
FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR THESIS

Study program/Specialization: Spring semester 2021

Bachelor of Science / Open or Restricted access

Computer Science

Writer(s): Vegard Matre, Markus Aarekol Johannessen

Academic Administrator: Tom Ryen

Supervisor(s): Leander Jehl

Thesis title: Vue vs. Vugu

Credits: 20

Keywords: Number of Pages: 78

Frameworks, Vue, Vugu, + appendix/else:

WebAssembly, Comparison Link to GitHub: Source Code

Stavanger 15. May 2021

https://github.com/MarkusAaJohannessen/Bachelor

Contents

Outline i

Abstract 1

1 Introduction 1

1.1 Outline . 2

2 Terminology 3

2.1 JavaScript . 3

2.1.1 Node.js . 5

2.2 Go . 5

2.3 Vue . 6

2.4 Vugu . 7

2.5 WebAssembly . 8

2.6 Recursion . 9

i

CONTENTS

2.6.1 Backtracking Recursive Algorithm 10

2.7 Testing . 12

2.7.1 Unit Test . 12

2.7.2 Performance Test . 12

3 Introduction to Vugu and Vue 13

3.1 Getting started with Vugu . 13

3.2 Getting started with Vue . 15

3.2.1 The Vue Command Line Interface 15

3.3 State management . 16

3.3.1 Vugu Wiring . 16

3.3.2 Vuex . 18

3.4 Routing . 19

3.4.1 Vugu Router . 19

3.4.2 Vue Router . 20

3.5 Components . 21

3.5.1 Vugu Component . 22

3.5.2 Vue Component . 23

3.6 Summary . 24

4 Implementation 25

ii

CONTENTS

4.1 Sudoku . 26

4.2 Implementation of the Sudoku application 27

4.2.1 Part I Creating the filled board 27

4.2.2 Part II Removing values to create a starting point . . . 28

4.2.3 Part III Solving the unique board 30

4.3 Differences in implementing the Sudoku application 31

4.4 Implementing the app in Vugu and Vue 32

4.5 Summary . 33

5 Testing and Comparison of the Results 34

5.1 Transitioning from Go and JavaScript to Vugu and Vue 35

5.2 Performance test of the Vugu- and Vue application 37

5.3 Performance test when creating a Sudoku board 40

5.3.1 Analyzing the Call-Tree 42

5.4 Performance testing of the application in different browsers . . 45

5.5 Perfomance test when solving a Sudoku board 48

5.6 Summary . 50

6 Test Capabilities and Support in Vugu and Vue 51

6.1 Testing capabilities in Go and JavaScript 52

6.2 Test capabilities in Vugu . 53

iii

CONTENTS

6.2.1 Test capabilities in Vue 57

6.3 Support around Vugu and Vue 58

6.4 Summary . 59

7 Final Conclusion and Further work 60

7.1 Conclusion . 60

7.1.1 Testing Frameworks 62

7.1.2 Features . 62

7.1.3 Support and Community 63

7.1.4 Final thoughts . 63

7.2 Further work . 64

7.2.1 Test framework for Vugu 64

7.2.2 Command Line Interface (CLI) for Vugu 65

7.2.3 Improvements to the application 65

References 68

iv

Abstract

Vue and Vugu are two frameworks used for developing web-oriented designs
and applications, whereas Vue utilizes JavaScript, and Vugu utilizes Go and
the fairly new technology WebAssembly. WebAssembly has emerged as a rele-
vant technology to supplement JavaScript in developing web applications where
JavaScript might be insufficient. For the application developed in this thesis,
we wanted to investigate whether or not using WebAssembly would affect the
performance of the application. Therefore we have implemented and evaluated
a mirrored Sudoku application using the frameworks Vugu and Vue which are
based upon these technologies. By creating the applications as equal as possible
we have been able to compare the two frameworks against each other. This has
allowed us to discover the advantages and disadvantages amongst them and
helped us reach a conclusion. The objective was to investigate if Vugu, and
hence WebAssembly would perform better than Vue under somewhat demand-
ing circumstances such as in generating a Sudoku board with a corresponding
unique solution. We found that the Vugu variant outperformed Vue in terms
of performance in the developed Sudoku application. Although Vue has more
resources and a broader community available, which in turn would make for a
more efficient development life cycle, Vugu turned out to be the overall optimal
choice for this application. Thus, confirming that WebAssembly, utilized by the
Vugu variant, does have the capabilities that JavaScript is lacking.

v

Chapter 1

Introduction

Frameworks such as Vue and Vugu are software that is developed and used by
developers to build applications. Frameworks provide the tools developers need
to keep them from reinventing the wheel for every new project. They provide
consistent starting points and organizational structure, which as applications
grow larger, provides for better code performance.
Frameworks are software that is built, tested, and optimized by several experi-
enced software engineers, programmers and companies. Therefore by utilizing
them, one may rely on that the framework already has been tested and opti-
mized for the various use cases that might appear while coding.
By building a new frontend web interface by only using HTML, CSS, and
JavaScript without using a framework, finishing up a small project could be
done relatively easily. But when a project grows larger and more complexity
is introduced, one might find that following best practices and maintaining
high code performance grows increasingly difficult. Especially when working
in teams, maintaining an organizational structure becomes very important, as
this helps for a wider understanding amongst the team when changes are to be
introduced or bugs need to be tracked down.
The objective of this thesis is to compare the two frameworks Vue and Vugu,
and to see if Vugu and WebAssembly can achieve better performance when used
in web applications that require heavy computational operations. The compar-
ison is done by building a Sudoku application and then implement it using the
two different frameworks Vue and Vugu, followed by an evaluation of them.
The application is built in Go and JavaScript, which the two frameworks are

1

1.1 Outline

built upon respectively, and then implemented with the corresponding frame-
work. The performance of the application, as well as the development process,
are then evaluated against each other so that a comparison between the two
can be made. When creating a Sudoku application it is possible to opt for
functions with time complexities that grow larger over time as the difficulty
of the Sudoku board increases. As the applications are implemented with few
differences, performance comparisons between Vue and Vugu can be derived
from test results. Performance are an important part of the objective since
applications with heavy computational operations, such as creating a Sudoku
board, are one of the possible use-cases for WebAssembly and it should perform
at least similar to established JavaScript frameworks such as Vue, to be a viable
choice.

1.1 Outline

The rest of the thesis is outlined as follows:

Chapter 2 Introduces the reader to important terminology, frameworks, li-
braries, and algorithms used throughout the thesis.

Chapter 3 Describes how to setup and begin a project using either Vugu or
Vue.

Chapter 4 Consists of the implementations of the application with both frame-
works. The differences in the implementations are highlighted in this chapter.

Chapter 5 The in-depth comparison between Vugu and Vue is discussed. Per-
formance tests of the two applications are introduced with coherent displayed
results.

Chapter 6 The test capabilities in both Vugu and Vue are reviewed. Also, the
support around the two frameworks are looked into and compared.

Chapter 7 Concludes the thesis and introduces thoughts regarding further work
that could be done onto both the application and the Vugu framework.

2

Chapter 2

Terminology

This chapter introduces the important terminology, frameworks, libraries, and
algorithms used throughout the thesis. The programming languages, JavaScript
and Go, that Vue and Vugu are mainly built upon will be introduced and dis-
cussed. From there the frameworks will be presented. In the final part of the
chapter, WebAssembly, which Vugu utilizes, and the algorithms used in the
developed application will be introduced.

2.1 JavaScript

JavaScript (JS) is one of the most popular languages in the programming world.
It is used as a scripting and as a programming language, and allows developers
to implement complex features on web pages. Every time a web page does
more than display static information, JavaScript is involved. It is a high-level
programming language, which together with HTML and CSS form the three
pillars of modern web development.

As a multi-paradigm language, JavaScript supports functional, event-driven,
and imperative programming styles. It has application programming interfaces
(APIs) for working, amongst others, with text, data structures, and the Docu-
ment Object Model (DOM). When JavaScript code is placed within web pages,

3

2.1 JavaScript

i.e. in script tags, the browser’s built-in interpreter locates the JavaScript code,
reads through it, and executes it. Once the page is parsed and rendered, de-
pending on the functionality defined by the implemented JavaScript, a user
may now click on elements to invoke JavaScript functions to change the vari-
ous views on the web page, and thus allowing for interactive web pages.

In 2021 JavaScript is arguably amongst the world’s most broadly deployed pro-
gramming languages. According to a Stack Overflow[1] survey in 2020, it is
used by 58,3% of professional developers, making it a popular widely-used pro-
gramming language.
According to the TIOBE index[2] which is an index that calculates the popular-
ity and relevance of programming languages based upon search engine queries.
The popularity of JavaScript over time, from the TIOBE index for JavaScript
is shown in Figure 2.1 below, with its most recent peak achieved in 2018.

Figure 2.1: JavaScript popularity over time, higher % means more popular.

4

2.2 Go

2.1.1 Node.js

Node.js is an open source JavaScript runtime environment that runs on Google
Chromes V8 JavaScript engine, developed by Ryan Dahl in 2009[3]. Node
allows JavaScript developers to run their scripts outside of web browsers, like
server-side scripting, before the page is sent to the browser. In this thesis,
Node.js was used under development of the JavaScript backend to test the
code while building it, and later when executing various test cases to compare
its performance versus the code written in Go.

2.2 Go

Go, also known as Golang, is an open source programming language, introduced
by Google in 2009. It is a statically typed language and produces compiled ma-
chine code binaries. Go provides tools that allows for safely usage of memory,
manage objects, collect garbage, and provide static typing along with concur-
rency. Go is a robust system level language used for programming across large
scale network servers and big distributed systems. This has resulted in Go
emerging as an alternative to C++ and Java for application developers. The
purpose behind creating the language was to deal with the lack of pace and dif-
ficulties involved with programming for large and scalable servers and software
systems.

According to the TIOBE index, Go was awarded the "Programming Language
of the Year" in both 2009 and 2016[2]. This is an award for the programming
language with highest the rise in ratings over the year[4]. According to the
TIOBE index, the popularity of Go has been on the rice since. In the same
Stack Overflow survey from 2020[1] mentioned above, Go scored a 62,3% and
therefore surpassed JavaScript by nearly 4%. The popularity of Go over time
is depicted in the TIOBE index for Go, in the Figure 2.2 below, showing its
highest point in late 2016.

5

2.3 Vue

Figure 2.2: Golang popularity over time, higher % means more popular.

2.3 Vue

Vue is a modern open-source front-end JavaScript framework that provides use-
ful facilities for building user interfaces and single-page applications, created by
Evan You[5] in 2014. Unlike many other frameworks, developers can use Vue to
enhance existing HTML, which enables users to use Vue as a drop-in replace-
ment for libraries like JQuery. Vue may also be used to write entire Single Page
Applications (SPAs) which allows the developer to create markup managed en-
tirely by Vue. This may improve developer experience and performance when
dealing with complex applications.

Like alternative frameworks, in Vue it is possible to create reusable blocks
of markup via Vue components. Unlike popular frameworks such as React,
Vue components are written using a special HTML template syntax. When
more control than the HTML syntax allows is needed, Vue allows JSX or plain
JavaScript functions to better define the components.

