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Summary 

Climate change is high on the global political agenda and many of the world’s developed 

countries have been refocusing their innovation efforts towards the development of new and 

complex green technologies. Certain European regions have a high output of novel 

technologies, and this paper investigates whether the Paris Agreement from 2015 has had any 

impact on the development of green technologies. One would expect a rise in patent activity 

related to green technologies given the urgency of the climate change issue. The results, 

however, show a surprising decline in recent years for the tested regions. In fact, innovations 

in green technologies were higher in the years leading up to the Paris Agreement. This suggests 

that there are policy implications, and different incentives may need to be offered to regions 

and economic actors.  

 

This paper takes a closer look at green technologies as defined by the OECD in their ENV-

TECH grouping (Haščič & Migotto, 2015). Recent research has found that the presence of non-

green complex technologies can be a catalyst for the development of novel green technologies 

as well as a barrier (Montresor & Quatraro, 2020; Santoalha & Boschma, 2021). This paper 

seeks to find evidence of whether complex green technologies concentrate in space, as it is the 

related capabilities in a region that influence diversification into green technologies (Santoalha 

& Boschma, 2021). Connecting patent data to European regions for the years 2010, 2015 and 

2019, the results indicate that complex green technologies concentrate in space. Ile-de-France, 

Oberbayern and Stuttgart have the highest density of complex green technologies, yet green 

patent development has a significant downward trend after 2015.  

 

Using “structural diversity” (Broekel, 2019), the complexity of key enabling technologies 

(KETs) and green technologies are compared and the results indicate that green technologies 

are more complex than the already highly complex KETs. This result suggests that a presence 

of complex technologies makes it easier for regions to diversify into green technologies, and 

this can be one explanation for why novel green technologies concentrate in space.  
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1 Introduction  

In 2009, an energy directive by the EU set a target that 20% of EU energy consumption should 

be from renewable sources by 2020 (Schöpe, 2008). By 2030, the target is set at 32% of overall 

energy consumption to be from renewable sources (EU, 2008). These targets have set a 

precedent that the EU and its member states need to diversify their technologies to meet these 

targets. To achieve the targets the EU has outlined a long-term strategy plan: “Energy Roadmap 

2050”((EU), 2012). In the roadmap there are different scenarios in place for the growth of green 

energy after 2020. A critical finding in the report is that growth of green energy will slacken 

after 2020 unless there is further intervention to stimulate growth (European Comission, 2013). 

This creates a precedent that there needs to be increased focus on how EU regions can achieve 

more growth, where this is most feasible.  

 

The European Commission has defined micro/nanoelectronics, photonics, nanotechnology, 

industrial biotechnology, advanced materials and advanced manufacturing systems as the six 

key enabling technologies (KET) for Europe (Foray et al., 2012). Montresor and Quatraro 

(2020) found that the presence of KETs had a significant impact on a region’s ability to create 

novel green technology. In their study they also found that regions with non-green technology 

could just as easily recombine their knowledge into novel green technology even without prior 

green experience. As such the possibility to create new green technology may not be so path 

dependent as one would expect. In fact, following the findings of Montresor and Quatraro 

(2020), one can expect that non-green regions with KET capabilities will have no problem 

turning green. The heterogeneous nature of the European economic and technological 

geography creates a challenge where the differences might have an impact on the different 

regions’ capability to become greener (González-López, Asheim, & Sánchez-Carreira, 2019). 

As research has shown, complex technologies often emerge from actors that have activities in 

related fields (Santoalha & Boschma, 2021). The significance that KETs have on the 

development of green technology implies that the regions without KETs, and that are generally 

less developed, will have a harder time diversifying and developing green technology. 

 

It can be expected that non-green technologies are more diffused and might have lock-in effects, 

making it difficult for some regions to diversify into new green technologies (Arthur, 1989; 

Zeppini & van Den Bergh, 2011). Following Dosi (1982), a paradigm shift can arise from an 

innovation push that changes the dominant technologies (i.e., non-green). Technological 
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relatedness makes it more likely that a specialization in new green technology can happen 

(Montresor & Quatraro, 2020), and regions seeking to diversify into green technology without 

pre-existing competences run a high risk of failing the attempt. A more likely scenario is that 

new green technology is created as a recombination and related to existing knowledge, 

competences and capabilities (Neffke, Henning, & Boschma, 2011). How the green and non-

green technology overlap can be measured by their relatedness (Montresor & Quatraro, 2020). 

Cooke (2012) coined the term “transversality”, reflecting that a region can contain a number of 

different clusters with related knowledge that diffuses among them to create new technologies. 

One such example is the North Jutland region in Denmark, where solar and wind power have 

been combined into new forms of green technologies (Cooke, 2012). Other recent examples of 

new green technology combinations include the hybrid car, re-combining combustion with an 

electric drivetrain (Zeppini & van Den Bergh, 2011).   

 

In their article, Santoalha and Boschma (2021) investigate the greening of economies and found 

that it is the regions’ related capabilities that influence diversification into green technology. 

Further, they found that new green technology is more likely to occur with related technologies. 

