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Abstract

With the release of a new standard, WebAssembly has been a growing
trend amongst developers. Primarily, desktop and mobile browsers have
full support for WebAssembly as of today. Running it inside the browser gives
many benefits, but how about outside the browser? This thesis presents a
Wasm+gRPC application template that can be utilized to increase distributed
applications’ diversity. We also carefully analyze WebAssembly’s efficiency
and ease of use outside of the browser. Through the development of two
Wasm-based distributed applications, we learned about Wasm'’s functionality,
drawbacks, and, most notably, about how performant Wasm is in such
applications. This process has been done for multiple programming languages,
giving us a better understanding of how simple it is to embed Wasm in many
environments.

Executing a set of benchmarks for each implementation, we show that We-
bAssembly runs remarkably well when embedded in programming languages
such as Go and C#. Unfortunately, our findings suggest that Wasm has some
flaws in terms of performance and stability, that due to the continuous Wasm
updates, might get ironed out sooner than later.
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Chapter 1

Introduction

WebAssembly, also known as Wasm, is a new technology that first appeared
in March 2017 and was later recognized as an open standard in December
2019 for creating language-agnostic computer programs designed for running
mainly in modern web browsers but also on other platforms.

The primary purpose of Wasm is to be an efficient compilation target for
programs written in other languages [19]. By utilizing Wasm, developers can
write code in various programming languages, compile it into WebAssembly,
and then deliver it to a supported platform, whether it be a laptop, a server, or
even a "smart refrigerator." Furthermore, Wasm also offers other compelling
advantages such as portability, security, size- and load-time-efficient binary
format, and a near-native execution speed.

As the idea of Wasm continues to be a trend in the web development
community, due to its design and number of advantages it provides [17],
we have been starting to see more active use of this technology in non-Web
environments as well (e.g., the way Shopify utilizes it [23]). Wasm is especially
appealing outside the browser because it is a fast, scalable, and safe way to
run the same code across various computer platforms. However, another often
overlooked benefit that can be gained by utilizing Wasm is diversity, which is
one of our main focuses in this thesis.

Finally, it is fundamental to mention that we have focused ourselves
specifically on distributed systems, where Wasm, in conjunction with gRPC,
a high-performance, open-source universal RPC framework, can be used to
enhance software diversity.

Diversity and Wasm

One of the biggest motivations to utilize a distributed system is its "fault
tolerance" nature or the ability to handle any fault. In the field of Distributed



Systems, this is one of the most widely studied topics, which has remained
a hot topic for a multitude of reasons (e.g., [9], [3]). When dealing with a
distributed ecosystem containing dozens or even thousands of machines, some
will inevitably fail. Thankfully, due to distributed systems’ characteristics,
faults like a system crash on one server will not affect other servers. However,
while simply utilizing a well-thought distributed system will most likely
increase reliability regarding potential system halts due to hardware faults, it
does not grant inherent protection against software faults of both accidental
and malicious nature. That is where Wasm’s use can be significant, thanks
to the diversity that it can bring to these types of applications.

Realistically speaking, the probability of simultaneous attacks on vari-
ous components of a distributed system cannot be discounted. If multiple
components have the same vulnerabilities, they can all be compromised by a
single attack. That is where diversity and Wasm come to play. With Wasm,
the idea of having multiple components that perform the same functions,
but that use different software, can be made a reality through embedding.
Diversification can be used to reduce the likelihood of common vulnerabilities
(for a more in-depth read about software and OS-diversity, refer to [21] [20]).
Hence, through utilization of diverse software, we can improve security, which
can be done more cost-efficiently than developing software variants.

Our contribution

This thesis presents a distributed application template that utilizes Wasm+gRPC
to increase software diversity. Moreover, we also ran various benchmarks to
evaluate the application template’s usability and performance, and generally,
the compatibility of these two technologies. Furthermore, all code is available
on Github !.

Ideally, projects following this template would offer an environment where
applications written in various languages and powered by WebAssembly will
run intuitively, performantly, and cost-efficiently.

The efficiency aspect comes from the fact that this type of application
takes full advantage of gRPC and Wasm. While the gRPC framework gives
us the ability to freely choose what programming languages to use for our
clients and servers, the use of Wasm allows us to have the same freedom
of choice regarding the programming language that would be used for the
application logic.

We have developed various function templates that aim to either increase
the usability of this type of application or offer a standardized way to interact

'Repository’s link: https://github.com/AndreaEsposit/bachelors-thesis.
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1.1. Outline

with WebAssembly modules.

This template’s performance and usability analysis was done by evaluating
two Wasm-based distributed applications of our creation. Through this
analysis, we learned about Wasm’s drawbacks, interesting functionalities, and
most distinctly, about how performant Wasm is in such applications. The
analysis was done for multiple programming languages, giving us a better
understanding of how complex it is to utilize Wasm in various environments.

By utilizing a set of numerous benchmarks for each implementation, we
have shown that WebAssembly runs particularly well when embedded in
programming languages such as Golang and C#, while not performing well in
languages such as Rust and Python. Unfortunately, our performance analysis
suggests that Wasm possesses, as of early 2021, some flaws in terms of stability
and, more specifically, in performance. Our findings imply that Wasm will,
in some cases, specifically when an enormous amount of gRPC requests need
to be processed, perform very poorly, suggesting that fewer requests with a
bigger size might be preferable when possible. Fortunately, these performance
problems will most likely be ironed out in the future, as Wasm keeps getting
consistent features and performance updates.

Finally, based on our results, we can conclude that Wasm is already a
good option for projects seeking to increase diversity and, therefore, security
at the expense of some performance.

1.1 Outline

The thesis is outlined as follows:

Chapter 2 introduces the reader to important terminologies, processes and
technologies used throughout the thesis.

Chapter 3 goes over a template of how Wasm can be combined with gRPC
to increase diversity in distributed applications.

Chapter 4 consists of the implementation of a simple echo server and
presents the results and evaluates the test data.

Chapter 5 consists of the implementations and presentations of the bench-
mark results of a storage application that follows our Wasm-+gRPC
template.

Chapter 6 concludes the thesis, discusses about shortcomings of the topic
and further work.



Chapter 2

Background

This chapter introduces important terminologies, concepts, general processes,
Wasm’s limitations, and tools used throughout the thesis. First, we discuss
Wasm beyond the browser, talking specifically about WASI, Wasm runtimes,
and the instantiation process of a WebAssembly module. Subsequentially,
we present gRPC, protocol buffers, and the general gRPC startup process.
Finally, we briefly introduce a ready-done benchmarking tool used in this
thesis.

2.1 Wasm beyond browser

Although most WebAssembly applications today are browser centric, We-
bAssembly itself has a lot of potential in other environments as well [1], such
as on servers, on loT devices, mobile/desktop apps or even embedded within
another larger program.

The main advantages of Wasm remain essentially the same outside of the
web:

- Portability: the ability of running the same code across a multitude
of machines, as long as there is a supported Wasm runtime for those
system.

- Security: Wasm executes within a sandboxed stack-environment, this
means that the code cannot talk directly to the OS, and relays upon
explicit imports to allow communication to with the host.

Nevertheless, Wasm by itself has some significant limitations, such as the
inability to converse with the host system, or in other words, the lack of a
built-in system interface. This limitation was solved with the introduction of
WASI to the WebAssembly platform in 2019.

4



2.1. Wasm beyond browser

However, WASI was not designed to solve all of Wasm’s problems, which
means that a number of issues, aside from those that will be resolved once
WASTI'’s development is complete (e.g., network connectivity), will need to be
addressed in other ways.

Fortunately, numerous developers are actively working on expanding
Wasm’s capabilities and addressing some of its other faults via Wasm’s
proposals(here is a handy rundown of all the active proposals: [8]). Thanks
to these proposals, features like garbage collection, multi-threading, and
multi-memory should soon be available.

2.1.1 WASI

WASTI [5], the WebAssembly System Interface is an API designed to stan-
dardize the sandboxed execution of WebAssembly modules in non-web envi-
ronments. Specifically, WASI provides a standard way for Wasm modules to
interface with host runtimes and get access to several operating-system-like
features, including files and filesystems, clocks, and random numbers.

The way WASI works is straightforward. The first step is to write an
application in any preferred language. The written application is then built
and compiled into WebAssembly targeting the WASI environment. It will
generate a binary that requires a particular runtime to execute. The runtime
of choice (e.g., Wasmtime, Wasmer) provides the necessary interfaces to the
system calls.

Finally, we believe it is worth discussing the state of WASI as a compilation
target, which has gone through numerous iterations due to the continuous
WASI development.

The WASI compilation target also referred to as the "wasm32-wasi" target,
is a new and still experimental target. Due to WASI’s unfinished development
state, the compile target is still considered (as of Febrary 2021) to be in its
preview phase, which is a state that is unlikely to change until WASI’s end
of development. Such modules can be run directly in CLI runtimes (e.g.,
Wasmtime) or embedded in other languages utilizing Wasm-runtime libraries.

Due to the number of Wasm proposals, different highly experimental WASI
targets are available, giving a possible glimpse at WASI’s future functionalities.
Unfortunately, using experimental WASI targets and experimental "flags"
does not always result in full functionality, resulting in possible unsatisfactory
performance and/or broken functionalities.
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2.1.2 Wasm’s role in gRPC servers

As of January 2021, WASI has some severe limitations regarding network
applications. Despite the availability of a few methods for working with
web sockets, such as sock recv, sock send and sock_shutdown, the current
version of WASI is nowhere near able to offer complete and satisfactory
network support. Due to this limitation, and our desire to take advantage of
improved security (due to diversity) that comes when embedding Wasm, we
have determined that the best possible solution for utilizing Wasm+gRPC
is for Wasm to handle only the server application logic. This choice means
that the hosting environment (e.g., Go) serves as the dedicated gRPC server,
which will forward each request to the Wasm module. Figure 2.1 illustrates
how a generic Wasm-gRPC server is going to work.

Web Assembly gRPC Server » gRPC
Module -— client

Figure 2.1: Generic Wasm-gRPC server

2.1.3 Wasm Restrictions

Rust will be used as our programming language of choice for our applications’
logic. It is worth noting that this choice has not been left to chance but has
been influenced by a necessity that we will explain here in detail.

As mentioned in Section 2.1, Wasm is executed in a sandboxed environ-
ment, which means that a module can declare and use its variables but cannot
access anything outside its environment.

This sandboxed nature is one of Wasm’s most significant selling points
but is also why we are so limited when interacting with a Wasm module.
Nonetheless, there are two main methods to communicate with an instantiated
WebAssembly module:

- The first method, which is also the most straightforward one, is to use
the arguments and return values of the module’s imported functions.
Although this seems to be a good approach, our options are heavily
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limited since we can only exchange fundamental WebAssembly data
types, such as 132, 164, £32, {64 (integers and floats), and we cannot
return multiple values. Of course, these are significant limitations that
will be addressed in the future, but for now, workarounds are required
to use Wasm effectively in non-web environments.

- The second method is more of a workaround than anything else. While
we wait for the interface-types proposal 7] to be implemented, the best
solution is to use the raw WebAssembly memory, which means that
we would be directly copying objects to and retrieving objects from
Wasm-memory. Unfortunately, this method is inherently unsafe to use
since allocation and deallocation of memory must be done manually.
However, by being careful, we can use this workaround to pass non-
fundamental data types like strings, arrays, and serialized data like
JSON and protocol buffers between runtimes and Wasm-instances.

Realistically, we will be using a combination of these two methods. We
will pass pointers as arguments and return values, using Wasm’s memory to
copy the data to and from those pointers.

However, because of the need to write data to specific pointers, memory
must be managed manually within the module. This requirement, implies
that while utilizing this method, the programming language to be compiled
to Wasm needs to have manual memory management, which means that
programming languages like Go cannot be used. In contrast, languages
like Rust and C are ideal for such tasks since they offer manual memory
management.

2.1.4 Wasm Runtimes

Each runtime does the same task, usually containing the same basic features.
However, they all differ in performance, and each of them has some specific
extra characteristic that makes it different from the others. For this project,
we will utilize Wasmtime as our main runtime, mainly due to its considerably
bigger online community, which led it to be one of the most utilized runtimes
as of early 2021.

Wasmtime

Wasmtime 2] is an efficient, compact solution for working with the latest
WASI/WebAssembly innovations. It can be embedded in a selection of
programming languages, such as Python, Golang and Rust. Below is a list of
key Wasmtime features:
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- Compactness: Non-demanding standalone that can be scaled up as
needs grow. Can work with small chips or be utilized with massive
servers. Embeddable on almost any app.