6

2.4 Vugu

Typically when applications grows, a problem arises when the DOM has more
nodes to traverse, which in turn leads to more elements and more scripts to
communicate with, resulting in that the DOM grows slower and costs increas-
ingly more processing power. Vue deals with this issue by utilizing complex
algorithms to avoid re-rendering the entire DOM after any new change to the
document. This is achieved by building a virtual DOM as an abstract of the
original one. In turn this leads to less DOM API calls which greatly improves
efficiency and resource management. To make use of Vue on existing sites,
simply drop the Vue CDN into a <script> tag in the HTML. This will allow
Vue on existing sites.

2.4 Vugu

Vugu is inspired by frameworks like Vue, React, etc. It is written in the pro-
gramming language Go developed by Google. Vugu is more of a library than
a framework according to the creators[6]. A framework could contain differ-
ent libraries and the framework tells the developer where to put the code. A
library is a set of tools the developers uses and decides where to use. In short
a framework controls the flow of the application, while with a library the de-
veloper controls the flow. This is why Vugu is more of a library that can be
utilized to create a web application. The developer mostly chooses where to use
Vugu. Vugu enables developers to execute Go code in a web browser using We-
bAssembly (wasm). This is still an experimental technology and are in constant
development. Vugu runs in most modern browsers and all the major browsers.
Vugu has a Single Page Application (SPA) approach which means that the ap-
plication can be split up in components. It is developed with the incentive of
keeping the build environment simple and sane. Developers write user inter-
faces with HTML+CSS presentation and the facility of Go for interface logic.
In Vugu there are .vugu files that are converted to .go filed. Then all .go files
are compiled into a wasm module and executed in the web browser. The Vugu
framework provides the functionality to efficiently synchronize HTML DOM on
a web page based on the markup in the project files. DOM event handlers and
breaking large parts into components are features supported by Vugu.
In short, Vugu allows for writing Go code to create web applications using
WebAssembly.

7

2.5 WebAssembly

2.5 WebAssembly

The development of the web platform has allowed for more advanced and de-
manding applications. This demands more efficient and secure code. JavaScript
has shown not to be the best equipped language for this, due to i.e. the fact
that it needs to be sent to the client side for execution. Because of this, engi-
neers from the four major browser vendors worked together to design a portable
low-level bytecode called WebAssembly[7]. WebAssembly does not commit to
a single programming model. Compact representation, efficient validation and
compilation, and safe to no-overhead execution is among the features that We-
bAssembly offers. It is an abstraction over modern hardware and thus making
it hardware-, language- and platform-independent.

A WebAssembly binary file will run in every browser since it is the implementa-
tion in the browser that ensures the operating system specifics. Usually today
JavaScript is delivered to the browser in text format. The files must then be
analyzed and translated by the browser before it even runs the file. Therefore
due to the analyzing and translation part of the JavaScript, WebAssembly might
perform better than JavaScript for some cases.

As mentioned earlier one of the reasons behind WebAssembly is the more de-
manding applications. This could be games, visualization-, video- and audio
software, augmented- and virtual reality. Another incentive to use WebAssem-
bly is because it will be easier to express things like threads and SIMD. SIMD
stands for Single Instruction, Multiple Data and is used to line up multiple
chunks of data beside each other and run a single instruction to operate on
every one of them at the same moment.

One important note is that WebAssembly is not to replace JavaScript, but
can help fill the gaps where JavaScript is not optimal. JavaScript and We-
bAssembly should be used to fulfill each other. Where there are big chunks
of data, WebAssembly is a potential candidate to use instead of JavaScript
because of better performance.

8

2.6 Recursion

2.6 Recursion

A function that calls itself directly or indirectly is the process known as recur-
sion and the corresponding function is called a recursive function[8]. Recursion
seems to create an infinite loop, but it is often used in such a way that this
will not occur. This is accomplished by providing a condition that when met,
it does not call itself anymore. The point of using a recursive function is to
code some problems more easily and efficiently. A recursive function starts with
having a base condition with a provided solution. The solutions to the bigger
terms is expressed in terms of smaller problems. The bigger problem is then
solved by solving these small problems until the big problem is solved.

Problems that may occur while using this method are i.e. stack overflow.
Stack overflow is an error that occurs when a function uses more memory than
available on the stack. This can happen if the base case is not reached, if it
is not defined or if a condition to break the recursive function is not defined.
Then it could cause a stack overflow error if the memory is exhausted by these
functions on the stack.

Direct and indirect recursion are two types of recursion. Direct is when a
function calls itself inside itself. It is called indirect recursion if a function calls
a second function which then calls the first function again. By applying recur-
sion to problems, solving the problems can be done more easily and efficiently
than it without recursion.

9

2.6 Recursion

2.6.1 Backtracking Recursive Algorithm

Backtracking can be defined as a general algorithmic method to solve a com-
putational problem. This is done by testing all possible candidates step by step
and if a candidate does not satisfy the constraints, it is discarded[9]. If a candi-
date is discarded the algorithm will return to the previous step (backtrack) and
continue trying a different candidate. Figure 2.3 below shows a visual example
of how this procedure works. This will continue until there are one or more
solutions that satisfy the constraints.

Figure 2.3: Concept of backtracking using a search tree.

Backtracking is used by having a set of partial candidates that in principle could
have different solutions. The algorithm will try to solve the problem incremen-
tally by testing all possible candidates to see if they satisfy the constraints.
Conceptually, all partial candidates are represented as nodes in a search tree,
the potential search tree. Each partial candidate is the parent to the candi-
date that differs from it by a single extension. The leaves of the tree are the
partial candidates one cannot traverse further. The algorithm will traverse the
search tree recursively, from root downwards, depth-first order. At each node,
the algorithm will check if the node can become a valid solution, if not it will

10

2.6 Recursion

skip the whole sub-tree (known as pruned). Otherwise, it will check the node
itself to see if it is a valid solution, and if it is determined to be valid, it will
recursively enumerate all sub-trees of the node. The two tests and the children
of every node are specified by the user. This leads to that the actual search
tree traversed by the algorithm is only a part of the potential search tree since
the algorithm will skip the sub-trees that does not have a solution. The total
cost of the algorithm is the number of nodes times the cost of obtaining and
processing each node. This should be considered when choosing a potential
search tree and implementing the pruning test.

In general, problems that are constraint satisfaction problems, have clear and
well-defined constraints on any objective solution and can be solved by incremen-
tally building candidates to the solution. If it is determined that the following
can not act as a valid solution, the candidate is cancelled, and the algorithm
backtracks to the previous step. Problems such as these can be solved using a
Backtracking Recursive algorithm.

Other algorithms that can be used to solve similar problems are Dynamic Pro-
gramming or Greedy Algorithms which are logarithmic, linear time complexity
in order of input size, and hence will outperform the Backtracking Recursive
algorithm since it is generally exponential in both time and space. But there still
exist problems that only a Backtracking Recursive algorithm can solve. These
are the problems where it is necessary to solve all sub-problems one-by-one, to
find the correct solution.

11

2.7 Testing

2.7 Testing

In software development, testing is a method to verify that the software product
provides the expected requirements and to ensure that the software product is
without defects and bugs. There are two main reasons to use testing, to check
the level of quality and acceptability and to identify problems with the software
product[10]. Testing is an important part of the development cycle. Also,
testing can be used for Test Driven Development (TDD). There exist different
forms of testing for different reasons and it depends on what is being tested.

2.7.1 Unit Test

A Unit test is a form for testing the functionality of the written code. Unit
tests are tests that test a unit component. Unit components can be functions,
objects, or anything else that an end-user might depend on. A unit test tests
the integrity of the unit components. Writing unit tests allows the develop-
ers to verify that the code meets the requirements and quality standards. By
adding unit tests into the development from the early stages it could save the
developers time and money, and it will also help the developers write better and
more efficient code.

2.7.2 Performance Test

Performance tests are used to test the performance of the various features of
an application. To test the features of the application mentioned in this thesis,
the performance developer test tool built into every browser is utilized. The
performance tool can be found in most modern browsers, such as i.e. Mozilla
Firefox[11]. This tool gives insight to an application’s general responsiveness,
JavaScript and layout performance. Further down in this thesis, the performance
tool will be used to measure the duration of DOM events triggered by events
from the Vugu and Vue application. The results from the tool will then be used
to give comparisons between the Vugu and Vue applications based upon the
different features from the DOM events.

12

Chapter 3

Introduction to Vugu and
Vue

This chapter shows how to setup and start a project with Vugu and Vue. The
chapter also shows differences, advantages and disadvantages with using Vugu
vs Vue. Relevant functionality is also discussed in this chapter. Because Vue is
a much more known framework than Vugu, which still is in a experimental state,
this chapter is much more focused on the Vugu part of getting started with a
project, partly due to the fact that Vugu needs a more hands on approach of
setting up project dependencies.

3.1 Getting started with Vugu

Getting started with a Vugu application is simple. First, install the vgrun tool
from GitHub and use this tool to install all other tools that are designed to help
creating a web application with Vugu. These tools are not necessary for Vugu
programs to run or compile since Vugu is just Go. The vgrun tool is a wrap-
per that provides features like file watching. This will automatically build and
page refresh when editing the application under development. Downloading the
example project from GitHub is an easy way to start a project. This is a web
application that can be compiled and executed in the browser without further
work and from that point, the development of an application can begin.

13

3.1 Getting started with Vugu

Figure 3.1: Running Vugu application at 127.0.0.1:8844 using go command.

Figure 3.2: Running Vugu application at 127.0.0.1:8844 using vgrun command.

Figures 3.1 and 3.2 show how to start the Vugu application using both the
vgrun tool and simple Go commands. Default settings are using 127.0.0.1:8844
as the address. In the example project there are known files such as .gitignore,
README.md, and go.mod. There is also a generate.go file that has a Go
generate comment. This file are shown in Figure 3.3

Figure 3.3: Comment that invokes the Vugu generator.

Another file is the root.vugu. In the example project, it is a simple vugu com-
ponent to show how Go code and HTML elements can be combined. The
component named root is by default the top-level component and is rendered
inside the <body> tag. The devserver.go file is a simple development web
server. This server serves the program to the server and it does not get com-
piled to WebAssembly. The file starts with an HTTP server and a WebAssembly
compiler. On the Vugu homepage, there is also a playground where it is possible
to learn and experiment before starting a project in Vugu.

14

3.2 Getting started with Vue

3.2 Getting started with Vue

Due to Vue being a fairly known and established framework, setting up a starter
Vue project has become a very simple procedure. All that is needed to set up a
sandbox example is one .HTML file to hold both the Vue instance, and the Vue
CDN within a script tag, one .CSS file, and one .JS file. To get started with a
project, one may also make use of the Vue CLI which simply installs all of the
dependencies needed for the specific project. At project end, any Vue project
initiated with CLI can also easily be built for production with the npm run build
command. The CLI then builds the project for distribution within a dist folder.

3.2.1 The Vue Command Line Interface

For building more complex applications, it is recommended to use the Vue NPM
package. This allows for more advanced Vue features. To make the building of
applications easier, there is a Command Line Interface to streamline the devel-
opment process. The CLI ensures that the various build tools works together
smoothly, to ensure that developers can focus on writing their app instead of
having to invest time into various documentations when dealing with configu-
rations.

