

FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR THESIS

Study program / specialization:

Computer Science

Spring semester, 2021

Open

Author:

Qingqing Dai

Supervisor (s):

Chunming Rong; Torstein Thingnæs(NOV)

Title of The Bachelor Thesis:

Build a Dashboard Application for NOVs eVolve Automation System

Credits: 20

Keywords: Number of pages: 81

+ Appendix / other: 16

 Stavanger, 15/07/2021

 Qingqing Dai 2021 Page 2

Build a Dashboard Application for NOVs eVolve

Automation System

Qingqing Dai

Department of Electrical Engineering and

Computer Science, University of Stavanger

July 2021

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page iii

Abstract

The project is completed by cooperating with NOV. The purpose of the project is to make a

dashboard application that gathers the essential information, monitors the running status of the

devices, and presents an overview of the NOV eVolve Automation System.

NOV eVolve Automation System is a system that includes hardware and software to enable

the integration between downhole tools and surface automation systems through Intelliserve

Wired DrillPipe. Intelliserve Wired Drillpipe is a solution that enables high-speed data

connection with sensors in the hole while drilling.

The goal is to make a dashboard application that shows hardware status, network

communication status between the computers, and remote desktop connection from a Windows

system machine to remote computers. The dashboard application will be installed and run on a

Windows 10 machine, called a Wired Drill Pipe terminal (WDP terminal). C# is an object-

oriented and component-oriented programming language studied by the author to build the

dashboard application. Chapter 2 presents an introduction of C# and the history and features of

the C# programming language.

Chapter 3 presents technology and methodology with the source code. Chapter 4 uses graphics

to explain the relationships between the individual event handler and the components on the

user interface of the dashboard application. There are two URL links attached in chapter 5. One

links to a video for a demonstration of the dashboard application, and the other URL link points

to the GitHub repository where all the source code files store.

Chapter 6 gives a conclusion for the project and provides suggestions for further development.

The author independently writes fourteen pages of source code to implement the NOV

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page iv

Dashboard application. Besides, the author finishes the bachelor thesis on her own, which is

97 pages in total.

The completed dashboard application achieves all the goals above and is confirmed by NOV.

Besides, the dashboard application can detect the offline time and the duration of the devices’

downtime. Moreover, the author adds an extra function to the dashboard application to establish

a remote connection with any of the devices over the network communication and builds a

JSON file that stores information for later investigation.

Running the completed dashboard application on the WDP terminal helps the NOV system

engineers diagnose and resolve the potential problems once there are issues delivered from the

offshore rig. Saving the time to identify the issue is the most significant benefit of using the

dashboard application, especially when the rig is at downtime by accident.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page v

Table of Contents

ABSTRACT ...III

TABLE OF CONTENTS .. V

LIST OF ABBREVIATIONS ... VIII

LIST OF FIGURES .. IX

LIST OF TABLES.. XI

CHAPTER 1: INTRODUCTION .. 12

1.1 BACKGROUND AND PROJECT DESCRIPTION .. 12

1.1.1 Overview of the NOV eVolve Automation System ... 12

1.1.2 NOV Industrial Server .. 12

1.1.3 Graphical Overview of Data Flow ... 13

1.1.4 Project Description ... 14

1.2 AIMS ... 15

1.2.1 The Goals of the Project: .. 15

1.3 MOTIVATION ... 16

1.3.1 Demand on the Notification System. ... 16

1.3.2 Save the Time to Identify Issues .. 16

1.3.3 Detecting the Issues Automatically ... 16

CHAPTER 2: TECHNOLOGY AND THEORY ... 17

2.1 INTRODUCTION ... 17

2.2 THE STUDY OF C# ... 17

2.2.1 Learning Material for Studying the C# Programming ... 17

2.2.2 The Features of C# ... 18

2.2.3 The History and Development of C# ... 19

2.2.4 The Scope of Application and Usage for C# ... 21

2.2.5 The Comparison Between C# and Java .. 22

2.2.5.1 The similarities between C # and Java ... 22

2.2.5.2 The differences Between Java and C# .. 22

2.2.6 The Decision Made to Use C# Instead of Java for This project. .. 24

2.3 VS 2019 IDE - PROGRAMMING SOFTWARE FOR WINDOWS .. 25

2.3.1 The VS2019 IDE ... 25

2.3.2 Creating a Windows Forms app in VS 2019 with C# ... 26

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page vi

2.4 THEORY FOR BUILDING DASHBOARD .. 28

2.4.1 The Graphical Composition of the Dashboard ... 28

2.4.2 The Graphical layout and the Functions of the Dashboard.. 28

2.5 SUMMARY OF CHAPTER 2 ... 31

CHAPTER 3: IMPLEMENTATION .. 32

3.1 INTRODUCTION ... 32

3.2 CREATE FORM1.CS .. 32

3.2.1 Introduction of Form1.Designer.cs ... 32

3.2.2 Create a Form1 Class in Form1.cs ... 35

3.2.3 Create a Class PCInfo in Form1.cs .. 36

3.2.3.1 The Constructor and Properties in PCInfo Class .. 36

3.3 CREATE ADDPC.CS ... 41

3.3.1 Introduction of AddPC.Designer.cs .. 42

3.3.2 The AddPC.cs ... 43

3.3.2.1 Create an Event Handler for Button1 ... 44

3.3.2.2 Create an Event Handler for Button2 ... 45

3.3.2.3 Setup Button3 ... 47

3.4 CREATE CONNFORM.CS .. 50

3.4.1 The ConnForm.cs ... 51

3.4.1.1 Create an Event Handler for Setting Size ... 53

3.5 SUMMARY OF CHAPTER 3 ... 55

CHAPTER 4: IMPLEMENTATION OF FORM1.CS .. 56

4.1 INTRODUCTION ... 56

4.2 ADD MORE COMPONENTS TO FORM1 IN DESIGNER ... 56

4.2.1.1 Add ContextMenuStrip Component to Form1 ... 56

4.2.1.2 Add BackgroundWorker Component to Form1 ... 57

4.2.1.3 Add Timer Component to Form1 ... 57

4.3 IMPLEMENTATION OF FORM1 CLASS .. 57

4.3.1.1 Create Constructor for Form1 Class ... 57

4.4 INITIALIZE DATAGRIDVIEW1 ... 59

4.5 CREATE A CLICK EVENT HANDLER TO ADD BUTTON ... 59

4.6 ADD A RIGHT-CLICKING CASCADING MENU ... 60

4.7 CREATE A CLICK EVENT HANDLER TO EDIT OPTION .. 61

4.8 CREATE A CLICK EVENT HANDLER TO DELETE OPTION ... 63

4.9 CREATE A CLICK EVENT HANDLER TO CONNECT OPTION .. 63

4.10 CREATE A BOOLEAN METHOD TO RETURN THE STATUS OF REMOTE COMPUTER 64

4.11 CREATE A DOWORK EVENT HANDLER TO BACKGROUNDWORKER ... 65

4.12 CREATE A TICK EVENT HANDLER TO TIMER .. 67

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page vii

4.13 CREATE A CELLFORMATTING EVENT HANDLER TO DATAGRIDVIEW .. 68

4.14 CREATE A FORM.LOAD EVENT HANDLER TO FORM1 ... 69

4.15 CREATE A FORMCLOSING EVENT HANDLER TO FORM1 ... 71

4.16 SUMMARY OF CHAPTER 4 ... 73

CHAPTER 5: DEMONSTRATION .. 74

5.1 INTRODUCTION ... 74

5.2 CREATE AN MSI INSTALLER FOR DASHBOARD APPLICATION. .. 74

5.3 THE VIDEO FOR DEMONSTRATION .. 74

5.3.1 Modification According to The Comments ... 74

5.4 THE GITHUB REPOSITORY FOR THE PROJECT .. 77

5.5 SUMMARY OF CHAPTER 5 ... 77

CHAPTER 6: CONCLUSION ... 78

6.1 RESTATE THE THESIS .. 78

6.2 THE COMPLETED DASHBOARD APPLICATION ... 80

6.3 THE ADVICE FOR THE FURTHER DEVELOPMENT ... 81

REFERENCES ... 82

APPENDIX A: ADDPC.CS .. 84

APPENDIX B: CONNFORM.CS .. 86

APPENDIX C: FORM1.CS.. 88

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page viii

List of Abbreviations

Abbreviations Description

EFD Equivalent Fluid Density

LER Local Equipment Room

GUI Graphical User Interface

Stream TV Application to interface downhole data from NetCon

VM Virtual Machine

WBC Wellbore Connect

WDP Wired Drill Pipe

VS 2019 IDE Visual Studio 2019 Integrated Development Environment

CLR Common Language Runtime

JRE Java Runtime Environment

API Application Programming Interface

RDP Remote Desktop Protocol

TCP Transmission Control Protocol

RDP Remote Desktop Protocol

JSON JavaScript Object Notation

OOP Object-oriented Programming

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page ix

List of Figures

Figures Description

Figure 1 System overview

Figure 2 Surface data flow

Figure 3 Downhole data flow

Figure 4 The features of C#.

Figure 5 Syntax comparison

Figure 6 .NET desktop development workload

Figure 7 Create a new project

Figure 8 Form1.cs

Figure 9 Layout of dashboard window 1

Figure 10 Add form

Figure 13 An initial Form1.Designer

Figure 14 Toolbox

Figure 15 Form1 designer for Dashboard App

Figure 16 Properties window

Figure 17 Windows Form Designer generated code for Form1

Figure 18 Class diagram for PCInfo

Figure 19 Add new Windows form

Figure 20 AddPC form

Figure 21 Password

Figure 22 Button3 DialogResult property

Figure 23 Class diagram for AddPC

Figure 24 ConnForm designer

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page x

Figure 25 Check Microsoft RDP Client Control – version 9

Figure 26 Remote Desktop Connection App

Figure 27 Class diagram for ConnForm

Figure 28 Design Form1

Figure 29 BackgroundWorker

Figure 30 Timer

Figure 31 Main form

Figure 32 Form1 form

Figure 33 Cascading Menu for edit, delete and connect

Figure 34 Properties of timer1

Figure 35 Offline duration

Figure 36 Modify the production name and manufacturer

Figure 37 Add NOV.ico

Figure 38 Modify icon of the shortcut

Figure 39 After installaton 1

Figure 40 After installation 2

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page xi

List of Tables

Tables Description

Table 1 The Overview for the development of C#

Table 2 The comparison between C# vs Java

Table 3 Table 3 AddPC

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 12

Chapter 1: Introduction

1.1 Background and Project Description

1.1.1 Overview of the NOV eVolve Automation System

The National Oilwell Varco (NOV) eVolve Automation System uses the high-speed telemetry

network provided by the IntelliSer wired drill pipe that transfers the downhole to the surface at

high speeds up to 57,600 bits per second.

The NOV eVolve Automation System provides real-time measurements from sensors

embedded throughout the drill string at regular intervals. These are collar-based tools placed

along the string that acquire and transmit high-speed measurements independently of mudflow.

Data is then sent to the top drive modified with wired components, including a DataSwivel.

Surface cabling along the TopDrive service loop is installed to transfer data from the

DataSwivel to the network control system, which is called NetCon.

The functions of NetCon are to receive downhole data and transfers it to third-party vendors,

as well as amplifies the signal and convert it to standard ethernet communication.

1.1.2 NOV Industrial Server

An industrial server is installed in the Local Equipment Room (LER), where the data stream is

connected and treated. The Figure 1 System overview shows that the NOV industrial server

contains a wide range of hardware components, e.g., Stream TV, Wellbore Connect (WBC),

NOV Equivalent Fluid Density (EFD), Datavault, and RigSense.

A wired drill-pipe terminal (WDP terminal) connected to the NOV industrial server processes

the data correctly via the network. The NOV Industrial server also needs connections to NetCon

and other systems.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 13

Figure 1 System overview

1.1.3 Graphical Overview of Data Flow

Figure 2 Surface data flow shows the Rigsense receives the data, which NetCon already

converts, then the data will flow separately to WBC and EFD. To the end, the Stream TV will

display the data from WBC.

Figure 2 Surface data flow

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 14

Figure 3 Downhole data flow shows the data stream from the downhole to the components for

NOV industrial server, which is slightly different from the above surface data flow.

Figure 3 Downhole data flow

1.1.4 Project Description

The hardware mentioned above (STV, WBC, EFD, Datavault, and RigSense) are also known

as computers. Many of them have their user interfaces in the NOV industrial server. There is,

however, no standard dashboard or overall system graphical user interface to monitor the entire

system.

The dashboard application provides an overview of each computer's status, and the system will

use those statuses to monitor the network communications between these computers.

Furthermore, the dashboard application also monitors the downtime duration of each computer.

The dashboard application will be installed on the WDP terminal, a physical machine shipped

to the offshore rig, and it has access to all the computers as mentioned above. That means it is

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 15

possible to remotely control any of the computers in the NOV Industrial server by logging on

to the WDP terminal.

The thesis presents the process of building the dashboard application. Chapter 2 primarily

introduces the technology and methodology to make the dashboard application. In other words,

chapter 2 describes the theoretical concept for achieving the goal in detail.

Chapter 3 and chapter 4 mainly present the code in the separate source code file. Chapter 3

presents the specific process for how the dashboard application is created on VS 2019 and

produces the foundational classes invoked in chapter 4. Chapter 4 analyzes the code for event

handlers and components that implement and functionalize the dashboard application.

Chapter 5 mainly demonstrates the completed dashboard application and lists some necessary

modifications according to the NOV employees' suggestions to improve the dashboard

application. Chapter 6 gives a conclusion and some pieces of advice about further development.

1.2 Aims

1.2.1 The Goals of the Project:

1. To study programming language C# and create a graphical user interface for a

dashboard C# application using the Visual Studio 2019 integrated software

development environment.

2. To present an overview of the running status of the computers and software, e.g., WBC,

RigSense, EFD, and STV mentioned in the NOV industrial server section.

3. To complete a dashboard application for monitoring the status of the network

communications between the above computers.

4. To establish the remote control using the dashboard application to other computers

with the Remote Desktop Connection App embedded.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 16

5. To give more ideas and suggestions to multi-functionalize the dashboard application in

the future.

1.3 Motivation

1.3.1 Demand on the Notification System.

Today, several applications, which are running on various computers, monitor the NOV eVolve

Automation System. However, there is no standard notification system. Therefore, it becomes

a high demand to have an application program to sketch an overview of the whole system.

1.3.2 Save the Time to Identify Issues

The NOV system engineer group often receives phone calls from the offshore rig asking for

support when there is an issue. Still, they cannot provide enough information for the NOV

system engineer to diagnose the cause of the error. The dashboard helps to find the specific

device where the issue occurred and fix the problem quickly.

