.
While we were able to increase the to fit more claims into the database by buying more
space, we stumbled upon a new problem. This time it was an optimization problem
with the OS. Because the program have to retrieves all the data attached with claims
from the database to shuffle it before displaying it in the UI, and the fact that the
database contains over 1000 claims, shuffling the claims and displaying it ends up taking
a considerable amount of time. The time it takes for the program to process the claims,
shuffling them and picking out 10 out of the 1000 claims heavily depends on the devices
CPU.

7.1.2 Testing and Production ready app

Another problem was to publish the application for testing purposes. Application could
not go live unless there is a "domain" , "host / server" and "An SSL certificate" installed on
the host. That was the only option to solve the "origin cors" bug for building deploying
the game on "Android iOS" devices.
This however was more of a budget problem as publishing the application for Android

53

https://www.politifact.com/
https://www.politifact.com/

Abbreviations Chapter 7 Discussion

would cost $25 and $99 yearly for app store. This made it very hard to get data for the
experimental evaluation as users would have to pull our code from "github" repository
as well as download "Android studio IDE" and "Flutter" for the tester who use android
devices, but for the tester how use iOS need to download xcode IDE in addition to
"Android studio IDE" and "Flutter".
This made installing the game quite unappealing as it is too much work.
We also tried to publish the application as a web application in heroku just for the testing
purposes, but that would require a lot of editing in the code as well as downloading
a lot of other extensions. While we did manage to publish it to heroku, we stumbled
upon a problem where the application did not retrieve any data from our web server and
therefore was just an empty application.

7.1.3 MacBook X-code

To test the application on iOS system we need MacBook, both of us has windows system
which is work with android operating system. We try to borrow on MacBook from a
friend and after we download "Android studio IDE" and "Flutter". we start to download
xcode IDE to run the Apple simulator, but we found that there is no enough space in the
MacBook that we borrowed because xcode IDE take space more than 30 GB disk space,
so we start searching for a friend can help us to test our App until we found.

7.1.4 Learning flutter/dart

A challenge was learning and using flutter for the first time. As none of the group
members had any experience with flutter, we had to use the first couple of weeks learning
the basics of dart. Despite using our time in learning the fundamentals of flutters we
still stumbled upon new specific problems with flutter throughout the project. However,
learning this new language and how to create our first ever mobile app was something
quite interesting and a fun challenge for us both.

7.1.5 build database and github

One of the problems was transferring data from localhost to the server. Every time we
modify the database, must delete many Django files related to the database and delete all
the tables from the data base, and then must build the database again and push this new
data to repository https://github.com/karamyanes/fakenews-app.com. To connect
to server Putty was best solution and there we have to pull the data that repository has

https://github.com/karamyanes/fakenews-app.com

Abbreviations 55

it. In Putty we should pull the new data and every change in database’s tables, the old
Docker’s container should be delete and new Docker’s container need to be build. All
that job consume lot of time even if the part changed in database is on word.
Here between pull and push it was many git message’s errors coming, which led us to
study and read more about git.
On the other side when me and my partner make changes on the same file and push it
to repository that led to merge and lot of job to fix this merge and keep all changes that
have been added.

7.1.6 Handle new request: Word Tokenizer

Another challenge was an additional task given by our supervisor. In late April, the
supervisor suggested that we should try to optimize the hints given from the program in
single player, by using a tokenizer. As we previously had shuffled all the hints for the
claims, the hints sometimes were irrelevant or had no relation to the claim itself. With
completing the new task, the tokenizer should sort the hints related to each claim and
divides a text into a list of sentences given to the players so that whenever the player
wants a hint, the hint given should be a relevant hint rather than a complete random
one.

7.2 Further work

7.2.1 Automation and Deployment

One of the good to have features in any development process is to have an automated
deployment process from code on local machines to development branch on "Github" to
"Testing" branch to "Master" branch.
Then auto deploy the code with the new changes from master to server.
Adding the application to app store or google play is the one thing that is missing for it
to be easy accessible for the mass. However, it is still accessible for anyone to try out
by first download flutter and android studios (+ xcode if you have iphone) and then
pull the application from GitHub and run it on android studios while having your phone
connected to the PC.