Upon project creation the CLI offers various plugins that are npm packages
which provide optional features to your project. One useful plugin are Eslint
integration, which is a static code analysis tool, used for identifying problematic
patterns found in JavaScript code. Another useful plugin that simply can be
initialized with the CLI, used in this project, is the Jest testing framework. The
Jest framework can be used to test both the JavaScript logic and the Vue
components.

15

3.3 State management

3.3 State management

As applications grow, being able to control the state of an application and
handle messages, like i.e. the degree of difficulty set for a Sudoku board by
a user becomes important. State management is a design pattern that both
Vugu and Vue offers support for that can be used to handle these scenarios.

3.3.1 Vugu Wiring

Go has a code generating tool called Wire. This tool automates connecting
components, often structs in Go, using Dependency Injection. Dependency In-
jection is a coding technique were functions and structs that developers depend
on are abstractions[12]. This is an important design principle in programming
as it keeps the code loose-coupled and easy to maintain. In Wire, dependencies
between components are represented as function parameters. This is encourag-
ing explicit initialization instead of global variables. The benefits of using Wire
is that the container code is obvious and readable since the code is generated.
Also, it is easy to debug since if there is a dependency that is missing or not
being used, an error will occur during compilation. Since Vugu programs involve
UI components that are created and destroyed in response to user interactions
throughout the lifespan of the application, Vugu applications would not benefit
from using wiring tools such as Wire, unlike many other Go programs. Hence,
wiring applications at runtime needs an effective mechanism. This must ideally
be with as much help and type-safety as possible from the Go compiler. In
a Vugu application, wiring is done by providing a wire function that is called
every time a component is created or re-used. This function is called often and
should be kept clean and simple.

Vugu wiring allows for creating shared structs that can be injected into any
UI component that needs a reference to it. In a new Go file the desired struct
with data fields and functions are created. In this file, there also is a struct that
points to the desired struct.

16

3.3 State management

Figure 3.4: Difficulty.go file used in Vugu wiring.

This works by having a difficulty.go file as seen in Figure 3.4. In this file, there
is a Difficulty struct with a Difficulty integer data field. This integer repre-
sents the number of cells that are to be removed from a filled Sudoku board.
Functions that belong to the Difficulty struct are also located inside this file.
Vugu wiring also requires two tools. The first tool is a struct that is a reference
to the Difficulty struct, called DifficultyRef. The second tool is an interface
called DifficultySetter, which sets the Difficulty struct. In the setup.go file the
SetWireFunc call is providing a function to wire up each component as it is
created. Calling this function is handled automatically by Vugu for each com-
ponent that is instanciated or re-used. Inside the Choosedifficulty.vugu file the
Choosedifficulty struct embeds the DifficultyRef which is a pointer to a Diffi-
culty struct. Then it implements the CounterSetter interface. This interface is
checked for in the vuguSetup function inside of the setup.go file.

In the implemented Vugu application there is a component that allows the
user to decide the difficulty. The difficulty value is then used in a different
component. With Vugu wiring it is possible to create a shared object that
makes it possible to get the difficulty value from another component. In this
example, the Difficulty struct is used into two different UI components allowing
two smaller and more focused components instead of a big component.

17

3.3 State management

3.3.2 Vuex

Vuex is an official plugin for Vue.js, which can be installed as a feature when
starting a Vue application using the Vue CLI. Vuex offers a centralized datastore
within a Vue application that holds the shared application state. As applications
grow larger and the child component of a component tree structure changes its
state, by i.e. a button click to query a Sudoku board with an increased diffi-
culty, instead of having to pass on the changed state chronologically upwards
through all parent components, that new state is altered with mutations within
the shared application state.

Similar to the Vugu application, the Vue application also has a component
that allows the user to decide the difficulty of the board. Vuex state manage-
ment makes it possible to share the difficulty, the new state, selected by the
user in the UI to all the other components.

18

3.4 Routing

3.4 Routing

Routing is a common feature used in web applications to map the UI tree
nodes to the URL paths and vice versa. Each branch is assigned a URL path,
made reachable through the root at "./", i.e. reaching the rules component
at; "./sudokuRules". Routing contributes to reducing accidental complexity
that may occur when adding new routes to an application, by utilizing routing
an intuitive pattern to solve complexity problems can be used. Routing also
contributes to giving more structure to web applications, making it easier to
understand, debug and potentially later, extend.

3.4.1 Vugu Router

One of the most common usages of a JavaScript framework such as Vue, is to
create a Single Page Application. A central feature required to do this effectively
is a router. Vugu is no different and has its own version of the Vue router, which
is a package from github.com/vugu/vgrouter. This package provides function-
ality for the application to handle routing for server- and client-side, reading
HTTP requests, and reading browser path.

The routes in Vugu are registered and when they are processed they are ex-
amined in the sequence they were registered. Routes can be either partial or
exact matches and the code for that route will perform the desired action. Hav-
ing one or more sections of the user interface being dynamic based on which
route is the usual approach. The route handle, or handlers, that match for a
given route assign those fields of type vugu.Builder and is then rendered via a
vg-comp tag.

19

3.4 Routing

A Vugu router is implemented by using a wire function as seen in Section 3.3.1.
First, an instance of a router is made and then the wire function will populate
everything that wants a “Navigator” or router. This is done in the setup.go file
and inside the vuguSetup function. The routes are also implemented inside this
function. A root component is also created from the Root struct in root.vugu.
In the root component, there is a data field called Body. When navigating to a
route the root.Body is set to the URLs component. This could be a component
for an entirely new page. This will then be rendered via the vg-comp tag which
takes in the Body data field of type vugu.Builder. In practice, this works by
having each route have a corresponding vugu component file. This component
will be set to the Body in the root component and then shown on the page.

3.4.2 Vue Router

Similar to Vugu, Vue also has a router dedicated to navigating between the
views of an application. The Vue router uses client-side routing, meaning that
the routing happens in the browser itself using JavaScript. The application’s
web pages get loaded into a single HTML page so that the application does
not need to reach out and request continuous responses from a server, called
server-side routing. The server-side routing takes place when the user clicks a
router link which then dynamically presents the requested view, as it has already
been loaded into the browser. This keeps the browser from refreshing every time
a new page is requested which in turn results in greater performance and user
experience. This routing in between different views of an application could
i.e. be when a user wants to check out the rules of a Sudoku game, then the
user can simply click the «rules» link and the rules view with its corresponding
components will be dynamically presented to the UI.

20

3.5 Components

3.5 Components

A smart way to divide and organize Single Page Application (SPAs) while us-
ing frameworks is to make use of components. This works by splitting up the
application into different parts where each part of the application can be rep-
resented by a component. This could i.e. mean splitting up the application
into components containing a header, navigation bar, content bar, or any other
feature. The fact that it is possible to reuse a component as many times as
necessary allows developers to build applications organized as a tree of nested
components. By using components it is easier to update and troubleshoot the
application. Both Vue and Vugu support the use of components in a similar
way. Figure 3.5 depicts how this could be organized in a Sudoku application.

Figure 3.5: Visualization of the components architecture in the Sudoku application.

21

3.5 Components

3.5.1 Vugu Component

Components in Vugu are individual .vugu files which are used to organize the
user interface code. Each of these .vugu files is processed to produce a .go file,
this .go file is a code generated file that ends with _vgen.go. All components
are in fact just Go structs. The top-level component is the root component
and it is this component that is rendered inside of the <body> tag. From this
component, it is easy to add new components.

Figure 3.6: Using the Vugu component Board.

Figure 3.6 shows how to use a component. This is a Board component that are
inside a <div> tag. The component is in its own .vugu file and has a Go struct
called Board which is inside a <script> tag. It is also possible to add functions
belonging to this component in this tag. By using components the project gets
easier to maintain and organize.

22

3.5 Components

3.5.2 Vue Component

Vue component is one of the most useful features of Vue. Components help
developers extend basic HTML elements to encapsulate reusable code. Each
component can have its own state, markup and style. Components are stored
in a .vue file. The file starts with a <template> written in HTML, serving
as a directive to the framework on how to produce the final markup of the
component based on its internal state, shown below in Figure 3.7.

Figure 3.7: Vue HTML holder.

Secondly the Vue component takes a <script> tag to hold the components
JavaScript logic. Within this section, low level concepts such as properties and
state reside. Properties are a set of variables to configure each component’s
behavior, provided by host application or parent component. The state is a data
structure that provides the state of a component at a given time, often changed
based on occurring DOM events. The backend Sudoku class is imported and
made usable within the various .vue components here. This is shown in Figure
3.8.

Figure 3.8: Vue JavaScript logic holder.

23

3.6 Summary

Lastly, the vue component takes a <style> tag for which it’s CSS is placed. The
logic for design features and looks is placed here. When the scoped keyword
is placed within the style tag, the CSS is limited for the respective component
only, shown below in Figure 3.9.

Figure 3.9: Vue CSS holder.

3.6 Summary

In short, since Vue is more established compared to the experimental framework
that Vugu still is, Vue is faster to get started with. However, Vugu and Vue
have many similarities in terms of application development. Both have a router,
both have state management, and both make use of components. Hence if a
developer is familiar with Vue, Vugu will be somewhat intuitive to learn. Vue
has a CLI which can be used as an easy way to install all dependencies for
a project. Unfortunately Vugu does not have an alternative to this for the
moment, therefore setting up a Vugu project from scratch requires more steps.
Because i.e. the Vue Command Line Interface, Vue is easier to start a project
with compared to Vugu, but Vugu have many similarities that allows for an
easier transition from Vue to Vugu.

24

Chapter 4

Implementation

This chapter shows how the Sudoku application works and how it is imple-
mented. During the implementation of the application in this thesis, the sim-
ilarity of the two implementations was emphasized so that the comparison of
the two frameworks and languages were not to be influenced by different styles,
techniques, or differences related to chosen data structures and algorithms.
Therefore the Go backend with its corresponding Vugu frontend was imple-
mented first. After implementing and testing the functionality of the various
functions in Go and Vugu, and ensured satisfactory functionality, the JavaScript
backend with corresponding Vue frontend was implemented as similar to the
Vugu implementation as possible. There were of course some differences bound
to happen, due to amongst other things, the fact that Go is a typed language,
while JavaScript is an untyped language.

25

4.1 Sudoku

4.1 Sudoku

Sudoku is a game that most of the time resolves around a playing board that
consists of size 9x9 cells. A 9x9 sized board will consist of nine 3x3 boxes that
each holds 9 cells. Figure 4.1 shows an example board from the application
with its corresponding unique solution. The objective of Sudoku is to fill the
board with numbers ranging from 1-9. At the beginning of the game, the board
is only partially filled. The difficulty of the given board depends on the amount
of given numbered cells. To win the game, one has to successfully fill up the
rest of the board without violating the following set of rules:

• Each column can not have duplicate numbers

• Each row can not have duplicate numbers

• Each box can not have duplicate numbers

Figure 4.1: A Sudoku board with its corresponding unique solution.

