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Abstract 

 

There is growing evidence in the literature that knowledge generated and diffused by academic institutions 

plays an important role in innovation and economic growth. There is a need to empirically test the 

relationship between regional technological complexity and academic research, i.e., evaluating the effect 

of higher education institutions (HEIs) R&D on regional technological complexity. Hence, this thesis 

focuses on studying the association between capital expended for research and development (R&D) 

activities by academic institutions and regional technological complexity.  

In this study, I have used Broekel’s structural diversity method to measure the regional technological 

complexity of NUTS 3 regions in Norway, using panel data of 17 Norwegian regions from 1999-2015 in 

addition to patent and population data. The study aims to evaluate the impact of universities’ R&D efforts 

on regional technological complexity. I have employed regression and statistical modeling to test the 

hypothesis,  

“Technological complexity of a region depends on the R&D expenditure input of that region.”      

The findings of this study reveal that private R&D expenditures have a significant positive relation with 

regional technological complexity whereas universities’ R&D is not statistically different from zero. This 

can be explained by the basic nature of research conducted by universities that work as a building block for 

private research and development. These findings can act as basic knowledge for policymakers, enabling 

them to recognize the best R&D practitioners for benchmarking.  

Finally, the method employed in this study and the results can also help the research and development 

departments of governments to develop approaches for strengthening regional and national innovation 

performance by highlighting the lesser-studied and value-creating role of academic institutions. Moreover, 

the findings add to the knowledge on facilitators in public-private innovation.  
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1 Introduction 

 

Innovation has become an integral part of regional, national, and international development and sustained 

economic growth in all advanced economies. For the last couple of decades, an increasing trend among 

many countries including Norway is the investigation of key facilitating factors associated with regional 

economic development and successful innovation. Accompanying this trend is the rise in research on 

synthesizing knowledge of innovation and technological complexity. The increasing number of innovation 

studies calls for a better and harmonized understanding of this research topic. Moreover, the literature 

pertaining to technological complexity suggests that proficiencies in complex technologies matter for 

regional growth.  The current body of studies on innovation and technological complexity reveals several 

factors that show an association with economic development and growth (Barrio‐Castro & García‐Quevedo, 

2005; Fritsch & Slavtchev, 2007; Mewes & Broekel, 2020; Romer, 1990). One such key factor is 

knowledge production and diffusion from higher education institutions1 (HEIs) or universities (Fritsch & 

Slavtchev, 2007). HEIs have growingly been examined by their capacity to actuate innovation dynamics in 

a region. However, there is limited available knowledge that fully captures the direct and indirect role of 

HEIs on economic growth and no previous study has looked at the effect of knowledge generated by HEIs 

on regional technological complexity. 

Until now, to measure the universities’ effort in regional economic development and innovation, researchers 

have used different measures. Most of this research is fragmentary and several of these measures are unable 

to fully characterize the total effect of academic research on innovation as the knowledge generated by the 

universities also greatly influences private research and innovation (Barrio‐Castro & García‐Quevedo, 

2005). There is a need to empirically test the relationship between regional technological complexity and 

academic research, i.e., evaluating the effect of HEIs’ R&D on regional technological complexity. Hence, 

this thesis focuses on studying the association between capital expended for research and development 

(R&D) activities by academic institutions and regional technological complexity. 

To dig deep into the relationship between HEIs and regional technological complexity, this thesis looks at 

a testable hypothesis that states: 

“Technological complexity of a region depends on the R&D expenditure input of that region.” 

 
1 HEIs and universities will be used interchangeably in this study. 
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The findings from the analyses will give a more accurate picture of how R&D is helping in developing 

regional technological complexity which ensures long-term sustainable economic growth (Mewes & 

Broekel, 2020). 

1.1 Background 
 

A large group of economists has identified several paradigms of innovative specialization, which shape the 

technological and economic future of a region. These paradigms include specific production techniques 

(Rigby & Essletzbichler, 1997), industrial distribution (Scott, 1996), institutional and organizational 

structures (Saxenian, 1994; Storper, 1993), and research and development culture (D. B. Audretsch & 

Feldman, 1996). Other paradigms such as Romer’s endogenous growth theory formed the basis for the 

modern understanding of economic growth. According to Romer’s theory, knowledge is the backbone of 

sustainable economic growth (Romer, 1990). His model connects innovation and economic growth to the 

number of people employed in the knowledge sector and underpins the concept of a knowledge-based 

economy and knowledge being the new form of capital. Although the focus on empirical measurement of 

knowledge and its production has drawn attention to several aspects of a knowledge-based economy, it is 

not clear how knowledge transforms into economic growth. 

 

In addition to knowledge production alone being a facilitating factor for economic growth, concomitant 

factors such as spatial concentration of knowledge and knowledge spillover have also surfaced as important 

research topics associated with regional economic development. Different economically developed regions 

mastering specialization in different fields is proof that there exists a localized technological competence, 

confined skill, and unique industrial ecosystem (Gertler, 1995; Storper, 1993). These local capabilities 

develop over a period of time and shape the future choices of the region (Essletzbichler & Rigby, 2007). 

Due to this long-term accumulation of knowledge, it becomes spatially concentrated in certain regions 

(Feldman, 1994). That is why regions differ in terms of economic output because of the difference in the 

kind and quality of knowledge generation. There is a need for an accurate measure to identify regional 

economic growth via the complex ecosystem of knowledge production. Since knowledge complexity and 

technological complexity have mutual causality with each other, they can be interchangeably used (Broekel, 

2019).   

 

Sustainable regional innovation is a result of institutional practices, which encourage open innovation, 

higher absorptive capacity, and connection with knowledge-producing institutions both regional and 

exterritorial (Asheim & Coenen, 2005; Bathelt, Malmberg, & Maskell, 2004; Cohen & Levinthal, 1990). 



 

11 
 

Significant research has been conducted to identify the knowledge production of a region and its effects on 

the economic performance of that region. Relatively less attention has been given to the quality or 

significance of the knowledge produced among regions. To understand the spatial knowledge composition 

of a region we need a precise measure of knowledge and technology (Pavitt, 1982). Despite intense 

discussion on the topic of knowledge complexity and its implications on economic growth, currently, there 

is no standard definition or way to calculate knowledge complexity or technological complexity (Mewes & 

Broekel, 2020).   

 

Many researchers have tried to identify the differences between regional knowledge and its value. Rigby 

measured the differences between technologies using patent data (Rigby, 2015). Fleming and Sorenson 

approximated the knowledge complexity by enumerating the degree of interdependence related to 

subcomponents of knowledge (Fleming & Sorenson, 2001). In a recent study by Broekel, structural 

diversity has been used to measure the complexity of technologies (Broekel, 2019). This method is effective 

and empirically precise. A more detailed description of the method has been explained in chapter 3 

(methods and materials). 

