
Faculty of Science and Technology

BACHELOR’S THESIS

Study program/ Specialization: Spring Semester 2021

Computer Science Open access

Writers:
KEVIN RATDAL

MUSTAFA HERSI
Writers’ Signatures

Faculty Supervisor:
Vinay Setty

Thesis title:

Smart text editor/Plugin to fact check

Credits (ECTS):
20
Key Words

• Fact checking
• Chrome extension
• RESTful API
• Cosine similarity

Pages: 72
+enclosure: 0
Stavanger May 29, 2021

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

smrtfact - A smart fact checker

Bachelor’s Thesis in Computer Science
by

Kevin Ratdal, Mustafa Hersi

Internal Supervisors

Vinay Setty

May 29, 2021

“The human brain has not evolved to perceive reality, it has evolved to create an illusion
of reality. That’s why an exciting lie gains more attention than a boring truth.”

— Abhijit Naskar, I Vicdansaadet Speaking: No Rest Till The World is Lifted

Abstract

With the increase in social media activity, and people from all backgrounds being able to
use it, it has become increasingly difficult to separate between what is true and what is
false. When people post statements on the Internet, they might believe what they write
is true, when in reality it might not be. The tool we have developed will help writers
confirm the validity of their statements. It will display if what they’re writing is true or
not, before they put it out to the public.

Acknowledgements

A big thanks to Vinay Setty from the Department of Electrical Engineering and Computer
Science at UiS for helping us with this thesis. He has given us tips and tools along the
way, leading to this finished product.

viii

Contents

Abstract vi

Acknowledgements viii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 1
1.3 Goals and inspiration . 2
1.4 Use cases . 3

1.4.1 Intro example . 3
1.5 Outline . 5

2 Related Work and Background 7
2.1 Extensions . 7
2.2 HTML . 7
2.3 CSS . 7

2.3.1 Bootstrap . 8
2.4 JavaScript . 8
2.5 Vue.js . 8

2.5.1 Vue Life-cycle hooks . 9
2.5.2 Vue extensions . 11

2.6 Shadow DOM . 11
2.7 API And Chrome API . 11

2.7.1 chrome.storage . 11
2.7.2 chrome.tabs . 12
2.7.3 chrome.runtime . 12

2.8 RESTful API . 13
2.9 Cosine similarity . 13
2.10 Automated Fake news detection using machine learning 14
2.11 Existing Approaches/Baselines . 14

3 Solution Approach 17

ix

x CONTENTS

3.1 Introduction . 17
3.2 The browser of choice . 17
3.3 Workflow . 17
3.4 Server interaction . 20
3.5 Chrome storage . 21

3.5.1 Storing data . 21
3.5.2 Managing history/related claims . 21
3.5.3 Tracking changes in storage . 22

3.6 Chrome extension . 22
3.6.1 Extension file outline . 22
3.6.2 The back-end . 23
3.6.3 manifest.JSON . 23
3.6.4 Content Scripts . 24
3.6.5 Background page . 25
3.6.6 Communication . 25

3.7 Accessing the popup . 26
3.8 The Interface . 26
3.9 Routes . 26

3.9.1 Tools . 28
3.9.2 Related claims . 30
3.9.3 Loading ... 31
3.9.4 Result . 32
3.9.5 History . 35
3.9.6 Settings . 37

4 The fact check button 39
4.1 Introduction . 39
4.2 Checking claims . 39
4.3 Alias for button . 41
4.4 How the button is implemented . 42

4.4.1 Shadow DOM . 42

5 Implementations and Experiments 43
5.1 Measurements . 43
5.2 How the front-end and back-end communicates 44
5.3 Cosine similarity . 44

5.3.1 Cosine similarity code . 45
5.3.2 Cosine similarity execution time . 46

5.4 Scoring . 47

6 Discussion and Future Directions 49
6.1 Conclusion . 49
6.2 User feedback . 49
6.3 Challenges . 49
6.4 Future Directions . 50

CONTENTS xi

List of Figures 50

A Contributions 53

Bibliography 55

Abbreviations

API Application Programming Interface

JSON JavaScript Object Notation

GIF Graphics Interchange Format

DOM Document Object Model

UI User Interface

SPA Single Page Application

URL Uniform Resource Identifier

ID Identification

xiii

Chapter 1

Introduction

1.1 Motivation

Fake news and other different types of false information can take on many faces. It could
be your favourite blogger or your neighbourhood politician. Either way, they can have
major impacts on our lives. Because as we make decisions based on the details we gather,
we might change an opinion on something after we’ve been fed with this information.
Therefore, it’s important that the facts we digest are correct. Having real and accurate
information is very important - now more than ever. As we are all connected through the
internet, and more specifically social media. According to Statista, the current number
of smartphone users in the world today has far surpassed 3 billion [1]. This means more
than 48% of the world’s population owns a cell. Consequently, the phone application
TikTok has over 600 million active monthly users [2]. And it would be incautious to
proclaim TikTok itself has the capability to oversee every post by every user in case of
fake news.

The fact that the spreading of fake news and information can come out of control when
the biggest applications don’t have built-in filters or mechanisms to prevent it, is a scary
thought. The consequences of an even more rapid escalation of this issue can target and
poison the entire society.

1.2 Problem Definition

When false information is posted online, there can be different reasons for it. Though
there is little information behind why people deliberately do this, it is known that some
people are driven by hope of a better self-esteem, or just hate for someone or something

1

Chapter 1. Introduction Chapter 1 Introduction

[3]. It could also be for economical reasons. Whatever the motive, the rumours spread -
or the misleading information posted - can target and affect businesses, organizations,
politics and individuals. An example could be a restaurant, posting fake viewpoints and
making false accusations on another restaurants’ website. Stepping on a competitors feet
like this could be beneficial in an economic way without much effort. This is what is
called disinformation. Disinformation is when "fake or misleading stories are created and
shared deliberately, often by a writer who might have a financial or political motive, e.g.
propaganda" [4].

The task at hand, where it was asked to create a program that could check for false
information, was focused more towards misinformation - "...fake and misleading stories,
but in this case the stories may not have been deliberately created or shared with the
intention to mislead." [4]. By creating an extension, people are given the option to look
over what they - or any other person - have written, and eliminate falseness they might
unintentionally be writing or seeing. The latest research tells us only just over 2% of
young people can actually spot fake news, with more than 60 percent saying that fake
news make them trust all news in general a lot less [4]. This is one of the reasons why it
was important to create this application. The group was free to choose in what way to
solve the given problem description.

1.3 Goals and inspiration

As mentioned earlier, social media user bases continues to grow as technology becomes
more and more accessible, and people get more and more curious to what this "social
media" talk is all about. More people entering the social media world, means more room
for information spread, thus making more room for false information. When the false
information waves are escalating, motivation and room is being created to solve the
complications that come with it. Rightly so, there have been created applications out
there that identify, fight and negates fake news and false information. Some examples of
how these work are mentioned in Chapter 2.

Even though the Internet is flourishing with social media applications, it has been found
that there are very few alternatives to srmtfact. The extension takes inspiration from
the web browser extension Grammarly. Grammarly is not made to detect or negate any
fake or false information. It it used for spellchecking your writing. It works by creating
an empty document - a text editor - and filling it with text. It will scan through the
document and point out any misspellings. Grammarly is comparable to the extension in
the way that misspellings are swapped out with misinformation. smrtfact’s end goal is to
show what is correct information, and what is incorrect information. Though operated in

Chapter 1. Introduction 3

the somewhat same manner as with Grammarly, with smrtfact, you don’t have to go into
a new web page to do the work. It can either be done directly on all websites, although
there is some additional support to three major web sites. As well as in a custom fashion
by going inside the extension itself. You can put in whatever claim you want, and create
a true/false output for this exact claim. In addition to the end goal, we wanted to make
it an easy experience by making a browser extension out of it.