Interestingly they also found strong support for non-green technology possibly being a barrier 

for new specialization in green technology. This is in contrast to Montresor and Quatraro 

(2020), who found that regions could easily recombine existing technology into novel green 

technology. Given this gap between findings in recent literature, it could be interesting to 

further investigate this. Santoalha and Boschma (2021) studied the period 2000 – 2012 while 

Montresor and Quatraro (2020) looked at the period 1981 – 2013. However, both articles 

stopped short of possible effects from the Paris Agreement, a landmark for the climate change 

process signed in December 2015. The implications from the Paris Agreement could be 

increased speed in the greening of the economy and more novel green innovations. New green 

technology is complex and green patents have been found to be more complex and more novel 

than their non-green counterparts (Barbieri, Marzucchi, & Rizzo, 2020; Montresor & Quatraro, 

2020).   

 

Recent research has shown that regional vested companies may oppose the development of 

green technologies, which they see as a threat towards their type of specialized technology 

(Santoalha & Boschma, 2021). This can be attributed to a lack of incentives for non-green actors 

to transition towards cleaner production, as well as a lack of policy and incentives from the 

governmental side. The paper by Santoalha and Boschma (2021) used data from the time period 
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2000 – 2012. The Paris Agreement was agreed upon in 2015 and one of the main objectives for 

the agreement is that countries are committed to curbing their emissions by 2020 (United 

Nations, 2015).  In the last five years there have been major changes in how governments both 

perceive and handle the transition towards greener economies. Balland et al. (2020) found that 

the patenting of complex technologies concentrates in US cities.  In this research, we will check 

if complex green technology concentrates in space, and whether the Paris Agreement from 2015 

has had any impact on the development of novel green technologies. 

Based on this, the following two hypotheses will be tested: 

1. Hypothesis: Complex green technologies concentrate in space. 

2. Hypothesis: The greening process in regions with KET capabilities increased after the 

Paris Agreement.  

The paper is structured as follows. The first section gives an introduction to the topic. The 

second section investigates and discusses recent background literature in related diversification, 

technological complexity, and innovation policies. The third section presents methods for 

measuring complexity, analysis using patent data, policy implications, as well as the datasets. 

The fourth section presents the empirical analysis and variables, and the results are presented 

using maps, plots, and tables. The fifth section discusses the results, concludes, and presents 

possible future research.   

2 Literature review 

Climate change is high on the global political agenda and many of the world’s most developed 

countries have been refocusing their innovation efforts into the creation of novel green 

technologies. The European Union has created the Energy Roadmap 2050 and aims to have a 

totally transformed energy system by 2050 ((EU), 2012). Recent literature on the geography of 

innovation has focused on the specific knowledge base and how this base develops and 

transforms over time in countries and regions. The goal in this literature is often not to explain 

why some regions produce more new knowledge than others, but rather why complex 

technology is sometimes easier developed in some regions because of related pre-existing 

knowledge (Balland, 2016). In his article, Balland (2016) coins these types of studies as 

relatedness literature, and the flow of knowledge and how different technologies relate have 

been studied in great detail (Boschma, 2017; Neffke, Henning, & Boschma, 2012; Sorenson, 

Rivkin, & Fleming, 2006). Technological change is required if the green economy is to grow 
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(Barbieri et al., 2020). However, complex knowledge does not necessarily travel well, not even 

with advanced digital communication (Balland et al., 2020).  

  

2.1 Related diversification 

A region with a diversified portfolio of capabilities will not necessarily spark new technology 

if the capabilities and competences they possess are unrelated. For technological diversification, 

it has been found that the variety of capabilities and knowledge are far more likely to create 

new technology and products if they are somehow related  (Frenken, Van Oort, & Verburg, 

2007). Relatedness between technologies can spark new technologies and products when 

different types of knowledge are combined due to similarities in capabilities or by knowledge 

subsets (Balland, Boschma, Crespo, & Rigby, 2019). Hidalgo and Hausmann (2009) measured 

complexity and product diversity at a national aggregated level and found that different 

competences and capabilities play a crucial role when producing complex products. The 

competence and capabilities to produce complex products can be an indication for a nation’s or 

region’s possibility to create new complex technology. It has been found that regions with dense 

links between technology nodes can use their existing competencies to produce new 

combinations of existing technology (Balland & Rigby, 2017). Klepper and Simons (2000) 

found that companies with prior knowledge of radio production gained a competitive advantage 

from this knowledge when re-combining it into television production. Producers with 

experience from radio production were also found to be more innovative and had a longer 

survival rate. In the energy sector, where the oil segment in particular has been found to have 

minimal diversification (Teece, Rumelt, Dosi, & Winter, 1994), the situation today seems to be 

different, with a stronger focus and ongoing transitions into green and sustainable technologies. 

An example of this is Ørsted Energy, formerly Dong Energy (Danish Oil and Natural Gas). 

When the EU set their 2020 target of 20% renewable energy ((EU), 2012), Ørsted set a target 

goal that 85% of their production would be green by 2040 and partnered up with government 

institutions in their initial investments of wind farms. During the period 2012 to 2019, the cost 

of offshore wind production decreased by 66%, while at the same time the oil price collapsed 

in 2014. They sold their oil and gas production assets in 2017 and changed their name from 

Dong to Ørsted. By 2019 they hit their target goal of 85% energy generation from renewables, 

and at the same time their carbon emissions sunk by 86% while their operating profits doubled. 

