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"If we knew what it was we were doing, it would not be called research, would it?"

— Albert Einstein






Abstract

The preservation and discoveries of ancient structures is an integral part in the understand-
ing of earlier civilisations. The ever increasing speed of urbanization has lead to the loss of
crucial information from our distant past. As a consequence of this, the experimentation
with faster and more automated methods to detect these structures has seen an increase.

In this thesis we explored one of these methods. We have used the architectures of high
performing convolutional neural networks which have been pre-trained on the ImageNet
dataset. These pre-trained models have then been fine-tuned to classify qanats or fortresses
on satellite and airborne imagery of areas in the Middle East. In the end, the models classify
smaller segments of an image, and label them if they are predicted to contain those ancient
structures. We then present the results from the models which showcase their performance.
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Introduction

1.1 Motivation

Searching for archaeological structures is a slow and time consuming task. For many years,
remote sensing has been used to look for ancient sites, but this is also time consuming,
albeit to a lesser degree. With the recent successes of machine learning and neural networks,
and the increasing availability of satellite imagery, it is becoming easier to combine these
disciplines in order to speed up the process of locating ancient sites.

1.2 Problem Definition

The number of imaging satellites in orbit is ever-increasing, in turn increasing the avail-
ability of high resolution satellite imagery. Archaeologists has been using this technology
for years to detect ancient structures, but the use of convolutional neural networks (CNNs)
in this process is fairly new. CNNs require a large amount of training data, but the release
of more satellite imagery reduces this problem and makes the CNNs more feasible as time
goes by. The increased use of CNNs in the field of archaeology could be of great help in
the search for ancient structures and result in new discoveries.

In recent years there has been a competitive effort to make deep learning models for image
classification. This has led to many available models that are pre-trained on large datasets
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such as ImageNet [1]. The potential of using these models in the detection of ancient
structures creates some interesting opportunities.

There are many different types of ancient structures with different levels of complexity.
Qanats are ancient water systems that have little variation in size and appearance, and
may be a good starting point for testing deep learning models. Based on results, the
limitations of the models may be explored by extending the research to more complex
structures, such as fortresses.

1.3 Research Questions

1. Can pre-trained models with fine tuning be used in the detection of simple ancient
structures like qanats?

2. Can the approach be extended to more complex structures like fortresses?

3. What types of terrain can the models be used on? Arid, semi-arid, agricultural,
urban?

4. Can the easier implementation with image-classifiers compete with more advanced
object detection methods when searching for qanats and fortresses?

1.4 Use Cases

This thesis aims to help in the detection of ancient structures, primarily qanats and
fortresses. As mentioned, remote-sensing done manually is time consuming. The larger the
geographical area is the more time it takes. Our approach aims to make it easier to search
areas in a larger scale and faster than before. The improved speed of the process can help
prevent the destruction of the ancient structures by urban sprawl. This could again lead
to a better understanding about how ancient humans lived.
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1.5 Challenges

In order to be able to detect archaeological features from satellite images, we need to have
good enough imagery. Depending on the feature, images above a certain spatial resolution
are needed. When we started looking into imagery from different satellites, we noticed
none of the free alternatives were close to the spatial resolution used in Bing or Google
maps.

Bing and Google have APIs [2][3] that provides high resolution satellite imagery. These
APIs are however intended for use on web applications, and the terms of use do not allow
permanent storing of the images. This would make it impossible to create a dataset for
for training CNNs.

We were offered 5000km? of satellite images from Planet [4], but we were not satisfied
with the spatial resolution. We also had a meeting with Skywatch [5] who where very
helpful, and gave us a better understanding on which kind of data that were available.
They also offered us imagery at a cost, but we did not have the budget for this.

We then discovered Mapbox [6], who offer high resolution imagery and allow them to be
used for non-profit and educational purposes. Their free-tier offers 750,000 tiles every
month, with a size of 512x512 pixels and a selection of different spatial resolutions.

The dataset used for training may also end up not being 100% accurate, as we are not ex-
perts at identifying features such as qanats. When manually classifying images for training
we use our best judgement.
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1.6 Outline

Chapter 2 - Background:

The first section goes into the technical and theoretical knowledge needed to understand
the paper. Section two presents important and relevant work that has been performed in
this field.

Chapter 3 - Proposed Method:
This chapter outlines the approach we have taken in the detection of ancient structures.

Chapter 4 - Implementation:
This chapter explains the whole pipeline, from the acquisition of training data to the final
prediction results.

Chapter 5 - Results:
This chapter shows the results from the pipeline which was presented in chapter 4.

Chapter 6 - Discussion:
This chapter discusses the results and the limitations of our methodology.

Chapter 7 - Conclusion:
This chapter gives a conclusion for the thesis and answers the questions in section (1.3),
as well as proposing what future work can be done.



Background

In this chapter we present the technical and theoretical background needed to understand
the research and results shown in this thesis, as well as some of the related work conducted
in this field.

2.1 Technical and Theoretical Background

This section describes the characteristics of qanats and fortresses, as well as explaining
different types satellite and airborne imagery. Lastly we go into some theory and concepts
on deep learning and performance metrics that we used to evaluate the CNN models.

2.1.1 Qanats and Fortresses

Qanats are ancient systems of wells connected with underground tunnels for transporting
water from aquifers in dry climates [7]. They range over large amount of areas were the
smallest run for less than 5km, but the largest can be up to 70km long [7]. The tops
of qanat shafts with all the features around it measures from around 5m up to 40m in
diameter from our estimations on maps (appendix A). Figure 2.1 shows an image with
qanats which aims to give a better understanding of its characteristics and looks.
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Qanat

Top of ganat
shaft with
features

Figure 2.1: Tops of qanat shafts as seen in satellite imagery. The image to the left is a segment
with a size of (256x256) pixels and the one to the right is (4608x5120) pixels.

Fortresses vary a lot in both size and shape. The smallest we have seen in Iran comes at
a size of around 0.005 km? while the largest stretches up to 1,980 km2. As mentioned the
shape also changes from rectangular shapes to more circle like shapes. Figure 2.2 shows a
satellite image of a fortress.
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Fortress

Figure 2.2: Fortress as seen in a satellite image marked with a red rectangle. The image size is
(3584x2560) pixels.

2.1.2 Satellite and Airborne Imagery

To better understand satellite and airborne imagery it’s an advantage to have an under-
standing of what remote-sensing is. According to the USGS remote-sensing is described as
"the process of detecting and monitoring the physical characteristics of an area by measur-
ing its reflected and emitted radiation at a distance" [8]. Airborne and satellite imagery
are well known means of remote-sensing. Airborne imagery is produced by taking images
from an aircraft or by airborne objects. Airborne imagery is an old practice that started
in 1858 by a Frenchman by the name of Gaspard-Félix Tournachon, and were used in both
the world wars [|9]. Satellite imagery is taken by artificial satellites which are orbiting
the earth from space. Through the ages the purpose of satellites have changed. The first
applications of satellite imagery were mainly military, but this saw a change in 1972 [10].
After this, the production of earth observing satellites started. This lead to the possibility
of new and interesting research to be conducted.
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There are also a lot of different satellite image types which are taken by different type of
sensors. Each sensor has its own characteristics that gives both benefits as well as some
disadvantages. Some of the most well known sensors are the panchromatic, multispectral,
LiDAR, and radar. The panchromatic sensor produces high resolution imagery in black
and white color. Popular images produced by this sensor are the Corona images which
offer resolutions from around 1.8-12 meters [11]. Next sensor in line is the multispectral.
The special thing about this sensor is that its not just limited to the visible light, but can
also offer different types of infrared as well as radar imagery. This offers the possibility
to take images of the atmosphere, deep into the water, vegetation, man-made objects,
soil, moisture, terrain, and more [12]. Some well known satellites that use these types of
sensors are the Sentinel-2 [13] and satellites from the Landsat program [14]. The resolution
available is typically larger than 10 meters. Moving on to LiDAR; this sensor uses reflected
laser light, and can create 3-D representations of the earth’s surface [15]. The last sensor
we will look closer at is the radar. There have been created different type of these which
are used for different purposes. One of the big advantages of radar is that it is cloud-
penetrating and works in darkness. This makes it very useful in areas such as rain forests
where there usually is a lot of cloud cover.