1.4 Use cases

The target audience of smrtfact is everyone, all ages. However, the project group think
it will be most useful for youths and younger people. This is because young people are
naturally more impulsive, and often express their thoughts in a less considered manner.
Because of this, it will not only be useful for younger people, but it will be important for
the application to reach out to this audience, so that they can make use of it. Additionally,
as the members of the project group can be counted for as members of the "young people"
group themselves, they can relate and back up why they think this is an accurate view.

smrtfact can be used in almost every scenario where you are about to publicise a statement,
claim, fact, or just anywhere where the text has a true/false factor. On web sites likes
the ones integrated with smrtfact - Facebook, Twitter and YouTube, this is a big concern.
These web sites are social media web sites where people can post about things happening
in their lives, things they believe in, and thoughts they have. They can even comment on
other peoples or organizations posts. Even comment on others’ comments! This is often
where the "keyboard warriors" come forth. These are people that dare to state facts and
opinions without regarding anything, thinking it will have no consequence because they
sit safely in their home behind the computer screen. This gives rise to a lot of bias and
false information.

Brands or organizations that have something to do with subjects like politics, the climate,
or health, are often in the center of intense debates. When these organizations make a
post, they easily wake peoples passion and feelings, creating environments for discussion.
This is where people start commenting about what they think or how they think things
work, or should work. And this is often backed up by facts, or at least they often think
they are facts.

1.4.1 Intro example

If you were to visit either Facebook, YouTube or Twitter, it is easy work to find examples
of where the extension might prove useful. Below is an example from Facebook, of

Chapter 1. Introduction Chapter 1 Introduction

a person commenting on an opinion in the comment section of a post by the highly
discussed vegan health movie "Game Changers".

Figure 1.1: Example from the comment section under a post from the movie "Game
Changers" on Facebook

It is a viable option to use smrtfact in this scenario. The first comment is an opinion. So
no use or need to fact check anything here. But if the first sentence - ... game changers
didn’t use research ... - of the second comment by "Jesse" is taken out and fact checked,
it’s possible to see how much of what this person says, is gibberish. It can be done
by selecting whatever sentence you’d want out of the second comment. You then put
this sentence into the application, and check for validity. The extension couldn’t give
an accurate result if you were to fact check the whole paragraph. You would need to
point out the chunks of text where it’s sensible to check for correctness. Putting the
before-mentioned sentence into the extension yields the result below.

Figure 1.2: A fact check from a comment from Facebook

As one can see, it gets a score of 0.4, and receives an assessment of "This claim should
be false". 0.4 is a relatively low score. From this result, one can already have prejudice
against this person regarding how much "facts" "Jesse" comes with. Many people would
be eager to invalidate the rest of her comments, just based on the first one getting such
a low score.

Chapter 1. Introduction 5

1.5 Outline

The thesis is outlined as follows:

Chapter 1 Introduction to the thesis

Chapter 2 Related work and background, includes general and theoretical information

Chapter 3 Solution approach, includes the popup and it’s functionality

Chapter 4 The fact check button, considering functionality injected into current website

Chapter 5 Implementations and experiments, includes measuring the time it takes to
display claims

Chapter 6 Discussion and Future Directions, includes challenges during the development
process and future ideas

Chapter 2

Related Work and Background

2.1 Extensions

Browser extensions are software add-ons for your web browser, which aims to make your
browsing experience more trouble-free and/or "better" to use. Their use cases range from
customising the background color of your browser, to scanning for coupons on different
web sites, to blocking incoming advertisements. The first browser which supported
extensions was Internet Explorer version 5 in 1999. Google Chrome got extension support
in 2010, 2 years after Chromes’ creation [5].

2.2 HTML

HTML, short for Hypertext Markup Language communicates with the web, and lays
the base for creating a web application. It is the body - or chassis - of a car. The web
browser obtains HTML documents from a web server, and puts them into the actual
web site.[6]

2.3 CSS

Cascading Style Sheets (CSS) is the language that makes up the style and design of the
web page. In other words, determines the type of leather in the seats of a car, or if it
should have a mahogany or carbon fiber dashboard, or if it should be painted red or blue
on the outside.

7

Chapter 2. Related Work and Background Chapter 2 Related Work and Background

2.3.1 Bootstrap

Bootstrap is a CSS framework. A collection of code written in CSS, JavaScript and
HTML. It is made for front-end development to simplify the process of styling fully
responsive websites in a quick manner. So in essence, it saves the developers from
spending too much time styling the websites, allowing them to focus on writing the
functional and general code.

Since Bootstrap eases the process of styling, the well-known toolkit was made use of
when making and designing the UI of smrtfact. Its benefits and convenience suited the
project perfectly when creating the front-end of the extension.

2.4 JavaScript

JavaScript - or just JS - is a language in computer programming commonly used for
adding functionality to web pages (and extensions in this case) there by making them
interactive [7]. While CSS and HTML is used to style and structure the application, JS
gives elements that engage the end users. Following the analogy of the car, JavaScript
makes the car function. It gives interactions between the gas pedal and motor, or between
the steering wheel and the axle. It makes the different tools engage with each other to
create a fully functioning car.

It was initially designed to make front-end web development easier, but in later times it
has expanded to cover programming in the back-end as well. It is also the only language
that is native to the web browser, which is why it almost always becomes the chosen
language to use when making browser extensions also.

2.5 Vue.js

Vue.js is a JavaScript framework for building front end UIs (User Interfaces). At it’s
core, it provides a way to build a component that encapsulates data or states in your
JavaScript, and then in a reactive manner connects that state to a template in HTML.
These components are called declarative views, because the same data inputs will always
produce the same outputs in the visual UI.

When data is declared on this data object, it links or binds it to the HTML element in the
template above. When the value of the data changes, the component will automatically
re-render, or in other words be reactive. This data can be worked with in the template.

Chapter 2. Related Work and Background 9

And thanks to Vue’s HTML-based template syntax, a value or expression can interpolate
using double braces around it.

2.5.1 Vue Life-cycle hooks

Life-cycle hooks allows you to take a peek at how the Vue library functions behind-the-
scenes. Following this they allow the developer to know when a component is created,
added to the DOM, is destroyed or updated.

This diagram from the Vue.js documentations shows how the Vue instance’s life-cycle
functions

Chapter 2. Related Work and Background Chapter 2 Related Work and Background

Figure 2.1: Vue life-cycle Diagram

Chapter 2. Related Work and Background 11

2.5.2 Vue extensions

The Vue.js framework already has a lot of functionality, but it also allows for so called
Vue extensions to expand this functionality. In the smrtfact extension, Vue router is
used for simplifying a SPA setup.

2.6 Shadow DOM

Shadow DOM - Shadow Document Object Model - serves for encapsulation from the
main document DOM tree. It allows a component to have its very own “shadow” DOM
tree which can be interacted with and manipulated separately. This prevents changes
from the main document to unintentionally affect these encapsulated components. It
makes it so the component is able to keep the markup structure, style, and behavior
hidden and separate from other code on the page. Essentially, it’s put together so that
separate parts of the code don’t clash, all by letting you attach a hidden separated DOM
to an element.

2.7 API And Chrome API

An API, short for Application Programming Interface, is a "software link" that allows
two applications to communicate with each other. As an example, when you use an
application on your mobile phone, the application connects to the Internet and sends
data to a server. The server then retrieves that data, interprets it, performs the necessary
actions and sends it back to your phone. The application then interprets that data and
presents you with the information you wanted in a readable way. This is what an API is
- all of this happens via API.

The Chrome suite of APIs contains many of these so called links, that allows interaction
with different pieces of the google chrome application. Some of which proved to be
quite essential in the application, and some of which didn’t. The range of functionality
of the suite is quite broad. It includes features from time scheduled actions using the
chrome.alarms API, to a local or synchronised storage system using the chrome.storage
API. In smrtfact three of them are being used.

