
Faculty of Science and Technology

BACHELOR’S THESIS

Study program/Specialization: Spring semester, 2021

Bachelor in Computer Science Open / Restricted access

Writers:

Fredrik Woie, Magnus Glenna

Subject leader:

Antorweep Chakravorty

Faculty supervisors:

Nikita Rajendra Karandikar, Antorweep Chakravorty

Thesis title:

Blockchain based hospital data management using Hyperledger Fabric

Credits (ECTS): 20

Key words: Pages: 37

Blockchain + attachments: 45

Hospital journals

Data management Stavanger 15. mai 2021

Blockchain based hospital data
management using
Hyperledger Fabric

Fredrik Woie
Magnus Glenna

Faculty of Science and Technology
University of Stavanger

May, 2021

Abstract

Technological progress has pushed blockchain technology to cover a multi-
tude of use cases and environments with different types of technology and
frameworks. HyperLedger Fabric [10] is a framework for creating a permis-
sioned blockchain. Blockchain [1] is defined as a decentralized, distributed
and immutable ledger. Permissioned indicates that all nodes and users need
permission to take part in the network, meaning it is within a controlled and
centralized environment.

We propose HyperLedger Fabric for use in a hospital as a data storage. Se-
curity and reliability are vital parts of a hospital data storage, but this often
complicates the sharing of data between network participants. Using Fabric,
we want to achieve secure, shareable and authorized data storage backed by
blockchain technology. Permissions should be set so only authorized peers
can read secure data; Only the doctor of a patient, the patient if desired and
anyone given access by the patient should be able to read a patient’s data.

Acknowledgements

We want to thank our supervisors, Nikita Rajendra Karandikar and Antor-
weep Chakravorty, for guidance and expertise throughout the process of this
thesis.

Contents

1 Introduction 1
1.1 Background and motivation 1
1.2 Outline . 2

2 Background 3
2.1 The birth of Blockchain . 3

2.1.1 Double Spending . 4
2.2 New ways of using blockchains 5
2.3 The elements of blockchain 5

2.3.1 Decentralization . 6
2.3.2 Distribution . 6
2.3.3 Encryption . 7
2.3.4 Immutability . 7
2.3.5 Tokenization . 7

2.4 Development of blockchain . 7
2.4.1 Public and Private Blockchains 8

2.5 Use cases and downsides with blockchain 8
2.6 Standardization . 9

3 Hyperledger Fabric 11
3.1 Background . 11
3.2 Networks and Channels . 11
3.3 Identity . 12
3.4 Membership Service Providers 13
3.5 Access Control Lists . 13
3.6 Smart Contracts . 15
3.7 Peers and Orderers . 15
3.8 Raft . 17

3.9 Update Transaction . 18
3.10 Query Transaction . 19
3.11 Private Data Collection . 20
3.12 Docker . 20

3.12.1 Docker Compose . 21

4 Project: Using Fabric for hospital data collection 22
4.1 Requirements . 22
4.2 Proposed Architecture . 23

4.2.1 Network entities . 23
4.2.2 Confidentiality and authentication 23
4.2.3 Network structure . 25
4.2.4 Certificate Authorities 27
4.2.5 Chaincode . 28
4.2.6 JavaScript API . 32

4.3 Running the application . 34
4.3.1 Prerequisites and binaries 34
4.3.2 Starting the network 35

5 Conclusion 36
5.1 Summary . 36
5.2 Further work . 37

Acronyms

ACL Access Control List. 4, 14, 24, 30, 36
API Application Programming Interface. 4, 32

CA Certificate Authority. 4, 12, 13, 25, 27, 32,
35

CFT Crash Fault Tolerant. 4, 17
CLI Command Line Interface. 4, 34
CRL Certificate Revocation List. 4, 13

DLT Distributed Ledger Technology. 4, 5, 8–10

FSM Finite-State Machine. 4, 17

ID Identification. 4, 13, 14

MSP Membership Service Provider. 4, 13, 16, 23,
24

PKI Public Key Infrastructure. 4, 12, 13
PoS Proof of Stake. 1, 4, 7
PoW Proof of Work. 1, 4, 7

SHA Secure Hash Algorithm. 4, 7

TLS Transport Layer Security. 4, 26, 27

Chapter 1

Introduction

1.1 Background and motivation

Since the first blockchain, Bitcoin, were introduced, the technology has im-
proved both in popularity and in use cases. It has revolutionized the way
digital assets are stored. While the Bitcoin blockchain only let one transfer
currency, new blockchains has been made to make it possible to transfer
all types of digital assets. A transaction within a blockchain does not re-
quire a third party outside the network, making the distribution of assets
decentralized. By not needing a third party to verify the transaction, the
cost efficiency is increased compared with banks. Instead of a third party,
blockchains use consensus algorithms to prevent malicious activity.

There are two types of blockchains, permissioned and permissionless. In a
blockchain which is permissionless everyone has access to every transaction
keeping the transactions tamper proof. As this type of blockchain does
not have a requirement to become a member, it often uses more energy
consuming consensus algorithms to verify transactions.

To prevent bad actors from tamper with transactions in a public blockchain,
consensus algorithms like Proof of Work [7] and Proof of Stake [20] has been
implemented. The permissioned blockchain requires participants to be au-
thorized to access the network. This can allow for less energy consuming
consensus algorithms as the network actors could be more trusted. It offers
the participants to share assets within the permissioned network compared
with permissionless where everyone can see the transaction. A framework
called HyperLedger Fabric [10] is often used to create blockchains which are

1

based on permissions. It is often used as a ledger for business transactions
between cross-industry collaborations.

As of the start of the project our knowledge of blockchain technology were
limited, with some interest in cryptocurrencies like Bitcoin, Ethereum etc.
We chose the subject of the thesis to get a better understanding of blockchains
and its use cases. Based on experience with the lack of journals being shared
between hospitals and doctors, we wanted to create a blockchain which made
it possible for doctors be up to date with each patient’s journal. Since sen-
sitive data had to be stored in the blockchain, we needed a way to create
a permission based blockchain. After a thorough research we found that
the framework, HyperLedger Fabric, met our requirements. We used it in
our project to define the permissions of each node, patient and doctor, in
the network. Only the doctor of a patient and the patient itself should be
able to read the patient’s data. If anyone else would want to read the data,
they must gain access from the patient. By storing the hospital data in a
blockchain, it would be more secure and reliable compared to traditional
databases.

1.2 Outline

The remaining part of the thesis are outlined as follows:

Chapter 2 introduces the reader to the blockchain technology and concepts
used in the thesis.

Chapter 3 lets the reader get a better knowledge of the blockchain frame-
work, HyperLedger Fabric, before it is later introduced in the project.

Chapter 4 covers the project part of the thesis. It explains the requirements,
entities, and architecture of the network.

Chapter 5 concludes the thesis.

2

Chapter 2

Background

2.1 The birth of Blockchain

In 1991, Stuart Haber and W. Scott Stornetta described a technology that
used cryptographically secured chain of blocks to make the timestamp of a
document tamper-proof [1]. Three years later a data scientist called Nick
Szabo proposed a digital contract called smart contract [2]. It was designed
to determine when to execute a transaction of digital assets, based on terms
of the contract. In 1998, Szabo designed a cryptocurrency that he called bit
gold. The currency did not get past the design phase since Szabo was not
able to prevent double spending [3].

Satoshi Nakamoto realized that the technology described by Haber and Stor-
netta could be used for more than preventing tampering of documents. With
inspiration from the work of Stuart Haber, W. Scott Stornetta and the cryp-
tocurrency designed by Szabo, Nakamoto created a digital currency called
Bitcoin. The currency made it possible to perform a money transaction from
one person to another, without the need of a third party [4], p.57.