1.3.3 Detecting the Issues Automatically

The offshore rig is working in shift, and there are a lot of crew working and using the same

computer or device. Usually, the crew is well-trained to have the professional abilities to make

sure that they will perform their work task accurately. However, there will always be accidents,

e.g., someone plugs out the power supply accidentally. The dashboard application can quickly

identify such accidents since it can detect the running status of the computer.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 17

Chapter 2: Technology and Theory

2.1 Introduction

Chapter 2 begins with a brief introduction to the programming language C#. The VS 2019 IDE

programming platform is used for compiling code, building, and developing the dashboard

application. The technologies, functions, and tools created and designed to meet the project's

needs are also presented subsequently in the later sections.

2.2 The Study of C#

C# pronounces “see sharp”. It is a programming language. This section will bring readers a

tour of knowing this programming language, starting with introducing the features of language

C# and the graphical explanation for a good understanding and the history, development, and

scope for the usage of the C#. Besides, there is a comparison between C# and the other

programming language at the end of the section, e.g., Java.

2.2.1 Learning Material for Studying the C# Programming

The learning materials are :

1. Book: Beginning C# 6.0 Programming with Visual Studio 2015,

Author: Benjamin Perkins, Jacob Vibe Hammer, Jon D. Reid

2. C# Tutorial

Online source: W3Schools

URL: https://www.w3schools.com/cs/

3. C# Documentation

Online source: Microsoft Documentation

URL: https://docs.microsoft.com/en-us/dotnet/csharp/

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 18

2.2.2 The Features of C#

In this day and age, C# becames one of the most popular programming languages. It is an open-

source language that encompasses static typing, strong typing, lexically scoped, imperative,

declarative, functional, generic, object-oriented, and component-oriented programming

disciplines (International, 2017).

One of the object-oriented language features is providing a clear structure to the program that

makes it possible to recycle the code in separate programs, significantly reducing the cost and

saving time for compiling.

Besides. C# also integrates the following features that are very helpful to create robust and

durable applications:

1. Garbage collection.

- It automatically regains the memory space occupied by the object that is not in use.

2. Nullable reference types.

- It dereferences variables to allocated objects.

3. Exceptions and exception handling.

- It helps to deal with the error caught while running a program.

4. Lambda expressions.

- It creates anonymous functions.

5. Language-Integrated Query (LINQ).

- It is an integration of query language embedded into the C# language.

6. Support for asynchronous operations

- It enables the code to read in a sequence but run in a much-complicated order, like

doing asynchronous work.

7. Embed a unified type system

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 19

- For example,

The primitive types: int and double.

Please see more features in the below Figure 4 The features of C#.

Figure 4 The features of C#

2.2.3 The History and Development of C#

Microsoft Corporation created C# in 2000. Anders Hjjlsberg was the principal designer who

formed a team and designed this programming language. C # was called “Cool” initially. After

that, the .NET announced a new programming language version and renamed it to C#.

As time goes by, C# comes to be an open-source programming language. Now it is improved

by the community.

Please see Table 1 The Overview for the development of C#. The project uses C# 9, which is

the latest version.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 20

Date Versions Features

Jan. 2002 1.0 Not clear.

Oct. 2003 1.2 Modern, object-oriented, type-safe, automatic memory

management, versioning control.

Sep. 2005 2.0 Generics, partial classes, anonymous types, iterators, nullable

types, static classes, delegate interface.

Aug. 2007 3.0 Implicit types, object and collection initializers, auto-implemented

properties, extension methods, query and lambda expressions,

expression trees, partial methods.

Apr. 2010 4.0 Dynamic binding, named and optional arguments, Generic

covariance and Contravariance, Embedded interop types.

Jun. 2013 5.0 Async methods, Caller info Attributes.

Jul. 2015 6.0 Roslyn (compiler-as-a-service), exception filters, await in

catch/finally block, auto property initializer, string interpolation,

operator's name, dictionary initializer.

Mar. 2017 7.0 Tuples, pattern matching, record types, local functions, Async

streams.

May 2018 8.0 Readonly members, default interface methods, declarations, static

local functions, disposable ref structs, nullable reference types,

asynchronous streams & disposable

Indices and ranges, Null-coalescing assignment, unmanaged

constructed types, stackalloc in nested expressions, enhancement

of interpolated verbatim strings.

Sep. 2020 9.0 Records, init only setters, top-level statements, pattern matching

enhancements, performance, and interop, native sized integers,

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 21

function pointers, suppress emitting localsinit flag, Fit and finish

features, target-typed new expressions, static anonymous

functions, target-typed conditional expressions, covariant return

types, extension GetEnumerator support for foreach loops, lambda

discard parameters, attributes on local functions, support for code

generators, module initializers, new features for partial methods.

Table 1 The Overview for the development of C#

2.2.4 The Scope of Application and Usage for C#

Although C# is still a very young programming language, this does not affect the high demand

for using it, and it turns out to be the most popular computer programming language. Nowadays,

many software engineers use C# to build a number of different programs and applications.

Additionally, C# is suitable for creating many websites and web apps using the .NET platform

or other open-source platforms.

Over the above, C# also fits for creating many other programs, for example:

• Mobile applications

• Desktop applications

• Cloud-based services

• Games

• VR

• Enterprise software

• Database applications.

• Windows applications

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 22

2.2.5 The Comparison Between C# and Java

This section contains two parts, the similarities and the differences between C# and Java. A

table exhibits a list of divergences between the two programming languages to the end of the

section,

2.2.5.1 The similarities between C # and Java

1. Both are object-oriented programming languages.

2. Both are parts of the C family; in other words, both inherit from C language.

3. Both support some features, such as garbage collection and multiple class inheritance.

4. Two languages have a similar syntax; please see Figure 5 Syntax comparison

(wikipedia.org) as an example below.

Figure 5 Syntax comparison

2.2.5.2 The differences Between Java and C#

1. Different Runtime environments,

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 23

- C#: runs on CLR (Common Language Runtime)

- Java: runs on JRE (Java Runtime Environment)

2. Different programming software,

- C#: use Visual Studio IDE

- Java: requires Java Development Kit

3. Different usage/application,

- C#: aim at developing an application for Microsoft platforms

- Jave: aim at building a complex application

4. A different way to handle the exceptions

- C#: has only one type of exception.

- Java: put the exceptions into different classes, that is checked exception, such as

FileNotFoundException, and unchecked exception, for example,

ArithmeticException, ArrayStoreException, and ClassCastException are

unchecked exceptions in Java

There are more comparisons for the two programming languages showing in the following

Table 2 The comparison between C# vs Java (Arora, 2020)

Parameters C# Java

Programming

Paradigm

Object-Oriented, component-

oriented, functional, strong typing.

Class-based, an Object-Oriented

language.

Application Windows applications. Web and

game development.

Complex web-based

applications.

Scope Server-side language with a good

programming foundation.

Server-side interaction.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 24

Tools Visual Studio, Mono Develop. Eclipse, NetBeans, Intelli J

IDEA.

Public Classes Supports multiple public classes in

source code.

Java source code can have only

one public class.

Checked

Exceptions

Does not support checked exceptions. Supports checked and unchecked

exceptions.

Platform

Dependency

C# is cross-platform and supports

both Windows and Unix based

systems.

Java is platform-independent but

needs JVM for its execution.

Conditional

Compilation

Supports conditional compilation. Does not support conditional

compilation.

Go to

statement

Supports the go-to statement. Does not support the go-to

statement.

Structure and

Union

Supports structures and unions. Does not support structures and

unions.

Floating Point The result of floating-point numbers

may not be guaranteed to be the same

across all platforms as C# does not

support strictfp keyword.

The strictfp keyword is supported

by Java, and hence the result is

the same across all platforms.

Table 2 The comparison between C# vs Java

2.2.6 The Decision Made to Use C# Instead of Java for This project.

After the above study on the C# and the comparison between C# and Jave, it is evident that the

C# is easily integrated into Windows. Since the dashboard application should be installed on a

Windows system computer, the C# is the best programming language for this project.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 25

2.3 VS 2019 IDE - Programming Software for Windows

The introduction of the programming software, VS 2019, will be presented generally at the

beginning of this section. The following section sketches the construction of a simple windows

forms C# application on VS 2019 IDE.

2.3.1 The VS2019 IDE

Microsoft publishes Visual Studio to be an Integrated development environment. It is the most

widely used programming software to develop websites, mobile applications, and computer

programs. It does not support any programming languages, but it can install the programming

language as a language service package. When the specific programming language is mounted,

for example, the C#. the functionalities, such as syntax coloring, brace matching, statement

completion, parameter information tooltips, member lists, and error markers for background

compilation, are available as a service. Withing the functions above, it becomes one of the most

popular software development platforms. However, the Visual Studio is not free of charge; it

only has a few months for a free trial.

The features for Microsoft Visual Studio:

• IntelliCode editor

• Debugger

• Designer

- The Windows Forms designer is used for building the dashboard applications for

this project.

• Test Explorer

• Microsoft Edge Insider support

• Pinnable Properties tool

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 26

2.3.2 Creating a Windows Forms app in VS 2019 with C#

The example refers to a tutorial about creating a Windows Forms app in Visual Studio with C#

from Microsoft Doc (Doc) is going to be introduced step by step in the section.

Step 1. The prerequisites.

• Download the VS 2019 IDE

• Install the Windows Forms App (.NET Framework) template for C# by checking the

check box at the top-right. Please see Figure 6 .NET desktop development workload

for reference below.

Figure 6 .NET desktop development workload

• Create a new project. The language selection should be C# and select the Windows

Forms App (.NET Core), as Figure 7 Create a new project shows below.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 27

Figure 7 Create a new project

• Name the newly created project on the configuration window.

Step 2. Start the new project

• Three files are generated by creating the new project. One is named Form1.cs, one is

named Form1.designer.cs, and the other is named Program.cs. The following

explanation for those three files refers to the answer from stackoverflow.com

(Rashedul.Rubel).

- The file Form1.cs is the coding file of the windows forms app. It is the class file of

the Windows Forms app where the necessary methods, functions, and events are

customized written. Figure 8 Form1.cs gives a picture of how Form1.cs looks like

(Doc). It shows an example for printing the text “Hello World!”

Figure 8 Form1.cs

- The file Form1.designer.cs is the designer file where form elements are initialized.

If any component is dragged and dropped in the form window, then that element

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 28

will be automatically initialized in this class. This file should not be removed, and

it is not recommended to be changed either.

- The file Program.cs is the main of the application, which is a static method called

static void Main(). This is executed first when the application runs.

2.4 Theory for Building Dashboard

This section introduces the design and layout for creating the dashboard application with a

graphical presentation of assumptions. The functions of the dashboard are also involved.

2.4.1 The Graphical Composition of the Dashboard

The dashboard contains three windows.

1. The window shows the layout of the dashboard.

2. The window to add computers.

3. The window to manage the added computers.

2.4.2 The Graphical layout and the Functions of the Dashboard

The first window is the main window; it shows the running status of the computers; please see

Figure 9 Layout of dashboard window 1 below. The main window will pop out right after

launch the dashboard application by clicking the icon on the desktop.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 29

Figure 9 Layout of dashboard window 1

The main window comprises three areas

1. The top area gives the name of the application.

2. The second area shows the menu, locates in the middle.

3. The third area settles at the bottom of the main window, where is reserved by the general

information for the monitored computer, such as hostname, IP address, and status for

each computer.

The computers can be remotely monitored by the application parallelly and added to the third

area by clicking the add button in the menu area. The information for each computer is plugged

in the columns, row by row in the third area, which is the red part from Figure 9 Layout of

dashboard window 1.

By clicking the button in the menu, for example, the Add button, it triggers an event and pops

out the second window, which is the add form. Please see Figure 10 Add PC on the next page.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 30

Figure 10 Add PC

When a remote PC is added to the dashboard, the third area displays the PC as the above

description. The add form prompts for the IP, username, password, and Port for connecting

with the remote computer. By default, the RDP (Remote Desktop Protocol) server listens on

TCP port 3389. Remote Desktop Connection is Windows built-in application and designed for

remote control.

The third window is for managing remote computers. There are three options, edit, delete and

connect. Each option controlled by the event handler, clicking the associated option buttons,

triggers the corresponding event handler. Please see the Figure 11 Management window.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 31

Figure 11 Management window

The above management window pops out by right-clicking at any place of the entire row of the

remote computer. When placing the mouse on the row of the remote computer, then left-

clicking, the color of the row turns immediately to be blue background, which means the row

is selected. Afterward, right-clicking the mouse shows the management window. The delete

option is to remove the entire row by left-clicking the Delete button.

2.5 Summary of Chapter 2

Chapter 2 explains why the programming language C# is appropriate to build the dashboard

application by researching the features, touring the history of development, studying the scope

for the usage of C#, and comparing it with the other programming language, Java.

The middle of chapter 2 briefly introduces the software development platform VS 2019 IDE.

It extracts an example from the Microsoft Doc website to create a simple Windows forms

application in VS 2019 IDE with C#.

The last part of the chapter describes each window with graphical layouts that illustrate how

the dashboard looks and the functions for buttons.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 32

Chapter 3: Implementation

3.1 Introduction

Chapter 3 brings a tour of how the dashboard application is knocked together in the software

development platform VS 2019 IDE. When the software development environment is ready,

create three source code files with the associated designers. Each file has the extension .cs. All

of them are the partial class in the same namespace, namespace Dashboard_APP.

1. The Form1.cs is the default and the most critical source code file. The following

subsections present the functions and classes in the Form1.cs.

2. The AddPC.cs is the source code file to add the information of the remote PC.

3. The ConnForm.cs is the source code file to embed the Remote Desktop Connection

app.

The code in the subsections presents statements, event handlers, methods, variables, and classes

personalized for the project and are invoked in Form1.cs.

3.2 Create Form1.cs

3.2.1 Introduction of Form1.Designer.cs

When a new project is added in VS 2019 IDE, rename the project to be Dashboard_APP. A

file named Form1.Designer.cs is generated automatically with the file Form1.cs once the new

project is created, Form1.Designer.cs is also called Windows Forms Designer that provides

many components in the Toolbox for rigging up Windows Forms applications.

A Form1.Designer is initially an empty form window; please see Figure 13 An initial

Form1.Designer. It can be released by double-clicking Form1.cs or right-clicking Form1.cs,

then select view designer. Please see Figure 12 Form1.cs below.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 33

Figure 12 Form1.cs

From Figure 13 An initial Form1.Designer, there is a Toolbox window that flies out by clicking

the button Toolbox locates at the left of Form 1 designer, as Figure 14 Toolbox shows below.

Figure 13 An initial Form1.Designer

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 34

Figure 14 Toolbox

The Form1.cs can be designed by dragging the tools from the Toolbox to the form1 window.

Here a button1, a panel1, and a dataGridView1 are placed on Form1 as Figure 15 Form1

designer for Dashboard App.

Figure 15 Form1 designer for Dashboard App

Form1 can be individualized from the Properties window; Figure 16 Properties window

shows that the button, text, and icon are already changed to fit the project.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 35

Figure 16 Properties window

The Windows Form Designer generates the code for Button1, Panel1, and dataGridView1. All

of them are placed in a separate section in Form1.Densigner.cs as Figure 17 Windows Form

Designer generated code for Form1 shows.