 

In this study, I have used Broekel’s structural diversity method to measure the regional technological 

complexity of NUTS 3 regions in Norway, using panel data of 17 Norwegian regions from 1999-2015 to 

investigate the impact of universities’ R&D efforts on regional technological complexity.  

     

1.2 Motivation 
 

There are a couple of reasons why I was motivated to study this subject. First, my master’s specialization 

is in innovation studies, as I have a huge interest in innovation and factors that lead to innovation. Secondly, 

Norway has become the hub of innovation enterprises and start-ups as R&D expenditures in Norway have 

soared in the last few decades. Not only that, the culture of scientific parks and closely knitted collaboration 

of Norwegian universities with start-ups and firms enthralled me. It motivated me to think about the 

economic benefits of such an integrated system. These questions pushed me to study more about the topic. 

Ever since then, I have been religiously following the influence of Norwegian universities on private 

innovation.  

From an academic point of view, the motivation for doing this research is to add to the existing body of 

research on innovation and technological complexity as there has been no study conducted in Norway that 

looks at the association of HEIs and technological complexity.  
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Lastly, I wanted to master my data management and analysis skills and this thesis was a great opportunity 

to do so. 

1.3 Problem statement and research question 
 

From the available literature, it is known that technological complexity is significantly associated with 

economic growth (Mewes & Broekel, 2020). We also know that academic institutions serve as enablers of 

innovation (Fritsch & Slavtchev, 2007). However, the scarcely available literature has solely focused on 

the number of patents as a measure for regional development and innovation. The increasing and somewhat 

disharmonized research around innovation calls for a better understanding of the relationship between 

technological complexity and factors that either promote or hinder technological complexity. The core 

question this study aims to answer is:  

What is the relationship between the knowledge produced by higher education institutions and 

technological complexity?  

The answer to this broad question would help us comprehend how universities’ R&D expenditure develops 

regional technological complexity leading to the economic development of a region. Hence, in this study, 

I have looked at the effect of universities’ R&D on the regional technological complexity. 

1.4  Layout 
 

The following table presents the title and description of the five chapters constituting the body of the thesis. 

Chapter Title & Description 

1 Introduction: introduces the topic and provides a brief background. 

2 Literature review and conceptual framework: presents a detailed review of the literature 

starting from the description of technological complexity, followed by its connection with 

the academic research. 

3 Materials and methods: gives an overview of research methods that were followed in the 

study. It provides information on the conceptual framework, the hypothesis, the study 

design, and how the data management and analysis was done. 

 

4 Results and Discussion: presents the main results and discussion of the results 

5 Conclusion and future implications: presents the conclusion of the study and some 

suggestions for future research 
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2 Literature review and conceptual framework 

 

There has been abundant research on the innovation and complexity of technology. There is a plethora of 

literature available on the role of academic institutions in promoting economic growth. However, this 

subject is very broad, and many aspects have been insufficiently researched, for instance, the capacity of 

HEIs through their engagement with the local and regional government in policy-making and regional 

strategies, or the potential of HEIs in boosting regional innovation, etc. This chapter presents the pre-

identified themes and factors taken out from the literature that formed the framework on which the main 

hypothesis of this thesis was identified. 

2.1 Effect of technological complexity on economic growth 
 

To understand the association between HEIs and technological complexity, it is important to comprehend 

the concept of complexity of technologies first. The complexity of technologies or technological complexity 

is a relatively new research topic. There is no harmonized approach to defining technological complexity 

in the literature and has been used subjectively. Rogers and Shoemaker have defined technological 

complexity as the "degree to which an innovation is perceived as labored to understand and use" (Rogers 

& Shoemaker, 1971). When it comes to defining technological complexity, the dominant focus in the 

literature has been in terms of the ‘level of interdependence’ among the components of a technology 

(Fleming & Sorenson, 2001).  

Furthermore, some studies have shown an association between technological complexity and regional 

growth by using patent data and structural complexity measures, for instance, the study by Broekel shows 

a promising association and concludes that technological complexity is imperative for regional economic 

growth (Mewes & Broekel, 2020). A detailed description of Broekel’s measure follows in chapter 3 

(methods and materials). 

Each technology differs in its value and penetration in space (Dosi, 1982). There has been a considerable 

theoretical effort to measure the quality and value of individual patents. Trajtenberg used the number of 

forward citations as a measure to assess patent quality (Trajtenberg, 1990). Others have tried different 

measures like family size, litigation, and renewal (Harhoff, Scherer, & Vopel, 2003; Lanjouw & 

Schankerman, 2004). These measures provide one indicator for the value of knowledge held by a firm or 

region. The other important factor which affects the value of knowledge is the degree of replicability 
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(Balland & Rigby, 2017). The factors which affect the replicability of certain knowledge include the cost 

of replication (Howells, 2002), complexity (Cavusgil, Calantone, & Zhao, 2003), cost of absorption (Cohen 

& Levinthal, 1990), and complexity of knowledge architecture (Simon, 1962).  

Despite this broad realization, there is also no harmonized approach to calculating technological 

complexity. Several researchers have implicitly tried to find the most accurate method to capture 

technological complexity. In their paper, Fleming and Sorenson used the N/K model to calculate the 

approximation of knowledge complexity (Fleming & Sorenson, 2001) defined it as the interaction of the 

number of subparts (N) and their interdependence (K). This model has been used in many studies to measure 

knowledge complexity. However, according to Broekel, this model has not been used efficiently to measure 

complexity according to different technology levels (Broekel, 2019). Hidalgo and Hausmann introduced 

the economic complexity index (ECI) which is one of the most prominent methods (Hidalgo & Hausmann, 

2009). The ECI approach was developed to evaluate the economic complexity of countries according to 

their export portfolio but Balland and Rigby have used ECI to calculate technological complexity based on 

the patent data of regions (Balland & Rigby, 2017). However, the knowledge complexity index (KCI) is a 

spatially distributed measure so the chances of endogeneity cannot be overlooked (Mewes & Broekel, 

2020). Moreover, the empirical characteristics of KCI are not interchangeable with technological 

complexity (Broekel, 2019). 

The knowledge production function formulated by Griliches forms the conceptual underpinnings of this 

study to investigate and analyze the effect of universities on the technological complexity of regions 

(Griliches 1979, Broekel 2019). There is plenty of empirical evidence which supports Griliches’s 

knowledge function and it has been used in many applied studies conducted at the regional level (Audretsch 

1998). According to Griliches’s knowledge function, the regional innovation output is a function of regional 

innovation input (Griliches, 1979). In a nutshell, different researchers have used different units of measure 

to capture innovation input, and most of these measures are related to regional R&D expenditure e.g., R&D 

personal, R&D man-years, salaries for R&D personnel, etc.  