2.7.1 chrome.storage

The chrome.storage API allows user the access two areas of storage, Local storage and
sync storage.

Chapter 2. Related Work and Background Chapter 2 Related Work and Background

• The local storage area is located on the users device and does not transfer to other
installation on different devices.

• The sync storage area is like the local storage are but it does sync to other devices.
This means that if you have two computers, A and B, both with the same extension
installed, you can store something on computer A, and have it available on computer
B and vice versa.

These two areas share the same functionality, including storing data, retrieving data,
removing data and event handling for changes and more.

2.7.2 chrome.tabs

The chrome.tabs API allows manipulation of tabs, and includes useful tools to send
messages from the popup part of the extension to the content script. It also enables
fetching of information about the currently active tab.

2.7.3 chrome.runtime

The chrome.runtime API contains lots of useful tools and functionality when developing
a chrome extension. Some worth mentioning are communication between content scripts
and background scripts, returning information from the manifest, and listening or
responding to events in the app or extension life cycle. The runtime API also enables
you to convert the relative path of URLs to fully-qualified URLs.

Below is an example that shows how a content script can add an image in the extension’s
package to the page that the content script has been injected into.
//// content .js ////

{ // Block used to avoid setting global variables

let img = document . createElement (’img ’);

img.src = chrome . runtime . getURL (’logo.png ’);

document .body. append (img);

}

Listing 2.1: Simple extension code example

Within the chrome.runtime there also is a message system, which is useful when communi-
cating between different layers of chrome extensions. Considering there is a "Popup" layer,
a "background" layer and eventually a "content script" layer which all run separately, the
message system allows for these to listen to and send messages to each other.

Chapter 2. Related Work and Background 13

2.8 RESTful API

A RESTful API is an Architecturally type of API, which uses HTTP requests to access
and use data between two applications. It’s stateless, in the sense that it doesn’t keep
track of the clients state. It performs a set of operations that can be accessed by GET,
PUT, POST, and DELETE. In this case the server is idle and standing by until the
extension send a GET request with the claim as a parameter. It then computes the claim
received, and sends back a JSON object. [8]

2.9 Cosine similarity

Cosine similarity is a metric - shown as the cosine of an angle - that is used to tell
something about the similarity of two documents without regard to their length or size
(Euclidean distance) [9]. This method of finding similarity is regarded as superior to only
counting common words. When the size of the regarded documents increase, the amount
of words they have in common also shoot up. And when finding the cosine similarity,
the two documents can still be far apart by the Euclidean distance, but still have a small
angle, giving an accurate computation.

To find the cosine similarity, you take the cosine of the angle between two vectors in a
multi-dimensional space, where each dimension corresponds to a word in the respective
document. The vectors are the two arrays that contain the count of all the words in each
of the documents.

Say you have two blocks of text, M and N, and you choose to let the three words, A, B
and C lay the base for how similar M and N are. The three words correspond to one axis
each. Lets say the word count for word A, B and C in text M come out as [A=3, B=5,
C=1], and [A=2, B=3, C=2] for text N. Two vectors are then received. Computing the
cosine similarity between these two happens using the following formula:

cosne(M,N) =
M ·N

||M|| · ||N||

Plotting in the numbers provided above give us a value of 0.942908. This is the cosine
similarity. Intuitively, if the variable a is the similarity number, the absolute values’
range for this metric is 0 ≤ ≤ 1.

Chapter 2. Related Work and Background Chapter 2 Related Work and Background

Figure 2.2: Server which claims are sent to

2.10 Automated Fake news detection using machine learning

Text or URL claims are sent to the server. The server then retrieves relevant articles
from the WEB using search engines like Google and analyzes them by applying machine
learning models. [10]

2.11 Existing Approaches/Baselines

Since the recent growth in technology, and more people making use of the Internet to
read news, source criticism has become more important. People have picked up on this,
and a simple Google search for "fact checker extension" provides several hits on different
tools for checking for falsities, though not similar to smrtfact. A lot of them revolve
around political bias. One of the bigger programs found in this search, called the "Media
Bias/Fact Check Extension" by Mike Crowe[11], attaches a meter to posts on Facebook
(among other sites). The meter shows how politically left- or right biased each newspaper
is. The problem with this is that each newspaper has a prefixed reason on how left or
right it is. Generalising means accuracy is lost.

Figure 2.3: Crowes extension, examples from Facebook. Left is a Washington Post
article judged as left-center-biased. Right is a Fox News article judged as right-biased

Chapter 2. Related Work and Background 15

There is a site called Politifact.com, where there are claims already put into the web site,
and the claim has a truth-o-meter attached to it, telling you how liable that exact claim
is.

In theory, the smrtfact extension can also check for political correctness in addition to any
general fact. By taking base in making custom claims an option, it can hit every category
where it’s important to get the facts right. Political, scientifically and intellectually based
claims are all feasible options.

Chapter 3

Solution Approach

3.1 Introduction

The group were free to choose which tools to use and how to solve the task. Therefore
the solution became making a browser extension. This seemed like the most practical
solution to be able to check facts on a website without leaving the site. This is because
extensions work as small software program which can enhance and/or customize your
browsing experience, and allow additional functionality to successfully layer over web
pages.

3.2 The browser of choice

Google Chrome became the browser of choice. There were several reasons for this. One
was because of the fact that as of February 2021, Google Chrome accounted for 63.64% of
overall internet browser market share worldwide [12]. Since it has such a large user base,
and is such a matured product, the documentation has been well written and maintained.
Google chrome also happened to be the browser of choice for the authors, which then
helped settle the choice of platform.

3.3 Workflow

In this section the process of sending a claim in the extension will be described from
start to finish. A flowchart illustrating the process is also included.

17

Chapter 3. Solution Approach Chapter 3 Solution Approach

When the user enters a claim and presses the check button, a quick check and cleanup of
the claim is initialized. The claim gets stripped of any trailing white space and characters
not accepted by the API. Minimum length is also checked before proceeding. If this part
fails, nothing more happens and a error is alerted. If it succeeds, the claim is sent to the
content script using the chrome.tabs message system with a tag for the type of claim it
is, and the popup renders its /loading view.

Within the content script there is a listener for messages which captures messages and
sends them forward to the background page using the chrome.runtime message system.
This step is included so that whether the claim is being sent from the popup, or from a
text field on the website, it gets sent through the same process.

In the background layer, the claim gets passed into a cosine similarity check against
existing claims, accessed from a claims key:value pair in a chrome.storage.local system.
If it is deemed similar enough to an existing claim, a message with a tag for handling
similar claims is sent out. This message is then captured in the popup and renders the
/alias view, where the user has the ability to add it as a related claim in the similar
claim, or add it as a separate claim.

if the user decides to add it as a separate claim it gets sent back to the background layer,
and an asynchronous request to the fact checking API is made. During this the user is
sent to the /loading view. If an error occurs in this step, the error then gets captured
by an on Change listener for the storage system, and gets rendered on the loading view.
After 10 seconds the user is redirected to the /tools view, and can make another claim.
If the API request succeeds, the claim gets put into the storage system, and the user gets
redirected by yet another on-change listener to the /result view for the current claim.

If the user on the other hand decides to add it as a similar claim, the claims gets sent
back to background with a similar tag, which adds it within the similar claim in storage.
This again triggers the on-change listener, and routes the user to the appropriate /result
view.

Stepping back to the background layer, if the claim is not found to be similar to existing
claims, it gets sent to the API in the same way as explained above. Lastly if the claim
already exists within the storage, a message is sent, containing the id of the currently
existing claim and a duplicate tag. This message gets picked up by the popup using a
message listener, and the user gets redirected to the respective /result page.