Abbreviations Chapter 7 Discussion

7.3 Conclusion

In this project, a mobile application game about fake news was made. The application is
able to run in both apple and android devices which roughly makes up 99.24% of users
worldwide, thus making it accessible for practically everyone.
The goals of the project was to create fun way of learning about fake news in a from of a
game with a proposer and a guesser, as well as retrieve data from the users and track
their performances and what they thought was important in detecting fake news. This
multiplayer game is built in such a way that both sides were presented with a claim and
where the proposer had to help the guesser by giving the guesser hints from a list. A web
server was set up using https://www.digitalocean.com/ so that both the proposer
and the guesser is able to retrieve the same data at the same time. The data that was
then inserted into the webserver for the mobile application to display was retrieved from
https://www.politifact.com/ using an API retriever created/found by the supervisor.
Creating the mobile application itself was done using flutter and its built-in widgets. A
singleplayer game mode was also created where the player played as a guesser with the
program who played as the proposer.
The application is able to be run in both an emulator and in a real life device by
downloading the file from the PC into the device itself. All that is needed for the
application to be run smoothly is having internet connections as all the data used in the
application is in a web server. There are still some minor optimizations that could be
done before the application could be released in app store or google play.

https://www.digitalocean.com/
https://www.politifact.com/

List of Figures

3.1 Request and Response by using Postman . 12
3.2 Django Rest Api Architecture . 13

4.1 Database . 26
4.2 Create or Post . 28
4.3 Get available games . 30
4.4 Update or Put . 31
4.5 Design Pattern . 32

5.1 Login page . 39
5.2 Register page . 39
5.3 Game mode page . 40
5.4 Settings page . 40
5.5 Singleplayer page UI . 43
5.6 Hint displayed for guesser . 43
5.7 Waitinglobby . 45
5.8 Createlobby page . 45
5.9 Joinlobby page . 46
5.10 Proposer page . 46
5.11 Flowchart . 47

6.1 Bar chart of singleplayer score . 50
6.2 Bar chart of singleplayer correct answers . 50
6.3 Bar chart of multiplayer score . 51
6.4 Bar chart of multiplayer correct answers . 52

57

Bibliography

[1] wikipedia. Fake news, Retireved March 2021. URL https://en.wikipedia.org/

wiki/Fake_news.

[2] dictionary.com. Fake news, Retireved March 2021. URL https://www.dictionary.

com/browse/fake-news.

[3] Joyce Rice Chas Brown Kelli Dunlap Cherisse Datu Lindsay Grace Amy Eis-
man Maggie Farley, Bob Hone. Factitious, Retireved April 2021. URL http:

//factitious.augamestudio.com/#/.

[4] DROG. getbadnews, Retireved April 2021. URL https://www.getbadnews.com/

#intro.

[5] Amanda Warner. fakeittomakeitgame, Retireved April 2021. URL https://www.

fakeittomakeitgame.com/.

[6] Inventionland. The history of mobile app. URL https://inventionland.com/

inventing/the-history-of-mobile-apps/.

[7] BBC. A brief history of fake news. URL https://www.bbc.co.uk/bitesize/

articles/zwcgn9q.

[8] April fool’s day. URL https://www.dw.com/en/

belgium-police-clash-with-april-fools-day-party-crowd/a-57083528.

[9] Wikipedia. Game theory, Retireved April 2021. URL https://en.wikipedia.org/

wiki/Game_theory.

[10] American Experience. Game theory explained. Retireved April 2021. URL https:

//www.pbs.org/wgbh/americanexperience/features/nash-game/.

[11] Adam Hayes. Game theory. Retireved April 2021. URL https://www.investopedia.

com/terms/g/gametheory.asp.

[12] Swagger open source. URL https://swagger.io/tools/swagger-ui/.

