

Title page for bachelor’s thesis

Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR’S THESIS

Study programme/specialisation:
Bachelor’s in computer science

Spring/ Autumn semester, 2021
Open / Confidential

Author:
Ingrid Nesbø Isene, Withya Wijeyaraj

Programme coordinator: Trygve Christian Eftestøl
Supervisor(s): Trygve Christian Eftestøl

Title of bachelor's thesis:
Development of python-based graphical user interface for handling data from COVID19
patients

Title in Norwegian:
Utvikling av pythonbasert grafisk brukergrensesnitt for håndtering av data fra COVID19-
pasienter

Credits:
2x10

Keywords:
Python programming
File processing
GUI
Interactive
Data analysis

 Number of pages: 48

+ supplemental material/other: 55

 Stavanger, 15.05.2021
 date/year

University of Stavanger
Stavanger, Spring 2021

Development of python-based graphical

user interface for handling data from

COVID19 patients

Ingrid Nesbø Isene, Withya Wijeyaraj

Supervisor: Trygve Christian Eftestøl

Bachelor thesis, Department of Electrical Engineering and Computer Science

Major: Computer Science

University of Stavanger

i

Abstract

One of the most significant threats associated with COVID-19 is the increase in hospital

admission. The primary study gathering the data was integral as the basis of this thesis.

The study investigates whether using biosensors to monitor patients infected by COVID-19

will impact outcomes compared to patients who are not monitored electronically. The

biosensors are used to monitor vitals such as heart rate, respiration rate, heart rate

variability, and relative stroke volume of a patient group at home.

An interactive and user-friendly GUI was developed to visualize data from patients that

participate in the study. The user can navigate the plot and change settings from a menu

bar. A vital functionality implemented is the ’Extract data’ function. By extracting data,

health care professionals can use the data for further data analysis. Data analysis was

performed to test the ’Extract Data’ functionality. The analysis compared the respiration

rate of two patients by calculating the average, median, and standard deviation. The

results show that patient 1 has a higher average and median, while patient 2 has a higher

standard deviation.

The GUI is implemented using Python and Qt as a framework; this has been used because

it is open-source and easy to install or import. Python is an object-oriented language

with clear syntax.

ii

Acknowledgements

This bachelor thesis is completed at the Department of Electrical Engineering and

Computer Science at the University of Stavanger during the spring of 2021. Thanks

are given to our supervisor Trygve Christian Eftestøl for close follow-ups and helpful

conversations. In addition to this, a big thank you to Omsyn AS for providing the

necessary equipment to gather the data needed for the thesis.

University of Stavanger

Stavanger, May 2021

Ingrid Nesbø Isene Withya Wijeyaraj

iii

Glossary

• FHI - Folkehelseinstituttet

• GUI - Graphical user interface

• CSV - Comma-separated values

• QT - Widget toolkit for creating GUIs

• NaN - ’Not A Number’, is a numeric data type used to represent any undefined or

unpresentable values.

• Ticks - The amount of datapoints plotted. One tick represents one datapoint.

• Backend - Refers to the server side of an application

iv Contents

Contents

1 Introduction 1

2 Background 2

3 Theory 3
3.1 Omsyn . 3
3.2 Python . 5
3.3 Matplotlib . 5
3.4 Pandas . 5
3.5 Pickle . 6
3.6 GUI . 7
3.7 PyQt5 Modules . 8
3.8 Widgets . 8

3.8.1 Buttons . 9
3.8.2 Labels . 9
3.8.3 Combo boxes . 9
3.8.4 MenuBars . 9
3.8.5 Scrollbars . 10
3.8.6 Dialogues . 10
3.8.7 Checkboxes . 10

3.9 Layout Managers . 10
3.10 Signals and Slots . 12

4 Methods 14
4.1 Main.py file . 15

4.1.1 File processing . 15
4.1.2 Storing files . 19
4.1.3 Application control . 20

4.2 Choice _window class . 20
4.3 Plot_window() class . 21
4.4 Interactive Widgets . 25

4.4.1 QScrollBar() . 25
4.4.2 QMenuBar() . 26
4.4.3 HideClass() . 29

4.5 Data Storage . 30

5 Result 33
5.1 Data analysis . 40

6 Discussion 43
6.1 User-friendliness . 43
6.2 Choices . 44

6.2.1 Python . 44
6.2.2 PyQt . 44
6.2.3 Pickle . 44

6.3 Early development . 45

Contents v

6.4 Further Development . 46

7 Conclusion 48

References 49

Appendix 51

A How to install the programs 51

B How to use the program 51

vi List of Figures

List of Figures
3.1 Demonstration of how sensor and hub works. 3
3.2 Sensor that is used to measure the patients vitals. 4
3.3 The sensor sends signal to a hub. 4
3.4 CSV file. 5
3.5 CSV file converted to a Pandas data frame. 6
3.6 Data retrieved from Row, index 1 . 6
3.7 Data retrieved from column, Heart Rate 6
3.8 Placing widgets using Layout. 11
3.9 Simple example of use of signals and slots input dialog 13
4.1 Flowchart of the program . 14
4.2 Flowchart of main.py . 20
4.3 Initialization in Plot_window() class . 22
4.4 Flowchart of the SAVE() function. 32
5.1 Combo box containing patient IDs and dates 33
5.2 List of patient IDs . 33
5.3 List of dates corresponding to a specific patient ID 34
5.4 Figure of Plot Window . 35
5.5 Selection of plots to display . 36
5.6 Selection of lines to display . 37
5.7 The plot after change in settings. 38
5.8 Setting ticks on x-axis . 38
5.9 Plot after updating ticks on x-axis . 39
5.10 Extract data function, morning . 40
5.11 Extract data function, night . 41
5.12 Table showing extracted intervals. 42
5.13 Median, average and standard deviations for ’Respiration rate’. 42
6.1 First draft of GUI . 46
A0.1 Combobox containing patient IDs and dates 51
A0.2 The plotted data . 52
A0.3 Full menu bar . 52
A0.4 The user is able to show/hide plots . 52
A0.5 Change full episode . 53
A0.6 Change date . 53
A0.7 Change patient ID . 54
A0.8 Change interval . 54
A0.9 Add text . 54
A0.10Add markers . 55
A0.11Add grid . 55

Listings vii

Listings
1 Conversion of CSV file to Pandas data frame 6
2 Pickle example . 7
3 Layout managers example . 11
4 signal connected to a slot . 12
5 The extract path () function returns the path of each CSV file 15
6 Dictionary with Pandas data frame as value. 16
7 Predefined list of headers . 17
8 Python code from function.py file . 17
9 Processing files with missing columns . 18
10 Python Pickle . 19
11 Pickle files being created . 19
12 Python class used to create the first window. 20
13 open plot() function . 21
14 Creating objects . 22
15 Retrieving objects from pickle file. 23
16 Python function . 23
17 plotClass() . 24
18 plotData() . 24
19 Episode dictionary . 24
20 Layout . 25
21 Scroll function . 26
22 Setting X-interval . 26
23 Input dialog . 27
24 Store data in Excel . 28
25 HideClass() . 29
26 HideClass() instances initialized. 30
27 The SAVE() function. 30

1

1 Introduction

COVID-19 was first discovered in Wuhan, China, in December 2019. Since then, the

virus has spread across the whole world, making it a pandemic. According to WHO the

virus spreads primarily through droplets of saliva from the nose when an infected person

coughs or sneezes. Most patients that have tested positive for the COVID-19 virus will

experience mild to moderate respiratory symptoms (World Health Organization, 2020).

It is estimated that a person who has tested positive for COVID-19 can infect around

2.5 people on average(Gavi the vaccine alliance, 2020). One of the biggest challenges

associated with this is the number of hospitalizations. The increasing number of positive

COVID-19 tests has put significant pressure on the health system in many countries.

In the present situation, it is essential to relieve the stress on health service capacity

by identifying those with serious illness without transferring all infected patients to the

hospitals. The goal of developing new tools for monitoring the well-being of patients has

become essential during the COVID-19 pandemic(Arnulf et al., 2021). The study which

gathered the data used in this thesis uses biosensors to collect data from patients who

tested positive for COVID-19. The sensors are helpful, both for treatment and safety

of care given to these patients. This thesis aims to build a GUI in Python using the

QT application framework. To process and visualize CSV files containing the data from

patients participating in the study, modules such as Pandas and Matplotlib have been

used.