In conclusion, although the association between technological complexity has been studied implicitly and 

technological complexity is a major driver for economic growth, there is the limited latest evidence on how 

this complexity arises in certain regions. 

 

2.2 Academic research as an enabling factor for technological complexity 
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Many scholars believe that innovation is a result of the combination and modification of existing knowledge 

(Basalla, 1988; Gilfillan, 1935; Henderson & Clark, 1990; Schumpeter, 1939; Usher, 2013; Weitzman, 

1996). Most of the new inventions are derived from existing technological components that are combined 

in a specific network to produce a novel technology e.g., a smartphone is a recombination of existing 

technologies (Fig 1). There are two main sources of knowledge. Firstly, the research and development 

(R&D) departments of academic institutions play an important role in generating knowledge that is 

translated and applied in the innovation field. This knowledge forms the basis for knowledge generated by 

the second source, which is the private R&D sector (Edquist, 1997). A number of studies have looked at 

the effect of academic R&D on innovation. According to one study that explored the effect of academic 

institutions on regional innovative output in West Germany, the authors concluded that the intensity and 

quality of the research conducted by the academic institutions have a significant effect on regional 

innovative output, i.e., the number of regional patent applications (Fritsch & Slavtchev, 2007). However, it 

is important to note that the effect of academic R&D is not straight as it finds its utility in private R&D 

activities and thus is difficult to capture its complete effect on economic growth. 

 

 

Figure 1: Smartphone as a combination of existing technologies. 

 

According to numerous innovation studies, although knowledge is cumulative in nature as it amasses from 

the combination of existing knowledge but it is difficult to replicate knowledge subsets that are developed 

at a different location (Balland & Rigby, 2017). Many researchers have worked to identify these hidden 

barriers, which make it difficult to diffuse certain types of knowledge. An institute has systematic 

organizing principles (Kogut & Zander, 1992) or routines (Nelson & Winter, 1982) that combine tacit and 

complex knowledge held by expert resources to perform specialized procedures, which produces a complex 
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technology. This whole process itself possesses a tacit dimension (Nelson & Winter, 1982). When these 

organizing principles or routines are shared over the economic agents to develop an interconnected network, 

a portrait of a knowledge-based technological complex region is generated (Asheim & Gertler, 2005; 

Lundvall & Johnson, 1994; Tallman, Jenkins, Henry, & Pinch, 2004). Knowledge-based institutions cannot 

merely be judged by the sum of their knowledge (Balland & Rigby, 2017) rather it is conformed of the 

complexity that arises due to the interaction of this knowledge (Hidalgo & Hausmann, 2009).  

 

Extensive research has been conducted to identify the knowledge production of a region and its effect on 

the economic performance of that region. Relatively less attention has been given to the quality or 

significance of the knowledge produced in regions and how different regions differ in terms of the 

knowledge they yield. To understand the spatial knowledge composition of a region we need a precise 

measure of knowledge and Technology (Pavitt, 1982).  Despite intense discussion on the topic of 

knowledge complexity and its implications on economic growth, currently, there is no standard definition 

of knowledge complexity (Mewes & Broekel, 2020). In recent years, researchers have tried to identify the 

differences between regional knowledge and its significance. Rigby measured the differences between 

regional technologies using patent data (Rigby, 2015). Fleming and Sorenson approximated the knowledge 

complexity by enumerating the degree of interdependence related to subcomponents of knowledge 

complexity (Fleming & Sorenson, 2001).  

 

In conclusion, academic knowledge generated by HEIs is associated with technological complexity. 

However, data on quality measures of academic R&D that have an impact on technological complexity is 

limited and is challenging to capture due to its dissemination into different private actors. This knowledge 

is crucial to justify the role of academic knowledge in economic development and to guide evidence-based 

policy. 

 

2.3 Conclusion 
 

Generally, the extent to which academic R&D may affect technological complexity has never been explored 

before. Addressing this research question is crucial to better understand the significance of the output of 

academic institutions and to shed some new light on the technology policy framework. 
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3 Materials and methods 

 

This chapter gives an overview of the research methods that were followed in the study. It provides 

information on the conceptual framework, the hypothesis, the study design, and how the data management 

and analysis was done. 

 

3.1 Conceptual framework 
 

The conceptual framework of this study was acquired from reviewing the available literature to investigate 

and analyze the effect of universities on the regional technological complexity of regions. The knowledge 

production function formulated by Griliches supports the conceptual underpinnings needed to create the 

hypothetical mode for this study (Broekel, 2019; Griliches, 1979). There is sufficient literature that supports 

Griliches’s knowledge function and it has been used in many applied studies conducted at the regional level 

(B. Audretsch, 1998). According to Griliches’s knowledge function, the regional innovation output is a 

function of regional innovation input (REF). Previously, different researchers have used different units of 

measure to capture innovation input and most of these measures are related to regional R&D expenditure 

e.g., R&D personal, R&D man-years, salaries for R&D personnel etc. 

 

3.2 Study design 
 

The study aimed to measure the effect of HEIs research on technological complexity. Having this aim in 

mind, I chose to do an exploratory study using Norway as a spatial region. I applied regression and statistical 

modeling to construct the regional technological complexity (RTC) model.  

 

Given that, HEIs have been shown to promote regional innovation processes and that technological 

complexity has an effect on economic growth, I hypothesized that the technological complexity of region r 

depends on the research input of the region r.  

 

Technological complexityr = f(R&D inputr) 

 

After implementing the Cobb-Douglas form of the knowledge production function, the function can be 

expressed as: 

Technological complexityr = a(R&D inputr)b 
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Where,  

a = is the constant; 

b = the elasticity with which the technological complexity varies corresponding to the R&D input  

 

3.3 Variables and covariates  
 

The exploratory variables are universities’ and private R&D expenditures. In addition, a set of explanatory 

variables or covariates are also included in the model that may affect the regional technological complexity. 

The covariates consist of R&D efforts of surrounding regions, GDP, and population. These covariates were 

included after a thorough literature review, document review, and understanding from the discussions with 

my supervisor and colleagues. 

 

The development of higher or sophisticated technological complexity does not necessarily depend on 

regional knowledge input but can also be influenced by knowledge spillovers from surrounding regions. In 

regional innovation studies, there is significant evidence that the knowledge or technology spillovers from 

surrounding regions influence local regional innovation (Anselin, Varga, & Acs, 1997; Autant-Bernard, 

2001; Fischer & Varga, 2003). Two additional explanatory variables, private R&D and universities’ R&D 

expenditures of the bordering regions were added to the model to measure the dimension of knowledge 

spillover (Autant-Bernard, 2001). 

