
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program/ specialization: Spring semester, 2021

Computer Science Open

Specialisation Reliable and Secure Systems

Author: Joel Fabiean Joseph

Instructor: Reggie Davidrajuh

Supervisor(s): Reggie Davidrajuh and Naeem Khademi

Title of Master’s Thesis:

Developing Models of Road Tunnels with Petri Nets

ECTS: 30

Key words: Pages:

Road tunnel, GPenSIM, 74

Petri net, Single-lane Stavanger 15. June 2021

Developing Models of Road
Tunnels with Petri Nets

Joel Fabiean Joseph
June 2021

Department of Electrical Engineering and Computer Science
Faculty of Science of Technology

University of Stavanger

Contents

Content i

Abstract v

1 Introduction 1

1.1 Motivation . 1

1.2 Related work . 2

1.3 Outline . 3

2 Background 4

2.1 Petri net . 4

2.1.1 Timed petri net . 5

2.1.2 Colored petri net . 5

2.1.3 Prioritized petri net 6

3 Program Design 7

i

CONTENTS

3.1 Assumptions . 7

3.1.1 Blind vehicle . 7

3.1.2 Constant Speed . 8

3.1.3 Constant Acceleration 8

3.1.4 Trigger upon discovery 8

3.1.5 global event . 8

3.2 Model Design . 9

3.3 Computation . 10

3.4 Token design . 11

4 Implementation 13

4.1 Program description . 13

4.2 Petri net Definition File . 13

4.2.1 Tunnel segment module 14

4.2.2 Tunnel PDF . 15

4.3 Variables . 17

4.3.1 Token Variables . 17

4.3.2 Event structure . 18

4.4 Functions . 19

4.4.1 GPenSIM functions 19

ii

CONTENTS

4.4.2 FindElement . 20

4.4.3 ComputeDistance . 21

4.4.4 Element2Char . 23

4.4.5 VLengthGenerator 23

4.4.6 FindVLength and RemoveVLen 24

4.4.7 EventHandler and RemoveEvent 24

4.4.8 ComputeSegment . 24

4.5 Processors . 25

4.5.1 Generator processor 25

4.5.2 Segment processor 25

4.6 Main simulation file . 26

5 Simulation 28

5.1 Initial parameter . 28

5.2 Constant speed . 29

5.3 Different speed . 29

5.4 Constant speed with event 29

6 Result and discussion 30

6.1 Simulation result . 30

6.2 Discussion . 32

iii

CONTENTS

6.3 Further work . 33

6.3.1 Extend to multiple lanes 33

6.3.2 Multiple events . 33

6.3.3 Non-blind drivers . 34

6.3.4 More user friendly 34

7 Conclusion 35

Reference 37

Appendix 37

A User manual 38

B Program code 39

iv

Abstract

This thesis aimed to develop a mathematical model using a Petri net to
simulate the traffic flow inside the road tunnel. The purpose was to cre-
ate a single-lane tunnel that could simulate the flow while also including
an event, which slows down a vehicle to cause congestion. The program
uses modules to divided the tunnel into smaller segments and compute the
vehicle distance inside these segments. Three different simulations using
four tunnel segments yield an expected outcome, except for higher vehicle
numbers due to the tunnel segment being too long. The program is still not
usable and requires further development before put into practice.

v

Chapter 1

Introduction

1.1 Motivation

When deploying a road tunnel, several factors have to be taken into con-
sideration during construction. One crucial factor is the security inside the
tunnels since the accident is more severe than accidents outside. Therefore,
it is vital to construct the tunnel to prevent an accident. However, it is then
essential to implement several tools to detect as fast as possible and execute
an appropriate method to solve the issue if it does happen. Another crit-
ical factor is the driver’s well-being as the environment inside the tunnels
is much darker and cramped, so it is crucial to improve the well-being and
prevent or reduce the traffic queue. Using a simulation tool to simulate the
traffic flow inside the tunnel would help determine how to construct a tun-
nel to solve issues to prevent or mitigate the possibility of a traffic queue.
A simulation tool could also simulate the traffic flow during an accident,
which could improve the current strategies for dealing with traffic flow or
improve existing detection tools.