In 2008, Satoshi Nakamoto published the Bitcoin white paper. The paper
defined an electronic coin as a chain of digital signatures. The coin was meant
to be transferred by digitally signing a hash of the previous owner and the
public key of the coin receiver. The hash and public key are then added to
a block of transactions, embedded with a hash of the previous block, and
added to the chain of blocks. This hash made the ledger immutable [5], p.2.
This type of transaction provides a strong control over the ownership of the
coins, but do not prevent double spending[6] from happening[5], p.8.

3

2.1.1 Double Spending

Double spending occurs when a digital currency gets spent twice. A digital
currency can get used twice if a person with knowledge of the blockchain net-
work and with the necessary resources to manipulate the blockchain, manage
to duplicate and use a digital token [6]. An illustration of a double spending
is show in figure 2.1. Since Bitcoin is a decentralized cryptocurrency, without
any third-party to verify each transaction, Nakamoto needed a way to pre-
vent double spending. For this he implemented the Proof of Work consensus
algorithm. As new blocks are added to the chain, a 64 digit hexadecimal
number(a hash) representing the previous block is added to the block. This
was achieved by having users, so-called miners, brute force calculate the hash
of a block which is less or equal to a target hash. The winner of this race
to a valid hash added the new block to the chain and was rewarded with
Bitcoin. With this it would be impossible to change any previous transac-
tion as you would have to recalculate the hash before a new block is added.[7].

Figure 2.1: Illustration of double spending

4

2.2 New ways of using blockchains

It took a few years for developers to use blockchain as more than a ledger
for cryptocurrency transactions. In 2013 Vitalik Buterin created Ethereum,
a cryptocurrency and tool to create more blockchain applications. Buterin
adopted the technology, smart contracts, invented by Szabo. It was designed
to exchange digital assets directly without the need of a middleman. Smart
contracts became on-chain applications which users could build, deploy and
use to execute transactions[8].

Companies like Microsoft and IBM uses the Ethereum technology in their
blockchain applications; collaborating in a project called HyperLedger, cre-
ated by the Linux Foundation in 2015. The project goal is to implement
blockchains as ledgers for the business transactions in intra-industry collab-
orations and to increase the performance and reliability of the ledger systems
used [9].

A framework called HyperLedger Fabric is often used for distribution of digi-
tal assets in intra-industry collaborations. It is a blockchain technology based
on permissions and roles between the nodes in the network. It can separate
private business data from data intended to be distributed to other busi-
nesses using channels and private data collections [10]. For users to transact
on the network, Fabric uses what they call a chaincode [11]. An in-depth
description of HyperLedger Fabric will be given later in chapter 3.

2.3 The elements of blockchain

Blockchain is a type of database where data are stored in blocks and then
chained together. Each new block stores a hash of the previous block creating
a chain of immutable blocks [12]. Blockchains are mostly used as a ledger for
transactions of digital assets and are therefore often referred to as Distributed
Ledger Technology [13]. The five elements of blockchain are: decentralization,
distribution, encryption, immutability, and tokenization [14]. Illustrated in
figure 2.2. The use cases of the elements and how they should be implemented
in a blockchain was described in Nakamoto’s white paper [5].

5

Figure 2.2: The five main elements of blockchain [14]

2.3.1 Decentralization

Decentralization means that no central body holds control over the network
and is instead maintained by a consensus mechanism. If a node controls
over 50 percent of the networks computing power they could forcibly approve
transactions.

To reach a consensus on which transactions are valid or not, nodes use an
algorithm to issue, validate and commit transactions on the network. This
requires all transactions to be open on the network so that all nodes can
participate in the validation process.

2.3.2 Distribution

The network is distributed over physically apart nodes. Each node has an
equal role in the network, takes part of validation, and holds a full copy of
the blocks and ledger stored.

6

2.3.3 Encryption

The Bitcoin blockchain uses SHA-256 encryption [17] for both the Proof
of Work algorithm and transaction verification [18]. SHA stands for Secure
Hash Algorithm. A small change in the input data will give a completely dif-
ferent hash. Therefore an attempt to change previous blocks will require a
recalculation of the hash or the change will be easily discovered if not blocked
[17]. Transactions within a blockchain are immutable because of systems like
Proof of Work, making blockchain exceptional for storing sensitive data.

2.3.4 Immutability

Immutability refers to transactions being cryptographically signed, times-
tamped, and added sequentially to the ledger making it unchangeable once
committed unless there is an agreement to do so.

2.3.5 Tokenization

The Bitcoin blockchain uses tokenization, meaning that digital assets get
a value based on real currencies like dollar. At the start of Bitcoin, one
coin was worth the same as one dollar. The goal was to create a value to
Bitcoin as a currency so that the miners could get paid for managing the
network.

2.4 Development of blockchain

Almost all existing blockchains today are based on the five basic pillars,
suggested by Nakamoto. Newer blockchain technology take inspiration from
Bitcoin, but have new methods to implement and manage blockchains. For
instance, the new Ethereum 2.0 uses the Proof of Stake algorithm, in an
attempt to replace PoW as the consensus algorithm used to verify and create
new blocks.

It is designed to randomly pick nodes as validators, with a bias based on how
many tokens the node possesses. This reduces the overall computing power
needed as less nodes take part of the validation. However this does have an
impact on security of the blockchain

7

2.4.1 Public and Private Blockchains

There are two types of blockchains, public and private. Also known as per-
missioned and permissionless blockchains. Bitcoin is a public blockchain
meaning that every transaction within the network is visible to all partic-
ipants. Even though Nakamoto argued for the importance of having the
blockchain public to prevent any tampering of transactions, new private
blockchains have been developed.

Private blockchains are permissioned, meaning that network participants
must be registered and authorized. These types of blockchains are often used
for sensitive data making it important to establish who can participate and
what actions they can utilise. Since nodes on the network can often be more
trusted, private ones can use less power consuming consensus mechanisms to
validate transactions. To join a private blockchain you must either be invited
by the founder of the network or get validated by a set of rules determined
in a smart contract [22].

Since public blockchains allow anyone to join the network, the amount of
computer power needed to maintain the large-scale network can be enor-
mous. For this reason, businesses who are looking to set up a blockchain at
a minimal cost, should consider using a private network.[23].

2.5 Use cases and downsides with blockchain

Blockchain technology can provide a secure and reliable way of storing dig-
ital assets, which is a driving force for many companies to implement the
technology. IBM has created a Food Trust Blockchain to make it possible
for suppliers to trace products back to their origin. It can be used to ver-
ify a product location of origin, which could for example be used to track
contaminated food to the source of an outbreak. DLTs can also be used
to authenticate votes, which could have eliminated any suspicion of fraud
during the 2020 USA presidential election because of the immutability of a
blockchain [12].

By using a blockchain to store hospital data, the journals will be safe from
hackers. There are cases where countries have hacked into hospitals to get
knowledge of a patient’s medical history. This has been done to convert a
person, usually with access to sensitive military data, to a spy. The hackers
will then pay the medical bill in exchange for sensitive documents provided

8

by their new spy [24].

Even though blockchain is useful in many cases, the amount of energy re-
quired to control and verify each transaction can be enormous. Each year
Bitcoin consumes an estimated 3.6 billion dollars in energy[25]. However, it
is impossible to know the true cost because a decentralized network does not
have the same energy costs per node.