 

3.4 Final regional technological complexity (RTC) model 
 

After considering all the above dimensions, I constructed the final regional technological complexity (RTC) 

model as: 

 

RTCi = f(PREXi, UREXi, SPREX, SUREX, Ci) 

 

Where,  

RTCi = the technological complexity of region I; 

PREXi = the R&D expenditures conducted by the private sector in region i (NOK, million); 

UREXi = the universities’ R&D expenditures in region i (NOK, millions); 

SPREX = the R&D expenditures conducted by the private sector in neighboring regions (common border); 

SUREX = the universities’ R&D expenditures conducted by neighboring regions (common border) and;  
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Ci  = the regional characteristics which may or may not affect the regional technological complexity 

 

3.5 Data management and analysis 
 

For the analyses, panel data of 17 Norwegian regions from 1999-2015 was used. The unit of analysis is the 

NUTS 3 regions2. There is no harmonized approach for selecting a spatial unit (B. Audretsch, 1998). 

Anselin et al. suggest that the unit should be a city or a metropolitan area because most of the interactions 

and knowledge transfers take place there (Anselin et al., 1997). NUTS 3 is the smallest spatial unit in the 

European regions. In most countries, one NUTS 3 unit is either equal to a city or even a part of a city but 

in the case of Norway, one NUTS 3 unit is almost equal to a county. In Norway, there is a statistical 

constraint to collect data at the city level. The data about private and universities’ R&D expenditures is 

only available at the county level (NUTS 3). Previous studies carried out in the domain of regional 

innovation have also used a larger spatial unit than a city (Barrio‐Castro & García‐Quevedo, 2005; Fritsch 

& Slavtchev, 2007). Most studies conducted in the USA, have used states as the spatial unit (Acs, 

Audretsch, & Feldman, 1992; Feldman & Audretsch, 1999; Jaffe, 1989). 

 

3.6 Data sources 
 

For this study, three types of data were used. First, the patent data was obtained from the OECD 

REGPAT database3. This database contains information about patents according to the addresses of the 

applicants and inventors. It presents the data in a regionalized format so that more than 2 000 regions are 

covered across Organisation for Economic Co-operation and Development (OECD) countries. This 

database provides a rich set of datasets as it allows patent data to be merged with other regional data such 

as GDP or labor force statistics, providing researchers with the opportunity to carry out a wide range of 

analyses to address topics relating to the regional dimension of innovation. 

Second, the panel data of R&D expenditures was taken from NIFU (Nordisk institutt for studier av 

innovasjon, forskning og utdanning) and Statistics Norway/R&D statistics. Statistics Norway collects data 

based on regions where R&D expenses are made. This eliminates the overestimation of regions where 

 
2 The NUTS classification (Nomenclature of territorial units for statistics) is a hierarchical system for dividing up the 
economic territory of the EU and the UK. Available from: https://ec.europa.eu/eurostat/web/nuts/background 
 
3 OECD REGPAT database. Available from: https://www-oecd-org.ezproxy.uio.no/about/members-and-partners/ 
 
 

https://ec.europa.eu/eurostat/web/nuts/background
https://www-oecd-org.ezproxy.uio.no/about/members-and-partners/
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companies have headquarters. Third, population and GDP data were extracted from Statistics Norway 

(Statistics Norway, 2021).  

 

3.7 Structural diversity to measure technological complexity 
 

Broekel has developed a new complexity measure based on the structural diversity of technologies to 

evaluate technological complexity (Broekel, 2019). The measure is not only empirically precise but also 

reflects the theoretical foundations of technological complexity. It is based on the structural complexity of 

technology. It assesses the combination of knowledge components of technology. The baseline idea is that 

the technological innovation or novelty is a result of recombination and modification of existing 

technologies (Basalla, 1988; Hargadon & Sutton, 1997; Usher, 1954). Therefore, the resulting network is a 

complex network called a combinatorial network. The network can be described in terms of nodes, 

representing the knowledge components, and links, representing the combinations (Mewes & Broekel, 

2020). The complexity of structure is highly dependent on the number of components and the way they are 

combined. For example, a table has four legs and one panel, and all four legs are combined to the panel. 

According to Broekel, the combinatorial network of such an object is star-like where there is one central 

component - the panel - and one peripheral component – the legs (Mewes & Broekel, 2020).  This network 

has only one topology and hence is a simple network that requires little information to describe (Fig 2). 

 

 

Figure 2: Simple network (star-like) 

 

On the other hand, an airplane has more parts therefore its combinatorial network has more nodes and links 

which makes it a complex network. The major factor which makes it a complex network is the presence of 

multiple distinct topologies (Broekel, 2019). There can be a star-like topology (seating connected to the 

main body), line topology (tail, tube, and cockpit), matrix topology (cockpit control panel), etc. (Fig 3). As 

the airplane has a greater diversity of topologies than that of a table, it means more information is required 
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to describe it. Therefore, the network of a plane is more complex than a table (Emmert-Streib & Dehmer, 

2012). This implies that if a network has higher structural diversity (greater distinct topologies), it requires 

more information to describe it and more information indicates higher complexity. Broekel uses the same 

argument to differentiate between simple and complex networks which results in simple and complex 

technologies (Broekel, 2019). 

 

 

Figure 3: Complex network (the network diagram is hypothetical to demonstrate a complex network). 

 

Emmert-Streib and Dehmer developed the network diversity score (NDS) to empirically measure the 

network diversity (Emmert-Streib & Dehmer, 2012). Broekel used this feature of NDS to approximate the 

structural diversity of 655 4-digit technology classes in Cooperative Patent Classes (CPC)4.  The calculation 

is done according to the following steps5: 

1. Define nodes ‘V’ (all 10-digit technology classes) for technology ‘c’. 

2. Based on these 10-digit classes, co-occurrence ‘E’ on patents to generate Network Gc,e = (V, E) for 

technology ‘c’. 