1

1.2 Related work

1.2 Related work

There are several mathematical models for traffic flow or collision. The
authors of a paper created a queuing model based on traffic counts and
model the behavior of traffic flow as a function of relevant determinants
[10]. Another research created a crash-prediction model using road tunnel
data from 2006-2009 of a single tube tunnel with unidirectional traffic [2].
There have also been developed other types of models using Petri net. One
paper proposed an extension for triangular Batch Petri net, which is a
hybrid Petri net, for better applicability for urban and road traffic [9]. A
different paper using a fluid stochastic Petri net, which again is also a hybrid
Petri net. This paper modeled a car safety controller in a road tunnel to
have vehicles communicate to keep a certain distance between each other
[1].

2

1.3 Outline

1.3 Outline

During the thesis, the chapters are organized as follow:

Chapter 2 describes what Petri net is and the extension of the Petri net
used in this program.

Chapter 3 introduces the assumption of the program and the description
of the program setup idea.

Chapter 4 presents the implementation of the program and the different
functions created for this program.

Chapter 5 provide three different simulation tests and the expected output.

Chapter 6 discuss the output of the simulation and describe further work
to improve the program.

At the end is a conclusion of everything presented.

3

Chapter 2

Background

This chapter presents an understanding of the Petri net and its different
extensions of the Petri net. It will also go through the formulas used to
realize the system.

2.1 Petri net

Petri net is a discrete mathematical graph model used for simulation and
analysis. The Petri net consists of two components, which are places and
transition. These components make up the static model of the system. The
Petri net uses tokens to display the dynamic portion by traversing through
the static model.

The first component mention is the places. These places serve as a place-
holder or buffer for the tokens. A place cannot directly connect with other
places, but it can connect with multiple transitions. The second component
is the transition. They are used to transport the tokens between places.
The transition cannot directly connect with other transitions but can con-
nect with multiple places. The Petri net uses tokens, which symbolize an
object that traverses through the system. The token itself has no value and
only displays how the object in the Petri net flows through the system.

4

2.1 Petri net

The connection between a place and a transition is called an arc. The arc
is unidirectional, meaning it is either connected from place to transition
or from transition to a place. The arc in Petri net at default takes one
token, but the arc could also be weighted, increasing the number of tokens
it requires.

The process of a transition taking a token from a place is called enabled
while sending a transition to a place is called fire. A transition can only be
enabled when the number of tokens in a place is greater than or equal to
the weight of the individual arc. Thus, a transition can take a token from
multiple places but can only be enabled when the arc of all those places
has the correct number of tokens; when the transition fire, The arc from
the transition to the place will then produce a token corresponding with its
weight.

The classical Petri net has some weaknesses or problems, but these issues
are solved using different extensions. Therefore, this chapter will not discuss
all of them but rather the ones used in the program.

2.1.1 Timed petri net

In classical Petri net, the transition fire immediately, the firing time is zero.
However, in the real world, the action does not happen immediately but
takes time. An extension called timed Petri net solved this issue. This
extension allows the transition to hold the token for a certain amount of
time and fire. However, the timed Petri net is not backward compatible
with the classical Petri net; all the transitions require a time value different
from zero.

2.1.2 Colored petri net

Tokens in the Petri net do not possess any value but are all equal and
indistinguishable. However, the colored Petri net introduces the ability to
distinguish tokens by giving them values. In addition, the colored Petri net
allows a token transition to choose a specific token based on arrival time or
a specific value.

5

2.1 Petri net

2.1.3 Prioritized petri net

If two transitions take tokens from the same place, which transition will take
the token? There is no specified method in classical Petri net, meaning both
transitions will compete for the token. The competition causes the system
to be unpredictable and leads the token to be chosen by an undesirable
transition. The extension of prioritized Petri net introduces the ability
to prioritize which transition can choose first. Instead of a competition
between two transitions, the transition with a higher priority will take the
token before the next transition gets to chose.

6

Chapter 3

Program Design

This chapter present with the design of the model used for the implementing
the program and the different methods used to compute or decision making.

3.1 Assumptions

Several assumptions had to be defined when implementing this program due
to a lack of data or the Petri net itself.

3.1.1 Blind vehicle

The first assumption is that vehicles in the tunnel cannot see other vehicles
in front or behind. This assumption is due to the transition only work
with one token at a time. When defining the arc, we can choose how many
tokens to take, but it has to be an equal or higher number of tokens in the
transition to be enabled. If we were to take two tokens, the program would
never run if there was only one token. Another problem is that transitions
are only aware of the value of the tokens, but not what they did previously.
The vehicles are not aware of each other.