Figure 17 Windows Form Designer generated code for Form1

3.2.2 Create a Form1 Class in Form1.cs

The class begins with public partial class Form1 : Form.

It is possible to split a Class into several source code files, as long as they are in the same

Namespace. The partial keyword indicates that the class Form1 is a part of the project. Form1

is the name of the class. Every partial Class can contain several sections of methods, and all

parts are combined to improve the application.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 36

The colon : stands for the class Form1 inherits the base class form's properties, which

represents System.Windows.Forms.Form. It is inheriting to access the properties and methods

of the base class.

Form1 is created by default whenever a Windows Forms App project starts in the software

development platform VS 2019 IDE, and it always begins with the following code. The curly

bracket should surround the body of Form1. Chapter 4 displays the implementation of the class

Form in detail.

public partial class Form1 : Form

{

}

3.2.3 Create a Class PCInfo in Form1.cs

The class starts with public class PCInfo

The keyword public defines the access rules of the class named PCInfo. It indicates that the

class PCInfo is accessible outside the assembly. Still, if the public keyword is not declared, the

class type is defined as internal by default, which means that the class is only visible inside the

same assembly, and the default access for the members is private.

The PCInfo class is intended for creating an object for each remote PC. The following code

declares the PCInfo class.

public class PCInfo {

}

3.2.3.1 The Constructor and Properties in PCInfo Class

The body of PCInfo class is defined between the curly brackets. It begins with a constructor.

A constructor is a special method that achieves initializing objects. The advantage of a

constructor is that it is called when creating an object of a class, and it can contain the initial

values for fields (w3schools):

 //Constructor

 public PCInfo() { }

From the Figure 15 Form1 designer for Dashboard App in the previous section, there is an

area called data grid view that locates at the bottom of the main window, where displays the

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 37

information of the remote PC object in rows. All the fields are declared right after the

constructor (Note. The variables inside a class are called fields). Each PC object includes IP,

hostname, username, password, port, isOnline, status, isConn, offline time, and the offline

duration.

 //create fields

 private string _ip;

 private string _hostName;

 private string _username;

 private string _password;

 private string _port;

 private bool _isOnline;

 private string _status;

 private bool _isConn;

 private DateTime? _offlineTime;

 private int _offlineDuration;

The mechanism is especially for binding the code and the data. It manipulates in the PCInfo

class called Encapsulation. Encapsulation means wrapping up data under a single unit. It is a

protective shield that prevents the data from being accessed by the code outside this shield. The

meaning of Encapsulation is to make sure that the "sensitive" data or variables are hidden from

any other class but can be accessed only through any member function of their own class in

which they are declared (GeeksforGeeks).

There are two steps below to achieve the above mechanism in the PCInfo class:

• Declaring all the variables/fields as private, see the code of “//create fields.”

• Using the public set() and get() methods to set the value and get the values of variables,

see the code below. (Note. The get() and set() methods are also known as property,

which combines the private variables and the methods. By the existence of the public

get() and set() methods in the class, the private variables can be called or assigned a

value by Dot(.) method from the other class.)

/// get and set method. The property

 public string ip

 {

 set { _ip = value; }

 get { return _ip; }

 }

 public string hostName

 {

 set { _hostName = value; }

 get { return _hostName; }

 }

 public string username

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 38

 {

 set { _username = value; }

 get { return _username; }

 }

 public string password

 {

 set { _password = value; }

 get { return _password; }

 }

 public string port

 {

 set { _port = value; }

 get { return _port; }

 }

 public bool isOnline

 {

 set { _isOnline = value; }

 get { return _isOnline; }

 }

 public string status

 {

 set { _status = value; }

 get { return _status; }

 }

 public bool isConn

 {

 set { _isConn = value; }

 get { return _isConn; }

 }

 public DateTime? offlineTime

 {

 set { _offlineTime = value; }

 get { return _offlineTime; }

 }

 public int offlineDuration

 {

 set { _offlineDuration = value; }

 get { return _offlineDuration; }

 }

 }

}

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 39

Please see the class diagram for PCInfo from Figure 18 Class diagram for PCInfo below.

Figure 18 Class diagram for PCInfo

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 40

Please see the completed code for PCInfo class below:

 public class PCInfo

 {

 //Contructor

 public PCInfo() { }

 //create fields

 private string _ip;

 private string _hostName;

 private string _username;

 private string _password;

 private string _port;

 private bool _isOnline;

 private string _status;

 private bool _isConn;

 private DateTime? _offlineTime;

 private int _offlineDuration;

 /// <summary>

 ///

 /// </summary>

 /// get and set method. The property

 public string ip

 {

 set { _ip = value; }

 get { return _ip; }

 }

 public string hostName

 {

 set { _hostName = value; }

 get { return _hostName; }

 }

 public string username

 {

 set { _username = value; }

 get { return _username; }

 }

 public string password

 {

 set { _password = value; }

 get { return _password; }

 }

 public string port

 {

 set { _port = value; }

 get { return _port; }

 }

 public bool isOnline

 {

 set { _isOnline = value; }

 get { return _isOnline; }

 }

 public string status

 {

 set { _status = value; }

 get { return _status; }

 }

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 41

 public bool isConn

 {

 set { _isConn = value; }

 get { return _isConn; }

 }

 public DateTime? offlineTime

 {

 set { _offlineTime = value; }

 get { return _offlineTime; }

 }

 public int offlineDuration

 {

 set { _offlineDuration = value; }

 get { return _offlineDuration; }

 }

 }

}

When the PCInfo class is completed, an object can be created by specify the class name PCInfo,

followed by the object name info, and use the keyword new:

PCInfo info = new PCInfo();

3.3 Create AddPC.cs

A programming project usually assembles several Windows Forms. A new Windows form can

be added by right-clicking the project's name and then click Add, selecting New Item. Then an

Add New Item window shows up; please see Figure 19 Add new Windows form.

Figure 19 Add new Windows form

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 42

Selecting Form highlighted in the gray color from Figure 19 Add new Windows form, then

clicking Add button to the end. The default name of the Windows Form is Form2.cs, renaming

it to AddPC.cs by right-clicking on the term. The name of the auto-generated designer also

alters to AddPC.Designer.cs accordingly.

3.3.1 Introduction of AddPC.Designer.cs

The AddPC form is designed according to the layout presented in section 2.4.3. The AddPC

form consists of four labels, four text boxes, and three buttons. Please find the corresponding

name for these components in Table 3 AddPC, and see the picture of the AddPC form in Figure

20 AddPC Form.

Item Name Item Name

Label1 IP Text box 3 Text field for Password

Label2 Username Text box 4 Text field for Port

Label3 Password Button 1

Label4 Port Button 2 Save

Text box 1 Text field for IP Button 3 Cancel

Text box 2 Text field for Username

Table 3 AddPC

Figure 20 AddPC Form

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 43

Windows Form Designer also generates the following code for these components, and locates

in AddPC.Designer.cs

 private System.Windows.Forms.Label label1;

 private System.Windows.Forms.Label label2;

 private System.Windows.Forms.Label label3;

 private System.Windows.Forms.Label label4;

 private System.Windows.Forms.TextBox textBox1;

 private System.Windows.Forms.TextBox textBox2;

 private System.Windows.Forms.TextBox textBox3;

 private System.Windows.Forms.TextBox textBox4;

 private System.Windows.Forms.Button button2;

 private System.Windows.Forms.Button button3;

 private System.Windows.Forms.Button button1;

3.3.2 The AddPC.cs

AddPC class is defined as a partial class in the Namespaces Dashboard_APP together with the

Form1 class. The AddPC class is designed to read the PCInfo object's information from the

text box and add the PCInfo to the data grid view components by clicking Save button.

The AddPC class begins with a constructor that initializes objects, and it is called when an

object of AddPC is created in the Class Form1. The Form1 class will be introduced in chapter

4.

namespace Dashboard_APP

{

 public partial class AddPC : Form

 {

 // constructor

 public AddPC()

 {

 InitializeComponent();

 }

Create a private field named _info, with the type PCInfo, which indicates the _info is an

instance of PCInfo class. The public PCInfo class is specified in the previous section 3.2.3

Create a Class PCInfo in The Source Code Form1.cs.

 private PCInfo _info;

Each PCInfo object has the following variables.

• IP

• Hostname

• Username

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 44

• Password

• port

The values of each variable need to be collected from the text boxes by using the get() method,

and write it to each variable by using the set() method. Please see the following code.

 // collecting information for PCInfo

 public PCInfo info

 {

 //read the information for PCInfo object

 get

 { //initialize the PCInfo object if there is no input.

 if (_info == null)

 {

 _info = new PCInfo();

 }

 //read IP from the input in the text box 1

 _info.ip = textBox1.Text;

 //read username from the input in the text box 2

 _info.username = textBox2.Text;

 // read password from the input in the text box 3

 _info.password = textBox3.Text;

 // read port from the input in the text box 4

 _info.port = textBox4.Text;

 // return

 return _info;

 }

 // write the value to the variables for each PCInfo object.

 set

 {

 //set value to PCInfo object named _info

 _info = value;

 // write IP

 textBox1.Text = _info.ip;

 // write username

 textBox2.Text = _info.username;

 // write password

 textBox3.Text = _info.password;

 // write port

 textBox4.Text = _info.port;

 }

 }

3.3.2.1 Create an Event Handler for Button1

As mentioned in section 3.3.1 Introduction of AddPC.Designer.cs, there are three buttons

added in the AddPC form. A button is a Button control, which processes the button click event.

The Click event is raised whenever the Button control is clicked. A Click Event Handler can

be declared beginning with a special format:

private void button_click(object sender, EventArgs e) {

}

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 45

The following Click Event Handler sets the parameter for TextBox.UseSystemPasswordChar

Property to False. When the GUI user clicks Button1 , the action enables the password

visible in plain text.

 // Add button1 click event handler

 private void button1_Click(object sender, EventArgs e)

 {

 // change the property value to False

 textBox3.UseSystemPasswordChar = !textBox3.UseSystemPasswordChar;

 }

The UseSystemPasswordChar Property of a button determines whether user-supplied input

should be displayed in the MaskedTextBox as multiple occurrences of a password character

defined by the operating system. UseSystemPasswordChar functions use a programmer-

supplied character for the prompt, and it also uses a prompt defined by the operating system

(Doc, MaskedTextBox.UseSystemPasswordChar Property).

By default, the parameter for TextBox.UseSystemPasswordChar Property is True. If so, The

password is displayed as it shows in Figure 21 Password.

Figure 21 Password

3.3.2.2 Create an Event Handler for Button2

Button2 is the Save button. A Boolean method is created to verify if the IP address is in the

correct format before creating an Event Handler to Button2 control. An eligible IP address

should be split into four cells with a dot (.) between the cells, e.g., 192.168.xxx.xxx, the

Boolean method is named IsIP(), and it takes a string parameter. Please see the code below.

 // create a Boolean method named IsIP to verify the IP address is in the correct format.

 public bool IsIP(string IP)

 {

 // split the IP parameter, and count the number of the elements.

 var iCount = IP.Split('.').Count();

 // if the number of the elements is not 4 return false

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 46

 if (iCount != 4)

 {

 return false;

 }

 // create an IP address object named ip

 System.Net.IPAddress ip;

 // if the string IP can be converted to integer ip successfully,

 //return true. Otherwise return false.

 if (System.Net.IPAddress.TryParse(IP, out ip))

 {

 return true;

 }

 else

 {

 return false;

 }

 }

A variable named iCount is declared at the beginning of the Boolean method IsIP()and assigned

by the return of Split() method and Count() method. The Split() method and Count() method

are called for splitting the string parameter IP with a dot (.) into cells and then return an integer

number that represents the number of cells. The method Split() Returns a string array that

contains the substrings. Moreover, the method Count() returns an int indicating the number of

elements in that string array. A valid IP address should have four cells.

The flowing if statement with the condition iCount != 4, returns false if the IP address cannot

be split into four cells. If so, it will skip the if statement and create an IP Address object by

declaring the type IPAddress.

The IP should be converted from string type to int type by TryParse() method in the second If

statement meanwhile, the second If statement returns True. Otherwise, it returns False.

When the Boolean method IsIP() is completed, it is time to add an Event Handler to Button2

control since the botton2_Click Event Handler IsIP() method needs to call IsIP() method. Here

is the code for the button2_Click Event Handler.

 //Add button2 click Event Handler

 private void button2_Click(object sender, EventArgs e)

 {

 // examine the input of each text box is empty,or null.

 if (string.IsNullOrEmpty(textBox1.Text.Trim()) ||

 string.IsNullOrEmpty(textBox2.Text.Trim()) ||

 string.IsNullOrEmpty(textBox3.Text.Trim()) ||

 string.IsNullOrEmpty(textBox4.Text.Trim()))

 {

 //if any of the input is empty, show a message.

 MessageBox.Show("Cannot be empty!");

 return;

 }

 // call method IsIP to verify the IP

 if (!IsIP(textBox1.Text.Trim()))

 {

 // if it is not IP, show a message.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 47

 MessageBox.Show("Illegal IP!");

 return;

 }

 // set the DialogResult is OK if any of the above “If” statements is triggered.

 this.DialogResult = DialogResult.OK;

 }

Once the Button2 (also known as the Save button) is clicked, the input of each text box needs

to be verified if the information is null or empty by calling String.IsNullOrEmpty(String)

method, if any of the input is empty or null, a message box will pop up showing the message

“Cannot be empty”. The String.IsNullOrEmpty(String) method is a Boolean method, which

indicates whether the specified string is null or an empty string. It returns true if the value

parameter is null or an empty string; otherwise, it returns false.

The IsIP() method is called to verify if the input in text box 1 is in the correct IP address format

or not. A message box will show up if the IP address is invalid (when the IsIP() method returns

false). When the input in the text boxes is correct, setting the value for DialogResult property

to “OK”.

3.3.2.3 Setup Button3

On Visual Studio 2019, a button property can be defined in the Properties window or defined

by code in the source code file. Button 3 is the Cancel button; The dialog box return value is

Cancel when the Cancel button is clicked. Please see Figure 22 Button3 DialogResult

property. It shows that the button3.DialogResult property is set up to “Cancel”.

Figure 22 Button3 DialogResult property

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 48

Please see the class diagram for AddPC in Figure 23 Class diagram for AddPC below.