The sensors provided by Omsyn AS measure heart rate, respiration rate, heart rate

variability, relative stroke volume, and sleep status at 1-minute intervals. A python-based

tool will be developed that will enable the user to:

1. Process incoming files

2. List available patient episodes, where an episode can be selected for further handling.

3. Navigate an episode and visualize a section

4. Edit the plot by using functions in a menu bar

5. Save changes

2

2 Background

One of the biggest challenges associated with COVID-19 is the increase in hospital

admission and prolonged hospital stays. When the virus turned into a global pandemic,

hospitals quickly needed to increase their capacity to receive a growing number of patients

requiring constant supervision and intensive care. There was an increasing concern that

due to the nature of the virus, patients would require long-term intensive care with

respirators (Larsen et al., 2020).

The primary study and data collection process is designed to sample biosensor data from

patients treated and observed at home due to mild and moderate symptoms caused by

COVID-19. This is useful because patients may be referred to hospitalization earlier if

their vitals worsen. The local health system may benefit from the feedback of a monitoring

system because the system can detect changes in respiration rate, heart rate, sleep status,

and relative stroke volume. The main research question is whether using biosensors to

monitor patients infected by COVID-19 will impact outcomes compared to patients who

are not monitored electronically (Arnulf et al., 2021).

There are two groups in the study. The control group follows the guidelines from FHI

on self-care. This patient group reports symptoms, temperature, whether they are

taking painkillers and whether they notice a decline in breathing or general health. The

intervention group reports the same as the control group. In addition to this, biosensors

that measure heart rate, respiration rate, sleep status, heart rate variability, and relative

stroke volume at 1-minute intervals are used. These measures will automatically be

transmitted to a medical control center for review (Arnulf et al., 2021).

Omsyn AS is the provider of the health care technology used to collect the data for this

thesis. The GUI being developed is employed to provide health care professionals with

the ability to monitor patients from home that has been infected with COVID-19. This

may help determine when patient’s vitals worsen to the point in which they would require

intensive care.

3

3 Theory

This chapter aims at presenting the theoretical background related to the thesis. It starts

with a short explanation of Omsyn, the company that provides the necessary data and

equipments. Then, subsections of the technologies used to develop the GUI is presented.

In chapter 4, the development of the GUI and the relevant functions is explained more

in-depth.

3.1 Omsyn

Omsyn is a Norwegian-based company that specializes in welfare technology. They

produce sensors that measure values pertaining to the individual patient. The values

can be customized to fit the healthcare professional’s needs. In this study, the essential

values determining a patients need of intensive care are heart rate, heart rate variability,

respiration rate, sleep status and relative stroke volume. The sensor registers data at

1-minute intervals and forwards the data to the hub through WiFi, as seen in figure 3.1.

The location of the sensors is placed at the patient’s bed or chair as seen in figure 3.2.

When the sensor detects that the patient is sitting or lying down, it will start making

measurements. The sensor registers the vibrations and sends the data to the hub 3.3,

which is later stored in CSV files (Omsyn, 2021). These are the CSV files being processed

and later visualized in the developed GUI.

Figure 3.1: Demonstration of how sensor and hub works.

4 3.1 Omsyn

Figure 3.2: Sensor that is used to measure the patients vitals.

Figure 3.3: The sensor sends signal to a hub.

3.2 Python 5

3.2 Python

Python is an object-oriented programming language created by Guido van Rossum in

1991 and further developed by the Python Software Foundation (GeeksforGeeks, 2020).

One of many characteristics related to Python is that it is an open-source, interactive,

and high-level programming language(Mindfire Solutions, 2017). The Python language

was preferred for the development of this GUI because of Python classes. Classes provides

re-usability and fewer code lines which makes the programming language object-oriented.

3.3 Matplotlib

Matplotlib is an open-source Python library. It provides several ways to create static,

animated, and interactive visuals of data, which is why this library is considered essential.

One of the benefits of using Matplotlib is that it works well with other Python libraries

such as Pandas. In this thesis, Matplotlib is used to visualize the data from the CSV files.

3.4 Pandas

Pandas is a python package that is used for data analysis. The package allows importing

data from numerous file formats such as CSV files. One of many benefits of using

Pandas is that it allows for data manipulation operations such as merging, selecting, and

reshaping data (Wikipedia, 2021). The data that is used in the study is stored in various

CSV files. By using Pandas data frames, the data from the CSV files are made more

accessible. It enables the program to decide the exact values to retrieve for visualization.

To demonstrate the potential of Pandas, an example of data retrieval is shown below. The

example illustrates the conversion of a CSV file to a Pandas data frame, and demonstrates

different ways to retrieve data.

Figure 3.4: CSV file.

6 3.5 Pickle

By calling Pandas built-in read_csv() function, the CSV file is converted to a Pandas

data frame.

1 import pandas as pd

2 df = pd . read_csv (' Pandas . csv ')

3 row = df . l o c [1]

4 column = df ["Heart_rate "]

Listing 1: Conversion of CSV file to Pandas data frame

Figure 3.5: CSV file converted to a Pandas data frame.

As mentioned, using Pandas enables the program to decide the exact values to retrieve

for visualization. The code snippet above 1 illustrates how Pandas enables the program

to retrieve specific rows and columns. Pandas makes data processing easy and simple,

which is why this package is used for developing the GUI.

Figure 3.6: Data retrieved from Row, index 1

Figure 3.7: Data retrieved from column, Heart Rate

3.5 Pickle

Python’s pickle module is used for serialization. This means that objects can be saved to

a file and loaded into a program again later on. It is possible to pickle different objects

3.6 GUI 7

like Pandas data frames, plot figures, lists, dictionaries, integers, etc. To Pickle, one must

specify the name of the file the objects will be saved in (Théo Vanderheyden, 2018).

To store the objects created to develop the GUI, Pickle is used. This allows re-usability

of the objects which means that the objects do not need to be recreated every time the

GUI is run.

The open() function is used to open the file for writing or reading. It takes on two

arguments, the file and the "wb" or "rb" argument, where ’w’ means writing to the file

and ’r’ means reading from the file. ’b’ refers to binary mode. To write and store objects,

one must use the pickle.dump() function. To read and load objects, one must use the

pickle.load()

An illustration of how Pickle is used in Python is shown in the listing 2 below.

1 import p i c k l e

2 my_pickle_data = {

3 ' Python ' : ' open−source ' ,

4 'MatLab ' : ' l i c e n s e ' ,

5 ' Java s c r i p t ' : ' open−source '

6 }

7 with open(' myfilename . p i c k l e ' , 'wb ') as f i l e :

8 p i c k l e . dump(my_pickle_data , f i l e)

9

10 with open(' myfilename . p i c k l e ' , ' rb ') as f i l e :

11 unse r i a l i z ed_data = p i c k l e . load (f i l e)

Listing 2: Pickle example

3.6 GUI

One sub-sector of the software industry is the development of GUIs. One of the main

advantages of GUIs is that it allows users to interact with electronic devices through

icons and buttons. It was introduced to make computers more user-friendly compared to

text-based command-line interfaces. There are several frameworks used to develop a GUI

in Python. One of the most common frameworks that are used is PyQt (Editorial Team,

8 3.7 PyQt5 Modules

2020).

3.7 PyQt5 Modules

PyQt allows the developers to use much of the functionality of QT in Python. Qt is not a

programming language itself, but a framework written in C++. PyQt5 is used to develop

this GUI because it is compatible with different operating systems as MacOS, Windows,

Android and Unix. It also provides several essential modules that is used to build the

GUI. Some of these elements are:

• Widgets

• Layout managers

• Signals and slots

Most of these building blocks are represented as Python classes. The module that provides

most of these classes are PyQt5.QtWidgets (Leodanis Pozo Ramos, nd).

3.8 Widgets

Widgets are the base elements for creating user interfaces in QT. Widgets are helpful

because they can receive user input, display data, and provide a container for other

widgets that should be grouped together (The Qt Company Ltd, 2021d). Widgets are

components that can receive key-presses and mouse clicks. When the widget gets an event

from a user, it emits a signal to announce its state change. PyQt5 has a vast collection of

widgets that can be used for different purposes (Leodanis Pozo Ramos, nd). A group of

different widgets used to build this GUI are:

1. Buttons

2. Labels

3. Combo boxes

4. Menu Bars

5. Scroll bars

6. Dialogues

3.8 Widgets 9

7. Checkboxes

3.8.1 Buttons

It is possible to create a button by importing the QPushButton() class from the QWidget

module. When a button is clicked, a signal is sent to the computer to perform concrete

actions (Leodanis Pozo Ramos, nd). Several instances of the QPushButton() are initialized

when developing this GUI, mainly for the purpose of submitting concrete actions such as

selecting an episode for visualization.

