




Abstract

Within a large range of applications in computer vision, Human Action Recognition
has become one of the most attractive research fields.This thesis investigates possi-
bilities of applying automatic event detection on large dataset of simulation videos
captured during medical training sessions. In a typical training session different
scenario-based event can occur and the students undergoing the training must take
actions accordingly. These events and actions are manually annotated by an ob-
server using an app or by watching the video after a session. Such hand-crafted
annotations are later used for evaluating the recorded sessions which requires hu-
man intervention and can quickly become tedious, time consuming and difficult task
(especially when there are a lot of things going on in a particular training or simu-
lation setting). Hence, this thesis aims to solve the challenges by :

• Providing a baseline approach for automatically detecting events occurring in
long untrimmed videos

• Activity localization

This thesis is focused mainly on detecting Washing Hands activity performed by
health care providers and medical students under different settings. The proposed
system approach consists of activity recognition and generation of activity timelines
using 3D CNNs.

The dataset used in this thesis originally contained more than 4000 untrimmed
videos with associated annotations, of which only 60% of the data was found to
be relevant but required reliable annotations before it could be fed into the deep
neural network. Hence, as an initial step into this thesis a reusable Data Curation
tool was developed and used extensively for generation of ground truth annotations.

This thesis proposes a generalized methods for data curation and activity recogni-
tion. An overall classification accuracy of 68% was achieved in this work using the
proposed method.
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Chapter 1

Introduction

Human-centric tasks usually serve as core components in many computer vision

pipelines. Analyzing people in images and videos has many practical applications

in security, entertainment, education and other domains. Airport security can ben-

efit from face recognition to prevent attacks and violent behavior. Video surveil-

lance systems require reliable detection of malicious human activities like robbery,

burglary or violence. Aside from security purposes, person detection/tracking and

action analysis can be used to assist sport coaches in planning strategies.

Person detection is another human-centric computer vision task aiming to localize

people in images and video. It often serves as a backbone for many other human

analysis tasks, e.g. human verification, action recognition, behavior understand-

ing, crowd counting and others. Given the needs of time-critical applications, the

performance of person detectors is important both in terms of speed and accuracy

as depicted in [5]. Similar to action prediction, the task can be addressed in the

context of still images and videos [6].

This thesis addresses the demand of human action classification and action local-

ization in visual data collected in long untrimmed videos. In the scope of these two

problems, this study also touches various deep learning concepts ranging from data

capturing, data understanding, data pre-processing in the spatio-temporal domain.

This chapter presents the motivation behind this master’s thesis. The findings and

conclusions from the the field of human activity recognition are used as guidelines

1



CHAPTER 1. INTRODUCTION 2

and motivation for the hypotheses we present in this thesis. Finally, we give a brief

overview of the thesis structure.

1.1 Motivation

Due to manifold increase in the growth of computational power, scientists and re-

searchers have looked at Deep Neural Network and its application in a much greater

depth. This improvement and in-depth research has triggered the need for automa-

tion and decision support systems over recent years. Health care is one such sector

where adaptation of innovative technologies to reduce the time and cost required

for solving a problem is of utmost importance.One avenue being explored lies in the

technological advancements that can make hospital working environments much

more efficient. Automating certain processes can save time and cost. In this thesis,

we aim to deduce a baseline approach that can ascertain whether or not a particular

type of activity has been performed during a training or evaluation session, which

otherwise is done manually by observers and health care professionals.

This Master thesis focuses on detecting and localizing "Washing hands" activity by

applying known practices for human activity recognition using Deep Neural network

architectures.

1.2 Objectives & Contributions

Two main objectives of this thesis are Activity classification and Activity localization.

As discussed in the previous sections, both areas have been explored significantly

with the advent of deep neural networks. Hence the preliminary idea for this work is

to start with existing state of the art neural network models and baseline our video

understanding. However, observing the quality of data and associated annotations

posed a a set of initial challenges which are listed below :
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• We collected around 4800 video clips of varying length, of which 40% clips

needed to be discarded due to bad quality, camera angle, audio only etc. Filter-

ing these videos nearly halved the number of video clips available for training

and testing.

• After filtering the noisy videos, it was seen that more than 15% of the provided

annotations were either off by few seconds or there were instances where no

activity could be seen yet annotation were made available to us. Hence, the

ground truth labels were found to be not completely reliable. This triggered

a need for developing and using a tool which can easily produce ground truth

labels for the filtered videos.

1.2.1 Contributions

In order to overcome the initial challenges with the dataset, a Data Curation Tool

(Chapter 4) was developed and extensively used to prepare correct labels. Data Cu-

ration tool is a multipurpose and easy to use graphical user interface which enables

users to rapidly produce annotations for any video dataset. Following is the brief

summary of self contributions made in this thesis:

• Developed a utility to download and extract relevant video clips by using

ground truth annotations. Due to unreliability of the annotations a wider win-

dow of ±5 sec was initially used to extract the desired but wider portion of

video which significantly increases the probability of finding ’Washing hands’

activity in the clip.Portion of the video which did not contain the desired activ-

ity were classified as Not Washing hands. See Section 3.3 for more details.

• Developed and used Data Curation tool to produce shorter video clips with

labels.Chapter 4)

• Prepared dataset splits and class labels for various methods as explained in

Chapter 3

Fig 1.1 shows instances of 6 different video clips in which health care providers

can be seen performing different type of activities. Given the different settings, our

main goal is to identify and recognize the washing hands activity in a video clip.
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Figure 1.1: Examples from the dataset
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1.3 Thesis outline

Chapter 2: Theory & Background

This chapter provides conceptual understanding on Deep Neural Networks. It also

underpins various related works in the field of human activity recognition.

Chapter 3: Data Material

This chapter clearly explains about type and quantity of dataset. Also briefly touches

upon complexities seen in the dataset.

Chapter 4: Proposed Method - Data Curation

This chapter explains about Data Curation tool which is developed and used exten-

sively in this work for the creation of correct ground truth annotations.

Chapter 5: Proposed Method - Activity Recognition

This chapter explains about proposed methods and approach used in this thesis.

Chapter 6: Experiments & Results

This chapter list and compares the results from experiments conducted in methods

specified in chapter 5.

Chapter 6: Discussions

In this chapter we briefly discuss our approach, results & improvements

Chapter 7: Conclusion

The conclusion of the thesis is presented here with proposed further work.



Chapter 2

Theory and Background

This chapter presents the theoretical background of this Master’s thesis. The goal is

that readers who are unfamiliar with the topics presented, can learn what is needed

to understand the later contents of the thesis.

2.1 Deep Learning

This section gives a brief overview of the theory within the field of Deep Learning.

It is intended to serve as an introduction to the field and to create a theoretical

foundation on which the reader can rely for the rest of the thesis.

2.1.1 Historical Background

Since the start of the Internet, the amount of readily available general data has

grown at an incredible phase. At first, this data mainly consisted of documents and

web pages, but in the later years, this growth has expanded to include photos and

even videos[7]. This has lead computer vision to become one of the biggest tech-

nological advances in the last decade. With a vast array of applications such as

image recognition, self driving cars and surveillance computer vision has become

an integral part of many business models. In many of these approaches, Image Clas-

sification plays a major role. This task is very demanding for computers, as images

can contain multiple objects, be taken from different viewpoints and be occluded or

6
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severely cluttered. The goal has therefore been to develop agile algorithms capable

of recognizing objects in complex scenes.

Traditionally, this was done using hand-crafted approaches such as Bag of visual

Words (BovW) topped with a classifier such as a Support Vector Machine (SVM)[8].

These approaches produced the state-of-the-art results in image classification com-

petitions such as ILSVRC[9] for several years. However, recent developments in

Deep Learning has led to drastically increased performance and Deep Learning

based approaches have taken over as the new state-of-the-art performers[[10], [11]].

Deep Learning is a field of Machine Learning specializing in statistical models called

Deep Neural Networks. These models can learn complex hierarchical representa-

tions that correspond to multiple levels of abstractions. This is done through the

use of multiple layers of non-linear processing units, called neurons, to transform

data, where each layer takes the previous layers as input. This creates a flow of in-

formation, from the input through the network to the output. The way these models

are able to learn such complex representations is through the use of the Backprop-

agation algorithm[12]. This algorithm works in several steps. First, the error, or

cost, between the model output and the true output is calculated through the use

of a cost function. Then the cost for each neuron in the network is calculated and

propagated back through the network. The model weights are then updated based

on these cost calculations, resulting in a gradual increase in performance for each

weight update.

Since 2010 we have seen a drastic improvement in both natural language process-

ing [13] and image classification through the use of Deep Learning[11], producing

results that far exceed the competition. In the last five years alone, Deep Learn-

ing has completely transformed the field of computer Vision. This is not only due

to the fact that these models learn so well, but also because of the introduction of

modern GPUs and an exponential growth in available data[14]. Modern GPUs allow

researchers to greatly parallelize the forward and backward passes through Neural

Networks by utilizing the hugely parallel design of GPUs. This reduce training times

by several time folds,leading to faster development and better models.

An inherent limitation of Deep Learning is the need for very large datasets for

training. Since the weight update procedure has to be performed thousands if not
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millions of times for a even quite simple networks to converge on a good set of

weights,the demand for large amount of data is obvious. Thus, with more data, we

are able to explore more complex models and achieve better performance. Recently,

the use of pre-trained models, already trained on large datasets have shown great

results when used as a starting point for training models towards new tasks. This

approach is known as Transfer Learning, where one can transfer many low-level

representations learned on one dataset to another, drastically reducing the need for

data. This has allowed for a much larger audience to acquire expertise and develop

new models.