26

4.2 Implementation of the Sudoku application

4.2 Implementation of the Sudoku application

The idea for implementing the application with both Vugu and Vue is to try
and keep it as similar as possible. This is to ensure the most valid result for
the performance comparison of Vugu and Vue for this application. Because
Vue is a much bigger framework than Vugu there exist more features in Vue.
Therefore, the application was first made with Vugu and Go and then made with
Vue and JavaScript. Not much focus was aimed towards creating optimized
functions. Hence, some of the functions tend to use some time finishing. This
was the chosen approach since this was more likely to lead to differences in the
comparison of the Vugu and Vue implementation.

4.2.1 Part I Creating the filled board

As follows from the Sudoku games objective, the first part of the implementation
is to create a board with filled values without violating any of the 3 rules
mentioned above for Sudoku. There are different ways to accomplish this. One
is to go through every cell in a brute force backtracking manner and fill it with
a random number and check if the imprinted value is allowed. If the imprinted
value breaks any of the 3 rules, then it gets removed and a new value is checked.
A similar improved approach, used in this implementation, is to first fill all the
cells in the Sudoku board along with one of the diagonals, i.e. left to right as
shown below in Figure 4.2.

Figure 4.2: From diagonals to filled board.

27

4.2 Implementation of the Sudoku application

This is a better approach because in doing so, the algorithm can legally skip
checking if the imprinted value already exists in the row or column. It only
needs to check if the new value to be inserted already exists within the actual
3x3 box. An empty 3x3 box can be seen in Figure 4.3.

Figure 4.3: One of nine 3x3 boxes on a Sudoku board.

Then the rest of the board is filled using a recursive function. The recursive
function then checks for every consecutive cell if the next imprinted value is
valid for its row, its column, and its 3x3 box, before calling itself and moving
into the next cell in order. As a result of this implementation logic, we achieve
a filled board that satisfies the 3 rules for Sudoku, with each cell containing an
integer ranging from 1 through 9.

4.2.2 Part II Removing values to create a starting point

After a correct board has been created, as the one from Figure 4.2 above, the
next objective for the game is to create an unfinished Sudoku board from the
solution presented in part I. This is where things get a bit complicated. In this
part, values must carefully be removed one by one from the filled board. It
is important that the cells that are to have their value removed are carefully
selected, to ensure that the board still maintains its unique solution. This is
because a Sudoku board with more than one unique solution is not considered
a “real” Sudoku board.

28

4.2 Implementation of the Sudoku application

The implementation logic manages this through a function called CreateUnique-
Board(k) which takes in the parameter k, which represents the number of values
to be removed from the filled board in part I. Within the CreateUniqueBoard(k)
function, a new function, Counter(), that utilizes a Backtracking Recursive al-
gorithm, is called for each iteration where the Counter() counts the number
of solutions after every removed value. If the total number of solutions sur-
passes 1, thus breaking the constraint of not having more than one solution,
the removed value is placed back into original cell, and the algorithm moves to
try a new random cell. This logic continues until the desired number of values
given in the parameter k in CreateUniqueBoard(k) are cleared from the filled
board. The higher the number parameter k is set to, the longer processing time
it will take for the implementation to find a board that satisfies the rules while
maintaining the unique solution.

The least amount of given cells a Sudoku board may have is 17[13]. Hence
k can never be higher than 64. If k is assigned a higher number than 64, then
it becomes impossible for the Sudoku board to maintain a unique solution. It
is safe to say that a Sudoku board with the max difficulty, only 17 given cells,
would be hard to solve without the help of a machine. The Figure 4.4 gives an
example of what a user might see when choosing a board with the "Medium"
difficulty. After the user clicks the button that sets the difficulty to "Medium",
the function CreateUniqueBoard(k=48) would be called, and the user would be
presented with the board below in the user interface.

Figure 4.4: A Sudoku board generated with "Medium" difficulty.

29

4.2 Implementation of the Sudoku application

4.2.3 Part III Solving the unique board

After the unique board, mentioned in part II, has been created the objective
now is to make it back to the filled board from part I for the players to win the
game. For this purpose, the implementation logic has another function that
utilizes a Backtracking Recursive algorithm, called SolveBoard(), which keeps
track of the next cell with an empty value. When the function finds an empty
cell, it attempts to assign it a value before checking if the now assigned value
is applicable without violating the rules. If the assigned value still follows the
rules, then the implementation logic continues to the next cell in order. If how-
ever, the implementation logic discovers that it is not able to assign any correct
values to the cell next in order, it backtracks to fix misplaced values before it.
After the SolveBoard() function is complete, the result should be the same as
the filled board from part I, which is the unique solution. The Figure 4.5 below
shows how a generated Sudoku board from part II finds it unique solution when
a user clicks the user interface to solve the board, invoking the SolveBoard()
function.

Figure 4.5: The Sudoku board with its unique solution.

30

4.3 Differences in implementing the Sudoku application

4.3 Differences in implementing the Sudoku appli-
cation

When implementing the Sudoku application in Vue and Vugu there were bound
to be differences in the implementation since the two frameworks are based
upon two different programming languages. Regardless of the differences, the
same approach as described in Section 4.2 is used for both implementations.
The differences in the implementations do not affect how the functions work,
but is only present due to the differences in syntax between Go and JavaScript.
Similarity in the implementations will allow for comparing the performances of
the applications without having to give second thoughts to them having dif-
ferences in the implementations. Hence in this section, the differences will be
highlighted and explained.

Both the Vue and the Vugu application have a separate file for the functions
that create the Sudoku board. In Vugu it is a .go file with a Sudoku struct
and functions belonging to that struct. It also has helper functions for Vugu
wiring. In Vue, a similar approach approach is used with a .js file, but this file
is containing a class called Board instead of a Sudoku struct. This is because
Go does not have classes compared to JavaScript. The JavaScript class has a
constructor that has the data fields Board and Count. The Board data field is
an array of arrays. The Count data field is an integer with a start value of 0. In
the Go implementation, only the data field Board of type slice of slices is used.
A slice in Go is the same as an array in JavaScript. The Count in Go is a global
variable instead of a data field. This is because in Vue only the Board class is
imported from the .js file. In Vugu the whole file exists in the same package
and it is not necessary to import.

From this point all the functions used for creating a Sudoku board are im-
plemented in a similar form, only syntax differences occur. All the important
functions and how they work are explained in Section 4.2. In Vugu the Sudoku
struct is initialized in the setup.go file instead of in the Board component for
JavaScript. This is because of Vugu wiring. This is also the case for setting
the difficulty using the struct ChooseDifficulty.

31

4.4 Implementing the app in Vugu and Vue

In Vue this could be achieved by using Vuex, but it is not implemented in this
application since it does not affect the performance of the application which
was the main goal. It was used in Vugu to see if Vugu had a similar feature as
Vuex. Using Vugu wiring only changes where the Sudoku struct is initialized
and does not affect the overall application, it only allows for a shared object
and allowing all components to use this struct.

The only major differences are the uses of classes in JavaScript and structs
in Go which does not affect the usability of the application. The other dif-
ferences are where the Sudoku struct is initialized in Vugu compared to Vue.
Since the functions used to create and solve a Sudoku board are implemented
almost equally, the performance should not be affected either. This leads to
the conclusion that the differences in these implementations highlighted in this
section does not affect the use of the application or the performance.

4.4 Implementing the app in Vugu and Vue

To create the Sudoku applications, a backend in Go and JavaScript had to be
created. The two backends hold the same logic and functions, but with some
differences due to the differences between the two programming languages. For
the Vugu application, its backend is located in its file named Sudoku.go, and
the Sudoku struct and functions from within this file are reachable for every
.vugu file as long as they all exist within the main package. Upon rendering the
application page, Vugu converts all the .vugu and .go files within the main pack-
age to generate a main_wasm.go file. For the Vue application, it’s backend is
located in its own file named Board.js. The Board class and functions from this
backend, however, are exported from the Board.js file and then imported from
within the various .vue components that use functionality from this backend.

32

4.5 Summary

The two applications are made with the same components, they both have a
main component that holds the main logic for the application, a component that
holds the matrice for the Sudoku board itself, and a rules component briefly
explaining the rules of the game. All of the components are placed within a
components folder and are made reachable through routing. The Vue applica-
tion utilizes the Vue framework’s createRouter and createWebHistory modules
from the Vue-router library to handle the routing. The applications’ Home and
Rules view are routed with router-links by, and the components are attached to
their corresponding intuitive view.

Routing is also accomplished in the Vugu application. The Vugu application
has as mentioned above the same components, but also an additional Root
component, which is the top-level component that houses everything else. This
component has a Root struct type, which defines a Builder and a Navigator. The
Navigator allows users to navigate between the different pages using routing,
and the Builder sets the appropriate HTML-code, when the Navigator passes
the selected page, via "vg-comp" into the Body data field, which then renders
the correct page.

4.5 Summary

Both Vue and Vugu utilizes the concept of organizing code into reusable compo-
nents. These are fairly simple to use and do not require a broad understanding
of the two frameworks to get started. Therefore the conversion from Vugu
to Vue was somewhat intuitive. Both the frameworks use routing to navigate
between the application’s pages/views. The routing is also done very quickly
as both of the frameworks can interact with a virtual DOM without having
to touch the real DOM or go through the DOM API. One could argue that
the setup for routers in Vue is somewhat more clear because the Vugu router
requires the additional Root component with its struct containing the Builder
and Navigator. However, after processing some of the Vugu routing documen-
tation and examples it proved not to be as complicated as anticipated. For the
respective programming languages, there are also some minor differences, these
being the usage of arrays in JavaScript and slices for Go, untyped syntax in
JavaScript and typed in Go, and the general buildup for functions in Go as the
language frequently uses pointers, and JavaScript does not.

33

Chapter 5

Testing and Comparison of
the Results

In this chapter, some in-depth comparison between Vugu and Vue is discussed.
The performance comparison between the backend code in Go and JavaScript
will be inspected. The comparison between Vue and Vugu is presented by
performance testing the two applications with tools available in the browser.
Furthermore, support, documentation, and community available for the frame-
works are discussed. In the final part of the chapter, the overall test environment
for Vugu and Vue are examined and compared with a short conclusion of the
chapter. A complete Sudoku board has 9x9 cells, all of them assigned a value
ranging from 1 through 9, for the performance testing the degrees of difficulty
are defined as follows:

• Easy: Removes 40 values from the board.

• Medium: Removes 48 values from the board.

• Hard: Removes 52 values from the board.

• Extra Hard*: Removes 55 values from the board.

• Limit*: Removes 56 values from the board.

* Means that these difficulties were only used for the tests in Section 5.1.

34

5.1 Transitioning from Go and JavaScript to Vugu and Vue

5.1 Transitioning from Go and JavaScript to Vugu
and Vue

To investigate if there are any major differences in performance when exporting
the backend code in Go and JavaScript to the browser, some results gathered
from local test runs were assembled. These tests were executed accordingly to
the difficulty specifications for "Easy", "Medium", "Hard", "Extra Hard", and
"Limit" mentioned above. Node.js, introduced in Section 2.1.1, was utilized for
executing the JavaScript code in the terminal, while the Go code simply could
be executed by the command go run <scriptname>. The results from these
tests are seen in Table 5.1 and 5.2, and in Figure 5.1 below.