3.8.2 Labels

The label module, QLabel(), is used to display text and images (Leodanis Pozo Ramos,

nd). To show the user which patient and episode is selected for visualization, the QLabel()

class is used.

3.8.3 Combo boxes

Combo boxes can be created in Python by using QComboBox(). A combo box will allow

the user to choose options in a drop-down list of data (Leodanis Pozo Ramos, nd). For

the user to select patient ID and date, combo boxes are used at the start of the GUI.

3.8.4 MenuBars

Menu bars display options that are relevant to the application. QMenuBar() is displayed

differently depending on the operating systems that are being used. It allows the user to

choose between different options and impact the GUI according to their wishes. The GUI

that is developed holds several menu bar options, and the list below shows some of the

functions implemented in the menu bar:

• Change date

• Set Interval

• Show/Hide Plot

The menu bar is the main contributor to making the GUI interactive.

10 3.9 Layout Managers

3.8.5 Scrollbars

Implementing a QScrollBar() will enable the user to access parts of the plot that is larger

than the plot figure used to display it. The QScrollBar() class can be implemented to

provide a vertical or a horizontal scroll bar (The Qt Company Ltd, 2021b).

3.8.6 Dialogues

Dialogues are important to maintain good usability. It allows the user to communicate

with the GUI directly. The QInputDialog() lets the user specify an input that is later

executed by a function (Martin Fitzpatrick, nd). A window with an input field is displayed

when calling the QInputDialog(). These dialogues are used for events such as setting x,

y-axis limitations in the developed GUI.

3.8.7 Checkboxes

The QTreeWidget() class provides checkboxes using a tree model. Each checkbox is a

QTreeWidgetItem() of the main tree, QTreeWidget(). This class is implemented when

creating checkboxes for user selection in this GUI.

3.9 Layout Managers

To position various widgets in a GUI, layout management classes from Qt are used. These

classes are used to describe how widgets are positioned in a GUI. One of several benefits of

using layout classes is that they automatically place and resize widgets when the number

of available spaces changes. This is important because it makes the GUI usable at all

times. To give the widgets a clean layout, built-in layout classes such as QHBoxLayout(),

QVBoxLayout(), QGridLayout() can be used (The Qt Company Ltd, 2021a).

In the listing 3 below, a ButtonClass() has been created to illustrate a layout example.

Three variables have been defined, where layout1 takes on three widgets and places

them horizontally, while layout2 does the same but places them vertically. Since one

window can only hold one main layout, the MainLayout variable is created and takes

layout1 and layout2 as arguments. In the listing below, the mainLayout variable is set to

QVBoxLayout().

3.9 Layout Managers 11

1 class ButtonClass (QWidget) :

2 def __init__(s e l f) :

3 super () . __init__ ()

4 s e l f . setWindowTitle ("Layout Example")

5 layout1 = QHBoxLayout ()

6 layout2 = QVBoxLayout ()

7 MainLayout = QVBoxLayout ()

8

9 layout1 . addWidget (QPushButton (" Le f t "))

10 layout1 . addWidget (QPushButton ("Center ") , 1)

11 layout1 . addWidget (QPushButton ("Right") , 2)

12

13 layout2 . addWidget (QPushButton ("Top"))

14 layout2 . addWidget (QPushButton ("Middle"))

15 layout2 . addWidget (QPushButton ("Bottom"))

16

17 MainLayout . addLayout (layout1)

18 MainLayout . addLayout (layout2)

19 s e l f . setLayout (MainLayout)

Listing 3: Layout managers example

The result is seen in the figure below 3.8.

Figure 3.8: Placing widgets using Layout.

12 3.10 Signals and Slots

A combination of QVBoxLayout() and QHBoxLayout() is used to build the GUI in this

thesis.

3.10 Signals and Slots

GUIs are user-friendly because it allows the user to interact with the application through

icons and buttons. When a user clicks on a button or types a message in a dialog box,

functions or methods are executed in response. The widgets are designed to release a

’signal’ in response. A signal does not perform any action alone. For a signal to be

executed, it must be connected to a function or a ’slot.’ A slot is a callable Python

function that contains some action and is called when a signal is emitted. A slot is marked

in a Python code by calling the pyqtSlot() function decorator above the executing function

(Tutorialspoint, nd).

As mentioned, the menu bar is the main contributor to making the GUI interactive. To

connect each menu to a function, signal and slots are used. The listing4 below demonstrates

how a signal is connected to a slot in PyQt5.

1

2 @QtCore . pyqtS lot ()

3 def showDialog (s e l f) :

4 text , ok = QInputDialog . getText (s e l f , ' input d i a l o g ' , ' wr i t e

t ex t ')

5 i f ok :

6 print (t ex t)

Listing 4: signal connected to a slot

The slot is connected to an QInputDialog() as seen in the figure3.9 below.

3.10 Signals and Slots 13

Figure 3.9: Simple example of use of signals and slots input dialog

The slot function is executed when an input in the QInputDialog() is submitted. In return,

a print statement is displayed in the terminal window. The listing 4 illustrates how few

lines of code are required to create a widget connected to a callable Python function.

14

4 Methods

Figure 4.1: Flowchart of the program

The flowchart in figure 4.1 illustrates how the program should work. The idea is that the

program should be able to:

1. Process the incoming files

2. List available patient episodes, where an episode can be selected for further handling.

3. Navigate an episode and visualize a section

4.1 Main.py file 15

4. Edit the plot by using functions in a menu bar

5. Save changes

In this chapter, a review of the different methods, functions, and classes will be presented

as they appear in the source code. The text is structured so that one begins at the

beginning of the program. It starts by explaining how the program processes the incoming

CSV files; further, the class and functions that allow the user to choose a patient and date

to go forward with are explained. Next, the functions in the menu bar that will let the

user edit the plot are presented. At last, the functions used to store the settings in the

plot are discussed. Chapter 5 shows the finished result.

4.1 Main.py file

The main.py file is the file that runs the program. Before the program can run, several

steps need to be handled. The CSV files must be processed, pickle files must be created,

and the main event loop must be called.

4.1.1 File processing

To process the incoming CSV files, two necessary functions have been implemented in the

function.py file. The function.py file contains all functions used to process the incoming

files. The functions extract_paths() and read _files() are called on in the main.py file.

The extract_path() function locates all CSV files within a given directory and returns a

list of all paths, as seen below, in listing 5.

[' /Users / e i e r /PyCharm_Projects/DATA/ covid1 . csv ' , ' /Users / e i e r /

PyCharm_Projects/DATA/TEexc . csv ' , ' /Users / e i e r /

PyCharm_Projects/DATA/ covid4 . csv ' , ' /Users / e i e r /

PyCharm_Projects/DATA/ covid3 . csv ' , ' /Users / e i e r /

PyCharm_Projects/DATA/COVID5. csv ' , ' /Users / e i e r /

PyCharm_Projects/DATA/ covid2 . csv ' , ' /Users / e i e r /

PyCharm_Projects/DATA/NAKOS−20200928−20200930. csv ']

Listing 5: The extract path () function returns the path of each CSV file

16 4.1 Main.py file

The read_files function() takes the path list returned by the extract_path() function as

an argument. The read_files() function reads each CSV file and then converts it to a

Pandas data frame. The function also returns a Python dictionary containing patient ID

as keys and the corresponding Pandas data frames as values, as seen in the listing 6 below.

dict_keys ([' bee41650−b699−4cac−a838−75f01b2656ae ' , ' 6deb3c48−

c0c7−4567−b6e9−e3b9f1adfb74 ' , ' 863 c5c1b−98a6−4856−b21a−2

a0c3c898263 ' , ' be3dbf1e−f30e −438c−b8af −532095d50e65 ' , ' 76

b29cf7 −149b−4533−9a91−d2864761496f ' , ' e662d866−0594−456 f−b5c8

−795191882330 ' , 'Unknown pat i en t #1 '])

pat ient_id . . .

date

0 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−09

1 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−09

2 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−09

3 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−09

4 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−09

.

3255 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−14

3256 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−14

3257 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−14

3258 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−14

3259 bee41650−b699−4cac−a838−75f01b2656ae . . . 2020−12−14

Listing 6: Dictionary with Pandas data frame as value.