A blockchain transaction can also sometimes be slow and expensive. Bitcoin
can only handle 7 transactions per second [12]. Any surplus will be put
in a confirmation queue, known as Mempool [26]. This can cause a lot of
waiting time compared to a bank which will simply scale up their capacity.
Blockchain transaction fees can vary based on the size of the transaction
and current demand for transactions. This transaction fee variation can
make cryptocurrency a less attractive transaction platform, which causes
some to use banks instead. Visa can process over 24 000 transactions per
second. To compete with the rates of VISA faster blockchain technology is
being developed, some of which can process up to 30 000 transactions per
second [12].

2.6 Standardization

Since the first launch of blockchain, the amount of companies employing
the technology has increased rapidly. DLTs are being used to store and
manage business transactions, deals, documents, transportation of products
etc. The main goal of Hyperledger project is to cover all types of community
sectors. The project is founded by the biggest corporations within internet-
related services and products. Forbes claims that 50 percent of the largest
corporations which deploy blockchain are using Hyperledger. As a result, the
Hyperledger project likely to have a huge impact in how other companies
implement blockchain technology [27].

As of 2021, there is a lack of consensus on blockchain related standards and
definitions. For instance, the requirements for handling sensitive informa-
tion of a person has yet to be determined. The European Union, EU, wants
to create regulations regarding sensitive information stored in a blockchain.
The regulations are meant to decide how a subject’s data should be used
and who has access to it [28]. The Institute of Electrical and Electronics
Engineers, also known as IEEE, have made a committee for development of
standards for blockchain. The name of the committee is IEEE Computer So-
ciety Blockchain and Distributed Ledger Standards Committee. The goal is

9

to create standards regarding how blockchains are made, which organization
is allowed to create them, what their purpose is and what type of security
should be required in a blockchain [29]. The International Organization for
Standardization, ISO, is trying to bring organizations such as IEEE, EU
and members of HyperLedger together to agree on which standards to use
[28].

Standardization could help companies to get a better understanding of the
blockchain technology. It would let firms know about the security measures
in place to store data, and which measures are put in place to maintain the
privacy of each member in a secure fashion.

Standardization is needed to guide new innovation in blockchain technol-
ogy to implement blockchains which follow standards for safe data handling,
storing and managing. This could also encourage new entities to implement
DLT to store their data and/or transfer digital assets like documents in
intra-industry cases. A robust standardization can help prevent poor imple-
mentation decisions and help firms improve their data management.[30].

10

Chapter 3

Hyperledger Fabric

3.1 Background

Hyperledger is an open-source project, created in 2015 by the Linux Foun-
dation. Their goal is to advance blockchain technologies designed for en-
terprises. The project is comprised of over 250 members and has several
active projects [31]. One of their projects is IBMs Hyperledger Fabric, an
open-source permissioned distributed ledger technology platform, designed
for enterprises. It uses channels to provide a secure and private way for
transferring digital assets. The blockchain is based on permissions, making
it possible for companies to control access across the network. Fabric uses
smart contracts, composed of one or multiple chaincodes, to make transac-
tions on the network. The Fabric API currently supports chaincodes written
in Go, Node.js or Java [32].

3.2 Networks and Channels

Fabric uses a combination of channels and networks to share digital assets,
either between members of the same company or between multiple firms [10].
A network provides a way for applications to be able to use ledgers and smart
contracts. The ledger can be used by businesses to store digital assets, while
the smart contracts can be used to transfer the assets between members of
the network. When a network is created, the organizations involved sets
policies to define the permissions members should have. When documents

11

are shared in the network, all members can see it. If the documents are meant
to be shared privately, because of their confidentiality, separate channels can
be used. For instance, a node can use a channel to transfer a document to
a specific person within the same corporation, without other nodes in the
network being able to see or change it [33].

Channels are created by a consortium of organizations. It lets the organiza-
tions share private data, providing privacy from the network by separating
the network ledger and the channel ledger. Each channel has one ledger per
chaincode on the channel. It is comprised of a world state and transaction
log. The world state is the current state of the channel ledger, while the
transaction log is the log of all the transactions that has led to the current
world state. In Fabric the transaction log is the blockchain. The members
of a channel can transfer assets if they follow the policies of the channel [33].

3.3 Identity

To provide security to a type of PKI [34] has been used in Fabric. It stands
for Public Key Infrastructure and makes sure the communication between
the nodes in a network are secured and authenticated. PKI in Fabric has
four main elements. It uses digital certificates to prove the identity of a
user, by having a document describing the holder of the certificate using
attributes.

This document is a X.509 certificate containing the private and public keys
of the user, as well as information about the user, that are used to create
a unique identity on the network. The identity created by a Certificate
Authority (CA)[34] is used by Membership Service Providers to verify their
membership. It cannot be tampered with as a small change will give a
completely different identity and the CA will not authorize the user.

The Certificate Authority have public certificates so users can verify its au-
thority. Since CAs provide the verification of the digital identity of members
in a network, it is important that users check the public certificates to make
sure the CAs are secure [34].

To prevent the exposure of a root CA in each network, Fabric uses intermedi-
ate CAs who work together in creating an establishment called chain of trust.
This helps in a multitude of areas; First it can distribute and decentralize
the authentication process, second it will reduce the risk of a CA’s private

12

key being exposed, and thirdly we can distribute separated certificates for
any number of organizations on the network.

A private root CA known as Fabric CA has been developed to allow devel-
opers to create and customize CAs for use in their blockchain network. It
provides a way to manage digital identities and the x.509 certificates of the
users.

An important final element is Fabrics Certificate Revocation List [34]. It is
the first list the MSP will check as it contains all certificates which have been
revoked. Whenever a certificate is renewed, the old identity is added to the
CRL [34].

3.4 Membership Service Providers

To become a member of a Fabric network, one must be authorized. This
is done by using a Membership Service Provider [35] that manages the IDs
and authentication of participants. The MSP makes sure only selected nodes
have access to the assets being shared in the network.

The MSP uses the identities created by CAs to determine if a user has a
valid membership and what permissions they have. This function forces all
users to a part of at least of organization transact on the network, but also
safeguards the private keys of users. Each MSP have their own CAs for
issuing certificates that are used to register a user.

Figure 3.1 shows the interaction between local and channel MSPs on a
blockchain network. The nodes, Peer and Orderer, has a local Member-
ship Service Provider which decides their role and permissions. A channel
has a global MSP which is shared between all members of a channel. The
permissions and roles of each member are decided by the channel Member-
ship Service Provider. In figure 3.1, the peer node is controlled by ORG2
while the orderer node is administrated by ORG1. The Root CA provides
authenticated identities. The ORG1 trusts the identities provided by the
root CA1, while the ORG2 trusts the identities from root CA2 [35].

3.5 Access Control Lists

To implement even more permission layers, Fabric supports Access Control
Lists [36]. It is often used to specify which nodes have access to which net-
work operations. For instance, an ID can have access to execute a chaincode,

13

Figure 3.1: Local and global MSPs [35]

but not be able to create a new one. The lists provide a way to assign roles to
node types like peer and orderer nodes. The ACLs combines resources with
policies to control who has access to them. These policies defines whether a
user is permitted to do a requested operation. ACLs uses two types of poli-
cies, signature and implicitMeta. The signature policy decides how many or
which person who must sign before the policy is satisfied. The implicitMeta
policy checks if other policies on a lower level has been satisfied. For in-
stance, check if an orderer node has sent the request. Since the orderer node
is defined in a policy at a lower level, the implicit meta policy must check if
the orderer node policy is satisfied before itself can be satisfied. ACLs are
created using key-value pair. The key is the function name, while the value
is which of the two types of policies it is, followed by a set of rules regarding
actions that must be done for the policy to be satisfied [36].

14

3.6 Smart Contracts

Smart contracts in Fabric has its origin from Ethereum. It is used to trans-
fer digital assets within public networks and private channels by executing
transactions following a base set of conditions. The conditions are logical
statements that determine whether a transaction should be carried out. For
instance, if both parts have signed an agreement, the documents are trans-
ferred. If none or only one part has signed, then the documents shall not be
transferred [11].