2.1.2 Dataset splits

The most common approach to training Deep Neural Networks is Supervised Learn-

ing. In supervised learning tasks, models learn features from labeled examples and

try to approximate their predictions to the correct labels as much as possible. A

common problem with this approach is a problem known as Overfitting. Overfitting

happens when the model learns features that are not necessarily valid for real-

world examples and become overfit to the training data. Such a model has not

learned general concepts, but rather remembers the correct output for a given ex-

ample in the training set. This results in poor performance in the real world. To

combat the problem of overfitting it is common practice to divide the available data

into three partitions, called the training set, the validation set and the testing set.

It is then possible to check for overfitting during training, using the validation set

performance as a guide. An important factor when this partitioning is done is to

make sure that the test set is representative of the data the model will be working

with when deployed. It is also important that the training set is representative of

the validation set and the test set. There are many ways of separating the original

dataset into training, validation and test sets, but a split of 60/20/20 or 50/25/25 are

both quite common[15].

Training set

The training set is the partition used to train the model and is also, by far, the largest

of the three partitions. This is a labeled set of data, containing the input data and
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the expected output. This expected output is then compared to the output of the

model to calculate the cost for each example in the dataset during training.

Validation set

The validation set is used to validate and tune the model during the training phase.

This is done by measuring the model’s performance on the validation set, without

allowing it to update its weights. This produces a good estimation for how well the

model will perform on the test set. The performance on the validation set is also

a good indication of when a model has become overfit to the training data. When

the validation performance goes from increasing to decreasing during training, it

usually indicates that the model has started to become overfit and further training

will only further deteriorate model performance.

Test set

The test set is used fora final testing of the model. After the model has been tuned

towards the optimal performance on the validation set, it is tested on the test set.

This gives a good indication of how well the finished model will perform on new

data and thus how well it will preform when deployed in the real world. It is very

important that the test set is not used until the model has finished training and has

been fully optimized towards the validation set. This is to avoid researcher bias and

to ensure valid test results.

2.1.3 Neural Networks

Neural Networks are graphs that consist of one or more connected neurons,or

nodes, with learnable weights W on their connections, or edges, as seen in fig-

ure 2.2. Each neuron also has a learnable bias b, which enables the neuron to

activate even for zero-valued inputs. This is critical for successful learning as it

helps the network to converge on a good set of weights and biases. A neuron re-

ceives a set of inputs x along its edges, computes the dot product over these inputs

and its weights. It then follows it with an optional non-linear activation function f to

produce an output y as shown in equation 2.1.



CHAPTER 2. THEORY AND BACKGROUND 10

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 2.1: The figure shows a fully connected Neural Network with an input layer,
one hidden layers and an output layer. This network is of the typical feed forward
architecture, where all connections go forward through the network. Each of the

connections between the neurons also have a weight W

Neural Networks are usually stacked in layers, where every layer in the network

takes the previous layers as inputs. If the network consists of more layers than

the input and output layers, the remaining layers are usually referred to as hidden

layers, as we do not see either the input or outputs of these layers directly. An

example of a simple Neural Network with one hidden layers is seen in the following

equation

y = f(
∑
i

Wi · xi + b) (2.1)

x2 w2 Σ f

Activate
function

y
Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2: Neural Network formulation
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The use of a non-linear activation function allows Neural Networks to approximate

any function, including non-convex functions. The activation function takes a num-

ber and does a fixed mathematical operation on it to squash it withing a well defined

range. The three most common activation functions today are:

• The Sigmoid activation function

• The Tanh activation function

• The ReLU activation function.

• The Softmax activation function.

Sigmoid

The sigmoid activation function, shown in Fig 2.3, takes a real-valued number and

squashes it to arange between 0 and 1. It has the mathematical form presented in

equation 2.2 This results in large positive numbers becoming 1 and large negative

numbers becoming 0. The sigmoid activation function was historically frequently

used since it closely resembles the firing rates of real neurons in real brains. How-

ever, it has seen a decline in the recent years due to the fact that it can kill the

gradients.
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Figure 2.3: Sigmoid activation function

Since the activations of the neuron can saturate at the tails of the activation func-

tion, the gradient in these regions become very close to zero and vanish. This leads

to almost no signal flow during the backpropagation phase and hence only very
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small or no weight updates are being performed. This in turn leads to a network

that stops learning.

f(x) = σ(x) =
1

1 + e−x
(2.2)

Tanh

The tanh activation function, shown in Fig 2.4, squashes a real-valued number to a

range between -1 and 1. Just like the Sigmoid, this activation function suffers from

the same saturation problem at its tails. The mathematical expression for tanh is

shown in equation 2.3

f(x) = Tanh(x) =
ex − e−x

ex + e−x
(2.3)
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Figure 2.4: Tanh activation function

ReLU

The most popular activation function in recent years is the Rectified Linear Unit

activation function as seen in Fig 2.5. The activation is thresholded at zero and has

the mathematical equation shown in equation 2.4. This activation function does not

suffer from the saturation problem that both the sigmoid and tanh do. This is due

to its linear form and the ReLU has been shown to significantly accelerate network

convergence. However, the ReLU activation function has one drawback. A large

gradient flowing through a ReLU activated neuron can cause the weights to update

in a way that results in the neuron never activating on a datapoint again, effectively

resulting in a "dead" neuron. This is irreversible, but is somewhat avoidable by

setting a good weight update parameters.
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f(x) = ReLU(x) = max(0, x) (2.4)

−6 −4 −2 2 4 6

1

2

3

4

5

x

y

Figure 2.5: ReLU activation function

Softmax

Softmax activation function returns a probability distribution over the target classes

in a multiclass classification problem.

Softmax(xi) =
exp(xi)∑
j exp(xj)

(2.5)

2.1.3.1 Loss function

The loss function can be defined as a function from a set of input values to class

scores, parameterized by a set of weights W and a set of biases b. It follows from

this assumption that some sets of parameters are better than others. If a network

is given an image of a ball, but gives the ball class a very low score, we can assume

that this particular set of parameters are not good. The loss function is therefore

a measure of the quality of a particular set of parameters based on how well the

network scores align with the ground truth labels in our training data. There are

several types of loss functions from hinge loss[16] to cross-entropy loss[17], which

all produce a loss function landscape, using all possible combinations of the param-

eters. This landscape can be traversed by changing the parameters of the network.
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2.1.3.2 Optimization

The goal of optimization is to find the set of parameters that minimizes the loss

function. This can be viewed as traversing the loss landscape, by updating the pa-

rameters, in order to find the lowest valley. There are several ways of doing this,

but the most common strategy is to follow the gradient through gradient descent.

To follow the gradient, we first compute the gradient of the loss function with our

current set of parameters and then perform a parameter update in the negative

direction of the gradient. This is done iteratively for each example or, batch of ex-

amples, until the optimal set of parameters are found. Following are some of the

most commonly used optimizers:

Stochastic Gradient Descent

Gradient Descent algorithm can be done in batches or stochastically. Stochastic

Gradient Descent(SGD) optimizer is an optimizer makes the neural networks con-

verge by trying to shift towards the optimum of the cost function.For SGD, cost of

one example for each step is calculated whereas in Batch gradient descent, the cost

for all training examples in the dataset must be calculated. In SGD, since only one

sample from the dataset is chosen at random for each iteration, the path taken by

the algorithm to reach the minima is usually noisier than a typical Gradient Descent

algorithm but it’s seen to be less expensive.

ADAM

Adam is a replacement optimization algorithm which uses adaptive learning rate al-

gorithm over stochastic gradient descent for training deep learning models. ADAM

requires less memory and is more efficient. It basically applies momentum over

normal gradient descent algorithm. Momentum is an exponential weighted average

of the gradients which makes the algorithm converge towards the minima faster.

2.1.3.3 Training Process

Training Neural Networks usually follows a set structure in which the network is

fed some training data, a loss is calculated based on the outputs of the network and

the true value for the data. The network then uses the backpropagation algorithm,
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to perform a backward pass to find the appropriate weights adjustments for all the

weights and update the weights with these adjustments.

Epochs

When the network has seen all the available training data it has finished one Epoch

of training. A network usually requires several epochs of training before it con-

verges on a good set of weights.

Mini-Batches

In the earlier days of Neural Networks it was common to feed the network an indi-

vidual training example, calculate the loss for this example and updating the net-

work weights for this example through gradient descent in the backward pass. In

recent years, however, it has become common to compute the loss over several

training examples before preforming the backward pass. This collection of training

examples is called a Mini-Batch. When using mini-batches it is very important to

2.1.3.4 Data Preprocessing

Data collected in the real world is generally suffering from several drawbacks in

relation to machine learning. It may be incomplete, thus lacking values or certain

attributes. It may be noisy,containing errors or statistical outliers, skewing the data.

And it may be inconsistent, containing discrepancies in codes or labels, such as mis-

labeled data. Data preprocessing is a commonly used step to combat these issues as

it transforms the raw data into an understandable format. In Deep Learning, there

are several types of data preprocessing schemes, but the two most common are:

Zero-Centering

This is the most common form of preprocessing. To zero-center data, the mean is

subtracted across every individual feature in the dataset. This results in centering

the datacloud around the origin along all dimensions. For images it is common to

perform this step by subtracting the the dataset mean from all images.

Normalization

The normalization process involves normalizing the data dimensions in order to

make them approximately the same scale. The most common way of doing this is to

divide each dimension by its standard deviation.
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2.1.3.5 Regularization

As we described earlier, a common problem when training Neural Networks is over-

fitting. This happens when the network learns the details and noise in the training

data to an extent that negatively impacts the model performance on the validation

data. To avoid this problem, several ways of controlling the learning capacity of

Neural Networks have been devised:

Dropout

Dropout is a regularization technique which involves keeping a neuron active during

training with some probability p, and otherwise turning it of by setting it to zero.

This essentially trains an ensemble of networks, consisting of all sub-networks that

can be formed by removing non-output units from an underlying network.