- Tweakablity: Tweak wasmtime in advance for pre-compilation, gener-
ate light-speed code using Lightbeam, or interpret at runtime. Config-
urable for whatever you need Wasm to accomplish.

- Speed: Built based on Cranelift; perform high-quality runtime machine
coding.

- WASI-compatibility: Supports a set of APIs, allowing you to imple-
ment alongside the host via the WASI interface.

- Support: Compliant with WebAssembly test suite standards with a
large base of developer and contributor community support.

2.1.5 WebAssembly’s module instantiation

Understanding a language-specific Wasm instantiation process (utilizing
Wasmtime) can be somewhat daunting in the beginning, mainly due to
some structural differences and dissimilarities regarding the names of classes
and functions utilized in this process. However, the underlying instantiation
process is principally the same in every programming language.

Fortunately for us, some fundamental classes retain their names from one
Wasmtime version (e.g., GO, Python) to the other, making it much simpler
to understand how to set up the instantiation process in a new programming
language.

These classes are the Store, Engine, Module, WasiConfig, and Instance
classes. Here is a short rundown of what these classes are supposed to do for
a better understanding of the process (refer to the official Wasmtime libraries
docs for an in-depth read, e.g. : [13] [12]):

Store: This is a general group of WebAssembly instances and host-defined
items. Many WeAssembly objects, such as instances, functions, and
globals, will be attached to and refer to a Store. Furthermore,
instances are created by instantiating a Module within a Store.

Engine: This is an instance of a Wasmtime engine that is utilized to create
a Store. This object is at its most stable when utilizing default
configurations. However, we can also modify its behavior by utilizing
a Config object at its creation, allowing us to enable experimental

8



2.1. Wasm beyond browser

Wasm proposals if we please (these are usually unstable and require
the utilization of special Wasm modules).

Module: A Module is an in-memory representation of a WebAssembly binary’s
input. It is used in the instantiation process to construct an Instance.
Nevertheless, the Module object is just a code representation of a
Wasm module, which means that it cannot be used to interact with
the Wasm module directly.

WasiConfig: It is an object that keeps track of all custom WASI configura-
tions that we want to specify.

Instance: It is an instantiated module instance that can invoke exported
functions and interact with the Wasm module’s memory.

Memory: The runtime representation of a linear memory is called a Memory
instance. This object stores a vector of bytes(linear representation of
memory) and maximum data size if such maximum value has been
previously defined [16].

Thanks to these short definitions, we can now use these terms to go
over the general steps that need to be taken to embed and instantiate a
WebAssemly module with WASI functionalities.

1. We start by creating a new Wasmtime Engine, either using the default
configurations or using custom-made ones.

2. We create a Store-object from the configuration provided by the
Engine.

3. We continue by creating a new WasiConfig object and then customizing
it (e.g., specifying which device directory our module has access to).

4. We instantiate a WASI-object, usually referred to as a WasiInstance
object or a wrapper class, such as the Host class in .NET. This class
represents the WASI configurations used when creating an Instance
object. It is crucial to keep in mind that the WASI version that needs to
be specified when creating this object needs to match the version used
as compiling target for the WebAssembly module that we will use. If
we do not specify the correct version, we might encounter compatibility
issues and /or loss in performance.
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5. Subsequently we create a Module object, which is an in-memory repre-
sentation of the WebAssembly module that we want to embed. Since
creating a Module currently involves compiling code, it is crucial to
notice that this step can be an expensive operation.

6. Finally, we can create the Instance object by utilizing the WASI-object
and the Module-object. Furthermore, utilizing this Instance object,
we can utilize the exported module’s functions and access a linear
representation of the module’s memory.

The process, however, becomes much more straightforward if there is no
need to utilize WASI, permitting us to skip steps 3 and 4 entirely.

2.2 gRPC and protocol buffers

2.2.1 gRPC

gRPC [14] stands for Remote Procedure Call. It is a modern RPC framework
developed by Google and is based on the client-server architecture. Client is
able to call methods from a server as if they were local methods. In other
words, it allows programs to execute a procedure of another program from a
different platform. The thing about gRPC is that developers has no need to
explicitly code the details for the remote interaction. This is automatically
handled by the underlying framework transparently. gRPC uses HTTP/2 as
it’s underlying transport protocol, which results in high-performance.

Furthermore, gRPC supports several programming languages, both offi-
cially and unofficially, this means of course that our clients and servers can
be written in many different languages and will still continue to work.

2.2.2 Protocol Buffers

Protocol buffers [11] are a method of serializing data, which can be transmitted
or be stored in files. In comparison to other formats such as JSON or XML,
protocol buffers are known for being smaller, faster and simpler. They are
made to be optimized for transmitting data between multiple micro-services
in a language- and platform-neutral way.

2.2.3 Setting up a gRPC server

The general setup method for a gRPC server is similar in most programming
languages and usually follows these basic steps:

10



2.3. Utilities

1. Define a service in a .proto file.

2. Generate server and client code in the programming language of choice,
which is done utilizing a protocol buffer compiler.

3. Use the X(programming language of choice) gRPC API to write a client
and server for the service.

2.3 Utilities

2.3.1 ghz - gRPC benchmarking and load testing tool

ghz is a command line utility and Go package used for load testing and for
benchmarking gRPC services [10]. This tool has many useful features such
as the ability of using proto files, pre-built protoset bundles or even server
reflection. Moreover, it allows you to test unary, streaming and duplex calls
using JSON or binary data, as well as giving you the choice regarding how
many clients and messages will be used for the benchmarking process.

11



Chapter 3

Our Wasm-+gRPC template

This chapter will go over the general steps needed to create a Wasm-+gRPC
template that can quickly and efficiently be utilized to create an application
for developers aiming to increase diversity thus, security in distributed applica-
tions. Ideally speaking, by following our template, a developer should be able
to write highly reusable code that could be used in a variety of distributed
applications. Utilizing this methodology would additionally also speed up
development time.

It is worth noting that we are not focusing on any specific programming lan-
guage, which means that we are going explain in a language-agnostic manner.
Furthermore, Wasmtime is the runtime of choice for Wasm embedding.

3.1 Preamble

When interacting with a Wasm module from a host environment, there are
not many types of formats that can be utilized for communication since
there cannot be any assumptions about the host environment, which means
that regular language-specific objects cannot be utilized. As a result of this
constraint, the best solution is to utilize well-known and largely supported
serialization formats, such as JSON, XML, TOML, and Protocol Buffers.
However, since we are already utilizing protocol buffers for client-server
communication, we think it would be logical and convenient to do the same
for host-to-Wasm communication. This decision implies that we will need to
utilize the same proto file to generate code for the server, the clients, and the
Wasm-module. Using this methodology, we can quickly produce code for inter-
language communication that is performantly efficient and, most importantly,
easy to generate. Furthermore, through the Protobuf WellKnownTypes, we
have access to a growing amount of useful predefined types of message fields,

12



3.2. Wasm integration in a gRPC server

which can be very helpful in several situations, such as the Timestamp-field,
often utilized for logging.

3.2 Wasm integration in a gRPC server

Once we are done with the Wasm instantiation process (explained in-depth
in subsection 2.1.5), we have a few options for working with the instantiated
module’s memory and its exported functions. We recommend defining and
storing these exported functions in advance using Wasmtime-function objects,
primarily to avoid having to re-define them any time we want to use them, thus
minimizing unnecessary overhead. Furthermore, for the same performance
reasons, the module’s memory object should also be preemptively created
and stored for future reuse.

This definition of exported Wasm objects should be done directly after the
Wasm Instantiation process, and we advise using a " [string] WasmFunction"
map to store the exported functions efficiently.

Finally, these exported objects should be stored either in a custom
WasmContainer-object or directly in the base Server/Service class, which
we obtain when generating code for the gRPC server. Utilizing the latter
storage system, we will have direct access to these exported objects inside
the methods that our gRPC server implements.

3.3 The Wasmlnstantiate function

On accounting for the significant library-specific differences that we encoun-
tered while working with Wasm in various programming languages, we have
concluded that creating a helper instantiation function would be highly bene-
ficial for others that aim to diversify distributed applications.

The WasmInstantiate function template aims to offer a highly reusable
function capable of adjusting to many different applications. Furthermore,
this template will also serve as a founding stone for future more complex
projects that will utilize new Wasm features. However, it is essential to note
that the structure of this function may need changes and adjustments as
the framework utilized by Wasmtime and other runtimes like Wasmer might
change in the future.

Utilizing this template would allow inexperienced developers to immedi-
ately dive into the Wasm embedding world without needing to find their way
around language-specific differences in the Wasm instantiation processes. The
arguments of this function should be the following:

13



3.4. The callWasm function

- .wasmn file location, utilized when creating the Module object
- A string array containing all the functions that we intend to export.
- A bunch of Wasi specific arguments, such as:

— A list of directories (and their aliases) to which the Wasm module
should have access.

— The stdout/stdin/stderr files of choice for the Wasm module.

Moreover, this function should return a map containing all the exported
Wasm functions and the linear representation of the module’s memory, which
can then be, as we have discussed in the previous section, stored somewhere
for future use. By having an array containing all the functions we intend to
export, we can easily define and store the exported functions we need in a
loop. Here is a code snippet of how that part of the code would look like:

1| for functionName in functionsToExport{
instanceExports [functionName| = instance.exports[functionName ]|
3| }

Listing 3.1: Storing exported functions

Finally, it is worth mentioning that we intend to go over some of our
implementations of the WasmInstantiate function during the following chap-
ters. Furthermore, the entire code of said functions is available in Appendix

C.

3.4 The callWasm function

Due to the need to utilize serialized data for communication between a host
environment and Wasm, we have developed a function template that should
always be utilized to safely and reliably interact with a Wasm module. The
following list is a general rundown of the steps that must be taken when
interacting with a Wasm module from the host environment’s perspective:

1. Set aside a portion of Wasm-memory for the message we intend to
pass to the Wasm Module (Memory allocation). This step is crucial
because skipping it could lead to various errors, including nonvoluntary
overwriting of previously stored data or even out-of-bounds errors in
the case where the message size exceeds the size of the Wasm-memory.

14




3.4. The callWasm function

- This step should be done directly in the Wasm module by defining
an allocation function and invoke it from the host environment.

2. Copy the serialized message into the linear representation of the Wasm
module. This data should be explicitly copied into the portion of Wasm-
memory that we have previously allocated.

3. Invoke whatever Wasm exported function we want to invoke. Subsequen-
tially, in the Wasm function itself, make sure to store the function’s
response, in the form of a serialized message, directly into the Wasm-
memory. As previously mentioned in Section 2.1.3, this needs to be
done since there is no way to return the response message to the host
environment directly (as of early 2021).

4. We can now retrieve the response serialized message from the host
environment’s linear Wasm-memory representation.

The steps above would typically work with every type of request. How-
ever, it is essential to keep in mind that we are not taking care of memory
deallocation, which will lead to a memory leak in the long run. To avoid
such a problem, we advise deallocating the portions of Wasm-memory utilized
for requests and responses. This memory deallocation should be done after
retrieving the answer message from Wasm-memory. Doing it sooner would
lead to deleting the response message before retrieving it, resulting in an error.
Finally, as we have explicitly stated in Section 3.1, we think that proto buffers
should be utilized as a serialization format, but this is in no way mandatory.
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Chapter 4

Simple Echo server

This chapter introduces a practical use of Wasm in a gRPC Echo server
application, which is usually used to test if a connection between a client
and a server is successful. It consists of a server that sends the client back
whatever data the client had previously sent to the server.

Furthermore, the aim of this chapter is to gain an understanding of the
challenges of using Wasm and gRPC together, as well as how a gRPC server
performance degrades when utilizing Wasm.

We will start by briefly going through the proto-definition of the message
we used for this application before going in-depth over the steps we took to
implement the application itself.

4.1 Proto Definitions

Each gRPC service is generated from one protocol buffer service definition. In
the case of an Echo server, we only must define one service which contains an
RPC method that sends an echo message in the protocol buffer file. Messages
are also defined alongside the service definitions. Compiling the .proto file in
our chosen language will generate service interface code and stubs (for some
languages, the preferred term is client) specific to the language used. After
generating the API, each service and method must be implemented in the
server-side.

Furthermore it is essential to be consistent when defining services and
messages definitions to avoid possible errors when implementing the gRPC
server and client.

In Listing 4.1, we have chosen to use echo_message as both our request
and response message-type, as there is no difference between a response and
a request message in this type of application.
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4.2. Application logic

message echo message {
string content = 1;
}

service Echo{
rpc Send(echo message) returns(echo message);
}

Listing 4.1: Echo server’s service and message definition

Additionally, as we intend to utilize proto-messages to communicate
between the host environment and the Wasm module, we need to utilize
this same .proto file to generate code that will allow us to work with the
echo_message on the application-logic side of the server (Wasm module). We
generate the needed code by utilizing the protoc-rust crate (packages in
Rust), which will generate Rust code with structs and methods derived from
the .proto file.