Result No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Easy 4.0 3.1 3.5 4.0 3.3 2.4 4.9 3.5 4.8 3.0 3.7

Medium 19 35 19 14 8 6 15 15 8 23 16.2
Hard 82 148 60 48 254 124 173 211 190 144 143.4

Extra Hard 236 63 1465 377 564 50 84 305 1420 876 544
Limit 378 26602 4262 2838 819 2565 175 5332 1588 937 4549.6

Table 5.1: Results for creating a Sudoku board in Go.

Result No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Easy 62 98 73 70 58 65 63 86 87 58 72

Medium 112 1024 194 143 126 143 475 575 99 230 312.1
Hard 171 515 2996 5143 963 1277 5367 328 1570 237 1856.7

Extra Hard 8020 22093 15350 9535 871 9739 7486 601 10700 36094 12048.9
Limit 41906 12812 149161 2199 24555 552 11771 10150 16556 6651 27631.3

Table 5.2: Results for creating a Sudoku board in JavaScript using Node.js.

35

5.1 Transitioning from Go and JavaScript to Vugu and Vue

Figure 5.1: Comparison between JavaScript and Go when creating a Sudoku board.

Looking at the results from the backend JavaScript and Go code after perform-
ing 10 test runs gave the following results seen in Table 5.1 and 5.2. Some extra
degrees of difficulties above the ones used in the application were also tested as
an attempt to limit test and find the implementations outer borders. In the ta-
bles above, these extra difficulties are "Extra Hard" and "Limit", meaning that
for these difficulties 55 and 56 values were removed from the Sudoku board.

In Figure 5.1 the average time duration for creating a Sudoku board is compared
against each other. From this graph it is clear that Go has a big advantage
over JavaScript which is expected since Go is a faster programming language.
This is mostly due to the fact that Go compiles to machine code, and does not
have to be interpreted.

36

5.2 Performance test of the Vugu- and Vue application

As mentioned earlier the minimum given amount of values for a Sudoku board
to maintain its unique solution is 17, meaning that the input parameter k from
the function CreateUniqueBoard(k) mentioned in Section 4.2.2 is not allowed
to be any higher than 64. As the input parameter k is allowed to grow towards
this limit of 64, more randomness will occur in the implementation and this
is reflected in the high fluctuations that can be observed in the results. This
randomness in the implementation grows coherently with the number of cells
removed because this leaves for more unsigned cells that the Backtracking
Recursive algorithm needs to iterate through.

5.2 Performance test of the Vugu- and Vue appli-
cation

The performance test in this sub-chapter is performed by utilizing the perfor-
mance tool located in every browser. To gather results from a test run of the
application, it is possible to start a recording that will present a summary of the
various actions the web browser had to perform to be able to present the web
application to the user. Within the browser performance tool, there are also four
sub-tools available for users to take a closer inspection of the application. One
of the four tools is called "Waterfall", which is a tool that shows a summary
of all the operations that the browser had to execute in order to display the
application. In Figure 5.2 is an example of how this sub-tool works, with the
results of the DOM event where a Sudoku board is created with the difficulty
"Hard" in the Vugu application. These operations could amongst others be
internal JavaScript calls and garbage collection performed by the browser.

Figure 5.2: Waterfall example in the Performance tool.

37

5.2 Performance test of the Vugu- and Vue application

Another sub-tool is the "Call-Tree". This sub-tool displays a summary of which
of the internal functions were called upon the most and occupied the runtime
of the specific test recording. In Figure 5.3 is an example of the sub-tool from
a sample recording of the Vugu application. The figure displays a summary
of the most time-consuming functions when creating a Sudoku board with the
difficulty "Hard" in the application.

Figure 5.3: Example of the Call-Tree sub-tool showing the most time consuming
functions.

The third sub-tool “Allocations”, gives a summary of the heap allocations made
by the developed code over the recording time interval. The last sub-tool “Flame
Chart”, gives a summary of the browser’s JavaScript call stack over the record-
ing time interval. Those two sub-tools will not be mentioned further on in the
the performance testing subsections as these did not generate any significant
nor interesting results.

For every test run of the two applications, a recording was made that started
when triggered by a user clicking one of the difficulty buttons and ends when
the application displayed the queried board matching the difficulty. This would
create a DOM event, as the one shown with the "Waterfall" sub-tool in Figure
5.2 above. From that recording, it is possible to inspect the results to look
for differences in performance. One way to compare the Vue and the Vugu
application against each other is to look at the time difference when requesting
boards with the greatest degree of difficulty, "Hard", giving results similar to
what can be seen in Figure 5.3.

38

5.2 Performance test of the Vugu- and Vue application

When performing these test recordings there are different variables that can af-
fect the results, especially the tests revolving around using the "Hard" difficulty,
which generates the most open and unfilled board, and also subsequently intro-
ducing more randomness. One of the reasons why this may affect the results is
due to the Backtracking Recursive algorithm that is used as the implementation
logic in the application. This implementation increases exponentially in time,
and could in theory alongside randomness cause the application to run for a
longer time. The randomness is hard to remove because of the way that the
Sudoku application is implemented.

When the application is solving the Sudoku board both the Vugu- and Vue
applications are using a brute force technique. This will try all possible values
until it finds the correct solution, which there can only be one of since the board
has only one correct unique solution. This will in theory be faster for a software
program since this brute force technique does not depend on randomness and
the unlimited number of attempts such as the Backtracking Recursive algorithm
used when creating a Sudoku board. There exists only a limited number of pos-
sibilities when solving a Sudoku board and the number of possibilities depends
on how many clues are left on the Sudoku board and how those are arranged.
The brute force approach will be finished fairly quickly because the only thing
the function needs to do is to loop over all the possible solutions in each cell
until it is solved.

39

5.3 Performance test when creating a Sudoku board

5.3 Performance test when creating a Sudoku board

In this section, an overview of the results after using the performance tool in
Mozilla Firefox on the Vugu and Vue application can be found. The results
from switching between the different degrees of difficulty in the application are
represented below. The results found in Table 5.3 and 5.4 are from using the
"Waterfall" sub-tool and measuring the time duration used to create a Sudoku
board. An example of the "Waterfall" sub-tool is shown in Figure 5.2. The
results are from measuring the application 10 times for each difficulty. The
average is used in the further comparison.

Result No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Easy 160 231 220 127 253 150 149 116 130 107 164

Medium 394 145 235 491 414 276 270 158 650 169 320
Hard 3946 14801 4177 2473 9353 7548 6526 3522 5158 25659 8316

Table 5.3: Results for creating a Sudoku board in Vugu with Performance tool using
Mozilla Firefox.

Results No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Easy 1700 1316 2300 1355 1849 2539 2582 2414 1133 4749 2194

Medium 6714 5214 30675 22596 13966 18657 32980 9482 44807 5015 19011
Hard 142250 29117 70060 94950 18718 21287 41077 70116 16068 40061 54370

Table 5.4: Results for creating a Sudoku board in Vue with Performance tool using
Mozilla Firefox.

From the results in the tables above it is clear that based on our implemen-
tation that Vugu performs much greater than Vue. With the difficulty set to
"Easy", the duration for the DOM event in the Vugu application averages at
0,16 seconds while the DOM event for the Vue application averages at 2,19
seconds. Furthermore when the difficulty is set to "Medium" the Vugu applica-
tion averages at 0,32 seconds while the Vue application averages at 19 seconds.
Lastly, when the difficulty is set to "Hard" then the Vugu application averages
at 8,3 seconds while the Vue application needs an average of 54,37 seconds to
complete.

40

5.3 Performance test when creating a Sudoku board

Plotting these results for creating a Sudoku board into a line graph as shown
in Figure 5.4, shows that the Backtracking Recursive algorithm used in the
function that creates the Sudoku boards is exponential in time. As a result of
this, creating an even harder Sudoku board will result in a massive increase in
time waiting for a Sudoku board to be ready. The results also show that the
implementation used in the Vue and Vugu applications seems to favor Vugu as
the Vue application grows much faster in the exponential time. When creating
a Sudoku board with the difficulty "Easy" the Vugu application outperforms
the Vue application by 991%, with the difficulty "Medium" the Vugu applica-
tion outperforms the Vue application by 5841%, and lastly, when the difficulty
is set to "Hard" the Vugu application outperforms the Vue application by 554%.

Figure 5.4: Difference in time between Vugu and Vue.

41

5.3 Performance test when creating a Sudoku board

5.3.1 Analyzing the Call-Tree

The Figure 5.3 above from Section 5.2 shows an example of how a result from
the Call-Tree sub-tool could look like for a test run. The fields “Samples,” “Self
Time,” and “Self Cost” from the Figure 5.3 are not relevant for the measuring
done here. “Samples” is the number of samples that were taken during the
execution of that function. “Self Time” shows the time spent in that exact
function without its children, which means other functions inside that exact
function. “Self Cost” is the percentage of the total number of samples. The
last two fields, "Total Time" and "Total Cost", are the ones that are relevant
and will be further discussed below. “Total Time” is the time used to execute
a given function. “Total Cost” is a percentage of the total number of samples
in the recording. “Total Time” will be around the same number as “Samples”
and hence “Samples” is not relevant for this measuring.

Reading the values from the Call-Tree when the degree of difficulty is set to
“Easy” for creating a Sudoku board, gives little to no insight in performance
since the time used for creating a Sudoku board is so low and the functions
take less than 10ms. Gecko, which is Firefox own browser engine, alongside
some built-in functions in WebAssembly is the most time-consuming function
when difficulty is “Easy” for the Vugu application. Therefore in tests concerning
the Call-Tree sub-tool, “Hard” will be used as the difficulty to generate results
for further comparison. In Table 5.5 and 5.6 are the relevant fields from the
Call-Tree listed.

Total Time Total Cost Function
7972 48.32% isBoardValid
4353 26.38% hasDuplicates
2621 15.85% runtime
786 4.77% runtime
467 2.83% Counter

Table 5.5: Overview over relevant data from Call-Tree sub-tool; Vugu application.

42

5.3 Performance test when creating a Sudoku board

From Table 5.5, reading the values generated in the Call-Tree by the previous
recordings from Table 5.3 generated the following Call-Tree for the Vugu ap-
plication, shown in Table 5.5 above. The function isBoardValid is the most
time-consuming for the Vugu application. This is not unexpected since this
function must verify changes done to the board when trying to create a Su-
doku board. The function hasDuplicates is a helper function for isBoardValid
so it makes sense that it follows as the second most significant function. Then
there are some runtime functions belonging to the WebAssembly file. The
last function worth mentioning that uses a significant amount of time is the
Counter function, which is the function mentioned in Section 4.2.2 responsible
for making sure that the board maintains its unique solution.

Total Time Total Cost Function
36469 28.05% isBoardValid
27730 21.33% chunk-vendors
27302 21.00% garbage collection
18473 14.21% hasDuplicates
2779 2.14% Counter

Table 5.6: Overview over relevant data from Call-Tree sub-tool; Vue application.