7

3.1 Assumptions

3.1.2 Constant Speed

In a real-life situation, the vehicle speed varies over time and has a speed
approximate to the speed limit in the tunnel. In this implementation, the
vehicles have a constant speed, and the speed will match the speed limit
unless something else is specified.

3.1.3 Constant Acceleration

Inside the tunnel, the speed limit might change. When a vehicle starts
changing the speed to match the speed limit, it has to accelerate. Of course,
the vehicle’s acceleration is not the same for all vehicles, but the program
assumes that they all accelerate with a constant acceleration unless speci-
fied. The reason is that the vehicle is not aware of each other, to prevent
inconsistency in their movement, they operate with a constant acceleration.

3.1.4 Trigger upon discovery

Another assumption to react immediately. When a vehicle sees a speed
sign, it may start changing the speed before passing it or after. In this
simulation, if any situation causes a change to the vehicle, it will react at
the speed sign, aka at the new segment. This is due to the difficulty of
simulating a person’s reaction time or the driver’s behavior. For the sake
of simplicity, it will trigger immediately.

3.1.5 global event

In this program, there is an event, which slows down the speed of a vehicle.
Upon triggering, all vehicles that are behind the position of the event will
take immediate action. This is due to assumptions from 3.1.1 and 3.1.2.

8

3.2 Model Design

3.2 Model Design

Figure 3.1: Double-lane road tunnel [7]

The idea behind the design of the program was easy deployment and ex-
pansion. The current model consists of three different components.

The first component is the generator, which simulates the vehicles’ arrival
time and sets the vehicle’s initial value. These values are:

• Speed

• Distance

• Length of the vehicle

• Event

The second component is a tunnel segment. This component’s purpose is
to compute the position of the vehicles in the tunnel. A tunnel segment is
a module that consists of one place and three transitions.

9

3.3 Computation

Figure 3.2: Petri net module of tunnel segment

The first transition represents an entry point of the tunnel segment. A ve-
hicle can enter the segment only if there is enough space inside the tunnel.
The second transition is for computation, where it computes the new po-
sition of the vehicle. The last transition is the exit point of the segment,
and this transition only fires if there is enough space in the next segment.
If there is not no more segment, it will just fire.

The last component is the buffer, which only consists of a place. These
buffers can be found right before the entrance of the tunnel and after the
end. The placement of the buffers is between the tunnel segments. These
buffers currently act as a placeholder for tokens during the transitions of
segments.

3.3 Computation

The single-lane tunnel can be seen as one-dimensional since they only need
to consider the x-coordinate. The computation that occurs in the tunnel is
to find the displacement of the vehicle. The formulas used in the programs
are:

10

3.4 Token design

ts − tl =

{
1,≥ 1

t, otherwise
(3.1)

d = d0 + vt+
1

2
at2 (3.2)

d = d0 + vt (3.3)

Equation 3.2 is the displacement formula with constant acceleration. Value
d0 is the current displacement of the vehicle, v is the velocity, a is the
acceleration and t is the time. If the acceleration value is zero, it will
become equation 3.3. This formula is to compute the displacement, when
the velocity is constant.

Equation 3.1 is to compute the time the vehicle has been waiting at the
place. The value ts referrer to the system time, while tl is the time token
was released from a transition. The formula state that the time t the token
spent in the tunnel segment cannot be zero but becomes one. The vehicle
inside the tunnel is continuously moving unless something happens in the
tunnel. If t is zero, the displacement of the vehicle will not change.

3.4 Token design

The tokens in this program are simulating the vehicles. Since the transition
is not aware of the token’s displacement, all the values are in the tokens.
Table 3.1 consists of all the values stored in the token.

The value Dist, Speed and VLen from table 3.1 is easy to understand
from the description. Each tunnel segment has a fixed length, but they can
be different. The CurDist is the remaining distance inside these segments.
This value will decrements equal to the value of the distance traveled. When
the value is zero or less, the token will include the True flag. If during
computation, the CurDist is less or equal to zero, and there is still extra

11

3.4 Token design

Value name Description
Dist The total travel distance or displacement in the tunnel
CurDist The remaining travel distance inside a tunnel segment
Speed The velocity of the vehicle
VLen The lenght of the vehicle
True A flag to indicate that the token is ready for transition

Time The extra time spent inside the tunnel segment after the
True flag is active

Table 3.1: General values used in a token

time. The extra time will be store in the Time value. This value will be
included in the computation after transitioning.