Figure 23 Class diagram for AddPC

Please see the completed code for class AddPC below.

using System;

using System.Linq;

using System.Windows.Forms;

namespace Dashboard_APP

{

 public partial class AddPC : Form

 {

 // constructor

 public AddPC()

 {

 InitializeComponent();

 }

 //define a private field named _info

 private PCInfo _info;

 // collecting information for PCInfo

 public PCInfo info

 {

 //read the information for PCInfo object

 get

 { //initialize the PCInfo object if there is no input.

 if (_info == null)

 {

 _info = new PCInfo();

 }

 //read IP from the input in the text box 1

 _info.ip = textBox1.Text;

 //read username from the input in the text box 2

 _info.username = textBox2.Text;

 // read password from the input in the text box 3

 _info.password = textBox3.Text;

 // read port from the input in the text box 4

 _info.port = textBox4.Text;

 // return

 return _info;

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 49

 }

 // write the value to the variables for each PCInfo object.

 set

 {

 //set value to PCInfo object named _info

 _info = value;

 // write IP

 textBox1.Text = _info.ip;

 // write username

 textBox2.Text = _info.username;

 // write password

 textBox3.Text = _info.password;

 // write port

 textBox4.Text = _info.port;

 }

 }

 //Add button2 click Event Handler

 private void button2_Click(object sender, EventArgs e)

 {

 // examine the input of each text box is string, empty,or null.

 if (string.IsNullOrEmpty(textBox1.Text.Trim()) ||

 string.IsNullOrEmpty(textBox2.Text.Trim()) ||

 string.IsNullOrEmpty(textBox3.Text.Trim()) ||

 string.IsNullOrEmpty(textBox4.Text.Trim()))

 {

 //if any of the input is empty, show a message.

 MessageBox.Show("Cannot be empty!");

 return;

 }

 // call method IsIP to verify the IP

 if (!IsIP(textBox1.Text.Trim()))

 {

 // if it is not IP, show a message.

 MessageBox.Show("Illegal IP!");

 return;

 }

 // set the DialogResult is OK if any of the above "If" statements is triggered.

 this.DialogResult = DialogResult.OK;

 }

 // create a boolean method named IsIP to verify the IP address is in the correct format.

 public bool IsIP(string IP)

 {

 // split the IP parameter, and count the number of the elements.

 var iCount = IP.Split('.').Count();

 // if the number of the elements is not 4 return false

 if (iCount != 4)

 {

 return false;

 }

 // create an IP address object named ip

 System.Net.IPAddress ip;

 // if the string IP can be converted to integer ip successfully,

 //return true. Otherwise return false.

 if (System.Net.IPAddress.TryParse(IP, out ip))

 {

 return true;

 }

 else

 {

 return false;

 }

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 50

 }

 // Add button1 click event handler

 private void button1_Click(object sender, EventArgs e)

 {

 // change the property value to False

 textBox3.UseSystemPasswordChar = !textBox3.UseSystemPasswordChar;

 }

 }

}

3.4 Create ConnForm.cs

A new Windows Form can be added by following the description at the beginning of section

3.3 Create AddPC.cs, and rename it to ConnForm. MsRdpClient8, Ping, and PingReply are the

technologies/classes that are invoked to verify the condition of network communication

between two computers. The MsRdpClient8 class is one of the Remote Desktop ActiveX

control classes.

The Designer has changed the name to ConnForm as long as the newly added Windows Form

is renamed. The text and Icon can be modified by the designer, which can be personalized in

the properties windows.

• Modify the text: Properties window -> Appearance -> Font -> Text

• Change the Icon: Properties window ->Windows Style -> Icon

Figure 24 ConnForm designer

Microsoft RDP Client Control ActiveX is designed for embedding a Remote Desktop

Connection in the form at the blank area in Figure 24 ConnForm designer. Nevertheless, before

that, the Microsoft RDP Client Control version 9 should be checked/added on Visual Studio

by opening Toolbox -> Right-Click in the blank space-> select Choose Items -> Select COM

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 51

Components Tab -> Check Microsoft RDP Client Control version 9. Please see Figure 25

Check Microsoft RDP Client Control - version 9 below.

Figure 25 Check Microsoft RDP Client Control - version 9

Now, the Microsoft RDP Client Control is available from ToolBox to create an

AxMSTSCLib.AxMsRdpClient8 object with the object name axMsRdpClient81. The code is

generated from the Windows Form Designer located in the ConnForm.Designer.cs:

 private AxMSTSCLib.AxMsRdpClient8 axMsRdpClient81;

3.4.1 The ConnForm.cs

ConnForm (The ConnForm is short for Connection Form.) class is declared as the partial Class

in the Namespace Dashboard_APP, the same as the Source Code in AddPC.cs. ,

namespace Dashboard_APP

{

 public partial class ConnForm : Form

{

}

Afterward, create a constructor taking a PCInfo object as the parameter. When a constructor

takes at least one parameter, it is called a parameterized constructor, and every instance of the

class will be initialized with parameter (PCInfo info) values.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 52

 public ConnForm(PCInfo info)

 {

 }

With Remote Desktop Terminal Services enabled, a single server can host multiple client

sessions to establish a connection with remote computers from a local PC over a network

connection. Please see the user interface for the Remote Desktop Terminal in Figure 26 Remote

Desktop Connection App. The remote computer can be connected by typing in the IP address,

the user name, and password for login to the remote computer.

Figure 26 Remote Desktop Connection App

AxMsRdpClient8 class is a member of Remote Desktop ActiveX control classes. It is called to

embed the Remote Desktop Connection App to the ConnForm.

Before establishing the remote connection with a remote computer, the remote computer needs

to be confirmed online or offline. A Ping object and PingReply object need to create at the

beginning of the constructor's body to achieve the goal. Both Ping and PingReply are in the

namespace System.Net.NetworkInformation.

 // create Ping object named pingsender

 Ping pingsender = new Ping();

 // create a PingReply object and confim if the remote computer is online.

 PingReply reply = pingsender.Send(info.ip);

Here the Ping class instance is created in provision for diagnosing whether a remote computer

is reachable or not. Network topology can determine whether Ping can successfully contact a

remote computer. A successful Ping indicates only that the remote computer can be reached on

the network; the presence of higher-level services (such as a Web server) on the remote

computer is not guaranteed (Doc, Ping Class). The presence and configuration of proxies,

network address translation (NAT) equipment, or firewalls can prevent Ping from succeeding.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 53

Send(IPAddress) method is called by Ping object named pingsender. It attempts to send an

Internet Control Message Protocol (ICMP) echo message to the computer with the specified

IPAddress. It receives a corresponding ICMP echo reply message from that computer and

returns a PingReply instance.

An If else statement is compiled to set up the IP address, username, port number, and password

of the remote computer that reads from the PCInfo info object to the embedded Remote

Desktop Connection App when the PingReply.status returns Success. Otherwise, it will close

the Remote Desktop Connection App and show a message in the message box.

 if (reply.Status == IPStatus.Success)

 {

 // setup IP

 axMsRdpClient81.Server = info.ip;

 // setup username

 axMsRdpClient81.UserName = info.username;

 //setup port number

 axMsRdpClient81.AdvancedSettings2.RDPPort = Convert.ToInt16(info.port);

 // setup size

 axMsRdpClient81.AdvancedSettings2.SmartSizing = true;

 // setup height

 axMsRdpClient81.DesktopHeight = this.Height;

 // setup width

 axMsRdpClient81.DesktopWidth = this.Width;

 // encryption is enabled

 axMsRdpClient81.AdvancedSettings9.NegotiateSecurityLayer = true;

 IMsTscNonScriptable securd = (IMsTscNonScriptable)axMsRdpClient81.GetOcx();

 // setup password

 securd.ClearTextPassword = info.password;

 axMsRdpClient81.AdvancedSettings5.ClearTextPassword = info.password;

 // setup color

 axMsRdpClient81.ColorDepth = 24;

 // establish the connection

 axMsRdpClient81.Connect();

 }

 //if there is no reply.

 else

 {

 // show the message box and close.

 MessageBox.Show("Unable to connect to the Server！");

 this.Close();

 }

3.4.1.1 Create an Event Handler for Setting Size

Add an event handler to reconnect the remote computer according to the customized height

and width.

 // resize event handler

 private void ConnForm_Resize(object sender, EventArgs e)

 {

 try

 {

 // reconnect the remote computer according to the height and width.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 54

 axMsRdpClient81.Reconnect((uint)this.Width, (uint)this.Height);

 }

 catch

 {

 throw;

 }

 }

Please see the class diagram for ConnForm in Figure 27 Class diagram for ConnForm below.

Figure 27 Class diagram for ConnForm

Please see the completed code for class ConnForm below.

using MSTSCLib;

using System;

using System.Net.NetworkInformation;

using System.Windows.Forms;

namespace Dashboard_APP

{

 public partial class ConnForm : Form

 {

 // constructor

 public ConnForm(PCInfo info)

 {

 // initialize

 InitializeComponent();

 // create Ping object named pingsender

 Ping pingsender = new Ping();

 // create a PingReply object named reply and confim if the remote computer is online.

 PingReply reply = pingsender.Send(info.ip);

 if (reply.Status == IPStatus.Success)

 {

 // setup IP

 axMsRdpClient81.Server = info.ip;

 // setup username

 axMsRdpClient81.UserName = info.username;

 //setup port number

 axMsRdpClient81.AdvancedSettings2.RDPPort = Convert.ToInt16(info.port);

 // setup size

 axMsRdpClient81.AdvancedSettings2.SmartSizing = true;

 // setup height

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 55

 axMsRdpClient81.DesktopHeight = this.Height;

 // setup width

 axMsRdpClient81.DesktopWidth = this.Width;

 // encryption is enabled

 axMsRdpClient81.AdvancedSettings9.NegotiateSecurityLayer = true;

 IMsTscNonScriptable securd = (IMsTscNonScriptable)axMsRdpClient81.GetOcx();

 // setup password

 securd.ClearTextPassword = info.password;

 axMsRdpClient81.AdvancedSettings5.ClearTextPassword = info.password;

 // setup color

 axMsRdpClient81.ColorDepth = 24;

 // establish the connection

 axMsRdpClient81.Connect();

 }

 //if there is no reply.

 else

 {

 // show the message box and close.

 MessageBox.Show("Unable to connect to the Server！");

 this.Close();

 }

 }

 // resize event handler

 private void ConnForm_Resize(object sender, EventArgs e)

 {

 try

 {

 // reconnect the remote computer according to the height and width.

 axMsRdpClient81.Reconnect((uint)this.Width, (uint)this.Height);

 }

 catch

 {

 throw;

 }

 }

 }

}

3.5 Summary of Chapter 3

Form1.Desinger.cs is the designer for the main form, and it is the most critical component for

the dashboard application. It gives an introduction with illustrations of Form1.Designer at the

beginning of the chapter and introduction of building the Windows form using the tool from

ToolBox. The Form1 form will undoubtedly need more tools. The associated event handlers

are presented in chapter 4.

The AddPC form and ConnForm form with the associated source code files are put in place

after the introduction of Form1.Desinger.cs. These two forms improve the function of the

dashboard application. The AddPC and ConnForm classes are designed to creating individual

instances of objects called in the Form1 class. In other words, it is in preparation for

implementing object-oriented programming.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 56

Chapter 4: Implementation of Form1.cs

4.1 Introduction

As mentioned at the beginning of chapter 3, Form1.cs is the main form for the Dashboard_APP

project. This chapter puts forward how the application is implemented in Form1.cs by

displaying the code. It will skip the introduction of Form1.Designer.cs that is already written

in section 3.2.1.

4.2 Add More components to Form1 in Designer

4.2.1.1 Add ContextMenuStrip Component to Form1

The dashboard application needs a cascading menu, which can be implemented by adding a

ContextMenuStrip component from the ToolBox to the Form1 form. ContextMenuStrip can be

associated with any control, and a right mouse click automatically displays the shortcut menu.

A ContextMenuStrip can be shown programmatically by using the Show method.

ContextMenuStrip supports cancelable Opening and Closing events to handle the dynamic

population and multiple-click scenarios. ContextMenuStrip supports images, menu-item check

state, text, access keys, shortcuts, and cascading menus (Doc, ContextMenuStrip Class). The

selections, e.g., Edit, Delete, and Connect, can be typed in by clicking the Type Here button as

presented in Figure 28 Design Form1.

Figure 28 Design Form1

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 57

4.2.1.2 Add BackgroundWorker Component to Form1

A BackgroundWorker returns an operation on a separate, dedicated thread. Time-consuming

operations like downloads and database transactions can cause the user interface (UI) to seem

like it has stopped responding while running. The BackgroundWorker class provides a

convenient solution to implement a responsive UI (Doc, BackgroundWorker Class).

The BackgroundWorker component can be added by drag from the Toolbox to Form1 form. A

BackgroundWorker is visible in the Component Tray, and the properties are displayed in the

Properties window. Please see Figure 29 BackgroundWorker

Figure 29 BackgroundWorker

4.2.1.3 Add Timer Component to Form1

The Windows Forms Timer is a component that raises an event at regular intervals. This

component is beneficial to a Windows Forms environment. Here a timer1 is added to Form1

by dragging it from the Toolbox. It is also can be organized in the Component Tray.

Figure 30 Timer

4.3 Implementation of Form1 Class

There are two classes in Form1.cs. One is PCInfo class, which is already introduced in section

3.2.3, the other is Form1 Class, which begins with the code below.

 public partial class Form1 : Form

{

}

The Form1 class is compiled between the curly bracket.

4.3.1.1 Create Constructor for Form1 Class

Figure 31 Main form shows that PC objects are located in rows on the main form of the

Dahsboard_ APP. The idea is to create two PC objects array; one is called oldPCInfos, the

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 58

other is called PCInfos. The PC objects are the elements in the array. The oldPCInfos array is

updated by the PCInfos array whenever users type in a new PC object from the UI.

Figure 31 Main form

Two instances of the BindingList<T> class are declared at the beginning of the Form1 class,

and the associate values are set in the constructor. The BindingList<T> class is a base class to

create a two-way data-binding mechanism, which implements the IBindingList interface

(Docs). Two-way data-binding refers to sharing data between a component class and its

template. When there is a value changed in the input field from GUI, it will also reflate the

value in a component class (Teacher). Besides, the selection and size mode needs to be set up

in the constructor. The multi-selection is disabled by defining it as False.

 // define a new PCInfo object list

 private BindingList<PCInfo> PCInfos;

 // define an old PC object list

 private BindingList<PCInfo> oldPCInfos;

 //1. constructor

 public Form1()

 {

 InitializeComponent();

 // setup the form

 dataGridView1.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode.Fill;

 dataGridView1.SelectionMode = DataGridViewSelectionMode.FullRowSelect;

 dataGridView1.MultiSelect = false;

 // created an objet of PCInfo on the new PCInfo object list.

