
FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR’S THESIS

Study programme/specialisation: Spring semester, 2021

Bachelor of Science in Computer Science Open

Author: Jari Kunnas

Program Coordinator: Karl Skretting

Supervisor(s): Øyvind Meinich-Bache

Title: Object Detection, simulated conscious

Norsk tittel: Objekt Deteksjon, simulert våkenhet

Credits: 20

Keywords: Page Numbers: 43

Object Detection, Tensorflow, Convolutional Neural Network

SSDmobileNet, Raspberry Pi, + Appendix: 39 pages

Stavanger 15. May 2021



Contents

Contents i

Summary iv

1 Introduction 1

1.1 Motivation of Thesis . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Topic of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Report Overview . . . . . . . . . . . . . . . . . . . . 3

2 Background and Methods 4

2.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Artificial Neural Network for Object Detection . . . . . . . 4

2.2.1 Convolutional Neural Networks . . . . . . . . . . . . 5

2.2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . 5

2.2.3 SSDMobileNet . . . . . . . . . . . . . . . . . . . . . 5

i



CONTENTS

2.2.4 Tensorflow Object Detection API . . . . . . . . . . . 6

2.3 Laerdal Medical’s Patient Simulator SimMan . . . . . . . . 6

2.3.1 Eye Prototype . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Intel Realsense D435 [10] Depth Camera . . . . . . . 8

3 Implementation 9

3.1 Flowchart of Object Detection Eye Prototype . . . . . . . . 9

3.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Dataset for Custom Transfer Learning . . . . . . . . 10

3.2.2 Transfer Learning Parameters on Custom Dataset . 11

3.2.3 Pretrained Face Detection Network . . . . . . . . . . 11

3.2.4 Object Detection Inference Script . . . . . . . . . . . 11

3.2.5 Object Detection Coordinate Conversions . . . . . . 17

3.3 Transfer of Detection . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Send Data . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Receive Data . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Eye Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Edge Device . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Modifications on Premade Eye Prototype Code . . . 23

3.5 Object Detection Eye Prototype Files in Project . . . . . . 28

ii



CONTENTS

3.6 Code Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experiments, Results and Discussion 30

4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Single Person Tracking . . . . . . . . . . . . . . . . . 33

4.2.2 Single Person Tracking with Multiple Persons Visible 34

4.2.3 Single Person Tracking Multiple Camera Position . . 35

5 Conclusion 39

5.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 43

Appendix 43

A Object Detection Code 44

B Coordinate Converter Code 54

C Send Data Code 59

D Receive Data Code 62

E Eye Prototype Code 65

iii



Summary

Medical emergencies and trauma situations are stressful events. Training
and repetition in controlled environment is used for health professionals to
gain experience and retain the learning for longer. Laerdal Medical creates
medical equipment and training equipment meant for health personnel.

SimMan is a high-fidelity patient simulator created by Laerdal Medical to
train teams in treating medical emergencies and trauma. To make the
simulations more realistic to increase the training effect work has been done
to make prototypes that can replicate realistic behaviour.

The project in this thesis builds on a head prototype with LCD monitors
as eyes and with a joystick and switch controller attached for changing
eye modes. One of those modes were used in this thesis for receiving target
angles the eyes should be rotated to look at a detected object. The detected
object was found using a neural network trained on detecting faces.

Edge devices like Raspberry Pi with lower computing capability are cheap
and flexible for many use cases. The effectiveness object detection network
can achieve on these edge devices makes this eye prototype system flexible
for further implementation and more advanced functionality.

The modified eye prototype and object detection pipeline developed for this
thesis performs well and appear realistic when there is a single target person
in the depth camera’s field of view. Multiple people visible will make the
eyes change who it looks at in a way that does not seem realistic. There
are also some angles relative to the prototype where the eye contact looks
unfocused.

iv



Chapter 1

Introduction

1.1 Motivation of Thesis

SimMan is a high-fidelity patient simulator used to train teams in treating
medical emergencies and trauma. The training done on this product help
save the lives of trauma victims, COVID-19 patients, and many others every
day. The installed base of SimMan is over 10 000 simulators. The simulator
already contains microphones, speakers, an on-board computer and network
connection.

To improve the quality and realism of the training Laerdal Medical aim
at making the simulators more realistic both in appearance and responses.
A key element in assessing a patient’s consciousness is the eye movement.
An alert and conscious patient will naturally follow people and their move-
ments in the environment. In addition, Laerdal Medical wants the simulator
to respond realistically to clinical procedures involving eye movement, e.g.
“follow my finger with your eyes”.

1



1.2 Topic of Thesis

1.2 Topic of Thesis

Goal of Thesis

The goal of this thesis was to use object detection together with an eye focus
system to provide inputs that guide where the SimMan Patient Simulator
eyes should focus.

A neural network that uses input from a depth camera to find the position
of objects and send that to the prototype for visualisation was the target
of this thesis. The objects to train the object detection network on was
identified to be faces and fingers/pens for the clinical procedure "follow my
finger test". This use of object detection networks for the eye prototype was
targeted as a proof of concept prototype for potential further development
for more advanced uses or implementation into the commercial SimMan
patient simulator

Work Completed in this Thesis

A complete prototype system with depth camera, a face detection neural
network and direction of the LCD monitor eyes to the faces was imple-
mented. The face detection neural network used was a network trained by
Github user: "yeephycho" on the "WIDERFACE" dataset. [20] [21]

The object detection network used and the surrounding pipeline in this
thesis was only trained on faces and logic for changing objects to track with
the eyes when multiple different objects are detected was not implemented.

A training pipeline using the Tensorflow object detection API to train a
neural network on custom objects was set up and run on a very small
custom dataset for testing the training setup. Collecting and labeling a
large and diverse enough dataset for training on a relevant object was not
completed.

The eye prototype using object detection on faces was tested with basic
experiments to check the realism of the eye prototype system.

2



1.3 Thesis Report Overview

1.3 Thesis Report Overview

This thesis report contains these main parts:

• Background and Method

• Implementation

• Experiments, Results and Discussion

The "Background and Method" chapter contains brief explanation and ref-
erences to the technologies used in the implementation of the project in this
thesis.

The "Implementation" chapter has code examples of the novel and modified
code created for this project. There are illustrations and explanations on
how the different parts are set up to create a complete data sampling and
interpretation pipeline from camera inputs to the eye visualisation outputs.

The "Experiments, Results and Discussion" part has three experiments per-
formed to test and document the realism of the object tracking prototype.

3



Chapter 2

Background and Methods

This Chapter explains the technologies and theories of the methods used in
this project

2.1 Method Overview

The method of the project in this thesis uses a combination of technologies.
A face detection neural network is used on the inputs from the depth cam-
era and sent for positioning of the eyes of the premade LCD monitor eye
prototype from Laerdal Medical.

2.2 Artificial Neural Network for Object Detection

Artificial neural network design is influenced by the way neurons in brains
communicate and function. [8] A large variations of designs and structures
are used for different learning tasks and applications. The type of neural
nets and their use in this thesis is explained briefly in the following sub
chapters.

4



2.2 Artificial Neural Network for Object Detection

2.2.1 Convolutional Neural Networks

Many variations of convolution neural networks has been developed that
build on the ideas from the network "Neocognotion" proposed by Dr. Ku-
nihiko Fukushima in 1980. [7] Convolutional neural networks has a layer
structure that is different than a classic neural network with fully connected
layers. It filters in regions of an input and has a final fully connected layer
that learns to recognize the complete objects and position of it. Earlier
layers are sensitive to basic features and shapes and later layers detect com-
binations of features that make up part of the final object. [13] [16]

2.2.2 Transfer Learning

Transfer learning is where a pretrained model is used as the starting point in
training a model to perform a new learning task. In this project a pretrained
multiple object detection network was used to set up the training pipeline for
custom images and classes. The pretrained model was trained on custom
images of faces to only detect faces. Convolutional neural networks are
suitable for transfer learning since the first layers recognize basic shapes
and features. In transfer learning locking the first layers and only train the
later ones that detect the complete objects achieves the transfer learning.
[4]

2.2.3 SSDMobileNet

High performing neural networks for object detection are often large and
require large computing resources to work fast enough for useful real time
applications. For edge devices like Raspberry Pi smaller detection networks
optimized for speed are needed. A Single Shot Detector was presented by
Liu et al. on 2016. [14] The detector only processes the input once and
returns multiple boxes of detections and their accuracy. Combining this
detector with a MobileNet results in an efficient network that has good
accuracy on edge devices. [9] Pretrained versions of SSDMobileNet trained
using transfer learning on faces was used in this thesis.

5



2.3 Laerdal Medical’s Patient Simulator SimMan

2.2.4 Tensorflow Object Detection API

Tensorflow is a platform for machine learning and has an API set up for
object detection and custom training. [1] A comprehensive tutorial is made
by Lyudmil Vladimirov and was followed to test custom training in this
project. Priorities led to implementation of a custom trained object detec-
tion network to not be completed. [19]

Using Tensorflow on a computers GPU(graphical proccessing unit) requires
care in selecting compatible versions and following tested procedures like
the one from Lyudmil Vladimirov is recommend. [19]

2.3 Laerdal Medical’s Patient Simulator SimMan

Laerdal Medical’s Patient Simulator SimMan is an advanced full body pa-
tient simulator. [15] To make the patient simulator feel more realistic a
prototype for eyes that look realistic and can move around naturally was
made prior to this thesis’s project. The prototype is explained more in
detail in the subsection below.

2.3.1 Eye Prototype

The eye prototype that was made by Laerdal Medical is a head mounted on a
platform. The head has two LCD monitors as eyes connected to a Raspberry
Pi that runs the eye simulation.[2][6] The eye simulator has curved lenses
on top of the monitors to make the eyes look spherical. A 3D printed socket
and mount for the spherical lenses makes if fit realistically inside the head
platform. To avoid the challenges the spherical lenses creates on optics the
prototype in this thesis project was developed an tested with only the flat
LCD monitors without lenses on top. See figure 2.1 and the eye without
the lens inserted. That was how both the eyes were used in this project.

6



2.3 Laerdal Medical’s Patient Simulator SimMan

Figure 2.1: Overview of all equipment setup in this prototype. One eye lense is
removed to demonstrate the LCD monitor behind it. Depth camera can be seen
below, to the side of the head prototype. Raspberry Pi 3 running the eyes can be
seen in the background.

Adafruit Animated Eyes Bonnet for Raspberry Pi

The LCD monitors the eyes uses are two 1.54" monitors with 240x240 reso-
lution with full angle viewing. [2]. This is designed to connect to the GPIO
pins and hardware of the Raspberry Pi 3 Model B. [2] [6]

7



2.3 Laerdal Medical’s Patient Simulator SimMan

Figure 2.2: Closeup of eyes. One lens is removed for demonstration. Depth
camera can be seen below and to the side of the head prototype

2.3.2 Intel Realsense D435 [10] Depth Camera

Depth camera was identified to help in the positioning of the eyes so the
focus would not be cross-eyed. When eyes look at an object closer to itself
the individual positioning of the eyes become crucial to appear realistic.
This camera is a stereo camera that has depth sensing capability. It comes
with a development kit and python library that is compatible with the other
parts used in this project. Using the python "pyrealsense2" library there
are two arrays of data that can be used from the camera.[11] One array
from the normal RGB (Red, Green, Blue) camera and a depth array of
same frame. [10]

8



Chapter 3

Implementation

This chapter explains the novel work and the modifications of existing solu-
tion that was done in this project. Code snippets are included and explained
in this chapter. The full code can be found in the Appendix or the projects
Github repository. [12]

3.1 Flowchart of Object Detection Eye Prototype

The flowchart in figure 3.1 below show the files used in the eye prototype
system made in this project and where they are used and the device running
them. Details on the individual scripts and the novel and modified code
inside is explained below in this chapter. This flowchart shows an overview
for context on where they are run.

9



3.2 Object Detection

Figure 3.1: Flowchart of Files and Devices using them

3.2 Object Detection

Two object detection neural networks were tested in this project. One
trained on a custom dataset captured and labeled manually and one pre-
trained on faces.[21] Due to time constraints it was not prioritised to com-
plete preparing a good dataset and running training on it. The pipeline for
training on custom data and using the network in the prototype pipeline
was implemented and explained below in this chapter.

3.2.1 Dataset for Custom Transfer Learning

The data i.e. images collected in this project was only of the author and
was not of sufficient variability for good results. The dataset contained only
10 images where 8 was used for training and 2 for testing.

10



3.2 Object Detection

Prioritisation of tasks led to this dataset not being expanded and used for
a self trained custom network to be used in the prototype pipeline.

To properly train a new custom model to detect faces or potentially other
object of interest in patient simulation scenarios, larger datasets with more
variations are needed so the models are not overfitted to very specific data.

3.2.2 Transfer Learning Parameters on Custom Dataset

The transfer learning was set up with a low learning rate of 0.08 and
50000 steps. These are inputs in the pipeline.config file that is set up us-
ing the Tensorflow object detection API. [19] The files and model trained
can be found in this thesis’s Github repository under "person_event-detect-
recognition/custom_from_scratch/tensorflow_face_model_jk
". [12]

3.2.3 Pretrained Face Detection Network

Using a pretrained face network was prioritised in this project so that a com-
plete pipeline and prototype could be completed and tested. The network
used was a "SSDmobileNet" trained on the "WIDER FACE" benchmark
dataset. [21] [20] The pretrained model has a python script for detection
and visualisation that was modified in this project. Details of this is in
subsection 3.2.4 below.

3.2.4 Object Detection Inference Script

This subsection will show code snippets of modified code of the origi-
nal inference script in the repository by Github user "yeephycho" ("in-
ference_usbCam_face.py"). [21].

This inference script is used to collect the input data from the camera, run
object detection on them, convert the inputs using the "ConvertCoordi-
nates" class and then send it over the network to the eye prototype using

11



3.2 Object Detection

the "SendData" class.