Chapter 3. Solution Approach 19

Figure 3.1: Flowchart

Chapter 3. Solution Approach Chapter 3 Solution Approach

3.4 Server interaction

When the client sends a claim or a URL to the API, there is two possible routes being
used. The first one is called text-mining, and accepts a string aptly named, user_claim,
which contains the claims which is to be checked.

The other route, which accepts an article’s URL is called article-mining. It accepts an
string in URL format, article_url.

An API request for the claim "the earth is flat" would therefore look something like this:
\{ API\ _address \}/ text - mining ? user_claim =the %20 earth %20 is %20 flat

An API request for the article URL "https://example.com/article1" would look something
like this:
\{ API\ _address \}/ article - mining ? article_url = https :// example .com/ article1

Figure 3.2: Client-server diagram

Chapter 3. Solution Approach 21

3.5 Chrome storage

An API that has been very important in the development of the extension, was the
before-mentioned Chrome storage API. It is used in order to store, retrieve, delete, and
track changes in user data. Though it doesn’t offer data encryption, it doesn’t matter,
because the information it takes and processes is not confidential, and it does the job
just fine.

A call to the Chrome storage API would look like this:
chrome . storage . local .set ({ key: value }, function () {

console .log(’ Value is set to ’ + value);

});

chrome . storage . local .get ([’key ’], function (result) {

console .log(’ Value currently is ’ + result .key);

});

3.5.1 Storing data

To be able to use the Storage API you must declare "storage" in the "permissions" list
in the extension manifest as seen in manifest.json in chapter 3.6.3. When storing the
data you can choose between sync and local "mode". Sync means the stored data will
automatically be synced to any Chrome browser that the user is logged into, while local
stores it on the computer. In the extension, it was decided to use local storage. Primarily
because the limit on how much data can be stored is larger in local than in sync.

3.5.2 Managing history/related claims

Adding the content of our chrome storage to an array declared in data on our parent
component. Enables the parent components data to be used in it’s children components.
Such that in the history component an array is created which is a deep clone of the data
in the parent component.
this. desiredDisplay = [... this. $parent . allData]

As for related claims, a new key is created in the claim object, containing all the similar
claims. This allows the user to access the similar claim, without waiting for the API to
respond with a new claim, therefore speeding up the process.

Chapter 3. Solution Approach Chapter 3 Solution Approach

3.5.3 Tracking changes in storage

The benefits of using the chrome.storage API is that it emits an "onChanged" event,
whenever a change is made to the data object. As this event fires off every time there
is a change, a listener is added to this event, thus being able to update the front end
application to have the latest user claims.

3.6 Chrome extension

3.6.1 Extension file outline

The extensions’ file outline looks like the following:
/ extension

|-- background .js

|-- / components

| |-- alias .js

| |-- historyt .js

| |-- loadingPage .js

| |-- navbar .js

| |-- result .js

| |-- settings .js

| |-- tools .js

|-- contentScript .js

|-- /css

| |-- bootstrap .min.css

| |-- style .css

|-- generators .js

|-- /img

| |-- Ellipsis .svg

| |-- default .png

| |-- extension .png

| |-- fail.png

| |-- icon.png

| |-- loading .gif

| |-- logo.png

| |-- ...

|-- /js

| |-- all.js

| |-- bootstrap . bundle .min.js

| |-- vue - router .js

| |-- vue.js

|-- manifest .json

|-- popup .html

|-- popup .js

Listing 3.1: "File outline"

Chapter 3. Solution Approach 23

3.6.2 The back-end

The back-end of the application receives queries from the user interface in the browser.
Here, the queries are handled, and returns the handled data to the front-end for the user
to see. When it gets sent to the front-end, it has been "modified" to JSON - JavaScript
Object Notation - format.

3.6.3 manifest.JSON

The JSON format is commonly used when transmitting data in between web applications.
[13]

The manifest.json acts as a blueprint for metadata and permissions for the Chrome
extension. This is also where all scripts and entry points are defined. Local resources are
also defined here, like images one would want to have access to in a content script.
{

" manifest_version ": 2,

"name ": " smrtfact ",

" description ": "a Smart fact checking extension for google chrome ",

" version ": "2.0" ,

" author ": " STG0002664 ",

" content_security_policy ": "script -src ’self ’ ’unsafe -eval ’;

object -src ’self ’;" ,

" browser_action ": {

" default_icon ": "img/icon.png",

" default_popup ": " popup .html",

" default_title ": " smrtfact "

},

" background ": {

" scripts ": [

" background .js"

]

},

" content_scripts ": [

{

" matches ": [

"http ://*. example .org /*" ,

" https ://*/*" ,

"http ://*/*"

],

" run_at ": " document_idle ",

"js ": [

" contentScript .js",

" generators .js"

]

}

],

" permissions ": [

" activeTab ",

Chapter 3. Solution Approach Chapter 3 Solution Approach

"tabs",

"http ://*.{ API IP }}/*/" ,

" storage ",

" contextMenus "

],

" web_accessible_resources ": [" img /*. png "," img /*. gif",

"js/ bootstrap . bundle .min.js",

"css/ bootstrap .min.css "]

}

Listing 3.2: "manifest.json"

Most APIs must be registered under the permissions field in order for the extension to be
able to use them. The "activeTab" gives an extension temporary access to the currently
active tab when the user invokes the extension. "tabs" are for interaction between the
different tabs and windows. The "http://API IP/*/" is for accessing the server which
is hosted on that URL. API IP is where the actual IP of the server should be, but is
censored due to confidentiality. Storage also needs to be given permission for it to be
used. Lastly contextMenus is used to add items to Google Chrome’s context menu.

3.6.4 Content Scripts

For our extensions content scripts, the functionality was split into two scripts. These
being contentScript.js and generators.js

contentScript.js contains the following functionality

• Handling of messages, and events

• Website detection

• Retrieving claim from websites

• Inserting button into field

generators.js contains the following functionality

• Generating elements which should be placed on the active website’s DOM.

• Generating overlay page

• Generating button

Chapter 3. Solution Approach 25

3.6.5 Background page

A background page is loaded when it is needed, and unloaded when it goes idle. Some of
the events are when it’s installed for the first time or when it updates to a new version.
chrome . runtime . onInstalled . addListener (function (details) {

let defaultValue = [];

let defaultSettings = {

filter : " default ",

false_boundary : 0.4 ,

truth_boundary : 0.6 ,

hist_sort : " newest ",

hist_filter : "all",

hist_limit : 5,

}

chrome . storage . local .get ({ claims : defaultValue }, function (data) {

chrome . storage . local .set ({ claims : data.claims ,

errorMessage : "OK" }, function () {

});

});

chrome . storage . local .get ({ settings : defaultSettings }, function (data) {

chrome . storage . local .set ({ settings : data. settings }, function () {

});

});

if(details . reason == " install ") {

console .log (" This is a first install ")

}else if (details . reason == " update "){

var thisVersion = chrome . runtime . getManifest (). version ;

console .log (" Updated from " + details . previousVersion + " to "

+ thisVersion + "!");

}

})

Listing 3.3: "Install/update sequence"

Furthermore, it is used for listening to events and acting upon them. When a user sends
a claim, a message is sent with an instruction and claim to the background script. A
listener will pick up this message and swiftly send it to the API to be processed.

3.6.6 Communication

Content scripts, background scripts and the popup scripts all work separately. The
content scripts specifically run in the context of a web page and is "injected" into the
currently focused website, that is if it has permission to do so. Since they are independent
and provide different limitations and possibilities, communication between these become
important. The chrome.runtime message system comes in handy here, allowing these
layers to communicate and transport data between themselves.