Even though the terms smart contracts and chaincodes are interchangeable,
they have different usages in Fabric. Smart contracts provide the transac-
tional logic for interacting with the world state, a database which holds the
current state of every assets. A smart contract can perform the operations;
get, put, and delete. When information about the current state of an object
is needed, the get statement is used. The put operation is used to create
or/and modify objects on the world state. The delete statement is used to
remove objects. The objects are only deleted from the current state of the
ledger [11].

A chaincode decides how smart contracts are packaged before it is deployed to
the network. For this reason, chaincodes are often used to group smart con-
tracts that are related. Multiple contracts can be defined within a chaincode.
When it is deployed to a network, every contract defined by the chaincode
is made available to the participating organizations. For this reason, only
administrators have to worry about chaincodes [11].

Smart contracts can be used for transferring other types of assets than doc-
uments. Suppose a car dealer is doing a trade. The car keys can be locked
inside a safe, which do not open before the buyer has paid the price and
both parts have signed an agreement. A smart contracts can be created
in this instance, to unlock the keys when certain conditions have been met
[37].

3.7 Peers and Orderers

In Fabric, firms can define their own assets and values using key-value pairs.
A chaincode sets the rules for who can read or/and alter the assets and
values [38]. There are two types of nodes: peers and ordering. They work
together to make sure only legitimate transactions are committed to the
ledger. A Fabric network consists mostly of peers whose main purpose is

15

to host smart contracts and ledgers. Peers can have copies of ledgers and
smart contracts, making them able to execute and verify transactions. Each
peer can host multiple ledgers and chain codes, making it easier to develop
a flexible system. If an administrator wants to change a chaincode they
must interact with a peer, for that reason peers is considered a key role in
the Fabric network. Anchor peer nodes are used by applications to execute
commands. It makes it possible for the applications to either update or query
a ledger. A peer can only be part of one organization. The permissions and
ownership of a peer are determined by the Membership Service Provider
[39].

A peer can have different roles. For instance, some peers act as endorsing
peers whose purpose is to sign the proposal before it is sent to the orderer.
The main role of orderer nodes is to order the transactions and keeping track
of the history of events on the network. When multiple nodes collaborate,
they form an ordering service. The service is mainly used to receive transac-
tions and create blocks on the blockchain during the process of committing a
transaction to the ledger. The process of a transaction is illustrated in figure
3.2 [40].

Figure 3.2: The basic transaction flow in Fabric [41]

16

3.8 Raft

When creating an ordering service, it is recommended to use the Raft or-
dering service implementation [40]. It is a Crash Fault Tolerant ordering
service. This means that the system can achieve consensus even if some
components fail [42]. The Raft ordering service uses a protocol known as
the Raft protocol. It forces the service to use a system which practices the
leader and follower model. The leader is an orderer node which has been
elected by other nodes to become the leading orderer node of a channel. The
main purpose of the leader is to receive new log entries, replicate and send
it to its followers. When an entry is committed to a ledger, the leader is the
one who manages it [40].

An orderer node do not have the leader role forever. The access to the
abilities may vary depending on the circumstances. Since the service is CFT
it can withstand the loss of either the leader or some of the followers. The
leader will send heartbeat messages to the followers to let them know it is
still "alive". If followers do not receive these messages within a configured
time-period, the nodes will mark the leader as dead and elect a new one.
The new node is chosen from a set of candidates. To become a candidate
a follower must promote itself as the best node for the role. The candidate
nodes will request votes from the followers, and if it gets enough votes it will
become the new leader [40].

Quorum is defined as the minimum amount of orderer nodes, clustered to-
gether in a channel, which has to agree on a proposal for a transaction and/or
a log entry to be added to the Finite-State Machine [40]. Each channel has
one cluster of orderer nodes. The clustered nodes forms the ordering service.
The cluster must contain at least three nodes to agree on a proposal. To
accept a proposal, the number of nodes who consent must be larger than the
nodes who do not. The FSM is used to make sure the logs are written in the
same order. Since every node has a FSM, it is also used to make sure every
node has the exact same ordered log [40].

17

3.9 Update Transaction

For applications to be able to get access to the ledgers and chaincodes they
must connect to peer nodes. By connecting to the peers, the applications can
either execute chaincodes or/and update the ledger. To update the ledger
all peers in the network must agree to the change. The process is called
consensus and are meant to prevent malicious nodes from tampering with
the ledger without other peers know about it. When all peers have approved
the transaction, causing an update to the ledger, the connected applications
will get notified by the peers about the changes to the ledger. The process
is separated in 5 parts and makes sure every peer has the same copy of the
ledger [39]. A figure illustrating the five steps of the process is shown in
Figure 3.3.

Figure 3.3: The five steps of an update transaction [39]

To update the ledger a client application must generate a transaction pro-
posal. The proposal is then sent to endorsing peers of the organizations
involved for the application to get permission to do the changes. The peers
execute a chaincode based on the proposal to create a response to the pro-
posed transaction. If they agree they will sign the response. The peers will
at this time, not add the change to their ledger, in case the change does not
get permission from the other peers. If the application gets enough signed
proposal responses the next phase will begin [39].

18

In the second phase the ordering service node will check if enough endorsing
peers has signed the proposal responses. If it is the correct amount, the
orderer service will create blocks of transactions and distribute it to the peers
who is members of the channel. This is done to make a final validation before
the change is committed. Since the service receive so many transactions, they
arrange them sequentially before they put it in containers known as blocks.
It is from these blocks blockchain gets half its name. In the last phase each
peer will inspect the blocks given by the orderer. This is done to make sure
everyone received the same result. If the validation of the transaction update
is successful, the peers will commit the block to the blockchain and update
the ledger[40].

3.10 Query Transaction

A ledger query transaction requires a three-step interaction between an ap-
plication and a peer. A figure illustrating the three steps is shown in Figure
3.4. For an application to execute a query it must connect to a peer. When a
connection has been successful, the application will invoke a chaincode with
the proposed query. Each peer has a copy of the ledger. As a result, a
peer does not need to consult with other peers, to accept and execute the
chaincode. This causes a query proposal response to the ledger. The peer
then sends a query response to the application, which contains the query
result. The query process is completed when the application has received
the proposal response [39].

Figure 3.4: Three steps of a query transaction [39]

19

3.11 Private Data Collection

Private data collection [43] was introduced in Hyperledger Fabric version
1.2. It makes it possible to keep data private, without the need of sepa-
rating channels. In earlier versions of Fabric, organizations had to create
new channels if they wanted to keep the data private from other channel
members. This caused administrative overhead, since it required the admin-
istrators to maintain a lot of unnecessary channels. Every authorized peer
stores the private data in a separate database from the channel ledger. The
private database is often referred to as SideDB. The data can get accessed
only by selected organizations, through chaincode of an authorized peer. To
still benefit from the immutability of the blockchain storage, a hash repre-
sentation of the data is added to the world state. This gives extra security
without exposing the data. Whenever private data is accessed it is checked
against the stored hash to validate it not been changed[43].

3.12 Docker

Docker [44] is an open-source tool used to create, deploy, and run sandbox
applications. Docker uses containers [45] to run different parts or entities of
an application. This provides a way to make an application run on any op-
erating system or system configurations. It shares similarities with a virtual
machine, however the containers require less memory usage. This is because
the containers can use the same operating system as the host, instead of hav-
ing a separate one. Docker is comprised of a Dockerfile [46], Docker image
[47], and Docker container.