Satellite imagery is something that through the years have been rather exclusive, but as
mentioned earlier the amount of new satellites being developed leads to more and more
data being made public each year, but what types are available and at what resolution?

In terms of panchromatic imagery, images from the Corona satellites were released in the
1990’s, and are available for free from USGS EarthExplorer [16]. Sentinel is another source
of satellite imagery [17]. Here one can get everything from multispectral to SAR which
is a type of radar that offers higher resolution than normal radar. The spatial resolution
attainable varies depending on the area of interest, but its generally between high and low
resolution which translates to around five meters resolution or lower. One can be lucky and
find resolutions higher than five meters for free, but most of the time these are commercial.
Unfortunately commercial satellite imagery often comes at a very high cost, but they can
provide resolutions at up to 30cm as of the time this paper was written [18]. Again the
resolution available increases all the time, so the commercial resolutions of today might be
public in some years time.

When it comes to our research we used Mapbox imagery from their Raster Tiles APT [19].
Mapbox gets their images from different kind of sources depending on the resolution and
geographical location of the images. The high resolution images we used came from Maxar
Technologies [20] which is a space technology company. These images are a combination
of satellite and airborne imagery. We used a zoom level of 17 which translates to approx-
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imately 0.46 meters/pixel, the images were created by visible light, and each tile had the
dimensions of 512x512 pixels.

Figure 2.3: Tile from mapbox satellite that shows qanats with the zoom of 17 and the dimensions
of 512x512 pixels.

2.1.3 Neural Networks

Artificial Neural Networks are inspired by the human brain [21], and are networks of nodes
called artificial neurons connected together so that information can be passed between
them. Each neuron sends a value to neurons connected to it, where this value is processed
and passed on to the next neurons.

In Deep Neural Networks, neurons are grouped together in layers, where each neuron is
connected to any number of neurons in the next layer. "Deep" refers to the number of
layers. Data is first sent to an input layer, and propagates through intermediate layers,
called hidden layers, before ending up at the output layer. Connections between neurons
have weights associated with them. The output of each neuron is determined by an acti-
vation function, whose input is the weighted sum of the outputs of connected neurons in
the previous layer. The activation function may require the input to exceed a threshold



2.1 Technical and Theoretical Background

before "activating" the neuron and passing the value to the next layer.

During training, a network learns through a process called backpropagation: The values
of the output layer is compared to the true values in order to quantify the error. This is
then used to adjust the weights in the previous layers, in the hopes of reducing the error
of future outputs.

2.1.4 Convolutional Neural Networks

A convolutional neural network is a type of deep neural network often used for computer
vision due to their ability to detect features and patterns in images [22|. This is achieved
through special layers called convolution layers, which apply filters to an image using kernel
convolutions. These convolutions can detect edges and more complex patterns that enable
the network to detect objects within an image.

For image classification, the number of neurons in the output layer corresponds to the
number of image classes the network has been trained to classify. This layer is fully
connected, meaning that each neuron is connected to all neurons in the previous layer.
The value of the neurons in the output layer is the probability of an input image belonging
to that class.

2.1.5 Transfer Learning

Transfer learning is when you use knowledge learned from an earlier task to solve a new
one. In the case of machine learning, this implies that you use a pre-trained model which
is already trained on a large dataset, and further train it on a new dataset. When using
an already pre-trained model, the dataset does not need to be as large as when training a
model from scratch. Before predicting on data, the model will need to be fine-tuned. First
a new output layer needs to be defined which matches the classes to be classified. Layers
can be frozen on the input-end of the model whilst keeping some layers near the output
layer unfrozen, meaning they will be trained. After a CNN is trained, the first layers tend
to enhance features such as edges or circles in an image, whereas the later layers can detect
more advanced patterns such as faces or items [23]. If using a pre-trained model, there
are little or no positive effect on training the first layers which is already trained to detect
basic features, it just increases the training time [24].

10
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ImageNet is one of the more common large datasets which pre-trained CNNs are trained
on. It contains more than 14 million images with thousands different classes and sub-
classes which are classified by the use of Amazons "Mechanical Turk" crowdsourcing service
[25]]26]. Some of TensorFlow’s models which is already trained on ImageNet are available
for download, then could be used for transfer-learning [27].

2.1.6 Classification

When training a model on a dataset, each datapoint in the dataset has to be labeled with
a label corresponding to one of the classes.

Binary Classification

Binary classification is when you want to classify your data into two categories. This could
be anything from classification of images belonging to a specific class, to medical testing
where you determine whether a patient has a disease or not. The output layer should in
this case return two values: the probability of the datapoint belonging in the first, and
second class.

Image Classification

Image classification could either be a binary or multi-label classification. In this thesis we
are looking for a specific feature in our images, meaning we have one label for images where
the feature is present, and one label for when it is not. As mentioned earlier, ImageNet has
thousands of labels, where each label is mapped to if a specific feature or object is present
in the image.

11
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2.1.7 Performance Metrics

The evaluation of a model is important, and to get an idea about it’s performance we need
some metrics that we can analyse. Although there are a lot of different metrics many of
them use the same underlying variables which needs to be defined.

True positives (TP):
These are the values correctly identified as true.

True negatives (TN):
These are the values correctly identified as false.

False positives (FP):
These are the values falsely identified as true.

False negatives (FN):
These are the values falsely identified as false.

Confusion Matrix

A confusion matrix is a way of plotting the actual values vs the predicted values. Confusion
matrices can be created for both multi-class classification and binary classification.

12
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Confusion Matrix For Binary Classificaition

__» Class A

The actual
values

» ClassB

Class A Class B

The values predicted

Figure 2.4: How confusion matrices works for binary classification.

Figure 2.4 shows how a confusion matrix for binary classification is set up. There are two
classes and these are represented through the positive (class A) and the negative (class
B) [28]. The values TP, FP, FN, and TN which are defined above and represented in the
confusion matrix are central in the calculation of the metrics discussed below.

13
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Accuracy

Accuracy is defined by the number of correctly given predictions divided by all the predic-
tions performed. It gives us a way to see if a model was trained in the correct way. The
disadvantage with this metric is that it does not perform well when you have a large class
imbalance [28]. The formula for calculating the accuracy is given by the equation below:

TP+TN
TP+TN+ FP+ FN

Accuracy =

(2.1)

Precision

The precision metric produces information about how often the model is correct when it
predicts true positive. It is valuable when the costs of false positives are high [28]. The
formula for calculating the precision is given by the equation below:

TP
P 810N = ————— 2.2
recision TP FP (2.2)

Recall

Recall has its base in what the values actually are. If you have two classes A and B. Recall
will then answer the following: Out of all the values in class A how many of them did the
model get right? The formula for calculating this is given by the equation below:

TP
Recall = m (23)

F1-Score

The Fl-score is a combination of the precision and recall metrics. It gives a score on how
many false positives and false negatives that are given by the model [28]. The score is
from 0-1 and the lower FP and FN, the higher the score. The formula for calculating the
Fl-score is given by the equation below:

Recall * Precision
F18 =2 2.4
core * Recall + Precision (2:4)

14
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2.1.8 CNN Architectures

ResNet

The motivation behind residual neural networks (ResNet) [29] is that increasing the depth
(number of layers) of a network should improve models, but that after a certain point the
increased depth leads to higher error in training and testing for normal networks that just
stack layers [30].

ResNet handles this by introducing skip-connections, connections that jump over one or
more layers; instead of the output of a layer just being the input of the next, some outputs
are now also sent to deeper layers. The sum of this output with the "regular" input of the
deeper layer is now its new input. This makes it possible to successfully train much deeper
networks. Models with over 100 layers have produced good results, and even ones with
over 1000 layers can give good training accuracy, although such extremely deep models
may suffer from overfitting [30].

DenseNet

DenseNet [31] can be viewed as a more extreme version of ResNet, with some changes.
Shortcut connections are also used, but in this case the output of each layer connects to
all subsequent layers. These outputs are concatenated onto the rest of the input, instead
of being summed. In other words; the input of each layer is the output of every preceding
layer.

EfficientNet

Scaling CNNs can be achieved by increasing their depth, width or input resolution, but
finding a good combination of these different dimensions can be a tedious process of trial
and error [32]. The EfficientNet architecture [33|, developed by Mingxing Tan and Quoc
V. Le at Google AI, implements a compound coefficient that can be used scale these
dimensions by a constant ratio with good results [32].