Modified dependency imports are the pyrealsense2 package (line 15), classes
made for this thesis; "SendData" and "ConvertCoordinates" and native
package "copy" for holding the last valid depth measurement in memory.
See line 1 to 20 below for the packages included in the python script "in-
ference_usbCam_face.py"

1 #!/usr/bin/python
2 # -*- coding: utf-8 -*-
3 # pylint: disable=C0103
4 # pylint: disable=E1101
5

6 from os import X_OK
7 import sys
8 import time
9 import numpy as np

10 import tensorflow as tf
11 import cv2
12 import collections
13 import six
14 import PIL.Image as Image
15 import pyrealsense2 as rs
16 from utils import label_map_util
17 from utils import visualization_utils_color as vis_util
18 from send import SendData
19 from coordinate_converter import ConvertCoordinates
20 import copy

The Tensorflow Object Detection API [19] has a function
( visualize_boxes_and_labels_on_image_array() ) in the "utils" module
that takes the detection outputs and create bounding boxes and prints the
class label and detection accuracy. A modified version of this function that
takes in the detection outputs and returns the coordinates for the corners of
the bounding box is shown below (lines 38 to 108). This function is used to
determine the pixel location on the detection camera the prototype eyes will
be directed at. Please see appendix or Github repository for the complete
function. [12]

38 def get_eye_focus_coordinate(
39 image,
40 boxes,

12



3.2 Object Detection

41 classes,
42 scores,
43 category_index,
44 instance_masks=None,
45 instance_boundaries=None,
46 keypoints=None,
47 keypoint_scores=None,
48 keypoint_edges=None,
49 track_ids=None,
50 use_normalized_coordinates=False,
51 max_boxes_to_draw=20,
52 min_score_thresh=.5,
53 agnostic_mode=False,
54 line_thickness=4,
55 mask_alpha=.4,
56 groundtruth_box_visualization_color='black',
57 skip_boxes=False,
58 skip_scores=False,
59 skip_labels=False,
60 skip_track_ids=False):
61 """

Lines 177 to 213 of "inference_usbCam_face.py" sets up the camera for
capturing images and depths(line 178-196), sets up the network class for
sending data(line 202-204) and sets up the converter class for calculating
the correct angles for the eyes(line 206-212). Details on the converter class
can be seen in subsection 3.2.5.

178 # Configure depth and color streams
179 pipeline = rs.pipeline()
180 config = rs.config()
181

182 # Get device product line for setting a supporting ...
resolution

183 pipeline_wrapper = rs.pipeline_wrapper(pipeline)
184 pipeline_profile = config.resolve(pipeline_wrapper)
185 device = pipeline_profile.get_device()
186 device_product_line = ...

str(device.get_info(rs.camera_info.product_line))
187

188 config.enable_stream(rs.stream.depth, 640, 480, ...
rs.format.z16, 30)

189

190 if device_product_line == 'L500':
191 config.enable_stream(rs.stream.color, 960, 540, ...

rs.format.bgr8, 30)

13



3.2 Object Detection

192 else:
193 config.enable_stream(rs.stream.color, 640, 480, ...

rs.format.bgr8, 30)
194

195 # Start streaming
196 pipeline.start(config)
197 tDetector = TensoflowFaceDector(PATH_TO_CKPT)
198

199 cap = cv2.VideoCapture(camID)
200 windowNotSet = True
201

202 #socket sending
203 send_data_to_socket = SendData()
204 send_data_to_socket.setup_server_sending()
205

206 #Converterclass
207 coordinate_converter = ConvertCoordinates()
208 coordinate_converter.set_camera_resolution((640,480)) ...

#camera resolution
209 ...

coordinate_converter.set_eye_center_offset_from_screen(-10) ...
# distance to fictive eye center behind monitor

210 coordinate_converter.set_mode('3D')
211 # coordinate_converter.set_xyz(50,50,1000) #default ...

point to look at top left looking at head
212 depth_previous = 0.8

Below is the start of the while loop that does the detections on the input
data from the camera. The camera data is converted to a "numpy" array
to be compatible with the Tensorflow detections.

214 while True:
215 # Wait for a coherent pair of frames: depth and color
216 frames = pipeline.wait_for_frames()
217 depth_frame = frames.get_depth_frame()
218 color_frame = frames.get_color_frame()
219 if not depth_frame or not color_frame:
220 continue
221

222 # Convert images to numpy arrays
223 depth_image = np.asanyarray(depth_frame.get_data())
224 color_image = np.asanyarray(color_frame.get_data())

A list of normalised coordinates 0 to 1 is returned from the function
get_eye_focus_coordinate() (line 263-273). For visualisation on the live

14



3.2 Object Detection

video stream with the "OpenCV" python package, pixel position as integers
was needed. Line 278 to 280 converts the float list to an integer list. A red
circle with radius 10pixels was chosen to demonstrate the focus point for
the eye prototype. A point 1/3 from the left of the bounding box and 1/3
from the top of the bounding box was chosen as the point where the right
eye of faces normally is located and selected as the focus point for the eye
prototype.

263 box_test = get_eye_focus_coordinate(
264 image,
265 np.squeeze(boxes),
266 np.squeeze(classes).astype(np.int32),
267 np.squeeze(scores),
268 category_index,
269 use_normalized_coordinates=True,
270 max_boxes_to_draw=200,
271 min_score_thresh=.3,
272 agnostic_mode=False)
273 # print(box_test) #example (0.23469042778015137, ...

0.30845338106155396, 0.7406021952629089, ...
0.5217226147651672)

274

275

276 if box_test:
277 # print(box_test)
278 box_int_list = [0,0,0,0]
279 for i in range(4):
280 box_int_list[i] = int(box_test[i])
281

282 # 1/3 from the left of the box
283 x_location = ...

int(((box_int_list[1]-box_int_list[0])*1/3)+box_int_list[0])
284 #1/3 from the top.
285 y_location = ...

int(((box_int_list[3]-box_int_list[2])*1/3)+box_int_list[2])

The depth sensing capability of the camera is used to derive the location of
the detected faces in 3 dimensional space. Line 286 to 295 takes the depth
frame from the camera and finds the distance at the X and Y pixel location
of the focus point from previous steps in the code. The depth sensor will
occasionally return a frame with 0’s. Storing the previous distance above
0.01 meter is used so the eyes will not "flicker" between a real focus distance
and 0 meter from the camera. If a 0 frame is returned from the depth

15



3.2 Object Detection

camera the previous depth measurement will be used. This is handled by
line 292-295.

286 # get depth from realsense camera
287 depth_location = ...

depth_frame.get_distance(x_location, y_location) # ...
depth in xx units

288 depth_location_left = ...
depth_frame.get_distance(x_location, y_location+10)

289 depth_location_right = ...
depth_frame.get_distance(x_location, y_location-10)

290 depth_location = ...
np.mean([depth_location,depth_location_right,depth_location_left])

291 # Write some Text
292 if depth_location < 0.01:
293 depth_location = depth_previous
294

295 depth_previous = copy.deepcopy(depth_location)

Conversion of the the pixel postion x and y and the depth to the position is
sent to the "coordinate_converter" class instance in line 316. The converted
angle for the eye prototype is then retrieved from the converter class and
sent using the "send_data_to_socket" class. The sending over network is
exception handled with try: except:, so the code does not stop if there is a
network problem. There is also a very small sleep delay (line 326 and 330)
put in after sending that can be altered to simulate slower detection speed
and limit the network usage on detection speeds faster than needed for the
eye prototype.

316 coordinate_converter.set_xyz(
317 circle_coordinates[0],
318 circle_coordinates[1],
319 depth_location*1000
320 )
321

322 try:
323 str_data_to_send = ...

coordinate_converter.get_eye_coordinates()
324 # print(str_data_to_send)
325 ...

send_data_to_socket.send_data(str_data_to_send)
326 time.sleep(0.05)
327 except Exception:

16



3.2 Object Detection

328 # str_data_to_send = ...
coordinate_converter.get_eye_coordinates()

329 # ...
send_data_to_socket.send_data(str_data_to_send)

330 time.sleep(0.05)

3.2.5 Object Detection Coordinate Conversions

Full code can be viewed in this projects repository [12] and appendix B.
Main parts and calculations will be described in this sub chapter.

Eye Prototype Angle Calculations

The eye prototype is explained in more detail in section 3.4. Shortly ex-
plained it is visualizing 3D object of eyes that it rotates a camera around
to angles given to the prototype’s code. These angles are what is calculated
from the object detection pixel position and depth.

Figure 3.2: Sideview of the measurements and calculated distances used in cal-
culation of eye Y angle

17



3.2 Object Detection

Since the camera has a specific field of view, the distance and pixel location
to the detection there is enough information to calculate a three dimensional
position vector ( X, Y, Z ). First the amount of pixels per degree of field
of view is calculated. From that variable the degrees from center or edge
of image can be calculated. Since the distance is measured it will be the
hypotenuse in this trigonometry. The distance from from the coordinate
system centers can then be measured in the side view plane (seen in Figure
3.2) and top down view plane. Lines 74-88 in "coordinate_converter.py"
calculates the x, y and z displacement of the object from the camera refer-
ence.

74 pix_per_degree_x = ...
self.__camera_resolution[0]/self.__fov_x

75 degrees_from_left = x / pix_per_degree_x
76 degrees_from_center = degrees_from_left - ...

(self.__fov_x/2)
77 x_distance_from_center_mm = \
78 math.sin(math.radians(degrees_from_center)) * ...

depth
79 z_distance_from_center_mm = \
80 math.cos(math.radians(degrees_from_center))* depth
81 z_distance_from_center_mm = \
82 z_distance_from_center_mm - ...

self.__camera_to_between_eyes_offset_z
83

84 pix_per_degree_y = ...
self.__camera_resolution[1]/self.__fov_y

85 degrees_from_top = y / pix_per_degree_y
86 degrees_from_center = degrees_from_top - ...

(self.__fov_y/2)
87 y_distance_from_center_mm = \
88 ...

math.sin(math.radians(degrees_from_center)) * depth

When the x, y and z position relative to the camera is found the eye offsets
from the camera can be taken into account and results in two sides of the
triangle available and the angle can be found in the two planes mentioned
above. The z distance in the coordinate system is the same for camera and
eyes. If it is not the same a z offset variable can be set in the code. The
"eye to object y offset" distance in figure 3.2 is the other length needed to
find the angle to object relative to the z axis. The y direction angle is the
same for both eyes when camera and prototype head is put in the same

18



3.3 Transfer of Detection

horizontal orientation. The x ( sideways ) angles will not be the same and
need to be calculated individually. This is done in line 99 to 103.

Individual y angles for left and right eye is calculated in this code. This is
done for future applications where camera and head might be positioned in
different coordinate systems relative to the camera and the heads straight
ahead z axis.

91 #x and y coordinates relative to eye positions
92 left_eye_x = x_distance_from_center_mm - ...

self.__eye_offset_L_x
93 left_eye_y = y_distance_from_center_mm - ...

self.__eye_offset_L_y
94

95 right_eye_x = x_distance_from_center_mm - ...
self.__eye_offset_R_x

96 right_eye_y = y_distance_from_center_mm - ...
self.__eye_offset_R_y

97

98

99 left_eye_x_angle = ...
math.asin(left_eye_x/z_distance_from_center_mm)

100 left_eye_y_angle = ...
math.asin(left_eye_y/z_distance_from_center_mm)

101

102 right_eye_x_angle = ...
math.asin(right_eye_x/z_distance_from_center_mm)

103 right_eye_y_angle = ...
math.asin(right_eye_y/z_distance_from_center_mm)

3.3 Transfer of Detection

The eye prototype uses hardware which is designed for Raspberry Pi 3. This
model of Raspberry Pi is not as powerful as the newer version of Raspberry
Pi 4 or other computers. A laptop or a Raspberry Pi 4 was used as the
computing system to run the object detection. Due to the object detection
being run on an external system and the eye prototype not easily ported
to another system, code for transferring and receiving data was developed.
This section describes the classes for sending and receiving data over cables
or wireless network. [6] [12]

19



3.3 Transfer of Detection

One class for sending data and one class for receiving data was developed.

3.3.1 Send Data

The class "SendData()" in "send.py" sets up a server for sending data.
The way of using this class is to initialize it with the built in method
"setup_server_sending". The class has some hardcoded defaults for ip and
port that was used, but they can be set with the setters; "set_host_ip(’ip
address’)" and "set_port(port number)".

0 import socket
1 import numpy as np
2 import time
3

4

5 class SendData():

18 def __init__(self) -> None:
19 self.__host = '192.168.191.125' # loopback ...

interface address (localhost)
20 self.__port = 65432 # Port to listen on ...

(non-privileged ports are > 1023)
21 self.__socket = socket.socket(socket.AF_INET, ...

socket.SOCK_STREAM)
22 self.__connection = None
23 self.__address = None
24

25 def setup_server_sending(self):
26 print("Server Started waiting for client to ...

connect ")
27 self.__socket.bind((self.__host, self.__port))
28 self.__socket.listen(5)
29 self.__connection, self.__address = ...

self.__socket.accept()
30 print('Connected to', self.__address)
31

32 def send_data(self,my_data):
33 # my_data = f'{self.__eyeX},{self.__eyeY}'
34 # print(my_data)
35 my_data_bytes = bytes(my_data, 'utf-8')
36 # print('length of bytes: ', len(my_data_bytes))
37 self.__connection.send(my_data_bytes)

20



3.3 Transfer of Detection

38

39 def set_host_ip(self, ip):
40 #set host ip as string '192.168.1.1'
41 self.__host = ip
42

43 def set_port(self, port):
44 #set port as int
45 self.__port

3.3.2 Receive Data

The class "RecieveData()" in "obj_detection_data_socket.py" connects to
a socket server for receiving data. This class is used on the hardware for
the eye prototype for receiving data. Details on the use of the external data
can be viewed in section 3.4.

This class uses the python standard library "socket". [17] This module
provides access to the BSD socket interface.

0 import socket
1

2 class RecieveData():
3 """
4 Class that starts a socket connection and recieves eye ...

coordinates
5 for eye simulator to use
6

7 """
8 def __init__(self):
9 self.__host = '192.168.191.125'

10 self.__port = 65432
11 self.__eyeXR = 30
12 self.__eyeYR = 30
13 self.__eyeXL = 30
14 self.__eyeYL = 30
15 self.__socket = socket.socket(socket.AF_INET, ...

socket.SOCK_STREAM)
16 self.__connected_to_socket = False

"RecieveData()" is used by initializing it with the "connect_to_server()"
method. The connection is set in an try except clause in case the server

21



3.3 Transfer of Detection

is not set up. The code and eye simulation would terminate and the code
would need restart if this was not exception handled.