3. Turn the network into binary: 

a. Positive links = 1 

b. Nonexistent links = 0 

 
4 The Cooperative Patent Classification (CPC) is an extension of the International Patent Classification and is jointly 
managed by the European Patent Office and the US Patent and Trademark Office. It is divided into nine sections, A-
H and Y, which in turn are sub-divided into classes, sub-classes, groups, and sub-groups. Available from: 
https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html 
 
5 A summarized and modified version of structural diversity method is explained. For detailed method by Broekel 
kindly refer to (Broekel, 2019) 

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html
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4. Calculate Individual Network Diversity (iNDS) according to Eq. 1 for a series of subnetworks 

(Gc,e
s ). The subnetworks are extracted from the main network (Gc,e) by using the Walktrap 

algorithm (w = 200, random sample S = 125) 

 

𝑖𝑁𝐷𝑆(Gc,e
s ) =  

𝛼𝑚𝑜𝑑𝑢𝑙𝑒 ×  𝑟𝑔𝑟𝑎𝑝ℎ𝑙𝑒𝑡

𝑣𝑚𝑜𝑑𝑢𝑙𝑒 × 𝑣𝜆
… 𝐸𝑞. 1 

  

∴ 𝛼𝑚𝑜𝑑𝑢𝑙𝑒 =  
𝑀

𝑉
 

 

∴ 𝑟𝑔𝑟𝑎𝑝ℎ𝑙𝑒𝑡 =  
𝑁𝑔𝑟𝑎𝑝ℎ𝑙𝑒𝑡(3)

𝑁𝑔𝑟𝑎𝑝ℎ𝑙𝑒𝑡(4)
 

 

∴ 𝑣𝜆 =  
𝑣𝑎𝑟(𝛬(𝐿))

𝑚𝑒𝑎𝑛(𝛬(𝐿))
 

 

∴ 𝑣𝑚𝑜𝑑𝑢𝑙𝑒 =  
𝑣𝑎𝑟(𝑚)

𝑚𝑒𝑎𝑛(𝑚)
 

 

Where, 

 

𝛼𝑚𝑜𝑑𝑢𝑙𝑒  = share of nodules in network 

M = number of modules 

V = number of nodes 

𝑟𝑔𝑟𝑎𝑝ℎ𝑙𝑒𝑡  = ratio of graphlets of sizes 3 and 4 

𝑣𝜆 = variability of the network’s Laplacian matrix 

𝑣𝑚𝑜𝑑𝑢𝑙𝑒  = variance of the module sizes  

5. NDS is obtained by averaging the iNDS: 

 

𝑁𝐷𝑆({Gc,e
s |Gc,e}) =  

1

𝑆
 ∑ 𝑖𝑁𝐷𝑆(Gc,e

s )Gc,e
s ∈Gc,e

 ---- 

6. NDS is finally transformed according to eq (reference) to get structural diversity, TCc. A higher 

value means a higher complexity level and vice versa. 

 

𝑇𝐶𝑐 = log (
1

𝑁𝐷𝑆({Gc,e
s |Gc,e})

) 
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To get a steady measure (Broekel, 2019), I used a three-year moving window, i.e., to calculate structural 

diversity TCc in year ‘t’, combinatorial networks from all patents in year ‘t’ to ‘t-2’ are used. 

 

3.7.1 Calculating Regional Technological complexity in Norway 

 

For the aggregation of regional technological complexity, there is no widely accepted approach in the 

literature. Generally, calculating the average technological complexity of regional patents will lead to 

suboptimal results (Broekel, 2019). To obtain the optimal outcome, technological complexity is calculated 

in percentiles of regional complexity distribution.  

 

To calculate regional complexity in Norway,  

1. Each patent CPC class was assigned the complexity score measured by structural diversity.  

2. The patents were segregated regionally according to the residential address of the inventor to avoid 

the “headquarters effect” as most of the patents are filled from there even if it is invented 

somewhere else (subsidiary) (Broekel, 2019).  

One limitation of considering the inventor’s address is that if his/her place of residence and place of 

employment are in different regions, it can distort the spatial distribution of technological complexity by 

underestimating the technological complexity of high R&D regions and overestimating for surrounding 

regions (Deyle & Grupp, 2005). According to Statistics Norway, “Most people commute short distances 

and commuters had their workplace located in a municipality within the same economic region” (Statistisk 

sentralbyrå6). The spatial unit in this research is NUTS 3 regions (counties), therefore this limitation will 

not have a significant effect on the estimation.    

3. An activity vector Ar,t  was created for region “r” at time “t” which contains a set of CPC classes 

that appear on inventor’s patents. 

4. All CPC classes in the vector set were arranged in descending order based on TCc. 

5. Finally, the regional complexity RTCr,t was calculated by taking an average of the subset of 

activities that belongs to the 10th percentile7 of complexity distribution. 

 

The findings related to regional technological complexity calculated by this method are shown in Table 1. 

Almost 60% of the patents filed in Norway are from Oslo, Akershus, Trøndalg, and Rogaland. Finnmark, 

 
6 According to following article published by SSB: Population and Housing Census, commuting, 2001. 
 
7 There is no specific percentile to be chosen for calculation but highest 10th percentile produces very robust 
results (Mewes & Broekel, 2020) 
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Sogn og Fjordane, Nordland and Hedmark, each account for less than 1% of total patents filled in Norway. 

Oslo files the highest number of patents and has the highest technological complexity whereas Finnmark 

files the lowest number of patents and has the lowest technological complexity. It is merely a coincidence 

that the region with the highest number of patents has the highest technological complexity and vice versa.  

It does not imply that the number of patents is directly proportional to technological complexity. This will 

be analyzed in the latter part of the analysis. 

 

Table 1: Regional technological complexity of Norwegian regions, 1999-2015 (average) 

Regions 

Technological 

Complexity (ln) 

No. of 

patents 

No. of patents 

percentage of total 

    

Oslo 12.239 127.77 21.41 

Akershus 12.176 96 16.08 

Trøndelag 11.832 66.77 11.19 

Rogaland 11.533 65.22 10.93 

Hordaland 12.032 41.66 6.98 

Telemark 11.806 34.55 5.79 

Buskerud 11.991 33.11 5.55 

Agderfylkene 12.172 29.22 4.90 

Vestfold 11.827 28.77 4.82 

Møre og 

Romsdal 11.650 24.44 4.10 

Østfold 11.886 18.44 3.09 

Oppland 11.854 7.66 1.28 

Troms 12.041 7.66 1.28 

Hedmark 11.704 5.33 0.89 

Nordland 11.444 4.77 0.80 

Sogn og Fjordane 11.242 4.44 0.74 

Finnmark 10.072 0.22 0.17 

    

Source: Author's elaboration of calculation based on structural diversity method by (Broekel, 2019).  
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3.8 Regional R&D expenditures 
 

To measure the universities’ effort in regional development and innovation researchers have used many 

different indicators. One thing common in these indicators is that all of them are connected to R&D. 

Andresson and Ejermo (2004) used industry and universities’ R&D man-hours as an indicator to measure 

the effect of universities on regional development, Piergiovanni and Santarelli (2001) preferred the salaries 

of R&D personnel, Autant-Bernard (2001) used the number of publications by the public sector and 

Piergiovanni et al. (1997) selected per capita R&D expenditure. The major reason for selecting a specific 

independent variable is the availability of data. In this research, R&D expenditures incurred by the private 

and public sector has been used as an indicator for private and universities’ R&D effort. R&D expenditures 

give a holistic view of the effort including R&D personnel salaries, spending on equipment, lab facilities, 

and experimentation. 