Batch Normalization

Batch Normalization is a technique developed to tackle the problem of internal co-

variate shift in Deep Neural Networks. Internal covariate shift is the change in

the distributions in network activations due to the change in network parameters

during training. The Batch Normalization layer accounts for this problem through

shifting its inputs to zero mean and unit variance for each mini-batch, resulting in a

normalized input. The exact steps of the batch normalization transform applied to

activation, x,over a mini-batch,B,is given in equation 2.6 and was first presented by

Ioffe and Szegedy in [18].

Input: Values of x over a mini-batch: B = x1...m;

Parameters to be learned : γ, β

Output :

yi = BNγ,β(xi) (2.6)

Data Augmentation

Data Augmentation is a method for boosting the size of the training set to help to

avoid that the model memorizes it. There are many different ways to perform data

augmentation, but it is most common to augment the data in the ways the model is

supposed to be invariant to. If a model is supposed to be invariant to rotation, the
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data augmentation could include various forms of rotation to the original data. Data

augmentation can also be preformed online, meaning that the data is augmented

with a probability p as it is being loaded, instead of having the augmented data

stored. This reduces storage space and means that the model will be presented

with differently augmented data every time.

2.1.4 Convolutional Neural Networks

Convolutional Neural Networks(CNNs) are very similar to regular Neural Networks

as the same principles are being used and the network still expresses a single differ-

entiable score function. The main difference lies within the fact that a CNN assumes

that its inputs are matrices of numbers, such as images, for image classification, or

sentence matrices, for natural language processing.

Figure 2.6: A figure showing an overview of the Convolution Operation. The acti-
vation map is computed by sliding(or convolving) the filter F over the input image
I and computing the dot product between the filter and its current location on the

input image. Figure adapted from [1].

This allows for the convolution operator to be encoded. CNNs consist of three main

building blocks. Convolutional layers, pooling layers and fully connected layers.

These layers are stacked on top of each other to form a finished CNN.

2.1.4.1 Convolutional Layers

The convolutional layers are the main layers of CNNs. These layers consist of a

set of several learnable filters. The filters are slid, or convolved, over the width

and height of the input volume, computing the dot product. This produces that

filter’s 2D activation map of the input as seen in figure 2.6. The filters act as feature
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extractors and activate when they see a particular type of visual feature that excites

them. In the first, most basic layers, this can be edges or blobs of colors and in the

later layers, we see more advanced patterns such as circles or faces. The filters,

together with individual neuron biases are what is learned in the learning process

for CNNs. A convolutional layer usually contains multiple different filters, which

in turn produce multiple different activation maps. Thus, the convolutional layer

produces a stack of these activation maps along the depth dimension called the

output volume.

2.1.4.2 Pooling

It has become common practice to insert a pooling layer between a set of convolu-

tion layers in most CNNs. The pooling layer reduces the spatial size of the repre-

sentation in order to reduce the number of parameters in the network. The pooling

layer operates on each depth slice independently and resizes it in the spatial dimen-

sion. The most commonly used pooling version has a filter size of 2×2, a stride 2 as

seen in figure 2.7. The most common pooling layer is the maxPool layer. The max-

Pool filter selects the maximum value over a square of 2×2 numbers and outputs

that number. A stride of 2 corresponds to the filter being moved two steps to the

side or down for each calculation. This results in the number of activations being

decreased by 75% as seen in figure 2.7. There are also other functions such as Av-

eragePooling and L2-NormPooling. However, MaxPooling is the preferred pooling

function, as it often performs better in practice.

Figure 2.7: An illustration showing a 2×2 MaxPooling with stride 2. Each max
is taken over a 2×2 square. The filter is then moved two squares for the next

computation. Figure adapted from [2].
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2.1.5 Recurrent Neural Networks

A Recurrent Neural Network works on the principle of saving the output of a par-

ticular layer and feeding this back to the input in order to predict the output of the

layer. Recurrent neural networks were created because there were a few issues in

the normal feed-forward neural network:

• Handling of sequential data

• Works only on current input

• Memorizing previous input

Figure 2.8: Fundamentals of Recurrent Neural Network(RNN)

The solution to these issues is the Recurrent Neural Network (RNN). An RNN can

handle sequential data, accepting the current input data, and previously received

inputs. RNNs can memorize previous inputs due to their internal memory. As shown

in fig 2.8 “x” is the input layer, “h” is the hidden layer, and “y” is the output layer.

A, B, and C are the network parameters used to improve the output of the model.

At any given time t, the current input is a combination of input at x(t) and x(t-1).

The output at any given time is fetched back to the network to improve on the

output. Main problem with RNNs is that they suffer from short-term memory i.e.

If a sequence is long enough, they’ll have a hard time carrying information from

earlier time steps to later ones. So if we are trying to process a paragraph of text to

do predictions, RNN’s may leave out important information from the beginning.
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2.1.5.1 Long Short Term Memory(LSTM)

LSTMs were created as the solution to short-term memory problem of RNNs.They

have internal mechanisms called gates that can regulate the flow of information.

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network

capable of learning order dependencies in sequence prediction problems. The core

concept of LSTM’s are the cell state, and it’s various gates. The cell state act as a

transport highway that transfers relative information all the way down the sequence

chain. It is the “memory” of the network.

σ σ Tanh σ

× +

× ×

Tanh

c〈t−1〉

Cell

h〈t−1〉

Hidden

x〈t〉Input

c〈t〉

Label1

h〈t〉

Label2

h〈t〉Label3

Figure 2.9: Long short term memory network

The cell state can carry relevant information throughout the processing of the se-

quence. So even information from the earlier time steps can make it’s way to later

time steps, reducing the effects of short-term memory. As the cell state goes on its

journey, information get’s added or removed to the cell state via gates. The gates

are different neural networks that decide which information is allowed on the cell

state. The gates can learn what information is relevant to keep or forget during

training. There are three different gates that regulate information flow in an LSTM

cell. A forget gate, input gate, and output gate.

Forget gate

This gate decides what information should be thrown away or kept. Information

from the previous hidden state and information from the current input is passed

through the sigmoid function. Values come out between 0 and 1. The closer to 0
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means to forget, and the closer to 1 means to keep.

Input gate

To update the cell state, we have the input gate. First, we pass the previous hidden

state and current input into a sigmoid function that decides which values will be

updated by transforming the values to be between 0 and 1 where 0 means not

important, and 1 means important.

Output Gate

Last we have the output gate. The output gate decides what the next hidden state

should be. Hidden state is the state which contains information on previous inputs.

The hidden state is also used for predictions. The output is the hidden state. The

new cell state and the new hidden is then carried over to the next time step.

2.1.6 3D-Convolutions

Traditional CNNs are two-dimensional CNNs. This means that they are using 2D fil-

ters and produce a 3D volume of 2D depth slices as their output. It is, however, very

possible to extend this type of layer to become three-dimensional Convolutional Lay-

ers. This is done by increasing the dimensionality of the filters to 3D and increasing

the dimensionality of the input. This results in a 4D volume of 3D depth cubes as the

output. For videos, this can be done by stacking sequential video frames together,

producing a cube of frames as the input. The 3D filters are then convoluted over

this cube in both the spatial and depth dimensions. This produces depth slices that

not only learn features in a single image, but also how they transform through time

in a video. This results the network learning spatio temporal filters that are able to

extract useful features in both space and time.

2.2 Transfer Learning

Transfer learning is about leveraging feature representations from a pre-trained

model, so that there’s no need to train a new model from scratch. The pre-trained

models are usually trained on massive datasets that are a standard benchmark in

the computer vision frontier. The weights obtained from the models can be reused
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in other computer vision tasks. These models can be used directly in making predic-

tions on new tasks or integrated into the process of training a new model. Including

the pre-trained models in a new model leads to lower training time and lower gen-

eralization error. Transfer learning as a technique is particularly very useful when

the training dataset is small.

2.3 Performance Metrics

Performance of a data model is a direct way to measure its accuracy. In this thesis

we are trying to solve a classification problem where a true class label is assigned

to a video clip contains a washing hands activity and a false class label is assigned

to the clip which do not contain any washing hands activity. This is a typical Bi-

nary classification problem, where we can only have two possible labels. Generally

speaking, a yes/no question or a setting with 0-1 outcome can be modeled as a

binary classification problem.

2.3.1 Confusion Matrix

Confusion Matrix is a tabular visualization of the ground-truth labels versus model

predictions. Each row of the confusion matrix represents the instances in a pre-

dicted class and each column represents the instances in an actual class. Confusion

Matrix is not exactly a performance metric but sort of a basis on which other met-

rics evaluate the results. Each cell in the confusion matrix represents an evaluation

factor.

True Positive(TP) signifies how many positive class samples predicted correctly

by the model.

True Negative(TN) signifies how many negative class samples predicted correctly

by the model.

False Positive(FP) signifies how many negative class samples predicted incorrectly

by the model. This factor represents Type-1 error in statistical nomenclature. This

error positioning in the confusion matrix depends on the choice of the null hypoth-

esis.



CHAPTER 2. THEORY AND BACKGROUND 23

Figure 2.10: Confusion Matrix

.

False Negative(FN) signifies how many positive class samples predicted incor-

rectly by the model. This factor represents Type-II error in statistical nomenclature.

This error positioning in the confusion matrix also depends on the choice of the null

hypothesis.

2.3.2 Binary Classification Measures

Accuracy

The most simple and straightforward classification metric is accuracy. Accuracy

measures the fraction of correctly classified observations. The formula is:

Accuracy =
TP + TN

samples
=

TP + TN

TP + TN + FP + FN
(2.7)

Precision and Recall

An alternative measure to accuracy is precision. Precision is the fraction of in-

stances marked as positive that are actually positive. In other words, precision

measures “how useful are the results of our classifier”. The mathematical notation

is:

Precision =
TP

TP + FP
(2.8)
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Recall is the fraction of true positive instances that are marked to be positive. It

measures “how complete the results are” — that is, which percentage of true posi-

tives are predicted as positive. The representation is:

Recall =
TP

TP + FN
(2.9)

Perfect precision is equivalent to no FPs (no Type I errors), while on the other hand,

perfect recall means there are no FNs (no Type II errors).