The Dockerfile contains all requirements and specifications needed by a sand-
box application. These are used to build a Docker image which contains a
set of layers which each represent inscructions from the Dockerfile.

The Dockerfile contains all the requirements needed by the sandbox applica-
tions. The text document should contain a specification of which operating
system to use, file location, language etc. The requirements defined in the
Dockerfile is used to build a Docker image. The image contains a set of
layers which each represent instructions from the Dockerfile.

A Docker container is created every time an image is running. When it
is created, a container layer [48] is added to the top of the image. The
image layers before and after the container is created is shown in figure 3.5.
Every layer in the image is read-only except the container. All changes and

20

Figure 3.5: Illustration of the image layer structure, before and after a
container has been generated [48]

modifications done in a container is stored in the container layer. Since a
container do not influence an image, several containers can use the same
image even if they have had different state changes.

3.12.1 Docker Compose

If an application requires many containers, it is recommended to use Docker
Compose [49]. The Compose tool makes it easier to run complex applications
which requires a lot of containers. It lets the user define all the containers
in one file. Instead of running each container, one could just run a single
file. This makes it easier to do the required processes to make an application
run [44]. Docker and Docker Compose were used to generate the peer nodes
used in our project network.

21

Chapter 4

Project: Using Fabric for
hospital data collection

This chapter covers the project part of this paper. The requirements, entities
and architecture of the network. Finally we’ll discuss some different solutions
to the same problem.

4.1 Requirements

Integrity

• It is vital that data in a hospital is not tampered or manipulated.

Availability

• The data must always be available to users and the network. It is
important not only for the users using it, but also for the network to
operate properly.

Confidentiality

• The information stored is extremely sensitive and personal and must
therefore be fully confidential.

All these three points can be achieved using a decentralized permissioned
blockchain.

22

4.2 Proposed Architecture

Using HyperLedger Fabric we construct the following network.

4.2.1 Network entities

Patient Platform - An application portal for patients to connect to the net-
work. The patient is the person whose data is being stored. A patient would
want the ability to read their journal and decide who can access their data.
This is done through the Patient portal, a JavaScript application. Using a
wallet to store the identity of patients, a patient can query the blockchain
with limited access.

Doctor Platform - An application portal for doctors to connect to the net-
work. A doctor is a user who wishes to be able to both read and write to
journals they have access to. They also need the ability to request access to
journals they are unauthorized for. A doctor should be able to have access
to multiple journals.

Endorsers - Peers that validate and endorse transactions on the network.
Running the same chaincode, they expect the same output as every other
peer. They ensure that the transaction is executed as expected and no data
has been manipulated without the endorsement of the network.

4.2.2 Confidentiality and authentication

We tried using private data collections for storage, but it proved difficult to
find a way to transfer the data to another peer’s unknown collection. This is
because only the peer itself can access their own private storage. It is saved
locally and only a hash of the private data is stored on the network. So even
if the data is successfully requested and we know the names of both private
collections, they are stored on separated peers. The only way to transfer
something from one private collection to another is to either commit it to
the world state for all to see, or transfer between two collections on the same
peer.

A possibility is separating each user into their own organization on a single
peer. This way we can share data by simply adding new users to the orga-
nization MSP, however this does not take advantage of Fabric’s transaction

23

endorsement policies and would be completely centralized.

Instead, we use a wallet [50] to store identities of users to be used on the
network. The identities are X.509 certificates stored in a local key-value
pair storage. The certificate contains the public and private key used to
validate the users’ identity on the network. It also has a marker for which
organization this user belongs, as well as an option to add other attributes
or other fields for identification. Fabric includes a GetID function, seen in
listing 4.4, which returns a base64 value encoded from the users certificate.
This is guaranteed to be unique within the MSP and is unchanged with
certificate renewals. The wallet is stored in the file system of the peer. An
option would be to use instead CouchDB for easier data recovery [50].

We add a basic read/write ACL using the client ID of the patient for each
journal. This guarantees no duplicate key values for journals as all patients
are part of the same organization and MSP.

This solution relies on the peers of the network to be secured as the pay-
loads propagated across the channel are not encrypted. A possible solution
to this would be to encrypt any data put on the blockchain and keep the
decryption key off the network. Off-chain or confidential services are still
quite unexplored in blockchain technology.

24

4.2.3 Network structure

Figure 4.1: Network structure of peers, orderers, wallets and the channel.

Figure 4.1 shows the network structure of a simplified solution.
The DoctorPortal and PatientPortal are separated into two organizations,
each having one peer and a Certificate Authority. Using the identities stored
in the Doctor- and PatientPortal wallets, users can connect, authenticate
themselves and connect to the network. This simplified solution does not
have any endorsing peers which would not be viable in a production net-
work. But by using the fabric-samples we are only given the option of one
peer per organization. The organization orderers are separated from their
organizations as per Fabric’s security recommendations. This was an easy
choice as the fabric-samples already have the orderer nodes separated.

Figure 4.2 and 4.3 show the flow of a doctor or user commiting a transaction
to the network.

25

Figure 4.2: Network structure of the organisation peers and orderers.

This explains the steps of flow in figure 4.3 and 4.2:
(1): The application gets the user identity from the wallet and passes it to
the gateway with the update transaction.
(2): The gateway authorizes the user with the CA server.
(3): If successful the gateway will issue the request to the anchor peer.
(4): The transaction is simulated and endorsed if valid by the endorser peer.
(5): The endorsed transaction is sent to the orderer node for ordering using
TLS.
(6): The orderer CA server checks if the peer is authorized to submit a
transaction.
(7): A finished block is broadcast using TLS to the network anchor peers.
(8): The endorser checks the endorsement of their transactions of the block.
(9): The block is committed to the blockchain and the world state is up-
dated.

26

Figure 4.3: Flow of an update transaction.

4.2.4 Certificate Authorities

Our network includes three organisations; two for peers and endorsers, and
the third for orderer nodes. The Fabric documentation recommends using
two CAs per organization; One for generating organization and node iden-
tities, and the other for issuing TLS certificates. The TLS CA is generated
automatically when the organization CA is created and is another security
implementation by Fabric for securing communication between peers. This
prevents the risk of man in the middle attacks.

In total we need six CA clients to achieve this.

27

4.2.5 Chaincode

The chaincode is written in Go and is quite simple. A demonstration of how
these commands are used can be found in section 4.2.6.

There is one type of struct in the code, Asset. Asset is used as a journal
which entries can be added to, a list of authorisations of a journal, and a list
of access requests to a journal.

20 type Asset struct {
21 Owner string ‘json:" owner"‘
22 Data string ‘json:"data"‘
23 Entries map[string]string ‘json:" entries"‘
24 }

Listing 4.1: The asset struct.

When creating the journal, the ID of the user invoking the call is given read
access ("r") and added to the list of authorized users. On line 49 the JSON
is added to the world state with journalID with the "auth" prefix as key
value.

42 peers := Asset{
43 Entries: map[string]string{creator: "r"},
44 }
45 peerJSON , err := json.Marshal(peers)
46 if err != nil {
47 return err
48 }
49 err = ctx.GetStub ().PutState("auth"+journalID , peerJSON)

Listing 4.2: Creating the list of authorized users.

The creator is added as owner of the journal and it is put into the world
state with journalID as key value.

54 journal := Asset{
55 Owner: creator ,
56 Entries: make(map[string]string),
57 }
58 journal.Entries["default"] = "default"
59

60 journalJSON , err := json.Marshal(journal)
61 if err != nil {
62 return err
63 }
64 return ctx.GetStub ().PutState(journalID , journalJSON)

Listing 4.3: Creating the journal object.

28

Mentioned earlier, using the GetID() function in the GetClientIdentity() in-
terface is used for authorization. Found on line 96 in Cid.go [52].