Ørsted attributes much of their success to a supportive policy environment which allowed them 
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to invest and innovate at scale, and this in turn led to a cycle of technology maturity and 

reduction of costs (Ørsted, 2020).  

 
Following Marshall (1920) and Jacobs (1970), innovation is often described as either created 

from a varied urban scene (Jacobian) or from specialized clusters (Marshallian). Both scenarios 

depend on knowledge spillovers and capabilities that are related (Boschma, Balland, & Kogler, 

2015). It is not hard to imagine that new technology will often be related to the existing 

knowledge and capabilities of a country or region. It has been found that industries in a region 

with related activities have a greater chance of creating new technologies than industries in an 

area with a poor selection of relatedness (Boschma, Minondo, & Navarro, 2013; Neffke et al., 

2011). In the long run, however, Marshallian specialization might be a barrier for innovation, 

since in the end there will be nothing new to learn from each other and this can also be true for 

Jacobian clusters, as the serendipity with this theory might not be a valid explanation in the 

long run (Berge & Weterings, 2014). Neffke (2009) found that it is the specific knowledge and 

capabilities a region possesses that will help define what new technologies can be created. 

Those capabilities that help determine what new technologies can be created were also found 

on the national level by Hausman and Hidalgo (2010). Both Frenken and Boschma (2007) and 

Neffke (2009) found that technological relatedness plays a crucial role when determining the 

possibility for knowledge spillovers between different technologies and industries. Companies 

will use their existing capabilities and draw on related knowledge when they enter novel 

technology, and this can be described as a path-dependent process by the degree of relatedness 

(Boschma et al., 2015). Colombelli, Krafft and Quatraro (2014) found this to be true in their 

analysis on new nanotechnology that showed regions in Germany, France and Italy ahead of 

the curve in the emergence of new technology in general.  

 

Relatedness and the geography of innovation is often explained as a network and knowledge 

space (Boschma et al., 2015; Rigby, 2015). In this knowledge space the nodes in the network 

can represent different patents and technological classes with the links between them 

representing the degree of relatedness (Balland, 2016). This network representation might seem 

very static, but it is this regular pattern that makes the technological setup of a region sustainable 

(Boschma et al., 2015). This path-dependent process can represent the dynamics of knowledge 

production and technological innovation (Balland, 2016). Collaboration between economic 

actors is required to create new technology out of related ones, and such collaborations are more 

likely to occur on a regional and local level due to issues with proximity, among other things 
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(Balland, De Vaan, & Boschma, 2013). One could imagine that with globalization and the 

internet, knowledge spillovers would flow easily to new areas of the world. However, this is 

unlikely to be significant even for codified knowledge like patents, as studies have found 

patents to have strong place dependent bias (Jaffe, Trajtenberg, & Henderson, 1993). This is a 

strong signal to countries and regions that related technology and capabilities are required if 

investments in innovation and new technologies are to be successful. Random jumps into new 

technological domains are seldom successful and literature tends to focus on the path-

dependency (Balland, 2016). This is one of the reasons for why it is important to create 

knowledge networks and obtain the degree of relatedness so sustainable opportunities can be 

identified (Balland, 2016).  

 

2.2 Technological complexity  

Technological complexity has been studied from many different angles in recent innovation 

literature. When companies compete, they do so by expanding their knowledge space and 

adding new capabilities into this space (Balland et al., 2019). Kogut and Zander (2003) explain 

that transfer of knowledge can be difficult even within a company, and they also explain that 

tacit knowledge will often have complexity as a critical ingredient. As such, complexity can act 

as proxy for tacit knowledge (Kogut & Zander, 2003). In their study of knowledge complexity 

in US cities, Balland and Rigby (2017) found that only a few cities were able to produce highly 

complex technologies. It is the possibility for high earnings that pushes an economic agent to 

search for new complex knowledge, as it is the difficulty to imitate complex combinations that 

can give rise to new competitive advantage and capabilities (Teece, Pisano, & Shuen, 1997). 

Within a region’s existing technological capacity, it is the degree of relatedness that can 

increase the possibility for complex new knowledge and technological opportunities (Balland 

et al., 2019). The best chance for innovation success may come from combinations of 

technology (i.e., components) that have a moderate degree of complexity (Fleming & Sorenson, 

2001; Sorenson et al., 2006). Industries that can make use of moderate complex knowledge are 

also more prone to establish industrial clusters (Sorenson et al., 2006). Regions specializing in 

complex technologies related to their capabilities are more likely to gain technological growth 

and technological complexity, and this has been found to be a major factor in the economic 

growth of European regions (Balland et al., 2019; Mewes & Broekel, 2020). However, even 

though new complex technologies can receive high rents, complexity can also be an obstacle 

for the innovation and relatedness process (Juhász, Broekel, & Boschma, 2020; Yayavaram & 
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Chen, 2015). Transitioning into new green technology is a complex activity and green patents 

have been found to be more complex and more novel than non-green counterparts (Barbieri et 

al., 2020; Montresor & Quatraro, 2020). In their study, Barbieri et al. (2020) found that green 

technologies are more diverse and likely to contain more components than their non-green 

counterparts. 