4.2 Application logic

As previously mentioned in Section 2.1.3, we have decided to utilize Rust as
our programming language of choice to write the application’s logic of our
projects. Practically speaking, this is an excellent choice for many reasons
that we will briefly list here below:

e Rust provides explicit control over where and how memory is allocated
and deallocated.

e Thanks to Cargo (Rust package manager), compiling to Wasm/WASI
is pretty straightforward.

We will now go through the practical steps we took to write our server
logic, in addition to the process taken to compile to WASI.

We start by specifying that we are building a cdylib in Cargo.toml,
which will enable us to share our Echo-Wasm "library" of functions with
other languages.

Subsequently, we can begin writing our code. The first things that need
to be defined are the memory allocation and deallocation functions, which
are essential to pass non-fundamental data types, such as protobuf messages,
to our WebAssembly module. These functions can be easily defined using
the globally configured allocator from the standard Rust library or any other
allocator. Listing 4.2 presents these functions:
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4.2. Application logic

use std::alloc::{alloc, dealloc, Layout};

#[no mangle]

pub unsafe fn new alloc(length: usize) —> *mut u8 {
let align = std::mem::align_of::<usize >();
let layout = Layout::from size align unchecked(length, align);
alloc (layout)

}

#[no mangle]

pub unsafe fn new dealloc(ptr: smut u8, length: usize) {
let align = std::mem::align_of::<usize >();
let layout = Layout::from size align unchecked(length, align);
dealloc (ptr, layout);

Listing 4.2: new_alloc and new _dealloc functions in Rust

As we can see, the allocation function needs to know (its argument) the
size of the message we intend to copy on the Wasm-memory, and it returns the
pointer of the portion of memory allocated. The deallocation function simply
deallocates a defined amount of memory based on a pointer (an address)
and a length value. The latter represents how much memory needs to be
deallocated, while the former indicates its location.

From here on out, following what we said in Section 3.4 about memory
allocation and deallocation, we will be assuming that memory management
is correctly being taken care of by the host environment each time it invokes
the echo function.

The echo function is the primary function of this application, and it is
an excellent example of how a gRPC-Wasm function should behave. This
function has the length of a serialized protobuf message and its pointer as
arguments and has a pointer of a serialized response protobuf message as
its response value. Unfortunately, as we have already mentioned multiple
times in the previous sections, Wasm modules are (as of early 2021) unable to
return multiple values, which means that we cannot return both the pointer
and the size of the serialized response message to the host. To circumvent this
problem, we have decided only to return the pointer of the response message
while saving its length into memory, which means that by utilizing a simple
get_len() function (visible in Listing 4.4) , we can retrieve the response’s
length. Moreover, due to this function’s simplistic nature, there is no need
for memory allocation or deallocation since we will only return an integer to
the host environment. Here is a code snippet for the echo function:

1| #|no_mangle]
2| pub extern "C" fn echo(ptr: smut u8, length: usize) —> xmut u8 {
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4.2. Application logic

let slice = unsafe { std::slice::from raw_parts(ptr, length) };
let recived message: echo message = protobuf:: Message:: parse from bytes(
slice) .unwrap () ;
let mut new message: echo message = protobuf:: Message::new() ;
new message.set content(recived message.get content().into());
println!(
"Wasm has recived this message: {:?7}, sending it back!",
recived message.get content ()
)5
let mut new bytes = protobuf:: Message:: write to bytes(&new message).
unwrap () ;
unsafe {
MESSAGE LEN = new bytes.len () as i32;
}
let new ptr = new bytes.as mut_ ptr();
std ::mem:: forget (new_bytes);
new _ptr
}

Listing 4.3: Echo function in Rust

It should be noticed that the use of static mutable variables, like the one
that we use to store the response’s length, is inherently unsafe. However, since
Wasmtime does not yet implement the Wasm thread proposal, this solution
can be utilized as our Wasm module will only be accessed by one thread at
a time. This workaround, needless to say, will not be viable anymore once
the wasm multi-threaded proposal is implemented as utilizing it would mean
incurring into race conditions.

In Listing 4.4, we can see the get_len() function and the static mutable
variable MESSAGE_LEN utilized to store the lengths of responses’ sizes.

static mut MESSAGE IEN: i32 = 0;

#[no_mangle]

pub extern "C" fn get message len() —> i32 {
unsafe { MESSAGE LEN }

}

Listing 4.4: get len function

Finally, compiling to WASI is a simple task in Rust. By utilizing cargo-
wasi [15], a Cargo subcommand to build code for the wasm32wasi target, we
can execute the command cargo wasi build to generate our .wasm file.

The WebAssembly module is now ready to be embedded within the gRPC
server using Wasmtime.
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4.3. Client

4.3 Client

The gRPC client for an echo server is as simple as it can be. We created
a client which contains a method that takes in a user input. Clients work
as gRPC stubs and use the gRPC-API auto-generated Send method. In
practice, the only thing that the client needs to do is call the Send function
and forward the user input to the server.

In order for the client to connect to the server, a channel needs to be estab-
lished. This channel will then be subsequently used to instantiate a stub with
it. Moreover, when establishing a connection, the dial options for the commu-
nication must be specified. We used the dial-option grpc.insecure_channel
for simplicity purposes and make it possible to connect without any transport
security protocols such as Transport Security Layer or the deprecate Secure
Sockets Layer. After a stub has been created, the last thing to do is to call
the method on the stub.

4.4 Server

The server side implements the generated interfaces and handles the calls of
a client. Multiple servers can be initialized on the same machine. However, a
unique port must be assigned for each server to run simultaneously.

4.4.1 Embedding the WASI module in Golang

For the server-side of this echo application, we have decided to utilize Golang
as our host runtime environment. This decision was dictated by our belief that
Golang would play well in a gRPC server setting, considering that it is well
known to be a programming language that tackles concurrency performantly.

The embedding process is just a practical application of what we have
already gone over in Section 2.1.5. The only particularity with this specific
embedding process is that we have specified the StdoutFile in the WASI
configurations, which was done to see print statements from the echo function.

Below in Listing 4.5, we can notice that a Linker object is needed to
link the WASI object and the Module object. Moreover, this object is not
something present in all Wasmtime libraries but is specifically required in this
version and few others. What linker.DefineWasi(wasi) essentially does is
ensuring that all exported functions are available for linking. The linking itself
does not happen, however, until we invoke the linkerInstatiate function,
which returns an Instance object (refer to Section 2.1.5).
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func main() {
dir, err := ioutil.TempDir("", "out")
check(err)
defer os.RemoveAll(dir)
stdoutPath := filepath.Join(dir, "stdout")

engine := wasmtime.NewEngine ()
store := wasmtime.NewStore(engine)
linker := wasmtime.NewLinker(store)

wasiConfig := wasmtime.NewWasiConfig ()

wasiConfig.SetStdoutFile (stdoutPath)

wasi, err := wasmtime.NewWasilnstance(store, wasiConfig, "
wasi_ snapshot previewl")

check (err)

err = linker.DefineWasi(wasi)
check(err)

module, err := wasmtime.NewModuleFromFile(store.Engine, "../wasm/
echo server.wasm")

check(err)

instance, err := linker.Instantiate (module)

check(err)

Listing 4.5: Wasmtime Embedding for Go

After the instantiation process, we store a map of Wasm exported functions
(in this case: echo, new_alloc, new_dealloc, and get_len) and the Wasm-
Memory inside the autogenerated EchoServer class. By utilizing this method,
we can take hold of those objects when we receive gRPC requests.

4.4.2 Server-side: Send Function

We decided that since the Echo server only provides the echo service, there
was no need to build a generic callWasm function like the one we mentioned
in Section 3.4. Instead, we wrote code directly within the autogenerated
Send function. The Send function, depicted in Listing 4.6 receives every
gRPC request for this specific server. The function itself is mainly based
on the utilization of pointers to pass and retrieve data from and to the
instantiated Wasm Module (Instance object). Moreover, we can see that since
WebAssembly only accepts integers and floating points when interacting with
exported functions, we need to convert our integers to supported data types. In
this case int32. Additionally, the pointers returned by the exported functions
also need to be cast to int32, as those value are by default interpreted as
interface{} objects.
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4.4. Server

func (server xEchoServer) Send(ctx context.Context, message *pb.EchoMessage)
(xpb.EchoMessage, error) {
fmt. Printf("Server recived: '%v’\n", message.Content)
receivedBytes, err := proto.Marshal(message)
check(err)

server .mu. Lock ()
defer server .mu.Unlock ()

ptr := server.copyToMemory(receivedBytes)

newPtr, err := server.funcs|["echo"].Call(ptr, int32(len(receivedBytes)))
check(err)
newPtr32 := newPtr.(int32)

nml, err := server.funcs|["get len"]. Call()
check(err)
newMessageLen := nml.(int32)

buf := server.memory. UnsafeData ()

returnMessage := &pb.EchoMessage{}

if err := proto.Unmarshal(buf|[newPtr32:newPtr324newMessageLen],
returnMessage); err != nil {
log.Fatalln("Failed to parse message: ", err)

}

_, err = server.funcs|["dealloc"]. Call(ptr, int32(len(recivedBytes)))
_, err = server.funcs|["dealloc"]. Call (newPtr32, newMessageLen)

return returnMessage, nil

Listing 4.6: Echo Server’s Send RPC handler

At the end of the function, the exported dealloc method is called upon to
release the memory currently allocated in the Wasm module.

Notably, as we can see in this function, we utilize locks to assure that
only one client at the time has access to the Wasm functions, as not doing so
would result in errors.
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4.5 Benchmarking

The goal for this benchmark is to evaluate the application’s performance, and
with this we mean: latency and throughput. Both of these are important to
test as they have an effect on how well the gRPC application is working. We
have performed several tests to gauge the application’s overall performance,
both with and without Wasm. This was done by utilizing two of the Pitter
machines located in the Linux Lab at the University of Stavanger. These
Pitter machines are a group of GNU /Linux machines connected together over
a LAN, and represent normal desktop computers. The specifications of these
machines are specified in Table 4.1.

CPU | Intel®) Core™2 Duo Processor E6300
RAM | 2 GB (DDRS3)
Network | Ethernet, 1 Gb/s
OS | Scientific Linux 7.9 (Nitrogen)
Go ver. | 1.16 linux/amd64

Table 4.1: Specifications of the Pitter machines

In the benchmark we send large amount of requests, while gradually
increasing the number of clients. The large numbers of requests and the
increasing number of clients is beneficial as we assume that the benchmarks
will show significant results when stressed.

Additionally, we created a simple automation script to work alongside ghz
for a more efficient benchmarking process. The script uses the following CLI
command x-number of times:

ghz --insecure --proto <proto_file_location> --call proto.
Echo.Send -c <n-clients> -n <n-messages> -d "\{"content":
<data_string>\}" -0 ’pretty’ <server_IP_address>:50051.

This will generate a JSON file that will be then analyzed by the script
to give us the average latency and throughput. Once all the x-number of
benchmarks have been run, the script will generate another JSON file with
the overview for each of benchmark and a final average between them all.
This data will be utilized to create detailed graphs that show the differences
in performance between the Wasm and Wasmless implementation of the
application.

23



4.5. Benchmarking

4.5.1 Performance comparison

Considering the purpose of the application, we opted to test for data sizes of
10 bytes, 1 KB and 10 KB to examine how well both implementations will
perform with these sizes. Each implementation is executed 10 times, sending
100000 requests per data size.

Figures 4.1, 4.2 and 4.3 show each implementation’s average latency and
throughput measured for different data sizes. Already from the results, it
is apparent that Wasmless performs exceptionally better than Wasm with
smaller payloads. The figures show an apparent reduction in throughput for
both implementations as the number of clients increases.