Chapter 3. Solution Approach Chapter 3 Solution Approach

3.7 Accessing the popup

The popup of the extension can be accessed by clicking the smrtfact extension in the list
of Chrome browser extensions as shown in Figure 3.3.

Figure 3.3: How to access the popup

Clicking it will bring up a popup where most of the functionality of the extension reside.
It will start up in the Tools tab as shown in Figure 3.5 in chapter 3.9.1.

3.8 The Interface

When building the UI, a lot focus was on simplicity and functionality. All the tabs (Tools,
Result, History and Settings) each have their own important purpose which is discussed
later. Though inside one SPA, making four separate tabs, cost simplicity and sleekness.
Initially, it was thought to have all components in one single tab, but with later work it
was logical that they had to be separated. It wouldn’t have been possible to display the
outputs as desired if a single tab was to be the solution. In Figure 3.4 you can see how
the tabs are displayed in the header of the popup.

3.9 Routes

The Extension popup window is built using Vue.js with a SPA layout in mind. In
the popup window there is a toolbar, containing shortcuts to different "views" of the
application.

Chapter 3. Solution Approach 27

Figure 3.4: The popup header

The components are all routed with Vue Router from a constant Array routes in the
popup.js file as below.
const routes = [

{ path: ’/’, component : Tools },

{ path: ’/tools ’, component : Tools },

{ path: ’/settings ’, component : Settings },

{ path: ’/ result /: claim_id ’, component : Result , props : true },

{ path: ’/result ’, component : Result , props : true },

{ path: ’/history ’, component : Historyt },

{ path: ’/loading ’, component : loadingPage },

{ path: ’/alias ’, component : alias }

]

const router = new VueRouter ({

routes

})

Listing 3.4: Vue component routes.

By utilizing a Vue router, it enables the application to render different views from these
defined routes. These views can then be rendered in a sub-window in the application,
allowing the application to only re-render the needed components instead of redirecting
to separate windows for each view. Therefore acting like a SPA instead of a multi page
application.

Chapter 3. Solution Approach Chapter 3 Solution Approach

3.9.1 Tools

Figure 3.5: The tools tab

Chapter 3. Solution Approach 29

Tools component is where the primary functionality of the extension lies. At the top
there are three actions you can choose between:

• Check selection

• Check active page

• Send Claim

Underneath there are stats, showing the amount of claims and their results. And clickable
links to the three most recent claims.

To use the Check Selection button, the user must have the popup open, then mark a text
in the browser by using the cursor, and then click Check Selection. The marked text will
first be sent as a claim to the API. Secondly it will redirect to the loading page while the
claim is being processed, and finally redirect to result page when the API returns the
result. This process starts by the sendM method in tools.js, but the redirection after
the loading page is handled by various event listeners in popup.js. For convenience sake
Check active page has been added. This button - Check active page. When clicked, will
retrieve the URL of the window you are in, and fact check that page.
sendM : function (e) {

let self = this;

chrome .tabs. query ({ active : true , currentWindow : true },

function (tabs) {

chrome .tabs. sendMessage (tabs [0].id ,

{ instruction : e, data: self. claim },

function (response) {

self. $router .push ({ path: ’loading ’ });

});

});

}

Listing 3.5: How Check Selection works

Optionally, you can write your claim directly into the input field and click the Send
Claim button, which will trigger the checkClaimType function.
checkClaimType : function () {

if (this. validateURL (this. claim)) {

let temp = this. claim . split (’.’)

if(temp [0] != " https :// www ") {

this. claim = " https :// www ." + this. claim }

let e = " factCheckURL "

this. sendM (e)

}else {

this. claim = this. claim . replace (/[^a-z0 -9 \.,_ -]/ gim ,"");

if(this. claim .trim (). length < 10) {

Chapter 3. Solution Approach Chapter 3 Solution Approach

return alert (" Could not compute this claim ,

please check if its correct ")

}else {

this. claim = this. claim .trim ()

let e = " factCheckText "

this. sendM (e)

}

}

Listing 3.6: checkClaimType function when pressing Send Claim

There have been implemented checks in order to see whether it was a URL entered, or if
it was a text claim. Such that the claim can be sent to the appropriate API endpoint.
Additionally these checks are used in a computed function, to deduce whether the user
is trying to type a text claim or an URL claim and change the button’s name between
Send Claim and Send URL. Purpose of this is to clearly show the user that what they
are writing is being interpreted as an URL or vice versa for a better user experience.

3.9.2 Related claims

If a claim turns out to be very similar to an already existing one, you will be redirected
from tools to the alias component.

Figure 3.6: alias page

As seen in figure 3.6, you are presented with two options. For instance if clicked yes, it
will automatically redirect to result, see figure 3.10 to see how result page looks with
related claims. However if clicked no you will be redirected to loading page as a regular
claim.

Chapter 3. Solution Approach 31

3.9.3 Loading ...

Figure 3.7: Loading page

The loading page is a route only accessible when you use one of the fact checking tools on
the tools component which will redirect you to the loading page. Loading page consists
of a message and a loading GIF. After this two things will happen, either the claim is
successful and you will be directed to result. Or the claim is unsuccessful, meaning there
is an error on the server side.

Error handling

When sending an asynchronous request to the fact checking API, it’s within an await.
An await causes other operations to pause until a promise is settled. This is essential as
other operations can’t proceed until a response is returned from the server. Inside the
asynchronous request - .then() methods are chained, also called composition[14]. .then()
methods return a promise, a promise represents the eventual completion or failure of an
asynchronous function. As a result if the response fails, a .catch() method can be used
to deal with rejected cases. Thus allowing errors to be handled. When the asynchronous
function is unsuccessful, the Loading page will update and display the error message.
This happens because error messages are stored as a key:value pair in storage. By having
a chrome storage on-change event listener, errors will automatically appear in the popup
as they arise.

The loading page will then run the function which displays the error and redirect to
homepage/tools after 10 seconds.

Chapter 3. Solution Approach Chapter 3 Solution Approach

3.9.4 Result

The Result component consists of two routes, one with a prop and one without. The
result page will by default display the latest claim made, the route without a prop value.
Whereas the route with a prop is used when the user wants to view a specific claim. For
example if the user happens to click on one of the recent claims in the tools component,
or other previously made claims that can be found in the history component.

Figure 3.8: Result page when no claims have been made

If there are no claims made result page is empty like in Figure 3.8. However the moment
a claim is returned from the server, it redirects to the result page and loads up the
information.

Chapter 3. Solution Approach 33

Figure 3.9: How the result page looks after a claim has been made

Figure 3.10: Result page with related claims

Chapter 3. Solution Approach Chapter 3 Solution Approach

Loaded information needs to be concise. Therefore the information to display would be
the final prediction - true or not, and the articles which the claim is basing its statement
on. The articles which the user can view, contain a snippet - with a link to the website,
and the date the article was written. To make it easier for the user, there is colouring
to the articles. Green if they support the statement, or red if they disagree with the
statement.

Figure 3.11: How the result page looks when article’s clicked

Chapter 3. Solution Approach 35

3.9.5 History

Figure 3.12: Empty history page

History component stores all claims made, and has two filtering functionalities.

• Show

• Sort

Firstly the Show drop down button lets you choose between simple text claims or URL
claims. Secondly the Sort drop down button lets you choose in which order the claims
should appear. By clicking on one of the claims, you will be taken to the result page
using a prop to identify which claim to display.
<router -link v-bind:to =" ’/ result /’+ claims .id">

Listing 3.7: Router link to show specific results of specific claim

An id is passed as a prop so that the clicked claim will be retrieved in the result page. By
letting the claims have their own id, the order of which they are being rendered, doesn’t
change. This is done because the rendered array of claims, isn’t necessarily ordered the
same way as the main claims array.