 

2.3 Innovation policies    

The need for a knowledge base and the high costs of entry due to lack of technological maturity 

in the green technology sector can in many cases serve as a constraint for companies in related 

activities to enter the green business (Breschi, Lissoni, & Malerba, 2003). The co- existence of 

various industries with different knowledge and technology bases and their need of cluster, 

network and regional innovation systems requires a developed governance structure in order to 

diffuse and develop new and related technology (B. Asheim, Coenen, Moodysson, & Vang, 

2005). The classical approach by governments to stimulate growth and innovation has been 

with the use of incentives and disincentives such as tax relief, R&D investment, subsidies, 

taxes, and in some cases co-ownership with the state (B. T. Asheim, 2019). However, the 

heterogeneity of the regional economies in Europe creates a challenge where policies need to 

be more specific. 

 

A key challenge in terms of policy is to identify and build the foundations for complex activities 

that are related, so that they can combine processes to be further developed. This is supported 

by the finding that complex technologies tend to concentrate in space (Mewes & Broekel, 

2020), although this creates challenges for policy makers. The main challenge is locating and 

identifying the regions with existing capabilities and competitive advantage in specific 

activities, and applying the needed policies (B. T. Asheim, 2019). This has been addressed by 

research and the EU, with innovation policies such as smart specialization. Smart specialization 

has been described as the single largest attempt to create a supernational innovation strategy to 

boost economic growth, through diversifying the regional economies into more technologically 

advanced activities and moving up the ladder of knowledge complexity compared to present 

levels in regions (B. T. Asheim, 2019). In terms of disincentivizing companies that pollute, 

governments have enforced carbon taxes to make it more expensive for companies to pollute 

and push them into developing solutions that makes their operations cleaner (European 
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Parliament and the Council of the European Union, 2018). Moreover, this creates an incentive 

for companies to develop fewer polluting solutions to avoid these taxes. 

 

Regional policy in relation to innovation, and its importance in the diversification process is a 

topic that has seen an increase in interest over the last two decades (González-López et al., 

2019), where the sentiment that “no size fits all” has been adopted as the approach to examine 

regional innovation in terms of policy (B. T. Asheim, 2019). The idea behind smart 

specialization is that countries should identify their existing or potential competitive 

advantages, where they can specialize and create capabilities in a different way than other 

countries or regions (B. T. Asheim, 2019). In the context of KETs and their perceived effect on 

regions’ diversification into greener activities, policies need to be specialized to stimulate 

growth both for KETs and green technology. This will be a factor for motivating complex 

organizations with expertise to tune their portfolios to meet the emerging demands in these 

sectors, leading to an interplay of competitive advantage, expertise in core technologies and 

agile adaptation to these emerging demands.  Smart specialization can play a pivotal role for 

regions to form policies that build upon existing capabilities and further develop them. Ørsted 

Energy has been mentioned earlier in this paper regarding how they used existing capabilities 

to develop new and better technology in the wind turbine energy sector, and showcases as a 

successful example of policy and the agility and willingness of a firm to diversify and transition 

toward greener activities.  

3 Method 
 

3.1 Measuring the complexity of technologies. 

Complex technologies have been found to concentrate in space and the complexity has a 

tendency to increase over time (Balland & Rigby, 2017; Broekel, 2019). Different measures 

and evaluation methods have been created in recent literature. Fleming and Sorensen (2001) 

developed an approximation for knowledge complexity and Balland and Rigby (2017) 

developed an index for knowledge complexity based on Hidalgo and Hausmann (2009). 

However, as Broekel (2019) explains, knowledge complexity is not easy to measure 

objectively. Implementing measures from complexity and network science, Broekel (2019) 

creates “structural diversity” to determine the complexity of technology. Using “structural 

diversity”, Broekel (2019) investigates 655 technologies and finds that complexity increases 

with time. Concentration in space, however, is only significant within the sizeable technologies 
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(Broekel, 2019). This paper seeks to investigate the complexity of green technologies and will 

use the “structural diversity” method to do a comparison of green technologies as defined by 

OECD (ENV-TECH) and KETs.   

 

3.2 Using patents for analysis. 

Patents can give insight into the technological competencies a company possesses, and the co-

occurrence of classification codes can be used to measure relatedness (Breschi et al., 2003). 

Technological relatedness between patents has been used to measure knowledge proximity and 

space (Rigby, 2015; Sorenson et al., 2006), while Boschma (2017) found that when two classes 

are named on the same patent this represents relatedness. It is possible to investigate how close 

two cooperative patent classifications (CPC)1 are, by looking at the main and additional CPC 

(Ejermo, 2003). A method that can be used to measure relatedness between classes is weighted 

average relatedness (WARN). This measure only includes the strongest links in a network and 

thus excludes weak links that would be noise in an index. Using the WARN method, Ejermo 

(2003) calculated the technological diversity in Swedish regions. In his acclaimed article, Rigby 

(2015) uses patent classes to investigate technological relatedness, while Cook (2008) found 

that to create novel green technology, a complex system of pre-existing knowledge in a region 

is required. Combining patent data with geographical data, this paper will investigate how green 

technologies (ENV-TECH) concentrate in space and whether there has been an increase after 

the 2015 Paris Agreement.   