F1-Score

F-1 score is the harmonic mean of precision and recall. It gives equal importance to

Type I and Type II errors. The calculation is:

F -1 Score =
2 × Precision × Recall

Precision + Recall
(2.10)

When the dataset labels are evenly distributed, accuracy gives meaningful results.

But if the dataset is imbalanced, F-1 score measure is preferred.

ROC & AUC Curves

A well-known method to visualize the classification performance is a ROC curve (re-

ceiver operating characteristic curve). The plot of ROC curve shows the classifier’s

success for different threshold values. Lowering the classification threshold classi-

fies more items as positive, thus increasing both False Positives and True Positives.

True positive rate is also known as Sensitivity where as True Negative rate is called

Specificity. Sensitivity tells us what proportion of the positive class got correctly

classified whereas specificity tells us what proportion of the negative class got cor-

rectly classified. In order to plot the ROC curve, we need to calculate the True

Positive Rate (TPR) or Sensitivity and the False Positive Rate (FPR), where:

TPR =
TP

TP + FN
(2.11)

FPR =
FP

FP + TN
(2.12)
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2.4 Human activity recognition

This section will give a brief overview of the field of Human Activity Recognition.

Action Recognition and Action Detection Human activity recognition has spiked in-

terests in several industries involved with computer vision in recent years. Human

activity recognition is a field concerned with classifying human actions performed

in videos. It can be separated into two subtasks:

• Human Action Recognition

• Human Action Localization

Human Action Recognition

Human Action Recognition involves classifying individual videos. For this task, each

video contains only one class of action, and the goal is for the system to accurately

classify the action performed in the video.

Human Action Localization

Human Action Localization, on the other hand, is concerned with detecting ac-

tions through continuous videos. This means that any given video contains multiple

classes of actions and the goal of the system is to accurately segment the video into

correctly classified segments. The field Human Activity Recognition has become an

important research domain, spanning different applications, such as sport analysis,

human computer interaction, and video surveillance. It is also of general interest

to the field of computer vision as it expands the ability of machines to understand

the contents of video. There are several standardized datasets for human Activity

Recognition, but the most commonly used are the UCF-101[19] and Sports1M[20]

Action Recognition datasets. These datasets include videos of different humans,

performing several classes of actions from several different angles under a variety

of conditions. Human Activity Recognition is considerably more challenging than

regular image classification, as it relies on videos for inputs. This combines the

challenges of both image recognition and sequence handling, as videos are con-

structed of sequences of single image frames. Since 2012, we have seen complete

domination in both image recognition tasks and natural language processing tasks

through the use of CNNs and RNNs. This has lead researchers to believe that a
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combination of these techniques could do the same for Human Action Recognition.

Thus, recent years have seen a dramatic increase in use of Deep Learning architec-

tures for Human Action Recognition tasks.

2.5 Related work

Video understanding is one of the core computer vision problems and has been

studied for decades. Many research contributions in video understanding have fo-

cused on developing spatio-temporal features for videos. In this section, we review

previous works that is closely related to this thesis. Following sections describes

some of the interesting research work carried out on action recognition and action

localization

2.5.1 Action Recognition

There have been a significant research and development in the field of human action

recognition in videos. Earlier methods mainly involved human body parts tracking

and human motion analysis [21]. Follow up methods focused on statistical represen-

tations for action recognition. Laptev represented motion patterns with space-time

local features. The idea is to localize spatio-temporal interest points correspond-

ing to characteristic events. Using such interest points, Bag-of-Words approach has

been used to represent actions in the video. Schuldt et al.[22] classified actions by

applying Support Vector Machines (SVMs) on the occurrence histograms. In gen-

eral, SVM has been extensively used for classification, regression, novelty detection

tasks, and feature reduction. It has been seen that It performs on par or marginally

inferior to existing systems, when the number of training examples are a few due

to the imbalance, although consistently better in terms of computation time. Wang

et al.[23] proposed an action recognition framework with dense trajectory descrip-

tors. Feature points are first localized and then tracked with optical flow to densely

produce point trajectories. Each trajectory is represented by descriptors, e.g. HOG,

HOF and MOH, within its neighborhood space-time volume. Action recognition is

performed with the standard bag-of-features approach.
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Deep convolutional neural networks have been applied for action recognition. Si-

monyan and Zisserman [2014][4] designed a two-stream architecture separately

processing RGB images and optical flows. Late fusion is applied on the L2-normalized

softmax outputs of the two streams. The network achieved comparable performance

with state-of-the-art methods using “hand-crafted" features. Despite relatively small

improvements, this work showed promising potential of CNNs for action recogni-

tion. Action recognition in stills images received less attention compared to videos.

The work of Ikizler et al. [2008][24] was one of the first attempts to recognize

actions in static images using human poses. The authors argued that poses often

characterize actions, so one can extract and classify poses to derive action labels

of images. More recently, Tran et al. [2015][3] introduces C3D, a 3D convolu-

tional neural networks for action recognition. C3D architecture extends 2D CNNs

to videos. The learned C3D features computed from RGB input have been used

for video representation, followed by SVM for action classification. Varol et al.

[2016][25] extended C3D to learn long-term video representation and confirmed

the advantage of using optical flows for human action recognition. Like how CNN

models for recognition tasks on images benefit from the pretraining phase on the

ImageNet dataset, CNN models for videos considerably benefit in pretraining on big

datasets such as Sport-1M, HMDB and Kinetics. The “Two-Stream Inflated 3D Con-

vNets” (I3D) extends state-of-the-art architectures on image classification to handle

spatiotemporal 3D information in videos. I3D models pretrained on the Kinetics

dataset and finetuned on HMDB-51 datasets achieve state-of-the-art performance

on the both action recognition benchmarks as depicted in one of the earliest work

on 3D Convnets[26]. This thesis contains experiments with both C3D and I3D net-

works are explained in more detail in the following sections. It has been seen that

training CNNs for videos is a challenging task due to the difficulty to collect data

annotation and high memory consumption of the deep networks.

2.5.2 C3D Network

C3D are deep 3-dimensional convolutional neural networks with a homogenous ar-

chitecture containing convolutional kernels followed by pooling at each layer. C3D

network is well-suited for spatio-temporal feature learning compared to 2D Con-

vNet. C3D is commonly known for generic feature extraction where 3D convolutions
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extracts both spatial and temporal components relating to motion of objects, human

actions, human-scene or human-object interaction and appearance of those objects,

humans and scenes. It also has an ability to model temporal information better due

to 3D convolutions and 3D pooling operations. In 3D ConvNets, convolution and

pooling operations are performed spatio-temporally while in 2D ConvNets they are

done only spatially. 2D convolution applied on an image will output an image, 2D

convolution applied on multiple images (treating them as different channels also

results in an image. Hence, 2D ConvNets lose temporal information of the input

signal right after every convolution operation. Only 3D convolution preserves the

temporal information of the input signals resulting in an output volume. The same

phenomena is applicable for 2D and 3D polling.

Figure 2.11: C3D Architecture[3]

C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by

a softmax output layer. All 3D convolution kernels are 3 × 3 × 3 with stride 1 in both

spatial and temporal dimensions. Number of filters are denoted in each box. The 3D

pooling layers are denoted from pool1 to pool5. All pooling kernels are 2 × 2 × 2,

except for pool1 which is 1 × 2 × 2. The C3D model is given an input video segment

of 16 frames and the outputs a 4096-element vector. Due to the compactness of

C3D architecture, it’s considered as a faster and efficient way to handle processing

of real-time feeds. C3D starts by focusing on appearance in the first few frames and

tracks the salient motion in the subsequent frames. C3D is generally also used as a

feature extractor for various classification and action recognition tasks.

2.5.3 Inception 3D Network

A sucessfull 3D CNN architecture used in activity recognition is the Inception 3D

(I3D) developed by Deepmind[27] and Carreira et. al [26]. Inception is a deep

convolutional neural network architecture that was first introduced in 2014. It won

the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC14). I3D is a two-

stream activity recognition network based on the well-known CNN Inception v1
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architecture. I3D recognizes activities by analyzing the temporal changes in RGB

representation and optical flow representation of images in short video clips.

Figure 2.12: Inflated 3D (I3D) network architecture [4]

The architecture of I3D is created by inflating all the filters and pooling kernels

in Inception v1 into a 3D CNN. Squared filters of size NxN is made cubic and be-

comes NxNxN filters. The pre-trained ImageNet weights from Inception v1 are

repeated along the inflated time dimension and rescaled by normalization over N.

The inflated version is further trained on the large activity recognition dataset,

Kinetics[28] Dataset which has 400 different classes and over 400 clips per class

collected from realistic, challenging YouTube videos. During training, a fixed length

clip is forwarded trough the network and the class prediction is compared to the

clip‘s true label.

Carreira et. al demonstrated that 3D CNN can benefit from pre-trained 2D CNN,

and that transfer learning is highly efficient also in activity recognition. I3D network

pre-trained on kinetics[29] provided state-of-the-art results on the activity recogni-

tion dataset called UCF-101.