The sensors provided by Omsyn AS measure values such as heart rate, respiration rate,

sleep status, relative stroke volume, and heart rate variability at 1-minute intervals. These

values are set as column names in the CSV files. However, some of the files can have

missing values or different column names. For example: if a CSV file does not contain

a heart rate column, a column with the same name must be added to the Pandas data

frame with corresponding values set to ’NaN’. The read _file function() is implemented to

process all CSV files the same way. If a CSV file contains different column names, errors

4.1 Main.py file 17

can occur. A predefined list is therefore created to compare the incoming files column

names. The known _headers list includes the column names that should be present in

each CSV file.

known_headers = [

" pat ient_id " , " time" ,

"heart_rate_min" , "heart_rate_median" , "heart_rate_max" ,

" respirat ion_rate_min " , " respirat ion_rate_median " , "

respirat ion_rate_max" ,

" heart_rate_var iabi l i ty_min " , " heart_rate_var iabi l i ty_median "

, " heart_rate_variabi l i ty_max" ,

" relative_stroke_volume_min" , " relative_stroke_volume_median"

, " relative_stroke_volume_max" ,

" s t a tu s " , " s l e ep_sta tus "]

Listing 7: Predefined list of headers

In listing 6 the read_file function() returns a fully processed CSV file as a Pandas data

frame. However, before converting the file to a Pandas data frame, the file must be checked

for errors. This occurs in the listing 8 below.

df . columns = df . columns . str . lower ()

new_headers = (set (l i s t (df . columns)) . d i f f e r e n c e (known_headers))

miss ing_headers =(set (known_headers) . d i f f e r e n c e (l i s t (df . columns)

))

Listing 8: Python code from function.py file

The df.columns variable shows which column names are present for the incoming CSV

file. The new_headers variable identifies the column names that exist in df.columns,

but are not present in the known_headers list. The new_headers variable then checks

if the new list consists of column names similar to the columns in known_headers list.

An example of this might be if a CSV file contains the column name "Time Stamp,"

but in known_headers list, that column name is set to "Time". The "Time Stamp"

column is then converted to "Time". At last, the missing_headers variable returns a

list of the column names that should be present in the df.columns list, but is not there.

18 4.1 Main.py file

Listing 9 below illustrates how the read_files() function works. The CSV file in the current

example are missing the column names ’sleep_status’, ’patient_id’, ’time’ and ’status’.

First, the function replaces the name ’timestamp’ with ’time’ from the known_headers

list. The function then checks if some of the columns are still missing and prints a ’still

missing’ list. The column names that are still missing are added to the Pandas data frame

with ’NaN’ values. If a file has a missing patient ID, a default ID is given. At last a Final

list is printed. The final list is identical to the known_headers list.

New:{ ' timestamp ' }

Miss ing : { ' s l e ep_sta tus ' , ' pat ient_id ' , ' time ' , ' s t a tu s ' }

Merged : [' time ' , ' heart_rate_min ' , ' heart_rate_max ' , '

heart_rate_median ' , ' resp irat ion_rate_min ' , '

respirat ion_rate_max ' , ' respirat ion_rate_median ' , '

heart_rate_var iabi l i ty_min ' , ' heart_rate_variabi l i ty_max ' , '

heart_rate_var iabi l i ty_median ' , ' relative_stroke_volume_min ' ,

' relative_stroke_volume_max ' , ' relative_stroke_volume_median

']

S t i l l mis s ing : { ' s t a tu s ' , ' s l e ep_sta tus ' , ' pat ient_id ' }

F i l e : / Users / e i e r /PyCharm_Projects/NAKOS−20200928−20200930. csv

does not conta in " pat ient_id . Defau l t ID i s g iven : Unknown

pat i en t # 1

Fina l : [' time ' , ' heart_rate_min ' , ' heart_rate_max ' , '

heart_rate_median ' , ' resp irat ion_rate_min ' , '

respirat ion_rate_max ' , ' respirat ion_rate_median ' , '

heart_rate_var iabi l i ty_min ' , ' heart_rate_variabi l i ty_max ' , '

heart_rate_var iabi l i ty_median ' , ' relative_stroke_volume_min ' ,

' relative_stroke_volume_max ' , ' relative_stroke_volume_median

' , ' s t a tu s ' , ' s l e ep_sta tus ' , ' pat ient_id ']

Listing 9: Processing files with missing columns

4.1 Main.py file 19

4.1.2 Storing files

To avoid re-processing the files the next time the program is run, the dictionary returned

by the read_files() function and the path list returned by the extract_paths() is pickled.

As mentioned in the theory part of this thesis, pickle is used to store objects. In listing 10

below, the ’pickle.pkl’ file is created. The files are then processed and the objects returned

by the extract_paths() and read_files() are dumped into the pickle file.

d i r e c t o r y = DATA_PATH

pathLi s t = extract_paths (d i r e c t o r y)

DICT_ID_df = r e ad_ f i l e s (pathLi s t)

ob j e c t s = [pathList , DICT_ID_df]

f i l e = open(PICKLE_PATH+' / p i c k l e . pkl ' , "wb")

p i c k l e . dump(ob j ec t s , f i l e)

f i l e . c l o s e ()

Listing 10: Python Pickle

The users can edit the plot by using functions in a menu bar. To store these settings, two

more pickle files are created in the main.py file as seen in listing 11 below. ’plot_settings.pkl’

for standard settings such as setting intervals, and ’patient_settings.pkl’ for storing settings

such as markers and texts. The empty dictionaries dumped into these pickle files are later

filled when settings are saved. This is discussed later in this chapter.

p l o t_se t t i ng s = {}

with open(PICKLE_PATH+' / p l o t_se t t i ng s . pkl ' , "wb") as f :

p i c k l e . dump(p lo t_se t t ings , f)

pa t i en t_se t t i ng s = {}

with open(PICKLE_PATH+' / pa t i en t_se t t i ng s . pkl ' , "wb") as

f :

p i c k l e . dump(pat i en t_se t t ing s , f)

Listing 11: Pickle files being created

20 4.2 Choice _window class

An illustration of how the main.py file operates is shown in the figure 4.2 below.

Figure 4.2: Flowchart of main.py

4.1.3 Application control

A GUI can consist of several windows. For the windows to appear when running the

program, a QApplication() object is called. The QApplication() is the main event loop,

meaning it controls the application’s flow control and primary settings. For a GUI

using Qt, a QApplication() object is needed. After calling this class, an instance of the

Choice_window() class is created, which is the first window being displayed.

4.2 Choice _window class

After the files are processed, a window listing available patient episodes should appear.

The application must be able to visualize data from a specific patient for a particular

date. To select which patient episode to visualize, the user must first choose a patient ID

and a corresponding date to go forward with. This occurs in the Choice_window() class.

class Choice_window (QWidget) :

def __init__(s e l f) :

o b j e c t s = p i c k l e . load (open(PICKLE_PATH+"/ p i c k l e . pkl " , "

rb"))

s e l f .DICT_ID_df = ob j e c t s [1]

super () . __init__ ()

4.3 Plot_window() class 21

s e l f . model = QStandardItemModel ()

s e l f . comboID = QComboBox()

s e l f . comboID . setModel (s e l f . model)

s e l f . comboDate = QComboBox()

s e l f . comboDate . setModel (s e l f . model)

s e l f . submit = QPushButton ('SUBMIT ')

s e l f . submit . c l i c k e d . connect (s e l f . open_plot)

Listing 12: Python class used to create the first window.

The ’pickle.pkl’ created in the main.py file, containing the dictionary holding the patient

IDs and dates, is opened in this class. The Choice_window() class extracts the keys and

values from the dictionary and lists the data in a QComboBox(). Each time a user selects

a different patient ID, the list of corresponding dates should be updated. When the user

submits the patient ID and date from the QComboBox(), the open_plot() function is

called as seen in listing 13 below. This function creates an instance of the Plot_window()

class that displays the plots.

def open_plot (s e l f) :

ID = s e l f . comboID . currentText ()

DATE = s e l f . comboDate . currentText ()

s e l f . plotWin = Plot_window (ID ,DATE)

s e l f . plotWin . showFul lScreen ()

s e l f . c l o s e ()

Listing 13: open plot() function

4.3 Plot_window() class

The Plot_window() class is responsible for visualizing the selected episode. It initializes all

objects and variables necessary for creating the plot window. This implies objects such as

plot figures and Pandas data frames. To initialize objects, four functions are implemented.

22 4.3 Plot_window() class

The functions being used depend on whether previous configurations are stored in pickle

files, as shown in the flowchart, figure 4.3 below. The very first time the program is

run, the first_plot_setting() function is called. Due to no previous plot settings, the

‘plot_settings.pkl’ will contain an empty dictionary and will therefore initialize the needed

objects by creating them. The next time the program is run, the Plot_window() class calls

the stored_config() function, passing the dictionary from ’plot_settings.pkl’ as argument.