22

23 def connect_to_server(self):
24 try:
25 self.__socket = socket.socket(socket.AF_INET, ...

socket.SOCK_STREAM)
26 self.__socket.connect((self.__host, self.__port))
27 self.__connected_to_socket = True
28 except:
29 self.__connected_to_socket = False
30

31 def get_data_from_connection(self):
32 data = self.__socket.recv(1024).decode('utf-8')

The connection can be closed using the "close_connection()" method

50 def close_socket(self):
51 self.__socket.shutdown()
52 self.__socket.close()

Default class IP address and port number can be overwritten with the setter
methods "set_host_ip(’enter ip address as string’)" and "set_host_port(’set
host port as integer’)".

60 def set_host_ip(self, host_ip):
61 # Set host ip as string: example: '192.168.2.1'
62 self.__host = host_ip
63

64 def set_host_port(self, host_port):
65 # Set host port as integer: example: 65432
66 self.__port = host_port

Static IP set on the host and client on the cabled network interfaces creates
little need of editing these settings.

22



3.4 Eye Simulator

3.4 Eye Simulator

As explained in section 2.3.1 Laerdal Medical has a prototype made of eyes
using LCD monitors. This section explains in detail the modifications and
some general functions of the prototype that is built on the Adafruit LCD
monitors and code.[2]

3.4.1 Edge Device

The edge device the eye prototype uses is a Raspberry Pi 3B. [6] This lacks
the processing power to run the object detection. It has a memory card
with its operating system on. This card can be inserted in a computer and
the "Pi_eyes" code can be updated there. [3] It is also possible to set up
the Raspberry Pi to be accessed via SSH and edits can be done to the code
and eye prototype directly while the Raspberry Pi is running.

3.4.2 Modifications on Premade Eye Prototype Code

The code for the eye simulation was originally developed by the company
that makes the LCD monitors and then modified by Laerdal Medical’s ap-
plication with a joystick and selection switch and button. [2] [3] The github
repository for the eyes [3] includes a couple of modules and eye texture maps
that can be modified for preferred look. For this project only the "eyes.py"
code was modified. The "obj_detection_data_socket.py" containing the
"RecieveData()" class was added to the prototype for receiving eye angles
and used in the "eyes.py" script .

Modified dependency imports can be seen in the code snippet below:

28 # for object detection use
29 from obj_detection_data_socket import RecieveData
30 import threading
31 import queue

Lines 337 to 345 initialize the recieving data class "RecieveData()", the

23



3.4 Eye Simulator

shared queue ("dnn_queue") between threads that contain the eye angles
from the object detection, inital eye angles for second monitor (prototypes
left eye) and the previous eye angles written to the monitors. The previous
angles are used to keep the eyes at the same position and allowing for the
eye animation winking to continue until a new angle is received from the
object detection.

337 # initialize socket class, used if option 6 is selected.
338 eye_coordinate_socket = RecieveData()
339 dnn_queue = queue.Queue()
340 curX2 = 20
341 curY2 = 20
342 last_x = 0
343 last_y = 0
344 last_x2 = 0
345 last_y2 = 0

The function that does the eye position updates "frame(p)" uses global
variables defined earlier in the script. New global variables where added;
"curX2, curY2" in line 349 and lines 372 to 377 in snippet below. "curX,
curY, curX2 and curY2" are the eye angles for right and left eye respec-
tively.

347 # Generate one frame of imagery
348 def frame(p):
349 global startX, startY, destX, destY, curX, curY, ...

curX2, curY2
350 global startXR, startYR, destXR, destYR, curXR, curYR
351 global moveDuration, holdDuration, startTime, isMoving
352 global moveDurationR, holdDurationR, startTimeR, isMovingR
353 global frames
354 global leftIris, rightIris
355 global pupilMinPts, pupilMaxPts, irisPts, irisZ
356 global leftEye, rightEye
357 global leftUpperEyelid, leftLowerEyelid, ...

rightUpperEyelid, rightLowerEyelid
358 global upperLidOpenPts, upperLidClosedPts, ...

lowerLidOpenPts, lowerLidClosedPts
359 global upperLidEdgePts, lowerLidEdgePts
360 global prevLeftUpperLidPts, prevLeftLowerLidPts, ...

prevRightUpperLidPts, prevRightLowerLidPts
361 global leftUpperEyelid, leftLowerEyelid, ...

rightUpperEyelid, rightLowerEyelid

24



3.4 Eye Simulator

362 global prevLeftUpperLidWeight, prevLeftLowerLidWeight, ...
prevRightUpperLidWeight, prevRightLowerLidWeight

363 global prevPupilScale
364 global irisRegenThreshold, upperLidRegenThreshold, ...

lowerLidRegenThreshold
365 global luRegen, llRegen, ruRegen, rlRegen
366 global timeOfLastBlink, timeToNextBlink
367 global blinkStateLeft, blinkStateRight
368 global blinkDurationLeft, blinkDurationRight
369 global blinkStartTimeLeft, blinkStartTimeRight
370 global trackingPos
371 global trackingPosR
372 global eye_coordinate_socket
373 global dnn_queue
374 global last_x
375 global last_y
376 global last_x2
377 global last_y2

In line 603 there is an if statement that will activate if the switch is set into
position 6. This is the mode that uses the object detection angles. It uses
the same rotation functions in the prototype if the the switch position is set
to other positions than 6. When position 6 is set it writes the individual
independent positions for the calculated eye angles in line 622 to 638

603 if GPIO != 6:
604 convergence = 2.0
605

606 rightIris.rotateToX(curY)
607 rightIris.rotateToY(curX - convergence)
608 rightIris.draw()
609 rightEye.rotateToX(curY)
610 rightEye.rotateToY(curX - convergence)
611 rightEye.draw()
612

613 # Left eye (on screen right)
614

615 leftIris.rotateToX(curY)
616 leftIris.rotateToY(curX + convergence)
617 leftIris.draw()
618 leftEye.rotateToX(curY)
619 leftEye.rotateToY(curX + convergence)
620 leftEye.draw()
621 else:
622 convergence = 0
623

25



3.4 Eye Simulator

624 rightIris.rotateToX(curY)
625 rightIris.rotateToY(curX - convergence)
626 rightIris.draw()
627 rightEye.rotateToX(curY)
628 rightEye.rotateToY(curX - convergence)
629 rightEye.draw()
630

631 # Left eye (on screen right)
632

633 leftIris.rotateToX(curY2)
634 leftIris.rotateToY(curX2 + convergence)
635 leftIris.draw()
636 leftEye.rotateToX(curY2)
637 leftEye.rotateToY(curX2 + convergence)
638 leftEye.draw()

A new function was made for the intent of receiving the data and being
applicable for use in another thread. The threading was implemented to
let the animation of the eyes continue winking instead of appearing frozen
waiting for inputs from the object detection.

A global queue ("dnn_queue") is used for holding angles for the eyes. The
function "frame(p)" uses the same queue for popping out the first(oldest)
angles and updating the eye angles. The eye animation is fast enough to
pop the angles quickly and no pile ups of data in the queue was experienced
in this project.

The function "fill_queue()" has a continuous loop running that checks if the
switch is set to position 6 (object detection mode). If it is set to that position
it will try to setup connection over the network. If it is not successful it will
try continuously until it succeeds.

652 def fill_queue():
653 global dnn_queue
654 global eye_coordinate_socket
655 global curX, curY, curX2, curY2
656

657 while True:
658 if checkGPIO() == 6:
659 #modified for test of eye tracking
660 # AUTOBLINK = False #disables blinking
661 try:
662 if not ...

26



3.4 Eye Simulator

eye_coordinate_socket.get_socket_connected_status():
663 eye_coordinate_socket.connect_to_server()
664 except Exception:
665 ...

eye_coordinate_socket.set_socket_connected_status(False)
666

667 try:
668 ext_curX, ext_curY, ext_curX2, ext_curY2 = ...

eye_coordinate_socket.get_eye_coordinates_float()
669 dnn_queue.put((ext_curX, ext_curY, ...

ext_curX2, ext_curY2))
670

671 except Exception as e:
672 ...

eye_coordinate_socket.set_socket_connected_status(False) ...

673 print(f'failed to get datafrom socket and ...
put to queue: {e}')

674

675 if checkGPIO() != 6 and ...
eye_coordinate_socket.get_socket_connected_status():

676 ...
eye_coordinate_socket.set_socket_connected_status(False)

677 try:
678 eye_coordinate_socket.close_socket()
679 except Exception:
680 pass
681 time.sleep(2)

Line 709 to 712 sets up the "fill_queue()" function for multi-threading. It
will run in the background and populate the "dnn_queue" queue when it
receives new data from over the network from the object detection algo-
rithm.

709 #MAKE THREAD FOR EXTERNAL DATA AND START IT.
710 get_data_thread = threading.Thread(target=fill_queue)
711 get_data_thread.deamon = True
712 get_data_thread.start()

The main loop of the eye prototype can be seen below on lines 717 to 734.
The thread that receives data will run threaded with this loop. The updated
drawing of the the eyes on the monitor happens on line 730. When that
function is called it checks for the switch position. If it is set to object
detection mode 6 it will pop the "dnn_queue" for updates to the eye angles

27



3.5 Object Detection Eye Prototype Files in Project

to use. If there is no data in the queue it keeps updating with the latest
received.

The other parts of this main loop is related to the possibility of having a
light sensor that corrects the pupil size. In this implementation without
that sensor it will only vary it randomly.

716 # MAIN LOOP -- runs continuously ...
-------------------------------------------

717 while True:
718

719 if PUPIL_IN ≥ 0: # Pupil scale from sensor
720 v = bonnet.channel[PUPIL_IN].value
721 # If you need to calibrate PUPIL_MIN and MAX,
722 # add a 'print v' here for testing.
723 if v < PUPIL_MIN: v = PUPIL_MIN
724 elif v > PUPIL_MAX: v = PUPIL_MAX
725 # Scale to 0.0 to 1.0:
726 v = (v - PUPIL_MIN) / (PUPIL_MAX - PUPIL_MIN)
727 if PUPIL_SMOOTH > 0:
728 v = ((currentPupilScale * (PUPIL_SMOOTH - 1) + ...

v) /
729 PUPIL_SMOOTH)
730 frame(v)
731 else: # Fractal auto pupil scale
732 v = random.random()
733 split(currentPupilScale, v, 4.0, 1.0)
734 currentPupilScale = v

3.5 Object Detection Eye Prototype Files in Project

The files in the project can be seen in the figure 3.3 below. There are
additional files in the repository, but they are related to custom training of
an object detection network. [12]

28



3.6 Code Tests

Figure 3.3: File Tree of The Project

3.6 Code Tests

The individual classes and modified scripts were tested with test functions
inside the .py files themselves. Unit tests were not set up for this projects
as the modifications implemented small parts of the overall existing code
and the individual classes and communication was simple to verify. Good
practice would be to implement unit tests should this eye prototype be
implemented in a larger system in the SimMan Patient Simulator.[15]

29



Chapter 4

Experiments, Results and
Discussion

4.1 Experiments

This sections explains the experiments done to verify functionality of the
object detection eye simulator prototype created in this project.

Three experiments were designed to verify the functionality of the object
detection eye prototype in this project.

1. Single Person Tracking

2. Single Person Tracking with Multiple People Visible

3. Single Person Tracking Multiple Camera Position

The target person moved to 9 predefined positions (Figure 4.1), a screen
capture of the object detection and a photo towards the prototype from the
target person was done to confirm if the target was detected and if the eyes
was properly angled at the target.

30



4.1 Experiments

Figure 4.1: Positions For Target Person During All Experiments

Single Person Tracking

In the Single Person Tracking experiment the camera was set close under
the prototype and a single person was moving around its field of view.

The person moving around held a camera and took pictures from the dif-
ferent positions it moved to for documentation on how the eyes orient. See
Figure 4.1

A laptop ran the object detection with screen recording to document the
face tracking.

A table for each experiment was filled out for the different positions a target
was in and to record if there was a position that the object detection or eye
tracking was less accurate at.

31



4.2 Results and Discussion

The person that was set as the target objective moved to 9 positions rela-
tive to the eye prototypes perspective; Left, Middle and Right at distances
Close, Middle and Far. The metrics for these experiments was if the ob-
ject detection detects the face of the target person and if the target person
perceive that the eye prototype has eye contact.

Single Person Tracking with Multiple Persons Visible

The Single Person Tracking with Multiple Persons Visible exper-
iment was conducted in the same way as the Single Person Tracking
experiment. The difference was that there was multiple people visible in
the field of view for the camera.

Single Person Tracking Multiple Camera Position

In the Single Person Tracking Multiple Camera Position experiment
the camera was moved to different positions relative to the prototype head
and relative position was updated in the "coordinate_converter.py". The
single target person moved to the same relative positions to the camera as
in the other two experiments

4.2 Results and Discussion

All positions in the "Position" Column is from the Eye Prototype’s per-
spective looking towards the target person.

The grading for the object detection and eye tracking was set to OK or Not
OK. Not OK did not mean that it was very wrong, but there was not an
impression of good eye contact. For object detection it was set to OK if the
object detection detected and selected the right target face to focus on at
the positions for the test.

32



4.2 Results and Discussion

4.2.1 Single Person Tracking

Table 4.1: Results - Single Person Tracking

Position Object Detection Eye Tracking
Left Close OK OK
Left Middle OK OK
Left Far OK OK

Center Close OK OK
Center Middle OK OK
Center Far OK OK
Right Close OK Not OK
Right Middle OK OK
Right Far OK OK

Figure 4.2: Single Person Tracking

Discussion

Tracking a single person in the field of view and directing the eyes towards
the person was successful. The object detection had no problem in any

33



4.2 Results and Discussion

of the positions tested. The eye tracking was following the target person
well, but looked to the side of the target when the target was close to the
right side of the prototypes perspective. See details on the results in Figure
4.2 above. Reasons for the eye tracking not being perfect can be from
misalignment and measurement error of the camera position and rotation
relative to the eyes.