There is also a special type of value, which is referred to as events. Currently,
there is only one type of event object available, which is the slow event.
This event causes all the vehicles behind, including itself, to slow down
their speed, regardless of the speed limit. This value consists of three types
of information. The first one is the name of the event, the second is the
distance of activation, and the last value is the new speed of the vehicles.

12

Chapter 4

Implementation

This chapter focuses on the implementation of the program and the different
functions made to realize this.

4.1 Program description

The program implemented is implemented using MATLAB R2021a -
academic use. The requirement of deploying the program is to download
the library GPENSIM [4]. This library is used for deploying a Petri net
model. During the writing of this paper, the version of GPenSIM was 10.0
[8].

4.2 Petri net Definition File

The Petri net Definition File, or PDF for short, is the static model for
the Petri net system. GPenSIM can simplify the PDF by splitting it up
into smaller modules [5, 6]. These modules can then be combined to create
the whole system. When creating a PDF, four different values need to be
defined.

13

4.2 Petri net Definition File

The first value is the name of the PDF. The Main Simulation File or MSF
uses this value to include this file in the simulation. The second and third
value is the places and transitions, while the final value is the arcs. When
splitting the file into smaller values, the ports of the module have to be
defined. The ports represent the input or output of the modules.

4.2.1 Tunnel segment module

Before constructing the tunnel, the tunnel segment has to be defined. As
mentioned, the tunnel segment is a PDF module that computes the vehicle
inside the segment. The module is a component with one entry point and
one exit.

Algorithm 4.1: Snippet code tunnel segment A module
1 png.PN_name = 'SegmentA';
2 png.set_of_Ps = {'pA'};
3 png.set_of_Ts = {'tAEnter','tAExit','tComputeA'};
4 png.set_of_As = ...

{'tAEnter','pA',1,'pA','tAExit',1,'pA','tComputeA',1,...
5 'tComputeA','pA',1};
6 png.set_of_Ports = {'tAEnter','tAExit'};

Algorithm 4.1 show a snippet code of the tunnel segment module used in
the experiment. The variable in line 2, set_of_Ps define the names of the
places in Petri net. In a tunnel segment, it only contains one place, which is
pA. The set_of_Ts consists of three different transitions, which represent
the entry and exit point of the tunnel segment, while the tComputeA is
the computation portion of the segment. set_of_Ports is what define it
as a module, as display in algorithm 4.1. The variable set_of_As defined
the arcs between the transitions and place. The weight of all the arcs in
the transition is one, and the connection of tComputeA and pA consists
of two arcs, one in each direction.

14

4.2 Petri net Definition File

4.2.2 Tunnel PDF

After creating the tunnel segment modules, it is time to finalize the static
model of the tunnel. Finally, the PDF of the tunnel combine the generator,
buffers and all the tunnel segment to create a tunnel.

Algorithm 4.2: Snippet of Connect_PDF
1 png.PN_name = 'Tunnel System';
2 png.set_of_Ps = ...

{'pOutside1','pOutside2','pBuffer1','pBuffer2','pBuffer3'};
3 png.set_of_Ts = {'tGenerator'};
4 png.set_of_As = ...

{'tGenerator','pOutside1',1,'pOutside1','tAEnter',1,...
5 'tAExit','pBuffer1',1,'pBuffer1','tBEnter',1,'tBExit',...
6 'pBuffer2',1,'pBuffer2','tCEnter',1,'tCExit',...
7 'pBuffer3', 1,'pBuffer3','tDEnter',1, ...

'tDExit','pOutside2',1};

The snippet from 4.2 shows the PDF of the tunnel system used in the
experiment. This tunnel consist of four tunnel segment module. The mod-
ules use a letter from A-D to name the segments, for example, SegmentA.
The tunnel consists of one transistor called tGenerator and five places.
The two first places in line 2 from algorithm 4.2 named pOutside1 and
pOutside2 represent the area outside the tunnels. pOutside1 is outside
the entry point of the tunnel, while pOutside2 is outside the exit point.
The three other places represent the buffers between the segments. They
currently serve as a placeholder for tokens since the transitions can only
connect with places. Observing algorithm 4.2 line 4-7 shows the arcs con-
nection. Observe how the connection between a tunnel segment uses the
name of the entry and exit point of the tunnel.