ECHO SERVER PERFORMANCE
10 BYTES PAYLOAD

—@— Wasmless

—&— Wasm

Average Latency (ms)

1400 3400 5400 7400 9400 11400 13400
Throughput (req/sec)

Figure 4.1: 100 000 requests. Payload 10 Bytes

The additional tasks that Wasm has to execute during an operation may
explain the poor performance. By additional tasks, we mean allocation and
deallocation of memory, alongside marshalling and unmarshalling of messages.
It is clear that Wasm is substantially slower than the latter.
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ECHO SERVER PERFORMANCE
1KB PAYLOAD

—&— Wasmless
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Figure 4.2: 100 000 requests. Payload 1 KB

Both Wasm and Wasmless displays a clear performance trend; throughput
is reduced as the payload size becomes larger. The throughput is computed by
taking the total number of requests, both successful and failed, and dividing
by the total duration of the test, T = count/total. As latency increases, we
can see that the application’s throughput begins to suffer, resulting in a near
improvement halt after a certain point and evident performance degradation.
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Figure 4.3: 100 000 requests. Payload 10 KB
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The graphs for both implementations, depicted in Figure 4.3, are nearly
identical in terms of latency and throughput measurements. For payload
sizes of 10 KB or larger, it is evident that the overall performance is much
worse than a smaller-sized payload. This poor performance might be due
to a network bottleneck caused by the network we have utilized for these
benchmarks, which was not particularly good (environment specifications in
Table 4.1). Moreover, the share of network allotted to us was not always
consistent, considering that we could not control the utilization of the network
by other students.

Ultimately, an interesting thing that we can assume by these results is
that the overhead we get when utilizing Wasm can be amortized with size.
It means that instead of using a higher number of minor calls (size-wise), it
would be wise to use a more prominent call (size-wise) to group the several
small calls or straight up use only big calls. Doing so should get us less Wasm
overhead on average.
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Chapter 5

Storage Server

This chapter presents our Wasm-Storage application, which can be essentially
thought of as an accurate and proper utilization of our Wasm-+gRPC template
to create a distributed system application that utilizes Wasm diversification
to increase its security.

The main idea behind this application is to use multiple servers, each
implemented in a different language, with the same WebAssembly module at
the core of the storage service that they will provide.

By employing multiple servers, we can prevent having a single point of
failure in the application. Moreover, using Wasm, the storage application can
be conveniently embedded within various programming languages, thereby
enhancing software diversification and, ideally, reducing the likelihood of
common vulnerabilities among the various servers. Additionally, by utilizing
multiple servers, the probability of simultaneous, not malicious, software
failure and software bugs is decreased.

5.1 Proto Definitions

The application logic will operate on three servers written in different lan-
guages, which will be discussed further later in subsection 5.2.2. As this is
a storage server, the functionalities will mainly be writing and reading files.
The proto file will be used to generate the structural code necessary to build
the Storage servers.

service Storage {
rpc Read (ReadRequest) returns (ReadResponse);
rpc Write(WriteRequest) returns (WriteResponse);

message WriteRequest {
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5.1. Proto Definitions

string FileName = 1;
string Value = 2;
google.protobuf.Timestamp Timestamp = 3;

}

message ReadRequest { string FileName = 1;}
message WriteResponse { int32 Ok = 1;}

message ReadResponse{
string Value = 1;
int32 Ok = 2;
google.protobuf.Timestamp Timestamp = 3;

Listing 5.1: Storage server’s service and message definitions

As we can see above in Listing 5.1, the Storage service definition im-
plements Read() and Write() RPC methods. The Write method takes a
WriteRequest as input, where each write request has a filename string, value
string, and a timestamp for keeping records of when a file was created, up-
dated, or deleted. The Read method on the other hand, takes a ReadRequest
as input. This method returns a response of a value string, a timestamp, and
also a boolean integer for stating if the reading of file(s) was successful or not.

5.1.1 Compiling process to WASI

The storage application logic is simple, it has a store_data() method that
writes to a .json file and a read_data() method that reads from a file
and returns its content, and of course the communication with the host
runtime still happens through protobuf messages. It is worth noting that this
application utilizes WASI to a greater extent than the previous one, because
in the host environment we will be giving the Wasm instance access to a
specified directory in our system. This is because the key idea in WASI is
"capability-based security" meaning that access to system resources must be
explicitly declared.

However, as of early 2021, there are some problems when you try to give
resource access to WebAssembly modules compiled with the library method
that we have previously used, and some workarounds need to be taken to make
it work. We start by not making a Rust library, and writing our application
logic directly in the main.rs file. Unfortunately, this new method results in
either having to use a dummy "main function" or having to explicitly tell the
compiler that the file does not have a main function, which can be done by
writing #! [no_main] on the top of the file. After that we can write our code
exactly in the same style as we did with the echo server, treating it like a
library. When it comes to the compiling process of our code to WASI, we will
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use another more experimental compiling command, which will allow our new
type of Wasm Module to work as expected. Here is the following command:

rustc —target wasm32—wasi — —Z wasi—exec—model=reactor

With this command, we are targeting WASI with an unstable (Z flag)
WASI execution model: the reactor model. The main concept of a reactor
model in WASI is a module that does not have a regular start function that
runs and exists, but that instead has a simpler _initialize() entry point.
This entry point just does whatever low-level initialization the binary and
WASI implementation needs (e.g. setting up a preloaded directory), and
then exits, leaving everything set up by the _initialize() function in place.
Using this model we are then able to just call whatever function the module
exports just like a library. This is of course still experimental and unstable as
of early 2021 and needs the latest nightly version of rustc (the rust compiler)
to work.

5.2 Implementation

In this section, we first present the client. Afterwards, we take an in-depth
look at how the servers are implemented. Our implementation of a storage
server is largely derived from the echo server application that we’ve created.

5.2.1 Client-side

We implemented a CLI-based client which can interact with multiple storage
servers. Implementing a GUI-based client was also an alternative; however, a
CLI is a better option considering the advantages it provides, such as being
lightweight and efficient. This client is intended to be a simple command-line
interface, so users will not find it hard to interact with the servers. Our
implementation lets us freely choose how many servers to connect to, which
we can decide by simply adding and removing IP addresses from a string
array. The program will connect to each server separately, forwarding all
requests to every server. The program will wait for all servers’ responses
before allowing the user to send another request. In other words, this set of
requests sent to different servers is treated as a single long request.

From a user’s point of view, the application is pretty straightforward. It
starts by greeting the user with a message that asks whether the user wants
to write to a file (store data) or read an already existing file stored in the
servers. According to the inputted command, the client will be required to
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either provide the file name and value (content to store) or just the file name.
Moreover, we implemented simple quality of life features, such as showing the
user only the newest version of the storage file, by comparing every gRPC
response’s timestamps. Following a write-request, the user is notified if any
gRPC connections were lost during the request process.

5.2.2 Server-side

Since the Storage servers are going to provide multiple services (Read/Write),
unlike the Echo server, which provided only one service, we have decided that
it would be beneficial to implement a generic CallWasm function, like the one
we have mentioned in Section 3.4.

This CallWasm function would essentially be acting as our primary way
of interaction with an instantiated Wasm module. Moreover, since we are
going to implement such a function in every server, we can expect every
server to resemble each other greatly, with, of course, some language-specific
alterations.

When communicating with a Wasm module that has been instantiated,
we must use locks, as we briefly discussed in subsection 4.4.2 . Locks are
needed because of how we communicate with the Wasm instance, such as how
we obtain the length of returned protobuf messages from exported functions,
which is inherently not thread-safe.

Furthermore, not utilizing locks to access the Wasm module will result in
errors when multiple threads try to do so. This problem happens because,
as we previously stated in Section 4.2, Wasmtime does not yet implement
multi-threading.

It is crucial to mention that the positioning of the locks will be the
same in every implementation. This decision was taken to avoid situations
where an implementation’s performance would be greater than another purely
because the former implementation has more code that can be executed in a
multi-threaded way.

Additionally, utilizing locks, we assure that multiple writes and reads
to/from a file(storage) are not concurrent, as it could result in inconsistent
data.

Go implementation

The Go storage-server was the founding stone of all other storage implemen-
tations, mainly because of our more profound understanding, at this point, of
how Wasmtime and gRPC worked in this programming language.
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Firstly, we can start by saying that there are not many differences between
the embedding process of the WebAssembly module here compared to the one
done in the Echo server. The first difference is that instead of instantiating
the Wasm module directly in the main function, we create this language
version of the WasmlInstantiate function, which can be seen in its entirety
in Listing C.1. Secondly, considering that this application will utilize files
as storage, we need to pass the directory access to the Wasm module before
instantiating it, which can be done by modifying the WASI configurations
before the instantiation occurs.

Subsequently, another difference is that we have to export and invoke
the _initialize function, as Wasmtime will not be calling this function by
default. This interaction with the _initialize function should be done in
the Wasm instantiation phase.

Moreover, failing to call the _initialize function, or forgetting to do so,
will make our instance incapable of loading the custom WASI configurations,
which would result in it being unable to access the pre-opened directory of
choice. Listing 5.2 shows how we specified the pre-opened directory (the
"data" directory) and of how to export and call the _initialize function.

err = wasiConfig.PreopenDir("./data™, ".")
check(err)

intializeFunc := instance.GetExport(" initialize").Func()
_, err = intializeFunc.Call()
check(err)

Listing 5.2: Specification of the pre-opened directory and _initialize function

Now that we have gone over the new Wasm instantiation process, we can
describe how we have implemented the callWasm function in Go.

callWasm is a function that should be utilized in every gRPC method,
no matter what type of gRPC messages or gRPC service is being used.
Furthermore, using the protoMessage interface, which is an interface that is
implemented automatically by all types of generated proto messages, we can
deliver a high degree of genericness.

This function handles all repetitive procedures that must be performed
when communicating with an instantiated Wasm module, such as memory
allocation and deallocation, and marshaling and unmarshaling of gRPC
messages.

The first parameter in callWasm is the name of the Wasm function that
we want to invoke in the form of a string, which will be used to obtain the
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5.2. Implementation

desired Wasm function from a map containing all exported Wasm functions
of the Storage Server.

The second and third parameters are generic proto, but while the former
is utilized to pass the gRPC request to the Wasm module, the latter acts as
a shell of the future gRPC response.

This third argument is an empty gRPC response proto message either of
type WriteResponse or ReadResponse, which will be used as the unmarshal-
target for the response data we retrieve from the Wasm Memory. Moreover,
this third argument will also be the returning value of the function once the
unmarshalling process has been completed.

The reason why we need to have this third parameter is mainly because
of Golang’s lack of generics. The lack of generics results in the inability to:

e Specify the type of proto message to which the data we get from the
WebAssembly linear memory representation should be unmarshalled.

e Specify what type of proto message we want the function to return.

Fortunately for us, the latter problem gets resolved by having the return
value be a generic proto message; however, there is no simple way to solve
the unmarshalling problem, which is why we need that third argument. In
Listing 5.3 below, we can see the callWasm function in code format:

func (server *xStorageServer) callWasm(fn string, requestMessage proto.
Message, responseMessage proto.Message) proto.Message {
recivedBytes, err := proto.Marshal(requestMessage)
check (err)

server .mu. Lock ()
defer server.mu. Unlock ()

ptr := server.copyToMemory(recivedBytes)

len := int32(len(recivedBytes))

resPtr, err := server.funcs[fn]. Call(ptr, len)
check (err)

resPtr32 := resPtr.(int32)

, err = server.funcs["dealloc"]. Call(ptr, len)

check (err)

resultLen, err := server.funcs|["get len"]|. Call()

check (err)

intResLen := resultLen.(int32)

buf := server.memory. UnsafeData ()

if err := proto.Unmarshal(buf[resPtr32:resPtr32+intResLen],
responseMessage); err != nil {

log.Fatalln("Failed to parse message: ", err)

}
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_, err = server.funcs|["dealloc"]. Call(resPtr32, intResLen)
check(err)

return responseMessage

}

Listing 5.3: callWasm function in Golang

Inside of callWasm, we utilize the copyToMemory function, which in reality
is simply a partition of the callWasm function that we have decided to create
to make the function easier to read. The copyToMemory function handles the
copying of serialized data to the Wasm’s memory. The listing below shows
the code for the copyToMemory function:

func (server *xStorageServer) copyToMemory(data []byte) int32 {

ptr, err := server.funcs|["alloc"].Call(int32(len (data)))
check (err)

ptr32 := ptr.(int32)

buf := server.memory. UnsafeData ()

for i, v := range data {
buf|[ptr32+int32(i)| = v

}

return ptr32

Listing 5.4: copyToMemory function in Golang

Finally, it is worth mentioning that we need to cast the returning callWasm’s
value to the specific gRPC function response type before utilizing it to reply
to the client.

Python implementation

We used Python for creating the second server, since it has great support
on both gRPC and Wasmtime, just like in Go. This means that this imple-
mentation closely resembles the Go implementation, but with a few subtle
differences.

The Wasm embedding process and the implementation of the WasmIntantiate
function were straightforward, closely resembling what we did in Golang. One
minor difference with Python’s WasmInstantiate function is that the ex-
ported Wasm objects (functions and memory) are stored like global variables,
instead of storing them inside the Server class.