15
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2.1.9 Geographic Information Systems

Geographic Information System also known as GIS is a framework used for gathering,
managing, and analyzing data. Through geography GIS helps with the integration of
many different types of data [34]. It makes it possible to organize data into layers, so that
they can be visualized into the likes of maps and 3D-scenes.

Figure 2.5: Example from QGIS with geoJSON layers added on a Mapbox satellite map.

As one can see this makes it easier to recognise patterns , and can increase the possibility
of new findings by looking at the whole picture and not just the raw data.

2.2 Related Work

There are many approaches to detecting ancient structures in satellite imagery. Aside from
manual image analysis done by humans, some methods use image processing techniques
to highlight specific shapes and features, such as circular and rectangular shapes that do
not normally appear in nature. Machine learning techniques, for example convolutional
neural networks, have also been successfully used for detecting archaeological structures.
This section reviews some previous work using these these types methods.

16
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2.2.1 Remote Sensing for Finding Archaeological Structures

Luo et al. [35] employed Circle Hough Transform (CHT) along with Canny Edge Detector
(CED) and Mathematical Morphological Processing (MMP) for extracting circular qanat
shaft features from two sites in northern Xinjiang, China. Very high resolution (VHR)
images from Google Earth were used as data, more specifically optical RGB imagery from
IKONOS and GeoEye satellites in different seasons. This method resulted in the detection
of 95.9% of manually identified qanat shafts in site 1, and 79.5% in site 2. Site 2 had a
larger number of shafts in total, as well a number of false positives, with no false positives
in site 1. Detection using CHT alone gave a detection accuracy of 86.3% and 65.8% in
sites 1 and 2 respectively. The combination of CHT with CED and MMP showed large
improvement over just using CHT.

2.2.2 Types of Machine-Learning in Remote Sensing

Research done by Stott et al. [36] utilized machine learning with airborne laser scanning to
address a “needle-in a-haystack” problem. One of the primary goals was to search for Viking
ring fortresses throughout Denmark. Computer vision techniques were applied to a Digital
Terrain Model (DTM) derived from the national Airborne Laser Scanning (ALS). Using
a residual relief convolution, as well as segmentation into positive and negative elevation
trends, the group tested ring detection. With the features geometric properties the results
were refined. Using ensemble machine learning, the features were classified with the help
of their topographic and cultural context. The outcome from this was the identification
of 199 candidate features, resulting in nine correctly detected fortresses, including four of
the five extant Trelleborg-type ring fortresses. Two of the most promising candidates for
undetected ring fortresses were those at Traclbanken and on Borgg. Fortresses from the
early Iron Age at Traclborg near Skandaberg, the Medieval fortress at Borrebanke (Lolland),
and 19th Century Scone at Havmgllen (Djursland) were all detected. The research shows
that with the help of machine learning it is possible to do large-scale searches for features
even at a national scale.

Orengo et al. [37] conducted research on mound detection by the use of multisensor mul-
titemporal satellite images from Sentinel 1 and 2. Data from the Sentinel satellites have
a resolution of 60-10m. Their area of interest was the Cholistan Desert in Pakistan where
they were looking for Indus civilization sites. They wrote a script in Javascript which col-
lected satellite data from Google Earth Engine (GEE). The script used a Random Forest
classifier which produced an overlay over the map show in GEE. They detected hundreds

17
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of new sites, deeper in the desert than previously expected with signs of relatively fre-
quent settlement shifts, which they guessed was a cause of climate change and hydrological
network change.

Guyot et al. were looking for burial mounds in Carnac, the Bay of Quiberon, and the
Gulf of Morbihan in France [38]. Their study suggests that the commonly used method
with different Visualisation techniques together with Machine Learning (ML) classifications
would not work well in a case where you are looking for heterogeneous structures which
are different in size. Which commonly happens when archeological remains get altered
over the years. They tried to combat this restriction by the use of "multi-scale analysis
of topographic position with supervised machine learning". They mapped each layer of
a Multi Scale Topographic Position (MSTP) image to a different scale: micro, meso, and
macro. This created an image where each layer highlighted mound features from every
scale. This combined with the use of a Random Forest classifier gave some good results.

2.2.3 Deep Learning

The paper by Caspari and Crespo [39] explores the use of CNNs to detect burial mounds
in optical satellite data over northern Xinjiang, China, and they compare the results to
a biased random guess and two support vector machines (SVMs), which are supervised
learning models. Results show that the CNN model performs much better on images with
burial mounds, with an F1 score of 0.91 compared to 0.20 and 0.71 for linear kernel and
radial basis function (RBF) kernel SVMs respectively. On images with no burial mounds,
the CNN is still better, but the scores are much closer: 0.99 (CNN) compared to 0.94 (linear
kernel) and 0.97 (RBF kernel). Burial mounds have a very distinctive shape, making them
an ideal target for detection with machine learning algorithms.

Soroush et al. [40] examined the use of convolutional neural networks on satellite imagery
to automatically detect qanat shafts in the Kurdistan Region of Iraq. The data used was
declassified Corona satellite imagery (panchromatic photographs), lower in resolution than
more modern satellite imagery. The CNN model used binary classification for feature
segmentation of qanat shafts. The authors found that the model performed better in
patches with a high density of qanat shafts. Five patches of high density gave an F1 score,
or harmonic mean of precision and recall, of 0.705, while six patches of low density gave
an F1 score of 0.413. In conclusion, the authors argue that deep learning tools should be
embraced with the use of remote sensing in archaeology.

The research conducted by Verschoof-van der Vaart and Lambers [41] presents a new type
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2.2 Related Work

of CNN called Regions-based CNN (R-CNN). This is an automated technique that has the
possibility to detect multiple classes of archeological objects in LIDAR data. The targets
were barrows, Celtic fields and charcoal kilns. From the results of the experiments, the
group discovered that the Faster R-CNN was not able to detect charcoal kilns. However
results were obtained for the barrows and celtic fields. For the recall values, barrows got
a score of 0.62-0.81 (on average 0.73) and Celtic fields got 0.19-0.97 (on average 0.60).
The precision values were 0.36-0.90 (avg 0.64) for barrows and 0.26-0.71 (avg 0.46) for
Celtic fields. Finally the Fl-scores for barrows and Celtic fields were respectively 0.49
and 0.79 (on average 0.67) and 0.29 and 0.68 (on average 0.43). From the F1l-scores one
can conclude that the model has better performance on barrows than celtic fields. From
comparison with other techniques for detecting barrows, the one from this paper performed
very well. Therefore results from this study by Verschoof-van der Vaart and Lambers with
the new CNN type called R-CNN shows promising steps in the technique of detecting
multiple classes of archaeological objects in LiDAR data.
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Proposed Method

We propose a relatively simple approach to object detection that uses an image classifica-
tion CNN on small segments of a larger image. Training and test data will be gathered
from Mapbox’s Raster Tiles APT [19].

3.1 Acquisition of Training-Data

Mapbox’s Raster Tiles API has a free tier that provides up to 750,000 raster tiles per
month for non-profit and educational use [19]. Bounding box coordinates for areas with
areas of interest (AOI).

will be used to fetch satellite image tiles with a usable spatial resolution. The tiles will
then be split into smaller segments, which can then be manually classified into two classes;
images containing or not containing the relevant structure. This will be done until a
suitable amount of training data has been collected and classified.
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3.2 Transfer Learning with ImageNet Weights

3.2 Transfer Learning with ImageNet Weights

We will use transfer learning with three different CNNs that are pre-trained on the Ima-
geNet dataset, and compare their performance at classifying ancient structures. The Keras
library [42] provides several CNNs architectures with weights pre-trained on ImageNet.

3.3 Detection of Archaeological Structures

The images to be analyzed will be split into smaller segments using the same process as
for training-data acquisition. These smaller images can then be classified by the trained
model. A bounding box is drawn around the segment if it is classified as containing a
relevant structure. The result of this is a form of "low-resolution" object detection.

The advantage of this approach is that simpler image-classification CNNs can be used,
instead of more complicated object detection networks. The downside is that structures
that are small and close together (such as qanats) will not be marked individually, but as
a group contained within each box.
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Implementation

This chapter describes the acquisition of training and testing data, our methodology for
fine-tuning pre-trained CNN models and evaluating them. All code is implemented in
Python 3.7.10 [43].