The I3D neural network adds a convolution operation for adjacent temporal infor-

mation, which can complete the action recognition of continuous frame. In order to

expedite the deep network training speed, a batch regularization module is added

to the network. Since the network is not sensitive to the initialization, so a larger

learning rate can be employed. I3D increases the depth of the network, eight con-

volutional layers and five pooling layers are used. The size of the convolution kernel

of each convolutional layer is 3 × 3 × 3, and the step size is 1 × 1 × 1 respectively,

the number of filters is 64, 128, 256, 256, 512, 512.
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Figure 2.13: Inception module network architecture [4]

2.5.4 Action Localization

Many researchers have concentrated on temporal action localization in long untrimmed

videos. Jain et al[30] introduced a sampling strategy to produce tubelets with mo-

tion information from super-voxels. Many state-of-the-art approaches for spatio-

temporal action localization rely on detections at the frame level that are then linked

or tracked across time. Goal of this theis is to leverage the temporal continuity of

videos instead of operating at the frame level.

Deep convolutional neural networks (CNN) have demonstrated breakthrough per-

formance for image feature extraction, more and more studies of temporal action

localization focus on deep learning. Shou et al. used 3D ConvNets [31] to design

a multi-stage framework for temporal action localization, which explicitly took the

temporal overlap into account. They also presented convolutional networks to pre-

dict actions at the frame level granularity. The fully end-to-end network takes a

long video as input and outputs the temporal bounds of all action instances. Hou et

al.[32] proposed a tube convolutional neural network to localize actions based on 3D

convolution features. In certain developments reasearchers also tried to combine

the 3D ConvNets with multitask learning. In contrast with these complicated net-

works, we utilize deep networks to both learn the spatio-temporal information and

the high-level semantic features to effectively recognize segments in videos. More
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importantly, we introduce action pattern trees to model the temporal relationship

between segments and infer precise temporal boundaries of action instances.

2.6 Video Classification Overview

Video Classification is the task of producing a label that is relevant to the video

given its frames. A good video level classifier is one that not only provides accurate

frame labels, but also best describes the entire video given the features and the an-

notations of the various frames in the video. One of the most important components

of any Deep Learning project is an understanding of the input data being used.

Convolutional Network is modified to account for the temporal dependencies in

videos. Usually, a stack of frames is concatenated on top of each other and inputted

to the CNN. Classically, a CNN takes as input a (height x width x color channels)

matrix. For example, this could be a 224 x 224 x 3 input tensor. In these exper-

iments, previous frames are stacked on top of the color channel axis such that an

input consisting of two images frames in the video has the shape 224 x 224 x 6.

Karpathy et al.[20] propose 3 different strategies for combining frames as input to

the CNN and contrast these approaches with a baseline model of classifying frames

one at a time.

The Single Frame model is an example of classifying videos by simply aggregating

predictions across single frames/images. The Late Fusion model combines frames

by concatenating the first and last frame in the clip. The Early Fusion model takes a

larger contiguous segment from the clip. Lastly, the Slow Fusion model has a much

more sophisticated scheme in which 4 partially overlapping contiguous segments

are progressively combined in the Convolutional Layers. Experimentation found

the most individual success with the Slow Fusion strategy, although not substan-

tially greater than the Single Frame model. The best overall results were found by

averaging results across all models, (Single + Early + Late + Slow).
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2.6.1 Data Curation

Data Curation is the process of discovering, integrating, and cleaning data and

is one of the oldest, hardest, yet inevitable data management problems. Despite

decades of efforts from both researchers and practitioners, it is still one of the

most time consuming and least enjoyable work of data scientists. In most orga-

nizations, data curation plays an important role so as to fully unlock the value of

big data. Unfortunately, the current solutions are not keeping up with the ever-

changing data ecosystem, because they often require substantially high human cost.

Meanwhile, deep learning is making strides in achieving remarkable successes in

multiple areas, such as image recognition, natural language processing, and speech

recognition[33].

2.6.2 Video classification architecture

A typical video classification architecture usually follow the basic steps defined in

the Fig 2.14. First step involves collection of data in form of video, text, speech

and image from various sources, databases or cloud. Dataset is then analyzed,

cleaned and converted in subsequent steps. In data curation step(as explained in

section 2.6.1), different types of data pre-processing tasks like enhancing, smooth-

ing and noise reduction can be performed to improve the efficiency and accuracy of

the classification task. Finally, a network model is fitted with tuned parameters that

results in feature generation or classification.

2.7 Deep Learning Development Platforms

This section will give an overview of the Deep Learning libraries used during the

implementation and testing phases of this thesis. All models were implemented

using the Python APIs of the libraries presented.
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Figure 2.14: Basic steps in video classification

2.7.1 TensorFlow™

TensorFlow™[34] is an open source Machine Learning library developed by Google

to meet their needs of a system capable of developing and testing Neural Networks.

It uses data flow graphs to do numerical computations, where nodes and edges in

the graph represent mathematical operations and tensors respectively. It allows

the user to run code on both CPU and GPU, enabling faster computations through

parallelization. TensorFlow provides an extensive suite of functions and classes

that allow users to build models from scratch with abundant customization options.
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TensorFlow also facilitate making checkpoints when performing experiments and an

extensive amount of visualization options, making it a natural choice for research.

2.7.2 Keras

Keras[35] is the high-level API of TensorFlow 2: an approachable, highly-productive

interface for solving machine learning problems, with a focus on modern deep learn-

ing. It provides essential abstractions and building blocks for developing and ship-

ping machine learning solutions with high iteration velocity.
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Data Material

3.1 Dataset Overview

Dataset used in this thesis comprises of 4800 untrimmed video clips with anno-

tations. These videos were captured using different types of cameras installed at

different locations in a training & simulation facility. Based on observations we

see that a particular training session can contain videos captured from training or

simulation area, evaluation area, entry and exit points, patient monitoring screen.

Fig 3.1 shows an overall data allocation into various categories.

Figure 3.1: Initial data allocation under different categories.

35
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Since the main objective of this thesis is to identify and recognise washing hands

activity, those videos which fall into the Patient Monitoring Screen(PMS), Observers

& Others are not relevant for this work. Hence, We make use of only Activity and

a portion of No Activity videos for training and testing. Fig 3.2 shows an exam-

ple of video clips that required filtering or correct categorization during the data

preparation phase.

Figure 3.2: Shows different types of video clips in the dataset. Starting at top-left
- No activity, others(camera angle), observers, patient monitoring screen respec-

tively

Annotation provided with the dataset contains timestamps for Washing Hands ac-

tivity which are manually annotated by an observer using an app. As shown in the

listing 3.1, there could be multiple annotations per session where each session is

composed of multiple videos captured using cameras installed at various locations

in a given setting. For e.g. a static camera no 1 producing video clip SC01.m4v

constantly points toward a manikin/patient bed, Camera no 2 producing SC02.m4v

captures the activities performed by HCP from top view, Camera no 3 does the same

from side view and Camera no 4 is installed in a room where observers are remotely

observing or evaluating the HCP. We converted raw annotations to JSON for easy

object based separation and interpretability.

1 {

2 "SessionID": "file",

3 "VideoFolder": "howardcc",

4 "VideoFiles": "SC01.m4v,SC02.m4v,SC03.m4v,SC04.m4v",
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5 "Annotations": "wash hands (at 11 seconds),wash hands (at 120

seconds)"

6 }

Listing 3.1: Annotation JSON Data Format

Fig 3.3 shows an example of washing hands activity performed by a single actor.

There are many instances where multiple actors are seen performing different ac-

tions.

Figure 3.3: Trimmed video frames showing washing hands activity.

3.2 Dataset Challenges

Proposed deep Neural network methods in Chapter 5 required to be trained on a

fixed length and size (i.e. fixed number of frames). Also, it is very important for the

network to train and learn a specific type of activity. Hence, it becomes absolute

necessity to perform a data curating step in the beginning which makes it easier to

label the dataset in a supervised learning setting. Following are some of the most

common challenges encountered with the dataset.

• Long untrimmed videos with varying length and incorrect annotations.

• Session wide annotations i.e. as seen in listing 3.1, each session contains mul-

tiple text based annotations with no specific reference to a particular video(s)

containing the washing hands activity. Hence, there is a need to develop a

utility which can crop each video clip with ±5 sec window on either side of

annotated timestamp.

• Multiple annotation per session - We needed to go a step further with the clip

extraction utility to crop a given video at multiple time step windows.
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• Performed activity could not be seen due to camera angle, perspective and

video quality

• Multiple actors performing different activities at the same time

In order to overcome the challenges with the given annotations, a Data Curation

Tool 4 was developed and used.

3.3 Data Source & Extraction

In order to download the videos dataset by looping over existing annotations, a

AWSDownloaderUtility was developed and used as a starting point for this thesis.

This section depicts the procedure followed for downloading and extracting the

necessary video clips. Initial video extraction process clips a slightly larger window

of ±5 sec in order to remove the human punching error in the provided timestamps

thereby serves the purpose of refining the ground-truth labels

Algorithm 1: Extract trimmed video clips

Result:

Input: Annotation file

Output: Trimmed videos

Establish connection to cloud repo;

Read annotation file;

for each session in Sessions do

Extract annotations;

for each annotation in annotations do

for each clip in Session do

Clip video with annotation-5 and annotation+5 seconds ;

Extract clip into a specific folder;

end

end

end

https://github.com/dhimanak/UiS-VideoActivityRecognition/tree/master/AWSDownloaderUtility


CHAPTER 3. DATA MATERIAL 39

3.4 Dataset splits

When splitting the original dataset into training, validation and test sets, we de-

cided to split the video dataset based on available simulation environments so as to

include a fair amount of examples from a each such environment. The reasoning

behind this split was two fold:

1. The conditions for a particular environment might just overfit the model.

2. Splitting the dataset based on a specific simulation environment gives the best

representation of the performance that can be expected if the model is de-

ployed in a different setting and starts receiving new video data. However,

splitting the data in this fashion also creates more challenging validation and

test sets. Such a consideration also increase the possibility of the validation

and test sets containing conditions, not well represented in the training set.