4.2.2 Single Person Tracking with Multiple Persons Visible

Table 4.2: Results - Single Person Tracking with Multiple Persons Visible

Position Object Detection Eye Tracking
Left Close Not OK Not OK
Left Middle Not OK Not OK
Left Far Not OK Not OK

Center Close OK OK
Center Middle Not OK OK
Center Far Not OK OK
Right Close OK OK
Right Middle OK OK
Right Far OK OK

34



4.2 Results and Discussion

Figure 4.3: Single Person Tracking Multiple Persons Visible

Discussion

Tracking a single target person when there was multiple people in the cam-
eras field of view was not successful. This was as expected as there was not
implemented any logic in the code to handle this case. As in the experiment
in section 4.1 the object detection works on faces and when the right target
face was detected it was able to direct the eyes properly towards the target.

Photos and screen captures from the experiment can be seen in the Figure
4.3 above.

4.2.3 Single Person Tracking Multiple Camera Position

Camera Position 1

First change in camera position was in the same x (lateral sideways) loca-
tion, but moved further back in the z(lateral backwards) orientation and
moved higher in the y (vertical) orientation.

35



4.2 Results and Discussion

The camera was located directly behind the prototype so no X shift in
position. It was 73 cm behind(Z) and 32 cm above(Y) the center of the
eyes. See figure 4.4 for an illustration of the position marked by the red
arrow.

Table 4.3: Results - Single Person* Tracking Multiple Camera Position 1

Position Object Detection Eye Tracking
Left Close OK OK
Left Middle OK Not OK
Left Far OK OK

Center Close OK Not OK
Center Middle OK Not OK
Center Far Not OK* Not OK
Right Close OK Not OK
Right Middle OK OK
Right Far OK OK

Figure 4.4: Single Person Tracking Multiple Camera Position

* The target person had a small visitor in the field of view that influenced
the center far position object detection. Logic for handling multiple faces
or objects will be needed in a case like this.

36



4.2 Results and Discussion

Discussion

The benefit of moving the camera behind the eye prototype is a larger
field of vision directly ahead of the eye prototype. For future applications
together with the full patient simulator it could be an idea to position the
camera higher up and to one end of the room for full overview of people
inside it. This will create some challenges in needing good transformations
on the detected positions to where the eyes should be angled. If the patient
simulator is moved during simulations the transformations will need to be
updated. On board sensors for head orientation and potentially using the
camera for detecting the patient simulator head position in the room can
be sufficient in updating flexible transformations.

Camera Position 2

Second change in camera position was 83 cm to the left of the prototype
(lateral sideways) location, 73 cm behind the prototype in z(lateral back-
wards/forwards) orientation and same y (vertical 32cm above) location as
the experiments in section 4.2.3 camera position 1. See figure 4.5 for an
image of the position relative to the eye prototype.

Table 4.4: Results - Single Person Tracking Multiple Camera Position 2

Position Object Detection Eye Tracking
Left Close OK OK
Left Middle OK Not OK
Left Far OK OK

Center Close OK Not OK
Center Middle OK Not OK
Center Far OK Not OK
Right Close OK Not OK
Right Middle OK Not OK
Right Far OK OK

37



4.2 Results and Discussion

Figure 4.5: Single Person Tracking Multiple Camera Position

Discussion

Object detection worked well in all experiments. It only struggled in some
positions when the camera for documenting eye tracking was held up to
the face of the target person. Eye tracking on most of the positions in
this camera position was not accurate. This can come from angulation and
measurement offsets of the camera to between eyes of prototype not being
correct. More work and experiments on the camera positions relative to
eyes and the calculated angle for the eyes is needed to determine why the
tracking failed in most of the predetermined positions for this test.

38



Chapter 5

Conclusion

This object detection eye prototype worked well on a single person in the
field of view. It lacks logic for handling multiple objects. The depth camera
and the LCD eyes worked well to make a realistic simulation of eyes keeping
eye contact with a target person that moves around to different positions
and distances.

The neural networks needed for this application is relatively easy to train
and not much novel work needs to be done to train them on different objects.
Collecting the datasets and training are the time consuming tasks along with
the logic of where the eyes should focus.

Smaller optimised networks can be run with good enough performance for
smooth eye tracking on edge devices like Raspberry Pi 4 with the calculation
assistance of a USB Accelerator.[18] [5]

39



5.1 Further Work

5.1 Further Work

To further develop this prototype or for implementation into the SimMan
Patient Simulator the list below can be used as a starting point. The items
listed are in no particular order.

• Allow for camera positions where camera and head does not point in
the same direction

• Object detection networks that detect other items than faces

• Logic to handle multiple different objects detected

• Realistic eye focusing logic

• Optimised network to perform on edge device.

• Upgrade Edge device with TPU device like Coral USB Accelerator.
[18]

• Implement eye movement behaviour related to medical symptoms the
SimMan Patient Simulator is simulating. [15]

• Work on lenses for the monitor eyes that does not distort the eyes in
the monitor they way the current ones do.

40



Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[2] Adafruit. Adafruit animated snake eyes bonnet
for raspberry pi. https://learn.adafruit.com/
animated-snake-eyes-bonnet-for-raspberry-pi. Accessed:
2021-04-16.

[3] Adafruit. Pi_eyes (python code for adafruits lcd eye monitors). https:
//github.com/adafruit/Pi_Eyes/, 2020.

[4] S. Bozinovski. Reminder of the first paper on transfer learning in neural
networks, 1976. Informatica 44, 291–302, 2020.

[5] E. Electronics. Raspberry pi 3 and 4 performance comparrison. https:
//www.youtube.com/watch?v=TiOKvOrYNII&t=216s. Accessed: 2021-
04-23.

[6] R. P. Foundation. Rasperry pi 3 mode b+. https://www.
raspberrypi.org/products/raspberry-pi-3-model-b-plus/. Ac-
cessed: 2021-04-16.

41

https://learn.adafruit.com/animated-snake-eyes-bonnet-for-raspberry-pi
https://learn.adafruit.com/animated-snake-eyes-bonnet-for-raspberry-pi
https://github.com/adafruit/Pi_Eyes/
https://github.com/adafruit/Pi_Eyes/
https://www.youtube.com/watch?v=TiOKvOrYNII&t=216s
https://www.youtube.com/watch?v=TiOKvOrYNII&t=216s
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/


BIBLIOGRAPHY

[7] K. Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological cybernetics, 36(4):193–202, 1980.

[8] S. S. Haykin. Neural networks and learning machines. Pearson Educa-
tion, Upper Saddle River, NJ, third edition, 2009.

[9] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[10] Intel. Intel realsense depth camera d435. https://www.
intelrealsense.com/depth-camera-d435/. Accessed: 2021-04-16.

[11] Intel. Python wrapper for intel realsense sdk 2.0. https://pypi.org/
project/pyrealsense2/. Accessed: 2021-05-06.

[12] J. Kunnas. person_event-detect-recognition. https://github.com/
jkunnas58/person_event-detect-recognition, 2021.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg. Ssd: Single shot multibox detector. Lecture Notes in
Computer Science, page 21–37, 2016.

[15] L. Medical. Laerdal’s patient simulator simman 3g plus.
https://laerdal.com/products/simulation-training/
emergency-care-trauma/simman-3g/. Accessed: 2021-04-16.

[16] U. Michelucci. Applied Deep Learning: A Case-Based Approach to
Understanding Deep Neural Networks. Apress, USA, 1st edition, 2018.

[17] Python. Socket - python standard library. https://docs.python.
org/3/library/socket.html. Accessed: 2021-04-22.

[18] G. Research. Coral tpu usb accelerator. https://coral.ai/products/
accelerator. Accessed: 2021-04-23.

[19] L. Vladimirov. Tensorflow object detection api tutorial. https:
//tensorflow-object-detection-api-tutorial.readthedocs.io/
en/latest/index.html#. Accessed: 2021-04-18.

42

https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://pypi.org/project/pyrealsense2/
https://pypi.org/project/pyrealsense2/
https://github.com/jkunnas58/person_event-detect-recognition
https://github.com/jkunnas58/person_event-detect-recognition
https://laerdal.com/products/simulation-training/emergency-care-trauma/simman-3g/
https://laerdal.com/products/simulation-training/emergency-care-trauma/simman-3g/
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/index.html#
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/index.html#
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/index.html#


BIBLIOGRAPHY

[20] S. Yang, P. Luo, C. C. Loy, and X. Tang. Wider face: A face detection
benchmark. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[21] yeephycho. tensorflow-face-detection. https://github.com/
yeephycho/tensorflow-face-detection, 2020.

43

https://github.com/yeephycho/tensorflow-face-detection
https://github.com/yeephycho/tensorflow-face-detection


Appendix A

Object Detection Code

0 #!/usr/bin/python
1 # -*- coding: utf-8 -*-
2 # pylint: disable=C0103
3 # pylint: disable=E1101
4

5 from os import X_OK
6 import sys
7 import time
8 import numpy as np
9 import tensorflow as tf

10 import cv2
11 import collections
12 import six
13 import PIL.Image as Image
14 import pyrealsense2 as rs
15 from utils import label_map_util
16 from utils import visualization_utils_color as vis_util
17 from send import SendData
18 from coordinate_converter import ConvertCoordinates
19 import copy
20

21

22 # Path to frozen detection graph. This is the actual model ...
that is used for the object detection.

23 PATH_TO_CKPT = './model/frozen_inference_graph_face.pb'
24 PATH_TO_CKPT = ...

r"C:\dev\tensorflow\workspace\tensorflow-face-detection-master\model\frozen_inference_graph_face.pb"
25

44



Object Detection Code

26 # List of the strings that is used to add correct label ...
for each box.

27 PATH_TO_LABELS = './protos/face_label_map.pbtxt'
28 PATH_TO_LABELS = ...

r"C:\dev\tensorflow\workspace\tensorflow-face-detection-master\protos\face_label_map.pbtxt"
29

30 NUM_CLASSES = 2
31

32 label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
33 categories = ...

label_map_util.convert_label_map_to_categories(label_map, ...
max_num_classes=NUM_CLASSES, use_display_name=True)

34 category_index = ...
label_map_util.create_category_index(categories)

35

36

37 def get_eye_focus_coordinate(
38 image,
39 boxes,
40 classes,
41 scores,
42 category_index,
43 instance_masks=None,
44 instance_boundaries=None,
45 keypoints=None,
46 keypoint_scores=None,
47 keypoint_edges=None,
48 track_ids=None,
49 use_normalized_coordinates=False,
50 max_boxes_to_draw=20,
51 min_score_thresh=.5,
52 agnostic_mode=False,
53 line_thickness=4,
54 mask_alpha=.4,
55 groundtruth_box_visualization_color='black',
56 skip_boxes=False,
57 skip_scores=False,
58 skip_labels=False,
59 skip_track_ids=False):
60 """
61

62 """
63 # Create a display string (and color) for every box ...

location, group any boxes
64 # that correspond to the same location.
65 box_to_display_str_map = collections.defaultdict(list)
66 box_to_color_map = collections.defaultdict(str)
67 box_to_instance_masks_map = {}
68 box_to_keypoints_map = collections.defaultdict(list)

45



Object Detection Code

69 if not max_boxes_to_draw:
70 max_boxes_to_draw = boxes.shape[0]
71 for i in range(min(max_boxes_to_draw, boxes.shape[0])):
72 if scores is None or scores[i] > min_score_thresh:
73 box = tuple(boxes[i].tolist())
74 if instance_masks is not None:
75 box_to_instance_masks_map[box] = ...

instance_masks[i]
76 if keypoints is not None:
77 box_to_keypoints_map[box].extend(keypoints[i])
78 if scores is None:
79 box_to_color_map[box] = 'black'
80 else:
81 if not agnostic_mode:
82 if classes[i] in category_index.keys():
83 class_name = ...

category_index[classes[i]]['name']
84 else:
85 class_name = 'N/A'
86 display_str = '{}: {}%'.format(
87 class_name,
88 int(100*scores[i]))
89 else:
90 display_str = 'score: ...

{}%'.format(int(100 * scores[i]))
91 ...

box_to_display_str_map[box].append(display_str)
92 if agnostic_mode:
93 box_to_color_map[box] = 'DarkOrange'
94 else:
95 box_to_color_map[box] = ...

groundtruth_box_visualization_color
96 #Export location of box in relative or ...

absolute coordinates
97 image_for_size = ...

Image.fromarray(np.uint8(image)).convert('RGB')
98 im_width, im_height = image_for_size.size
99 ymin, xmin, ymax, xmax = box

100 if use_normalized_coordinates:
101 (left, right, top, bottom) = (xmin * ...

im_width, xmax * im_width,
102 ymin * ...

im_height, ymax * im_height)
103 else:
104 (left, right, top, bottom) = (xmin, ...

xmax, ymin, ymax)
105 return (left, right, top, bottom)
106 return False
107

46



Object Detection Code

108

109 class TensoflowFaceDector(object):
110 def __init__(self, PATH_TO_CKPT):
111 """Tensorflow detector
112 """
113

114 self.detection_graph = tf.Graph()
115 with self.detection_graph.as_default():
116 od_graph_def = tf.compat.v1.GraphDef()
117 with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
118 serialized_graph = fid.read()
119 od_graph_def.ParseFromString(serialized_graph)
120 tf.import_graph_def(od_graph_def, name='')
121

122

123 with self.detection_graph.as_default():
124 config = tf.compat.v1.ConfigProto()
125 config.gpu_options.allow_growth = True
126 self.sess = ...

tf.compat.v1.Session(graph=self.detection_graph, ...
config=config)

127 self.windowNotSet = True
128

129

130 def run(self, image):
131 """image: bgr image
132 return (boxes, scores, classes, num_detections)
133 """
134

135 image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
136

137 # the array based representation of the image will ...
be used later in order to prepare the

138 # result image with boxes and labels on it.
139 # Expand dimensions since the model expects images ...

to have shape: [1, None, None, 3]
140 image_np_expanded = np.expand_dims(image_np, axis=0)
141 image_tensor = ...

self.detection_graph.get_tensor_by_name('image_tensor:0')
142 # Each box represents a part of the image where a ...

particular object was detected.
143 boxes = ...

self.detection_graph.get_tensor_by_name('detection_boxes:0')
144 # Each score represent how level of confidence for ...

each of the objects.
145 # Score is shown on the result image, together ...

with the class label.
146 scores = ...

self.detection_graph.get_tensor_by_name('detection_scores:0')

47



Object Detection Code

147 classes = ...
self.detection_graph.get_tensor_by_name('detection_classes:0')

148 num_detections = ...
self.detection_graph.get_tensor_by_name('num_detections:0')

149 # Actual detection.
150 start_time = time.time()
151 (boxes, scores, classes, num_detections) = ...

self.sess.run(
152 [boxes, scores, classes, num_detections],
153 feed_dict={image_tensor: image_np_expanded})
154 elapsed_time = time.time() - start_time
155 # print('inference time cost: ...