1 func (c *ClientID) GetID () (string , error) {
2 // When IdeMix , c.cert is nil for x509 type
3 // Here will return "", as there is no x509 type cert for

generate id value with logic below.
4 if c.cert == nil {
5 return "", fmt.Errorf("cannot determine identity")
6 }
7 // The leading "x509 ::" distinguishes this as an X509

certificate , and
8 // the subject and issuer DNs uniquely identify the X509

certificate.
9 // The resulting ID will remain the same if the certificate

is renewed.
10 id := fmt.Sprintf("x509 ::%s::%s", getDN (&c.cert.Subject),

getDN(&c.cert.Issuer))
11 return base64.StdEncoding.EncodeToString ([] byte(id)), nil
12 }

Listing 4.4: GetID returns the unique client ID of the invoking user.

To give authorization to a journal we add the user ID to the map saved with
the key value "auth" + journalID.

174 func AddAuthentication(ctx contractapi.
TransactionContextInterface , journalID string , clientID
string , access string) error {

175 peers , err := GetAuthenticatedPeers(ctx , journalID)
176 if err != nil {
177 return err
178 }
179

180 peers[clientID] = access
181

182 peersAsset := Asset{
183 Entries: peers ,
184 }
185

186 peerJSON , err := json.Marshal(peersAsset)
187 if err != nil {
188 return err
189 }
190 return ctx.GetStub ().PutState("auth"+journalID , peerJSON)
191 }

Listing 4.5: Adding a user ID to the authorized users list.

29

In request.go you find all the access request related functions: RequestAc-
cess(), GetAccessRequests() and AnswerAccessRequest(). RequestAccess()
checks that the user is not the owner, then adds the client ID as key value
to the access request list before updating the world state.

10 func (s *SmartContract) RequestAccess(ctx contractapi.
TransactionContextInterface , journalID string , access
string) error {

11 creator , err := GetClientID(ctx)
12 if err != nil {
13 return fmt.Errorf("Failed to get owner ID, %v", err)
14 }
15 owner , _ := s.IsOwner(ctx , journalID)
16 if owner {
17 return fmt.Errorf("Cannot request additional access to a

asset you own")
18 }
19 requests , err := AccessRequests(ctx , journalID)
20 if err != nil {
21 return fmt.Errorf("Failed to get Access requests %v", err)
22 }
23 requests.Entries[creator] = access
24 requestsJSON , err := json.Marshal(requests)
25 if err != nil {
26 return fmt.Errorf("Failed json Marshal , %v", err)
27 }
28 return ctx.GetStub ().PutState("request"+journalID ,

requestsJSON)
29 }

Listing 4.6: Adding an access request to the access request list.

Shown in figure 4.4,when approving an access request, the code calls AddAu-
thentication(), shown in listing 4.5, adding the requested access to the jour-
nal’s ACL. Then it deletes the request before updating the world state.

80 err = AddAuthentication(ctx , journalID , peerID , request)
81 if err != nil {
82 return err
83 }
84 delete(requests.Entries , peerID)
85 requestJSON , err := json.Marshal(requests)
86 if err != nil {
87 return err
88 }
89 return ctx.GetStub ().PutState("request"+journalID ,

requestJSON)

Listing 4.7: Approving an access request.

30

Figure 4.4: Flowchart showing the authentication of the answer access
request function.

4.2.6 JavaScript API

The JavaScript API allows users to connect to the network using their
identities stored in the application wallet. While there is limited restrictions
on functions at the moment, splitting the API into two would allow for
easy control over what functions a user can operate. Below are the current
working commands.

JavaScript API Commands

enrollAdmin
Enrolls a CA administrator for an organisation and stores the identity
in the peer’s wallet.
There can only be one administrator per organization.
Usage: node enrollAdmin.js org

registerEnrollUser
Registers a new client with an organization CA and stores the created
identity in the peer’s wallet.
Usage: node registerEnrollUser.js org userID

createJournal
Used by the patient to create the initial journal object, add them as
the owner and give them read rights for their journal.
Usage: node createJournal.js org userID journalID

getJournal
Returns the full journal object from the blockchain.
Requires read rights to the journal.
Usage: node getJournal.js org userID journalID

addEntry
Adds an entry to a journal with given entryID and given data string.
Requires write rights to the journal.
Usage: node addEntry.js org userID journalID entryID data

32

getEntry
Returns the entry of given journalID and entryID. Usage: node getEn-
try.js org userID journalID entryID

requestAccess
Requests access to a given journalID
Cannot be used by the owner to gain greater access.
Usage: node requestAccess.js org userID journalID access

getAccessRequests
Returns the list of users requesting access.
Owner only.
Usage: node getAccessRequests.js org userID journalID

answerRequest
Used by the owner to respond to access requests.
Owner only.
node answerRequest.js org userID journalID requesterID an-
swer

33

4.3 Running the application

4.3.1 Prerequisites and binaries

To run Fabric, there are a few prerequisites listed below. We use Linux Sub-
system in Windows 10 to run an instance of Ubuntu. Docker and Docker-
compose are used to generate and operate the containers running the net-
work. Golang is used to implement the chaincode for the network. Finally
we use Node to run the JavaScripts for generating identities and interacting
with the network through their respective peers.

Prerequisite Version
Git Latest
Curl Latest

Ubuntu OS 18.04
Fabric 2.3.2
Docker 20.10.5

Docker-compose 1.29
Golang 1.15.xx
Node 10.15.3

Additionally we need Fabric-samples, a repository made by the Fabric team
to showcase the functions of their framework. We use the auction sample
to take use of the node imports in the application directory for simpler
queries.

To download the correct version of fabric-samples[51], the following com-
mand can be used:

curl -sSL https://bit.ly/2ysbOFE | bash -s – 2.3.2 1.5.0

This will clone the fabric-samples repository, download the latest Hyper-
Ledger Fabric Docker images and finally download the CLI tool binaries
that help generate and interact with the network.

Last step is to download the journal project files from Fredrik’s GitHub
repository, /fwoie/fabric-journal. The folder contains the smart contracts
and JavaScript’s used and can simply be merged with the fabric-samples
folder replacing any duplicate files.

34

https://github.com/fwoie/fabric-journal

4.3.2 Starting the network

From the /fabric-samples/test-network/ folder, run the following command:

./network.sh up createChannel -ca

This starts the Fabric network and creates the default channel mychannel.
The -ca flag activates the use of CA to verify users on the network.

Next we run the following command to deploy our chaincode to the channel
with the name journal.

./network.sh deployCC -ccn journal -ccp ../auction/chaincode-go/ -ccl go -ccep "OR(’Org1MSP.peer’,’Org2MSP.peer’)"

From the /fabric-samples/application-javascript directory, we can now take
use of the JavaScript API, section 4.2.6, to connect and interact with the
network using it’s commands.

To install the node modules needed to use the JavaScript API, the following
command is used in the application directory:

npm install

Following the steps provided in the README in the project repository the
application can be run and tested using the JavaScript API.

35

Chapter 5

Conclusion

5.1 Summary

In this thesis we have implemented a blockchain based hospital data manage-
ment. We used the framework, Hyperledger Fabric, to create a distributed
and immutable ledger within a permissioned blockchain.

Using X.509 certificates stored in a key-value wallet to authorize users ac-
cessing the network, we created per-object ACLs to secure the journals of
patients. With this a user could own or have access to as many assets as
needed and control who can access their assets. Authorization is divided
into read, write and read/write giving good control over the object.

This allows a patient to create a journal, give their doctor access to it and be
able to read any future changes. They would gain full control over who can
access their journal while not being able to read others journals. A doctor can
then have access to all their patients journals once given permission.