59

https://en.wikipedia.org/wiki/Fake_news
https://en.wikipedia.org/wiki/Fake_news
https://www.dictionary.com/browse/fake-news
https://www.dictionary.com/browse/fake-news
http://factitious.augamestudio.com/#/
http://factitious.augamestudio.com/#/
https://www.getbadnews.com/#intro
https://www.getbadnews.com/#intro
https://www.fakeittomakeitgame.com/
https://www.fakeittomakeitgame.com/
https://inventionland.com/inventing/the-history-of-mobile-apps/
https://inventionland.com/inventing/the-history-of-mobile-apps/
https://www.bbc.co.uk/bitesize/articles/zwcgn9q
https://www.bbc.co.uk/bitesize/articles/zwcgn9q
https://www.dw.com/en/belgium-police-clash-with-april-fools-day-party-crowd/a-57083528
https://www.dw.com/en/belgium-police-clash-with-april-fools-day-party-crowd/a-57083528
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Game_theory
https://www.pbs.org/wgbh/americanexperience/features/nash-game/
https://www.pbs.org/wgbh/americanexperience/features/nash-game/
https://www.investopedia.com/terms/g/gametheory.asp
https://www.investopedia.com/terms/g/gametheory.asp
https://swagger.io/tools/swagger-ui/

Bibliography BIBLIOGRAPHY

[13] Swagger. Swagger open source. URL https://searchapparchitecture.

techtarget.com/definition/Swagger.

[14] Postman. The collaboration platform for api development, Retireved 2021. URL
https://en.wikipedia.org/wiki/Game_theory.

[15] Koder. Django rest api. URL https://www.computerhope.com/jargon/p/putty.

htm.

[16] Beautiful soup documentation. URL https://www.crummy.com/software/

BeautifulSoup/bs4/doc/.

[17] Target internet. What is data scraping and how can you use it? URL https://www.

targetinternet.com/what-is-data-scraping-and-how-can-you-use-it/.

[18] Mike Stowe. Learn api, December 04, 2014. URL https://blogs.mulesoft.com/

dev-guides/api-design/api-best-practices-nouns-crud-etc/.

[19] Django. Djangothe web framework for perfectionists. URL https://docs.

djangoproject.com/en/3.2/topics/db/models/.

[20] Django Documentation. Making queries. URL https://docs.djangoproject.com/

en/3.2/topics/db/queries/.

https://searchapparchitecture.techtarget.com/definition/Swagger
https://searchapparchitecture.techtarget.com/definition/Swagger
https://en.wikipedia.org/wiki/Game_theory
https://www.computerhope.com/jargon/p/putty.htm
https://www.computerhope.com/jargon/p/putty.htm
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.targetinternet.com/what-is-data-scraping-and-how-can-you-use-it/
https://www.targetinternet.com/what-is-data-scraping-and-how-can-you-use-it/
https://blogs.mulesoft.com/dev-guides/api-design/api-best-practices-nouns-crud-etc/
https://blogs.mulesoft.com/dev-guides/api-design/api-best-practices-nouns-crud-etc/
https://docs.djangoproject.com/en/3.2/topics/db/models/
https://docs.djangoproject.com/en/3.2/topics/db/models/
https://docs.djangoproject.com/en/3.2/topics/db/queries/
https://docs.djangoproject.com/en/3.2/topics/db/queries/

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Outline

	2 Theoretical Background
	2.1 Introduction
	2.2 Related Work
	2.3 The history of Mobil App and fake news
	2.4 Game theory
	2.5 Flutter
	2.6 Django
	2.7 Swagger

	3 Server
	3.1 Introduction
	3.2 API
	3.2.1 Django Rest Api
	3.2.2 Request and Response
	3.2.3 POST
	3.2.4 GET
	3.2.5 PUT

	3.3 Docker
	3.4 website (Host and Domain)

	4 Backend Mobile Application
	4.1 Data Scraping
	4.1.1 Web Scraper

	4.2 Database
	4.2.1 Models
	4.2.2 QuerySets

	4.3 Design patterns

	5 Frontend Mobile Application
	5.1 Introduction
	5.2 Choice of mobile OS and framework
	5.3 Script functionalities
	5.3.1 Login and register
	5.3.2 Home page
	5.3.3 Singleplayer
	5.3.4 Multiplayer

	5.4 Communication between scripts

	6 Experimental evaluation
	6.1 Introduction
	6.2 Singleplayer results
	6.3 Multiplayer results
	6.4 User feedback

	7 Discussion
	7.1 Problems and Challenges
	7.1.1 Handle Huge data
	7.1.2 Testing and Production ready app
	7.1.3 MacBook X-code
	7.1.4 Learning flutter/dart
	7.1.5 build database and github
	7.1.6 Handle new request: Word Tokenizer

	7.2 Further work
	7.2.1 Automation and Deployment

	7.3 Conclusion

	List of Figures
	Bibliography