 PCInfos = new BindingList<PCInfo>();

 // created an objet of PCInfo on the old PCInfo object list.

 oldPCInfos = new BindingList<PCInfo>();

 // call the method to initialize the form

 initData();

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 59

 }

4.4 Initialize DataGridView1

dataGridView1 is the area for the data grid view from Figure 15 Form1 designer for

Dashboard App, where the PC objects will be displayed in rows. Therefore, the BingdList

named PCInfos should be assigned to dataGridView1. The information of each PC object,

Username, port, IP, etc., is displayed in each column. And all the initial information on

dataGridView1 is invisible by default. It is implemented by written Visible=false in the body

area of the initData() method.

 private void initData()

 {

 // assign PCInfos to dataGridView1

 dataGridView1.DataSource = PCInfos;

 // set the initial information of PC object to be invisible

 dataGridView1.Columns["username"].Visible = false;

 dataGridView1.Columns["password"].Visible = false;

 dataGridView1.Columns["port"].Visible = false;

 dataGridView1.Columns["isOnline"].Visible = false;

 dataGridView1.Columns["isConn"].Visible = false;

 }

4.5 Create a Click Event Handler to Add Button

There is an Add button on the Form1 form, which is defined as Button1. When clicking the

Button1, it triggers the event handler for Button. It displays the AddPC form from GUI, where

users can input IP address, username, password, and port for adding a PC object.

Figure 32 Form1 form

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 60

Please see the event handler named button1_click below. An instance of AddPC class called

form is created first, and the AddPC form should appear and cover the Form1 form, and the

Form1 form is disabled until the user explicitly closes the AddPC form, which can be

implemented by invoking the form.ShowDialog() method. In this manner, it shows the AddPC

form as a modal dialog box. The isOnline and isConn status is implemented in the later section.

Thus, they need to be set up as false by default so far.

 private void button1_Click(object sender, EventArgs e)

 {

 // create an instances of AddPC class.

 AddPC form = new AddPC();

 //shows the AddPC form as a modal dialog box.

 DialogResult res = form.ShowDialog();

 // set Online status is false by default

 form.info.isOnline = false;

 // set the connection is false by default

 form.info.isConn = false;

 // verify if the input IP address alraedy exists or not, when the DialogResult returns the value: OK.

 if (res == DialogResult.OK)

 {

 // if the IP address exists

 if (PCInfos.Any(index => index.ip == form.info.ip))

 {

 // show the message and return

 MessageBox.Show("IP already exists!");

 return;

 }

 // otherwise, assign the input information to PC object.

 PCInfo info = form.info;

 // and add the PC object to BindList PCInfos.

 PCInfos.Add(info);

 }

 // close AddPC form/window

 form.Dispose();

 }

Each PC should have a unique IP address. Therefore, using an If statement to verify if the IP

address already exists on the BindList PCInfos, when the Save button is clicked, returns the

value OK to DialogResult Enum. Otherwise, assign the input information to the PC object,

and add the PC object to BindList PCInfos. Since the form.ShowDialog() method is called, the

form.Dispose() method will not be called automatically. It should be called manually for

releasing the Form1 form at the end of the button1_Click event handler.

4.6 Add a Right-clicking Cascading Menu

So far, the dashboard application is functionalized for adding a remote computer by clicking

Add button. When the information of a remote computer is finished inputting, it is visible in

the area of dataGridView1. A cascading menu with Edit, Delete, and Connect options to the

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 61

remote computer is needed. Please look at Figure 33 Cascading Menu for edit, delete and

connect.

Figure 33 Cascading Menu for edit, delete and connect

The event handler for the cascading menu is declared as dataGridView1_CellMouseUp by

calling the ContextMenuStrip from Form1 Designer. Please see the code below. All the cells

on the row of the remote computer are selected once right-clicking the mouse. Then call

Clearselection() method to clear the current selection by unselecting all selected cells. The

cascading menu should pop up at the position exactly where the right mouse clicked on the row

of the remote computer.

 private void dataGridView1_CellMouseUp(object sender, DataGridViewCellMouseEventArgs e)

 {

 // if there is a right mouse clicking.

 if (e.Button == MouseButtons.Right)

 {

 // if the right mouse clicking is on the row of PC, not in the blank area.

 if (e.RowIndex >= 0 && e.ColumnIndex >= 0)

 {

 //call Clearselection() method to clear the current selection by unselecting all selected cells.

 dataGridView1.ClearSelection();

 // Get the selected row index

 dataGridView1.Rows[e.RowIndex].Selected = true;

 // Current grid

 dataGridView1.CurrentCell = dataGridView1.Rows[e.RowIndex].Cells[e.ColumnIndex];

 // show the cascading menu exactly in the position where the mouse clicking.

 contextMenuStrip1.Show(MousePosition.X, MousePosition.Y);

 }

 }

 }

4.7 Create a Click Event Handler to Edit Option

The Event handler for Edit Option declares as editToolStripMenuItem_Click. A variable of the

selected row is declared as var dataselect = this.dataGridView1.SelectedRows if there is a need

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 62

to edit a remote computer on the dataGridView1. A new PCInfo instance named info and a new

AddPC form instance named frm are created in a nested If statement. The idea is that to update

the information/properties of the selected remote computer (dataselect) to the newly created

PCInfo instance (info) first and then update the PCInfo instance (info) to the freshly made

AddPC form instance (frm) in the outer If statement. Afterward, update the AddPC form

instance (frm) to the selected row on the dataGridView1 (dataselect) in the inner If statement.

The AddPC form will be closed, and Form1 is released by calling the Dispose() method after

the inner If statement. Otherwise, a message box "No data!" is displayed when the condition

of the outer If statement is not matched, which means the selected row is empty. It can happen

when the user right-clicking and select the edit option on an empty row.

 private void editToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // declear a variable of the selected row,

 //and assign the information of PC object from the row on the

 // dataGridView1 to the variable.

 var dataselect = this.dataGridView1.SelectedRows;

 // if the PC object is selected.

 if (dataselect.Count > 0)

 {

 //create a new PC object of PCInfo class,

 PCInfo info = new PCInfo();

 //update the relevant information/property of PC to the new PC object.

 info.ip = dataselect[0].Cells["ip"].Value.ToString();

 info.username = dataselect[0].Cells["username"].Value.ToString();

 info.password = dataselect[0].Cells["password"].Value.ToString();

 info.port = dataselect[0].Cells["port"].Value.ToString();

 info.isOnline = Convert.ToBoolean(dataselect[0].Cells["isOnline"].Value.ToString());

 //create a new AddPC form to,

 AddPC frm = new AddPC();

 //update the value of the new PC object to AddPC form.

 frm.info = info;

 //show the AddPC form as a modal dialog.

 DialogResult res = frm.ShowDialog();

 //If the Save button is clicked, which indicates the value for the DialogResult is OK,

 if (res == DialogResult.OK)

 {

 //update the properties of PC object to dataGridView1.

 dataselect[0].Cells["ip"].Value = frm.info.ip;

 dataselect[0].Cells["username"].Value = frm.info.username;

 dataselect[0].Cells["password"].Value = frm.info.password;

 dataselect[0].Cells["port"].Value = frm.info.port;

 dataselect[0].Cells["isOnline"].Value = frm.info.isOnline;

 this.dataGridView1.Invalidate();

 }

 // close the AddPC form/window

 frm.Dispose();

 }

 // Otherwise, show the message if there is no PC object is selected.

 else

 {

 MessageBox.Show("No data!");

 }

 }

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 63

4.8 Create a Click Event Handler to Delete Option

The event handler is declared with the name of deleteToolStripMenuItem_Click. The purpose

of this option is to delete the selected row of a computer. It can be implemented by iterating

the row chosen collection and then delete the selected row if it is not the newly submitted row.

An instance of DataGridViewRow class named dr is created in the foreach statement, which is

executed to iterate each element in the instances of the selected rows. Please see the code below.

 private void deleteToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // declear a variable of the selected row,

 //and assign the information of PC object from the row on the dataGridView1 to the variable.

 var dataselect = this.dataGridView1.SelectedRows;

 // if the number of selected row is not 0

 if (dataselect.Count > 0)

 {

 // iterate the selected rows collection,

 foreach (DataGridViewRow dr in dataGridView1.SelectedRows)

 {

 //If it is not a submitted row, by default,

 //after adding a row of data successfully,

 //DataGridView will create a new row as the insertion location of the new data

 if (dr.IsNewRow == false)

 {

 // delete the row.

 dataGridView1.Rows.Remove(dr);

 }

 }

 }

 // otherwise, show "no data" message.

 else

 {

 MessageBox.Show("No data!");

 }

 }

4.9 Create a Click Event Handler to Connect Option

The logic to implement the event handler for Connect option is similar to the logic for the Edit

option. The event handler is declared with the name of connectToolStripMenuItem_Click. A

variable named dataselect is defined and assigned to the selected row on the dataGridView1,

which is a PCInfo instance. Afterward, in the nested If statement, the properties of the selected

PCInfo instance need to be assigned to dataselect in the outer If statement when there is a

selected PCInfo. If not, show a message box with the message “No data!”. When the selected

PCInfo instance is NOT online, trigger an inner If statement and display a message on the

message box. Otherwise, declare an instance of ConnForm, which takes the PCInfo instance as

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 64

the parameter, and call the show() method to show the ConnForm form. Please see the code

below.

 private void connectToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // declear a variable of the selected row,

 //and assign the information of PC object from the row on the dataGridView1 to the variable.

 var dataselect = this.dataGridView1.SelectedRows;

 // if the number of selected row is not 0, which indicates there is a row/data selected.

 if (dataselect.Count > 0)

 {

 //create a new PC object of PCInfo class,

 PCInfo info = new PCInfo();

 //update the relevant information/property of PC to the new PC object by signing the data for the selected

row to info

 info.ip = dataselect[0].Cells["ip"].Value.ToString();

 info.username = dataselect[0].Cells["username"].Value.ToString();

 info.password = dataselect[0].Cells["password"].Value.ToString();

 info.port = dataselect[0].Cells["port"].Value.ToString();

 info.isOnline = Convert.ToBoolean(dataselect[0].Cells["isOnline"].Value.ToString());

 // if the selected row of computer is not Online.

 if (!info.isOnline)

 {

 // show the message box and return.

 MessageBox.Show("PC is offline!");

 return;

 }

 //Otherwise, create an instance of ConnForm and take info(which is the PCInfo instance) as the parameter.

 ConnForm form = new ConnForm(info);

 // call the show() method to show the ConnForm form.

 form.Show();

 }

 // otherwise, show a message box with the message "No data!"

 else

 {

 MessageBox.Show("No data!");

 }

 }

4.10 Create a Boolean Method to Return the Status of Remote Computer

The Boolean method is named StatusQuery, which takes an IP address as a parameter. It returns

True if the remote computer is reachable by Ping.send(). If the remote computer is not

reachable by Ping.send(ip), it returns false; meanwhile, an exception is caught and handled in

a “try-catch-finally” block.

A Boolean type variable named res, an instance of Ping class, and an empty String type variable

named message are declared before the “try-catch-finally” block. The Ping.send(ip) method is

called in the try block, and it returns a value of IPStatus. An If statement assigns the value to

the message variable while the IPStatus returns Success, and True will be released in the finally

block. Otherwise, release a False result in the finally block, meanwhile raise an exception in

the catch block.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 65

The access for the method is defined as private. Since only the backgroundWorker will invoke

it in the Form1 class, the backgroundWorker will be introduced in the next section.

 private bool StatusQuery(string ip)

 {

 // declear a bool type result named res.

 bool res;

 // the initial message is an enpty string variable.

 string message = "";

 // create an instance of Ping

 Ping p = new Ping();

 // use "try-catch-finnaly" to raise an exception while the remote computer is not reachable by Ping

 try

 {

 // create an instance of PingReply class named r and

 //called Ping.send(ip) method to return a value for IPStatus.

 PingReply r = p.Send(ip);

 // if the return value from Ping.send() method is Success.

 if (r.Status == IPStatus.Success)

 {

 // assign the string "Success" to message.

 message = "Success";

 }

 }

 //deal with the exception in the catch block

 catch (Exception ex)

 {

 // raise the exception

 throw;

 }

 //release the result obtained in the try block

 finally

 {

 // if the message is string "Success"

 if (message == "Success")

 {

 // the resualt is true.

 res = true;

 }

 //otherwise

 else

 {

 // the resualt is false.

 res = false;

 }

 }

 // return the result

 return res;

 }

4.11 Create a DoWork Event Handler to BackgroundWorker

Updating the real-time standby status for each remote computer is one of the functions of the

dashboard application. Section 4.2.1.2 introduces how to add a BackgroundWorker to Form1.

The BackgroundWorker listens for events that report the progress of the standby status of the

remote computer and update the offline duration time when StatusQuery() is finished.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 66

A foreach statement iterates the PCInfo instances in the oldePCInfos collection, and the

StatusQuery() boolean method is called to get the status of the PCInfo instance at the beginning

of the backgroundWorker1_DoWork event handler. Two situations need to be considered in an

If statement, when the PCInfo object is online and when the PCInfo object is offline.

When the PCInfo is online:

1. Create an instance of IPHostEntry from the specified IP address of the PCInfo instance.

2. Setup the hostname, status, offline time, and offline duration properties of the PCInfo

instance.

When the PCInfo instance is offline:

1. Set the offline duration time as DateTime.Now.

2. If the PCInfo instance was online before, but the status is offline now.

a. Setup the status, offline time, and offline duration properties of the PCInfo

instance.

The dataGridView1.Invalidate() method is called to repaint the dataGridView, and the

oldPCInfos collection should be updated at the end of the event.

 private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

 {

 // iterate the PCInfo instances in the oldePCInfos collection

 foreach (PCInfo item in oldPCInfos)

 {

 // call StatusQuery to get the status of each PCInfo instances

 item.isOnline = StatusQuery(item.ip);

 // if PCInfo instance is online

 if (item.isOnline)

 {

 // create the IPHostEntry instance form the ip address of PCInfo insatance.

 IPHostEntry myScanHost = Dns.GetHostByAddress(item.ip);

 // assign the hostname

 item.hostName = myScanHost.HostName.ToString();

 // set ststus is online

 item.status = "Online";

 // set offtime is null

 item.offlineTime = null;

 // set the offline duration is 0.

 item.offlineDuration = 0;

 }

 // otherwise(when the PCInfo instance is offline)

 else

 {

 // check if the previous status of PCInfo instance is also offline

 if (item.status == "Offline")

 {

 //set the offline duration is

 //the current DateTime - offlineTime

 item.offlineDuration = Convert.ToInt32((DateTime.Now - item.offlineTime).Value.TotalSeconds);

 }

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 67

 // otherwise(when the PCInfo instance was online)

 else

 {

 // change the ststus to offline.

 item.status = "Offline";

 // update the offline time to DateTime ow.

 item.offlineTime = DateTime.Now;

 // set the offline duration

 item.offlineDuration = 0;

 }

 }

 }

 // repaint the dataGridView

 this.dataGridView1.Invalidate();

 // update the oldPCInfos collection.

 oldPCInfos = PCInfos;

 }

4.12 Create a Tick Event Handler to Timer

The Timer.Tick event occurs when the timer1 is enabled by setting Ture from the properties of

the Timer1 component.