Additionally, there are some more subtle diversities here and there that
come in the form of some language-specific differences with the functions we
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used. For example, in our copy_memory function, we do not have to specify
what type of array it has to take in, unlike in Go where we have to specify that
the method should take a byte array as an argument. What is great about
Python is that it is able to automatically recognize what type of argument
the function takes in. Subsequently, this makes the code smaller and cleaner,
which can be seen in Listing 5.5.

def copy to memory(sdata: bytearray):
ptr = instanceExports|["alloc"|(len (sdata))

for i, v in enumerate(sdata):
instanceExports ["memory"|. data ptr[ptr + i] = v

return ptr

Listing 5.5: copy_to _memory function in Python

As previously mentioned, WASM only works with data types of integers
and floats. The function above returns a pointer that was of type i32 originally.
However, unlike Go, where we have to be specific about which numerical type
we want our pointer to be converted into, Python automatically converts any
numerical int type (i32, i64..) to Python int. This shows how simple this
interpreted language is compared to other programming languages.

Pointers in Python are not commonly used to store and manage allocated
memory addresses, as they are in other languages such as Go, C, or Rust.
Python is heavily focused on usability rather than on efficiency. This is one
of the differences when working on the server implementation.

class StorageServicer (storage pb2 grpc.StorageServicer):

def Read(self, request, context):
return _message = call wasm(
read, request, storage pb2.ReadResponse())
return return_ message

def Write(self , request, context):
return_message = call wasm (
write, request, storage pb2.WriteResponse())
return return message

Listing 5.6: StorageServicer

The StorageServicer class that we can see in Listing 5.6 extends the
autogenerated StorageServicer class and implements the two functions needed
by our service, Read and Write. Each function contains two parameters:
request and context. The context parameter is not used here. However, it
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is worth noting that the context variable contains various useful contextual
data, such as timeout limits.

Finally, we can take a look at the Server class and at its run method
utilized to run the gRPC server itself. Below is the code for the run function:

class Server:

@ staticmethod

def run():
server = grpc.server (futures. ThreadPoolExecutor (max_ workers=10))
storage pb2 grpc.add StorageServicer to_ server (

StorageServicer (), server)

server .add insecure port(grpc_ address)
server .start ()
print ("Server is running at: " 4 grpc address)

try:
while True:
time . sleep (86400)
except KeyboardInterrupt:
server .stop (0)

Listing 5.7: Python Server Class

The grpc.server function creates a server. We call it with the only re-
quired argument, a futures.ThreadPoolExecutor with the maximum num-
ber of workers set to 10.

Subsequently, we call the add_StorageServicer_to_server function to con-
nect the StorageServicer to the service that we want to serve.

Using add_insecure_port, we set up the listening [P address and port,
and subsequently start the server utilizing the start() method.

The add_insecure_port function is used since we are not setting transport
protocols for our clientserver communication and authentication.

In Python gRPC, the server can be stopped from running by implementing
wait_server_termination() [4] at the end of the method, which is a built-in
API for Python gRPC. This API will block the current thread until the server
stops. The wait will not consume computational resources during blocking,
and it will block until one of the following conditions are met. Either the
server is terminated, or a timeout occurs. Stopping the server by typing
crtl + ¢ in the terminal prints out a stack trace whenever the API throws
an exception, hence making the terminal cluttered. However, it works as
expected. We suspect that this may be a work in progress issue due to the
APT still in experimental stage. Hence, we opted for a different method using
a sleep-loop as listed in Listing 5.7.
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.NET implementation

The .NET implementation differs slightly from the other implementations
due to how gRPC works in .NET and some specific C# capabilities.

Creating a .NET gRPC server is done by setting up a .NET Core gRPC
server project, which we can do by utilizing the Visual Studio IDE and
selecting gRPC when creating a new project. Setting up a server using this
method will provide us with a simple project template for creating gRPC
ASP.NET Core service using .NET Core. Furthermore, since we would be
utilizing ASP.NET, an open-source, server-side web application framework,
we would have easy access to valuable features such as logging, dependency
injections, authentication, and authorization.

It is also important to mention that the template we generate using this
method uses TLS (Transport layer security) by default, which is a great
security feature. Unfortunately, it can cause some compatibility problems.
These problems come from Kestrel’s utilization in every ASP.NET Core
project template that by default does not support HTTP /2 with TLS on
macOS and older versions of Windows, such as Windows 7. Fortunately, this
compatibility problem is resolved by configuring a Kestrel HT'TP /2 endpoint
without TLS in the project-generated Program.cs file.

Another thing worth keeping in mind when working with gRPC in .NET
(version .5 in our case) is that the constructor of the class representing the
service that we are going to use, in this case, the Storage service, will be
called every time the server receives a gRPC request. As a result of this
behavior, a new instance of the service is created for each request, making it
impossible to share state between requests directly. Since each request will
be utilizing a different instance of the Storage service, we cannot create an
Instance of a Wasm module directly inside the gRPC service class. Doing
so would result in horrible performance caused by repeatedly creating new
Wasm Instances, which we have established in Section 2.1.5, are often created
by expensive instantiation processes.

Our solution to this problem was to create an additional Wasm service/-
class that would act as a store for the Wasm instance and implement the
NET’s CallWasm function.

Nevertheless, as we mentioned above, this new service cannot be directly
added to the Storage class, as it will be created anew alongside the class
at every gRPC call, rendering this helping class ultimately futile. We can,
however, register this Wasm service in our server as a singleton-service and
then pass it as a reference to every gRPC request. This registration process
can be seen in the listing below:
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public void ConfigureServices(IServiceCollection services)
string [| functions = {"store data", "read data"};
var wasmLocation = "../wasm_ module/storage application.wasm";
Dictionary<string , string> preOpenedDirs = new Dictionary<string , string
>0;
preOpenedDirs.Add("./data", ".");
services .AddGrpc() ;
services.AddSingleton (new WasmSingleton (functions , wasmLocation,
preOpenedDirs) ) ;

}

Listing 5.8: Registering the WasmSingleton service

Using this approach, we ensure that only one instance of the WasmSingleton,
which is our Wasm service/class, would exist at any given time. This means
that even though the Storage service class constructor will be invoked several
times, the same Wasm instance will be utilized, thus avoiding unnecessary
overhead.

Moreover, as we can see in Listing 5.8 line 6, the constructor of the
WasmSingleton class is essentially this implementation’s version of the
WasmInstantiate function. This constructor will handle the Wasm instantia-
tion process and the subsequential storing of the specified exported functions.

Finally, we can go over our version of the callWasm function in this
implementation, which due to generics and dynamic objects, can be written
in a short and straightforward manner. Furthermore, we do not necessarily
need to define all exported functions in advance because, using dynamic types,
we can directly invoke the exported functions without defining them first.
This method comes at a performance cost, which is, fortunately, practically
neglectable. Figure 5.1 illustrates an example of how we would invoke an
exported function without first defining it.

func = intance.Functions.Where(f => f.Name == func).First();
var returnValue = func.Ilnvoke(argument);

var returnValue = ((dynamic)instance).func(argument);

Figure 5.1: Dynamic exported functions

Additionally, here is a little snippet of how we have use generics in the
callWasm function:
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public T callWasm<T>(String fn, IMessage message) where T : IMessage<I>, new

0

{

try{

}

finally{

mu. ReleaseMutex () ;

}

message = parse<I>(result);

return message is T value ? value : default(T);
}

Listing 5.9: callWasm function in C#

The T in the function listed in Listing 5.9 represents the type of gRPC
message that we intend to unmarshal into and that we plan to use as return
value for this function. The IMessage interface in the arguments is an interface
that every gRPC message has to implement, making it the C# counterpart
of the Go’s proto.Message interface.

Rust implementation

The Rust implementation was the one that needed the most amount of work,
partly due to the need to utilize an unofficial Rust gRPC implementation,
as there are no official ones, and because of some incompatibilities between
Rust’s Wasmtime and the gRPC unofficial implementations.

As of early 2021, there are many different Rust implementations for
gRPC, notably the Tonic and gRPC libraries (crates), which provide a full
implementation of the gRPC protocols. However, these two libraries are not
equal at the moment, as the gRPC library is, in its developers’ works, not
production-ready and lacks in stability and performance. These shortcomings
drove us to choose the more performant, stable, and documented Tonic library.
The Tonic library is especially great because of its focus on the support and
utilization of async/wait in Rust, which theoretically should deliver excellent
performance.

The first big problem that we encounter when trying to implement the
server, following the type of structure that we have utilized so far for the
other implementations, is the inability to share our Wasm instance or our
exported Wasm functions between different threads. This limitation comes
from the initialization process of a Wasm module in Rust, which starts
by initializing a Wasmtime store that acts as an anchor for all the other
Wasmtime objects. As of version 0.23.0 of Rust’ Wasmtime library, this store
object is not thread-safe, which means that it and any other object connected
to it, such as exported functions, are pinned to a single thread. This single
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thread behavior happens automatically through the lack of implementation of
the Send and the Sync trait (propriety), which means that we cannot utilize
Wasm objects in asynchronous functions. Even though we can set up Tonic
to work with just one thread at the cost of losing performance, there is no
way to circumvent the asynchronous function problem. This means that we
cannot store Wasmtime objects directly in the store struct, as we cannot use
them in the gRPC functions.

Because of Tonic’s inherent reliance on sync/wait, we need to utilize
a slightly more complicated solution to use Wasmtime in this case. Our
solution comes in the form of an "actor," but before we can talk about how
we implemented it, we have to explain what an actor is and why it resolves
our problem. The fundamental intention behind an actor is to spawn a
self-contained task that performs a specific job autonomously, that disregards
what the other parts of the program are doing. An actor will then be able
to communicate with the rest of the program by utilizing message-passing
channels. The actor’s autonomy means that we will essentially be running it
in parallel to the Tonic server. In our case, the actor will have full exclusivity
on the Wasm instance ownership, which will then be available to the rest of
the program through indirect access by talking to the actor. Assigning the
task of Wasmtime handling uniquely to the actor means that every Wasmtime
object will remain on one single thread, thus taking care of the single-threaded
nature of these types of objects.

This WasmActor can be divided into two parts: the task and the handle.
The task is the autonomous spawned thread that performs the actor’s duties,
which means that it takes care of the Wasm instance’s interactions. The
handle is a struct that the Tonic server will utilize to communicate with the
task. Figure 5.2 illustrates how this type of server would work.

Web Assembly
Module %ﬁ:ﬂ?
1 Tonic Server /El gRPFC
(gRPC serve) client
Wasm Actor < >
gRPC
client

Figure 5.2: Tonic Server structure
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The Wasm Instance initialization process and Wasi configuration can
occur in the WasmActor (the task) constructor. It is worth noting that this
process is slightly different from the other implementations, as the developers
of Wasmtime in Rust have decided to divide the Wasmtime library into a
bunch of smaller size libraries. Thanks to this decision, we can select exactly
what type of features we want to import, rendering the file sizes smaller
in the process. We need these three libraries for this type of WASI server:
the base wasmtime library, wasmtimewasi, and wasi_cap_std_sync. The
last two libraries are specific for working with WASI. They give us the tools
necessary to instantiate WASI and modify the WASI configuration, such as a
preopen directory.

Once we are done with the Wasm module’s instantiation process, we can
store the Wasm memory and all the Wasm functions needed in the actor’s
struct, similar to how we did it in the server struct of both the Go and Python
implementations. Since Tonic utilizes prost as its unofficial protobuf library,
and prost’s generic protobufmessage is not object-safe, we cannot create
a generic call_wasm function like the ones in the other implementations.
As a result of this missing feature, we will not be able to use a generic
protobuf-message either as a parameter or a return value, which means that
we need to create a specific WasmActor’s method for each gRPC function
that our service provides. Our solution, however, was to create a method
called handle_request that utilizes an enum as the parameter to specify
what gRPC message is being called. Nevertheless, this still means that there
cannot be a generic way to interact with the Wasmtime instance, but we can
keep the code slightly cleaner using this method.
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enum ActorRequest {

Read {
respond to: oneshot :: Sender<ReadResponse >,
request: ReadRequest ,

}’
Write {...},

struct WasmActor {

receiver: mpsc:: Receiver<ActorRequest >,
funcs: HashMap<String , wasmtime:: Func>,
memory : wasmtime : : Memory,

impl WasmActor {
fn new(receiver: mpsc:: Receiver<ActorRequest>, dir: Dir) — Self {...}

fn handle request(&mut self , msg: ActorRequest) {
match msg {
ActorRequest :: Read {respond to, request,} =>

{
let mut buf = BytesMut:: with capacity (500);
request .encode(&mut buf).unwrap () ;
let bytes_vec: Vec<u8> = buf.to_vec();
let result = self.call wasm("read", bytes vec);
let buf = &result [..];
let response: proto:: ReadResponse;
response = prost :: Message :: decode (buf) .unwrap () ;
let = respond to.send(response);

}

ActorRequest :: Write {respond to, request,} => {...}
}
}

fn copy to memory(&mut self , data: Vec<u8>) —> (i32, i32) {...}
fn call wasm(&mut self , f name: &str, data: Vec<u8>) —> Vec<u8> {...}

Listing 5.10: WasmActor

ActorRequest shown in Listing 5.10, is the enum that defines the kind
of message that we can send to the actor through the handle. Utilizing an
enum, we can have many distinct types of messages, one for each gRPC kind
of request. Once we are done interacting with the Wasm instance and its
exported methods, we need to return a message to the handle by using a
oneshot channel, a message-passing channel that allows us to send exactly
one message.