Since the dictionary holds data from the last session, it initializes the needed objects by

retrieving them from the pickle file. This way, the program does not have to recreate the

objects.

The same goes for creating objects for patient episodes. If an episode is opened for the first

time, the new_date_setting() function is called. This function retrieves the data for the

specific patient ID and date, and creates the plot objects. If an episode have been opened

before, the stored_date_setting() function is called. Similar to the stored_config(), it

retrieves stored objects from the pickle file and initializes them.

Figure 4.3: Initialization in Plot_window() class

def new_date_setting (s e l f) :

s e l f . s t a r t_t i ck= 0

s e l f .SLEEP= p lo tC la s s (False , None , None)

s e l f .HR = p lo tC la s s (False , None , None)

s e l f .RESP = p lo tC la s s (False , None , None)

s e l f .HRV = p lo tC la s s (False , None , None)

s e l f .REL= p lo tC la s s (False , None , None)

s e l f .FULL= p l o tC l a s sFu l l ()

s e l f . df , s e l f . markerList= GET_DF_FOR_DATE(s e l f . ID , s e l f .

4.3 Plot_window() class 23

DATE, s e l f .DICT_ID_df)

Listing 14: Creating objects

def stored_date_sett ing (s e l f , pat ient_s) :

s e l f . s t a r t_t i ck = patient_s [' s t a r t_t i ck ']

s e l f .SLEEP= p lo tC la s s (False , None , None)

s e l f .HR = p lo tC la s s (True , pat ient_s ['HR'] [' f i g '] ,

pat ient_s ['HR'] [' axes '])

s e l f .RESP= p lo tC la s s (True , pat ient_s ['RESP '] [' f i g '] ,

pat ient_s ['RESP '] [' axes '])

s e l f .HRV = p lo tC la s s (True , pat ient_s ['HRV'] [' f i g '] ,

pat ient_s ['HRV'] [' axes '])

s e l f .REL = p lo tC la s s (True , pat ient_s ['REL '] [' f i g '] ,

pat ient_s ['REL '] [' axes '])

s e l f .FULL= p l o tC l a s sFu l l ()

Listing 15: Retrieving objects from pickle file.

During the process described above, in figure 4.3, the Pandas data frame for the patient

episode is initialized. This is done by calling the GET_DF _FOR _DATE() function as

seen in listing 14. The function returns the Pandas data frame for the selected ID and

date, which holds the data that will be visualized. Another important functionality is

that the function adds missing timestamps between the first and last timestamp in the

Pandas data frame. The timestamps are added to envision the full-time course of the

episode. It also returns a list of timestamps that are located between ’NaN’ values.

def GET_DF_FOR_DATE(ID ,DATE,DICT_ID_df) :

df = DICT_ID_df [ID]

df = df [df [' date '] == DATE]

Listing 16: Python function

Other important objects that are initialized during this process are the figures that will

visualize the Pandas data frame. The plotClass() creates these figures. Five instances of

this class are created as seen in listing 14. Each figure holds one subplot and one ax, and

the canvas these figures renders into is set up using the ’FigureCanvasQTAgg’ widget.

24 4.3 Plot_window() class

class p l o tC l a s s (FigureCanvasQTAgg) :

def __init__(s e l f , p i ck l e_state , f i g , ax) :

s e l f . f i g = f i g

s e l f . axes = ax

super (p lo tClas s , s e l f) . __init__(s e l f . f i g)

s e l f . f i g . t ight_layout ()

Listing 17: plotClass()

The plot class creates the figures that will contain the data from the patients. However,

to plot the data, the function plotData() is used. This function is located in the Plot

_window() class.

def plotData (s e l f) :

i f s e l f . p i ck l e_s ta t e == False :

for i in ep i_dict . keys () :

ax = s e l f . get_widget (i) . axes

ax . s e t_ t i t l e (i , l o c=' l e f t ' , f o n t s i z e =7)

ax . p l o t (s e l f . d f [' time '] , s e l f . d f [ep i sode] , l i n e s t y l e

='− ' , c o l o r=co lo r , l a b e l=s t r i n g)

Listing 18: plotData()

Each patient ID plots four plots by default; these four are heart rate, respiration rate,

heart rate variability, and relative stroke volume. The biosensors from Omsyn AS measure

these values in min, max, and median. These values are added to a Python dictionary.

The dictionary takes the four main plots as keys, and min, max, median as values. This

is done in epi_dict dictionary as seen in listing 19. Looping through this dictionary, the

plotData() function plots three lines representing the min, max, and median value, in

each plot.

ep i_dict = {

' Heart Rate ' : [" heart_rate_min " ," heart_rate_median " ,"

heart_rate_max "] ,

4.4 Interactive Widgets 25

' Resp i ra t i on Rate ' : [" respirat ion_rate_min " ,"

respirat ion_rate_median " ," respirat ion_rate_max "] ,

' Heart Rate Va r i ab i l i t y ' : [" heart_rate_var iabi l i ty_min " ,"

heart_rate_var iabi l i ty_median " ," heart_rate_variabi l i ty_max "] ,

' Re l a t i v e Stroke Volume ' : [" relative_stroke_volume_min " ,"

relative_stroke_volume_median " ," relative_stroke_volume_max "]

}

Listing 19: Episode dictionary

At last, the Plot_window() class sets the main layout for the application window. This

layout is set to be vertical using the QVBoxLayout(). Along with the figures created,

other widgets are also added to the main layout to make the GUI more interactive. The

functionality of these widgets is discussed in the next section.

s e l f . mainLayout = QVBoxLayout ()

s e l f . mainLayout . addWidget (s e l f . menuBar)

s e l f . mainLayout . addLayout (Label , 0 . 5)

s e l f . mainLayout . addLayout (PlotLay , 8)

s e l f . mainLayout . addLayout (s e l f . s c r o l lB a r . Scroll_Lay , 1)

s e l f . setLayout (mainLayout)

Listing 20: Layout

4.4 Interactive Widgets

To make the GUI more interactive, widgets such as QScrollBar() and QMenuBar() have

been added. These widgets respond to events caused by user actions. By adding these

widgets to the GUI, the user is able to edit and navigate an episode.

4.4.1 QScrollBar()

QScrollBar() allows the user to navigate back and forth in the plot. Large datasets can

be challenging to read when displayed in one window. The plot is therefore set to show a

specific interval at a time. The scroll bar represents the full episode, while the grey area

within the scroll bar represents the exact interval being displayed as seen in figure 5.4.

26 4.4 Interactive Widgets

When navigating, the scroll_action() function is triggered. To know which fraction of the

plot is being shown, a color patch is created to mark the specific area. This color patch is

also updated for every scroll_action(). At last, the function redraws the plot.

def s c r o l l_a c t i o n (s e l f) :

s e l f . s t a r t_t i ck = s e l f . s c r o l lB a r . s c r o l l . va lue ()

s e l f . s e t I n t e r v a l ()

s e l f . updateColorPatch ()

s e l f . redrawAll ()

Listing 21: Scroll function

4.4.2 QMenuBar()

QMenuBar() allows the user to edit the plot and specify their settings. The menu bar

consists of several settings, each connected to a Python function. For a user to receive

a response to the event requested when editing, the signals are connected to slots using

pyqtSlot() function decorator. An example of functions that allows the users to edit the

plot is setting intervals.

The set_x _interval() function is one of many functions connected to the QMenuBar().

When this action is called, a QInputDialog() window is displayed. This allows the user to

specify a new interval as seen in figure 5.8. Pressing the submit button will update the

self.interval variable. This variable decides the length of the interval. The interval is then

updated as seen in figure 5.9, and the plot is redrawn.

@QtCore . pyqtS lot ()

def set_x_interva l (s e l f) :

text , ok = QInputDialog . getText (s e l f , ' I n t e r v a l S e t t i n g s ' , '

Set x−i n t e r v a l : ')

i f ok :

s e l f . i n t e r v a l = int (t ex t)

s e l f . s e t I n t e r v a l ()

s e l f . updateColorPatch ()

s e l f . redrawAll ()

Listing 22: Setting X-interval

4.4 Interactive Widgets 27

Another essential functionality added to the menu bar is the ’Extract Data’ function. This

allows the user to mark specific areas of interest and retrieve the data within the area.

This is useful because it will enable the user to keep areas of interest and further use the

data retrieved in data analysis.