Figure 34 Properties of timer1

A RunWorkerAsync() method is called from the timer1_tick. The RunWorkerAsync() method

submits a request to start the operation running asynchronously. When the request is serviced,

the DoWork event is raised, which starts executing the background operation—checking the

backgroundWorker1.IsBusy property to see if the background task is running before calling the

RunWorkerAsync() method. If so, it will return.

 private void timer1_Tick(object sender, EventArgs e)

 {

 // check IsBusy to see if the background task is running, and return

 if (backgroundWorker1.IsBusy)

 {

 return;

 }

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 68

 // Start the operation in the background.

 backgroundWorker1.RunWorkerAsync();

 }

4.13 Create a CellFormatting Event Handler to DataGridView

A CellFormatting Event occurs when the contents of a cell need to be formatted for display in

the DataGridView. The offline duration time is set to an equivalent 32-bit signed integer from

the backgroundWorker1_DoWork event handler.

By default, the DataGridView control displays the contents in String format. That is why a

private ConvertDayHourMinuteSencond(int duration) method is created to convert the offline

duration to String type.

The ConvertDayHourMinuteSencond(int duration) method takes an Integer type offline

duration as a parameter, and it returns a String type. Please see the code below.

 private string ConvertDayHourMinuteSencond(int duration)

 {

 // get the time interval

 TimeSpan ts = new TimeSpan(0, 0, duration);

 // declare an enpty string variable

 string str = "";

 // add day to string, if the offline duration time is more than 1 day.

 if (ts.Days > 0)

 {

 str = ts.Days.ToString() + "d" + ts.Hours.ToString() + "h" + ts.Minutes.ToString() + "m" + ts.Seconds + "s";

 }

 //add hour to string if the offline duration time is more than 1 hour.

 else if (ts.Hours > 0)

 {

 str = ts.Hours.ToString() + "h" + ts.Minutes.ToString() + "m" + ts.Seconds + "s";

 }

 // add minute to string if the offline duration time is more than 1 minute.

 else if (ts.Minutes > 0)

 {

 str = ts.Minutes.ToString() + "m" + ts.Seconds + "s";

 }

 // add second to string if the offline duration time is more than 1 second.

 else

 {

 str = ts.Seconds + "s";

 }

 // return string.

 return str;

 }

Now is the time to declare the CellFormatting Event Handler. The event is implemented by

three layers of nested If statements to meet the three conditions of aiming to the correct cell on

the dataGridView. The outer If statement navigates the correct column, which is the column

with the index 9. The column for the cell displays the offline duration time. The middle If

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 69

statement is triggered when the value of the cell is not Null. Moreover, the

ConvertDayHourMinuteSencond(int duration) method is called to convert the Integer of

offline duration time to String type when the value of the cell is not 0 converted by a

Convert.ToInt32 Method from DateTime format in the innermost If statement block.

 private void dataGridView1_CellFormatting(object sender, DataGridViewCellFormattingEventArgs e)

 {

 // if the index of column is 9

 if (e.ColumnIndex == 9)

 {

 // and the value is not null

 if (e.Value != null)

 {

 // if the value is not 0 coverted from the integer

 if (Convert.ToInt32(e.Value) != 0)

 {

 // call the ConvertDayHourMinuteSencond(int duration) method

 //to convert the Integer to String

 e.Value = ConvertDayHourMinuteSencond(Convert.ToInt32(e.Value));

 }

 }

 }

 }

The offline duration time is shown in Figure 35 Offline duration on the graphical interface of

the dashboard application.

Figure 35 Offline duration

4.14 Create a Form.Load Event Handler to Form1

The Form.Load Event performs tasks such as allocating resources used by the form, and the

event occurs before a form is displayed for the first time. The event is declared by private void

Form1_Load(). When the dashboard application is launched, it reads data from a JavaScript

Object Notation (JSON) file by calling Readjson() method. The JSON file is named

“config.json”, which assembles the properties of the PCInfo object when the FormClosing

event occurs.

 private void Form1_Load(object sender, EventArgs e)

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 70

 {

 // get the base directory, which is the config.json file

 string path = System.AppDomain.CurrentDomain.BaseDirectory + "config.json";

 // verify the config.json file exists or not.

 //if the config.json file exists, read the data.

 if (File.Exists(path))

 Readjson(path);

 }

JSON provides an elementary database for each computer so that their information is stored

for later use.

Please see the code for Readjson() method below. The method takes the path of the config.json

file as a parameter. The logic for implementing the method is:

1. Create an instance of text reader named file and open an existing text file for reading.

2. Create an instance of JSON text reader which provides access to JSON text data.

3. Create a JSON array instance. Read JSON from config.json into JSON array

4. Iterate the JSON array

5. Get the current element from the JSON array.

6. Create a PCInfo instance. Update the current element from the JSON array to the

PCInfo instance.

7. Add the PCInfo instance to the PCInfos collection.

 private void Readjson(string path)

 {

 // create a text reader insatnce of StreamReader Class

 using (System.IO.StreamReader file = System.IO.File.OpenText(path))

 {

 // create a instance of Json text reader

 using (JsonTextReader reader = new JsonTextReader(file))

 {

 // create a Json array, and assign the data read from Config.json to Json Array.

 JArray jarray = (JArray)JToken.ReadFrom(reader);

 // iterate the json Array

 for (int i=0; i<jarray.Count(); i++)

 {

 // get the current element in Json Array

 JObject temp = (JObject)jarray[i];

 // create a instance of PCInfo, named tempPCInfo

 //and update the properties of the current element to tempPCInfo.

 PCInfo tempPCInfo = new PCInfo

 {

 ip = temp["ip"].ToString(),

 hostName = temp["hostName"].ToString(),

 username = temp["username"].ToString(),

 password = temp["password"].ToString(),

 port = temp["port"].ToString(),

 isOnline = Convert.ToBoolean(temp["isOnline"].ToString()),

 status = temp["status"].ToString(),

 isConn = Convert.ToBoolean(temp["isConn"].ToString()),

 offlineDuration = Convert.ToInt32(temp["offlineDuration"].ToString())

 };

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 71

 // check the offline time

 //if the offline time is not empty.

 if (temp["offlineTime"].ToString() != "")

 // update the offline time of the current element to tempPCInfo

 tempPCInfo.offlineTime = Convert.ToDateTime(temp["offlineTime"].ToString());

 // add the tempPCInfo to PCInfos collection.

 this.PCInfos.Add(tempPCInfo);

 }

 }

 }

 }

The advantage of using the C# using statement is that it defines a boundary for the object

outside of which the object is automatically destroyed (Choksi).

The Config.json file is located in the C:\Program Files (x86)\Dashboard_APP. The information

of the remote PC is written to Config.json when the application is closed. The information will

be read by the Readjson() method when the app is launched.

4.15 Create a FormClosing Event Handler to Form1

The FormClosing event occurs before the form is closed. When a form is closed, it will dispose

and release all resources associated with the form. The FormClosing Event Handler is triggered

whenever the dashboard application is closed, and a method is called to create and write the

information for each PCInfo presented on the user interface to a JSON file.

 private void Form1_FormClosing(object sender, FormClosingEventArgs e)

 {

 // get the base directory, which is the config.json file

 string path = System.AppDomain.CurrentDomain.BaseDirectory + "config.json";

 // call writejson() method to create config.json in the directory.

 Writejson(path);

 }

 }

The Writejson() method also takes the path of the config.json file as a parameter. The logic for

implementing the method is:

1. An encoded text file needs to be created/opened by calling File.CreateText(String)

Method.

2. Create a JsonTextWriter instance to get access to write JSON.

3. Iterate the PCInfos collection, and update/write the information of each element from

the PCInfos collection into the JSON file.

Please see the code for Writejson() method below.

 private void Writejson(string path)

 {

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 72

 // Creates or opens a file for writing encoded text. If the file already exists, its contents are overwritten.

 using (System.IO.StreamWriter file = System.IO.File.CreateText(path))

 {

 // create a JsonTextWriter instance

 using (JsonTextWriter writer = new JsonTextWriter(file))

 {

 // Writes the beginning of an array.

 writer.WriteStartArray();

 // iterates the PCInfos collection,

 for (int i = 0; i < PCInfos.Count(); i++)

 {

 // get the current element in the PCInfos collection

 //write the properties of the current element into a JSON file.

 PCInfo temp = PCInfos[i];

 //Writes the beginning of a JSON object.

 writer.WriteStartObject();

 writer.WritePropertyName("ip");

 writer.WriteValue(temp.ip);

 writer.WritePropertyName("hostName");

 writer.WriteValue(temp.hostName);

 writer.WritePropertyName("username");

 writer.WriteValue(temp.username);

 writer.WritePropertyName("password");

 writer.WriteValue(temp.password);

 writer.WritePropertyName("port");

 writer.WriteValue(temp.port);

 writer.WritePropertyName("isOnline");

 writer.WriteValue(temp.isOnline);

 writer.WritePropertyName("status");

 writer.WriteValue(temp.status);

 writer.WritePropertyName("isConn");

 writer.WriteValue(temp.isConn);

 writer.WritePropertyName("offlineTime");

 writer.WriteValue(temp.offlineTime);

 writer.WritePropertyName("offlineDuration");

 writer.WriteValue(temp.offlineDuration);

 //Writes the end of a JSON object.

 writer.WriteEndObject();

 }

 //Writes the end of an array.

 writer.WriteEndArray();

 }

 }

 }

Please see the complete code for the Form1 class in appendix C.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 73

4.16 Summary of Chapter 4

There are three more components added to Form1 designer, which are contextMenuStrip1,

timer1, and background worker1. This chapter introduces the purpose and the functions of the

added components at the beginning of the chapter.

The associated event handlers are created and implemented in the Form1 class, which handles

the buttons, menu options, mouse-clicking events, timer, background worker, etc. These are

introduced one after one by their running sequence. There are five functions and ten event

handlers created in the Form1 class to functionalize the dashboard application in this chapter.

The technologies and instances for implementing the Form1 class,

1. PCInfo object contains the data and information of the remote computer. A PCInfos

collection shuffles a list of PCInfo instances while some information needs to be

updated.

2. ConnForm object is created for presenting the connection window.

3. Ping and PingReply query the status of the remote computer, which is invoked in

the Boolean method StatusQuery().

4. IPHostEntry instance is created from the IP address of the PCInfo instance, which

obtains the hostname of the remote computer.

5. TimeSpan instance is declared to set up the time interval for the offline duration.

6. JSON file stores the information of PCInfo instances for providing the information

to the dashboard application whenever it launches. It acts like a database of the

dashboard application.

7. StreamReader, JsonTextReader, StreamWriter, and JsonTextWriter facilitate the

reading and writing function of the JSON file when the Form.Loading event and

FormClosing event are triggered.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 74

Chapter 5: Demonstration

5.1 Introduction

Chapter 5 introduces a procedure for creating an MSI installer in VS 2019 and presents a

demonstration of the dashboard application in a video. The URL for that video is posted on

youtube.com. The GitHub repository for the source code files of the dashboard application is

also attached in one of the subsections. Two comments from NOV are also listed in the later

subsection and the corresponding solutions from the author.

5.2 Create an MSI Installer for Dashboard Application.

The following step creates the MSI:

1. The Microsoft Visual Studio Installer Projects should be installed as a prerequisite.

2. Right-click the Solution on VS 2019 and select Add new project.

3. Search the Setup project in the Add a new project window, rename the Setup project to

Demon, and click create.

4. Add the Project Output to Applications Folder.

5. Add a shortcut to both Application Folder and User’s Desktop.

6. To the end, it generates an installer file named demon.msi.

The reference learning tutorial about how to create an MSI installer in VS 2019, please see the

video: https://www.youtube.com/watch?v=fehVTLNQorQ

5.3 The Video for Demonstration

Link: https://youtu.be/EP_kAZPlxKM

The author makes the demonstration, which begins with installing the dashboard application

on a WDP terminal Windows computer. The author expounds on how the dashboard

application works step by step. Watching the video offers readers a deep understanding and

gives an intuitive impression of the dashboard application.

5.3.1 Modification According to The Comments

The comments from NOV:

1. Modify the production name to NOV Dashboard and manufacturer to NOV.

https://www.youtube.com/watch?v=fehVTLNQorQ
https://youtu.be/EP_kAZPlxKM

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 75

2. The shortcut icon should be the NOV logo.

The solution from the author:

1. The production name and manufacturer can be modified in the properties window of

the Demon project on VS 2019.

Figure 36 Modify the production name and manufacturer

2. Add the NOV.ico to the File System of the Demon project. And then change the icon

to NOV.ico in the properties window of shortcut.

Figure 37 Add NOV.ico

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 76

Figure 38 Modify icon of the shortcut

3. Rebuild the Demon project, and install the newly built MSI installer on the WDP

terminal virtual machine.

Verification after installation:

1. The production name is NOV Dashboard, and the publisher is NOV

Figure 39 After installation 1

2. The shortcut on the desktop is with the NOV logo as an icon.

Figure 40 After installation 2

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 77

5.4 The GitHub Repository for the Project

The author wrote all of the source code on her own, pushed it to the GitHub repository. The

GitHub repository: https://github.com/Daisynygaard/Dashboard_APP. The source code files

are also attached in the appendix.

5.5 Summary of Chapter 5

Chapter 5 shows the steps of building an MSI installer on VS 2019 in the second subsection.

Moreover, the author records a video of using the NOV Dashboard with a link attached.

Furthermore, the source code files are uploaded to the GitHub repository. The relative

modifications are done according to the comments from the NOV.

https://github.com/Daisynygaard/Dashboard_APP

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 78

Chapter 6: Conclusion

The entire bachelor program project includes building an NOV Dashboard application and

writing a bachelor thesis. The author has finished the NOV Dashboard application by C#

object-oriented programming and completed the thesis under her own steam. There are four

classes created in the C# programming language with fourteen pages of source code, which

include seven functions and thirteen event handlers, such as IsIP(), StatusQuery(),

ConvertDayHourMinuteSencond(), Readjson(), Writejson(), Button_click(), Form_load(),

dataGridView1_CellFormatting(), Button_click(), Background_Doworker(), Timer_Tick(),

and so on. Furthermore, it also invoked massive C# classes and objects from the library.

6.1 Restate the Thesis

Chapter 1 introduces a lot of hardware and software that interact in the NOV eVolve

Automation System. The system integrates between the downhole tools and the surface

automation systems to monitor and capture the downhole data while drilling. The downhole

information is sent to NOV devices (e.g., Stream TV, WBC, RigSense, etc.) through the

Intelliserve wired drill pipe. NOV employees can remotely control a Windows system device

called the WDP terminal to access any of the mentioned NOV devices via Remote Desktop

Connection.

High demand for a Windows-formed dashboard application with an overview of the devices as

mentioned earlier is put on the table. The project aims to make a simple dashboard with the

essential statuses of the devices as discussed above, making it easier to identify the issues

delivered from the crew on an offshore rig to the NOV system engineer department.

Therefore, the author has built such a dashboard application, and it meets all the above demands.

In addition, it realizes to establish remote control with any of the devices above. It shows the

offline time and the duration of the devices’ downtime and stores information in a JSON file

for later investigation.