Chapter 3. Solution Approach Chapter 3 Solution Approach

Figure 3.13: Expanded history page. NB: Computer icon symbols URL claims, while
the others are text claims

Figure 3.14: History page unsorted and sorted

Chapter 3. Solution Approach 37

3.9.6 Settings

Settings has many functionalities,

• Setting user desired truth and false boundary

• Setting persistent ordering of claims in history

• Setting persistent filtering of types of claim

• Setting persistent length of amount of claims to display

• Clear history

• Reset settings

Using persistent filtering enables a tailored user experience. For example the user is
able to set their own requirements for how high or low the criteria must be for it be
a true statement, or a false statement. Furthermore if they want the order of claims
sorted differently or how many claims they want displayed, it can be set in settings. To
achieve this chrome.runtime.onInstalled is used, because it runs whenever the extension
is installed for the first time. Making it so that the default settings can be set in chrome
storage, and later on be fine-tuned by the user.

Use case

Claims truthfulness are measured in a scale from 0-1, 1 being most likely true, and 0 being
most likely false. A true statement requires a score of over 0.6, and a false statement
requires a score of 0.4 and below. If the user for any reason deemed the boundaries for
truth and false as too loose or too strict, the user can then easily adjust the boundaries
to fit more into their requirements. For example setting truth boundary to be 0.8 will
make it harder for claims to meet that criteria, and consequently less claims will return
true.

Clearing history and resetting settings to default are accessible as buttons. As you can
see from figure 3.17 there are two buttons; Clear History and Reset Settings. These
buttons run methods which resets the array stored in chrome storage.
methods : {

clearHistory : function () {

chrome . storage . local .set ({ " claims ": [], " errorMessage ": "OK" },

function () {}

);

},

Chapter 3. Solution Approach Chapter 3 Solution Approach

resetSettings : function () {

self = this

chrome . storage . local .set ({

" settings ": {

" false_boundry ": 0.4 ,

" filter ": " default ",

" truth_boundry ": 0.6 ,

" hist_sort ": " newest ",

" hist_filter ": "all",

" hist_limit ": 5,

} }, function () {

self. defaultSettings = true

});

}

}

Listing 3.8: methods for clearing history and clearing settings

Figure 3.15: Settings route

Chapter 4

The fact check button

4.1 Introduction

To be able to easily fact check the chosen text, the smrtfact extension comes with a
layover to the right in the text editor fields of the three web sites. The three chosen
websites are Facebook, YouTube and Twitter. All three very renowned for being big
factors when it comes to spreading information. By choosing these, a big user base is
reached, as these applications - according to Statista - had billions of monthly users in
2020 respectively [15]. If billions of users with their billions on posts were to fact check
their posts before posting, there would be a lot less fake information going around. Thus
the fact check button was implemented on those sites. Looking at figure 4.1 you can see
the fact check button before any text or claim is made in the editor. It looks very plain
with only a light blue question mark button. It looks the same for all three of the web
sites, and does not look any different whether you’re about to make post or comment.

Figure 4.1: How the button looks in the editor field (from YouTube comment section)

4.2 Checking claims

When you type something in the editor field and it exceeds 10 characters, there is a
timer that starts counting to 3 seconds. The timer is reset every time you make an input
(as long as no claim is being processed). If the timer is not interrupted, the fact check
button will send the text as a claim to the API. You will know that this happens when a

39

Chapter 4. The fact check button Chapter 4 The fact check button

loading animation starts. This is made as a GIF with three dots moving up and down, as
shown below. The user is free to choose whether they want to wait the 3 seconds before
it starts checking, or if they want to instantly check the claim by clicking the question
mark button manually.

Figure 4.2: Loading animation after 3 seconds of inactivity

After it’s done loading, there are four possibilities. The icon will turn red with a cross
if the claim is false, or green with a check mark if it’s true. There are also two cases
for similar claims, but more on those later. In the case below, the overlay confirms the
proposed claim to be true. Thus turning into a green check button like in Figure 4.3.

Figure 4.3: Green check button as a result of the fact being "true"

When hovering over the button, another blue button, "expand", is displayed. Clicking
this will bring up a layout which refers to the Popup for more information as to why it
got that result. An example when hovering over the button is displayed in Figure 4.4.
Look to Figure 4.5 to see what the "expand" interface looks like.

Figure 4.4: How the check button looks when hovering over it

Figure 4.5: Interface when clicking on the expand button

Chapter 4. The fact check button 41

4.3 Alias for button

The button can also handle similarities and appears different when a similarity arises.
As seen in figure 4.6 below. There is an exclamation mark surrounded by the color of
the result the similar claim received.

Figure 4.6: Button when hovering over it

When the expand button is clicked a popup appears, showing the claim you just made
and the claim it’s similar to. If clicked yes, the window will close and the green check
mark will appear. However if clicked no, the window will close and the claim will be
handled as a new claim with the loading GIF appearing. Showing that the claim is being
processed and will result in either a green check mark or a red x.

Figure 4.7: Interface when clicking on the expand button

And as seen in figure 4.1-4.7 it operates as the extension, albeit less information.

Chapter 4. The fact check button Chapter 4 The fact check button

4.4 How the button is implemented

The button is created and designed in the generators.js file. Having these features.

• Receive claim

• Display result (true or false)

• Handle similar claims

• Popup with more information

For all three currently supported websites the same approach is used. Firstly determining
which site the user is currently on and identifying the container which contains the field
where one can post. More over these fields differ in their respective selectors. As a result
these field’s unique selectors have been extracted.

For the button to operate properly it needs to be inserted at the right time. For this
reason a listener is used on the focusin event to accurately deduce when a text field is in
focus. Next the focused in text field’s selector is compared to the extracted selectors,
and if they are the same a button will be spawned in. So long as there doesn’t exist one
already.

4.4.1 Shadow DOM

To create this button without common class names and IDs interfering with the button,
it was attached to a shadow DOM. So regardless of which page its being rendered on its
appearance wouldn’t change.
buttonDiv = document . createElement (" fact -analysis - button ");

let shadowRoot = buttonDiv . attachShadow ({ mode: "open" });

Listing 4.1: Creating a shadow root

Here the check button gets attached to a shadow root. the parameter "open" refers
to whether you can access the shadow dom using JavaScript written in the main page
context.

Chapter 5

Implementations and Experiments

5.1 Measurements

Figure 5.1: Measuring time from start to finish

Figure 5.1 shows a representation of the execution time, from the send claim button is
pressed to the result is retrieved, of the three main cases for claims getting checked. Firstly
if a claim is identical to an existing claim, it gets sent back within a few milliseconds.
Secondly if a similar claim appears, and the cosine similarity check is triggered, the
similar claim options will most often appear within a hundred milliseconds. Both these
save time compared to making a new claim. This is a result of the API request itself. If
the time spent waiting for the request to come back would have been neglected, claims
could have been handled in a similar time frame as the similar claims.

43

Chapter 5. Implementations and ExperimentsChapter 5 Implementations and Experiments

5.2 How the front-end and back-end communicates

Communication between the front-end (Extension popup) and back-end (background-
script and content-script) is handled through the chrome message and storage APIs.

The front-end is actively listening to changes made in the utilized local storage system.
This means that if a new claim is made, an error is received, or a claim gets edited,
that being a similar claim is added to it, the extension will respond with rendering the
appropriate view.

The back-end on the other hand mostly listens to messages sent by the content-script
itself or the extension popup. These messages usually contain an instruction named
appropriately to their functions, and some data attached to itself.