Our solution to a blockchain based hospital data management can provide an
easier sharing process for journals in medical fields. We hope that hospitals
will take inspiration from our work and implement a similar solution to their
data storage.

36

5.2 Further work

Several changes could be made to improve our hospital data management.
Since our project only uses one peer per organization it does not accomplish
the desired immutability for endorsing transactions. By adding endorsing
peers for each organization, the transactions would be safer from potential
malicious attacks.

In our proposed network it is crucial that the peers are secured as the peer’s
ledger is not encrypted. This represents an opportunity for a malicious actor
to access confidential data if the application portal or peer is exposed. A
possible solution for this would be encrypting the data as it is stored, but
this adds new difficulties of how to store and share the decryption key safely.
We could also separate each user into distinctive organizations to take use of
Fabric’s private data storage and secure data transfer. However Fabric does
not seem to support a feature like this at the moment so further development
is needed.

A simple addition would be to store different types of data instead of only
journals. For example using a prefix in the key value of the object stored,
other data such as prescriptions and x-ray imaging could be stored together
with journals.

Other applications

Although a key-value type database with per object authorization is not
new, it is normally not backed by blockchain technology to ensure the same
level of immutability, reliability, and security. This type of blockchain based
data management could therefore be used in many fields of applications, like
a platform for sharing and collaborating on patents between patent offices
and inventors. It could be used as a online diary for which you could approve
your friends to read or write entries.

37

List of Figures

2.1 Illustration of double spending 4
2.2 The five main elements of blockchain [14] 6

3.1 Local and global MSPs [35] 14
3.2 The basic transaction flow in Fabric [41] 16
3.3 The five steps of an update transaction [39] 18
3.4 Three steps of a query transaction [39] 19
3.5 Illustration of the image layer structure, before and after a

container has been generated [48] 21

4.1 Network structure of peers, orderers, wallets and the channel. 25
4.2 Network structure of the organisation peers and orderers. . 26
4.3 Flow of an update transaction. 27
4.4 Flowchart showing the authentication of the answer access

request function. 31

38

Listings

4.1 The asset struct. 28
4.2 Creating the list of authorized users. 28
4.3 Creating the journal object. 28
4.4 GetID returns the unique client ID of the invoking user. . . . 29
4.5 Adding a user ID to the authorized users list. 29
4.6 Adding an access request to the access request list. 30
4.7 Approving an access request. 30

39

Bibliography

[1] Wikipedia, Blockchain,
https://en.wikipedia.org/wiki/Blockchain, (accessed Jan. 18,
2021).

[2] J. Frankefield, Smart Contracts,
https://www.investopedia.com/terms/s/smart-contracts.asp,
(accessed Jan. 18, 2021).

[3] Wikipedia, Nick Szabo,
https://en.wikipedia.org/wiki/Nick_Szabo, (accessed Mar. 8,
2021).

[4] L. Meholm, Kryptovaluta, bitcoin, ICOer og Blockchain,
Norway: Hegnar media, 2018.

[5] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,
https://bitcoin.org/bitcoin.pdf, (accessed Jan. 17, 2021).

[6] J. Frankenfield, Double-spending,
https://www.investopedia.com/terms/d/doublespending.asp,
(accessed Feb. 10, 2021).

[7] J. Frankenfield, Proof of Work,
https://www.investopedia.com/terms/p/proof-work.asp, (accessed
Feb. 10, 2021).

[8] Trade Finance Global, History of Blockchain,
https://www.tradefinanceglobal.com/blockchain/
history-of-blockchain/, (accessed Jan. 12, 2021).

[9] Wikipedia, HyperLedger,
https://en.wikipedia.org/wiki/Hyperledger, (accessed Feb. 22,
2021).

40

https://en.wikipedia.org/wiki/Blockchain
https://www.investopedia.com/terms/s/smart-contracts.asp
https://en.wikipedia.org/wiki/Nick_Szabo
https://bitcoin.org/bitcoin.pdf
https://www.investopedia.com/terms/d/doublespending.asp
https://www.investopedia.com/terms/p/proof-work.asp
https://www.tradefinanceglobal.com/blockchain/history-of-blockchain/
https://www.tradefinanceglobal.com/blockchain/history-of-blockchain/
https://en.wikipedia.org/wiki/Hyperledger

[10] HyperLedger Fabric, Open, Proven, Enterprise-grade DLT,
https://www.hyperledger.org/wp-content/uploads/2020/03/
hyperledger_fabric_whitepaper.pdf, (accessed Feb. 22, 2021).

[11] HyperLedger-Fabric, Smart contracts and chaincode,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
smartcontract/smartcontract.htm, (accessed Apr. 11, 2021).

[12] L. Conway, Blockchain,
https://www.investopedia.com/terms/b/blockchain.asp, (accessed
Feb. 10, 2021).

[13] Built In, Blockchain,
https://builtin.com/blockchain, (accessed Feb. 10, 2021).

[14] K. Panetta, The CIO’s guide to blockchain,
https://www.gartner.com/smarterwithgartner/
the-cios-guide-to-blockchain/, (accessed Feb. 25, 2021).

[15] Westpoint Recruitment, Blockchain,
https://www.westpointrecruitment.com/blog/blog/
types-of-man-in-the-middle-cyber-attacks, (accessed Mar. 12,
2021).

[16] D. Floyd, How Bitcoin Works,
https://www.investopedia.com/news/how-bitcoin-works/,
(accessed Mar. 12, 2021).

[17] Blockchain Hub, Token Security: Cryptography - Part 2,
https://blockchainhub.net/blog/blog/
cryptography-blockchain-bitcoin/, (accessed Mar. 29, 2021).

[18] A. Khaliq, The good, the bad and the ugly of bitcoin security,
https://www.hongkiat.com/blog/bitcoin-security/, (accessed Apr.
7, 2021).

[19] J. Frankenfield, Proof of Stake,
https://www.investopedia.com/terms/p/proof-stake-pos.asp,
(accessed Feb. 10, 2021).

[20] P. Wackerow, Proof-of-Stake (PoS),
https:
//ethereum.org/en/developers/docs/consensus-mechanisms/pos/,
(accessed Apr. 8, 2021).

41

https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf
https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf
https://hyperledger-fabric.readthedocs.io/en/release-2.2/smartcontract/smartcontract.htm
https://hyperledger-fabric.readthedocs.io/en/release-2.2/smartcontract/smartcontract.htm
https://www.investopedia.com/terms/b/blockchain.asp
https://builtin.com/blockchain
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-blockchain/
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-blockchain/
https://www.westpointrecruitment.com/blog/blog/types-of-man-in-the-middle-cyber-attacks
https://www.westpointrecruitment.com/blog/blog/types-of-man-in-the-middle-cyber-attacks
https://www.investopedia.com/news/how-bitcoin-works/
https://blockchainhub.net/blog/blog/cryptography-blockchain-bitcoin/
https://blockchainhub.net/blog/blog/cryptography-blockchain-bitcoin/
https://www.hongkiat.com/blog/bitcoin-security/
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

[21] J. Frankenfield, 51 percent attack,
https://www.investopedia.com/terms/1/51-attack.asp, (accessed
Apr. 11, 2021).

[22] P. Jayachandran, The difference between public and private blockchain,
https://www.ibm.com/blogs/blockchain/2017/05/
the-difference-between-public-and-private-blockchain/,
(accessed Apr. 10, 2021).

[23] S. Seth, Public, Private, Permissioned Blockchains Compared,
https://www.investopedia.com/news/
public-private-permissioned-blockchains-compared, (accessed
Apr. 11, 2021).

[24] Wikipedia, Recruitment of spies,
https://en.wikipedia.org/wiki/Recruitment_of_spies, (accessed
Apr. 28, 2021).