4.1 Acquisition of Training Data

This section describes the process of fetching and segmenting images for training and
testing.

4.1.1 Fetch from Mapbox

The acquisition of the data takes place through the ImageFetcher class. This class takes an
argument called class type that specifies what type of structure the images are intended
for, such as qanat or fortress.

The method responsible for fetching the images is called fetch images, and it receives five
arguments. The first is the Mapbox API key which makes it possible to fetch the images
from Mapbox Raster Tiles API [19]. The second and third arguments is the top left (TL)
and bottom right (BR) coordinates for the corners of the AOI. The fourth is the zoom
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4.1 Acquisition of Training Data

level, which determines the spatial resolution of the fetched tiles. The last arguments are
location name and segment size. Location name is a name for the AOI, such as the country.
Segment size will be discussed in the next subsection.

The first step is the calculation of the x and y range of map tiles. This is done through
the mercantile library [44] which is created for working with tiles. After this there will be
initiated a nested loop were all the tiles inside the AOI will be fetched. There will also be
created a tileset-folder which includes a composite image of the fetched tiles. Each tileset
is given an integer id, which will be incremented each time a new set is created. Finally,
a metadata file is created which contains information about the TL and BR coordinates,
zoom level, class type, and segment size.

Code 4.1: Calculation of x and y range of tiles, and Mapbox tile requests inside the nested loop.
(imfetch.py).

def fetch_images(self, mapbox_key, tl, br, z, location_name,
seg_size):

x_tile_range, y_tile_range, n = self.calculate_x_y_range(tl, br,...
Z)

self.num_x_tiles = x_tile_range[l] - x_tile_range[0] + 1

self.num_y_tiles = y_tile_range[l] - y_tile_range[0] + 1

for j, y in enumerate (range(y_tile_rangel[O0],
y_tile_range[l] + 1)):
r = requests.get ('https://api.mapbox.com/v4/mapbox. ...
satellite/' +
str(z) + '/' + str(x) + '/'" + str(y)...

+ '@2x.png?access_token="' + str (...
mapbox_key), stream=True)
if r.status_code == 200:

create_folder (path, folder_index)

create_folder (os.path.join(path, str(...
folder_index)), 'tiles')

create_folder (os.path.join(path, str(...
folder_index)), 'stats')

with open(str (os.path.join (path, str(...
folder_index), 'tiles', str(i) + ".' + str(j)...
+ '".png')), 'wb') as f:
r.raw.decode_content = True
shutil.copyfileobj(r.raw, f)
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4.1 Acquisition of Training Data

After fetching, the tiles are combined into a composite image with the combine tiles()
method. This composite can then be used for testing trained models, and makes manual
classification easier. The tiles are deleted afterwards to save space, as they are no longer
needed.

A total of 26 tilesets of different sizes were fetched for training and testing on qanats. 17
were used for training, and the remaining 9 for testing afterwards. 46 tilesets were fetched
for training and testing on fortresses. 37 were used for training, and 9 for testing. A list
of coordinates for TL and BR of all tilesets can be found in A.2.

4.1.2 Segmenting and Classifying Images

Pre-trained CNN models are trained on input images of a certain size; ResNet-152 [45]
expects images of size 224x224, while DenseNet-201 [46] and EfficientNet-B3 [47] expect
256x256. The fetched tiles were 512x512 pixels, so we decided to split the composite images
into segments of 256x256 pixels, and rescale them to 224x224 pixels when using them with
the ResNet model.

Before splitting the composite, the segments have to be manually classified. To achieve
this, we display the composite using Matplotlib [48] and overlay a grid, with grid cells
corresponding to the segment size. This happens through the ImageViewer class.

The constructor for the ImageViewer class takes class type and tileset id as arguments,
and loads the segment size stored by the ImageFetcher class. It also looks for a json file,
containing the classification for each segment, to load into a Python dictionary. If no
such file exists, it creates a new dictionary with a key corresponding to each segment, and
default value as 0 (0 meaning the segment does not contain the relevant structure). The
segments are assigned an integer ID that increments from left to right, row by row, starting
at the top row. These IDs are combined with the tileset ID to form the dictionary key.
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4.1 Acquisition of Training Data

Code 4.2: The ImageViewer Class

class ImageViewer:
def __init__ (self, class_type, tileset_id):

assert valid_type (class_type)

self.images_path = join(dirname (dirname (abspath(__file_ ))), '...
images', class_type, str(tileset_id))

self.class_type = class_type

self.tileset_1id = tileset_id

self.composite_img_path = join(self.images_path, "composite.png"...
)

self.metadata_path = join(self.images_path, 'metadata.json')

self.classification_path = join(self.images_path, '...
classification. json'")

self.classification = None

self.load_data ()

Using an event listener, the user can click on a cell to label it, changing the corresponding
dictionary value to 1 and adding a fill color to the cell. Clicking again reverses this. When
exiting, the dictionary is saved to a JSON file.

Images used for training are then added to a dataset folder using ImageViewer’s add to dataset()
method. This method splits the composite image using the split image() method of the
ImageSplitter class. This method takes segment size as an argument, and splits the com-
posite image into segments accordingly. The segments are put into a list, indexed in the

same order as the segment IDs were assigned in the ImageViewer class. The method then
returns the list. The add to dataset() method then loops through this list, comparing

each segment with the classification dictionary, and sorts them into two folders according

to their classifications.

Code 4.3: The split _image method splits an image into segments, and returns the segments as
a list along with a list of their IDs.

def split_image(self, tileset_id, image_path=None, size=256,
target_size=None) :
tileset_id = str(tileset_id)
if not self.safe_to_split(tileset_id):
return

segments = []
seg_names = []

path = join(self.image_dir, tileset_id)
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4.2 Training the Models

if image_path == None:
image_path = join(path, 'composite.png')
img = cv.imread (image_path)
i=0
for x in range (img.shape[0]//size):
for y in range(img.shape[l]//size):

segment = img[x*size:xxsize+size, y*size:yxsize+size]

filename = f'{tileset_id}.{1i}.png’

segment_path = os.path.join(self.image_dir, tileset_id,
'segments', filename)

segment = cv.cvtColor (segment, cv.COLOR_BGR2RGB)

seg_size = [segment.shape[0], segment.shape[l]]

if target_size != None and seg_size != target_size:
segment = cv.resize (segment, target_size)

seg_name = f'{tileset_id}.{1i}"

segments.append (segment)
seg_names.append (seg_name)
i +=1

return segments, seg_names

4.2 Training the Models

The training notebook consists of six sections. These sections represent different steps in
the path to getting a trained model.

4.2.1 Kaggle as a GPU platform

When training a deep learning model, it is an advantage to have a good GPU, because
a GPU can process multiple computations simultaneously. Before starting the training
process we had to decide which GPU’s we were going to use. There were three options:
The first option was to train locally on our personal computers, the second option was to
borrow GPU’s from the University of Stavanger, and the third option was to use Kaggle’s
GPU’s [49]. We came to the conclusion that our personal computers did not have enough
power to perform efficient training. The other two options were a little harder to decide on.
The GPU’s of the university were probably the most powerful option, but with Kaggle’s
user friendliness as well as it satisfying our power needs we decided to go with Kaggle.
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4.2 Training the Models

Kaggle is a machine learning and data science community [49]. It is owned by google and
offers a Jupyter notebook [50] environment which requires no special setup. Here one can
create models, upload data, and access data from the community. They also offer up to 36
hours a week of free GPU access, and frequently host competitions.

4.2.2 Initial Parameters

This section describes the most important parameters and variables which will be used
throughout the notebook.

The first variable will select the pre-trained model to be used. When the model is selected,
its required parameters will automatically be loaded. Next in line will be to choose the
classes and what the ratio should be. The ratio is the percentage of the data set that will
be used for training, validation, and testing.

When training a model, a common problem is the lack of training data. A simple way to
alleviate this problem is through augmentation. The amount of augmentation desired can
be specified in this section. Here the typical options like rotating the images or flipping
them is available in addition to other types of augmentation.