  

3.3 Policy implications 

The policy implications of complex green technology concentrating in a geographical space are 

the occurrence of clusters and the concentration of knowledge and technology. With complex 

knowledge and technology intensity, this often becomes the case. This is both positive and 

negative in terms of developing new technologies in regions. Clusters can be described as a 

collection of different activities in a geographical space, where there are linkages between 

different firms and institutions. This can allow regions and their companies to diffuse 

knowledge and technology that has linkages that are related to existing technologies, to develop 

new and related technologies (B. Asheim et al., 2005). Research by Montresor and Quatraro 

 
1 “The Cooperative Patent Classification (CPC) is an extension of the IPC and is jointly managed by the EPO 

and the US Patent and Trademark Office. It is divided into nine sections, A-H and Y, which in turn are sub-

divided into classes, sub-classes, groups and sub-groups. There are approximately 250 000 classification 

entries”((EPO), 2021). 
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(2020) has found that relatedness to the preexisting knowledge base of a region plays a pivotal 

role in the acquisition of new green technologies. This supports the findings from the US which 

have shown that patents connected to complex technologies concentrate in a few urban areas, 

which is attributed to the requirement of division of knowledge that is distributed across many 

actors (Balland et al., 2020).    

 

However, a downside of this centralization is the potentially uneven spatial distribution, where 

a few urban areas stand for most of the economic and technological development. There needs 

to be a balance act between regional social policy to stimulate research and growth in less 

developed regions, and regional innovation policy to avoid the loss of effectiveness when 

determining where to implement policies. This is the case for smart specialization, where a 

tradeoff between effectiveness and the need to stimulate less developed regions is necessary. 

 

3.4 Data 

This paper will use the OECD collection of environmental related patents ENV-TECH, which 

covers about 107 technological and related fields considered to be “green” technologies (Haščič 

& Migotto, 2015). The ENV-TECH categorization has been used in several recent articles on 

the very same topic and must be said to be valid for use in studying the topic of this paper. The 

paper will focus on European regions at the NUTS2 level and release year 2016. The NUTS2 

dataset is obtained from the Eurostat database using the R-package EUROSTAT. Turkey and 

Iceland have been removed from the dataset to create a better visualization for the findings 

relating to hypothesis 1. The paper uses the CPC codes for ENV-TECH and KETs found in 

Tables A1 and A2 in the supplemental material for Montresor and Quatraro (2020).   

 

The main dataset was provided by Professor Brökel and contains over 1 million observations 

from years 2000 to 2019. The dataset has information at CPC level 4 for all patents, which is 

also connected to the relevant NUTS2 code. In addition, it contains columns for patents found 

in the ENV-TECH and KET listings both on CPC level 4 and on CPC full where available. We 

are able to analyze the spatial concentration of green technologies in any given year between 

2000 and 2019, when combining the total number of patents related to ENV-TECH and the 

NUTS2 code using this dataset. 
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For the complexity analysis, the dataset on technological complexity available from the 

homepage of Professor Brökel (Brökel, 2021) is used. This dataset contains 30879 observations 

with 7 variables, such as the structural diversity for patents at CPC4 level in the period of 1970 

– 2016. These data make it possible to analyze how complex patents related to ENV-TECH and 

KETs are in the period from 2000 to 2016. 

4 Empirical analysis and results 

 

4.1 Comparing the complexity of green and KET technologies.  

In the following we compare the complexity of patents categorized as ENV-TECH and KETs. 

Both categorizations have been deemed in recent literature to be complex and related. 

Remembering the findings from Montresor and Quatraro (2020), where preexisting knowledge 

was found to be important, it is interesting to check whether green technology is more complex 

than KETs. We have categorized at CPC level 1 to make a presentable plot. The CPC level 1 

represents the nine sections, A-H and Y, by which the code is divided into at the very top level. 

Data representing section Y “General tagging of new technological developments” is only 

present when checking the complexity for ENV-TECH and as such is only displayed in Figure 

1.   

 

Comparing Figures 1 and 2, the structural diversity (y-axis) has a greater reach (above 12) for 

green technologies and only reaches above 10 for KETs in the same period. The structural 

diversity suggests that green technologies (ENV-TECH) are more complex than KETs, which 

is in line with the findings in recent literature. However, comparing section E: Fixed 

construction, green and KET are more or less equally complex. Indeed, this section also has the 

lowest structural diversity score. Another interesting observation is that section F: Mechanical 

engineering, lighting, heating, weapons, blasting engines or pumps displays a higher 

concentration in Figure 1 (Green) than in Figure 2 (KETs).   
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Figure 1 – Technological complexity green patents (ENV-TECH) 2000 – 2016. 

 
Figure 2 – Technological complexity key enabling technologies (KETs) 2000 – 2016. 

There is as difference in observations, where green tech has N1190 and KETs N2516, and this 

also shows in the box plot concentrations. The two plots seem to follow each other in the 

different CPC sections, e.g. section C: Chemistry is receiving high scores in both plots as well 

as H: Electricity. This is on point with relatedness theory and recent developments in green 

technology, where breakthroughs have been seen, for example, in fuel-cell technology (Tanner, 

2016).  
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4.2 Concentration of green technologies in space 

 
Figure 3 – Green technologies concentration in space, European NUTS2 regions year 2010. 