In our solution, we match the enum inside a handle request method on
the WasmActor struct, but that is not the only way we can structure this. We
could also directly match the enum in the run_my_actor function. However,
each matching branch would have to call a specific method on the actor object,
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such as a store data method, using this structure type.

In the run_my_actor function, shown in Listing 5.11, we can detect when
the actor should shut down by looking at failures to receive messages. When
all senders to the receiver have been dropped, we can be sure that we will
never receive another message, which means that the actor can be shutdown.
When this happens, the call to .recv() returns None, and since it does not
match the pattern Some (msg), the while loop exits, and the function returns.

fn run_my actor (mut actor: WasmActor) {
while let Some(msg) = actor.receiver.blocking recv () {
actor.handle request (msg) ;
}

Listing 5.11: run_my_actor function

Once the actor has been defined, a solution to communicate with it is
needed. It comes in the form of a handle to the actor, which will be an object
that the server will use to talk to the actor and what actually keeps the
actor alive. Unfortunately, because of the previously mentioned prost library
limitation, much code will need to be repeated for each type of request sent
to the handle.

#|derive (Clone) |
pub struct WasmHandle {
sender: mpsc:: Sender<ActorRequest >,
}
impl WasmHandle {
pub fn new(dir: Dir) —> Self {
let (sender, receiver) = mpsc::channel(8);
thread ::spawn(move || {
let actor = WasmActor::new(receiver , dir);

run_my actor(actor);

1)
Self { sender }

}
pub async fn get write response(&self, request: WriteRequest) —>
WriteResponse {
let (send, recv) = oneshot::channel();
let msg = ActorRequest:: Write {
respond to: send,
request ,
s
let = self.sender.send(msg).await;
recv.await.expect (" Actor task has been killed")
}
pub async fn get read response(&self, request: ReadRequest) —>
ReadResponse {...}

Listing 5.12: WasmHandle.
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In the end, once we are done with both the actor and the handle, we
can add the handle to the Tonic server struct, giving the server a way to
communicate with the Wasm instance. Using this type of structure for the
gRPC server resolves all the problems that we encountered by trying to use
Wasmtime and Tonic together. However, the amount of work needed to make
this code reusable for another gRPC server is not indifferent.

In this implementation, we can see that the WasmActor constructor is essen-
tially this version’s WasmInstantiate function, much like the Wasmsingleton
constructor in C+#.

However, due to this implementation’s heavy reliance on server/application-
specific methods and enums, we retain that creating a proper WasmInstantiate
function does in practice little to no difference to the overall complexity of
this type of server, rendering this function pointless.

We could say that the lack of a gRPC generic message makes this code
almost unreusable compared to all the other server implementations. Hope-
fully, this is a problem that will be fixed in future prost’s updates since
the object-safe version of the generic protobuf message trait is likely to be
released.

It is safe to say that the code will become more generic and reusable when
such a change is made, which will result in the abandonment of the server’s
specific code and a shorter code overall.

5.3 Storage algorithm

In a storage application with a structure like this one, it is crucial to keep in
mind different things such as:

e Consistency
e Resilience (number and types of failures tolerated)

e Complexity

Taking a more in-depth look at our storage application logic, we can
see that we have been following what a certain L. Lamport (for a more in
depth read [18]) defines as universally accepted consistency guarantees for
a read /write storage abstraction. By utilizing locks when interacting with
storage files, we guarantee that read and write do not happen concurrently,
thus ensuring the safety, regularity, and atomicity of every storage server.
This is not ideal for performance since concurrent reading could technically
be allowed as long as no writes are being processed simultaneously. However,
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because of Wasm’s non-multithreaded nature, this cannot be done, as only
one client can ever have access to the Web-Assembly module at the time.

Merely using locks in each storage server does not ensure consistency
between separate storage. Furthermore, there is no fault-tolerant mechanism
in operation, as whenever a server encounters an error or fails, it will be
automatically dropped by the clients connected to it. Many of these issues
could be addressed using a basic storage algorithm, such as the ABD algorithm
[24]. This algorithm archives a state of consistency between each storage
by splitting read operations into two rounds: a straightforward read request
to every server and a round-back write to each server that does not have
the most recent data version. This mechanism should be adopted, but it
is essential to remember that write-back requests "steal" time from other
read or write requests since these cannot happen concurrently when utilizing
Wasm. Unfortunately, this means that the overall application performance is
going to be affected. For simplicity and to benchmark write and read requests
singularly, we decided not to implement this feature. However, we strongly
advocate for such a mechanism to be utilized in this type of application.

On the other hand, ABD’s use will improve the application’s apparent
performance to a user because of how crash failures are handled. ABD allows
an acceptable ¢ crash failures out of n = 2¢ + 1 storage servers, which means
that if you are using three servers, ideally speaking, you can afford the crash
of one single server before the storage application stops function the way it
should. This type of behavior means that a client’s read or write request is
considered completed if two out of three servers have acknowledged it.

Given that different Wasm server implementations might have vastly
different performances, we may infer that using such an approach to tackle
crash errors would be advantageous since customer operations’ performance
would improve. A client would not wait for slow or faulty connections but
would deem the read/write request terminated even though it was still being
handled by one of the servers (increase apparent performant). To actually
boost performance, a system for dropping pending requests might be set
up, with the caveat that not all requests to slow storage should be dropped.
Doing so would make a slow server, more or less completely inconsistent with
all the other storages.

5.4 Benchmarking setup
In this section, we will go through the setup needed for benchmarking this

application. Since our University permitted us to utilize a set of powerful
machines located on campus, called BBchain machines, we decided to create
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a custom-made benchmarking tool capable of fully utilize such devices. The
table below are the specifications of the BBchain machines.

CPU | Intel®) Xeon®) E-2136 Processor
RAM | 32GB RAM
Storage | 1.6Tb SDD
Network | Intel 1210 Gigabit NIC speed 1Gb/s (available)
OS | Ubuntu 18.04.4 LTS
Go ver. | 1.16 linux/amd64
.Net ver. | 5.0.200
Python ver. | 3.6.9

Table 5.1: Specifications of BBchain machines.

Unfortunately, the ghz tool does not have an option to connect to multiple
gRPC servers at once and thus had to be put on the side as it was no longer
relevant. Moreover, to make the benchmarks even more realistic, we decided
to run the clients on different BBchain machines. As a result of this , the
odds of a client-side bottleneck is significantly diminished, and the benchmark
will depend more on the server’s efficiency alone. The approach that we took
to create our custom benchmarking tool can be divided into different stages.
We started by creating a command-line program that creates a gRPC client,
establishes connections to m specified servers, and sends n gRPC requests
sequentially to each server. This way, every request will be forwarded to m
servers, forming an m-set of requests. Using a pre-allocated array, the program
will store how long each m-set of requests takes (latency in micro-seconds)
and at what second it returns. Once the client is done sending all its requests,
it will wait some seconds and then write the benchmark data to a CSV file.

Using this type of program, we can easily start several custom clients on
the same computer or different computers using a shell script. Furthermore,
once the benchmark has ended, we can utilize another shell script to collect
logs from all machines that have worked as clients. The data will then be
processed using Python code to obtain more valuable information, such as
average latency and the average throughput. The throughput comes by
counting how many m-set of requests returned simultaneously (with second
precision) throughout the benchmark.

It’s also worth noting that the first and last seconds of the benchmarking
process will be discarded, as it is highly unlikely that the benchmark would
begin or finish its execution exactly at the begging or at the end of a second.
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Furthermore, the type of connection we use with gRPC (TCP connections) is
known to have a warm-up time. This means that the first few requests would
almost certainly have a higher latency than the rest of the benchmark and
would not be very representative compared to the rest of the data.

5.5 Benchmarking

The benchmarking procedure for this application is going to be more involved
than previous benchmarks. The assessment of the performance of Wasm with
gRPC remains our primary concern. However, unlike in the past, we can
compare the results of various Wasm implementations rather than simply
comparing Wasm to non-Wasm implementations. Since this program was
designed to use various servers simultaneously, we will benchmark each server
independently to collect data representing the particular implementation.
Subsequently, we will be benchmarking the program as it was intended to be
used. In other words, we will compare the performance of different sets of
servers. Each test was run 10 times, and the values that are gonna be used
in the graphs will be an average of those benchmarks.

Finally, we want to address a library version problem encountered in the
experimental phases before the actual performance evaluation process. Some
of the libraries we used in our implementations received updates during our
testing period, resulting in significant efficiency and consistency improvements.
Furthermore, there was a case where performance did not increase after an
update but decreased by 15%. Consequentially, we decided not to update
any library used by our implementations during the benchmarking phase to
maintain consistency. Not doing so would result in dramatically different and
inconsistent results. Table 5.5 lists the names and versions of the libraries
that we have been using throughout the project.

wasmtime-go | v0.22.0
wasmtime (rust) | v0.23.0
wasmtime-wasi (rust) | v0.23.0
wasi-cap-std-sync (rust) | v0.23.0
wamtime-py | v0.22.0
wasmtime-. NET | v0.22.0

Table 5.2: Libraries utilized

We have tried to use the same version for all the libraries. However,
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version (.22 for the wasmtime-Rust libraries seemed to have some bugs when
interacting with WebAssembly’s memory, so we decided to use the yet-to-
be-released version 0.23, which at the time was more stable than the official
version.

5.5.1 Benchmark 1

In this section of the benchmarking process, we will look at the results of each
implementation individually. We begin by comparing Wasm-based storage
implementations to the corresponding non-Wasm-base storage. Finishing
with a comparison of all Wasm implementations to see just how different such
implementations and Wasmtime libraries are in terms of performance. The
reading and storing aspects of the application will be benchmarked separately,
as not doing so would give us an unclear image of each storage version’s actual
performance.

Moreover, we want to know if a Wasm storage system is capable of
handling both small and large files well. Thus, we opted to test with two
different data sizes: 10 bytes and 1 MB to test both the reading and the
writing (storing) of data. For simplicity purposes, the same file is used during
writingbenchmarking and ensured that such a file already existed before each
benchmark. The file creation process would add unnecessary latency to the
final result, misrepresenting the program’s actual writing performance. It is
important to note that TLS is omitted for any of the tests so we can get an
idea of the raw performance with each.
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Figure 5.3: Wasm performance comparison for reading files of 10 bytes each
with different number of clients
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Figure 5.4: Wasm performance comparison for writing files of 10 bytes each
with different number of clients
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Figure 5.3 and Figure 5.4 demonstrate the performance of Wasm when
writing and reading 10 byte files. The graphs display the average time delay
in milliseconds and the number of requests per second for each write/read
operation.

From Figure 5.3 and Figure 5.4, we can get some interesting results:

1.

The average latency for each file operation increases with the number
of clients used. By latency, we refer to the time delay between initial
input and output.

. The performance disparity between Go and .NET 5 may be explained by

the fact that, despite the small amount of code that runs concurrently in
these gRPC implementations, Go typically handles concurrency better
than .NET, as gRPC-Go utilizes by default one goroutine (lightweight
threads managed by the Go runtime) per method call, which are known
to be performant and fast.

Looking at the performance differences for reading and writing for each
implementation, we can see that .NET 5 and Go have a significant boost
in performance when comparing write-operations to read-operations. It
is apparent that Go is better overall.

On the other hand, looking at Python and Rust (yellow and red lines)
reads and writes performances, we can see little to no performance im-
provement, as the maximal throughput is about the same in both graphs.
Python, illustrated by the yellow lines, is an interpreted programming
language, making it an unsuitable candidate for a server where speed is
a priority. Furthermore, Python is known for its "poor" multithreading,
due to the presence of a Global Interpreter Lock (GIL) [22]|. Therefore,
Python was expected to have worse performance compared to the other
implementations. On the other hand, we have Rust, represented by
red lines, that does support real concurrency. However, due to our
implementation that utilizes an "actor" to handle the Wasm instance
(subsection 5.2.2), the server is practically a single-threaded application.