5.3 Cosine similarity

In the beginning string comparison were performed on new claims against our storage to
see if the claim already exists.
for(let i in allData) {

if(allData [i]. body. claim === request .data. toString ()) {

exists = true

sendResponse ({ results : allData [i]})

}

}

Listing 5.1: "Direct string comparison"

However, upon the realization that essentially almost identical claims ended up being
sent as new claims to the API. As a consequence of the claim being slightly different
than the claim in storage, but in essence meant the same. For example "the earth is flat"
and "earth is flat" will not pass a string comparison and essentially create an unnecessary
API call. This lead to the implementation of cosine similarity. The cosine similarity can
be found using this formula:

cosne(M,N) =
M ·N

||M|| · ||N||

Chapter 5. Implementations and Experiments 45

5.3.1 Cosine similarity code

To compute the cosine similarity a set of functions was implemented. First thing is to
split up the string and map the frequency of each word, and return an object with the
mapping.
function mappingWordCount (str) {

let words = str. split (’ ’);

let wordCount = {};

words . forEach ((w) => {

wordCount [w] = (wordCount [w] || 0) + 1;

});

return wordCount ;

}

Listing 5.2: "mappingWordCount"

After that, create a dictionary of all the words that are present in both strings.
function addingWordsToDictionary (mappingWordCount , dict) {

for (let key in mappingWordCount) {

dict[key] = true;

}

}

Listing 5.3: "addingWordsToDictionary"

Then change the dictionary into a vector. The dimension of the vectors will depend on
the number of words there are in the dictionary
function mapToVector (map , dict) {

let wordCountVector = [];

for (let term in dict) {

wordCountVector .push(map[term] || 0);

}

return wordCountVector ;

}

Listing 5.4: "mapToVector"

Now that the string has been turned into a vector, it can be inserted into the formula.
function dotProduct (vecA , vecB) {

let product = 0;

for (let i = 0; i < vecA. length ; i++) {

product += vecA[i] * vecB[i];

}

return product ;

}

Listing 5.5: "dotProduct"

Chapter 5. Implementations and ExperimentsChapter 5 Implementations and Experiments

function magnitude (vec) {

let sum = 0;

for (let i = 0; i < vec. length ; i++) {

sum += vec[i] * vec[i];

}

return Math.sqrt(sum);

}

Listing 5.6: "magnitude"

function cosineSimilarity (vecA , vecB) {

return dotProduct (vecA , vecB) / (magnitude (vecA) * magnitude (vecB));

}

Listing 5.7: "cosineSimilarity"

Lastly the above functions are nested into one function to actually calculate the cosine
similarity of two claims.
function cosineSimiliarityToText (claimA , claimB) {

const wordCountA = mappingWordCount (claimA);

const wordCountB = mappingWordCount (claimB);

let dict = {};

addingWordsToDictionary (wordCountA , dict);

addingWordsToDictionary (wordCountB , dict);

const vectorA = mapToVector (wordCountA , dict);

const vectorB = mapToVector (wordCountB , dict);

return cosineSimilarity (vectorA , vectorB);

}

Listing 5.8: cosineSimiliarityToText

While this did solve our problem, a new problem arose. For example "the earth is flat"
and "the earth is not flat" mean two different things, but still score high on the cosine
similarity. The solution was then to create an alternate state in both the extension
popup, and the overlay button. In this state, the user gets the choice of sending the
claim as a new separate claim, or adding it to an existing claim as a "related claim".

5.3.2 Cosine similarity execution time

Considering the code for the cosine similarity, it can be concluded that the big O notation
is O(n), with n being the amount of unique words in the two compared claims. In reality
this does not effect the total execution time of the claim checking process, since the
average length of sentences typically is within the 15-25 words range

By measuring the time of the cosine similarity check in the extension, it was discovered
that the cosine similarity check averaged around a fraction of a millisecond per claim.

Chapter 5. Implementations and Experiments 47

5.4 Scoring

Scoring the claims is handled by fact checking API. This API provides the user a bunch
of different values, including a final score, per article scoring and a final prediction. The
final prediction is based on the final score, where if the score is 0.5 and larger it is 1, else
it is 0. Due to the Boolean nature of this final prediction method, a margin of uncertainty
has been added in the extensions implementation. This margin is configurable by the
user in the settings page. By default 0.4 has been set as the boundary for false claims,
while 0.6 has been set as the true claim margin. If the score of a claim is between these
two margins, it gets considered an uncertain situation, and the decision is left to the user
to determine whether the claim is true or false.

Chapter 6

Discussion and Future Directions

6.1 Conclusion

The goal of making a chrome extension that allows for quick and simple fact checking was
in the end reached. Although we did not integrate with text editors like Google Docs or
Microsoft word, the three websites we did integrate with are major social media platforms,
susceptible to fake news. Nevertheless, since the plugin portion of the application works
on any web page (with a few exceptions like chrome://*), we consider the usability and
potential reach of the extension to be well within satisfaction.

6.2 User feedback

Throughout the development process, some feedback was requested from a group of test
users. This feedback ranged from thoughts on the UI and functionality, to usefulness
and the design. These pieces of feedback turned out to be very helpful, and lead to a
redesign of the UI.

6.3 Challenges

Through out the project a number of different issues and challenges were discovered, and
thus some workarounds and clever solutions had to be implemented.

Locating text input fields on different websites turned out to be a challenge in the
beginning.

49

Chapter 6. Discussion And Future Work Chapter 6 Discussion and Future Directions

Deciding on when to render the check button took some iterations to improve. Starting
out it appeared when the user clicked on the site, which turned into issues where it
wouldn’t render since the page hadn’t loaded the text field yet. This eventually developed
into it rendering on focus, with a check if the button already exists.

Where to attach the button on the supported sites also gave us some trouble, but taking
inspiration from the Grammarly chrome extension[16], we decided to attach to the parent
element of the text fields.

Trying to make the Popup open directly from the website was a wanted feature, but
turned out to be not directly possible in stable builds of the google chrome browser. This
functionality apparently is only available on development and canary builds of chrome.

Rendering the button once per page turned out to be a problem when we started
implementing comment field support, most noticeably within Facebook, and YouTube.
Since we only rendered it once per page, it would only render within the first field you
commented on. Therefore implementing it to render once per text field turned out to be
more appropriate.

Figuring out a way to implement automatic checking turned out to be a challenge too,
where a couple of iterations from checking on key up, to checking on space characters, to
eventually ending up on a 3 second timer.

6.4 Future Directions

Improve the storage solution being used, eventually add support for sync-storage between
devices.

Make our own claim checking REST server, with possibility to cache previously checked
claims for a determined duration

Implement full screen view of application, with better visibility over claims, settings, etc.

Simplify messaging system, removing the current dependency of the content script layer
for the popup to work on all sites, including the chrome about page, chrome settings
page, and local file pages.

Adding support for graphical word processing programs, such as Microsoft word or google
docs. With "Grammarly " style highlighting that will underline sentences or claims either
red or green based on the result.

Implement a more context aware comparison check between claims, instead of the current
cosine similarity.

List of Figures

1.1 Example from the comment section under a post from the movie "Game
Changers" on Facebook . 4

1.2 A fact check from a comment from Facebook 4

2.1 Vue life-cycle Diagram . 10
2.2 Server which claims are sent to . 14
2.3 Crowes extension, examples from Facebook. Left is a Washington Post

article judged as left-center-biased. Right is a Fox News article judged as
right-biased . 14

3.1 Flowchart . 19
3.2 Client-server diagram . 20
3.3 How to access the popup . 26
3.4 The popup header . 27
3.5 The tools tab . 28
3.6 alias page . 30
3.7 Loading page . 31
3.8 Result page when no claims have been made 32
3.9 How the result page looks after a claim has been made 33
3.10 Result page with related claims . 33
3.11 How the result page looks when article’s clicked 34
3.12 Empty history page . 35
3.13 Expanded history page. NB: Computer icon symbols URL claims, while

the others are text claims . 36
3.14 History page unsorted and sorted . 36
3.15 Settings route . 38

4.1 How the button looks in the editor field (from YouTube comment section) 39
4.2 Loading animation after 3 seconds of inactivity 40
4.3 Green check button as a result of the fact being "true" 40
4.4 How the check button looks when hovering over it 40
4.5 Interface when clicking on the expand button 40
4.6 Button when hovering over it . 41
4.7 Interface when clicking on the expand button 41

5.1 Measuring time from start to finish . 43

51

Appendix A

Contributions

Team Memeber Area Notable Specifics

Kevin Ratdal All

Project management, Git setup
Communication between layers
Architectural design
Back-end and Front-end focused work

Mustafa Hersi All
Undertook many of the popups core functionality
Communication within the extension
Code reviews

The source code for the extension can be found at github.com/KevinRatdal/smrtfact[17]

53

Bibliography

[1] statista. Number of smartphone users worldwide from 2016 to
2023, 2021. URL https://www.statista.com/statistics/330695/

number-of-smartphone-users-worldwide/. Retrieved April, 2021.