 

Table 2 presents the private and universities’ R&D expenses as per different counties of Norway. Oslo and 

Trøndelag account for 54% of the total R&D expenditures incurred by universities. Less than 1% R&D 

expenses are conducted in Hedmark, Buskerud Finnmark and Sogn og Fjordane. One of the biggest reasons 

for this inequality is the demography of these regions.  

 

The number of universities in the region also influences public fund distribution. Private R&D expenditures 

are concentrated in the same regions as public R&D expenditures with some exceptions. In Troms,  private 

R&D expenses are only 1% whereas universities’ R&D expenses are 7 %. Contrarily, in Buskerud, public 

R&D expenses are 8% whereas universities’ R&D expenses are less than 1%. Figure 4 shows the regional 

complexity, patents, private R&D expenditures, and higher education R&D expenditure in Norway. 
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Table 2: Private and universities’ R&D expenses (Source: NIFU). 

Regions 

Private R&D 

Expenditure (in 

million NOKs) 

Private R&D 

Expenditure 

percent of total 

Universities’ 

R&D 

Expenditure (in 

million NOKs) 

Universities’ 

R&D 

Expenditure 

percent of total 

Oslo 4404 25 6739 33 

Trøndelag 1910 11 4293 21 

Hordaland 1138 7 3097 15 

Akershus 3037 17 2130 11 

Troms 186 1 1444 7 

Rogaland 1356 8 604 3 

Agderfylkene 666 4 318 2 

Østfold 445 3 316 2 

Nordland 225 1 226 1 

Møre og Romsdal 595 3 196 1 

Oppland 355 2 183 1 

Vestfold 808 5 154 1 

Telemark 568 3 148 1 

Hedmark 84 0 98 0 

Buskerud 1370 8 80 0 

Finnmark 16 0 79 0 

Sogn og Fjordane 211 1 78 0 

     

Total 17373.22 100 20184 100 
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Figure 4: Regional complexity, patents, private R&D expenditures, and higher education R&D 

expenditure. 

 

The inequality in the total number of regional patents, R&D expenditure, and per capita R&D expenditure 

is shown in Figure 5. We can see that 20 percent of the regions filed 60 percent of the patents. In the case 

of universities’ R&D expenditure, 80 percent of the budget was used in 20 percent of the regions. However, 

it is vital to consider the demography, size, and location of the regions otherwise the interpretation can be 

misleading.  
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Figure 5: Lorenz curves of spatial inequality. 

 

Norwegian universities research all academic disciplines i.e. engineering and technology, medical and 

health sciences, social sciences, natural sciences, etc. Research in certain disciplines has more commercial 

value than the others (Nelson, 1986). However, it is difficult to identify these specific disciplines that 

produce higher value for the industry, and much comprehensive research is required to precisely establish 

a connection between them (Fischer & Varga, 2003).  

 

Technology complexity may be affected by the regional characteristics of a region. especially, the regional 

population and spillovers from surrounding regions. These two determinates were added to the model to 

control for regional influence. Using panel data of 17 years (1999 - 2015) gave the flexibility to control for 

the characteristics that do not fluctuate significantly in the specified period. The estimations from panel 

data created a single value for each region. This enabled to control for invariant variables which are not 

possible in a cross-study (Baltagi, 1995). 

 

Population (pop) was used to control for the size of the regions. An alternate measure for regional size is 

the regional GDP. Both the variables show almost similar results therefore it is up to the preference of the 
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researcher/s. I preferred population, as it has been used in many regional studies with panel data (Feldman, 

1994; Jaffe, 1989).  

 

Two-years lagged variables for private R&D expenditures (PREXt-2) and universities’ R&D expenditures 

(UREXt-2) are used for OLS regression. Research shows that patent applications usually use R&D efforts 

from previous years (Fischer & Varga, 2003). The lag period between R&D activity and patent application 

is uncertain. Researchers have been using a lag period of 1 year to 4 years depending on the availability of 

data (Autant-Bernard, 2001; Fischer & Varga, 2003). Many researchers prefer to use the same years' data 

to see contemporary effects of input variables on output variables (Anselin et al., 1997; Jaffe, 1989) because 

companies try to file their patents during the early stages of R&D (Grilliches, 1990). In this research, panel 

data of 17 years has been used. Therefore, I have used a lag period of 2-years8 in model (1) i.e. technological 

complexity from 1999-2015 and R&D expenditures from 1997-2013. In model (2), I have used 

contemporary data. 

 

Model 1 vector: 

logRTCit = α + β7logPREXit-2 + β8logUREXit-2 + β3logPOPit + β5logSPREXt + β6logSUREXt + β9logNPATit 

+ uit  

i = 1,2,...,N ; t = 1, 2, …, T 

 

Model 2 vector: 

logRTCit = α + β1logPREXit + β2logUREXit + β3logPOPit + β5logSPREXt + β6logSUREXt +         

β9logNPATit + uit  

i = 1,2,...,N ; t = 1, 2, …, T 

  

Where, 

logRTC = Average regional Technological complexity(in ln) 

logPREX = R&D expenditures conducted by private sector(NOK, million) (in ln) 

logUREX = Universities R&D expenditures in region(NOK, millions) (ln) 

logPOP = Regional population (in ln) 

logRGDP = Regional GDP (in ln) 

logSPREX = R&D expenditures conducted by the private sector in neighboring regions (in ln) 

 
8 Fischer and Verga (2003) used a lag of 2 years in their regional innovation study in Austria. Usually it is between 1 
to 4 years, depending on the availability of data. 
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logSUREX = Universities R&D expenditures of neighboring regions (common boarder) (in ln) 

logPREXit-2 = 2-year lagged private RnD expenditures (in ln) 

logUREXit-2 = 2-years lagged Universities Rend expenditures (in ln) 

logNPATit = number of regional patents (in ln) 

 

In Table 3, the descriptive statistics of all the variables in the model are presented.  

 

Table 3: Descriptive statistics 

   Variables  Min  Max Mean  Std. Dev. 

1 logRTC 9.45 12.53 11.82 0.50 

2 logPREX 1.10 8.73 6.18 1.44 

3 logUREX 3.05 9.29 5.87 1.57 

4 logPREXit-2  1 8.71 6.00 1.53 

5 logUREXit-2  2.83 9.17 5.71 1.59 

6 logPREXs 4.06 9.86 7.83 1.17 

7 logUREXs 4.97 9.96 7.95 1.15 

8 logPOP -2.62 -0.43 -1.41 0.54 

9 logNPAT 1 5.19 2.95 1.28 

10 logRGDP 9.50 13.24 11.26 0.74 

 

For estimation results were obtained by pooled OLS, fixed effects model, and the random effects model. 