The dashboard application is implemented by doing the C# object-oriented programming on

the Visual Studio 2019 software development platform. The author has studied the C#

programming language for the project. The features and advantages of the C# are extracted in

Chapter 2. Chapter 2 also presents the theoretical concept with the graphical explanation for

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 79

the dashboard application design and illustrates how to create a Windows-formed project on

Visual Studio 2019.

The dashboard application consists of three source code files, AddPC.cs, ConnForm.cs, and

Form1.cs. Chapter 3 shows the code of two partial classes in the Dashboard_APP namespace,

one is AddPC class located in the AddPC.cs, and the other is ConnForm class situated in the

ConnForm.cs. A public PCInfo class from Form1.cs is also introduced in chapter3. The

button_Click event handler invokes the AddPC class in the Form1 class for creating an AddPC

object to add a new PC to the dashboard application when a user clicks the Add button.

The ConnForm is short for Connection Form. When the Connection option is selected from a

cascading menu, a ConnForm object is created to launch a window of the embedded Remote

Desktop Connection App to remote connect with the related PCInfo object. Each PCInfo object

stands for one remote computer.

The AddPC class, the ConnForm class, and the PCInfo class are invoked to create the

corresponding object in the event handlers located in the Form1 class. They are the foundation

to implement the dashboard application with object-oriented programming.

Another partial class is named Form1 class locates in the Form1.cs, which is the most critical

partial class for the dashboard application project. All of the required functions of the

dashboard application are implemented by compiling the event handlers in the Form1 class.

There are ten event handlers and five functions created in the Form1 class. Chapter 4 introduces

all of the event handlers with the associated code.

The process of generating an MSI installer for the dashboard application project on Visual

Studio 2019 is introduced step by step at the beginning of chapter 5. A video for the

demonstration of the completed dashboard application is recorded and uploaded to

youtube.com. The three source code files are pushed to the GitHub repository. Please see the

links below:

• The video for the demonstration: https://youtu.be/EP_kAZPlxKM

• GitHub repository for code: https://github.com/Daisynygaard/Dashboard_APP

Chapter 5 also lists some feedback from the NOV. Based on the feedback, the author has given

the solution and improved the dashboard application.

https://youtu.be/EP_kAZPlxKM
https://github.com/Daisynygaard/Dashboard_APP

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 80

6.2 The Completed Dashboard Application

After studying the C# 6.0 programming with Visual Studio 2019, the author has completed a

Windows-formed dashboard application after accomplishing all the study as the thesis presents.

The completed dashboard application is renamed to NOV Dashboard_APP according to the

comments from NOV.

After installing the NOV Dashboard_APP on the WDP terminal Windows 10 computer, the

program creates a shortcut on the desktop with the NOV logo as an icon. The first thing that

catches the eye is a user interface with an Add button on the top-left when the NOV

Dashboard_APP is launched by double mouse-click the shortcut.

The NOV Dashboard_APP can add the remote computer by typing in the information on the

AddPC form. The action of clicking the Save button triggers a background worker event

handler to call the StatusQuery(string ip) method to verify the status of the remote computer

by invoking the Ping and PingReply class.

With the interaction between the Background Worker and the Timer component, the NOV

Dashboard_APP detects the real-time running status of the remote computer successfully.

Furthermore, it displays the information on the NOV Dashboard_APP user interface. In

addition, the NOV Dashboard_APP will also show offline time in the “mm/dd/yyyy, hh: mm”

format if the remote computer powers off. The downtime interval increases every 5 seconds.

In addition, the NOV Dashboard_APP has embedded a Remote Desktop Connection APP by

creating an instance of the axMsRdpClient8 class in the ConnForm.cs to accomplish the remote

control over the network connection. In that case, the remote computers can be connected and

controlled from NOV Dashboard_APP when the Connect option is selected from the cascading

menu.

Besides, the NOV Dashboard_APP creates a JASON file database for storing the data inputting

from the user interface and the information detected by the NOV Dashboard_APP when the

user interface closes. Then, the NOV Dashboard_APP reloads the JSON file for the next

launch.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 81

6.3 The Advice for the Further Development

The WellBore Connect (WBC) device is a critical component in the NOV eVolve Automation

System, with many I/O modules running on it. It receives the oil well data while the offshore

rig starts drilling. The dashboard application can now detect the running status of the WBC

device and remotely control it with the built-in Remote Desktop Connection. Nevertheless, if

the status of the signals on I/O modules for receiving oil well data can also be seen and

displayed on the dashboard, it would give much more detailed information to identify the issues

related to losing signals and shorten the time for resolving the problems.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 82

References

Arora, S. K. (2020). C# vs Java: Differences you should Know. Hentet fra

https://hackr.io/blog/c-sharp-vs-java

Choksi, D. (u.d.). C# using statement. Hentet fra https://www.c-sharpcorner.com/article/the-

using-statement-in-C-Sharp/

Doc, M. (u.d.). BackgroundWorker Class. Hentet fra https://docs.microsoft.com/en-

us/dotnet/api/system.componentmodel.backgroundworker?view=net-5.0

Doc, M. (u.d.). ContextMenuStrip Class. Hentet fra https://docs.microsoft.com/en-

us/dotnet/api/system.windows.forms.contextmenustrip?view=net-5.0

Doc, M. (u.d.). Create a Windows Forms app in Visual Studio with C#. Hentet fra

https://docs.microsoft.com/en-us/visualstudio/ide/create-csharp-winform-visual-

studio?view=vs-2019

Doc, M. (u.d.). MaskedTextBox.UseSystemPasswordChar Property. Hentet fra

https://docs.microsoft.com/en-

us/dotnet/api/system.windows.forms.maskedtextbox.usesystempasswordchar?view=n

et-5.0

Doc, M. (u.d.). Ping Class. Hentet fra https://docs.microsoft.com/en-

us/dotnet/api/system.net.networkinformation.ping?view=net-5.0

Doc, M. (u.d.). System Namespace. Hentet fra https://docs.microsoft.com/en-

us/dotnet/api/system?view=net-

5.0#:~:text=Contains%20fundamental%20classes%20and%20base,%2C%20attributes

%2C%20and%20processing%20exceptions.

Docs, M. (u.d.). BindingList<T> Class. Hentet fra https://docs.microsoft.com/en-

us/dotnet/api/system.componentmodel.bindinglist-1?view=net-5.0

GeeksforGeeks. (u.d.). C# Encapsulation. Hentet fra https://www.geeksforgeeks.org/c-sharp-

encapsulation/#:~:text=Encapsulation%20is%20defined%20as%20the,and%20the%2

0data%20it%20manipulates.&text=Encapsulation%20can%20be%20achieved%20by,

get%20the%20values%20of%20variables.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 83

International, E. (2017). C# Language Specification. Hentet fra https://www.ecma-

international.org/publications-and-standards/standards/ecma-334/

Rashedul.Rubel. (u.d.). Form1.cs, Form1.designer.cs and Program.cs in c#. Hentet fra

https://stackoverflow.com/questions/21003049/difference-between-form1-cs-form1-

designer-cs-and-program-cs-in-c-sharp

Teacher, T. (u.d.). Two-way data binding. Hentet fra

https://www.tutorialsteacher.com/angular/two-way-data-binding

w3schools. (u.d.). C# Constructors. Hentet fra

https://www.w3schools.com/cs/cs_constructors.asp

w3schools.com. (u.d.). C# Introduction. Hentet fra

https://www.w3schools.com/cs/cs_intro.asp

wikipedia.org. (u.d.). Comparison of C Sharp and Java. Hentet fra

https://en.wikipedia.org/wiki/Comparison_of_C_Sharp_and_Java

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 84

Appendix A: AddPC.cs

using System;

using System.Linq;

using System.Windows.Forms;

namespace Dashboard_APP

{

 public partial class AddPC : Form

 {

 // constructor

 public AddPC()

 {

 InitializeComponent();

 }

 //define a private field named _info

 private PCInfo _info;

 // collecting information for PCInfo

 public PCInfo info

 {

 //read the information for PCInfo object

 get

 { //initialize the PCInfo object if there is no input.

 if (_info == null)

 {

 _info = new PCInfo();

 }

 //read IP from the input in the text box 1

 _info.ip = textBox1.Text;

 //read username from the input in the text box 2

 _info.username = textBox2.Text;

 // read password from the input in the text box 3

 _info.password = textBox3.Text;

 // read port from the input in the text box 4

 _info.port = textBox4.Text;

 // return

 return _info;

 }

 // write the value to the variables for each PCInfo object.

 set

 {

 //set value to PCInfo object named _info

 _info = value;

 // write IP

 textBox1.Text = _info.ip;

 // write username

 textBox2.Text = _info.username;

 // write password

 textBox3.Text = _info.password;

 // write port

 textBox4.Text = _info.port;

 }

 }

 //Add button2 click Event Handler

 private void button2_Click(object sender, EventArgs e)

 {

 // examine the input of each text box is string, empty,or null.

 if (string.IsNullOrEmpty(textBox1.Text.Trim()) ||

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 85

 string.IsNullOrEmpty(textBox2.Text.Trim()) ||

 string.IsNullOrEmpty(textBox3.Text.Trim()) ||

 string.IsNullOrEmpty(textBox4.Text.Trim()))

 {

 //if any of the input is empty, show a message.

 MessageBox.Show("Cannot be empty!");

 return;

 }

 // call method IsIP to verify the IP

 if (!IsIP(textBox1.Text.Trim()))

 {

 // if it is not IP, show a message.

 MessageBox.Show("Illegal IP!");

 return;

 }

 // set the DialogResult is OK if any of the above "If" statements is triggered.

 this.DialogResult = DialogResult.OK;

 }

 // create a boolean method named IsIP to verify the IP address is in the correct format.

 public bool IsIP(string IP)

 {

 // split the IP parameter, and count the number of the elements.

 var iCount = IP.Split('.').Count();

 // if the number of the elements is not 4 return false

 if (iCount != 4)

 {

 return false;

 }

 // create an IP address object named ip

 System.Net.IPAddress ip;

 // if the string IP can be converted to integer ip successfully,

 //return true. Otherwise return false.

 if (System.Net.IPAddress.TryParse(IP, out ip))

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 // Add button1 click event handler

 private void button1_Click(object sender, EventArgs e)

 {

 // change the property value to False

 textBox3.UseSystemPasswordChar = !textBox3.UseSystemPasswordChar;

 }

 }

}

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 86

Appendix B: ConnForm.cs

using MSTSCLib;

using System;

using System.Net.NetworkInformation;

using System.Windows.Forms;

namespace Dashboard_APP

{

 public partial class ConnForm : Form

 {

 // constructor

 public ConnForm(PCInfo info)

 {

 // initialize

 InitializeComponent();

 // create Ping object named pingsender

 Ping pingsender = new Ping();

 // create a PingReply object named reply and confim if the remote computer is online.

 PingReply reply = pingsender.Send(info.ip);

 if (reply.Status == IPStatus.Success)

 {

 // setup IP

 axMsRdpClient81.Server = info.ip;

 // setup username

 axMsRdpClient81.UserName = info.username;

 //setup port number

 axMsRdpClient81.AdvancedSettings2.RDPPort = Convert.ToInt16(info.port);

 // setup size

 axMsRdpClient81.AdvancedSettings2.SmartSizing = true;

 // setup height

 axMsRdpClient81.DesktopHeight = this.Height;

 // setup width

 axMsRdpClient81.DesktopWidth = this.Width;

 // encryption is enabled

 axMsRdpClient81.AdvancedSettings9.NegotiateSecurityLayer = true;

 IMsTscNonScriptable securd = (IMsTscNonScriptable)axMsRdpClient81.GetOcx();

 // setup password

 securd.ClearTextPassword = info.password;

 axMsRdpClient81.AdvancedSettings5.ClearTextPassword = info.password;

 // setup color

 axMsRdpClient81.ColorDepth = 24;

 // establish the connection

 axMsRdpClient81.Connect();

 }

 //if there is no reply.

 else

 {

 // show the message box and close.

 MessageBox.Show("Unable to connect to the Server！");

 this.Close();

 }

 }

 // resize event handler

 private void ConnForm_Resize(object sender, EventArgs e)

 {

 try

 {

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 87

 // reconnect the remote computer according to the height and width.

 axMsRdpClient81.Reconnect((uint)this.Width, (uint)this.Height);

 }

 catch

 {

 throw;

 }

 }

 }

}

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 88

Appendix C: Form1.cs

using Newtonsoft.Json;

using Newtonsoft.Json.Linq;

using System;

using System.ComponentModel;

using System.IO;

using System.Linq;

using System.Net;

using System.Net.NetworkInformation;

using System.Windows.Forms;

namespace Dashboard_APP

{

 public partial class Form1 : Form

 {

 // define a new PCInfo object list

 private BindingList<PCInfo> PCInfos;

 // define an old PC object list

 private BindingList<PCInfo> oldPCInfos;

 //1. constructor

 public Form1()

 {

 InitializeComponent();

 // setup the form

 dataGridView1.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode.Fill;

 dataGridView1.SelectionMode = DataGridViewSelectionMode.FullRowSelect;

 dataGridView1.MultiSelect = false;

 // created an objet of PCInfo on the new PCInfo object list.

 PCInfos = new BindingList<PCInfo>();

 // created an objet of PCInfo on the old PCInfo object list.

 oldPCInfos = new BindingList<PCInfo>();

 // call the method to initialize the form

 initData();

 }

 // 2. Create a method named initData() to initialize the form

 private void initData()

 {

 // assign PCInfos to dataGridView1

 dataGridView1.DataSource = PCInfos;

 // set the initial information of PC object to be invisible

 dataGridView1.Columns["username"].Visible = false;

 dataGridView1.Columns["password"].Visible = false;

 dataGridView1.Columns["port"].Visible = false;

 dataGridView1.Columns["isOnline"].Visible = false;

 dataGridView1.Columns["isConn"].Visible = false;

 }

 // 3. add the event handler to button1/Add button

 private void button1_Click(object sender, EventArgs e)

 {

 // create an instances of AddPC class.

 AddPC form = new AddPC();

 // shows the AddPC form as a modal dialog box.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 89

 DialogResult res = form.ShowDialog();

 // set Online status is false by default

 form.info.isOnline = false;

 // set the connection is false by default

 form.info.isConn = false;

 // verify if the input IP address alraedy exists or not, when the DialogResult returns the value: OK.

 if (res == DialogResult.OK)

 {

 // if the IP address exists

 if (PCInfos.Any(index => index.ip == form.info.ip))

 {

 // show the message and return

 MessageBox.Show("IP already exists!");

 return;

 }

 // otherwise, assign the input information to PC object.

 PCInfo info = form.info;

 // and add the PC object to BindList PCInfos.