[2] Oberlo. 10 TIKTOK STATISTICS THAT YOU NEED TO KNOW IN 2021 [IN-
FOGRAPHIC], 2021. URL https://www.oberlo.com/blog/tiktok-statistics.
Retrieved April, 2021.

[3] Shalini Talwar, Amandeep Dhir, Dilraj Singh, Gurnam Singh Virk, and Jari
Salo. Sharing of fake news on social media: Application of the honeycomb
framework and the third-person effect hypothesis. Journal of Retailing and
Consumer Services, 57:102197, 2020. ISSN 0969-6989. doi: https://doi.org/10.
1016/j.jretconser.2020.102197. URL https://www.sciencedirect.com/science/

article/pii/S0969698920306433. Retrieved April, 2021.

[4] BBC. What’s so bad about fake news?, unknown. URL https://www.bbc.co.uk/

bitesize/articles/zjykkmn. Retrieved April, 2021.

[5] Wikipedia. Google Chrome, 2021. URL https://en.wikipedia.org/wiki/

Google_Chrome. Retrieved April, 2021.

[6] HTML. HTML, April 9, 2021. URL https://en.wikipedia.org/wiki/HTML.
Retrieved May, 2021.

[7] hackreactor. What is JavaScript Used For?, 2018. URL https://www.hackreactor.

com/blog/what-is-javascript-used-for. Retrieved April, 2021.

[8] RESTful. RESTfulapi, 2020. URL https://restfulapi.net/. Retrieved May,
2021.

[9] cosine. Cosine Similarity. URL https://www.machinelearningplus.com/nlp/

cosine-similarity/. Retrieved May, 2021.

[10] Bjarte Botnevik, Eirik Sakariassen, and Vinay Setty. Brenda: Browser extension
for fake news detection. In Proceedings of the 43rd International ACM SIGIR

55

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.oberlo.com/blog/tiktok-statistics
https://www.sciencedirect.com/science/article/pii/S0969698920306433
https://www.sciencedirect.com/science/article/pii/S0969698920306433
https://www.bbc.co.uk/bitesize/articles/zjykkmn
https://www.bbc.co.uk/bitesize/articles/zjykkmn
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/HTML
https://www.hackreactor.com/blog/what-is-javascript-used-for
https://www.hackreactor.com/blog/what-is-javascript-used-for
https://restfulapi.net/
https://www.machinelearningplus.com/nlp/cosine-similarity/
https://www.machinelearningplus.com/nlp/cosine-similarity/

Bibliography BIBLIOGRAPHY

Conference on Research and Development in Information Retrieval, SIGIR ’20, page
2117–2120, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450380164. doi: 10.1145/3397271.3401396. URL https://doi.org/10.1145/

3397271.3401396.

[11] mediabias. Media bias Fact check extension. URL https://

chrome.google.com/webstore/detail/media-biasfact-check-exte/

ganicjnkcddicfioohdaegodjodcbkkh?hl=no. Retrieved May, 2021.

[12] marketshare. Market share of leading internet browsers in the United States and
worldwide as of February 2021. URL https://www.statista.com/statistics/

276738/worldwide-and-us-market-share-of-leading-internet-browsers/.
Retrieved April, 2021.

[13] JSON. Working with JSON, Apr 27, 2021. URL https://developer.mozilla.

org/en-US/docs/Learn/JavaScript/Objects/JSON. Retrieved May, 2021.

[14] .then(). Promise.prototype.then() , May 5, 2021. URL https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/

Promise/then. Retrieved May, 2021.

[15] Userstats. Most popular social networks worldwide as of January 2021, ranked
by number of active users, Feb 9, 2021. URL https://www.statista.com/

statistics/272014/global-social-networks-ranked-by-number-of-users/.
Retrieved May, 2021.

[16] Grammarly. Grammarly, 2021. URL https://www.grammarly.com/. Retrieved
April, 2021.

[17] GitHub. smrtfact - smart-fact-checker , May 28, 2021. URL https://github.com/

KevinRatdal/smrtfact. Retrieved May, 2021.

https://doi.org/10.1145/3397271.3401396
https://doi.org/10.1145/3397271.3401396
https://chrome.google.com/webstore/detail/media-biasfact-check-exte/ganicjnkcddicfioohdaegodjodcbkkh?hl=no
https://chrome.google.com/webstore/detail/media-biasfact-check-exte/ganicjnkcddicfioohdaegodjodcbkkh?hl=no
https://chrome.google.com/webstore/detail/media-biasfact-check-exte/ganicjnkcddicfioohdaegodjodcbkkh?hl=no
https://www.statista.com/statistics/276738/worldwide-and-us-market-share-of-leading-internet-browsers/
https://www.statista.com/statistics/276738/worldwide-and-us-market-share-of-leading-internet-browsers/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.grammarly.com/
https://github.com/KevinRatdal/smrtfact
https://github.com/KevinRatdal/smrtfact

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Goals and inspiration
	1.4 Use cases
	1.4.1 Intro example

	1.5 Outline

	2 Related Work and Background
	2.1 Extensions
	2.2 HTML
	2.3 CSS
	2.3.1 Bootstrap

	2.4 JavaScript
	2.5 Vue.js
	2.5.1 Vue Life-cycle hooks
	2.5.2 Vue extensions

	2.6 Shadow DOM
	2.7 API And Chrome API
	2.7.1 chrome.storage
	2.7.2 chrome.tabs
	2.7.3 chrome.runtime

	2.8 RESTful API
	2.9 Cosine similarity
	2.10 Automated Fake news detection using machine learning
	2.11 Existing Approaches/Baselines

	3 Solution Approach
	3.1 Introduction
	3.2 The browser of choice
	3.3 Workflow
	3.4 Server interaction
	3.5 Chrome storage
	3.5.1 Storing data
	3.5.2 Managing history/related claims
	3.5.3 Tracking changes in storage

	3.6 Chrome extension
	3.6.1 Extension file outline
	3.6.2 The back-end
	3.6.3 manifest.JSON
	3.6.4 Content Scripts
	3.6.5 Background page
	3.6.6 Communication

	3.7 Accessing the popup
	3.8 The Interface
	3.9 Routes
	3.9.1 Tools
	3.9.2 Related claims
	3.9.3 Loading ...
	3.9.4 Result
	3.9.5 History
	3.9.6 Settings

	4 The fact check button
	4.1 Introduction
	4.2 Checking claims
	4.3 Alias for button
	4.4 How the button is implemented
	4.4.1 Shadow DOM

	5 Implementations and Experiments
	5.1 Measurements
	5.2 How the front-end and back-end communicates
	5.3 Cosine similarity
	5.3.1 Cosine similarity code
	5.3.2 Cosine similarity execution time

	5.4 Scoring

	6 Discussion and Future Directions
	6.1 Conclusion
	6.2 User feedback
	6.3 Challenges
	6.4 Future Directions

	List of Figures
	A Contributions
	Bibliography