To retrieve data from a specific area, the user must specify an interval name. This is

achieved through a QInputDialog() as seen in listing 23. When submitting the input, a

’button_press_event’ is activated, allowing the user to mark two specific areas within

the plot. The two markers represents the start and end of the area in interest as seen in

figure 5.10.

def act ivate_MarkInterva l (s e l f , bool , prev) :

i f bool == True :

text , ok = QInputDialog . getText (s e l f , 'INTERVAL ' , '

ENTER NAME FOR INTERVAL: ')

i f ok :

s e l f . c id = {}

for i in s e l f . get_all_main_wigets () :

c id = i . f i g . canvas . mpl_connect ('

button_press_event ' , p a r t i a l (s e l f . MarkInterval , t ex t))

s e l f . c id [i] = c id

Listing 23: Input dialog

The function triggered by the ’button_press_event’ is MarkInterval(). This function

takes the input from the QInputDialog() as an argument. When the user clicks on the

plot, points and annotations are added. After two clicks, the marked area is stored, and

the event is disconnected.

def MarkInterval (s e l f , text , event) :

ax = event . inaxes

s e l f . p1 = ax . p l o t (event . xdata , event . ydata , marker=' . ' ,

c o l o r=' purple ' ,ms=10, l s="" , l a b e l='_'+text)

s e l f . a1 = ax . annotate (t ex t+' START' , xy=(event . xdata −

0 . 3 , event . ydata + 0 . 1) , weight=' bold ')

28 4.4 Interactive Widgets

s e l f . start_time = s e l f . d f [' time '] . l o c [round(event . xdata)

]

s e l f . redrawAll ()

s e l f . count+=1

s e l f . MarkedIntervals . append ([text , s e l f . start_time , s e l f .

end_time])

for i in s e l f . get_all_main_wigets () :

i . f i g . canvas . mpl_disconnect (s e l f . c id [i])

s e l f . c id = {}

The marked area is stored in the self.MarkedIntervals list, which holds the starting- and

ending timestamp of the interval. For a user to retrieve the data between these timestamps,

the create_Excel() function is implemented. As shown in listing 24, the function extracts

the data from the Pandas data frame and stores it by creating an Excel file. Whenever the

user marks new intervals, each interval is added as a sheet within the Excel file. A table

showing an overview of all marked areas is also added to this file as seen in figure 5.12.

@QtCore . pyqtS lot ()

def create_Excel (s e l f) :

w r i t e r = pd . ExcelWriter (Date_path , eng ine=' x l s xw r i t e r ')

df = DataFrame (s e l f . MarkedIntervals , columns=['INTERVAL ' , '

START TIME ' , 'END TIME '])

df . to_excel (wr i te r , sheet_name=' I n t e r v a l s ')

for i n t e r v a l in s e l f . MarkedIntervals :

index_start = s e l f . d f [s e l f . d f [' time ']==start_t] . index [0]

end_start = s e l f . d f [s e l f . d f [' time '] == end_t] . index [0]

i n t e rva l_d f . to_excel (wr i te r , sheet_name=name)

wr i t e r . save ()

Listing 24: Store data in Excel

4.4 Interactive Widgets 29

4.4.3 HideClass()

To let the user decide which plot figures and lines to display, the HideClass() is implemented.

The class creates checkboxes by using the QTreeWidget(). Each checkbox value represents

either the plot figure or the lines within the plot, as seen in figures 5.5 and 5.6. These

checkboxes are made by iterating through both keys and values in the epi_dict dictionary,

listing 19. The reason both keys and values are iterated through is to put parent items and

child items to the QTreeWidget(). The listing 25 below, demonstrates how the checkboxes

are created.

class HideClass (QWidget) :

def __init__(s e l f , ch i ld_status , uncheck_status , un s e l e c t edL i s t

, s e l e c t e dL i s t) :

super () . __init__ ()

s e l f . t r e e = QTreeWidget ()

for header in ep i_dict . keys () :

parent = QTreeWidgetItem (s e l f . t r e e)

parent . setText (0 , header)

parent . setCheckState (0 , Qt . Checked)

parent . s e tF l ag s (parent . f l a g s () | Qt . I t emI sTr i s t a t e |

Qt . ItemIsUserCheckable)

for x in ep i_dict [header] :

c h i l d = QTreeWidgetItem (parent)

c h i l d . s e tF l ag s (c h i l d . f l a g s () | Qt .

ItemIsUserCheckable)

c h i l d . setText (0 , x)

c h i l d . setCheckState (0 , Qt . Checked)

Listing 25: HideClass()

Three instances of the HideClass() is initialized when the first_plot_setting() function is

called inside the Plot_window() class, listing 26. The functionalities of the checkboxes in

each instance vary. The self.hidePlot instance decides how many plots to display in one,

as seen in figure5.5. By default, the program starts with four plots, but the ’Show/Hide

30 4.5 Data Storage

Plot’ functionality added to the menu bar allows the users to decide this through the

HideClass(). The self.hideLines instance decides which values to show in the plot, as seen

in figure5.6. By default, min, max, and median values appear in the plot. The ’Show/Hide

Line’ functionality added to the menu bar handles the user’s choice of lines. The last

instance, the self.Vline_win allows the user to decide whether the plots should show a

vertical line between the min and max values. This functionality is added as ’Show/Hide

V-lines’ to the menu bar.

def f i r s t_p l o t_s e t t i n g (s e l f) :

s e l f . i n t e r v a l = 30

s e l f . c u r r en t_ fu l l = ' heart_rate_min '

s e l f . h idePlot = HideClass (False , False , [] , [])

s e l f . h iddenPlots = []

s e l f . h ideLine = HideClass (True , False , [] , [])

s e l f . h iddenLines = []

s e l f . Vline_win = HideClass (False , True , [] , [])

Listing 26: HideClass() instances initialized.

4.5 Data Storage

Under the Main subsection it was described how pickle files were created and how stored

data was opened and used. In this subsection it is described how data is stored before the

program is closed. To save the settings from the menu bar, the settings are dumped into

pickle files. Whenever the user changes a date, a patient ID or closes the application, a

call to the SAVE() function is made.

def SAVE(s e l f) :

p l o t_se t t ing s , pa t i en t_se t t i ng s = s e l f . __getstate__ ()

with open(PICKLE_PATH+' / p l o t_se t t i ng s . pkl ' , "wb") as f :

p i c k l e . dump(p lo t_se t t ings , f)

with open(PICKLE_PATH+' / pa t i en t_se t t i ng s . pkl ' , " rb") as

f :

4.5 Data Storage 31

pat ient_s = p i c k l e . load (f)

i f s e l f . ID not in pat ient_s . keys () :

pat ient_s [s e l f . ID] = {}

pat ient_s [s e l f . ID] [s e l f .DATE] = pat i en t_se t t i ng s

with open(PICKLE_PATH+' / pa t i en t_se t t i ng s . pkl ' , "wb") as

f :

p i c k l e . dump(patient_s , f)

Listing 27: The SAVE() function.

The SAVE() function retrieves two dictionaries of objects returned by the __getstate__()

function, where objects in interest are stored. As seen in the flowchart below, figure

4.4, the dictionary containing objects related to the plot setting is dumped into the

’plot_settings.pkl’ file. Then it opens the ’patient_settings.pkl’ file, which returns a

dictionary containing all patient IDs as keys and corresponding date and data as key-value

pairs. The second dictionary returned by the __getstate__() function is then added and

finally dumped back into the ’patient_settings.pkl’ file.

32 4.5 Data Storage

Figure 4.4: Flowchart of the SAVE() function.

33

5 Result

After the program has processed the incoming CSV files, the Choice_window() will appear

as demonstrated in figure 5.1. This window consists of combo boxes, which allows the user

to select a patient ID and a corresponding date to go forward with. Choosing a patient ID

and date allows the user to follow up with individual patients easily and straightforwardly.

In figure 5.2 the combo box lists all patient IDs and in figure 5.3 the corresponding dates

to the patient ID are listed.

Figure 5.1: Combo box containing patient IDs and dates

Figure 5.2: List of patient IDs

34

Figure 5.3: List of dates corresponding to a specific patient ID

After selecting a patient ID and a date, the user is redirected to the plot as shown in

figure 5.4 below. By default, all four plots containing heart rate, respiration rate, heart

rate variability, and relative stroke volume are shown in the window. An overview of the

patient’s sleep status is also displayed at the top, next to labels displaying the patient

ID and date. The four plot figures and the sleep status bar shows the data plotted for a

given interval. Therefore, another plot and sleep status bar displaying the full time course

of a full episode is displayed at the bottom of the GUI as seen in figure 5.4. By default,

the heart rate episode is shown, but the full episode can be changed from the menu bar

by clicking on ’Change full episode’. The pink color patch attached to the full episode

represents the exact area displayed in the four plots above. When navigating with the

scroll bar, the color patch will follow.