Looking at the Call-Tree generated from the table holding the Vue results in
Table 5.6 above, there are some distinct differences to the Vugu Call-Tree.
Similar to the Vugu application, we see that the function isBoardValid is the one
that occupies most of the recording. Then we see that the Call-Tree is populated
by 3 distinct blocks that play a great part in the fact that the Vue application
needs a lot of runtime before being able to display the queried Sudoku board.
Chunk-Vendors is a bundle for all the modules that are not shipped from the
Vue application, but from other parties, called third-party modules. In the
Vue application, these are located in the /node_modules directory that holds
amongst other things all the Vue dependencies. Some optimization can be made
here, such as i.e. setting the webpack mode to production mode, which will
reduce the data sent from node_modules to the browser, but this is not done
here for comparison reasons since it is not needed for the Vugu application.

43

5.3 Performance test when creating a Sudoku board

The next obvious difference in Table 5.6 apart from the Vugu Call-Stack in
Table 5.5 is that the garbage collector is active for 21% of the recording in
the Vue application. The garbage collector is a process from the browser that
attempts to find and release memory that no longer is used by the application.
The fact that the garbage collector is so insignificant for the Vugu application
"Call-Tree" and significant for the Vue variant "Call-Tree" is an interesting fact
because the implementation for the two applications are the same, but it inter-
feres with the garbage collector differently. This means that JavaScript and Go
code are handled differently by the browser. The implementation is giving the
Vue variant very little justice, as the garbage collector is extending the rendering
with an entire 27,3 seconds.

Lastly, the last two blocks in the Vue generated Call-Tree from Table 5.6 are
occupied by the functions hasDuplicates and Counter which matches the Vugu
generated Call-Tree from Table 5.5. The function hasDuplicates has a Total
Cost of 14.21% which is approximately 50% less than the Total Cost for the
isBoardValid function, which corresponds nicely with the results from the Vugu
generated Call-Tree. The same goes for the Counter function, which for the
Vue generated Call-Stack occupies 2.14% of the recording, whereas occupying
2.83% in the Vugu generated Call-Tree.

44

5.4 Performance testing of the application in different browsers

5.4 Performance testing of the application in dif-
ferent browsers

There are different preferences for which web browser to use amongst users and
web developers. Therefore it could be interesting to compare the applications
performance in different browsers. For this performance test the 3 browsers;
Mozilla Firefox, Google Chrome and Microsoft Edge were selected, and the
recordings were made with "Medium" as the degree of difficulty.

The earlier results in Table 5.3 and 5.4 is used as the base value for comparing
the results in this section. The result from Mozilla Firefox were 0,32 seconds
for the Vugu application, and 19 seconds for the Vue application.

Result No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Firefox 394 145 235 491 414 276 270 158 650 169 320
Chrome 230 411 324 650 473 206 390 216 303 269 347
Edge 291 598 516 339 306 208 237 174 1215 102 399

Table 5.7: Overview over results for creating a Sudoku board in Vugu with Perfor-
mance tool in different web browsers.

Result No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Firefox 6714 5214 30675 22596 13966 18657 32980 9482 44807 5015 19011
Chrome 37282 7843 4302 58181 8157 32425 3617 11156 19071 4539 18839
Edge 16472 36549 13329 26911 14523 18699 10767 5524 18050 10734 17156

Table 5.8: Overview over results for creating a Sudoku board in Vue with Performance
tool in different web browsers.

Based on these results there is to some degree a difference between each
browsers performance when running the Vugu and Vue application. For the
Vugu application, with its results located in Table 5.7, the Chrome web browser
seems to be approximately 8% slower than Firefox, and the Edge browser seems
to be approximately 24% slower than Firefox. For the Vue application, there
is a different scenario. From the results for the Vue application seen in Table
5.8 it is clear that out of the 3 browsers, Mozilla Firefox was the one who
performed worst, performing 1% slower than Google Chrome, and 11% slower
than Microsoft Edge.

45

5.4 Performance testing of the application in different browsers

Figure 5.5: Average time duration creating a Sudoku board with difficulty "Medium"
in different browsers; Vugu application.

Figure 5.6: Average time duration creating a Sudoku board with difficulty "Medium"
in different browsers; Vue application.

46

5.4 Performance testing of the application in different browsers

Figure 5.5 and 5.6 shows the average time duration each browser used creating
a Sudoku board with difficulty "Medium" for the Vugu- and Vue application
respectively. From looking at the graphs and percentage of difference it may
look like there is a difference, but when it comes to usability the time difference
is almost not noticeable for most of the cases. The results can also be little
misleading. This is most noticeable for the Vugu application where a 24%
difference between Firefox and Edge seems like a big difference, but in fact it is
only 79 milliseconds difference, which is not noticeable. For the Vue application
there is also the case where Firefox is 11% slower than Edge which may not seem
like that big of a difference, but in milliseconds this corresponds to 1855, which
is approximately 1,86 seconds and that is a difference that could be noticeable.
Because of the limited number of tests and small differences in the results, it is
not possible to say that this is a factual result. To get a decisive decisive from
this test case, more tests should be completed and evaluated.

47

5.5 Perfomance test when solving a Sudoku board

5.5 Perfomance test when solving a Sudoku board

The implementation also has some logic in place for solving the board after it
has been created, described in Section 4.2.3. To test how this logic performs
and compare the applications to each other, the same test approach is also
utilized here. By recording the application using the built-in performance tool
with Mozilla Firefox, the results were as displayed in Table 5.9 and 5.10 for the
Vugu- and Vue application.

Result No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Easy 14 12 11 10 16 11 10 11 9 12 12

Medium 14 16 18 21 11 15 11 15 15 26 16
Hard 54 49 13 87 51 60 35 138 60 12 56

Table 5.9: Overview over results for solving a Sudoku board in Vugu with Performance
tool in Firefox.

Result No. 1 2 3 4 5 6 7 8 9 10 Average (ms)
Easy 212 168 79 226 169 174 144 198 176 170 172

Medium 190 229 201 340 287 167 215 221 255 205 231
Hard 901 740 804 720 787 802 880 867 796 779 808

Table 5.10: Overview over results for solving a Sudoku board in Vue with Performance
tool in Firefox.

Based on the results displayed above, it is clear that solving a Sudoku board in
both applications is much faster than creating a Sudoku board. Another thing
to notice is the continuation of the trend that the Vugu application continues
to outperform the Vue application. In this case the difference in performance
is also quite significant.

48

5.5 Perfomance test when solving a Sudoku board

Figure 5.7: The time duration for creating and solving a Sudoku board in the Vugu
application.

Figure 5.8: The time duration for creating and solving a Sudoku board in the Vue
application.

49

5.6 Summary

By comparing the average time for solving a Sudoku board with the average time
of creating a Sudoku board, as illustrated for both applications in Figure 5.7 and
Figure 5.8, it is clear that these continue to grow proportional to each other in
time. This is because of that the runtime of the brute force approach involved
in solving the Sudoku board will grow exponential along with the total number
of attempts to solve the board. This also is the case with the Backtracking
Recursive algorithm used in creating the Sudoku boards, since the runtime will
grow exponential with the number of cells removed.

5.6 Summary

Based on the results derived from the sections above, it is clear that the Go
and Vugu application outperforms the JavaScript and Vue variant for all of the
performance cases tested in this thesis. Therefore it is safe to say that for this
type of project, Go and Vugu is the optimal choice over JavaScript and Vue if
performance is the only measurement. This could be observed already from the
first test case in Section 5.1, where the terminal executed Go scripts performed
significantly better than the JavaScript scripts executed in the terminal with
Node.js. This passed on and became a trend onto the following test cases
where the Vugu and Vue applications were executed in the browser for Section
5.3, 5.4 and 5.5.

50

Chapter 6

Test Capabilities and
Support in Vugu and Vue

At any given point in the software development life cycle, one might easily im-
plement bad code or introduce bugs to an application. Therefore it is important
for any project that the application is tested thoroughly throughout the devel-
opment cycle to identify defects, reduce flaws and increase the overall quality of
the application. Due to Vue already being a fairly established framework with
lots of support around the project, there already exists test frameworks that can
be used to maintain the quality of the application. Vugu on the other hand has
no support for extensive testing to verify that the Vugu files and components
work as intended. Hence the main purpose of this chapter is to highlight how
testing might be done for a Vugu application today, and how this was achieved
in this thesis.

51

6.1 Testing capabilities in Go and JavaScript

6.1 Testing capabilities in Go and JavaScript

Testing in Go is simple and intuitive using package testing[14]. This package is
a part of the Go standard library and using this package when creating unit tests
is fast and simple. As long as the functions are in a Go file it is easy to write
test cases for each function. JavaScript has many dedicated test frameworks,
i.e. the Jest framework[15]. This was used during the development of both
the Vue application and the JavaScript backend. Jest is a JavaScript testing
framework that was built by Cristoph Nakazawa[16], and is now maintained by
Facebook. Jest is a testing framework that is simple to set up, and can easily
be added to any project using the Vue CLI mentioned in Section 3.2.1. Below
in Figure 6.1 and Figure 6.2 are unit test examples written for a function used
in both the Go and the JavaScript backend.

Figure 6.1: Simple test in Go.

Figure 6.2: Simple test in JavaScript using Jest.

Comparing the two tests seen in Figure 6.1 and 6.2 it is clear that they work and
is setup in a similar way. Both of the tests are testing the RandomNumber()
function which is supposed to return a number between 1 and 9. If it does not
return the expected result, the test will fail.

52

6.2 Test capabilities in Vugu

6.2 Test capabilities in Vugu

In Vugu there is no framework, at this point in time, dedicated for testing the
Go code and functions in a Vugu file. There is a way around using the Go pack-
age testing that was achieved in this thesis. This is done by using the functions
created in the vgen.go file that is generated when running the devserver.go file.
This way it became possible to test the output of the Vugu components. This
approach will now be reviewed.

The hard part about testing in Vugu is to test if the components have the de-
sired output. An important test to verify this is to test that the Vugu functions
generates the desired HTML code output. Since there is no testing framework
in Vugu for testing this, a solution is to use the Build function from the vgen.go
file. This is a function that is created for every component and is the function
that builds the component that is rendered in the browser. However, this is not
intuitive and makes the code less readable.

Creating a test using this approach is done by creating a test page in the
Vugu application as seen in Figure 6.3. On this page, there exists two lists,
one ordered list and one unordered list, both with three elements. The ordered
list is written in straightforward HTML code and the unordered one is written
using the Vugu function "vg-for". This function is a for-loop that creates the
number of intended list elements.

Figure 6.3: Test component as seen in the browser (left) and the code file that
generates it (right).

53

6.2 Test capabilities in Vugu

Then to test the output of the "vg-for" function, a test case as the one that
can be seen in Figure 6.4 and 6.5 is created using package testing as if the test
was for an ordinary Go function. This test must then check if using the "vg-for"
gives the same result as HTML code. This is to be able to verify that the Vugu
function works as intended when used. This will also make it possible to write a
test that can verify that Vugu files and components creates the intended HTML
code and output.