This split was chosen intentionally in order to give a good representation of

performance on new videos and to prove the robustness of our architectures

through a challenging dataset split.

Figure 3.4: Shows different simulation/training environments

Although the dataset is quite large as a whole but, it still poses some challenges re-

lated to filtering relevant videos and then labeling them correctly. Most importantly,

the distribution between Washing hands and Not Washing hands videos is not

equal. Chapter 4 describes about Data Curation(DC) tool which was specifically

developed and used to reduce the size of original 10.6 hours of training examples
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with 15 seconds clips down to roughly 3.5 hours with 3 sec action snippets. Us-

ing this approach, we increase the size of training examples and feed the models

with relevant and concrete examples rather than using a fewer clips with increased

background details. Also, in order to avoid our models to develop a learning bias to-

wards Non washing hands behaviour, we are dependent on having an equal amount

of both Washing and Not Washing hands frames in our training set. We also want an

balanced distribution of Washing and Not Washing hands frames in our validation

set in order to get an accurate representation of performance.

Another major factor is the length of each video which is not fixed. Since the videos

ranges from 1000 to 20000 frames per video this produced some difficulties when

splitting the data. The size of the split was set to approximate a 60%, 20%, 20%

split, as much as possible. However to ensure an accurate representation of the

models performance on new data, we included videos from both HowardCC and

CMC hospitals. To achieve the test set size we wanted, we splitted long untrimmed

videos into multiple sub-clips. The final dataset contains 3.5 hours of videos in form

of 4000 video clips of 3 sec length, split over training, validation and test datasets

of size 64%, 18%, 18% respectively. The dataset split is depicted in the following

table.

Dataset Name Number of minutes Number of frames % of total dataset

Training 122.01 122100 64%
Validation 41.04 41400 18%
Test 41.04 41400 18%
Total 204.09 204900 100.00%

Table 3.1: Shows break-up of final dataset
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Proposed Method - Data

Curation

Due to noticeable challenges mentioned in Section 3.2, a Data curation tool was

developed and used extensively in this thesis. Data Curation tool is a user-friendly

graphical user interface based application which enables users to easily assign a

class label to a video clip.

4.1 Data curation pipeline

Data Discovery is the process of identifying relevant data for a specific task. Typ-

ically data is often scattered across a large number of tables that could range in

the tens of thousands. As an example, the user might be interested in identifying

all tables describing user studies involving insulin. The typical approach involves

asking an expert or performing manual data exploration [8]. Data discovery could

be considered as identifying tables that match a user specification (e.g., a keyword

or an SQL query).

Figure 4.1: Data curation pipeline
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4.1.1 Data discovery

With regards to the dataset used for this work, we start the process by discovering

and matching video files using ground-truth annotation data and looping over all

evaluation sessions. Typical process of data discovery includes extraction, filtering

and clipping the files for necessary time interval i.e ±5 sec .

4.1.2 Entity resolution

Entity resolution (ER) is the task of disambiguating records that correspond to

real world entities across and within datasets. One of the major goal and prelimi-

nary contribution involves development of a tool which helps classify data manually

through human intervention. This manual labelling tools allows user to load a set

of video files, create a number of classes and assign a class per video. In order to

achieve efficiency while annotating the videos, this tool listens to keypress events,

increase/decrease video playback speed and moves on with the next video in the

playlist while filtering out video clips which have already been assigned a label.

Figure 4.2: Graphical User Interface - Data Curation Tool

Data Curation Tool

https://vimeo.com/543367628

Fig 4.3 shows flowchart for Data Curation Tool in detail.

https://vimeo.com/543367628
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Play selected video or continue playing
from top of playlist.

Start
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keypress?

Choose a class at the end
of the video
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Start

No

No

Yes

Yes

No

Video Clips

Figure 4.3: Flowchart for Data Curation Tool

Additional functionality which allows generation of temporal points was also devel-

oped in Data Curation tool. Temporal point(s) are the moments in the video clips

indicating an action instance. This corresponds to the scenario where an annotator

would simply click press a key to indicate an action while the video is being played,
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instead of precisely specifying the time boundaries. We then create a candidate

interval around that time point with a fixed size of 45 frames in 3 seconds i.e 15fps.

Program also allows annotators to find continuous regions where they can input

multiple key strokes over a temporal domain while the activity is being performed.

We then extract the region based on continuity of annotations over an interval. Re-

gion of non-continuous annotation portion is clipped out as an instance of negative

bag whereas a positive instance contains the clips extracted within a boundary of 3

sec.

4.1.3 Data cleaning

Data Cleaning means the process of identifying the incorrect, incomplete, inaccu-

rate, irrelevant or missing part of the data and then modifying, replacing or deleting

them according to the necessity. As a part of data cleansing process, we remove ir-

relevant video files for e.g. videos showing only monitoring screen, manikin, only

audio etc.



Chapter 5

Proposed Method - Activity

Recognition

This chapter presents an overview of the proposed method and explains training &

testing pipeline with the implementation details.

AWS Downloader
Clip Extractor Utility 

Original Annotation
File

Data Curation
Tool I3D Network

Model
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Format

Generates
model

checkpoints 

Video Clip Length 
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Figure 5.1: Pipeline for proposed method

5.1 Method Overview

Fig 5.1 presents proposed pipeline depicting an overall approach applied in this

work. Proposed pipeline can easily be explained in two steps : 1) Data Preparation

stage 2) Activity detection. Overall approach is explained in the following sections.
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3D CNN Classifier Measure overall
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Has results
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Figure 5.2: A visualization of training and testing pipeline

Fig 5.2 shows proposed training and testing approach in detail. It starts with a

data preparation layer where input data and annotation format is created in such

a way that it’s easier to plug-in into an existing network model. In the next layer,

an action detection network is fed with fixed length frames per clip to understand

spatio-temporal features in the dataset. Finally, a fully connected layer with activa-

tion function classifies the clips into WashingHands or NotWashingHands class. A

number of iterations with refining and fine tuning of hyper parameters is needed to

reach the desired performance levels.

5.1.1 Training Setup

5.1.1.1 Data preparation

As a part of data preparation phase, video clips are converted into fixed length

RGB frames and an annotation format is prepared. For most of the commonly used

network models an annotation format contains path for input data and ground truth

labels. Table[5.1, 5.2] shows annotation format needed for I3D and C3D action

detection network models.
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Annotation Path Label

/train/simcap01 0 /train/simcap01/ 0
/train/simcap02 1 /train/simcap02/ 1
/train/simcap03 0 /train/simcap03/ 0

Table 5.1: Annotation format used for I3D

Annotation Path # of Frames Label

/train/simcap01 1 0 /train/simcap01/ 1-16 0
/train/simcap01 17 1 /train/simcap02/ 17-32 1
/train/simcap01 33 0 /train/simcap03/ 33-49 0

Table 5.2: Annotation format used for C3D

5.1.1.2 Spatial stream

The spatial stream consists of a Convolutional Neural Network(CNN), taking indi-

vidual video frames as input. Spatial Stream could be able to learn a correlation

between the spatial properties of health care providers, and which class of behav-

ior is exhibited in a particular frame. For learning long term temporal information,

different previous works have used a dual streams as input. It consists of a 3D-

Convolutional Neural Network (3D-CNN), taking Optical Flow, generated from the

videos, as input. By using Optical Flow as input, the Temporal Stream could learn

motion features. Based on time limitations on this thesis, we could not complete our

experiments using Optical flow.

5.1.1.3 Final Classification Layer

Since we only have two classes in our dataset, Washing hands and Not Washing

hands, we will be using the same final classification layer for all the architectures

presented in the remainder of the thesis. Since we use the same dataset for all the

methods, we needed to change annotation formats and make initial adjustments in

the data preparation phase. Our classification layer consists of a single output, soft-

max activated, fully connected layer. The softmax activation returns the probability

our output to a range between 0 and 1 based on the given threshold, thus enabling
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us to represent our two classes as 0 and 1 for Not Washing Hands and Washing

Hands respectively. When calculating the model accuracies, we round the outputs

to the nearest integers by forcing every number < 0.50 to 0 and every number 0.50

to 1. Thus we have the following prediction intervals for our two classes:

1. Not Washing Hands = [0.0, 0.50]

2. Washing Hands = [0.50, 1.0]

Hyper-Parameters Description

Learning Rate
Controls the rate at which the model learns by scaling
the gradient’s effect on weight updates

Decay rate Decays learning rate reduces the learning rate over time
Data Length Number of frames per clip

Batch Size
Number of training samples to be fed into the network
before model’s internal parameters are updated

Epochs
Number of times training dataset pass through
the network

Table 5.3: List of common hyper-parameters for Activity detection network

5.1.1.4 Hyper-Parameter Tuning

The action detection network depends on different tunable hyper-parameters. In

order to compare the results, all methods were initially set to use same hyper-

parameter values. Idea behind hyper-parameters tuning is to find a value which

should converge the network to a global minima and improve the speed of conver-

gence. Table 5.3 shows a list of most common hyper parameters among all the

methods.

5.1.2 Testing Setup

5.1.2.1 Data Preparation

Process of creating data for testing set differs slightly from training set. In case of

testing set, about 100 unseen videos of varying length were collected and cropped
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into multiple 3 sec clips i.e. for a 5 minute long video 100 sub-clips were generated.

All sub-clips were manually labelled using the Data Curation approach mentioned

in Chapter 4. Main reasons behind such a data preparation method is two-folded:

• Easier to verify model correctness by looking at clip probabilities.

• Performing activity localization on sequentially arranged clips gets easier. Mul-

tiple clips can be combined by doing reverse engineering. In addition, activity

localization timelines are produced using the resulted probabilities.