 

Table 1 – Top 10 European regions 2010 – green patents. 
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Figure 4 – Green technologies concentration in space, European NUTS2 regions year 2015. 

 
Table 2 – Top 10 European regions 2015 – green patents. 
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Figure 5 – Green technologies concentration in space, European NUTS2 regions year 2019. 

 

Table 3 – Top 10 European regions 2019 – green patents. 
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To help answer hypothesis 1, the density of ENV-TECH patents for European NUTS2 regions 

are calculated for the years 2010, 2015 and 2019. Figures 3-5 clearly indicate that green 

technologies concentrate in space with different density in European regions. The concentration 

is highest in developed regions with complex capabilities, which is in line with the findings of 

Montresor and Quatraro (2020). Figures 3-5 also indicate that peripheral regions generate new 

green technologies, but this is just a few compared to the top ten in Tables 1-3. However, this 

does suggest that it is also possible for peripheral European regions to diversify into green 

technologies.  

 

The Italian region of Lombardia is presented in Table 3 which may be in line with Colombelli, 

Krafft and Quatraro (2014) and their analysis on new nanotechnology that showed regions in 

Germany, France and Italy ahead of the curve in the emergence of new technology in general. 

There are almost no noticeable changes between the different years 2010, 2015 and 2019. 

However, some changes in the top ten placements, Tables 1-3, have been taking place, and the 

number of patents has decreased from 2015 to 2019. The overall patenting for green 

technologies having a downward trend is also supported by our findings in the next section 4.3.   

 

4.3 The greening process in regions after the Paris Agreement. 

The data used in the empirical study of the greening process is two NUTS2 regional datasets 

containing patent output on a total, green, full green, and KET level, where one is a complete 

list of patent output at NUTS2 level split between total, green and full green patents and listed 

by the years 2000 to 2019, and the other dataset used is a dataset containing KET codes and 

sorted by their CPC code also at a NUTS2 level. The two datasets were merged by sorting the 

total KET patents by year and region, to match the other dataset. The sample size of the data 

includes all European regions at a NUTS2 level, in addition to EFTA countries, candidates to 

the EU, and other countries such as Australia, Israel and Russia. Since our research is 

concentrated on the EU and its regions, we sorted the data thereafter to only include EU regions. 

To decide which regions to analyze we use the regions that have a high concentration of 

complex green technology, as well as a high number of KET patents. The regions we chose are 

Oberbayern, Ile-de-France and Stuttgart, with a common denominator for these three regions 

being that they are all urban regions having many company headquarters. Both of the German 

regions have headquarters of car manufacturers like Mercedes Benz, BMW and Porsche, in 

addition to tech companies such as Siemens (Siemens AG, 2020).  This can give us a good 

indication on how green patent output has developed, since these two regions have companies 
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that are involved in technological development into greener solutions, such as electric vehicles 

and other sustainable solutions, and Stuttgart and Oberbayern also have companies that are 

involved in key enabling technologies. There is a great overlap between green technologies and 

KET technologies which was confirmed by testing the correlation between the patent 

technologies. The correlation test of different patent technologies in Figure 6 shows that green 

and KET patents have a 96% correlation, and in addition there is a large overlap in full green 

patents and KETS with a 63 % correlation. Our use of green patents as the measure for green 

innovation is based on the hypothesis, where we check how green patents have developed since 

2015. By using green patents we get a larger data sample to determine whether our hypothesis 

is true. 

 

Figure 6 – Correlation Matrix of Patent Technologies. 

Our main point of interest is how the effect on green innovation has been after 2015 with the 

signing of the Paris Agreement and more green-related policy in the EU. Therefore, we 

constructed a variable as an intercept point in our analysis to separate the years 2015-2019, so 
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we can see the isolated development from the other years. The parameter in lm is by default 

contr.treatment which in our case means that the values output for over15=false, over15true, 

and year:over15TRUE give how much we shall add when over15TRUE. That is, year: over15 

gives the change in the regression line at the year 2015. We created variables for each of the 

individual regions. 

 

The dependent variable in our analysis is green patents divided by total patents, where we have 

both green and full green as variables in our dataset. However, full green, which gives a more 

precise number on complete green patents, has a much smaller sample size and in many cases 

is too small to conduct analysis from. To avoid discrimination in the form of the difference in 

size of regions, we divide green with the total patents, so it becomes a percentage of the total 

patent output in the regions. The reason for only using these variables for our test is because of 

the generalization of analyzation and hypothesis on how green innovation has been since 2015. 