{}'.format(elapsed_time))
156

157 return (boxes, scores, classes, num_detections)
158

159

160

161

162 if __name__ == "__main__":
163 # import sys
164 # if len(sys.argv) != 2:
165 # print ("usage:%s (cameraID | filename) Detect faces\
166 # in the video example:%s 0"%(sys.argv[0], sys.argv[0]))
167 # exit(1)
168

169 # try:
170 # camID = int(sys.argv[1])
171 # except:
172 # camID = sys.argv[1]
173

174

175

176 camID = 0
177 # Configure depth and color streams
178 pipeline = rs.pipeline()
179 config = rs.config()
180

181 # Get device product line for setting a supporting ...
resolution

182 pipeline_wrapper = rs.pipeline_wrapper(pipeline)
183 pipeline_profile = config.resolve(pipeline_wrapper)
184 device = pipeline_profile.get_device()
185 device_product_line = ...

str(device.get_info(rs.camera_info.product_line))
186

187 config.enable_stream(rs.stream.depth, 640, 480, ...
rs.format.z16, 30)

188

48



Object Detection Code

189 if device_product_line == 'L500':
190 config.enable_stream(rs.stream.color, 960, 540, ...

rs.format.bgr8, 30)
191 else:
192 config.enable_stream(rs.stream.color, 640, 480, ...

rs.format.bgr8, 30)
193

194 # Start streaming
195 pipeline.start(config)
196 tDetector = TensoflowFaceDector(PATH_TO_CKPT)
197

198 cap = cv2.VideoCapture(camID)
199 windowNotSet = True
200

201 #socket sending
202 send_data_to_socket = SendData()
203 send_data_to_socket.setup_server_sending()
204

205 #Converterclass
206 coordinate_converter = ConvertCoordinates()
207 coordinate_converter.set_camera_resolution((640,480)) ...

#camera resolution
208 ...

coordinate_converter.set_eye_center_offset_from_screen(-10) ...
# distance to fictive eye center behind monitor

209 coordinate_converter.set_mode('3D')
210 # coordinate_converter.set_xyz(50,50,1000) #default ...

point to look at top left looking at head
211 depth_previous = 0.8
212

213 while True:
214 # Wait for a coherent pair of frames: depth and color
215 frames = pipeline.wait_for_frames()
216 depth_frame = frames.get_depth_frame()
217 color_frame = frames.get_color_frame()
218 if not depth_frame or not color_frame:
219 continue
220

221 # Convert images to numpy arrays
222 depth_image = np.asanyarray(depth_frame.get_data())
223 color_image = np.asanyarray(color_frame.get_data())
224

225 # Apply colormap on depth image (image must be ...
converted to 8-bit per pixel first)

226 # depth_colormap = ...
cv2.applyColorMap(cv2.convertScaleAbs(depth_image, ...
alpha=0.03), cv2.COLORMAP_JET)

227

228 # depth_colormap_dim = depth_colormap.shape

49



Object Detection Code

229 # color_colormap_dim = color_image.shape
230

231 # # If depth and color resolutions are different, ...
resize color image to match depth image for display

232 # if depth_colormap_dim != color_colormap_dim:
233 # resized_color_image = ...

cv2.resize(color_image, dsize=(depth_colormap_dim[1], ...
depth_colormap_dim[0]), interpolation=cv2.INTER_AREA)

234 # images = np.hstack((resized_color_image, ...
depth_colormap))

235 # else:
236 # images = np.hstack((color_image, ...

depth_colormap))
237

238 image = color_image
239 image_depth = depth_image
240

241 # ret, image = cap.read()
242 # if ret == 0:
243 # break
244

245 [h, w] = image.shape[:2]
246 # print (h, w)
247 # image = cv2.flip(image, 1)
248 # print(image.shape)
249 (boxes, scores, classes, num_detections) = ...

tDetector.run(image)
250

251 # vis_util.visualize_boxes_and_labels_on_image_array(
252 # image,
253 # np.squeeze(boxes),
254 # np.squeeze(classes).astype(np.int32),
255 # np.squeeze(scores),
256 # category_index,
257 # use_normalized_coordinates=True,
258 # line_thickness=4)
259

260

261

262 box_test = get_eye_focus_coordinate(
263 image,
264 np.squeeze(boxes),
265 np.squeeze(classes).astype(np.int32),
266 np.squeeze(scores),
267 category_index,
268 use_normalized_coordinates=True,
269 max_boxes_to_draw=200,
270 min_score_thresh=.3,
271 agnostic_mode=False)

50



Object Detection Code

272 # print(box_test) #example (0.23469042778015137, ...
0.30845338106155396, 0.7406021952629089, ...
0.5217226147651672)

273

274

275 if box_test:
276 # print(box_test)
277 box_int_list = [0,0,0,0]
278 for i in range(4):
279 box_int_list[i] = int(box_test[i])
280

281 # 1/3 from the left of the box
282 x_location = ...

int(((box_int_list[1]-box_int_list[0])*1/3)+box_int_list[0])
283 #1/3 from the top.
284 y_location = ...

int(((box_int_list[3]-box_int_list[2])*1/3)+box_int_list[2])
285 # get depth from realsense camera
286 depth_location = ...

depth_frame.get_distance(x_location, y_location) # ...
depth in xx units

287 depth_location_left = ...
depth_frame.get_distance(x_location, y_location+10)

288 depth_location_right = ...
depth_frame.get_distance(x_location, y_location-10)

289 depth_location = ...
np.mean([depth_location,depth_location_right,depth_location_left])

290 # Write some Text
291 if depth_location < 0.01:
292 depth_location = depth_previous
293

294 depth_previous = copy.deepcopy(depth_location)
295

296 font = cv2.FONT_HERSHEY_SIMPLEX
297 bottomLeftCornerOfText = ...

(box_int_list[1],box_int_list[2])
298 fontScale = 1
299 fontColor = (255,255,255)
300 lineType = 2
301

302 cv2.putText(image,f'{round(depth_location,3)} ...
meter',

303 bottomLeftCornerOfText,
304 font,
305 fontScale,
306 fontColor,
307 lineType)
308

309

51



Object Detection Code

310 circle_radius = 10
311 circle_color = (0,0,255)
312 circle_coordinates = (x_location,y_location)
313 ...

cv2.circle(image,circle_coordinates,circle_radius, ...
circle_color, thickness=-1 )

314

315 coordinate_converter.set_xyz(
316 circle_coordinates[0],
317 circle_coordinates[1],
318 depth_location*1000
319 )
320

321 try:
322 str_data_to_send = ...

coordinate_converter.get_eye_coordinates()
323 # print(str_data_to_send)
324 ...

send_data_to_socket.send_data(str_data_to_send)
325 time.sleep(0.05)
326 except Exception:
327 # str_data_to_send = ...

coordinate_converter.get_eye_coordinates()
328 # ...

send_data_to_socket.send_data(str_data_to_send)
329 time.sleep(0.05)
330

331 # print(circle_coordinates[0], ...
circle_coordinates[1])

332 # print(f'depth to focus point {depth_location}')
333 # except:
334 # print('passed')
335 else:
336 # print('no output')
337 pass
338

339

340 if windowNotSet is True:
341 cv2.namedWindow("tensorflow based (%d, %d)" % ...

(w, h), cv2.WINDOW_NORMAL)
342 windowNotSet = False
343

344 cv2.imshow("tensorflow based (%d, %d)" % (w, h), ...
image)

345 k = cv2.waitKey(1) & 0xff
346 if k == ord('q') or k == 27:
347 break
348

349 cap.release()

52



Object Detection Code

53



Appendix B

Coordinate Converter Code

0 import math
1 import numpy as np
2

3

4 class ConvertCoordinates():
5 """
6 Class that recieves pixel X Y and depth from camera, ...

Camera to eye offsets.
7 Converts detected focus point to eye simulator eye X ...

and Y position
8 for left and right eye individually in 3D mode.
9

10 Different options of complexity of data conversion ...
available:

11

12 2D_simple: uses pixel location as fraction of ...
resolution and puts that

13 fraction between -30 and 30 degree eye rotation for x ...
and y

14

15 2D: uses pixel location as fraction of resolution and ...
puts that

16 fraction between -30 and 30 degree eye rotation for x ...
and y PLUS takes

17 into account depth for prominence calculation
18

19 3D: calculate individual eye rotation to be properly ...
oriented to detected

54



Coordinate Converter Code

20 object
21

22

23 coordinate system has xyz 0 at camera.
24 positive directions references from doll heads perspective
25 x+ right, y+up. z+ away from head in eye direction
26

27 Distances in mm millimeter
28

29 center of "fake eye ball" is set at 10mm behind screen.
30 can be changed with __eye_center_offset_from_screen ...

variable
31 """
32

33 def __init__(self) -> None:
34 self.__eyeXR = None
35 self.__eyeYR = None
36 self.__eyeXL = None
37 self.__eyeYL = None
38 self.__mode = ''
39 self.__camera_to_between_eyes_offset_x = 180
40 self.__camera_to_between_eyes_offset_y = -100
41 self.__camera_to_between_eyes_offset_z = -70
42 self.__eye_offset_R_x = 31 + ...

self.__camera_to_between_eyes_offset_x
43 self.__eye_offset_L_x = -31 + ...

self.__camera_to_between_eyes_offset_x
44 self.__eye_offset_R_y = ...

self.__camera_to_between_eyes_offset_y
45 self.__eye_offset_L_y = ...

self.__camera_to_between_eyes_offset_y
46 self.__eye_center_offset_from_screen = -10
47 self.__camera_resolution = (640,480)
48 #field of view[degree] horisontal axis ( x) 64 ...

from datasheet
49 #field of view[degree] of view vertical axis ( y) ...

41 from datasheet
50 self.__fov_x = 64/2
51 self.__fov_y = 41/2
52

53

54 def __calc_eye_coordinates(self,x,y,z):
55 if self.__mode == '3D':
56 self.__calc_3D(x,y,z)
57 elif self.__mode == '2D':
58 self.__calc_2D(x,y,z)
59 else:
60 self.__calc_2D_simple(x,y,z)
61

55



Coordinate Converter Code

62 def __calc_3D(self,x,y,depth):
63 """
64 X pixel for detection object to focus on
65 Y pixel for detection object to focus on
66 depth mm to detected object to focus on
67

68 takes in pixel coordinates and depth and sets eye X,Y
69 rotation (degrees from 0,0 straight ahead)
70 """
71

72 #Calculate X,Y angle relative to eye references
73 pix_per_degree_x = ...

self.__camera_resolution[0]/self.__fov_x
74 degrees_from_left = x / pix_per_degree_x
75 degrees_from_center = degrees_from_left - ...

(self.__fov_x/2)
76 x_distance_from_center_mm = \
77 math.sin(math.radians(degrees_from_center)) * ...

depth
78 z_distance_from_center_mm = \
79 math.cos(math.radians(degrees_from_center))* depth
80 z_distance_from_center_mm = \
81 z_distance_from_center_mm - ...

self.__camera_to_between_eyes_offset_z
82

83 pix_per_degree_y = ...
self.__camera_resolution[1]/self.__fov_y

84 degrees_from_top = y / pix_per_degree_y
85 degrees_from_center = degrees_from_top - ...

(self.__fov_y/2)
86 y_distance_from_center_mm = \
87 ...

math.sin(math.radians(degrees_from_center)) * depth
88

89

90 #x and y coordinates relative to eye positions
91 left_eye_x = x_distance_from_center_mm - ...

self.__eye_offset_L_x
92 left_eye_y = y_distance_from_center_mm - ...

self.__eye_offset_L_y
93

94 right_eye_x = x_distance_from_center_mm - ...
self.__eye_offset_R_x

95 right_eye_y = y_distance_from_center_mm - ...
self.__eye_offset_R_y

96

97

98 left_eye_x_angle = ...
math.asin(left_eye_x/z_distance_from_center_mm)

56



Coordinate Converter Code

99 left_eye_y_angle = ...
math.asin(left_eye_y/z_distance_from_center_mm)

100

101 right_eye_x_angle = ...
math.asin(right_eye_x/z_distance_from_center_mm)

102 right_eye_y_angle = ...
math.asin(right_eye_y/z_distance_from_center_mm)

103

104

105 self.__eyeXL = math.degrees(left_eye_x_angle)
106 self.__eyeYL = -math.degrees(left_eye_y_angle)
107 self.__eyeXR = math.degrees(right_eye_x_angle)
108 self.__eyeYR = -math.degrees(right_eye_y_angle)
109

110 def print_current_eye_angles(self):
111 print(f'Left Eye X: {self.__eyeXL}')
112 print(f'Left Eye Y: {self.__eyeYL}')
113 print(f'Right Eye X: {self.__eyeXR}')
114 print(f'Right Eye X: {self.__eyeYR}')
115

116

117 def __calc_2D(self, x,y,z):
118 self.__eyeXR = round(-30 + (x / ...

self.__camera_resolution[0]) * 60, 2)
119 self.__eyeYR = round(-30 + (1-(y / ...

self.__camera_resolution[1])) * 60, 2)
120 self.__eyeXL = self.__eyeXR
121 self.__eyeYL = self.__eyeYR
122

123 # adjust eyes X location when close to head
124 # prominence is the amount of degree you
125 # rotate the eyes towards each other
126 prominence = 10 - ((z/1000)*10)
127 if prominence < 0:
128 prominence = 0
129 if prominence > 10:
130 prominence = 10
131 self.__eyeXR -= prominence
132 self.__eyeXL += prominence
133

134 def __calc_2D_simple(self,x,y,z):
135 self.__eyeXR = round(-30 + (x / ...

self.__camera_resolution[0]) * 60, 2)
136 self.__eyeYR = round(-30 + (1-(y / ...

self.__camera_resolution[1])) * 60, 2)
137 self.__eyeXL = self.__eyeXR
138 self.__eyeYL = self.__eyeYR
139

140 def get_eye_coordinates(self):

57



Coordinate Converter Code

141 # returns a ...
string:'eye_right_x,eye_right_y,e_left_x,e_left_y'

142 # with coordinates for eyes
143 return ...

f'{self.__eyeXR},{self.__eyeYR},{self.__eyeXL},{self.__eyeYL}'
144

145 def set_xyz(self, x , y , z = 1000):
146 self.__calc_eye_coordinates(x,y,z)
147

148 def set_mode(self,mode_str):
149 self.__mode = mode_str
150

151 def set_eye_center_offset_from_screen(self, distance_z):
152 self.__eye_center_offset_from_screen = distance_z
153

154 def set_camera_resolution(self,resolution_tuple):
155 # takes in a tuple in this format (x,y) , (640,480)
156 self.__camera_resolution = resolution_tuple
157

158

159 def main():
160 print('test')
161

162 if __name__ == '__main__':
163 main()

58



Appendix C

Send Data Code

0 import socket
1 import numpy as np
2 import time
3

4

5 class SendData():
6 """
7 Send data class. This class sets up a sending server ...

waiting for clients to
8 connect.
9

10 class has a class method that sets up the server in ...
setup_server_sending()

11

12 The function send_data(data_to_send) sends the data as ...
string in utf-8

13 encoding
14

15 """
16

17 def __init__(self) -> None:
18 self.__host = '192.168.191.125' # loopback ...

interface address (localhost)
19 self.__port = 65432 # Port to listen on ...