The poolability test9 was conducted to choose between pooled model and the fixed effect model. The null 

hypothesis i.e. intercepts and coefficients are constant across regions and time, was rejected. Therefore, 

pooled regression is not valid in this case. Breusch-Pagan was conducted to test the difference between 

pooled model and the random effect model. The null hypothesis i.e.  𝜎𝜇
2 = 0, was rejected10. Hence, we 

cannot pool the data.  

The results of ordinary least square panel regression with fixed effects and random effects are shown in the 

next chapter (results and discussion). To select an appropriate model between the fixed effects and random 

effects model, I conducted the Sargan-Hansen test (test of overidentifying restrictions) and the Hausman 

test.  

 
9 Poolability test to i.e. intercept and slop coefficients are constant across regions and time. 

  
10 Breusch-Pagan test checks if the variance of random effect is zero (Ho). 
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The Hausman statistics as shown in the following chapter (results and discussion) which tests the relation 

between individual effects and independent variables. After testing, the null hypothesis11 is rejected it means 

the estimators from the random effect model are not consistent and a fixed effect model should be preferred. 

If it is not rejected, it could be interpreted that the estimators are consistent and random effects model is 

more suitable. 

 

As I have used fixed effect model, therefore, all the variables are in logarithmic form. The results will show 

the elasticity of the dependent variable with respect to the independent variable. 

 

 

 

 

  

 
11 Hausman Test:  

H0= The individual effects are not correlated to explanatory variable. 
H1= The individual effects are correlated to explanatory variable. 
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4 Results and Discussion 

 

In this chapter, the main findings of the estimations are presented in coexistence with the discussion. Table 

4 shows the Pearson’s correlation between the variables under examination. There is a strong positive 

correlation between private and university contemptuous (same year) R&D expenditures and two-years 

lagged R&D expenditures i.e. 0.96 and 0.99 respectively. This indicates that if both indicators are used in 

the model there will be multicollinearity. Regional technological complexity has a moderate correlation 

with private R&D expenditures and a relatively lower correlation with universities’ R&D expenditures. 

Universities mostly conduct basic research which works as a building block for private research therefore, 

it creates an indirect impact on regional development (Fritsch & Slavtchev, 2007).  

 

 

Table 4: Correlations 

  Variables 1 2 3 4 5 6 7 8 9 10 

1 LOGRTC 1.00                   

2 LOGPREX 0.47 1.00         

3 LOGUREX 0.39 0.61 1.00        

4 
LOGPREXit-

2  

0.56 0.96 0.61 1.00 
      

5 
LOGUREXit-

2  

0.38 0.60 0.99 0.60 1.00 
     

6 LOGSPREX 0.25 0.38 -0.14” 0.39 -0.14” 1.00     

7 LOGSUREX -0.03” 0.08” -0.41 0.10 -0.41 0.80 1.00    

8 LOGPOP 0.40 0.82 0.73 0.81 0.72 0.18" -0.10” 1.00   

9 LOGNPAT 0.39 0.74 0.49 0.74 0.47 0.14 -0.01” 0.73 1.00 

10 LOGRGDP 0.36 0.66 0.64 0.67 0.64 0.23 -0.07” 0.73 0.47 1.00 

Significance level: “ indicates p > 0.05 (insignificant). All remaining correlation coefficients are significant 

at p < 0.001. 

 

The correlation between technological complexity and the number of patents is 0.39. In the past, researchers 

relied on the number of patents to examine regional development (Andersson & Ejermo, 2004; Anselin et 

al., 1997; Barrio‐Castro & García‐Quevedo, 2005; Fischer & Varga, 2003; Jaffe, 1989) but the correlation 

coefficient shows that there is not a strong relationship between regional technological complexity and the 
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regional number of patents. Figure 4 shows that the regions with the lower number of patents can have the 

same technological complexity as the regions with the higher number of patents. To put that in perspective, 

we can see that the region with the highest number of patents i.e. 178 has lower technological complexity 

than some of the regions which have less than 50 patents. The regional population has a significantly strong 

correlation with private and universities’ R&D expenditures.  

 

Table 5 presents two models which I have used to estimate or results. In model (1), a two years-lag was 

assumed for the R&D expenditures whereas, in the model (2), contemporary data was used. In our 

estimations, the null hypothesis of the Hausman test was rejected in both models. It means that in both 

models, the individual effects are correlated to the explanatory variables. Therefore, the estimates of random 

effect models are not consistent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: OLS panel regression with fixed effects and random effects 
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1   2 

 

Fixed Effects 
Random 

Effects 
 Fixed Effects 

Random 

Effects 

logPREXit-2 0.468*** 0.43***  
 

 

 
[0.303; 0.633] [0.29; 0.57]  

 
 

logUREXit-2 -0.045 0.038    

 
[-0.283; 0.192] [-0.065; 0.141]    

logPOP -2.707 -0.888  -3.527 -0.449 

 
[-4.54; -0.875] [-1.38; -0.397]  [-5.578; -1.477] [-0.994; 0.096] 

logSPREX 0.367** 0.28***  0.54** 0.408*** 

 
[0.033; 0.703] [0.063; 0.497]  [0.163; 0.918] [0.179; 0.636] 

logSUREX -0.039 -0.241  0.275 -0.206 

 
[-0.485; 0.407] [-0.426; -0.055]  [-0.215; 0.764] [-0.396; -0.015] 

logPREX    0.024 0.073 

 
   [-0.205; 0.253] [-0.1; 0.245] 

logUREX    -0.042 0.135 

 
   [-0.319; 0.235] [0.027; 0.243] 

logNPATit 0.093** 0.075*  0.089* 0.099* 

 
[0.005; 0.181] [-0.005; 0.155]  [-0.011; 0.188] [0.011; 0.187] 

Intercept 2.631 7.191***  0.388 8.041*** 

 
[-1.476; 6.737] [5.607; 8.775]  [-4.228; 5.005] [6.238; 9.845] 

R_squared 0.405 0.349  0.25 0.31 

Observations 146 146  146 146 

Regions 14 14  17 17 

Hausman 15.26** 15.26**  11.67** 11.67** 

            

Significance level: * = p < 0.001, ** = p < 0.05 and *** = p < 0.001 

95% confidence interval in parenthesis  

 

The R-squared for model (1) is 0.405 which is adequately decent if we consider the empirical approach of 

the model. Coefficients from the Hausman test are statistically significant and are shown at the bottom of 

the table. The number of observations has dropped by seven due to missing values but it is consistent in all 

estimations. 
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4.1 Private and universities’ R&D knowledge spillovers 
 

The results of model (1) show that the parameters related to private R&D expenditures are positive and 

statistically significant whereas the parameters associated with universities' R&D expenditures are not 

statistically different from zero. The elasticity of private R&D expenditure(logPREXit-2) is 0.47. Hence, if 

logPREXit-2 increases by one percent, the regional technological complexity will increase by 0.47 percent 

while keeping the other things constant. 