Neural networks consists of different layers and when using a pre-trained model it can be
beneficial to freeze some of these layers. The freezing of a layer will stop the weights in
this layer from changing and it can also decrees the time needed for training the model.
The number of frozen layers can be set with the frozen layers parameter.

The next parameters to be set are the hyperparameters. These are used to control the

training, and the ones available in this section are the batch size, the learning rate, and
the number of epochs.
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4.2 Training the Models

Code 4.4: Initial parameters from train.ipynb

pre_tr_mdl = 'densenet201l'
class_names = ['no_ganat', 'ganat']
dataset_path = custom_path

ratio = (.8, .1, .1)

rotation_range=360
channel_shift_range=0.15
horizontal_ flip=True
vertical_flip=True

frozen_layers = 0
batch_size = 10
lr = 0.0001
epochs = 20

save = True

4.2.3 Initialisation of functions

The next section is used to initialise the functions. One of the most important functions is
the one used for saving the model and the results. This makes it possible to use the trained
model later for predictions, and to compare the results with different trained models.
Another essential function combined with a dictionary makes it possible to easily change
between the CNN architecture that is desired, and there are currently eight architectures

available.
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4.2 Training the Models

Code 4.5: Model saver function from train.ipynb

def model_saver (model, info_dict, pre_tr_model, dest_path, dataset_size,...

history, cm, class_names):

prec = info_dict['precision']
rec = info_dict['recall']
temp_folder_name = './p{:.4f}r{:.4f}model’'.format (prec, rec)

if not os.path.exists (temp_folder_name) :
os.makedirs (temp_folder_name)

model.save (temp_folder_name)
save_metadata (temp_folder_name,pre_tr_model,dataset_size, info_dict)
plot_history (history, save = True, temp_folder = temp_folder_name)
plot_confusion_matrix (cm=cm, classes=class_names, title="Confusion
Matrix",save = True, temp_folder = temp_folder_name)
zipf = ZipFile('trained model.zip', 'w', ZIP_DEFLATED)
for root, dirs, files in os.walk(temp_folder_name) :
for file in files:
zipf.write (os.path.join(root, file))
zipf.close()
path = os.path.join(dest_path, str(pre_tr_model))
if not os.path.exists (path):
os.makedirs (path)

ID = get_index(os.path.join(dest_path, str(pre_tr_model)))

shutil.move ('./trained model.zip',os.path.join(os.path.join(...

dest_path, str(pre_tr_model)),'{}p{}r{}model.zip'.format (ID,prec, ...

rec)))

dir_path = temp_folder_name
try:
shutil.rmtree(dir_path)
except OSError as e:
print ("Error: %s : %$s" % (dir_path, e.strerror))

29




4.2 Training the Models

4.2.4 Model selection and pre-processing

At the start of this section the model to be used gets selected. This will result in the
selection of the required and the best suited parameters for the model. It includes the
pre-processing function and the target size. The augmentation, the batch size, and the
number of epochs will also be added here, and all of this is done with the help of the
ImageDataGenerator [51].

Code 4.6: Code showing the data generators an the inputs used. Taken from the train.ipynb

train_batches = ImageDataGenerator (
brightness_range = brightness_range,
rotation_range=rotation_range,
channel_shift_range=channel_shift_range,
horizontal_ flip=horizontal_ flip,
vertical_flip=vertical_ flip,
preprocessing_function=ppf) \
.flow_from_directory(directory=train_path, target_size=target_size,
classes=class_names, batch_size=batch_size)

val_batches = ImageDataGenerator (
brightness_range = brightness_range,
rotation_range=rotation_range,
channel_shift_range=channel_shift_range,
horizontal_ flip=horizontal_ flip,
vertical_ flip=vertical_ flip,
preprocessing_function=ppf) \
.flow_from _directory(directory=val_path, target_size=target_size,
classes=class_names, batch_size=batch_size)

test_batches = ImageDataGenerator (preprocessing_function=ppf) \
.flow_from_directory(directory=test_path, target_size=target_size,
classes=class_names, batch_size=batch_size, shuffle=False)

4.2.5 Build and compile

The fourth section is were the model gets built and compiled.
Keras offers the opportunity to download some well known CNN architectures with weights

from widely used data sets such as ImageNet. The parameter from the first section were
one selects the desired model, will here be used to download the architecture, and the
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4.2 Training the Models

weights offered by Keras. In our paper we decided to use DenseNet-201, ResNet-152, and
EfficientNet-B3 with weights from the ImageNet data set.

Code 4.7: The code used for downloading a model. Taken from the train.ipynb

model_val_info = load_model_dict[pre_tr_mdl]

base_model = mod_info['model_ func'] (
include_top=model_val_info['include_top'],
weights=model_val_info['weights']
)

print (str(mod_info['model func'])+' has been loaded!"')

The next part is the compiling of the model. Here the learning rate, the optimizer, the
loss, and the metrics will be inserted.

Code 4.8: Code for compiling the model. Taken from the train.ipynb

model.compile (optimizer=Adam(learning_rate=1lr), loss='...
categorical_crossentropy', metrics=['accuracy'])
print ('Done')

4.2.6 Training

This is were the training of the model takes place. By specifying the number of epochs its
decided how many times the model should go through the training data. Its also where
the training and validation data is inserted into the model.

Code 4.9: The code used for the training of the model. Taken from the train.ipynb

history = model.fit (x=train_batches,
steps_per_epoch=len (train_batches),
validation_data=val_batches,
epochs=epochs,
verbose=1
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4.3 Predictions

4.2.7 Test and Evaluation

The last section is were the model is tested and evaluated. From training, a graph with
accuracy and validation accuracy is created. The testing is done with keras model.predict()
[52] and the results are visualized with a confusion matrix [53]. The test performance is
also evaluated with metrics called precision, recall, and F1 score.

Code 4.10: The code used for the training of the model. Taken from the train.ipynb

predictions = model.predict (x=test_batches, verbose=0)
np.round (predictions)

plot_history (history)

cm = confusion_matrix(y_true=test_batches.classes, y_pred=np.argmax(...
predictions, axis=-1), labels=[1, 0])

plot_confusion_matrix (cm=cm, classes=class_names, title="Confusion ...
Matrix")

evaluation = get_model_eval (model, cm, frozen_layers, epochs)

4.3 Predictions

At the start of the prediction script we have defined two dictionaries, one for selection of
pre-processing function (PPF) to use on the data before doing predictions on it, the other
one is for which image dimensions the model’s input-layer expects. Which PPF is meant
for which model is found at TensorFlow’s webpage, for instance ResNet’s PPF is fetched
via "tensorflow.keras.applications.resnet.preprocess _input" [54].
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4.3 Predictions

Code 4.11: Dictionaries used in predict.py

PPF = {
"densenet": tf.keras.applications.densenet.preprocess_input,
"densenetl121": tf.keras.applications.densenet.preprocess_input,

"resnet": tf.keras.applications.resnet.preprocess_input,
"resnet50": tf.keras.applications.resnet50.preprocess_input,

}
INPUT_SIZE = {

"densenet": (256, 2506),
"densenet121": (256, 256),
"resnet": (224, 224),
"resnet50": (224, 224),

4.3.1 Input Arguments

Code 4.12: Input arguments to predict() from predict.py.

1 def predict (folder_id, class_type, model_path=None, target_class=1l, ppf=...
None, threshold=0.5):

There are two necessary input arguments for the function to run: folder id and class_type.
Of the two main parameters, class type is the type of image we are going to predict on
(i.e. qanat or fortress) and folder id is the id of the tileset. Check out our github for the
full folder structure (A.1). Of the non-necessary input arguments, there are the file path
to which model to use, target class and PPF. By calling the function without a file path
to the model, you are prompted with a tkinter filedialog window where you choose the
path to the model you want to use [55]. If you call the function without a PPF as input
argument, a PPF is chosen by using the model name fetched from the path as a key for
the PPF dictionary. The target class is where you choose which class to look for, where
we chose 1 as an ID for a the positive label "qanat" and 0 as an ID for "no qanat". The
threshold variable is 0.5 by default and is used as a value of how sure the model has to be
in order for the model to classify the segment as the target class.
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4.3 Predictions

4.3.2 The Prediction Process

After the initialization of variables, a model is loaded by calling
tensorflow.keras.models.load model(path) [56] with the desired path. There is created an
instance of the ImageSplitter class from which we call the "split image()" function that
returns a list of segmented images as well as a list with the image names. We iterate through
those lists, use the the PPF on the segments and use the "model.predict(segments)" to get
an array of results. Each prediction in the results-array consist of two values: the predicted
probability for class-0 & class-1. The threshold together with target-class number, tells us
which of the classes should be the final decision. The function returns a dictionary where
the segment ID is the key which has the predicted class as value, as well as the name of
the model used for the predicting.
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4.4 GUI

A graphical user interface was made using Tkinter [55] to automate the pipeline for fetching
and segmenting images, as well as classifying and predicting, thus making it easier to work
with larger amounts of data. All code discussed in this chapter, except for the training
notebook, is tied together through this GUI. Prediction results can be reviewed and saved,
along with a geojson file [57] with coordinates for predicted segments.