. We can see that the throughput decreases after a certain number of

clients. However, this does not occur simultaneously for all imple-

mentations, as they all begin to degenerate at different client number
thresholds.
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Figure 5.5: Wasm read performance for each server with 1MB file
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Figure 5.6: Wasm write performance for each server with 1MB file

Figure 5.5 and Figure 5.6 show the respective write and read results for a
1 MB file. We may draw similar conclusions regarding these 1MB figures as
we did with the previous 10 bytes figures. We can see that the data is much
more jittery in this case, which may be due to network congestion caused by
the large amount of data being transmitted over the network.
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Figure 5.7: Peak throughput comparison between Wasm and non-wasm server
implementations for read operation with file of 10 bytes in size

Figure 5.7 and Figure 5.8 compare the average maximum performance of
Wasm-implemented servers to non-Wasm-implemented servers. Non-Wasm
outperforms its Wasm counterpart by more than two. While Wasm is regarded
as fast and efficient, these results are unsurprising, provided that Wasm
performs additional tasks before reading and writing operations. By additional
tasks, we again refer to memory allocation, deallocation and additional
marshalling and unmarshalling of data.
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Figure 5.8: Peak throughput comparison between Wasm and non-wasm server
implementations for write operation with file of 10 bytes in size

However, we see from these figures that the massive disparity in perfor-
mance is not present between the .NET Wasm and non-Wasm servers. In the
write benchmark, non-Wasm has a 17% advantage over Wasm and a mere
5% advantage in the reading benchmark. This minor performance disparity
does not reflect the visible performance disparity between non-Wasm imple-
mentations and their Wasm parallels. This behavior can be explained either
by the possibility of an impressively good optimized .NET Wasmtime library,
making Wasm performance much more in line with native performance, or
perhaps, by a structural mistake during the implementation of this specific
Wasmless server.

Figures 5.9 and 5.10 show these servers’ performance when reading and
writing operations are done with a 1MB file. Here, the Wasmless implemen-
tations’ performances are remarkably similar to each other, as most of the
time is being used doing 1/0O, making the singular server performances almost
neglectable in this case.

Figure 5.9 shows a similar execution behavior for all Wasm implementa-
tions, which are about a hundred times worse than their Wasm counterparts.
Notably, we can see that even Python and the virtually single-threaded Rust
implementation perform just as well as the Go and .NET implementations,
showing that single-threaded performance does not matter when file-sizes be-
come this big. When it comes to figure 5.10, we can see that the performance
disparity is more accentuated, making Python Wasm the least performant
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server by a wide margin.
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Figure 5.9: Peak throughput comparison between Wasm and non-Wasm
server implementations for read operation with file of 1 MB in size
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Figure 5.10: Peak throughput comparison between Wasm and non-Wasm
server implementations for write operation with file of 1 MB in size
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As previously stated, it is to be expected for Wasm to perform worse
than its Wasmless counterparts. That is mainly because of all the additional
actions executed by Wasm. When the file used is around a thousand times
bigger, it is critical to note how much of a dive the Wasm servers have taken
relative to Wasmless servers. For all implementations, the performance gap
widened significantly, indicating that Wasm servers of this kind are not the
best option for a storage application that handles medium-sized data.

Finally, looking at the gathered values, we can conclude that an increasing
number of concurrent clients will substantially impact the application’s latency,
which can be better seen taking a look at the graphs B.1-B.4 in Appendix B.
Overall, Wasm’s latency worsens over time for each concurrent client, while
throughput progressively increases at a steady pace.

5.5.2 Benchmark 2

This segment’s benchmark is more focused on how a set of three different
servers would do if we waited for two out of three responses. In this scenario,
the benchmarks divide into three groups. In the first group, we will run
NET 5, go, and python servers with Wasm on three BBChain machines
simultaneously to model real-world storage structures used in data centers.
Doing such a test would theoretically mean that our storage application would
run at the speed of .NET 5. We chose to leave out the Rust server because it
is not suitable for this test due to its poor performance with Wasm and could
result in an unnecessary performance hit. The second group consists of three
Wasm servers that are all written in the same programming language, in this
case Golang. The third group is the same as the second group, except the
Wasm is absent. Both three groups work on files that are 10 bytes in size.
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Figure 5.11: Read performance comparison of different sets of serves.
Wasm(diversified) vs Wasm vs Wasmless

Figure 5.11 and Figure 5.12 plot the performance of reading and writing
10-byte files for Groups 1, 2, and 3. We may draw similar conclusions from
the previous benchmark and the following conclusions after doing a rigorous
review and analyzing the graphs for each group:

1. Group 1 (Golang + Python + .NET 5), represented as a blue line, runs
close to the .NET 5 server’s speed for both read and write operations.
A better overview of the performance is documented in the Appendix A
(Calculations and test data). Although it operates similarly to a single
.NET 5 server’s speed, the reading process only gains a tiny amount
of throughput. The writing process has a slightly higher throughput
advantage, but not by much.

2. Group 2 and Group 3, represented by an orange line and a light gray
line, perform better than running a single server. This performance
improvement might be due to the fact that we are receiving two out of
three replies.

3. Groups 1 and 2 are identical in terms of how the output is plotted as
the number of concurrent clients in the background increases.
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Figure 5.12: Write performance comparison of different sets of serves.
Wasm (diversified) vs Wasm vs Wasmless

5.6 Runtime comparison

The Wasm runtime landscape is vast and varied, and many different runtime
libraries can be utilized to embed WebAssembly modules in various languages.
Although we have focused solely on the utilization of Wasmtime so far, which
is nowadays the library that gets the most consistent updates, there are many
other options to explore, such as SSVM and Wasmer.

The latter is considered by many to be the best Wasm library for embed-
ding, mainly because of the impressive high number of supported languages,
which is superior to any other runtime library, Wasmtime included. While
the Wasmtime runtime can be used for embedding in five different languages,
Wasmer can do the same in an impressive fifteen languages, keeping the library
structure and functionalities pretty consistent among all implementations.
Moreover, after some recent updates, the Wasmer and Wasmtime libraries
have become fairly similar, rendering the migration process between the two
libraries moderately seamless.

While Wasmtime was built on an optimized Cranelift code generator
to produce high-quality machine code at runtime, Wasmer was created to
be pluggable, making it possible to choose between diverse compilation
frameworks, rendering Wasmer more customizable than Wasmtime.

Following this article [6] we can see that Wasmer ships with out-of-the-box
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support for three different compilation frameworks: Singlepass, Cranelift (like
Wasmtime), and LLVM.

e Singlepass has impressively fast compilation times and is not prone to
JIT-bombs, making it desirable for something like blockchains.

e Cranelift (default option) has relatively fast compilation times and
execution times.

e LLVM has slow compilation times and speedy execution times, allegedly
close to native times, making this the best option in applications where
speed is essential.

However, while the Singlepass and the Cranelift frameworks can easily be
enabled in most of the Wasmer libraries, the enabling process for LLVM is
not as simple, mainly due to bugs and some cross-platform issues.

While the default libwasmer embedded inside a Wasmer library like
Wasmer-go does not support LLVM, the entire API already supports it,
which means that with a custom libwasmer that includes LLVM, we could be
able to utilize LLVM. Unfortunately, after some testing on our own and a few
interactions with the Wasmer developers, we could not utilize LLVM reliably.
Thus, we decided not to include LLVM Wasmer in our benchmarks. However,
we have been reassured that LLVM will be available for use once some bugs
and problems have been ironed out. According to the Wasmer developers,
LLVM should drastically boost the Wasmer performance in applications where
speed is crucial.

In this segment, we will see how Wasmer stacks against Wasmtime. More
precisely, we will be comparing Wasmer-Cranelift-go with Wasmtime-go.
Naturally, while working with the Wasmer-go’s implementation, we tried to
keep the application’s structure as similar to the one used for Wasmtime-go as
possible, thus making it easier to concentrate exclusively on the performance
discrepancies between the two runtimes.

The following Figure 5.13 and Figure 5.14 show the results of the bench-
mark tests run for Wasmer. Wasmer’s tests were run as many times as with
Wasmtime’s. Despite the fact that both runtimes are based on Cranelift,
we can see that Wasmtime is a more efficient and quicker overall runtime.
With five concurrent clients, Wasmer performed very close to Wasmtime for
both read and write operations but performance gradually declined. When
executing write operations, the performance difference becomes more apparent
after five clients. However, the performance gap also becomes apparent for
read operations, but it narrows towards the end.
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Figure 5.13: Performance between Wasmer and Wasmtime running read
operations
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Figure 5.14: Performance between Wasmer and Wasmtime running write
operations
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Chapter 6

Discussion

6.1 Memory in WebAssembly

When dealing with Wasm embedded in other programming languages, the
memory architecture of WebAssembly modules is most definitely one of the
most important factors to keep in mind.

Wasm'’s sandboxed design offers a high degree of security, with features
such as the ability to always know the size of a module’s memory. The
runtime will use this information to determine if a memory offset accessed by
a module is still within the allocated memory boundaries. As a result of this
feature, a module cannot access another module’s memory or the memory of
the runtime’s underlying operating system unless explicitly given access.

However, even though this memory design has many advantages, it also
creates considerable efficiency problems when utilizing Wasm in many different
applications. Conceptually, there is a choice between copying the data from
the host (hosting application) to the module or the module owning the data
and managing its lifetime when working with Wasm. Depending on the use
case, both of these approaches are valid and should be considered.

However, our experimentation with gRPC and Wasm revealed that the
latter method, in which data is transferred from a host to the module, is
inefficient since object-pointers cannot be passed to the modules. As a result
of this constraint, all Wasm interactions that include objects as arguments
must copy those objects from the host memory to the module memory, which
adds overhead to the host-guest interaction process.

Furthermore, these objects have to be copied in byte format, adding
serialization to the process needed when interacting with a module’s memory.
This also works the other way around when retrieving objects from the
module’s memory, as said objects must be in byte format, meaning that
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deserialization is needed here.

Last but not least, while WebAssembly runtimes do an excellent job
of isolating the memory instances of different modules within their linear
memories, WebAssembly modules are not inherently safe from memory vulner-
abilities. Since transferring objects to a module involves dealing directly with
memory allocation and deallocation, vulnerabilities such as buffer overflow or
use-after-free are possible, meaning that caution is required while handling
memory.

Finally, we would suggest using Wasm more with CPU-intensive applica-
tions instead of using it with storing or data-heavy applications. Using Wasm
in data-heavy applications would undoubtedly result in worse performances.
However, the use of Wasm in such applications could be considered acceptable
in not performance-focused applications and applications where security is
considered especially important.

6.2 gRPC and Wasm complications and possi-
ble improvements

Working with gRPC and Wasm at the same time adds a whole new layer
of complexity. The most elegant way to communicate with WebAssembly
modules in gRPC applications, in our opinion, is to use proto-messages. We
can keep much of the program logic in the WebAssembly module by using
these messages for communication, essentially reducing the host environment
to a medium for communicating with the Wasm module.

However, a regular gRPC server’s normal behavior is to unmarshal every
proto-message when received, which is desirable for standard gRPC services.
Nevertheless, this behavior is not ideal when using Wasm, as it adds the
need for additional marshaling and unmarshalling when interacting when a
WebAssembly module.

As we have observed multiple times during our benchmarks, the amount of
data passed between a guest (Wasm module) and the host directly correlates
to how long a request will take.

The loss of throughput with growing payload sizes is a logical consequence
of any gRPC server. What is fascinating here is to see how much the
performance worsens.

In Wasm servers, during our numerous benchmarks, we have observed that
the efficiency hit is much more noticeable than what is visible in standard
non-Wasm gRPC servers. The evident deterioration in performance when
utilizing Wasm is mainly due to the introduction of additional tasks required
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when interacting with Wasm modules.
To get a clearer understanding of how gRPC requests operate when
utilizing Wasm, refer to the list below, displaying all of the steps involved.

1. Receive gRPC request
2. Marshal grpc request

3. — Allocate memory for that specific gRPC request inside the module’s
memory

4. Copy marshaled gRPC request into module’s memory
5. — Unmarshal proto message inside the module
6. — Do whatever this specific gRPC requests needs to do

7. — Save in the module’s memory the resulting marshaled gRPC response
and returns to host

8. — Deallocate memory for the gRPC request

9. Unmarshal the response from a linear byte-array representation of the
module’s memory

10. — Deallocate the Wasm response from the module’s memory

11. Return the gRPC response to the client

Looking at the list above, we can see that, in addition to the time necessary
for memory allocation and deallocation in a Wasm module, a considerable
portion of the time is spent marshaling and unmarshalling proto-messages.
In addition to the marshaling and unmarshalling that occurs naturally in
gRPC servers, a Wasm-powered server performs two additional marshaling
and unmarshalling sets.