 

The regressors for R&D expenditures, in the model (2), are using contemporary data to observe its 

immediate impact on regional technological complexity. Private R&D expenditures and universities’ R&D 

expenditures both are statistically insignificant. The remaining control variables have similar results as in 

model (1), which is an indication of robustness.  

 

The results show that private R&D expenditures have a significant positive relation with regional 

technological complexity (Fig 6) whereas universities’ R&D is not statistically different from zero. This 

can be explained by the basic nature of research conducted by universities that work as a building block for 

private researchers. The results are in line with previous studies finding the impact of R&D on regional 

development (Andersson & Ejermo, 2004; Autant-Bernard, 2001; Jaffe, 1989; Ronde & Hussler, 2005). 

Fisher and Varga found a positive significant elasticity between academic research effect and regional 

innovation but the magnitude of this effect was much smaller than the private R&D. However, in all these 

studies the estimator for regional innovation was the number of patents. 
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Figure 6: Private R&D scatter plot with regression line. 

 

4.2 Spillovers from surrounding regions 
 

Private R&D expenditure in surrounding regions has a positive impact on the technological complexity 

whereas universities’ R&D expenditures in surrounding regions are statistically insignificant. Academic 

knowledge is believed to be spatially bound due to its tacit nature (Polanyi, 1967). But if there are proper 

channels and frequent interactions between different actors, the spillovers become more frequent (B. 

Audretsch, 1998). Our estimation shows that the elasticity of neighboring regions' private R&D 

expenditure(logSPREX) is 0.37. Therefore, if logSPREX increases by one percent, the regional 

technological complexity will increase by 0.37 percent while keeping the other things constant. 
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Figure 7: Neighboring regions Private R&D scatter plot with regression line. 

 

In model (2), the results are similar with minor changes in the parameter.  The results are in line with 

previous studies conducted in Germany, Austria, France, and Sweden (Andersson & Ejermo, 2004; Fischer 

& Varga, 2003; Fritsch & Slavtchev, 2007; Ronde & Hussler, 2005). However, it is important to establish 

intentional channels to maximize this effect. Otherwise, the positive effect of geographical innovation is 

minimized  (Ronde & Hussler, 2005).  

 

4.3 Regional patent volume and population 
 

According to the estimation, the population does not have a significant impact on regional technological 

complexity. This effect can also be observed in Figure 5, where we can see that the regions with higher 

population density have comparable or in some cases lower regional technological complexity than the 

lesser populated areas. Therefore, we can predict that the regional complexity does not scale with the 

population as found by Barrio et al. in Spain’s NUTS 2 regions (Barrio‐Castro & García‐Quevedo, 2005). 

Whereas, Fritsch et al. concluded a significant scale effect of the regional population in German NUTS 3 

regions (Fritsch & Slavtchev, 2007).  
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Figure 8: Correlation between technological complexity and number of patents. 

 

The number of regional patents has a positive parameter and is statistically different from zero. This shows 

that the number of patents has a positive relation with technological complexity. Consequently, regions 

with a higher number of patents will have higher technological complexity.  As Joseph Stalin famously 

said, “Quantity has a quality all its own”. Although the magnitude of this effect is diminutive compare to 

private R&D. If the number of patents (lognpat) increases by 1 percent, regional technological complexity 

increases by 0.0963 percent. Broekel had similar results while testing the structural diversity method 

(Broekel, 2019). However, regional patents and technological complexity are not interchangeable 

measures. Regions can have a higher number of patents but relatively lower technological complexity and 

vice versa as seen in Figure 8. 

To summarize, the results from our statistical estimation show that the R&D effort made by the firms has 

a significant impact on regional technological which results in sustainable economic growth (Mewes & 

Broekel, 2020). The coefficient values are consistent in both the fixed effects model and random effects 

model. The significance of model (1) suggests that the R&D effort has a lagged effect on technological 

complexity.  As per the definition of complexity, it is a combination or recombination of existing knowledge 

therefore it takes time to reach a specific level where it full fills all the requirements of a complex technology 

described in chapter 2 (literature review and conceptual framework). The analysis has not found a direct 
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relation of HEIs12 with technological complexity. This has been observed in several previous studies 

(Andersson & Ejermo, 2004; Autant-Bernard, 2001; Jaffe, 1989; Ronde & Hussler, 2005). However, this 

is the first time I am using technological complexity instead of the number of patents to measure the 

economic potential of regions. Therefore, while comparison with existing studies the differences in the 

empirical approach should be noted. Due to the nonprofit orientation of universities, they are seldom 

interested in commercializing their R&D efforts. Rather they produce basic knowledge which is a necessary 

input to further the private R&D activities (Jaffe, 1989).  

 

For future analysis in this domain, I recommend additional covariates for regional characteristics that 

differentiate between regional labor force, education level, type of local industry, service vs manufacturing 

industry, etc. The main limitation in such empirical analysis is the issue of the availability of data and its 

credibility. More studies in this domain are recommended to validate the method and to test the replicability 

of the results.  

 

 

 

 

 

 

 

 

 

  

 
12 HEIs and universities have been used interchangeably in this study. ( add this to first time we used HIS)   
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5 Conclusion and future implications 

 

Researchers have been trying to find the indicators of regional innovation and development but there has 

always been debate regarding the method and unit of measurement. In a recent set of studies, Broekel found 

that the regions which produce complex technologies observe higher economic growth. This growth is 

sustainable and long-term(Broekel, 2019; Mewes & Broekel, 2020). Technological complexity measures 

regional development from a quality point of view instead of quantity. 

 

The purpose of this study was to find direct or indirect relation between universities' R&D output and 

regional technological complexity. As universities are the basic source of knowledge, their impact on 

regional technological complexity helps to better understand R&D penetration and its dimension. 

For the empirical analysis, NUTS 3 regions of Norway were considered as a spatial unit. Sixteen years of 

panel data were used to conduct a thorough empirical analysis. Technological complexity was calculated 

using the structural diversity of technologies according to their network diversity score. 

 

Our findings suggest that private R&D effort has a significant impact on technological complexity whereas 

universities’ R&D expenditures are not statistically associated. These findings can act as basic knowledge 

for policymakers, enabling them to recognize the best R&D practitioners for benchmarking. The method 

employed in this study and the results can also help the research and development departments of 

governments to develop approaches for strengthening regional and national innovation performance by 

highlighting the lesser-studied and value-creating role of academic institutions. Moreover, the findings add 

to the knowledge on facilitators in public-private innovation. 

 

The situation in Norway is shared by other countries with growing regional technological complexity. 

Accordingly, there is a need to enhance commitment to producing high-quality research that will enable the 

creation of complex regional technology. 
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I. Appendix 

 

Stata outputs, 

Description: 
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Summary: 
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Missing data: 

 

 