@ Main Menu

Fetch and Split Tiles

Mapbox key |phk.ey)lljoiaGF2YXJkbWoil ClhljoiY.
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Select Tileset 4| Classify|

Add to Dataset

Selected Model

Mo model selected Browse

Threshold: 0.5 Predict

Figure 4.1: GUI
GUI from main.py
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4.5 Finished Pipeline

4.5 Finished Pipeline

Figure 4.2 illustrates the pipeline from the start were one fetches the images to the end
with the final results.
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Figure 4.2: The workflow of the pipeline.

36
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4.6 Evaluate Models Against Previous Work

To evaluate our solution against previous work, we will compare the three models with
the results of the paper by Soroush et al. [40] (Locations of training patches along with
labeling information is available at http://www.mdpi.com/2072-4292/12/3/500/s1). We
performed 5-fold cross validation on 11 patches from CORONA Imagery in Iraq to replicate
the methodology from [40], and compared the results.
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Results

In this section the results from the training and the predicting of the models will be
presented. Training results for qanats and fortresses are first presented in tables in their
respective sections, comparing the different models. A graph for each model shows accuracy
and validation accuracy per epoch. Confusion matrices for the testing phase of the training
is also presented, along with precision, recall and F1-score.

Prediction results are shown for a selection of tilesets, along with confusion matrices,
precision, recall and Fl-score. Locations for all tilesets used for testing and prediction

can be found in tables in the appendix A.2, and all prediction results can be found in our
GitHub repository (A.1).

5.1 Training on Qanat Images

Table 5.1 shows the highest scores obtained for qanats from the training of the different
models as well as the learning rate used.
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5.1 Training on Qanat Images

Model Learning rate Accuracy Precision Recall F1 score
ResNet-152 le-5 0.9706 0.9013 0.8671 0.8839
DenseNet-201 le-4 0.9645 0.8735 0.9177 0.8951
EfficientNet-B3 le-5 0.9720 0.9051 0.9022 0.8994

Table 5.1: Learning rate, training accuracy and testing statistics for the models (qanats).

5.1.1 Resnet-152 Training Results for Qanats

The accuracy compared with the validation accuracy can be seen in 5.1a. The accuracy is
closely followed by the validation accuracy through the various epochs.
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Figure 5.1: ResNet-152 accuracy and confusion matrix results for gqanats

5.1.2 DenseNet-201 Training Results for Qanats

The accuracy compared with the validation accuracy can be seen in 5.2a. FExcept for a brief
moment the accuracy is closely followed by the validation accuracy through the various

epochs.
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DenseNet-201 accuracy and confusion matrix results for qanats

5.1.3 EfficientNet-B3 Training Results for Qanats

We experimented with different number of epochs for EfficientNet-B3. A learning rate of
le-5 together with 30 epochs produced the superior results as shown in figure 5.3.
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Figure 5.3: EfficientNet-B3 accuracy and confusion matrix results for qanats
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5.2 Training on Fortress Images

Table 5.2 shows the highest scores obtained for fortresses from the training of the different
models as well as the learning rate used.

Model Learning rate Accuracy Precision Recall F1 score
ResNet-152 le-5 0.9801 0.5714 0.6792 0.6207
DenseNet-201 le-4 0.9632 0.6383 0.5660 0.6000
EfficientNet-B3 5e-5 0.9698 0.6727 0.6981 0.6852

Table 5.2: Learning rate, training accuracy and testing statistics for the models (fortresses).

5.2.1 ResNet-152 Training for Fortresses

Figure 5.4 shows the training results for ResNet-152 with a graph for accuracy and with a
confusion matrix.
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Figure 5.4: ResNet-152 accuracy and confusion matrix results for fortresses
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5.2 Training on Fortress Images

5.2.2 DenseNet-201 Training for Fortresses

Figure 5.5a shows the accuracy from the fortress training for the DenseNet-201 model.
Accuracy increases gradually while validation accuracy seems a little more unstable and
even overlaps with accuracy at times.
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Figure 5.5: DenseNet-201 accuracy and confusion matrix results for fortresses
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5.2.3 EfficientNet-B3 Training for Fortresses

Figure 5.6 shows the accuracy and validation accuracy as well as the confusion matrix.
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Figure 5.6: EfficientNet-B3 accuracy and confusion matrix results for fortresses
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5.3 Predicting on Qanat Areas

To get a better understanding of the overall performance from the models we combined

the confusion matrices for all the areas predicted on into one. The results from this can
be seen in figure 5.7.
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Figure 5.7: All the qanat predictions performed combined into one confusion matrix for each
model.

In the following sections we present prediction results from a selection of the testing tilesets
for each model. The tilesets selected have ID 6, 12, 24 and 25. Coordinates for all qanat
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5.3 Predicting on Qanat Areas

testing tilesets can be found in appendix table A.2.

5.3.1 Resnet-152 Qanat Results

The qanat results represented with confusion matrices can be seen in figure 5.8 and through
satellite images in figure 5.9.
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Figure 5.8: Confusion matrices for different predicted tilesets 6, 12, 24 and 25 with ResNet-152.
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x ; o
(a) Tileset 6 (Arid) (b) Tileset 12 (Agricultural)

(c) Tileset 24 (Semi-arid/Urban) (d) Tileset 25 (Urban)

Figure 5.9: Prediction images for qanat tilesets 6, 12, 24 and 25 with ResNet-152. Segment
colors: True positive (green), false positive (orange) and false negative (red).
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5.3 Predicting on Qanat Areas

5.3.2 DenseNet-201 Qanat Results

The ganat results with confusion matrix and metrics from DenseNet-201 can be seen in
figure 5.10 and with satellite images in figure 5.11
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Figure 5.10: Confusion matrices for different predicted tilesets 6, 12, 24 and 25 with DenseNet-
201.
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(a) Tileset 6 (Arid) (b) Tileset 12 (Agricultural)

S

(c) Tileset 24 (Semi-arid/Urban) (d) Tileset 25 (Urban)

Figure 5.11: Prediction images for qanat tilesets 6, 12, 24 and 25 with DenseNet-201. Segment
colors: True positive (green), false positive (orange) and false negative (red).
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5.3.3 EfficientNet-B3 Qanat Results

The confusion matrices for the predictions on tileset 6, 12, 24, 25 are shown in figure 5.12
and the prediction images in figure 5.13.
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Figure 5.12: Confusion matrices for different predicted tilesets 6, 12, 24 and 25 with EfficientNet-
B3.
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(a) Tileset 6 (Arid) (b) Tileset 12 (Agricultural)

(c) Tileset 24 (Semi-arid/Urban) (d) Tileset 25 (Urban)

Figure 5.13: Prediction images for qanat tilesets 6, 12, 24 and 25 with EfficientNet-B3. Segment
colors: True positive (green), false positive (orange) and false negative (red).
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5.4 Fortress Prediction Results

Figure 5.14 displays all the different predictions for each model combined into one confusion
matrix.
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Figure 5.14: All the fortress predictions performed combined into one confusion matrix for each
model.