A test to verify generated HTML output can be made by first creating an struct
of the component that is going to be tested. For this case, it would be an struct
of Test. This enables the use of the Build function of the Test component from
the vgen.go file. The Build function has a parameter which is an object of
BuildIn and hence this must be created using vugu.BuildIn. When putting the
BuildIn object as a parameter in the Build function the output will be an ob-
ject of BuildOut. The BuildOut object has four data fields, which are; Out,
Components, CSS, and JS. It is the Out which is an object of VGNode that
will be used in the test. The Out is a tree over the HTML code created in the
component, which in this case is the Test component.

By applying this approach it may look like that it is possible to check if the
elements inside both of the lists are equal by traversing the node tree, but when
writing the list elements in HTML code the elements do not get appended
to the node tree. The solution to finding the number of elements that
have the element as a parent is to find the element and then use
the data field innerHTML that all VGNode objects have. This data field then
shows what the element has as children.

One solution to this problem is to check the number of elements that
are created inside the unordered list as seen in Figure 6.4. One drawback with
this is that the number of elements must be known, else there is no point
in checking the number of list elements. This method allowed it to be possible
to create a unit test that checks if the "vg-for" did create the desired number
of elements. To confirm that everything is correct, it is also possible to
visually verify the number of elements by checking the Vugu application
in the web browser. This was done and it proves that it is possible to write
tests that can verify that the Vugu functions give the desired output.

54

6.2 Test capabilities in Vugu

Figure 6.4: Test counting if the number of elements is correct; Vugu variant

The other approach of verifying the output of "vg-for" is to first find all
elements that are appended to the tree and then use the innerHTML data field
from the element to find the elements that are coded in HTML.
Then compare the element from the tree with the elements from
the innerHTML data field. This approach is illustrated below in Figure 6.5. If
both are the same length then it is verified that "vg-for" works as intended.
This could then later be used when testing that a Vugu application gives the
desired output.

55

6.2 Test capabilities in Vugu

Figure 6.5: Test comparing innerHTML with elements from the tree.

From both Figure 6.4 and Figure 6.5 it is clear that these are tests with low
readability and they are time consuming to create. But since there exists no real
alternative to this approach when creating tests for Vugu, this is the approach
to use at this point in the development of Vugu.

56

6.2 Test capabilities in Vugu

6.2.1 Test capabilities in Vue

The same HTML code as shown in Figure 6.3 can also be tested using the Jest
testing framework for components rendered with Vue, shown below in Figure
6.6. The describe block is used to group the test cases belonging to a single
component. Within this describe block, a wrapper object is used for mounting
components in addition to allowing for usage of predefined methods from the
Vue Test Utils. In this case, the TestPageComponent containing the HTML
code shown in Figure 6.3 is mounted, and from here assertions are used to first
find all the elements from the component and check if it corresponds with
the expected amount.

Figure 6.6: Test counting if the number of elements is correct; Vue variant

Comparing the code snippets from Figure 6.4 and Figure 6.6 to each other, the
clear advantage that Vue has over Vugu in this area shines through. The fact
that Vue is an established framework has opened the door to the Jest testing
framework, and due to the many methods from the Vue Test Utils, the test that
needed 30-40 lines of code in Go, only require 4-5 lines of code in JavaScript
when using Jest. The code snippet from the JavaScript and Vue variant is also
highly readable, especially compared to the Go and Vugu variant of the test.

57

6.3 Support around Vugu and Vue

6.3 Support around Vugu and Vue

The support and community existing amongst the vast diversity of projects and
programming languages plays an important part in the world of programming. If
it is hard for developers to find documentation and help when stuck, the project
may take longer to finish. Also, new and inexperienced developers will have a
harder time getting familiarized and learn how to use the different technologies.

Vue is a fully developed framework for JavaScript, and hence there is a lot
of information and resources available on the internet besides the official pages
and documentation for Vue[17]. This will make it easier for developers new to
Vue to learn how to develop web applications using the framework. The com-
munity around Vue is a big advantage since it will be much easier for developers
to find help when there are more people experienced in the framework and thus
leading to problems being solved quicker.

When comparing the support and community of Vugu to that of Vue, it is
clear that Vugu still has a way to go. Apart from the Vugu web page[6],
documentation[18], and GitHub[19], there are limited resources available. This
will make it harder for developers to learn how to use Vugu. This especially
concerns developers that are inexperienced with web development and frame-
works such as Vue. Hence Vugu comes up short when comparing the limited
resources available to the diversity of resources available for Vue.

58

6.4 Summary

6.4 Summary

When summarizing this chapter it is clear that Vue has an advantage over Vugu
in regards of both the test capabilities and the support around the framework.
Vugu does not have a library or framework for testing except the Go package
testing. Whereas Vue has plenty of available resources for this purpose, i.e. the
Jest testing framework.

As demonstrated above in Section 6.2 testing components and code structure
in Vugu can be done, but at this point in time, this is very complicated and also
very time inefficient as compared to Vue. For Vue, where there already exist
sufficient and reliable testing frameworks, functionality in Vue components, and
applications in general, can easily be verified without this becoming complicated
and time-consuming tasks.

The support and community around Vue is much bigger than that of Vugu
and hence the resources available are larger and easier to find. Meaning that if
issues occur while using Vue, solutions are most likely to be found compared to
Vugu. This could be an important note to regard when choosing a framework
between Vugu and Vue, especially if the developers are inexperienced in web
development.

59

Chapter 7

Final Conclusion and Further
work

For the final chapter of this thesis, an overall conclusion will be presented.
Thoughts, results, and experiences during the development process will also be
discussed. Finally, ideas for further work to either enhance the application of
this thesis or to improve the development for future projects will be proposed.

7.1 Conclusion

The question of whether it would be possible to implement a similar Sudoku
application in both Vue and Vugu proved itself to be possible. Similar features
and functionality were achieved during the development process which made a
solid base for the comparison part of the thesis. The applications were imple-
mented with as few differences as possible, with the goal of narrowing down
eventual differences to be related to the nature of the programming language
of the framework.

60

7.1 Conclusion

When looking at the overall performance of the applications, and comparing the
results, they showed that the Vugu application overall performed better than
the Vue application. This was not unexpected given the Backtracking Recur-
sive algorithm involved in computing the Sudoku boards, where it was expected
that Go would outperform JavaScript. It is also important to note that Vue and
JavaScript were not given much justice in terms of optimal performance, as the
application was developed with features and functionality where WebAssembly
and hence, Go and Vugu, should thrive.

With Vue having the Vue CLI, mentioned in Section 3.2.1, it is clear that get-
ting started with a Vue project is a much more comfortable and time-efficient
process than getting started with a new project in Vugu. When starting up a
project in Vue, simply select the features needed for the project either its Vuex,
Vue Router, or adding a unit testing framework, and the CLI will make sure that
all dependencies are installed correctly. To achieve the same by using Vugu,
given the fact that Vugu does not offer a CLI, own research was needed to
ensure the starting point required for the particular project. For the application
of this thesis however, the fact that Vugu does not have an own CLI did not
create any particular hassle, but for greater projects dependent on several de-
velopers working as a team, Vue has a beneficial advantage over Vugu in terms
of getting started with a new project.

Since Go is a very lightweight programming language and Vugu is utilizing
WebAssembly to compile and render applications, it was expected that it would
perform better than the JavaScript and Vue application. From looking at the
results from creating a Sudoku board in Go and JavaScript in Section 5.1 it
became clear that Go most likely would outperform JavaScript in most of the as-
pects of the application. The Backtracking Recursive algorithm, used for most
of the computational logic, grows exponentially in time, which is why there is
such a big difference in the measured performance. Based on the results from
Chapter 5 it becomes clear that choosing Vugu and Go would be optimal over
selecting JavaScript and Vue for the types of applications that require heavier
computational operations to some extent.

61

7.1 Conclusion

The Vue variant could most likely be optimized to achieve results closer to what
the Vugu variant achieves, but this is not opted for in this thesis, as this would
have lead to changes in the application and introduced more differences to the
implementation compared to the Vugu implementation. Since the objective
was partly to see if Vugu and WebAssembly could perform better for the types
of applications where it should shine compared to JavaScript and Vue, simi-
lar implementation was prioritized at the expense of optimizing the respective
applications.

7.1.1 Testing Frameworks

As of the status quo, Vugu does not have any dedicated testing framework
for testing the output of Vugu files. This means that it is harder to ensure
that the written code works as intended as applications grow larger and more
complex. Vue has an obvious advantage over Vugu at this point since there
exist several testing frameworks compatible with Vue for this purpose, i.e. the
Jest testing framework. Therefore, as the components and written code in Vue
are testable, it is easier to keep the Vue code bug-free as the application grows
larger and more complex. There are possibilities to test the Vugu application
as demonstrated and proven in Section 6.3, but this is neither intuitive nor a
time-efficient process.

7.1.2 Features

Both Vue and Vugu have features to help developers create applications. Some
of these features are similar for both frameworks and provides the same function-
alities. This are i.e. Vugu Wiring for Vugu and Vuex for Vue which represents
its respective frameworks state management pattern. Routing is also a feature
both frameworks provide, and makes no differences from a user’s point of view
when used in applications. Vugu may still be in an experimental state, but while
developing the Sudoku application regardless of which variant, there were no
features one had and the other did not have.

62

7.1 Conclusion

7.1.3 Support and Community

As mentioned in Section 6.3, Vue has a lot more resources and documentation
available on the web compared to Vugu. This is mostly because Vugu still is in
an experimental and early phase, with its first commit to the official Vugu Github
on the 20th of March 2019[19]. There are some places to find resources and
help while creating a Vugu application, but those are limited to the official Vugu
page[6] and Github. Vue however is a fully developed framework for JavaScript
and is used in real applications everywhere, i.e. the popular Chess.com[20]
platform. This leads to the fact that it is much easier to find information,
documentation, and examples everywhere when creating a Vue application.
Because of this, Vue would probably be the better choice for inexperienced
developers when choosing which framework to use for their project.

7.1.4 Final thoughts

When summarizing everything it becomes clear that Vugu should be the obvious
choice based on the results derived in this thesis. Thus, confirming that Vugu
and WebAssembly is the best alternative to developing demanding web appli-
cations, acting as a "helping hand" to JavaScript in the areas where JavaScript
comes up short performance wise. However, because of the state of develop-
ment that Vugu still is in, Vue would be a better choice for a real application
that is to be deployed in the near future, and does not depend on heavy com-
putational operations. An example of this might be a Tic-Tac-Toe game. The
reasoning behind this is because Vue is a fully developed framework with a big
community. This will make it easier to develop and maintain in comparison
to Vugu, which is continuously getting updates that could affect an applica-
tion. Something like this was experienced late in the development stages of the
Vugu application, where additional support features to the Vugu root file was
deployed to the Vugu documentation[6] by the Vugu team, which could have
introduced changes to the Vugu application in this thesis.

63

7.2 Further work

7.2 Further work

In this section possible tasks and implementations to the application or frame-
works, especially Vugu, will be discussed. Because Vugu is still under develop-
ment and in an experimental state, Vugu has the most suggestions for further
work. The Sudoku application overall also has a lot of possibilities regarding
improving the application as a whole.