Annotation Path Label

/train/clip01 0 /train/clip01/ 0
/train/clip02 1 /train/clip02/ 1
/train/clip03 0 /train/clip03/ 0

Table 5.4: Annotation format used for Testing set

5.1.2.2 Model Evaluation

Annotation format in table 5.4 is used as input to the best model generated as a

result of model training. Testing process predicts per clip probabilities, which are

then used to do a binary classification based on threshold values specified during

the evaluation phase. We produces a confusion matrix based on results in Washing-

hands and NotWashingHands classes and use performance metric which calculates

sensitivity and specificity of the model.

5.2 Implementation Details

5.2.1 Computational platform

To evaluate the proposed action recognition system, we train and test the mod-

els on Tesla P100-PCIE-12GB GPU Server. The experiments were conducted using

Python 3.5 that utilizes Tensorflow backend with Keras library and NVIDIA CUDA

9.0 library for parallel computation.
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5.2.2 Source References

We referred to open source implementation of different renowned networks:

• I3D https://github.com/LossNAN/I3D-Tensorflow

• C3D https://github.com/lianggyu/C3D-Action-Recognition

• Five Video Classification Methods

https://github.com/harvitronix/five-video-classification-methods

Developed and used following sources to be able to comprehend and implement the

network models used in the remainder of this thesis:

• Data Curation Tool

https://github.com/dhimanak/UiS-VideoActivityRecognition/tree/master/MediaClassifier

• AWS Downloader and extraction Utility

https://github.com/dhimanak/UiS-VideoActivityRecognition/tree/master/AWSDownloaderUtility

5.3 Network Models

Several state of the art activity recognition methods were experimented and imple-

mented as an attempt to solve the objectives of this thesis. We will try to emphasize

more on two renowned and most commonly used methods namely I3D and C3D and

come up with the best optimal network model which has shown better results on

our dataset.

5.3.1 I3D Network Implementation

In order to train I3D network (as presented in section 2.5.3), input files with anno-

tation format specified in section 5.1 needs to be formulated. As a starting point,

videos clips are converted into RGB frames and sampled with different frame rates

during each training experiment. the videos are resized preserving aspect ratio so

https://github.com/LossNAN/I3D-Tensorflow
https://github.com/lianggyu/C3D-Action-Recognition
https://github.com/harvitronix/five-video-classification-methods
https://github.com/dhimanak/UiS-VideoActivityRecognition/tree/master/MediaClassifier
https://github.com/dhimanak/UiS-VideoActivityRecognition/tree/master/AWSDownloaderUtility
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that the smallest dimension is 256 pixels, with bilinear interpolation. Pixel values

are then re-scaled between -1 and 1. During training, we randomly select a 224x224

image crop with 3 channels. I3D’s Inception module is pre-trained on Kinetics[28]

and Imagenet[36] datasets.

Figure 5.3: Learning rate Figure 5.4: Model Loss

Figure 5.5: Fig representing learning rate and model loss plots during I3D network
training

I3D network architecture presented in section 2.12 For RGB, the videos are resized

preserving aspect ratio so that the smallest dimension is 256 pixels, with bilinear

interpolation. Pixel values are then rescaled between -1 and 1. During training, we

randomly select a 224x224 image crop with 3 channels. RGB I3d Inception module

is pre-trained on Kinetics dataset and Imagenet datasets. Fig 5.5 shows I3D training

plots.

5.3.2 C3D Network Implementation

In order to use C3D implementation, RGB frames from each clip were ordered se-

quentially and associated annotations were prepared in the format as shown in sec-

tion 5.2.

C3D network resizes all video frames to 128×171 in a C3D Network. The input

dimensions are 3×16×128×171. Random crops with a size of 3×16×112×112 of

the input clips are used during training. The networks have 5 convolution layers

and 5 pooling layers (each convolution layer is immediately followed by a pooling

layer), 2 fully-connected layers and uses a softmax loss layer to predict action labels.

The number of filters for 5 convolution layers from 1 to 5 are 64, 128, 256, 256, 256,

respectively as shown in C3D network architecture here 2.11.
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Figure 5.6: C3D model training

C3D network needs video input as sequences of frames or video files. In the case

of video files (.mp4,.m4v .avi, .mov), machine needs to have codecs, opencv, and

ffmpeg installed properly. In the case of using frames, C3D assumes that each video

is a folder with frames which are numbered starting from 1 to N (number of frames).

The frame names are formatted as "video_folder/%06d.jpg”.

We have also generated I3D features in .npy format for further analysis and experi-

ments.

Hyper-parameters used for C3D network are as shown in Table 5.3



Chapter 6

Experiments & Results

6.1 Preliminary Experiments

Section 2.5 presented several state of the art human activity recognition approaches

which considered 3D convolution networks as a basis for their work. In order

to baseline the results, different experiments were conducted to supplement our

decision of exploring further on 3D CNN with multi layer perceptron approach.

Therfore, following approaches were considered to baseline and develop our under-

standing on the dataset.

• Classify one frame at a time with a CNN

• Keras time-distributed CNN and passing the features to RNN

• Extract features with a CNN, pass the sequence to a separate RNN

First approach uses transfer learning by using pre-trained weights on inceptionV3

and ignores the temporal features as it attempts to classify each clip by looking

at a single frame. Next, we trained the network on Keras time-distributed CNN

for also capturing temporal information and passing these features to RNN in a

single network layer. Finally, a 3D CNN is experimented with fewer convolution

and pooling layers followed by LSTM layer. Following table shows training and

validation accuracies achieved using all 3 methods.
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Model Train Accuracy Validation Accuracy Top-1

CNN - Single Frame 46.6% 46.2% 48.7%
Keras Time Distributed 49.2% 52.5% 51.5%
3D CNN 52.5% 53.2% 53.8%

Table 6.1: Table showing results of preliminary approaches

For single-frame & Keras time-distributed models, training & validation accuracy

ranges between 45-51%. Keras time-distributed claims to learn temporal features

however the network is too shallow to understand temporal features, hence the ac-

curacy is not significant. On the other hand, 3D CNN with fewer layers increases

the number of parameters significantly due to 3D kernels and pooling layers how-

ever it also fails to produce an acceptable accuracy but performs better than Single

frame and Keras time distributed. This further strengthens our belief that a multi-

layer perceptron(MLP) i.e. a deeper 3D CNN network should be experimented so

that the model learn spatio-temporal features when shorter video clips are used

as input. As explained in Chapter 5, We experimented on two different methods

namely C3D & I3D to baseline our approach on RGB frames.

6.2 Experiment 1

This was more of a proof-of-concept experiment where annotation format on a smaller

dataset were prepared and used on state-of-the-art I3D and C3D implementations.

These implementations were adapted to work with our dataset. It required us to

modify parts of code where logic for data preparation exists. No hyper-parameter

tuning was performed in this experiment. This test just made sure that a complete

code implementation cycle works end-to-end with raw data. No significant perfor-

mance gains were recorded in this experiment.

6.3 Experiment 2

In this experiment, a total of 1000 video clips were divided into training and val-

idation set where each 10 sec clips was downsampled to 90 frames. Following

hyper-parameters were used while training the network.
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Hyper-Parameters C3D I3D

Learning Rate 0.005 0.0001
Optimizer SGD ADAM
Max steps 12000 12000
Number of Frames per clip 90 90
Batch Size 16 16
Training Accuracy 78.7 % 95.2%
Testing Accuracy 56.7 % 60.2%

Table 6.2: Shows hyper-parameters and model accuracies

Figure 6.1: Shows training and validation accuracies which suffers from overfitting
due to class imbalance

Fig 6.1 shows that training accuracy kept increasing while the validation accuracy

hovers around 50%. This clearly indicates that we should have a balanced dataset

with shorter clips. This experiment suffered from overfitting due to class imbal-

ance and longer video clips(i.e. 90 frames).

6.4 Experiment 3

Based on observation from the previous experiment, significant changes were made

to the input data and annotations. Table 6.3 depicts all hyper-parameter settings.

Following noticeable changes were made to the input data:

• Number of input video clips increased to 4000 by annotating and splitting

existing 10 sec clips to 3 sec.
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Hyper-Parameters C3D I3D

Learning Rate 0.005 0.005
Optimizer SGD SGD
Max steps 12000 12000
Number of Frames per clip 45 45
Batch Size 16 16
Training Accuracy 71 % 73.2%
Testing Accuracy 61.7 % 64.2%

Table 6.3: Shows hyper-parameters and model accuracies

• We record every other frame which reduces it to 45 frames per clip.

• Balanced data allocation into both the classes.

6.5 Experiment 4

This experiment attempts to fine-tune hyper-parameters in order to achieve better

accuracy and produce an efficent model. Based on previous experiments, For I3D

model, training and validation loss stops improving after 9000 steps. Test accuracy

hovers around 65% with the current settings.

Hyper-Parameters C3D I3D

Learning Rate 0.001 0.0001
Optimizer ADAM ADAM
Max steps 10000 10000
Number of Frames per clip 45 45
Batch Size 16 16
Training Accuracy 72.5 % 74.3%
Testing Accuracy 64.7 % 67.2%

Table 6.4: Shows hyper-parameters used and model accuracy

Hence, we cut-down number of steps on I3D. I3D with SGD consumes less mem-

ory, however we don’t see any significant improvements in training and validation

accuracies. C3D on the other hands performs slightly better when learning rate is

reduced and optimizer is changed from SGM to ADAM.
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Figure 6.2: Shows training and validation accuracies with C3D approach

6.6 A closer look at results

Based on above experiments, it becomes evident that both C3D and I3D network

models nicely adapt to the activity recognition problem. I3D being a deeper network

tries to also learn temporal features better than C3D. Instances where washing

hands activity is recorded over multiple frames across many clips, networks often

tend to show a lag in activity localization(especially with C3D where a clip can only

contain 16 frames) as shown in Fig 6.10. Also, reducing the number of frames per

clip plays a vital role in achieving the accuracy. Following are the instances where

networks models often show false negatives :

• Activity is not clearly visible for e.g. instances where static camera manages

to only capture hands of health care providers.