(non-privileged ports are > 1023)
20 self.__socket = socket.socket(socket.AF_INET, ...

socket.SOCK_STREAM)
21 self.__connection = None

59



Send Data Code

22 self.__address = None
23

24 def setup_server_sending(self):
25 print("Server Started waiting for client to ...

connect ")
26 self.__socket.bind((self.__host, self.__port))
27 self.__socket.listen(5)
28 self.__connection, self.__address = ...

self.__socket.accept()
29 print('Connected to', self.__address)
30

31 def send_data(self,my_data):
32 # my_data = f'{self.__eyeX},{self.__eyeY}'
33 # print(my_data)
34 my_data_bytes = bytes(my_data, 'utf-8')
35 # print('length of bytes: ', len(my_data_bytes))
36 self.__connection.send(my_data_bytes)
37

38 def set_host_ip(self, ip):
39 #set host ip as string '192.168.1.1'
40 self.__host = ip
41

42 def set_port(self, port):
43 #set port as int
44 self.__port
45

46

47 class RandomData():
48

49 def __init__(self) -> None:
50 self.oldtime = time.time()
51 self.x1 = np.random.randint(-30, 30, None)
52 self.y1 = np.random.randint(-30, 30, None)
53

54 def random_data(self):
55 if time.time() - self.oldtime > 2:
56 x1 = np.random.randint(-30, 30, None) ...

# Dummy eye x
57 y1 = np.random.randint(-30, 30, None) # ...

Dummy dummy eye y
58 else:
59 x1 = self.x1
60 y1 = self.y1
61

62 return x1, y1
63

64 def main():
65 random_data = RandomData()
66 send_data = SendData()

60



Send Data Code

67 send_data.setup_server_sending()
68

69 while True:
70 # eye_x = 0 # 30 left to -30 right looking at ...

the dool
71 # eye_y = 0 # -30 looking down 30 looking up
72 eye_x, eye_y = random_data.random_data()
73 ...

send_data.send_data(f'{eye_x},{eye_y},{eye_x},{eye_y}')
74 time.sleep(0.5)
75

76

77 if __name__ == '__main__':
78 main()

61



Appendix D

Receive Data Code

0 import socket
1

2 class RecieveData():
3 """
4 Class that starts a socket connection and recieves eye ...

coordinates
5 for eye simulator to use
6

7 """
8 def __init__(self):
9 self.__host = '192.168.191.125'

10 self.__port = 65432
11 self.__eyeXR = 30
12 self.__eyeYR = 30
13 self.__eyeXL = 30
14 self.__eyeYL = 30
15 self.__socket = socket.socket(socket.AF_INET, ...

socket.SOCK_STREAM)
16 self.__connected_to_socket = False
17

18 def process_data_from_server(self,x):
19 self.__eyeXR , self.__eyeYR , self.__eyeXL , ...

self.__eyeYL = x.split(",")
20

21

22 def connect_to_server(self):
23 try:

62



Receive Data Code

24 self.__socket = socket.socket(socket.AF_INET, ...
socket.SOCK_STREAM)

25 self.__socket.connect((self.__host, self.__port))
26 self.__connected_to_socket = True
27 except:
28 self.__connected_to_socket = False
29

30 def get_data_from_connection(self):
31 data = self.__socket.recv(1024).decode('utf-8')
32 self.process_data_from_server(data)
33

34

35 def get_eye_coordinates_str(self):
36 self.get_data_from_connection()
37 return self.__eyeXR,\
38 self.__eyeYR,\
39 self.__eyeXL,\
40 self.__eyeYL
41

42 def get_eye_coordinates_float(self):
43 self.get_data_from_connection()
44 return float(self.__eyeXR),\
45 float(self.__eyeYR),\
46 float(self.__eyeXL),\
47 float(self.__eyeYL)
48

49 def close_socket(self):
50 self.__socket.shutdown()
51 self.__socket.close()
52

53 def get_socket_connected_status(self):
54 return self.__connected_to_socket
55

56 def set_socket_connected_status(self, bool):
57 self.__connected_to_socket = bool
58

59 def set_host_ip(self, host_ip):
60 # Set host ip as string: example: '192.168.2.1'
61 self.__host = host_ip
62

63 def set_host_port(self, host_port):
64 # Set host port as integer: example: 65432
65 self.__port = host_port
66

67 def main():
68 eye_coordinates = RecieveData()
69 eye_coordinates.connect_to_server()
70 while True:

63



Receive Data Code

71 eyex,eyey,eyex2,eyey2 = ...
eye_coordinates.get_eye_coordinates_str()

72 print(f'EyeX: {eyex} , EyeY: {eyey}, EyeX2: ...
{eyex2} , EyeY2: {eyey2}')

73

74 if __name__ == "__main__":
75 while True:
76 main()

64



Appendix E

Eye Prototype Code

0 #!/usr/bin/python
1

2 # Code originates from
3 # ...

https://learn.adafruit.com/animated-snake-eyes-bonnet-for-raspberry-pi/ ...
...

4 # ... software-installation
5 # https://github.com/adafruit/Pi_Eyes/
6 # Expanded to be controled by joystick and switch
7 # Start with python eyes.py --radius 200 or any other ...

number to change eye size
8 # Set AUTOBLINK to False to disable eyelids
9 # The joystick and selection switch are connected to the ...

bonnet extention card
10 # On pin 0-1 (joystick) and 22,23,24 & 27 (selection switch)
11 # The configuration below (INPUT CONFIG and INIT GLOBALS) ...

can be changed to
12 # enable and disable inputs/switches, add buttons, and ...

configure the
13 # movement speed, duration of movement and movement of eye lid
14 #--------
15 import argparse
16 import math
17 import pi3d
18 import random
19 import threading
20 import time
21 import RPi.GPIO as GPIO

65



Eye Prototype Code

22 from svg.path import Path, parse_path
23 from xml.dom.minidom import parse
24 from gfxutil import *
25 from snake_eyes_bonnet import SnakeEyesBonnet
26

27 # for object detection use
28 from obj_detection_data_socket import RecieveData
29 import threading
30 import queue
31

32

33 # INPUT CONFIG for eye motion ...
----------------------------------------------

34 # Configuration of the inputs
35 JOYSTICK_X_IN = 0 # Analog input for eye horiz pos ...

(-1 = auto)
36 JOYSTICK_Y_IN = 1 # Analog input for eye vert ...

position (")
37 PUPIL_IN = -1 # Analog input for pupil control ...

(-1 = auto)
38 JOYSTICK_X_FLIP = False # If True, reverse stick X axis
39 JOYSTICK_Y_FLIP = False # If True, reverse stick Y axis
40 PUPIL_IN_FLIP = False # If True, reverse reading from ...

PUPIL_IN
41 TRACKING = True # If True, eyelid tracks pupil
42 PUPIL_SMOOTH = 16 # If > 0, filter input from PUPIL_IN
43 PUPIL_MIN = 0.0 # Lower analog range from PUPIL_IN
44 PUPIL_MAX = 1.0 # Upper --"--
45 SW_PIN1 = 22 # 22 Inputs from the switch
46 SW_PIN2 = 23 # 23 on pin 22,23,24,27
47 SW_PIN3 = 24 # 24 set to -1 to disable
48 SW_PIN4 = 27 # 27
49 AUTOBLINK = True # If True, eyes blink autonomously
50

51

52 # GPIO initialization ...
------------------------------------------------------

53 # Only initialize if they are defined.
54 GPIO.setmode(GPIO.BCM)
55 if SW_PIN1 ≥ 0:
56 GPIO.setup(SW_PIN1, GPIO.IN, pull_up_down=GPIO.PUD_UP)
57 if SW_PIN2 ≥ 0:
58 GPIO.setup(SW_PIN2 , GPIO.IN, pull_up_down=GPIO.PUD_UP)
59 if SW_PIN3 ≥ 0:
60 GPIO.setup(SW_PIN3, GPIO.IN, pull_up_down=GPIO.PUD_UP)
61 if SW_PIN4 ≥ 0:
62 GPIO.setup(SW_PIN4, GPIO.IN, pull_up_down=GPIO.PUD_UP)
63

64

66



Eye Prototype Code

65

66

67

68

69

70 def checkGPIO():
71 """
72 Used to check the status of the input switch.
73 Returns (int) 1-6 depending on the program selected.
74 Program 1: Random movement, normal speed
75 Program 2: Random movement, slow speed
76 Program 3: Random movement, fast speed
77 Program 4: Joystick Control, manual control
78 Program 5: Random movement, x-axis (horizontal random ...

movement)
79 Program 6: Eyelids closed
80 """
81 program = 1
82 if GPIO.input(SW_PIN1) == GPIO.LOW:
83 program = 1
84 if GPIO.input(SW_PIN4) == GPIO.LOW:
85 program = 4
86 elif GPIO.input(SW_PIN2) == GPIO.LOW:
87 program = 2
88 if GPIO.input(SW_PIN4) == GPIO.LOW:
89 program = 5
90 elif GPIO.input(SW_PIN3) == GPIO.LOW:
91 program = 3
92 if GPIO.input(SW_PIN4) == GPIO.LOW:
93 program = 6
94 return program
95

96 # ADC stuff ...
----------------------------------------------------------------

97 # The ADC is used to read the joystick position
98 # ADC channels are read and stored in a separate thread to ...

avoid slowdown
99 # from blocking operations. The animation loop can read at ...

its leisure.
100

101 if JOYSTICK_X_IN ≥ 0 or JOYSTICK_Y_IN ≥ 0 or PUPIL_IN ≥ 0:
102 bonnet = SnakeEyesBonnet(daemon=True)
103 bonnet.setup_channel(JOYSTICK_X_IN, ...

reverse=JOYSTICK_X_FLIP)
104 bonnet.setup_channel(JOYSTICK_Y_IN, ...

reverse=JOYSTICK_Y_FLIP)
105 bonnet.setup_channel(PUPIL_IN, reverse=PUPIL_IN_FLIP)
106 bonnet.start()
107

67



Eye Prototype Code

108 # Load SVG file, extract paths & convert to point lists ...
--------------------

109 dom = parse("graphics/eye.svg")
110 vb = get_view_box(dom)
111 pupilMinPts = get_points(dom, "pupilMin" , 32, ...

True , True )
112 pupilMaxPts = get_points(dom, "pupilMax" , 32, ...

True , True )
113 irisPts = get_points(dom, "iris" , 32, ...

True , True )
114 scleraFrontPts = get_points(dom, "scleraFront" , 0, ...

False, False)
115 scleraBackPts = get_points(dom, "scleraBack" , 0, ...

False, False)
116 upperLidClosedPts = get_points(dom, "upperLidClosed", 33, ...

False, True )
117 upperLidOpenPts = get_points(dom, "upperLidOpen" , 33, ...

False, True )
118 upperLidEdgePts = get_points(dom, "upperLidEdge" , 33, ...

False, False)
119 lowerLidClosedPts = get_points(dom, "lowerLidClosed", 33, ...

False, False)
120 lowerLidOpenPts = get_points(dom, "lowerLidOpen" , 33, ...

False, False)
121 lowerLidEdgePts = get_points(dom, "lowerLidEdge" , 33, ...

False, False)
122

123

124 # Set up display and initialize pi3d ...
---------------------------------------

125 DISPLAY = pi3d.Display.create(samples=4)
126 DISPLAY.set_background(0, 0, 0, 1) # r,g,b,alpha
127 # eyeRadius is the size, in pixels, at which the whole eye ...

will be rendered
128 # onscreen. eyePosition, also pixels, is the offset (left ...

or right) from
129 # the center point of the screen to the center of each ...

eye. This geometry
130 # is explained more in-depth in fbx2.c.
131 eyePosition = DISPLAY.width / 4
132 eyeRadius = 100 # 128 # Default; use 240 for IPS screens
133

134

135 # Argument to change the size of the entire eye on startup
136 parser = argparse.ArgumentParser()
137 parser.add_argument("--radius", type=int)
138 args = parser.parse_args()
139 if args.radius:
140 eyeRadius = args.radius

68



Eye Prototype Code

141 eyeRadius = 240
142

143 # A 2D camera is used, mostly to allow for pixel-accurate ...
eye placement,

144 # but also because perspective isn't really helpful or ...
needed here, and

145 # also this allows eyelids to be handled somewhat easily ...
as 2D planes.