35

Figure 5.4: Figure of Plot Window

The menu bar is displayed at the top of the window. There are several features associated

with the menu bar that allows the user to make changes to the plot. The user will have

the option to select how many plots to display in the window. This can be changed in the

menu bar by clicking on ’Show/Hide’. The user can also choose which values to display

in the plot. In the figure 5.7 below, the plot figures for respiration rate and heart rate

variability are displayed. In the respiration rate plot, only the median value is displayed.

The minimum and max values have been hidden. This can easily be changed back again if

desired. Figures 5.5 and 5.6 demonstrates the check boxes used to select plots and lines.

36

Figure 5.5: Selection of plots to display

37

Figure 5.6: Selection of lines to display

38

Figure 5.7: The plot after change in settings.

Another feature associated to the menu bar is to set intervals on the x and y axes. By

default, 30 ’ticks’ are displayed on the x axis. This value can be changed in the menu bar

by selecting ’Set Interval’. By clicking on ’Set Interval’ a input dialog is displayed as seen

in figure 5.8.

Figure 5.8: Setting ticks on x-axis

39

After submitting the input from the input dialog box, the number of ticks on the x interval

will update from the default value to 10 ticks, seen in figure 5.9.

Figure 5.9: Plot after updating ticks on x-axis

Other features to make the GUI more interactive are also implemented in the menu bar.

• Show / Hide Plots

• Show / Hide Lines

• Show / Hide V-lines (Vertical lines)

• Change Full Episode

• Change Date

• Set X-interval

• Set Y-interval

• Change Patient ID

• Add Grid

• Add Marker

• Add Text

40 5.1 Data analysis

• Extract Data (Excel)

5.1 Data analysis

One of the most important factors in the thesis was to develop a GUI to visualize the

data from patients being monitored from home. Data analysis can be used to determine

if the patient’s vitals worsen to the point in which they require intensive care. Therefore,

one of the most important features associated with the menu bar is the ’Extract Data’

option. This option allows the user to mark an area of interest and extract all data within.

The marked intervals and their data are saved into Excel files. With this feature, health

care professionals are able to use the Excel files to perform data analysis.

The figures below illustrates how the ’Extract Data’ functionality works. When areas of

interests are marked as seen in figures 5.10 and 5.11, an interval name is given, and the

’Import to Excel’ function is clicked. This creates an Excel file showing an overview of

marked intervals and its data, as seen in figures 5.12 and 5.13.

Figure 5.10: Extract data function, morning

5.1 Data analysis 41

Figure 5.11: Extract data function, night

By using built-in Excel functions such as median, average and standard deviations, the

patients data can be analyzed. To give an example of how this analysis can be performed,

two similar intervals of two different patients are extracted for the purpose of comparison.

Patient 1 to the left, and patient 2 to the right, shown in figure 5.13. In the figures

below, the excel functions median, average and standard deviation have been used on the

respiration rate data set.

42 5.1 Data analysis

Figure 5.12: Table showing extracted intervals.

Figure 5.13: Median, average and standard deviations for ’Respiration rate’.

43

6 Discussion

Figure 5.13 shows the median, average, and standard deviation that has been calculated

on the respiration rate dataset for two different patients. The data extracted from the plot

are in the same time interval with the same number of measurements. The respiration

rate is the number of breaths a person takes per minute. When comparing the calculated

results for both patients, it is clear that patient 1 (patient to the left) has a slightly higher

average respiration rate than patient 2 (patient to the right). Patient 1 also has a higher

median value compared to patient 2. However, patient 2 has a higher standard deviation.

6.1 User-friendliness

The goal was to create a user interface that was intuitive, easy to use, and straightforward

to understand for the targeted group. The measured data is currently visualized on a

web application developed by Omsyn AS, requiring user login. The visualization is not

interactive as it is a static plot that updates for each new incoming data. One wish was

to make the GUI more user-friendly and interactive. It was essential to develop a GUI

where the users could use a menu bar to specify their settings. The user can make several

changes from the menu bar to the GUI, such as changing the values on the axis, marking

areas with text and shapes, hiding lines, and changing patient ID. The fact that users can

easily specify changes is an important factor in user-friendliness. Being able to store these

changes is also an important feature as the users are able to continue where they last left

off.

One of the advantages of using Python is that it is an open-source library which means

that no license is required to download it. As a result, it is easy to manage and accessible

for the users. Installation of Python and other modules is the first point of contact for

the users. Therefore, it was essential to use a programming language that was easy and

straightforward. Some of the Python modules are dependent on other modules to work.

A solution to this problem is to create a simple, and well-documented installation guide

as seen in appendix A.

One advantage of using Omsyn’s web application is that no modules need to be installed,

but it requires the user to have a username and password.

44 6.2 Choices

6.2 Choices

6.2.1 Python

Python exists in several versions, and there are many IDE-es available. In this thesis,

Python version 3.9 has been used to develop the GUI, as this version is the latest release.

PyCharm has been used as the IDE during the development as it provides consistent

experience on operating systems like Windows, macOS, and Linux. The PyCharm version

used for this thesis was PyCharm Edu. This version is open-source and is free to download.

6.2.2 PyQt

PyQt5 allows the developer to create GUIs by importing various modules to help with

the development. Using PyQt, the developer has to implement the layout, design, and

content of the GUI. This should be very easy and straightforward if a simple GUI is

developed. However, it can be more complicated in advanced GUIs. The GUI in this

thesis is built by using widgets and layout managers. However, QT Designer may have

been a more manageable choice for developing the GUI in this thesis. This program is

a tool for building, designing, and placing QT widgets in GUIs (The Qt Company Ltd,

2021c). Using signals and slots mechanisms, the developer can assign behavior to the

widgets developed in Qt Designer. Qt Designer lets the developer build a GUI in fewer

lines of programming code. Therefore, Qt Designer could have made the GUI in this

thesis less complicated to develop.

6.2.3 Pickle

Pickle was used to implement the functions related to data storage. Although pickle is used

to store any objects, it only supports certain types of QT objects to be pickled. This means

that all unsupported objects such as QComboBox(), QVBoxLayout(), QInputDialog(),

etc., must be saved by storing the values used to initialize the class. Such a method of

storing data is time-consuming and makes the program slower. But, pickling dictionaries,

Pandas data frames, and integers, pickle was a good option.

6.3 Early development 45

6.3 Early development

Good design is fundamental because it creates a link between the users and the program

being developed. One of the first drafts of the GUI is drawn in the figure 6.1. The idea

was to open a new window for every decision made by the user. The user could only

select a patient ID in the first window and then select an episode next. The third window

displayed the optional dates for the specific patient, and finally, the fourth window would

appear, showing the episode.

There are several weaknesses with the first draft. Developing multiple windows makes

it more difficult for the users and could potentially make the program slower. The idea

behind the first draft was also only to display the chosen episode, meaning it would either

show heart rate, relative stroke volume, heart rate variability, or respiration rate. The

idea was only to display a chosen min, max, or median value. This intention would not

have created an interactive user experience as it would have been difficult for the user to

compare measurements and analyze. Hence, only two different windows were developed.

One for selecting episodes and one for visualizations.

46 6.4 Further Development

Figure 6.1: First draft of GUI

6.4 Further Development

Further development of this program should include several aspects. Some improvements

can make the program faster and better visually. The GUI is developed using the macOS

operating system and has therefore adapted to MAC computer screens. A more flexible

GUI can be programmed for future developments by testing it on other operating systems

before launching. This way, the GUI may adapt to different sizes of computer screens.

One change that can make the GUI more user-friendly is to remove the menu bar and

create a configuration window with all the settings. By adding a configuration window,

6.4 Further Development 47

operations will be more visible to the user, and the GUI may be easier to use.

If Omsyn AS were to change the settings on the sensors to measure at 1-second intervals

instead of 1-minute intervals, retrieving information about the patient’s health condition

would be easier. The relevant data can then be used further for more secure data analysis.

This change in settings relies on the company providing the sensors, and if this was to be

achieved, the backend implementation of file processing must be changed.

For further development, adding a search field would make the GUI more user-friendly. A

search field will allow the user to search for a patient ID and a corresponding date instead

of being redirected to the first window and going through a combo box drop-down list.

48

7 Conclusion

The thesis focuses on two main parts; the first part was to process the incoming CSV files.