[25] Broctagon Fintech Group, Proof of Work or Proof of Waste?,
https://medium.com/broctagongroup/
proof-of-work-or-proof-of-waste-f9d54e989cff, (accessed Apr.
28, 2021).

[26] Blockchain, Mempool Size (bytes),
https://www.blockchain.com/charts/mempool-size, (accessed Apr.
28, 2021).

[27] HyperLedger, Forbes Blockchain 50: Half of the biggest companies
deploying blockchain use Hyperledger,
https://www.hyperledger.org/blog/2019/04/18/__trashed,
(accessed Apr. 29, 2021).

[28] R. Oclarino, Blockchain’s Technology of Trust,
https://www.iso.org/news/isofocus_142-5.html, (accessed Apr. 29,
2021).

[29] IEEE, Blockchain and Distributed Ledger Standards Committee,
https://sagroups.ieee.org/bdlsc/, (accessed Apr. 29, 2021).

42

https://www.investopedia.com/terms/1/51-attack.asp
https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/
https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/
https://www.investopedia.com/news/public-private-permissioned-blockchains-compared
https://www.investopedia.com/news/public-private-permissioned-blockchains-compared
https://en.wikipedia.org/wiki/Recruitment_of_spies
https://medium.com/broctagongroup/proof-of-work-or-proof-of-waste-f9d54e989cff
https://medium.com/broctagongroup/proof-of-work-or-proof-of-waste-f9d54e989cff
https://www.blockchain.com/charts/mempool-size
https://www.hyperledger.org/blog/2019/04/18/__trashed
https://www.iso.org/news/isofocus_142-5.html
https://sagroups.ieee.org/bdlsc/

[30] Rand, The Potential Role of Standards in Supporting the Growth of
Distributed Ledger Technologies/Blockchain,
https://www.rand.org/randeurope/research/projects/
blockchain-standards.html, (accessed Apr. 29, 2021).

[31] HyperLedger, Hyperledger Passes 250 Members with addition of 9
organizations,
https://www.hyperledger.org/announcements/2018/07/31/
hyperledger-passes-250-members-with-addition-of-9-organizations,
(accessed Apr. 15, 2021).

[32] HyperLedger-Fabric, Introduction,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
blockchain.html, (accessed Apr. 21, 2021).

[33] HyperLedger-Fabric, Blockchain Network,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
network/network.html, (accessed Apr. 21, 2021).

[34] HyperLedger-Fabric, Identity,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
identity/identity.html, (accessed Apr. 21, 2021).

[35] HyperLedger-Fabric, Membership Service Provider (MSP),
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
membership/membership.html, (accessed Apr. 19, 2021).

[36] HyperLedger-Fabric, Access Control Lists (ACL),
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
access_control.html, (accessed Apr. 19, 2021).

[37] M. Felder, A real-world example of a smart contract,
https://www.linkedin.com/pulse/
real-world-example-smart-contract-marvin-felder, (accessed
Apr. 12, 2021).

[38] HyperLedger-Fabric, Hyperledger Fabric Model,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
fabric_model.html, (accessed Apr. 19, 2021).

[39] HyperLedger-Fabric, Peers,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
peers/peers.html, (accessed Apr. 19, 2021).

43

https://www.rand.org/randeurope/research/projects/blockchain-standards.html
https://www.rand.org/randeurope/research/projects/blockchain-standards.html
https://www.hyperledger.org/announcements/2018/07/31/hyperledger-passes-250-members-with-addition-of-9-organizations
https://www.hyperledger.org/announcements/2018/07/31/hyperledger-passes-250-members-with-addition-of-9-organizations
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/access_control.html
https://www.linkedin.com/pulse/real-world-example-smart-contract-marvin-felder
https://www.linkedin.com/pulse/real-world-example-smart-contract-marvin-felder
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html

[40] HyperLedger-Fabric, The Ordering Service,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
orderer/ordering_service.html, (accessed Apr. 19, 2021).

[41] Sumit V, Hyperledger Fabric - Part 1 - Components and Architecture,
https://blog.clairvoyantsoft.com/
hyperledger-fabric-components-and-architecture-b874b36c4af5,
(accessed May. 13, 2021).

[42] K. Rilee, Understanding HyperLedger Fabric - Byzantine Fault
Tolerance, https://medium.com/kokster/
understanding-hyperledger-fabric-byzantine-fault-tolerance-cf106146ef43,
(accessed Apr. 30, 2021).

[43] HyperLedger, Private Data Collections: A high-level overview,
https://www.hyperledger.org/blog/2018/10/23/
private-data-collections-a-high-level-overview, (accessed May.
1, 2021).

[44] Docker, Glossary,
https://docs.docker.com/glossary/, (accessed May. 1, 2021).

[45] Docker, Container,
https://docs.docker.com/glossary/?term=container, (accessed
May. 1, 2021).

[46] Docker, File,
https://docs.docker.com/glossary/?term=Dockerfile, (accessed
May. 1, 2021).

[47] Docker, Image,
https://docs.docker.com/glossary/?term=image, (accessed May. 1,
2021).

[48] Docker, About Storage Drivers,
https://docs.docker.com/storage/storagedriver/, (accessed May.
2, 2021).

[49] Docker, Compose,
https://docs.docker.com/glossary/?term=compose, (accessed May.
2, 2021).

[50] HyperLedger, Wallet,
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
developapps/wallet.html, (accessed May. 3, 2021).

44

https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://blog.clairvoyantsoft.com/hyperledger-fabric-components-and-architecture-b874b36c4af5
https://blog.clairvoyantsoft.com/hyperledger-fabric-components-and-architecture-b874b36c4af5
https://medium.com/kokster/understanding-hyperledger-fabric-byzantine-fault-tolerance-cf106146ef43
https://medium.com/kokster/understanding-hyperledger-fabric-byzantine-fault-tolerance-cf106146ef43
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-high-level-overview
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-high-level-overview
https://docs.docker.com/glossary/
https://docs.docker.com/glossary/?term=container
https://docs.docker.com/glossary/?term=Dockerfile
https://docs.docker.com/glossary/?term=image
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/glossary/?term=compose
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/wallet.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/wallet.html

[51] HyperLedger Fabric, fabric-samples,
https://github.com/hyperledger/fabric-samples, Version 2.3.2

[52] HyperLedger Fabric, Cid.go - GetID(),
https://github.com/hyperledger/fabric-chaincode-go/blob/
main/pkg/cid/cid.go, Version 2.3.2

45

https://github.com/hyperledger/fabric-samples
https://github.com/hyperledger/fabric-chaincode-go/blob/main/pkg/cid/cid.go
https://github.com/hyperledger/fabric-chaincode-go/blob/main/pkg/cid/cid.go

	Introduction
	Background and motivation
	Outline

	Background
	The birth of Blockchain
	Double Spending

	New ways of using blockchains
	The elements of blockchain
	Decentralization
	Distribution
	Encryption
	Immutability
	Tokenization

	Development of blockchain
	Public and Private Blockchains

	Use cases and downsides with blockchain
	Standardization

	Hyperledger Fabric
	Background
	Networks and Channels
	Identity
	Membership Service Providers
	Access Control Lists
	Smart Contracts
	Peers and Orderers
	Raft
	Update Transaction
	Query Transaction
	Private Data Collection
	Docker
	Docker Compose

	Project: Using Fabric for hospital data collection
	Requirements
	Proposed Architecture
	Network entities
	Confidentiality and authentication
	Network structure
	Certificate Authorities
	Chaincode
	JavaScript API

	Running the application
	Prerequisites and binaries
	Starting the network

	Conclusion
	Summary
	Further work