7.2.1 Test framework for Vugu

Vugu does not have a dedicated testing framework that allows users of Vugu
to create simple and intuitive tests to verify that the application does what it
is intended to do. With a test framework, the potential test capabilities and
the quality of work would increase. This would again lead to faster, easier,
and better development of Vugu applications. Large projects in Vugu would be
easier to test and distribute with a test framework. Because of the lack of a
test framework for Vugu, a future assignment could i.e. be to create a simple
example of one. One feature of this framework could be to print out a tree
structure over the HTML nodes. This would allow users to check that Vugu
commands such as "vg-for" works correctly. It will also help to keep an order
of how the different Vugu components are built up.

Another useful feature to the test framework could be to test the different
features of the application. An example of a test such as this could be that
when an action like clicking a button to show a division is triggered, then after
the button click, a test could be implemented to verify that the button is clicked
and that the correct division is being shown. This would be way easier than
rather having to start up the application and visually verify whether or not the
button works as intended, for every newly added segment.

64

7.2 Further work

7.2.2 Command Line Interface (CLI) for Vugu

As of the status quo, Vugu does not have its own CLI, or anything that comes
close to the Vue CLI. By creating an own CLI for Vugu, it could help and guide
new and inexperienced developers to find Vugu as an attractive framework for
learning web development. By having a CLI with a UI similar to Vue’s own CLI,
giving developers the alternative to choose for themselves if they want Vugu
wiring or Vugu routing pre-installed in their projects, ready to be used, could
lead to an increase in popularity as this would take away the need for a very
technical understanding of the various concepts and how to tie them together.
Therefore this could also be a potential meaningful future assignment.

7.2.3 Improvements to the application

Because the goal of the thesis was to compare Vue and Vugu against each
other, some implementations that were irrelevant for the thesis were left out.
Other implementations were done in such a way that the differences between
Vue and Vugu would be shown. Removing and adding implementations that
overall will improve the Sudoku application could then be an assignment for
the future. There are several ways to improve the overall application. Some of
those improvements will be discussed below.

Improvements could be more features that would make the application more
usable and more interesting for new users. Example of different additional fea-
tures that could be implemented to achieve this could be:

• Print out the created Sudoku board, and afterwards scan/upload image
of your proposed solution to check if its correct.

• System that stores Elo ranking, as described in the following link https:
//www.chess.com/terms/elo-rating-chess, for players, feeding them
suitable boards corresponding with each players respective Elo.

65

https://www.chess.com/terms/elo-rating-chess
https://www.chess.com/terms/elo-rating-chess

7.2 Further work

By adding one or both of these features to the application, the use of the ap-
plication would be more than just to compare Vue and Vugu.

Another possible improvement is to implement better and faster functions that
will improve the overall response time of the application. The functions that
create the Sudoku board are an obvious candidate to improve as seen in the
results in Table 5.5 and Table 5.6. One way that could be done is by removing
the randomness. This randomness could be removed by a deeper knowledge of
Sudoku and how it works. This could then result in a way to remove cells and
create a Sudoku board without the factor of randomness.

66

Bibliography

[1] Ben Popper. The 2020 developer survey results are
here! https://stackoverflow.blog/2020/05/27/
2020-stack-overflow-developer-survey-results/, 2020. [Ac-
cessed: 02.04.2021].

[2] TIOBE the software quality company. Tiobe index for 2021. https:
//www.tiobe.com/tiobe-index/, 2021. [Accessed: 10.04.2021].

[3] Ryan Dahl. Github ryan dahl. https://github.com/ry, 2021. [Accessed:
21.04.2021].

[4] TIOBE. Tiobe index. https://www.tiobe.com/tiobe-index/, 2021.
[Accessed: 25.03.2021].

[5] Evan You. Github evan you. https://github.com/yyx990803, 2021.
[Accessed: 14.04.2021].

[6] Vugu. Vugu: A modern ui library for go+webassembly. https://www.
vugu.org/. [Accessed: 24.03.2021].

[7] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing
the web up to speed with webassembly. SIGPLAN Not., 52(6):185–200,
June 2017.

[8] Manuel Rubio-Sánchez. Introduction to Recursive Programming. CRC
Press LLC, Boca Raton, Florida, 2018.

[9] Narasimha Karumanchi. Data Structures And Algorithms Made Easy. Ca-
reerMonk Publications, IIT Bombay, Mumbai, India, 2017.

67

https://stackoverflow.blog/2020/05/27/2020-stack-overflow-developer-survey-results/
https://stackoverflow.blog/2020/05/27/2020-stack-overflow-developer-survey-results/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://github.com/ry
https://www.tiobe.com/tiobe-index/
https://github.com/yyx990803
https://www.vugu.org/
https://www.vugu.org/

BIBLIOGRAPHY

[10] Paul C. Jorgenson. Testing: A Craftsman’s Approach, Second Edition.
CRC Press LLC, Boca Raton, Florida, 2002.

[11] Mozilla. Performance. https://developer.mozilla.org/en-US/
docs/Tools/Performance, 2021. [Accessed: 26.03.2021].

[12] Corey Scott. Hands-On: Dependency Injection in Go. Packt Publishing
Ltd., Livery Place, 35 Livery Street, Birmingham, 2018. So, how do I
define DI?, Page 8.

[13] Gilles Civario Gary McGuire, Bastian Tugemann. There is no 16-clue su-
doku: Solving the sudoku minimum number of clues problem via hitting
set enumeration. Technical report, School of Mathematical Sciences, Uni-
versity College Dublin, Ireland, 2013. Abstract, Page 1.

[14] Go. Package testing. https://golang.org/pkg/testing/, 2021. [Ac-
cessed: 12.05.2021].

[15] Jest core team. Jestjsio. https://jestjs.io/, 2021. [Accessed:
11.04.2021].

[16] Christoph Nakazawa. Christoph nakazawa github. https://github.com/
cpojer. [Accessed: 23.04.2021].

[17] Vue team. Vue documentation. https://vuejs.org/v2/guide/, 2021.
[Accessed: 11.04.2021].

[18] Go. Vugu. https://pkg.go.dev/github.com/vugu/vugu, 2021. [Ac-
cessed: 07.04.2021].

[19] Vugu. vugu. https://github.com/vugu/vugu, 2021. [Accessed:
07.04.2021].

[20] Chess.com team. Official chess.com platform. https://www.chess.com/.
[Accessed: 23.04.2021].

68

https://developer.mozilla.org/en-US/docs/Tools/Performance
https://developer.mozilla.org/en-US/docs/Tools/Performance
https://golang.org/pkg/testing/
https://jestjs.io/
https://github.com/cpojer
https://github.com/cpojer
https://vuejs.org/v2/guide/
https://pkg.go.dev/github.com/vugu/vugu
https://github.com/vugu/vugu
https://www.chess.com/

List of Figures

2.1 JavaScript popularity over time, higher % means more popular. 4

2.2 Golang popularity over time, higher % means more popular. . . 6

2.3 Concept of backtracking using a search tree. 10

3.1 Running Vugu application at 127.0.0.1:8844 using go command. 14

3.2 Running Vugu application at 127.0.0.1:8844 using vgrun com-
mand. 14

3.3 Comment that invokes the Vugu generator. 14

3.4 Difficulty.go file used in Vugu wiring. 17

3.5 Visualization of the components architecture in the Sudoku ap-
plication. 21

3.6 Using the Vugu component Board. 22

3.7 Vue HTML holder. 23

3.8 Vue JavaScript logic holder. 23

3.9 Vue CSS holder. 24

69

LIST OF FIGURES

4.1 A Sudoku board with its corresponding unique solution. 26

4.2 From diagonals to filled board. 27

4.3 One of nine 3x3 boxes on a Sudoku board. 28

4.4 A Sudoku board generated with "Medium" difficulty. 29

4.5 The Sudoku board with its unique solution. 30

5.1 Comparison between JavaScript and Go when creating a Sudoku
board. 36

5.2 Waterfall example in the Performance tool. 37

5.3 Example of the Call-Tree sub-tool showing the most time con-
suming functions. 38

5.4 Difference in time between Vugu and Vue. 41

5.5 Average time duration creating a Sudoku board with difficulty
"Medium" in different browsers; Vugu application. 46

5.6 Average time duration creating a Sudoku board with difficulty
"Medium" in different browsers; Vue application. 46

5.7 The time duration for creating and solving a Sudoku board in
the Vugu application. 49

5.8 The time duration for creating and solving a Sudoku board in
the Vue application. 49

6.1 Simple test in Go. 52

6.2 Simple test in JavaScript using Jest. 52

70

LIST OF FIGURES

6.3 Test component as seen in the browser (left) and the code file
that generates it (right). 53

6.4 Test counting if the number of elements is correct; Vugu
variant . 55

6.5 Test comparing innerHTML with elements from the tree. . . . 56

6.6 Test counting if the number of elements is correct; Vue
variant . 57

71

List of Tables

5.1 Results for creating a Sudoku board in Go. 35

5.2 Results for creating a Sudoku board in JavaScript using Node.js. 35

5.3 Results for creating a Sudoku board in Vugu with Performance
tool using Mozilla Firefox. 40

5.4 Results for creating a Sudoku board in Vue with Performance
tool using Mozilla Firefox. 40

5.5 Overview over relevant data from Call-Tree sub-tool; Vugu ap-
plication. 42

5.6 Overview over relevant data from Call-Tree sub-tool; Vue appli-
cation. 43

5.7 Overview over results for creating a Sudoku board in Vugu with
Performance tool in different web browsers. 45

5.8 Overview over results for creating a Sudoku board in Vue with
Performance tool in different web browsers. 45

5.9 Overview over results for solving a Sudoku board in Vugu with
Performance tool in Firefox. 48

72

LIST OF TABLES

5.10 Overview over results for solving a Sudoku board in Vue with
Performance tool in Firefox. 48

73

	Outline
	Abstract
	Introduction
	Outline

	Terminology
	JavaScript
	Node.js

	Go
	Vue
	Vugu
	WebAssembly
	Recursion
	Backtracking Recursive Algorithm

	Testing
	Unit Test
	Performance Test

	Introduction to Vugu and Vue
	Getting started with Vugu
	Getting started with Vue
	The Vue Command Line Interface

	State management
	Vugu Wiring
	Vuex

	Routing
	Vugu Router
	Vue Router

	Components
	Vugu Component
	Vue Component

	Summary

	Implementation
	Sudoku
	Implementation of the Sudoku application
	Part I Creating the filled board
	Part II Removing values to create a starting point
	Part III Solving the unique board

	Differences in implementing the Sudoku application
	Implementing the app in Vugu and Vue
	Summary

	Testing and Comparison of the Results
	Transitioning from Go and JavaScript to Vugu and Vue
	Performance test of the Vugu- and Vue application
	Performance test when creating a Sudoku board
	Analyzing the Call-Tree

	Performance testing of the application in different browsers
	Perfomance test when solving a Sudoku board
	Summary

	Test Capabilities and Support in Vugu and Vue
	Testing capabilities in Go and JavaScript
	Test capabilities in Vugu
	Test capabilities in Vue

	Support around Vugu and Vue
	Summary

	Final Conclusion and Further work
	Conclusion
	Testing Frameworks
	Features
	Support and Community
	Final thoughts

	Further work
	Test framework for Vugu
	Command Line Interface (CLI) for Vugu
	Improvements to the application

	References