These CSV files contained the data from the patients who participated in the study. The

biosensor measured the values of the patients at 1-minute intervals. Furthermore, the

data was handled using Pandas data frames. By using Pandas data frames, all CSV files

were handled equally, which made the program easier to run.

After handling the data, the data was visualized in four different plots. Another important

aspect was to create a GUI where the user could mark areas on the plot that was of

interest. Based on the markings, the user could retrieve the data between the marked

areas. The data that was retrieved could be used further for data analysis. One of the

challenges associated with COVID-19 is the number of hospital admissions. By retrieving

data related to the patients and following the patients from home, one can prevent the

hospitals from being overloaded.

Part two was to build a GUI that was interactive and user-friendly. The goal was to

develop a GUI where the user could change the settings to make the plots more readable.

Various functionalities were added to a menu bar. The user can change values on axes,

show and hide selected episodes, add grids, mark areas, etc. However, some improvements

can make the program run faster and look better visually, such as creating a configuration

window or a separate search field to search for an episode.

References 49

References
Arnulf, V., Eftestøl, T., Aramendi, E., Zarandona, U. I., Bjorland, H., and Wik, L. (2021).
Sensor based vital signs monitoring of patients with clinical manifestation of covid 19
disease during home isolation, a randomized feasibility study. Accessed: 14.05.2021
12:00.

Editorial Team (2020). Best python gui framework. https://techsore.com/best-python-gui/.
Accessed: 16.04.2021.

Gavi the vaccine alliance (2020). Why is coronavirus lockdown necessary? https://www.
gavi.org/vaccineswork/why-coronavirus-lockdown-necessary. Accessed: 01-03-2021.

GeeksforGeeks (2020). Python language introduction. https://www.geeksforgeeks.org/
python-language-introduction/. Accessed: 03.03.2021.

Larsen, B. H., Magelssen, M., Dunlop, O., Pedersen, R., and Førde, R. (2020). Etiske
dilemmaer i sykehusene under covid-19-pandemien. Tidskriftet Den Norske Legeforening,
18.

Leodanis Pozo Ramos (n.d.). Python and pyqt: Building a gui desktop calculator.
https://realpython.com/python-pyqt-gui-calculator/. Accessed: 14.04.2021.

Martin Fitzpatrick (n.d.). Dialogs and alerts. https://www.learnpyqt.com/tutorials/dialogs/.
Accessed: 19.04.2021.

Mindfire Solutions (2017). Advantages and disadvantages of python
programming language. https://medium.com/@mindfiresolutions.usa/
advantages-and-disadvantages-of-python-programming-language-fd0b394f2121. Accessed:
14.04.2021.

Omsyn (2021). Sengesensoren redder liv. https://www.omsyn.no/blogg. Accessed:
11.04.2021.

The Qt Company Ltd (2021a). Layout management. https://doc.qt.io/qtforpython/
overviews/layout.html. Accessed: 19.04.2021.

The Qt Company Ltd (2021b). Qscrollbar class. https://doc.qt.io/archives/qt-4.8/qscrollbar.
html. Accessed: 30.04.2021.

The Qt Company Ltd (2021c). Qt designer manual. https://www.overleaf.com/project/
603c9dc204cbe70e1678ec95. Accessed: 26.04.2021.

The Qt Company Ltd (2021d). Qt widgets. https://doc.qt.io/qt-6/qtwidgets-index.html.
Accessed: 14.04.2021.

Théo Vanderheyden (2018). Pickle in python: Object serialization. https:
//www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=
adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&
utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_
adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:
dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=
Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_
wcB. Accessed: 15.04.2021.

https://techsore.com/best-python-gui/
https://www.gavi.org/vaccineswork/why-coronavirus-lockdown-necessary
https://www.gavi.org/vaccineswork/why-coronavirus-lockdown-necessary
https://www.geeksforgeeks.org/python-language-introduction/
https://www.geeksforgeeks.org/python-language-introduction/
https://realpython.com/python-pyqt-gui-calculator/
https://www.learnpyqt.com/tutorials/dialogs/
https://medium.com/@mindfiresolutions.usa/advantages-and-disadvantages-of-python-programming-language-fd0b394f2121
https://medium.com/@mindfiresolutions.usa/advantages-and-disadvantages-of-python-programming-language-fd0b394f2121
https://www.omsyn.no/blogg
https://doc.qt.io/qtforpython/overviews/layout.html
https://doc.qt.io/qtforpython/overviews/layout.html
https://doc.qt.io/archives/qt-4.8/qscrollbar.html
https://doc.qt.io/archives/qt-4.8/qscrollbar.html
https://www.overleaf.com/project/603c9dc204cbe70e1678ec95
https://www.overleaf.com/project/603c9dc204cbe70e1678ec95
https://doc.qt.io/qt-6/qtwidgets-index.html
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB
https://www.datacamp.com/community/tutorials/pickle-python-tutorial?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=1010917&gclid=Cj0KCQjwyN-DBhCDARIsAFOELTl5LBpi-nxjgwkq7orna642uKrRqaAim5nejeoCVnGG7TpJ0A3xnaoaAjQkEALw_wcB

50 References

Tutorialspoint (n.d.). Pyqt5 - signals and slots. https://www.tutorialspoint.com/pyqt5/
pyqt5_signals_and_slots.htm. Accessed: 19.04.2021.

Wikipedia (2021). Pandas (software). https://en.wikipedia.org/wiki/Pandas_(software).
Accessed: 15.04.2021.

World Health Organization (2020). Coronavirus disease 2019 (covid-19) situation
report – 94. https://www.who.int/docs/default-source/coronaviruse/situation-reports/
20200423-sitrep-94-covid-19.pdf. Accessed: 01-03-2021.

https://www.tutorialspoint.com/pyqt5/pyqt5_signals_and_slots.htm
https://www.tutorialspoint.com/pyqt5/pyqt5_signals_and_slots.htm
https://en.wikipedia.org/wiki/Pandas_(software)
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200423-sitrep-94-covid-19.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200423-sitrep-94-covid-19.pdf

51

Appendix

A How to install the programs

To be able to start using the GUI, installation of some programs is required. ’Python’ and

’git’ must be installed before downloading the source code. The source code is published

on GitHub and a README file demonstrating how the program is downloaded through

the terminal. The link to where Python and git are downloaded is also posted here.

Link to GitHub repository: https://github.com/COVID-GUI/COVID19

B How to use the program

1. When running the program, a window will be displayed as seen in figure A0.1. The

user can then choose which patient ID and date to go forward with.

Figure A0.1: Combobox containing patient IDs and dates

2.After choosing a patient ID and a date, a new window with the plotted data will be

displayed as seen in figure A0.2.

https://github.com/COVID-GUI/COVID19

52

Figure A0.2: The plotted data

3. From the plot, the user has the opportunity to navigate in the episode using the scroll

bar. The pink area in the full episode indicates the exact area being showed in the four

plots.

4. The user can also select functions from QMenuBar(). The menu bar is displayed

differently depending on the operating system used. The functions added to the

QMenuBar() are seen in the figure A0.3 below.

Figure A0.3: Full menu bar

5. From the QMenuBar(), it is possible to Show/Hide plots.

Figure A0.4: The user is able to show/hide plots

6. It is also possible to Change Full Episode

53

Figure A0.5: Change full episode

7. Date and patient ID can be changed by selecting the options in the QMenuBar()

Figure A0.6: Change date

54

Figure A0.7: Change patient ID

8. By click on set Interval, one can specify new values on both x-axis and y-axis.

Figure A0.8: Change interval

9. In order to mark areas on the plot with markers or text, click on Add Marker or Add

Text in QMenuBar()

Figure A0.9: Add text

55

Figure A0.10: Add markers

10. At last, adding grids can be done by pressing the Grid option in the QMenuBar()

Figure A0.11: Add grid

	Introduction
	Background
	Theory
	Omsyn
	Python
	Matplotlib
	Pandas
	Pickle
	GUI
	PyQt5 Modules
	Widgets
	Buttons
	Labels
	Combo boxes
	MenuBars
	Scrollbars
	Dialogues
	Checkboxes

	Layout Managers
	Signals and Slots

	Methods
	Main.py file
	File processing
	Storing files
	Application control

	Choice _window class
	Plot_window() class
	Interactive Widgets
	QScrollBar()
	QMenuBar()
	HideClass()

	Data Storage

	Result
	Data analysis

	Discussion
	User-friendliness
	Choices
	Python
	PyQt
	Pickle

	Early development
	Further Development

	Conclusion
	References
	Appendix
	How to install the programs
	How to use the program