 

𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒: 𝑜𝑣𝑒𝑟15 < −(𝑦𝑒𝑎𝑟 > 2015) 

 

 
𝑔𝑟𝑒𝑒𝑛

𝑡𝑜𝑡𝑎𝑙
= 𝑎1 + 𝑏1,   𝑊ℎ𝑒𝑛 𝑦𝑒𝑎𝑟 ≤ 15      (1) 

 

               
𝑔𝑟𝑒𝑒𝑛

𝑡𝑜𝑡𝑎𝑙
= 𝑎1 + 𝑎2 + (𝑏1 + 𝑏2)𝑦𝑒𝑎𝑟, 𝑤ℎ𝑒𝑛 𝑦𝑒𝑎𝑟 > 𝑜𝑣𝑒𝑟15       (2)       

 

𝑔𝑟𝑒𝑒𝑛

𝑡𝑜𝑡
= 𝑎1 + 𝑎2 + (𝑏1 + 𝑏2𝐼(𝑦𝑒𝑎𝑟 > 2015))𝑦𝑒𝑎𝑟       (3) 

 

We wish to see how green divided by tot variates with year by drawing a straight line. We can 

do this in R with the function “lm”. This assumes that the residuals are normal distributed; in 

our case they are not, though due to the size of the dataset we still get a good line. Therefore, 

we use glm (Generalized Linear Models) function in R. When investigating the regression, we 

would like to see if there is a break at year 2015. For that purpose, we introduce the indicator 

variable over15 which is 0 when year <= 2015 and 1 when year > 2015. In glm we need to 

introduce the interaction term year:over15 to the model break year + over15.  Eq. (1) is when 

year <= 15 and Eq. (2) when year >2015. Or written in one formula we get Eq. (3), where b2 

is the coefficient for year:over15. This means that in the file output we find the value of b2 as 

year:over15. This indicates the change in slope as we pass 2015. The p-values show greater 
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significance when we do the binomial test (Uboe, 2012). This is presumably because the 

binomial distribution fits the data better than normal distribution. The variable aar:over15 is 

year-2000, which gives a lower number back in the test and is more understandable to read.  

 

When starting to perform our test, we wanted to check how the trend of green patent output is 

at a national level, where we did a general plot to examine the trend of green patent as a 

percentage of total patents at a national level. We found that the trend has declined since 2014, 

reaching its lowest point in 2019 in Germany as seen in Figure 6. However, this does not give 

a completely clear picture because we have not considered whether there has been an increase 

in the pool of total patent output during these years. This can give a misinterpretation of the 

findings, by showcasing a downward trend of green patents, while there is actually an increase, 

but due to the total output increasing, the share becomes lower. Therefore, we checked the trend 

of total patents to examine if there has been a significant increase in total patent output after 

2015. However, viewing the data shows that there has been no significant growth of total patent 

output in these countries, compared to green. This gives us the possibility to further test at a 

regional level.  

 
Figure 7 – German trend of green patent output. 
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In our test of how green innovation has been after 2015, we have made an interesting discovery, 

where the years 2015 to 2019 are significant for countries such as Germany and France in terms 

of development of the share of green patent output. This gives us the precedent to check whether 

this is only at a national level, or if the regions in these countries with a high concentration of 

green technology and KET are facing the same trend. 

 

This raises the question on why the innovation output decreases after 2015, and why these years 

are only significant for those countries. We found that the regions Ile-de-France, Oberbayern 

and Stuttgart have a high concentration of green complex technology, and we want to 

investigate these regions more to see how the development has been in these regions, both from 

2000 and 2015.  

 

We start by checking Ile-de-France and do a general check to see if there has been a change in 

the total output that can give a misleading answer, when checking green patent as a share of 

total.  From Figure 7 we see that there is no significant change in the slope of total patents 

independently from green, where both develop at a similar rate. This is also the same for 

Oberbayern and Stuttgart, where there is no significant change in the total patent output 

compared to green.    
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Figure 8 – Comparison of total and green patent output. 

 

 

We continue our test of Ile-de-France with a graph showing the linear evolvement, in addition 

with a line that tracks the year-to-year development of green patent output. This is combined 

with a correlation test where we can examine the significance of the different technologies as 

well as the indicator variable and how the development from 2015 has been. From the general 

linear model test, we see that the coefficient for over15 (b2) in Eq. (3) is negative. The 

negative coefficient shows us that there is a decline after 2015. 
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Figure 9 – Green Patent development for Ile-de-France 
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Table 4 – General linear model test of Ile-de-France. 
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Figure 10 – Green patent development in Stuttgart. 
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Table 5 – General linear model test of Stuttgart. 



 31 

 
Figure 11 – Green patent development in Oberbayern. 
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Table 6 – General linear model test of Oberbayern. 

 

The results of the tests done on the different regions show that the variable over15 is significant 

for the three regions. One can first notice that for all three regions, the point line between the 

years for the share of green patents is falling, and for Stuttgart the linear line is declining, see 

Figure 9. In the first test of Ile-de-France, we find that year:over15 is statistically significant 

and negative, which gives us the breaking point of the slope.  The p-values for the test are all 

significant for aar:over15 and year:over15 in the binomial test of the different regions, where 

the variable aar:over15 gives a lower p-value due to it only taking into account the 20 years.  

 

Ile-de-France has a sharp decline from 2016.  This is backed up by the test of the generalized 

linear model, where the over15 intercept point is negative and statistically significant for the 

test. 

 

For Stuttgart and Oberbayern, the findings are similar as seen in the graphs and model tests.  

There is a downward trend from year 2015, which is significant for the models.  
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From all three regions the trends are similar: the share of green patents is declining in the year 

2015 and onwards. However, Stuttgart has a trendline that decreases for the whole interval of 

2000 to 2019. 