146 # Line of sight is down Z axis, allowing conventional X/Y ...
cartesion

147 # coords for 2D positions.
148 cam = pi3d.Camera(is_3d=False, at=(0,0,0), eye=(0,0,-1000))
149 shader = pi3d.Shader("uv_light")
150 light = pi3d.Light(lightpos=(0, -500, -500), ...

lightamb=(0.2, 0.2, 0.2))
151

152

153 # Load texture maps ...
--------------------------------------------------------

154 irisMap = pi3d.Texture("graphics/iris.jpg" , mipmap=False,
155 filter=pi3d.GL_LINEAR)
156 scleraMap = pi3d.Texture("graphics/sclera.png", mipmap=False,
157 filter=pi3d.GL_LINEAR, blend=True)
158 lidMap = pi3d.Texture("graphics/lid.png" , mipmap=False,
159 filter=pi3d.GL_LINEAR, blend=True)
160 # U/V map may be useful for debugging texture placement; ...

not normally used
161 #uvMap = pi3d.Texture("graphics/uv.png" , mipmap=False,
162 # filter=pi3d.GL_LINEAR, blend=False, ...

m_repeat=True)
163

164

165 # Initialize static geometry ...
-----------------------------------------------

166 # Transform point lists to eye dimensions
167 scale_points(pupilMinPts , vb, eyeRadius)
168 scale_points(pupilMaxPts , vb, eyeRadius)
169 scale_points(irisPts , vb, eyeRadius)
170 scale_points(scleraFrontPts , vb, eyeRadius)
171 scale_points(scleraBackPts , vb, eyeRadius)
172 scale_points(upperLidClosedPts, vb, eyeRadius)
173 scale_points(upperLidOpenPts , vb, eyeRadius)
174 scale_points(upperLidEdgePts , vb, eyeRadius)
175 scale_points(lowerLidClosedPts, vb, eyeRadius)
176 scale_points(lowerLidOpenPts , vb, eyeRadius)
177 scale_points(lowerLidEdgePts , vb, eyeRadius)
178

179 # Regenerating flexible object geometry (such as eyelids ...
during blinks, or

69



Eye Prototype Code

180 # iris during pupil dilation) is CPU intensive, can ...
noticably slow things

181 # down, especially on single-core boards. To reduce this ...
load somewhat,

182 # determine a size change threshold below which ...
regeneration will not occur;

183 # roughly equal to 1/4 pixel, since 4x4 area sampling is used.
184

185 # Determine change in pupil size to trigger iris geometry ...
regen

186 irisRegenThreshold = 0.0
187 a = points_bounds(pupilMinPts) # Bounds of pupil at min ...

size (in pixels)
188 b = points_bounds(pupilMaxPts) # " at max size
189 maxDist = max(abs(a[0] - b[0]), abs(a[1] - b[1]), # ...

Determine distance of max
190 abs(a[2] - b[2]), abs(a[3] - b[3])) # ...

variance around each edge
191 # maxDist is motion range in pixels as pupil scales ...

between 0.0 and 1.0.
192 # 1.0 / maxDist is one pixel's worth of scale range. Need ...

1/4 that...
193 if maxDist > 0: irisRegenThreshold = 0.25 / maxDist
194

195 # Determine change in eyelid values needed to trigger ...
geometry regen.

196 # This is done a little differently than the ...
pupils...instead of bounds,

197 # the distance between the middle points of the open and ...
closed eyelid

198 # paths is evaluated, then similar 1/4 pixel threshold is ...
determined.

199 upperLidRegenThreshold = 0.0
200 lowerLidRegenThreshold = 0.0
201 p1 = upperLidOpenPts[len(upperLidOpenPts) // 2]
202 p2 = upperLidClosedPts[len(upperLidClosedPts) // 2]
203 dx = p2[0] - p1[0]
204 dy = p2[1] - p1[1]
205 d = dx * dx + dy * dy
206 if d > 0: upperLidRegenThreshold = 0.25 / math.sqrt(d)
207 p1 = lowerLidOpenPts[len(lowerLidOpenPts) // 2]
208 p2 = lowerLidClosedPts[len(lowerLidClosedPts) // 2]
209 dx = p2[0] - p1[0]
210 dy = p2[1] - p1[1]
211 d = dx * dx + dy * dy
212 if d > 0: lowerLidRegenThreshold = 0.25 / math.sqrt(d)
213

214 # Generate initial iris meshes; vertex elements will get ...
replaced on

70



Eye Prototype Code

215 # a per-frame basis in the main loop, this just sets up ...
textures, etc.

216 rightIris = mesh_init((32, 4), (0, 0.5 / irisMap.iy), ...
True, False)

217 rightIris.set_textures([irisMap])
218 rightIris.set_shader(shader)
219 # Left iris map U value is offset by 0.5; effectively a ...

180 degree
220 # rotation, so it's less obvious that the same texture is ...

in use on both.
221 leftIris = mesh_init((32, 4), (0.5, 0.5 / irisMap.iy), ...

True, False)
222 leftIris.set_textures([irisMap])
223 leftIris.set_shader(shader)
224 irisZ = zangle(irisPts, eyeRadius)[0] * 0.99 # Get iris Z ...

depth, for later
225

226 # Eyelid meshes are likewise temporary; texture ...
coordinates are

227 # assigned here but geometry is dynamically regenerated in ...
main loop.

228 leftUpperEyelid = mesh_init((33, 5), (0, 0.5 / lidMap.iy), ...
False, True)

229 leftUpperEyelid.set_textures([lidMap])
230 leftUpperEyelid.set_shader(shader)
231 leftLowerEyelid = mesh_init((33, 5), (0, 0.5 / lidMap.iy), ...

False, True)
232 leftLowerEyelid.set_textures([lidMap])
233 leftLowerEyelid.set_shader(shader)
234

235 rightUpperEyelid = mesh_init((33, 5), (0, 0.5 / ...
lidMap.iy), False, True)

236 rightUpperEyelid.set_textures([lidMap])
237 rightUpperEyelid.set_shader(shader)
238 rightLowerEyelid = mesh_init((33, 5), (0, 0.5 / ...

lidMap.iy), False, True)
239 rightLowerEyelid.set_textures([lidMap])
240 rightLowerEyelid.set_shader(shader)
241

242 # Generate scleras for each eye...start with a 2D shape ...
for lathing...

243 angle1 = zangle(scleraFrontPts, eyeRadius)[1] # Sclera ...
front angle

244 angle2 = zangle(scleraBackPts , eyeRadius)[1] # " back angle
245 aRange = 180 - angle1 - angle2
246 pts = []
247 for i in range(24):
248 ca, sa = pi3d.Utility.from_polar((90 - angle1) - ...

aRange * i / 23)

71



Eye Prototype Code

249 pts.append((ca * eyeRadius, sa * eyeRadius))
250

251 # Scleras are generated independently (object isn't ...
re-used) so each

252 # may have a different image map (heterochromia, corneal ...
scar, or the

253 # same image map can be offset on one so the repetition ...
isn't obvious).

254 leftEye = pi3d.Lathe(path=pts, sides=64)
255 leftEye.set_textures([scleraMap])
256 leftEye.set_shader(shader)
257 re_axis(leftEye, 0)
258 rightEye = pi3d.Lathe(path=pts, sides=64)
259 rightEye.set_textures([scleraMap])
260 rightEye.set_shader(shader)
261 re_axis(rightEye, 0.5) # Image map offset = 180 degree ...

rotation
262

263

264 # INIT GLOBALS ...
--------------------------------------------------------

265 mykeys = pi3d.Keyboard() # For capturing key presses
266 startX = random.uniform(-30.0, 30.0)
267 n = math.sqrt(900.0 - startX * startX)
268 startY = random.uniform(-n, n)
269 destX = startX
270 destY = startY
271 curX = startX
272 curY = startY
273 moveDuration = random.uniform(0.075, 0.175)
274 holdDuration = random.uniform(0.1, 1.1)
275 startTime = 0.0
276 isMoving = False
277

278 startXR = random.uniform(-30.0, 30.0)
279 n = math.sqrt(900.0 - startX * startX)
280 startYR = random.uniform(-n, n)
281 destXR = startXR
282 destYR = startYR
283 curXR = startXR
284 curYR = startYR
285 moveDurationR = random.uniform(0.075, 0.175)
286 holdDurationR = random.uniform(0.1, 1.1)
287 startTimeR = 0.0
288 isMovingR = False
289

290 frames = 0
291 beginningTime = time.time()
292

72



Eye Prototype Code

293 rightEye.positionX(-eyePosition)
294 rightIris.positionX(-eyePosition)
295 rightUpperEyelid.positionX(-eyePosition)
296 rightUpperEyelid.positionZ(-eyeRadius - 42)
297 rightLowerEyelid.positionX(-eyePosition)
298 rightLowerEyelid.positionZ(-eyeRadius - 42)
299

300 leftEye.positionX(eyePosition)
301 leftIris.positionX(eyePosition)
302 leftUpperEyelid.positionX(eyePosition)
303 leftUpperEyelid.positionZ(-eyeRadius - 42)
304 leftLowerEyelid.positionX(eyePosition)
305 leftLowerEyelid.positionZ(-eyeRadius - 42)
306

307 currentPupilScale = 0.5
308 prevPupilScale = -1.0 # Force regen on first frame
309 prevLeftUpperLidWeight = 0.5
310 prevLeftLowerLidWeight = 0.5
311 prevRightUpperLidWeight = 0.5
312 prevRightLowerLidWeight = 0.5
313 prevLeftUpperLidPts = points_interp(upperLidOpenPts, ...

upperLidClosedPts, 0.5)
314 prevLeftLowerLidPts = points_interp(lowerLidOpenPts, ...

lowerLidClosedPts, 0.5)
315 prevRightUpperLidPts = points_interp(upperLidOpenPts, ...

upperLidClosedPts, 0.5)
316 prevRightLowerLidPts = points_interp(lowerLidOpenPts, ...

lowerLidClosedPts, 0.5)
317

318 luRegen = True
319 llRegen = True
320 ruRegen = True
321 rlRegen = True
322

323 timeOfLastBlink = 0.0
324 timeToNextBlink = 1.0
325 # These are per-eye (left, right) to allow winking:
326 blinkStateLeft = 0 # NOBLINK
327 blinkStateRight = 0
328 blinkDurationLeft = 0.1
329 blinkDurationRight = 0.1
330 blinkStartTimeLeft = 0
331 blinkStartTimeRight = 0
332

333 trackingPos = 0.3
334 trackingPosR = 0.3
335

336 # initialize socket class, used if option 6 is selected.
337 eye_coordinate_socket = RecieveData()

73



Eye Prototype Code

338 dnn_queue = queue.Queue()
339 curX2 = 20
340 curY2 = 20
341 last_x = 0
342 last_y = 0
343 last_x2 = 0
344 last_y2 = 0
345

346 # Generate one frame of imagery
347 def frame(p):
348 global startX, startY, destX, destY, curX, curY, ...

curX2, curY2
349 global startXR, startYR, destXR, destYR, curXR, curYR
350 global moveDuration, holdDuration, startTime, isMoving
351 global moveDurationR, holdDurationR, startTimeR, isMovingR
352 global frames
353 global leftIris, rightIris
354 global pupilMinPts, pupilMaxPts, irisPts, irisZ
355 global leftEye, rightEye
356 global leftUpperEyelid, leftLowerEyelid, ...

rightUpperEyelid, rightLowerEyelid
357 global upperLidOpenPts, upperLidClosedPts, ...

lowerLidOpenPts, lowerLidClosedPts
358 global upperLidEdgePts, lowerLidEdgePts
359 global prevLeftUpperLidPts, prevLeftLowerLidPts, ...

prevRightUpperLidPts, prevRightLowerLidPts
360 global leftUpperEyelid, leftLowerEyelid, ...

rightUpperEyelid, rightLowerEyelid
361 global prevLeftUpperLidWeight, prevLeftLowerLidWeight, ...

prevRightUpperLidWeight, prevRightLowerLidWeight
362 global prevPupilScale
363 global irisRegenThreshold, upperLidRegenThreshold, ...

lowerLidRegenThreshold
364 global luRegen, llRegen, ruRegen, rlRegen
365 global timeOfLastBlink, timeToNextBlink
366 global blinkStateLeft, blinkStateRight
367 global blinkDurationLeft, blinkDurationRight
368 global blinkStartTimeLeft, blinkStartTimeRight
369 global trackingPos
370 global trackingPosR
371 global eye_coordinate_socket
372 global dnn_queue
373 global last_x
374 global last_y
375 global last_x2
376 global last_y2
377

378 DISPLAY.loop_running()
379

74



Eye Prototype Code

380 now = time.time()
381 dt = now - startTime
382 dtR = now - startTimeR
383

384 frames += 1
385 # if(now > beginningTime):
386 # print(frames/(now-beginningTime))
387

388 if checkGPIO() == 4: # Joystick control / manual movement
389 curX = bonnet.channel[JOYSTICK_X_IN].value
390 curY = bonnet.channel[JOYSTICK_Y_IN].value
391 curX = -30.0 + curX * 60.0
392 curY = -30.0 + curY * 60.0
393 else :
394 # Autonomous eye position
395 if isMoving == True:
396 if dt ≤ moveDuration:
397 scale = (now - startTime) / ...

moveDuration
398 # Ease in/out curve: 3*t^2-2*t^3
399 scale = 3.0 * scale * scale - 2.0 * scale ...

* scale * scale
400 curX = startX + (destX - startX) * ...

scale
401 curY = startY + (destY - startY) * ...

scale
402 else:
403 startX = destX
404 startY = destY
405 curX = destX
406 curY = destY
407 if checkGPIO() == 2: # Random movement ...

slow speed (3-8 sec between movement)
408 holdDuration = random.uniform(3, 8)
409 elif checkGPIO() == 3: # Random movement ...

fast speed (0.5-1 sec between movement)
410 holdDuration = random.uniform(0.5, 1)
411 else:
412 holdDuration = random.uniform(0.5, 6) ...

# Default movement speed (checkGPIO==1) (0.5-6 sec)
413 #holdDuration = random.uniform(0.1, 1.1)
414 startTime = now
415 isMoving = False
416 else:
417 if dt ≥ holdDuration:
418 destX = random.uniform(-30.0, 30.0)
419 n = math.sqrt(225.0 - (destX/2) ...