• Camera angle obscures the washing hands activity completely.

• Video Quality and occlusion makes it difficult for the model to recognise the

activity

• Multiple actors performing different activities

• Activity is visible only for just a fraction of second.
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Figure 6.3: Visualization of ROC curve using I3D approach

Figure 6.4: Visualization of Confusion Matrix

Fig 6.3 presents the ROC curve for the best model applied on the testing dataset.

Best model gives an overall Test accuracy of accuracy: 0.672, AUC:0.84.

Fig 6.4 shows the confusion matrix on test dataset with 1656 video clips.

Fig 6.5 shows a visualization where model wrongly classifies an action as washing

hands activity. Fig 6.6, 6.7 shows instances where model correctly localized washing

hands activity. Fig 6.10 shows activity localization on 4 different videos.
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Figure 6.5: Shows an instance where model wrongly classifies an action as washing
hands

Figure 6.6: Shows an instance where model correctly classifies it as a normal event
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Figure 6.7: Shows that model correctly classifies the video clips as positive class
i.e. Washing hands

Figure 6.8: Shows that model correctly detects washing hands activity
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Figure 6.9: Shows that model correctly detects washing hands activity
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Chapter 7

Discussions

This chapter discusses the achieved results and addresses limitations within the

experiments. The reference results are used as a baseline for comparison

7.1 Dataset Challenges

The dataset included varied length video recordings with inconsistent picture qual-

ity due to camera settings, environment settings, light conditions etc. Camera loca-

tion, angles, perspectives and distance from the region of interest also play a vital

role in determining the quality. It turned out that around 40% of the video data was

discarded as it was not relevant for detecting washing hands activity due to vari-

ous challenges discussed in chapter 3. Moreover, provided annotations were found

to be unreliable and required further cropping and re-labelling. Analyzing the test

results, it appears that motion blur, multiple objects, occlusion, activity occurring

close to corners/edges of camera’s aspect ratio were common factors for failed de-

tections. Better camera angles and consistently high frame rates could limit, or

even eliminate such issues.

Data Curation tool discussed in chapter 4 apparently solved the dataset challenges

by filtering, cropping and annotating but it also required human intervention and

supervision. This tool is good for quick data verification, creation of test datasets

for proof of concept application but with deeper networks and ever-growing need of
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data, using such a tool can quickly become resource intensive and tedious. There-

fore, an approach with weak supervision that can group similar objects by using

cluster based classification must be tried.

7.2 Network configuration & Pipeline

Different methods were attempted in order to solve the activity recognition prob-

lem. C3D and I3D network models produced better baseline results compared to

the preliminary basic network models like single frame classification & aggrega-

tion, time-distributed Keras with RNN. We tried to tune the network by adjusting

hyper-parameters like learning rate, samping rate, number of steps, optimizers but

training and validation accuracies did not improve. Many related works [4],[37] em-

phasized on using two stream i.e. a network model taking RGB frames and optical

flow frames as input and fuse them toward the end of the network pipeline. This

approach has shown state of the art results on UCF101 [19]- an action recognition

data set having 101 action categories.

Different network models were tried so that we can compare the results and choose

a baseline approach with optimal network configurations. For a fair comparison

we tried to adopt similar network configurations as much as possible. However,

there are differences in critical parameters for C3D & I3D networks such as input

image size and number of frames per clip which can compromise the fairness of the

comparison to some extent.

Experiments with shorter video clips greatly improved the performance. However,

the network models used do not use any attention mechanism which means that it

may require a lot of data for deeper video understanding. A better approach could

be to use self-attention mechanism which can focus on a particular type of action

for e.g. hands motion and body movement. Another approach would be to generate

actor tubelets and use those as input to the network model[30].
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7.3 Results

To better analyze the explained methods and the contributions of each one of them,

the results obtained for mentioned datasets are compared in table 6.1 and table 6.4.

For each method, the achieved accuracy values for the video datasets is also shown.

In terms of network performance, we are basically looking for a model with a fewer

false positives.

Compared with all the methods used in this thesis, C3D and I3D network models

outperformed throughout all experiments. Top results were attained in Experiment

4 where the networks are trained with shorter video clips. Performance of both C3D

and I3D models showed much better results compared to preliminary approaches

discussed in table 6.1. Reason C3D works well is because it can create hierarchical

representations of the spatio-temporal data but the main issue with C3D and in

general 3D ConvNets is that it requires a lot of parameters because of 3D kernels

which thereby also increase the dimensionality of the model. On the other hand, I3D

uses pre-trained weights i.e. the implementation we adopted has been first trained

on imagenet[36] and then on kinetics[28] dataset. Also, C3D is a shallow network

model with 8 layers compared to I3D model which is a much deeper network, while

having much fewer parameters because of pre-training. Hence, we propose I3D

network model for further any improvements in this thesis.

In Experiment 1 & Experiment 2, all methods are trained on 10 sec long videos clips

(down-sampled to 90 frames). This means that for C3D network training, we had

to create 5-6 sub-clips per videos because of network model limitation of 16 frames

per clip. In a fully supervised setting, generating correct annotations for all the

sub-clips can quickly become tedious and resource intensive task. This was not the

case with I3D model because of the flexibility and network architecture. Overall

results with these experiments were not so significant but it triggered a need for

shorter clips and further model tuning.

Experiment 4 shows that number of false positives have reduced manifold due to the

fact that a balanced dataset with shorter clips and reliable annotations is fed into

the networks. C3D reported network’s training and validation accuracy around 72%
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with a slightly lower test data accuracy of 65% as shown in table 6.4. Experiment 5

is an attempt to better the results by tuning the hyper-parameters.

We have a noticeable performance improvements with correct labelled annotations

and shorter video clips.

Chapter 6 shows certain instances where model predicted false and true positives.

Analyzing the results led to the conclusion that I3D seems to outperform other net-

works models and methods when applied on detecting and localizing Washing-

Hands activity. However, model results have only been evaluated on RGB frames

which can easily be extended to also include optical frames and self-attention mech-

anisms explained in various human activity recognition problems.



Chapter 8

Conclusion

The objective of this thesis was to recognize and localize WashingHands activity

using Deep learning techniques. During the course of this thesis, we managed to

experiment with different deep learning methods in order to baseline & stabilize our

results. However, initial data analysis posed multiple challenges with the ground-

truth labels which triggered a need for a Data Curation tool as explained in Chapter.

In this thesis, a 20-25% of the time was spent on development of Data Curation

tool and using the tool to create shorter video clips and annotate them correctly.

Main motivation behind developing this tool was user friendliness, reusability and

adaptability in any given setting.

After data preparation, several preliminary experiments were conducted on top of

extracted C3D features such as LSTM, Keras time-distributed followed by plain 3D

CNN. Among these preliminary methods, 3D CNN with few layers performed better

than others i.e. training accuracy improved over time but resulted in too many false

positives for e.g. instances where health care providers entrying and exiting the

rooms, standing near the sink & talking with motion of hands were classified as

true class. Hence, this triggered a need of trying a deeper network which can learn

the spatio-temporal features on available video dataset.

Later, we decided to use existing state-of-the-art renowned network models namely

C3D and I3D. In order to work with C3D and I3D which required us to organize

the dataset and create specific annotation formats. Several experiments were con-

ducted. In the earlier experiments, it became obvious that video clips of 10 sec

67



CHAPTER 8. CONCLUSION 68

length downsampled to 90 frames was a very broad experiment (i.e. network had

too much to learn) which resulted in too many false positives. Hence, we needed to

further crop our video dataset to 3 sec video clips and consider every other frame

to make it 45 frames per clip. This experiment with fine-tuning hyper-parameters

achieved better results i.e. fewer false positives and better AUC. I3D performed

better in terms of testing accuracy on unseen videos. Overall accuracy attained by

I3D network was 68%.

8.1 Future Work

Multiple Instance Learning (MIL) A key bottleneck in creating training data is

that there is often an implicit assumption that it must be accurate. However, it is

often infeasible to produce sufficient hand-labeled and accurate training data for

most deep learning tasks. This is especially challenging for DL models that require

a huge amount of training data. Also, generating labels manually is a tedious and

time consuming task. We should instead experiment with a weakly supervised ap-

proach as explained below.

Multiple Instance Learning is an algorithm for supervised learning, where anno-

tations are not provided for each instance, but only for bags of instances. The

main assumptions in this regime are that a positive bag should contain at least one

positive instance, while a negative bag should contain only negative instances. Gen-

eralized variants of MIL presume the presence of more than one positive instance

per bag, for problems such as content-based image retrieval. General approach and

implementation has been nicely put up [38]

Attention based networks Based on the experiments and results, we see that

model accuracy stops to improve after a certain point. A possible improvement to

this work would be to add self-attention or using attention based networks for e.g.

Dai et al. [37]

Optical flow Due to time constraint on this work, current network models were only

trained on RGB frames. This can be easily extended to also include strong temporal

correlation by adding optical flow data. Many different networks and related works
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Figure 8.1: Frame 1

have shown better results when optical flow data is also included to make it a two-

stream network model.

Tubelet proposal network In an attempt to generate proposals from videos, we

used pre-trained YOLO v3 weights to detect health care providers but due to time

constraint this was not materialised. However, the idea is to detect actors with

their bounding boxes as show in fig 8.1 and create actor tubelets by actors across

multiple frames and train the networks.

With Tubelet proposal network approach, rather than sending whole RGB frame,

multiple tubelets can be served as input to the network thus reducing the back-

ground noise and allows network to focus only on details. Similar work was done

here [39]
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Figure 8.2: Frame 2
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