 

The finding of Montressor & Quatraro (2020), namely that regions with KET capabilities are 

more prone to develop green capabilities, is taken into account. The regions have a high share 

of green patent output, where the green patents vary from 45% to 55% of all patent output in 

their independent region. In addition, there is an overlap between the green and KET 

capabilities, as seen in the correlation matrix of the different technologies (see Figure 6), where 

there is 0.97 correlation between the two technologies. This supports the finding of our test, 

where green and KET follow each other, and where there is a fall in green patent output there 

is also a fall in KET output. The results raise the question of why there is a downward 

development of the green technologies.  

 

The regions tested all have large populations, a large concentration of companies and 

institutions.  This can explain why they are high on the concentration of green technologies.  

To check whether the trend of decline in green patent output was only exclusive to these 

regions, or if this is the case for other regions across the EU, we also checked different regions 

in addition to these three. We checked at national levels in Eastern European nations such as 

Poland, Lithuania, and the Czech Republic, where the intercept point of over15 also gives a 

negative coefficient (see Appendix-G for tests). However, the test done shows that the decrease 

from 2015 is not statistically significant. The decrease in the three technological regions is more 

significant and the p-value is smaller compared to less technological regions.  

 

The answer to hypothesis two, where we wanted to test if regions with KET capabilities 

increased the greening process after 2015, is no, as there has been a decline of the share for all 

the regions tested. There needs to be change in the stimulation of growth for green technologies 

as stated in the findings of the Roadmap to 2050 ((EU), 2012). This, in combination with the 

concentration in space of green technologies, gives precedent that there are policy implications 

based on our findings. 
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5 Discussion and Conclusion 

Using “structural diversity” to investigate and compare the complexity of ENV-TECH and 

KETs, the results indicate that green technologies are more complex than KETs. This is in line 

with recent research that new green technologies are more complex and more novel than their 

non-green counterparts (Barbieri, Marzucchi, & Rizzo, 2020; Montresor & Quatraro, 2020). 

The results from the concentration analysis of green technologies in space clearly indicate that 

some specific regions are ahead of the curve in creating new green technologies and the results 

support hypothesis 1: Complex green technologies concentrate in space. Green technologies 

concentrate with predominance in certain European regions that are highly populated and have 

dense industrial clusters. This is comparable to Balland et al. (2020) who found that patenting 

of complex technologies concentrates in US cities. Furthermore, the results indicate that a 

presence of complex technology makes it easier for regions to diversify into new green 

technology and this can be one explanation for why novel green technology concentrates in 

space. This may have policy implications, as the idea behind the EU’s smart specialization 

initiative is that countries should identify their existing or potential competitive advantages, 

where they can specialize and create capabilities in a different way than other countries or 

regions (B. T. Asheim, 2019). The results support that new green technologies are mostly 

created in the same regions, and that other regions may have challenges venturing into the green 

technology field. This is one reason for why it is important to create knowledge networks 

between economic actors and obtain the degree of relatedness so sustainable opportunities can 

be identified (Balland, 2016). Keeping in mind the ambitious targets for the climate, regions 

and economic actors may have to be incentivized with policy measures.  

 

That all three regions show a significant downward trend after 2015 in the share of green patents 

raises questions regarding what is fueling this downward trend. The EU has made discoveries 

that green innovation might stagnate from 2020 (European Comission, 2013) if there is no 

policy change towards the greening process. However, with treaties such as the Paris 

Agreement and large policy changes with increased focus on stimulating green growth, one 

could have made the opposite assumption: namely, that there should have been an increase in 

green innovation. This paper has examined how green technologies concentrate in space and 

has tested how the development in certain regions with an extra focus on the years after 2015 

has been for green patents. The results indicate that green technology concentrates in space; 

however, there is no significant evidence that supports hypothesis 2: The greening process in 
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regions with KET capabilities increased after the Paris Agreement. The findings do more to 

support the critical finding by the EU, which is that green innovation can stagnate in 2020. 

Furthermore, one can even draw the conclusion that the stagnation is already happening. The 

findings emphasize the need for policy implementation, as ongoing in the EU, and raise 

questions regarding what is fueling this decrease. 

 

Further research 

We found in our literature review that change of both actions and focus in industries such as 

the oil and gas sector have become more visible in terms of transforming into greener activities. 

Statements such as that of the CEO of Shell, that it is no longer an oil and gas company but an 

energy transition company (Pickl, 2019), enhance this sentiment. The growth of KETs in the 

EU has had ramifications for the dirty energy industry, which supports the findings that KETs 

may have an impact on regions’ ability to develop ‘pure’ green and green ‘hybrid’ technology  

(Montresor & Quatraro, 2020). This has been the case for the major European oil companies 

such as Equinor, BP and Total, who are positioning themselves to be full range energy 

companies (Pickl, 2019). As a result, it would be interesting to further research the perceived 

change of the energy sector to see how it can and does affect green innovation. However, this 

is beyond the scope of this paper. 
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Appendix B – R-code: KETs complexity plot 
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Appendix C – R-code: Character vectors for complexity plots  
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Appendix D – R-code: Maps Europa NUTS2 density green technologies  
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Appendix E – R-code: Top 10 Regions Europa NUTS2 green technologies  
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Appendix F – R-code: Region variables and correlation matrix  
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Appendix G – R-code: Plot and test code 
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