In the following sections we present prediction results from a selection of the fortress testing
tilesets for each model. The tilesets selected have ID 43 and 45. Coordinates for all fortress
testing tilesets can be found in appendix table A.4.
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5.4.1 ResNet-152 Fortress Results

ResNet-152’s results with confusion matrices and satellite images can be seen in figure 5.15.
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Figure 5.15: Confusion matrices and prediction images for fortress tilesets 43 and 45 with ResNet-
152. Segment colors: True positive (green), false positive (orange) and false negative (red).
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5.4.2 DenseNet-201 Fortress Results

The DenseNet-201 results for fortresses with confusion matrix, metrics, and images of the
areas predicted on can be found in figure 5.16.
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Figure 5.16: Confusion matrices and prediction images for fortress tilesets 43 and 45 with

DenseNet-201. Segment colors: True positive (green), false positive (orange) and false negative

(red).
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5.4.3 EfficientNet-B3 Fortress Results

EfficientNet-B3’s results from the predicting on fortresses can be seen in figure 5.17 and
includes confusion matrices as well as satellite images.
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Figure 5.17: Confusion matrices and prediction images for fortress tilesets 43 and 45 with

EfficientNet-B3. Segment colors: True positive (green), false positive (orange) and false nega-
tive (red).
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5.5 Corona Imagery Results

The numbers in table 5.3 compares the F1 scores from the Corona imagery paper by
Soroush et al. [40] with the Fl-scores from our three models after 5-fold cross-validation
on the 11 patches.

Patch Soroush et al. ResNet-152 DenseNet-201 EfficientNet-B3

1 0.574 0.333 0.323 0.378
2 0.352 0.286 0.143 0.071
3 0.569 0.511 0.520 0.454
4 0.175 - 0.400 0.077
5 0.462 0.370 0.333 0.365
6 0.665 0.672 0.728 0.736
7 0.309 0.105 0.125 0.250
8 0.513 0.345 0.359 0.308
9 0.462 0.308 0.533 0.364
10 0.738 0.695 0.739 0.697
11 0.805 0.730 0.767 0.777

Table 5.3: Comparison of Fl-scores on different patches between our models and results from
[40].

The paper by Soroush et al. [40] gives an overall precision and recall of 0.62 and 0.74
respectively. In order to get an overall evaluation of our models, we combined the confusion
matrices for the different testing tilesets as seen in figure 5.18.

55



5.5 Corona Imagery Results

Qanat{ 495 442 6000 Qanat{ 941 396 6000
D i
] ]
= 4000 = 4000
[o4] [«}]
£ £
= =
No Qanat{ 149 2000 No Qanat{ 154 2000
oy & & >
& cf& & cf;Q
Precision = 0.7686 < Precision = 0.7784 <
Recall = 0.5283 Predicted label Recall = 0.5774 Predicted label
F1 Score = 0.6262

F1 Score = 0.6630

(a) ResNet-152 (b) DenseNet-201

Qanat{ 366 371 6000
)
=
= 4000
(0]
=
H
No Qanat 256 2000
X X
(ed >
& 0&\
Precision = 0.6886 S
Recall = 0.6041 Predicted label

F1 Score = 0.6435
(c) EfficientNet-B3

Figure 5.18: Confusion matrices for all patches after 5-fold cross validation with the different
models, with precision, recall and F1 score.

5.5.1 Resnet-152 Prediction Samples from Corona Imagery

Figure 5.19 shows patches 4 and 11 from Corona imagery with prediction results from
ResNet-152.
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(a) Patch 4 (b) Patch 11
Figure 5.19: ResNet-152 predictions on patches 4 and 11.
5.5.2 DenseNet-201 Prediction Samples from Corona Imagery

Figure 5.20 shows patches 4 and 11 from Corona imagery with prediction results from
DenseNet-201.

(a) Patch 4 (b) Patch 11

Figure 5.20: DenseNet-201 predictions on patches 4 and 11.
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5.5.3 EfficientNet-B3 Prediction Samples from Corona Imagery

Figure 5.21b shows patches 4 and 11 from Corona imagery with prediction results from
EfficientNet-B3.

(a) Patch 4 (b) Patch 11

Figure 5.21: EfficientNet-B3 predictions on patches 4 and 11.
5.5.4 Prediction Samples from Paper by Soroush et al.

Figure 5.22b shows patches 4 and 11 from Corona imagery with prediction results from
Soroush et al. [40].
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\‘;

(a) Patch 4 (b) Patch 11

Figure 5.22: Predictions from paper by Soroush et al. on patches 4 and 11.
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Discussion

6.1 Results from Qanat Imagery

The results from qanat predictions were very similar across the different models. The
combined results of predictions for all tilesets gave F1l-scores of 0.8718, 0.8733 and 0.8620
for Resnet-152, DenseNet-201 and EfficientNet-B3 respectively. Looking at individual tile-
sets, there were somewhat larger differences between models; for tileset 6, the Fl-scores
were 0.8442, 0.8630 and 0.8452 for ResNet-152, DenseNet-201 and EfficientNet-B3 respec-
tively. The largest differences seem to be between tilesets for a given model. For example,
EfficientNet-B3 got an Fl-score of 0.7541 for tileset 12, and 0.9423 for tileset 24. Tileset
12 is an agricultural area, and has a low density of ganats, while tileset 24 shows less
agriculture, more desert and a high density of qanats. This seems to be a trend with other
tilesets as well; areas with high qanat density produce better results. The same trend was
found in [40]. It may also be due to the type of terrain in the area, but qanat-density
seems to have more of an effect.

6.2 Results from Corona Imagery

Before comparing our results on the CORONA imagery with the results from [40], it must
be made clear that there is a major difference in the detection approaches. Our method
segments an image into smaller squares, and classifies these one by one. These squares
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typically cover many qanats, resulting in a lower "detection resolution". Soroush et al. de-
tected mostly individual qanats, so we cannot make a one-to-one comparison between these
to approaches. Regardless, it may provide some indication of the comparative performance
of our approach, even if it is not directly comparable.

Overall, our approach produced slightly worse results than Soroush et al. [40]. Table 5.3
shows that all of our models received a worse Fl-score on almost all patches. All of our
models received a better Fl-score on patch 6, and DenseNet-201 scored higher on patch 9
and slightly higher on patch 10 as well. The scores seem to follow the same trend, where
patches with high qanat density produce better scores than low-density patches.

In terms of combined statistics for all patches, Soroush et al. [40] achieved a precision and
recall of 0.62 and 0.72 respectively. Our models have a higher precision but lower recall.
The best performing model according to table 5.18, DenseNet-201, produced an overall
precision of 0.7784 and recall of 0.5774.

6.3 Limitations in Methodology and Data

Segmenting images and classifying the segments worked well for detecting qanats. They
are relatively small and do not vary much in size, and therefore fit easily within relatively
small segments. Fortresses on the other hand vary greatly in size and form, which presents
challenges to this approach. On some tilesets, e.g. 43 (figure 5.16), the models did not
manage to identify a single segment belonging to the fortress. The results were consistently
poor across all testing tilesets (table A.4). The limitation of our methodology is clear in
that it does not work for more complex structures with varying size. Each segment can
often only cover a small part of the structure, and excludes valuable context from the
surrounding area. Increasing the segment size may mitigate this to a degree, but segments
only covering parts of fortresses would still be a problem, since the segment locations are
fixed.

Another likely limiting factor with regards to fortress detection was the dataset itself. In
terms of size, it was probably to small. Statistics from the test phase of the model training
(table 5.2) produced better results than predicting on the testing tilesets (figure 5.14), a
sign of overfitting. The training set for qanats contained 1572 images of qanats, while the
fortress training set only contained 517. Adding to this the fact that the fortress images
are much more varied in appearance, this number is likely too low if the models are to
generalize to new data. Furthermore, remains of fortresses are often partially or completely
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6.3 Limitations in Methodology and Data

buried, making them hard to detect from optical imagery. Stott et al. [36] used LiDAR
data to find circular viking fortresses. Using LiDAR provides a great advantage when
looking for differences in elevation, because small differences often do not appear as clearly
in optical imagery. Future work in fortress detection may therefore benefit from using
other types of imagery instead of optical.

Additionally, the process of manual classification /labeling of segments may have introduced
problems. It was often the case that qanats were partially inside a segment, which made
us unsure about whether to label the segment or not. This was even more often the case
when labeling segments with fortresses. Additionally, the authors have no experience with
identifying archaeological structures, which may have lead to cases of mislabeling.