* (destX/2))
420 # MOVE Y AXIS

75



Eye Prototype Code

421 if checkGPIO() == 5: # Random movement ...
only in X-axis (y is set to 0)

422 destY = 0 # random.uniform(0,0)
423 elif checkGPIO() == 3: # Fast speed and ...

full movement in y-axis
424 destY = random.uniform(-n, n)
425 elif checkGPIO() == 2: # Slow speed, half ...

movement in y-axis
426 destY = random.uniform(-n/2, n/2)
427 else:
428 destY = random.uniform(-n, n)
429

430 moveDuration = random.uniform(0.075, 0.175)
431 startTime = now
432 isMoving = True
433

434 # Regenerate iris geometry only if size changed by ≥ ...
1/4 pixel

435 if abs(p - prevPupilScale) ≥ irisRegenThreshold:
436 # Interpolate points between min and max pupil sizes
437 interPupil = points_interp(pupilMinPts, ...

pupilMaxPts, p)
438 # Generate mesh between interpolated pupil and ...

iris bounds
439 mesh = points_mesh((None, interPupil, irisPts), 4, ...

-irisZ, True)
440 # Assign to both eyes
441 leftIris.re_init(pts=mesh)
442 rightIris.re_init(pts=mesh)
443 prevPupilScale = p
444

445 # Eyelid WIP
446 if AUTOBLINK and (now - timeOfLastBlink) ≥ ...

timeToNextBlink:
447 timeOfLastBlink = now
448 duration = random.uniform(0.035, 0.06)
449 if blinkStateLeft != 1:
450 blinkStateLeft = 1 # ENBLINK
451 blinkStartTimeLeft = now
452 blinkDurationLeft = duration
453 if blinkStateRight != 1:
454 blinkStateRight = 1 # ENBLINK
455 blinkStartTimeRight = now
456 blinkDurationRight = duration
457 timeToNextBlink = duration * 3 + ...

random.uniform(1.0, 4.0)
458

459 if blinkStateLeft: # Left eye currently winking/blinking?
460 # Check if blink time has elapsed...

76



Eye Prototype Code

461 if (now - blinkStartTimeLeft) ≥ blinkDurationLeft:
462 blinkStateLeft += 1
463 if blinkStateLeft > 2:
464 blinkStateLeft = 0 # NOBLINK
465 else:
466 blinkDurationLeft *= 2.0
467 blinkStartTimeLeft = now
468

469 if blinkStateRight: # Right eye currently ...
winking/blinking?

470 # Check if blink time has elapsed...
471 if (now - blinkStartTimeRight) ≥ blinkDurationRight:
472 blinkStateRight += 1
473 if blinkStateRight > 2:
474 blinkStateRight = 0 # NOBLINK
475 else:
476 blinkDurationRight *= 2.0
477 blinkStartTimeRight = now
478

479 if checkGPIO() == 6:
480 #hacked for test of eye tracking
481 # AUTOBLINK = False #disables blinking
482 try:
483 if not dnn_queue.empty():
484 first_out = dnn_queue.get()
485 curX = first_out[0]
486 curY = first_out[1]
487 curX2 = first_out[2]
488 curY2 = first_out[3]
489 last_x = curX
490 last_y = curY
491 last_x2 = curX2
492 last_y2 = curY2
493 else:
494 curX = last_x
495 curY = last_y
496 curX2 = last_x2
497 curY2 = last_y2
498

499 except Exception as e:
500 print(f'assigning queue items failed: {e}')
501

502

503

504 if TRACKING:
505 n = 0.4 - curY / 60.0
506 if n < 0.0: n = 0.0
507 elif n > 1.0: n = 1.0
508 trackingPos = (trackingPos * 3.0 + n) * 0.25

77



Eye Prototype Code

509

510

511 if blinkStateLeft:
512 n = (now - blinkStartTimeLeft) / blinkDurationLeft
513 if n > 1.0: n = 1.0
514 if blinkStateLeft == 2: n = 1.0 - n
515 else:
516 n = 0.0
517 newLeftUpperLidWeight = trackingPos + (n * (1.0 - ...

trackingPos))
518 newLeftLowerLidWeight = (1.0 - trackingPos) + (n * ...

trackingPos)
519

520 if blinkStateRight:
521 n = (now - blinkStartTimeRight) / blinkDurationRight
522 if n > 1.0: n = 1.0
523 if blinkStateRight == 2: n = 1.0 - n
524 else:
525 n = 0.0
526

527 newRightUpperLidWeight = trackingPos + (n * (1.0 - ...
trackingPos))

528 newRightLowerLidWeight = (1.0 - trackingPos) + (n * ...
trackingPos)

529

530 if (luRegen or (abs(newLeftUpperLidWeight - ...
prevLeftUpperLidWeight) ≥

531 upperLidRegenThreshold)):
532 newLeftUpperLidPts = points_interp(upperLidOpenPts,
533 upperLidClosedPts, newLeftUpperLidWeight)
534 if newLeftUpperLidWeight > prevLeftUpperLidWeight:
535 leftUpperEyelid.re_init(pts=points_mesh(
536 (upperLidEdgePts, prevLeftUpperLidPts,
537 newLeftUpperLidPts), 5, 0, False))
538 else:
539 leftUpperEyelid.re_init(pts=points_mesh(
540 (upperLidEdgePts, newLeftUpperLidPts,
541 prevLeftUpperLidPts), 5, 0, False))
542 prevLeftUpperLidPts = newLeftUpperLidPts
543 prevLeftUpperLidWeight = newLeftUpperLidWeight
544 luRegen = True
545 else:
546 luRegen = False
547

548 if (llRegen or (abs(newLeftLowerLidWeight - ...
prevLeftLowerLidWeight) ≥

549 lowerLidRegenThreshold)):
550 newLeftLowerLidPts = points_interp(lowerLidOpenPts,
551 lowerLidClosedPts, newLeftLowerLidWeight)

78



Eye Prototype Code

552 if newLeftLowerLidWeight > prevLeftLowerLidWeight:
553 leftLowerEyelid.re_init(pts=points_mesh(
554 (lowerLidEdgePts, prevLeftLowerLidPts,
555 newLeftLowerLidPts), 5, 0, False))
556 else:
557 leftLowerEyelid.re_init(pts=points_mesh(
558 (lowerLidEdgePts, newLeftLowerLidPts,
559 prevLeftLowerLidPts), 5, 0, False))
560 prevLeftLowerLidWeight = newLeftLowerLidWeight
561 prevLeftLowerLidPts = newLeftLowerLidPts
562 llRegen = True
563 else:
564 llRegen = False
565

566 if (ruRegen or (abs(newRightUpperLidWeight - ...
prevRightUpperLidWeight) ≥

567 upperLidRegenThreshold)):
568 newRightUpperLidPts = points_interp(upperLidOpenPts,
569 upperLidClosedPts, newRightUpperLidWeight)
570 if newRightUpperLidWeight > prevRightUpperLidWeight:
571 rightUpperEyelid.re_init(pts=points_mesh(
572 (upperLidEdgePts, prevRightUpperLidPts,
573 newRightUpperLidPts), 5, 0, True))
574 else:
575 rightUpperEyelid.re_init(pts=points_mesh(
576 (upperLidEdgePts, newRightUpperLidPts,
577 prevRightUpperLidPts), 5, 0, True))
578 prevRightUpperLidWeight = newRightUpperLidWeight
579 prevRightUpperLidPts = newRightUpperLidPts
580 ruRegen = True
581 else:
582 ruRegen = False
583

584 if (rlRegen or (abs(newRightLowerLidWeight - ...
prevRightLowerLidWeight) ≥

585 lowerLidRegenThreshold)):
586 newRightLowerLidPts = points_interp(lowerLidOpenPts,
587 lowerLidClosedPts, newRightLowerLidWeight)
588 if newRightLowerLidWeight > prevRightLowerLidWeight:
589 rightLowerEyelid.re_init(pts=points_mesh(
590 (lowerLidEdgePts, prevRightLowerLidPts,
591 newRightLowerLidPts), 5, 0, True))
592 else:
593 rightLowerEyelid.re_init(pts=points_mesh(
594 (lowerLidEdgePts, newRightLowerLidPts,
595 prevRightLowerLidPts), 5, 0, True))
596 prevRightLowerLidWeight = newRightLowerLidWeight
597 prevRightLowerLidPts = newRightLowerLidPts
598 rlRegen = True

79



Eye Prototype Code

599 else:
600 rlRegen = False
601

602 if GPIO != 6:
603 convergence = 2.0
604

605 rightIris.rotateToX(curY)
606 rightIris.rotateToY(curX - convergence)
607 rightIris.draw()
608 rightEye.rotateToX(curY)
609 rightEye.rotateToY(curX - convergence)
610 rightEye.draw()
611

612 # Left eye (on screen right)
613

614 leftIris.rotateToX(curY)
615 leftIris.rotateToY(curX + convergence)
616 leftIris.draw()
617 leftEye.rotateToX(curY)
618 leftEye.rotateToY(curX + convergence)
619 leftEye.draw()
620 else:
621 convergence = 0
622

623 rightIris.rotateToX(curY)
624 rightIris.rotateToY(curX - convergence)
625 rightIris.draw()
626 rightEye.rotateToX(curY)
627 rightEye.rotateToY(curX - convergence)
628 rightEye.draw()
629

630 # Left eye (on screen right)
631

632 leftIris.rotateToX(curY2)
633 leftIris.rotateToY(curX2 + convergence)
634 leftIris.draw()
635 leftEye.rotateToX(curY2)
636 leftEye.rotateToY(curX2 + convergence)
637 leftEye.draw()
638

639 leftUpperEyelid.draw()
640 leftLowerEyelid.draw()
641 rightUpperEyelid.draw()
642 rightLowerEyelid.draw()
643

644 k = mykeys.read()
645 if k==1:
646 mykeys.close()
647 DISPLAY.stop()

80



Eye Prototype Code

648 exit(0)
649

650

651 def fill_queue():
652 global dnn_queue
653 global eye_coordinate_socket
654 global curX, curY, curX2, curY2
655

656 while True:
657 if checkGPIO() == 6:
658 #modified for test of eye tracking
659 # AUTOBLINK = False #disables blinking
660 try:
661 if not ...

eye_coordinate_socket.get_socket_connected_status():
662 eye_coordinate_socket.connect_to_server()
663 except Exception:
664 ...

eye_coordinate_socket.set_socket_connected_status(False)
665

666 try:
667 ext_curX, ext_curY, ext_curX2, ext_curY2 = ...

eye_coordinate_socket.get_eye_coordinates_float()
668 dnn_queue.put((ext_curX, ext_curY, ...

ext_curX2, ext_curY2))
669

670 except Exception as e:
671 ...

eye_coordinate_socket.set_socket_connected_status(False) ...

672 print(f'failed to get datafrom socket and ...
put to queue: {e}')

673

674 if checkGPIO() != 6 and ...
eye_coordinate_socket.get_socket_connected_status():

675 ...
eye_coordinate_socket.set_socket_connected_status(False)

676 try:
677 eye_coordinate_socket.close_socket()
678 except Exception:
679 pass
680 time.sleep(2)
681

682

683

684 def split( # Recursive simulated pupil response when no ...
analog sensor

685 startValue, # Pupil scale starting value (0.0 to 1.0)
686 endValue, # Pupil scale ending value (")

81



Eye Prototype Code

687 duration, # Start-to-end time, floating-point seconds
688 range): # +/- random pupil scale at midpoint
689 startTime = time.time()
690 if range ≥ 0.125: # Limit subdvision count, because ...

recursion
691 duration *= 0.5 # Split time & range in half for ...

subdivision,
692 range *= 0.5 # then pick random center point ...

within range:
693 midValue = ((startValue + endValue - range) * 0.5 +
694 random.uniform(0.0, range))
695 split(startValue, midValue, duration, range)
696 split(midValue , endValue, duration, range)
697 else: # No more subdivisons, do iris motion...
698 dv = endValue - startValue
699 while True:
700 dt = time.time() - startTime
701 if dt ≥ duration: break
702 v = startValue + dv * dt / duration
703 if v < PUPIL_MIN: v = PUPIL_MIN
704 elif v > PUPIL_MAX: v = PUPIL_MAX
705 frame(v) # Draw frame w/interim pupil scale value
706

707

708 #MAKE THREAD FOR EXTERNAL DATA AND START IT.
709 get_data_thread = threading.Thread(target=fill_queue)
710 get_data_thread.deamon = True
711 get_data_thread.start()
712

713

714

715 # MAIN LOOP -- runs continuously ...
-------------------------------------------

716 while True:
717

718 if PUPIL_IN ≥ 0: # Pupil scale from sensor
719 v = bonnet.channel[PUPIL_IN].value
720 # If you need to calibrate PUPIL_MIN and MAX,
721 # add a 'print v' here for testing.
722 if v < PUPIL_MIN: v = PUPIL_MIN
723 elif v > PUPIL_MAX: v = PUPIL_MAX
724 # Scale to 0.0 to 1.0:
725 v = (v - PUPIL_MIN) / (PUPIL_MAX - PUPIL_MIN)
726 if PUPIL_SMOOTH > 0:
727 v = ((currentPupilScale * (PUPIL_SMOOTH - 1) + ...

v) /
728 PUPIL_SMOOTH)
729 frame(v)
730 else: # Fractal auto pupil scale

82



Eye Prototype Code

731 v = random.random()
732 split(currentPupilScale, v, 4.0, 1.0)
733 currentPupilScale = v

83


	Contents
	Summary
	Introduction
	Motivation of Thesis
	Topic of Thesis
	Thesis Report Overview

	Background and Methods
	Method Overview
	Artificial Neural Network for Object Detection
	Convolutional Neural Networks
	Transfer Learning
	SSDMobileNet
	Tensorflow Object Detection API

	Laerdal Medical's Patient Simulator SimMan
	Eye Prototype
	Intel Realsense D435 realsense Depth Camera


	Implementation
	Flowchart of Object Detection Eye Prototype
	Object Detection
	Dataset for Custom Transfer Learning
	Transfer Learning Parameters on Custom Dataset
	Pretrained Face Detection Network
	Object Detection Inference Script
	Object Detection Coordinate Conversions

	Transfer of Detection
	Send Data
	Receive Data

	Eye Simulator
	Edge Device
	Modifications on Premade Eye Prototype Code

	Object Detection Eye Prototype Files in Project
	Code Tests

	Experiments, Results and Discussion
	Experiments
	Results and Discussion
	Single Person Tracking
	Single Person Tracking with Multiple Persons Visible
	Single Person Tracking Multiple Camera Position


	Conclusion
	Further Work

	Bibliography
	Appendix
	Object Detection Code
	Coordinate Converter Code
	Send Data Code
	Receive Data Code
	Eye Prototype Code