 PCInfos.Add(info);

 }

 // close AddPC form/window

 form.Dispose();

 }

// 4. add event handler for edit option

 private void editToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // declear a variable of the selected row,

 //and assign the information of PC object from the row on the dataGridView1 to the variable.

 var dataselect = this.dataGridView1.SelectedRows;

 // if the PC object is selected.

 if (dataselect.Count > 0)

 {

 //create a new PC object of PCInfo class,

 PCInfo info = new PCInfo();

 //update the relevant information/property of PC to the new PC object.

 info.ip = dataselect[0].Cells["ip"].Value.ToString();

 info.username = dataselect[0].Cells["username"].Value.ToString();

 info.password = dataselect[0].Cells["password"].Value.ToString();

 info.port = dataselect[0].Cells["port"].Value.ToString();

 info.isOnline = Convert.ToBoolean(dataselect[0].Cells["isOnline"].Value.ToString());

 //create a new AddPC form to,

 AddPC frm = new AddPC();

 //update the value of the new PC object to AddPC form.

 frm.info = info;

 //show the AddPC form as a modal dialog.

 DialogResult res = frm.ShowDialog();

 //If the Save button is clicked, which indicates the value for the DialogResult is OK,

 if (res == DialogResult.OK)

 {

 //update the properties of PC object to dataGridView1.

 dataselect[0].Cells["ip"].Value = frm.info.ip;

 dataselect[0].Cells["username"].Value = frm.info.username;

 dataselect[0].Cells["password"].Value = frm.info.password;

 dataselect[0].Cells["port"].Value = frm.info.port;

 dataselect[0].Cells["isOnline"].Value = frm.info.isOnline;

 this.dataGridView1.Invalidate();

 }

 // close the AddPC form/window

 frm.Dispose();

 }

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 90

 // Otherwise, show the message if there is no PC object is selected.

 else

 {

 MessageBox.Show("No data!");

 }

 }

 // 5. add event handler for delete option

 private void deleteToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // declear a variable of the selected row,

 //and assign the information of PC object from the row on the dataGridView1 to the variable.

 var dataselect = this.dataGridView1.SelectedRows;

 // if the number of selected row is not 0, which indicates there is a row/data selected.

 if (dataselect.Count > 0)

 {

 // iterate the selected rows collection,

 foreach (DataGridViewRow dr in dataGridView1.SelectedRows)

 {

 //If it is not a submitted row, by default,

 //after adding a row of data successfully,

 //DataGridView will create a new row as the insertion location of the new data

 if (dr.IsNewRow == false)

 {

 // delete the row.

 dataGridView1.Rows.Remove(dr);

 }

 }

 }

 // otherwise, show "no data" message.

 else

 {

 MessageBox.Show("No data!");

 }

 }

 //6. display the cascading menu, which is the contextMenuStrip from Form1 Designer.

 private void dataGridView1_CellMouseUp(object sender, DataGridViewCellMouseEventArgs e)

 {

 // if there is a right mouse clicking.

 if (e.Button == MouseButtons.Right)

 {

 // if the right mouse clicking is on the row of PC, not in the blank area.

 if (e.RowIndex >= 0 && e.ColumnIndex >= 0)

 {

 //call Clearselection() method to clear the current selection by unselecting all selected cells.

 dataGridView1.ClearSelection();

 // Get the selected row index

 dataGridView1.Rows[e.RowIndex].Selected = true;

 // Current grid

 dataGridView1.CurrentCell = dataGridView1.Rows[e.RowIndex].Cells[e.ColumnIndex];

 // show the cascading menu exactly in the position where the mouse clicking.

 contextMenuStrip1.Show(MousePosition.X, MousePosition.Y);

 }

 }

 }

 // 7. add event handler for connect option

 private void connectToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // declear a variable of the selected row,

 //and assign the information of PC object from the row on the dataGridView1 to the variable.

 var dataselect = this.dataGridView1.SelectedRows;

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 91

 // if the number of selected row is not 0, which indicates there is a row/data selected.

 if (dataselect.Count > 0)

 {

 //create a new PC object of PCInfo class,

 PCInfo info = new PCInfo();

 //update the relevant information/property of PC to the new PC object bu signing the data for the selected

row to info

 info.ip = dataselect[0].Cells["ip"].Value.ToString();

 info.username = dataselect[0].Cells["username"].Value.ToString();

 info.password = dataselect[0].Cells["password"].Value.ToString();

 info.port = dataselect[0].Cells["port"].Value.ToString();

 info.isOnline = Convert.ToBoolean(dataselect[0].Cells["isOnline"].Value.ToString());

 // if the selected row of computer is not Online.

 if (!info.isOnline)

 {

 // show the message box and return.

 MessageBox.Show("PC is offline!");

 return;

 }

 //Otherwise, create an instance of ConnForm and take info(which is the PCInfo instance) as the parameter.

 ConnForm form = new ConnForm(info);

 // call the show() method to show the ConnForm form.

 form.Show();

 }

 // otherwise, show a message box with the message "No data!"

 else

 {

 MessageBox.Show("No data!");

 }

 }

 //8.write a boolean method to verify the status of the remote computer is online,

 //and catch an exception if it is not online.

 private bool StatusQuery(string ip)

 {

 // declear a bool type result named res.

 bool res;

 // the initial message is an enpty string variable.

 string message = "";

 // create an instance of Ping

 Ping p = new Ping();

 // use "try-catch-finnaly" to raise an exception while the remote computer is not reachable by Ping

 try

 {

 // create an instance of PingReply class named r and

 //called Ping.send(ip) method to return a value for IPStatus.

 PingReply r = p.Send(ip);

 // if the return value from Ping.send() method is Success.

 if (r.Status == IPStatus.Success)

 {

 // assign the string "Success" to message.

 message = "Success";

 }

 }

 //deal with the exception in the catch block

 catch (Exception ex)

 {

 // raise the exception

 throw;

 }

 //release the result obtained in the try block

 finally

 {

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 92

 // if the message is string "Success"

 if (message == "Success")

 {

 // the resualt is true.

 res = true;

 }

 //otherwise

 else

 {

 // the resualt is false.

 res = false;

 }

 }

 // return the result

 return res;

 }

 // 9. event handler for timer

 private void timer1_Tick(object sender, EventArgs e)

 {

 // check IsBusy to see if the background task is running, and return

 if (backgroundWorker1.IsBusy)

 {

 return;

 }

 // Start the operation in the background.

 backgroundWorker1.RunWorkerAsync();

 }

 // 10. create an event handler to backgroundWorker

 private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

 {

 // iterate the PCInfo instances in the oldePCInfos collection

 foreach (PCInfo item in oldPCInfos)

 {

 // call StatusQuery to get the status of each PCInfo instances

 item.isOnline = StatusQuery(item.ip);

 // if PCInfo instance is online

 if (item.isOnline)

 {

 // create the IPHostEntry instance form the ip address of PCInfo insatance.

 IPHostEntry myScanHost = Dns.GetHostByAddress(item.ip);

 // assign the hostname

 item.hostName = myScanHost.HostName.ToString();

 // set ststus is online

 item.status = "Online";

 // set offtime is null

 item.offlineTime = null;

 // set the offline duration is 0.

 item.offlineDuration = 0;

 }

 // otherwise(when the PCInfo instance is offline)

 else

 {

 // check if the previous ststus of PCInfo instance is also offline

 if (item.status == "Offline")

 {

 // set the offline duration is the current DateTime - offlineTime

 item.offlineDuration = Convert.ToInt32((DateTime.Now - item.offlineTime).Value.TotalSeconds);

 }

 // otherwise(when the PCInfo instance was online)

 else

 {

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 93

 // change the ststus to offline.

 item.status = "Offline";

 // update the offline time to DateTime ow.

 item.offlineTime = DateTime.Now;

 // set the offline duration

 item.offlineDuration = 0;

 }

 }

 }

 // repaint the dataGridView

 this.dataGridView1.Invalidate();

 // update the oldPCInfos collection.

 oldPCInfos = PCInfos;

 }

 //11.Create a CellFormatting Event Handler to DataGridView

 private void dataGridView1_CellFormatting(object sender, DataGridViewCellFormattingEventArgs e)

 {

 // if the index of column is 9

 if (e.ColumnIndex == 9)

 {

 // and the value is not null

 if (e.Value != null)

 {

 // if the value is not 0 coverted from the integer

 if (Convert.ToInt32(e.Value) != 0)

 {

 // call the ConvertDayHourMinuteSencond(int duration) method to convert the Integer to String

 e.Value = ConvertDayHourMinuteSencond(Convert.ToInt32(e.Value));

 }

 }

 }

 }

 //12. create a method to covert the offline duration time from integer to string.

 private string ConvertDayHourMinuteSencond(int duration)

 {

 // get the time interval

 TimeSpan ts = new TimeSpan(0, 0, duration);

 // declare an enpty string variable

 string str = "";

 // add day to string, if the offline duration time is more than 1 day.

 if (ts.Days > 0)

 {

 str = ts.Days.ToString() + "d" + ts.Hours.ToString() + "h" + ts.Minutes.ToString() + "m" + ts.Seconds + "s";

 }

 //add hour to string if the offline duration time is more than 1 hour.

 else if (ts.Hours > 0)

 {

 str = ts.Hours.ToString() + "h" + ts.Minutes.ToString() + "m" + ts.Seconds + "s";

 }

 // add minute to string if the offline duration time is more than 1 minute.

 else if (ts.Minutes > 0)

 {

 str = ts.Minutes.ToString() + "m" + ts.Seconds + "s";

 }

 // add second to string if the offline duration time is more than 1 second.

 else

 {

 str = ts.Seconds + "s";

 }

 // return string.

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 94

 return str;

 }

 // 13.create Form.Load event handler

 private void Form1_Load(object sender, EventArgs e)

 {

 // get the base directory, which is the config.json file

 string path = System.AppDomain.CurrentDomain.BaseDirectory + "config.json";

 // verify the config.json file exists or not.

 //if the config.json file exists, read the data.

 if (File.Exists(path))

 Readjson(path);

 }

 // 14. read data from config.json file

 private void Readjson(string path)

 {

 // create a text reader insatnce of StreamReader Class

 using (System.IO.StreamReader file = System.IO.File.OpenText(path))

 {

 // create a instance of Json text reader

 using (JsonTextReader reader = new JsonTextReader(file))

 {

 // create a Json array, and assign the data read from Config.json to Json Array.

 JArray jarray = (JArray)JToken.ReadFrom(reader);

 // iterate the json Array

 for (int i=0; i<jarray.Count(); i++)

 {

 // get the current element in Json Array

 JObject temp = (JObject)jarray[i];

 // create a instance of PCInfo, named tempPCInfo

 //and update the properties of the current element to tempPCInfo.

 PCInfo tempPCInfo = new PCInfo

 {

 ip = temp["ip"].ToString(),

 hostName = temp["hostName"].ToString(),

 username = temp["username"].ToString(),

 password = temp["password"].ToString(),

 port = temp["port"].ToString(),

 isOnline = Convert.ToBoolean(temp["isOnline"].ToString()),

 status = temp["status"].ToString(),

 isConn = Convert.ToBoolean(temp["isConn"].ToString()),

 offlineDuration = Convert.ToInt32(temp["offlineDuration"].ToString())

 };

 // check the offline time

 //if the offline time is not empty.

 if (temp["offlineTime"].ToString() != "")

 // update the offline time of the current element to tempPCInfo

 tempPCInfo.offlineTime = Convert.ToDateTime(temp["offlineTime"].ToString());

 // add the tempPCInfo to PCInfos collection.

 this.PCInfos.Add(tempPCInfo);

 }

 }

 }

 }

 //15. Write JSON file.

 private void Writejson(string path)

 {

 // Creates or opens a file for writing encoded text. If the file already exists, its contents are overwritten.

 using (System.IO.StreamWriter file = System.IO.File.CreateText(path))

 {

 // create a JsonTextWriter instance

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 95

 using (JsonTextWriter writer = new JsonTextWriter(file))

 {

 // Writes the beginning of an array.

 writer.WriteStartArray();

 // iterates the PCInfos collection,

 for (int i = 0; i < PCInfos.Count(); i++)

 {

 // get the current element in the PCInfos collection

 //write the properties of the current element into a JSON file.

 PCInfo temp = PCInfos[i];

 //Writes the beginning of a JSON object.

 writer.WriteStartObject();

 writer.WritePropertyName("ip");

 writer.WriteValue(temp.ip);

 writer.WritePropertyName("hostName");

 writer.WriteValue(temp.hostName);

 writer.WritePropertyName("username");

 writer.WriteValue(temp.username);

 writer.WritePropertyName("password");

 writer.WriteValue(temp.password);

 writer.WritePropertyName("port");

 writer.WriteValue(temp.port);

 writer.WritePropertyName("isOnline");

 writer.WriteValue(temp.isOnline);

 writer.WritePropertyName("status");

 writer.WriteValue(temp.status);

 writer.WritePropertyName("isConn");

 writer.WriteValue(temp.isConn);

 writer.WritePropertyName("offlineTime");

 writer.WriteValue(temp.offlineTime);

 writer.WritePropertyName("offlineDuration");

 writer.WriteValue(temp.offlineDuration);

 //Writes the end of a JSON object.

 writer.WriteEndObject();

 }

 //Writes the end of an array.

 writer.WriteEndArray();

 }

 }

 }

 // 16.create FormClosing event handler

 private void Form1_FormClosing(object sender, FormClosingEventArgs e)

 {

 // get the base directory, which is the config.json file

 string path = System.AppDomain.CurrentDomain.BaseDirectory + "config.json";

 // call writejson() method to create config.json in the directory.

 Writejson(path);

 }

 }

 // PC information class

 public class PCInfo

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 96

 {

 //Contructor

 public PCInfo() { }

 //create fields

 private string _ip;

 private string _hostName;

 private string _username;

 private string _password;

 private string _port;

 private bool _isOnline;

 private string _status;

 private bool _isConn;

 private DateTime? _offlineTime;

 private int _offlineDuration;

 /// <summary>

 ///

 /// </summary>

 /// get and set method. The property

 public string ip

 {

 set { _ip = value; }

 get { return _ip; }

 }

 public string hostName

 {

 set { _hostName = value; }

 get { return _hostName; }

 }

 public string username

 {

 set { _username = value; }

 get { return _username; }

 }

 public string password

 {

 set { _password = value; }

 get { return _password; }

 }

 public string port

 {

 set { _port = value; }

 get { return _port; }

 }

 public bool isOnline

 {

 set { _isOnline = value; }

 get { return _isOnline; }

 }

 public string status

 {

 set { _status = value; }

 get { return _status; }

 }

 public bool isConn

 {

 set { _isConn = value; }

Build a Dashboard Application for NOVs eVolve Automation System

 Qingqing Dai 2021 Page 97

 get { return _isConn; }

 }

 public DateTime? offlineTime

 {

 set { _offlineTime = value; }

 get { return _offlineTime; }

 }

 public int offlineDuration

 {

 set { _offlineDuration = value; }

 get { return _offlineDuration; }

 }

 }

}