None of the authors had any prior experience with machine learning when starting this
thesis. Consequently, we had to learn about deep learning from scratch, in both the
theoretical and practical aspects. The result has been a solution approach that is not
ideal for structures with inconsistent size and complexity. Given more time, we would
probably use a different type of deep learning architecture based on what we have learned,
for example R-CNN or YOLO.
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Conclusion

7.1 Answers to Research Questions

In section 1.3 we presented some research questions which this thesis aimed to give an
answer to. The answers to these questions are stated below:

1. Can pre-trained models with fine tuning be used in the detection of simple
ancient structures like qanats?
Yes, they seem quite effective at detecting qanats. Results for all tilesets in 5.3 shows
an Fl-score of 0.8733 for DenseNet-201, which was the highest of the three models.

2. Can the approach be extended to more complex structures like fortresses?
No, when it comes to more complex structures which vary a lot in size and form like
with fortresses, the models do no perform well. Results in 5.4 shows an Fl-score of
0.1750 for DenseNet-201, again the best performing model.

3. What types of terrain can the models be used on? Arid, semi-arid, agri-
cultural, urban?
Based on results in 5.3, the type of terrain predicted on may have some effect, but
this may also be due to the density of qanats in the image. The detection of fortresses
did not obtain good results regardless of the terrain, as seen in 5.4.

4. Can the easier implementation with image-classifiers compete with more
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7.2 Future Work

advanced object detection methods when searching for qanats and fortresses?
When working with structures of similar size and shape, the image-classifiers can work

as well, and may be an easier alternative to implement compared to the object detec-
tors. However, when tasked with structures that vary a lot in size and appearance,
this method falls short.

7.2 Future Work

Further work with detecting ancient structures will likely benefit from using object detec-
tion architectures, for example R-CNN. For completely or partially buried structures like
fortresses, other types of imagery such as LiDAR may produce better results. Another
possibility would to be use imagery with a higher spatial resolution to see how it would
affect the results of our models. It would also be interesting to test the performance of the
models on other types of structures, such as mounds.
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Appendix A

Supplementary Information

A.1 Github repository and Dataset

Our code and datasets are available at our GitHub repository:
https://github.com/naeemk/SpaceArch/

A.2 Areas/tilesets used in training and testing

A KML file with the areas used in our dataset is available in our GitHub repository at
https://github.com/naeemk/SpaceArch/blob/7d4dc1986060cecf61£2c07ab80£937cb88fab47/
kml_map/Areas.kml

The tables in this section list all areas/tilesets with coordinates for their top-left and
bottom-right corners. The zoom level was set to 17 for all the tilesets.
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A.2 Areas/tilesets

used in training and testing

Tileset ID | Top Left Corner | Bottom Right Corner | Location
0 34.35781, 58.58042 34.33726, 58.60262 Iran
1 29.03114, 58.39036 29.01138, 58.41381 [ran
2 34.42147, 58.92756 34.4011, 58.94644 [ran
3 33.6569, 56.92319 33.64689, 56.93319 [ran
4 34.29336, 58.65562 34.26783, 58.71141 [ran
5 29.19981, 58.20017 29.15981, 58.24017 Iran
8 34.38103, 56.90979 34.34475, 56.96402 Iran
10 34.31308, 58.6836 34.29256, 58.71122 Iran
11 32.86582, 52.96904 32.84661, 52.99303 Iran
13 34.35564, 69.07141 34.34888, 69.08566 Afghanistan
14 31.65323, 54.50365 31.63009, 54.52545 Iran
15 31.62707, 54.50541 31.60788, 54.5335 [ran
16 33.7119, 69.34363 33.69801, 69.36953 Afghanistan
17 31.46697, 65.58468 31.45513, 65.62004 Afghanistan
18 30.10015, 56.96726 30.07976, 56.99677 Iran
19 33.47974, 69.13723 33.46417, 69.17199 Afghanistan
20 31.6565, 65.94922 31.64046, 65.97986 Afghanistan

Table A.1: Qanat tilesets used for training; tileset ID in Github repository, top left and bottom

right coordinates and location.

Tileset ID | Top Left Corner | Bottom Right Corner | Location

6 29.33843, 57.84465 29.31651, 57.86969 Iran

7 33.72784, 69.40005 33.7179, 69.41684 Afghanistan
9 34.33153, 56.93918 34.31913, 56.95695 Iran

12 32.60412, 62.53076 32.58278, 62.55434 Afghanistan
21 31.52774, 54.43121 31.51644, 54.44768 [ran

22 31.45582, 65.76396 31.44465, 65.77874 Afghanistan
23 34.1472, 61.90542 34.13351, 61.92017 Afghanistan
24 34.26247, 61.97588 34.23385, 62.00492 Afganistan
25 33.64335, 60.26191 33.6335, 60.28269 Afghanistan

Table A.2: Qanat tilesets used for testing; tileset ID in Github repository, top left and bottom

right coordinates and location.
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A.2 Areas/tilesets used in training and testing

Tileset ID | Top Left Corner | Bottom Right Corner | Location
1 37.27764, 55.30294 37.26812, 55.31935 Iran
2 37.13968, 54.32456 37.13566, 54.32958 [ran
3 37.11102, 54.41807 37.0935, 54.43682 [ran
4 37.12023, 54.55129 37.11591, 54.55972 [ran
5 37.25078, 54.82079 37.24791, 54.82607 [ran
6 37.25901, 54.89346 37.25384, 54.90103 Iran
7 37.25694, 54.93345 37.2538, 54.93807 Iran
8 37.19043, 55.2269 37.16664, 55.26009 Iran
9 37.30916, 55.22566 37.30518, 55.23261 Iran
10 37.37964, 55.30822 37.3763, 55.31189 Iran
11 37.401, 55.33125 37.39739, 55.33663 Iran
12 37.42858, 55.37024 37.42577, 55.37547 [ran
13 37.4547, 55.41609 37.44955, 55.42448 [ran
14 37.12076, 57.10494 37.11642, 57.11017 [ran
15 37.04634, 57.46187 37.0397, 57.47483 Iran
16 37.09453, 56.91042 37.09297, 56.91334 Iran
17 28.90294, 50.82682 28.89759, 50.83362 Iran
18 35.35316, 51.66778 35.32981, 51.69104 [ran
19 39.61198, 47.75271 39.60349, 47.76397 [ran
20 39.45908, 48.41028 39.44563, 48.42585 [ran
21 39.45402, 48.4399 39.441, 48.45462 [ran
22 39.43276, 48.45931 39.42368, 48.47291 Iran
23 37.01806, 46.18619 37.00569, 46.20143 Iran
24 37.1244, 57.10579 37.12235, 57.1095 Iran
25 37.0516, 57.09168 37.04911, 57.09454 Iran
26 37.07301, 57.2583 37.07113, 57.26058 Iran
27 37.10491, 57.32414 37.10345, 57.32659 Iran
28 37.27656, 58.22959 37.27158, 58.23562 [ran
29 37.31778, 58.25096 37.30971, 58.26015 [ran
30 30.79919, 61.42296 30.7941, 61.42979 [ran
31 34.84308, 51.1437 34.84074, 51.14729 Iran
32 30.82854, 61.62571 30.82277, 61.63374 Iran
33 38.00165, 47.66022 37.98923, 47.67456 Iran
34 38.9064, 45.83698 38.89866, 45.84715 Iran
35 29.93814, 52.89342 29.93341, 52.89908 Iran
36 24.75318, 67.51852 24.74968, 67.52525 Pakistan
37 24.28927, 69.14827 24.27084, 69.17329 Pakistan

Table A.3: Fortress tilesets used for training; tileset ID in Github repository, top left and bottom

right coordinates and location.
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A.2 Areas/tilesets used in training and testing

Tileset ID | Top Left Corner | Bottom Right Corner | Location
38 39.66649, 44.11654 39.66066, 44.12459 Iran
39 39.70648, 44.0829 39.70156, 44.09023 [ran
40 37.06631, 49.23474 37.06256, 49.24423 [ran
41 35.05913, 51.42165 35.0474, 51.4374 [ran
42 34.0456, 51.05356 34.03204, 51.05931 Iran
43 33.97765, 51.43379 33.96704, 51.45171 Iran
44 35.70386, 53.49694 35.69168, 53.52179 Iran
45 35.88638, 53.50734 35.8707, 53.53318 Iran
46 37.37859, 47.15646 37.37262, 47.16588 Iran

Table A.4: Fortress tilesets used for testing; tileset ID in Github repository, top left and bottom

right coordinates and location.
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