One of these sets is needed when dealing with proto-messages coming in
and out of the module’s memory.

Another set is required within the module, where request messages are
in byte form, and response messages must be saved in memory in the byte-
form. As the size of these messages grows, the process of marshaling and
unmarshalling becomes increasingly slower, which is an issue that cannot
be solved until the WebAssembly interface-types proposal is implemented.
Fortunately, while we wait for the aforementioned proposal to be implemented,
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we have some ideas that might improve the overall efficiency of our gRPC
servers:

— A custom serializer for all gRPC servers could return each gRPC request
in byte-array format, bypassing the automatic unmarshalling present
in every gRPC request (Wasm or non-Wasm). Using this method, we
would also be avoiding the need to marshal the request before copying
it to the Wasm module. This solution, however, would most likely
eliminate certain valuable functionality of gRPC servers, such as the
option to cancel an existing request or to return from a request if it
takes too long (timer).

— Assign a portion of the marshaling and unmarshalling processes to clients
using a wrapper proto-message with two fields, one reflecting the type
of request and the other containing the actual proto-message in byte
format. Using this sort of structure, we avoid marshaling before copying
the proto-message into the module’s memory and eliminating the need
to unmarshal what is obtained from the module. However, using
this system would imply that a gRPC server would only support one
kind of generic gRPC request, with its actions changing based on the
"request Type" field present in the wrapper proto-message.

Proto-Message Wrapper

Generic Proto-Message

E string: FileName |_ string: MessageType

string: Value

Timestamp: Time I— bytes: MarshaledProtoMessage

Figure 6.1: Proto-Message Wrapper

Using the wrapper method, we can drastically reduce the time wasted
marshaling and unmarshalling data, and keep functionalities like interrupting
ongoing requests. Unfortunately, using a wrapper without a custom serializer
prevents us from preserving the traditional configuration of gRPC services, in
which each service has a role on both the server and client sides. This might
not sound like a problem, but it has some profound implications regarding
the utilization of some gRPC features. Using this arrangement implies that
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a server could only provide one service at a time per client, meaning that
streams and unary messages could not coexist. One solution would be to have
two types of wrappers: one for streams and one for standard unary messages.
However, even with this system, we would be unable to have multiple streams
open for the same client.

This issue can be addressed using a custom serializer that uses the wrapper
proto-message as an envelope for any gRPC request/response, preserving
the traditional gRPC structure and allowing us to separate each service into
different gRPC functions. Of course, utilizing this structure would mean that
the wrapper’s "MessageType" field will no longer be used and can thus be
removed.

We are confident that this improvement in the Wasm gRPC servers will
result in a successful performance gain, as the overhead will be significantly
reduced.

6.3 Current state of the Wasm Runtime libraries

Wasm’s two primary runtimes are undeniably Wasmtime and Wasmer. Both
provide a large amount of support for multiple programming languages, with
Wasmer taking the lead on this front.

Wasmtime, making it simpler to understand how its libraries function
and giving many examples of its utilization, even though some of them are
outdated. Furthermore, since the Wasmtime community seems to be much
more active, it is easier to get support when an issue occurs, making Wasmtime
the superior alternative in our opinion.

Since these two runtime libraries have become more and more alike in
performance and structure over time, we believe Wasmer is in a near second
position, which could rise to first place in the future once LLVM is fully ready
to be used.

These runtimes are updated at an astonishing rate. Wasmtime updates
happen almost weekly, resulting in regular changes to how said libraries
operate, possibly breaking old projects based on old versions. Keeping this
in mind, when library consistency is required, we recommend Wasmer over
Wasmtime, which, while being older, tends to keep the same library structure
after updates.
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6.4 Conclusion

Throughout this project, we worked on WebAssembly outside of the browser,
with the primary focus on evaluating its performance and usability in dis-
tributed systems. We discussed what WebAssembly is, its advantages and
disadvantages, and implemented two applications that benefit from the uti-
lization of Wasm to increase security through diversification and Wasm’s
sandboxed nature. These applications were tested for throughput and la-
tency in different scenarios. The performance in a LAN environment and
the disparity in performance with and without WebAssembly when dealing
with concurrent access and various file sizes were among our priorities while
testing. During the evaluation process, interesting strengths and weaknesses
for each Wasm implementation emerged.

In the latter project, the storage application, since we were dealing with
I/O operations rather than what we did with the echo server where operations
were executed exclusively in memory, the advantages and disadvantages of
using Wasm were more pronounced.

The Go implementation was the most effective compared to the other
implementations in terms of Wasm efficiency. It is an expected result as
Golang is an efficient language and the Wasmtime package used is often
updated containing potential bug fixes and optimizations. Furthermore,
Golang supports concurrency from the language level and uses lightweight
goroutines to explain its performance during the benchmark tests.

The Wasm .NET 5 implementation, on the other hand, was not far behind
the Wasm go implementation. Surprisingly, the Wasm Python implementation
did considerably well, especially considering how it handled small payloads
(file size) compared to the Wasm Rust implementation.

Based on the results, we can safely conclude that utilizing our server
structure, Wasm performs admirably when working with smaller payloads. It
begins to struggle with larger payloads, such as 1 MB, but it also demonstrated
promising results. With further optimizations, Wasm embedded applications’
speed and reliability could improve to resemble the performance that can be
seen in non-Wasm applications.

On a final note, even though our server structures are functional and
could perform better after some improvements, such as a custom serializer,
we believe that the fast evolution of Wasm and its runtimes will inherently
make them obsolete. However, we are sure that the utilization of Wasm can,
as of today, already bring considerable advantages to things like distributed
systems and applications that value diversity and security. We consider Wasm
to be a feasible option for applications where performance is not critical, such
as video encoding or applications that heavily rely on digital signatures.
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Appendix A

Calculations and test data

Benchmark 2 - Chapter 4 tables are included in this chapter. It is mostly
used as a reference for improved comprehension.

NET 5, Go, Python

Read Write
Clients | Throughput Latency | Throughput Latency
1 1249.0 0.58 1665.66 0.47
2 3332.33 0.47 1499.0 0.59
4 3999.0 0.89 1850.85 1.55
6 3999.0 1.32 2351.94 1.90
8 4089.9 1.8 2856.14 2.13
10 3999.0 2.33 3528.41 2.58

3x Go (Wasm)

Read Write
Clients | Throughput Latency | Throughput Latency
1 1999.0 0.37 1999.0 0.46
2 3332.33 0.42 3332.33 0.52
4 5999.0 0.82 4443.44 0.84
6 6665.66 1.97 4614.38 2.51
8 6955.52 2.25 4089.9 3.88
10 7406.40 2.64 5293.11 6.70

Table A.1: 2 out of 3 replies tests.(part 1)
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3x Go (Non-Wasm)

Read Write
Clients | Throughput Latency | Throughput Latency
1 2499.0 0.28 2499.0 0.34
2 4999.0 0.28 4999.0 0.34
4 9999.0 0.28 7999.0 0.39
6 14999.0 0.28 8570.42 0.53
8 19999.0 0.28 9999.0 0.71
10 29999.0 0.46 10665.66 1.42
20 33332.33 0.5 11110.11 1.79
36 35999.0 0.88 11249.0 3.09
64 42665.66 1.39 11427.57 5.47
120 54544.45 2.13 11537.46 10.22
200 55554.55 3.49 11694.9 17.04
300 55713.28 5.44 11640.79 26.55

Table A.2: 2 out of 3 replies tests.(part 2)
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Appendix B
Additional Graphs

This chapter contains supplementary diagrams that can be used to explain
the variations in growth of the various Wasm implementations of chapter 4

(benchmark 1).
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Figure B.1: Average latency experienced for different number of clients (Read-
10Bytes)
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WASM READ THROUGHPUT FOR DIFFERENT NUM CLIENTS - 10 BYTES
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Figure B.2: Average throughput experienced for different number of clients
(Read-10Bytes)
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Figure B.3: Average latency experienced for different number of clients (Write-
1MB)
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Figure B.4: Average throughput experienced for different number of clients
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Appendix C

WasmlInstantiate functions

func check(err error) {
if err != nil {
panic (err)
}
}

func WasmlInstantiate (functions |[]string, wasmLocation string, preOpenedDirs
map|[string]string , stdoutPath string, stdinPath string, stderrPath
string) (funcMap map|string |+« wasmtime.Func, memory swasmtime.Memory) {

engine := wasmtime.NewEngine ()
store := wasmtime.NewStore(engine)
linker := wasmtime.NewLinker(store)
wasiConfig := wasmtime. NewWasiConfig ()
if stdoutPath != "" {
err := wasiConfig.SetStdoutFile (stdoutPath)

check(err)

if stdinPath != ""

err := wasiConfig.SetStdinFile (stdinPath)
check (err)

if stderrPath != "" {
err := wasiConfig.SetStderrFile (stderrPath)
check(err)

}

if len(preOpenedDirs) != 0 {
for dir, alias := range preOpenedDirs {

err := wasiConfig.PreopenDir(dir, alias)

check(err)

}
}

wasi, err := wasmtime.NewWasilnstance(store, wasiConfig,
wasi_ snapshot previewl")
check (err)

n

err = linker.DefineWasi(wasi)
check(err)

module, err := wasmtime.NewModuleFromFile(store.Engine, wasmLocation)
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check(err)
instance, err := linker.Instantiate (module)
check(err)

in := instance.GetExport(" initialize").Func()
_, err = in.Call()
if err != nil {

panic(err)

funcs := make(map|[string |*wasmtime.Func)
funcs["alloc"| = instance.GetExport("new alloc").Func()
funcs|["dealloc"| = instance.GetExport("new dealloc").Func()
funcs["get len"] = instance.GetExport("get response len").Func()
for , name := range functions {

funcs [name] = instance.GetExport(name).Func()
mem := instance.GetExport("memory").Memory ()

return funcs, mem

Listing C.1: Golang’s WasmlInstantiate function

def WasmlInstantiate (functions , wasmLocation, preOpenedDirs={}, stdoutPath=""
, stdinPath="", stderrPat="")
{

store = wasmtime. Store ()
linker = wasmtime. Linker (store)

wasi config = wasmtime. WasiConfig ()

if len(preOpenedDirs) != 0:
for key, value in preOpenedDirs.items():
path = Path(__file ).parent / key
wasi_ config.preopen dir(str(path), value)
if stdoutPath != "":
wasi config.stdout file(stdoutPath)
if stdinPath != "":
wasi_config.stdin file(stdinPath)
if stderrPat != "":
wasi_config.stderr file(stderrPat)

wasi = wasmtime. Wasilnstance (store, "wasi_ snapshot previewl",
wasi_config)

linker .define wasi(wasi)

path = Path(__ file ).parent / wasmLocation

module linking = wasmtime.Module.from file(store.engine, path)

instance linking = linker.instantiate (module linking)

init = instance linking.exports|[" initialize"]

init ()

instanceExports["alloc"] = instance linking.exports|["new alloc"]
instanceExports|["dealloc"| = instance linking.exports|["new dealloc"]
instanceExports["get len"] = instance linking.exports|"get response len"

J
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instanceExports ["memory"| = instance linking.exports|"memory"]

for name in
instanceExports [name| = instance linking.exports|[name]|

Listing C.2: Python’s WasmlInstantiate function

public WasmSingleton(string [| services, string wasmLocation, Dictionary<
string , string> preOpenedDirs = null, string stdoutPath = null, string
stdinPath = null, string stderrPath = null)

using var engine = new Engine();

using var store = new Store(engine);

WasiConfiguration wasiConfiguration = new WasiConfiguration () ;
if (stdoutPath != null)

wasiConfiguration . WithStandardOutput (stdoutPath) ;

if (stdinPath != null)
{

wasiConfiguration. WithStandardInput (stdinPath);
if (stderrPath != null)

wasiConfiguration. WithStandardError (stderrPath);

}

if (preOpenedDirs != null){
foreach (KeyValuePair<string , string> entry in preOpenedDirs)

{

wasiConfiguration. WithPreopenedDirectory (entry .Key, entry.Value)

)

}

using var module = Module.FromFile(engine, wasmLocation);

using var host = new Host(store);

host . DefineWasi("wasi_snapshot previewl", wasiConfiguration);
instance = host.Instantiate (module);

((dynamic)instance). initialize ();

memory = instance.Memories. Where (m => m.Name =— "memory") . First () ;
funcs = new Dictionary <String , Wasmtime. Externs.ExternFunction >();

foreach (string func in services)

funcs [func] = instance.Functions.Where(f => f.Name = func).First();

Listing C.3: WasmSingleton the .NET’s WasmlInstantiate function
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