Figure 4.1: Outside the tunnel with only a Generator

15

4.2 Petri net Definition File

The arcs between the tunnel can be explained by first creating a arc from
tGenerator to pOutside1 as displayed in figure 4.1.

Figure 4.2: Connection between the outside and the first tunnel segment

Afterward, the outside pOutside1 is connected to the entry point of the
tunnel tAEnter as displaed in 4.2.

Figure 4.3: The middle part of the tunnel

Then use the buffers to connect the tunnel segment as shown in figure 4.3

In the end, connect the last segment’s entry point with the buffer and the
exit point with pOutside2 to finalize the tunnel structure as shown in
figure 4.4.

16

4.3 Variables

Figure 4.4: The complete tunnel structure with four segments

4.3 Variables

init.m file consists of the variables used in the program. This file consists
mainly of the definitions for the global variables.

The two first variables ComputationTime and TransitionTime are used
to control the time of the transitions. The higher value is, the faster the
simulation is, but at the cost of accuracy. The Sim(Hour/Min/Sec)
define how long to simulate the program. The variable Arrival is a list
containing the firing time of all the tokens without an event. These variables
are created based on three parameters. Two of the parameter are start and
end. The start is zero, while the end is the simulation time in seconds. The
last parameter is the frequency of the arrival of the vehicle. The variable
that controls the frequency is TokenFreq. The variable EventArrival
contains the arrival time of tokens with events. The event time has to define
manually. The variable RoadLengthX, speedLimitX and TotalVLenX
are parameters for the tunnel structure. The TotalVLenX sum all the
vehicles length in the segment and compare it to RoadLengthX. This is
to prevent overfilling the tunnel segment with vehicles.

4.3.1 Token Variables

The token variables are values stored in the tokens. Information about these
variable can be found in table 3.1 in section 3.4. The tokens’ variables
are a character array consisting of two values divided by a space. The first
value is the variable type, while the second is the value. The character array
is again stored as a cell value inside an array, referred to as a color list.

The event variables consist of three values, which are event type, distance,

17

4.3 Variables

Variable name Value type Description of use

ComputationTime Integer Frequency of Computation transi-
tion enables

TransitionTime Integer Frequency of Enter and Exit tran-
sition enables

Sim(Hour/Min/Sec) Float Simulation running time in
hours/minutes/seconds

Arrival Array of Integer List of time to create a token

EventArrival Array of Integer List of time to create tokens with
events

EventType Array of Cell List of events used for creating to-
kens with events

Events Array of struc-
ture List of events

Acceleration Integer Acceleration of vehicles
Speed Float The initial speed of vehicles
RoadLengthX Float Length of a Tunnel segment
speedLimitX Float Speed limit of a tunnel segment

TotalVLenX Array of Float List of all the vehicle in tunnel seg-
ment

Display(A-D) Integer Display the output of each compu-
tation

Table 4.1: Table of global variables inside the init.m file

and speed. Each of these value is again divided using space.

4.3.2 Event structure

In table 4.1, the variable Events consist of a list of structure. The event
structure store four different values. These value are:

• Character array from the event list

• The current distance of the vehicle

• The Event speed

18

4.4 Functions

• The time event stopped

4.4 Functions

This section will be focusing on explaining different functions used or cre-
ated to realize this program. It will first explain short about the functions
fromGPenSIM and afterward explain in detail about the functions created
for this program.

4.4.1 GPenSIM functions

In GPenSIM, the function used in the programs is either related to time
or color. The tokens have three different attributes, which are id, time, and
colors. The id of the token allows for fetching the colors and time. The
time of the tokens is related to the moment a transition released the token.
The time value will be updated every time a new transition is firing the
token. The color is a list of values, which was defined in section 4.3.1. It is
required to loop through the color list to fetch a specific value. The values
inside the list do not always appear in the same order as upon release.

Function name Input Output Description

tokenArrivedEarly Place_From
Tok_Number Tok_Id fetch the earliest arrived

token

tokenAnyColor
Place_From
Tok_Number
Colors

Tok_ID fetch token with with at
least one of the colors

get_color Place_From
Tok_Id Colors return color of the token

get_tokCT Place_From
Tok_Id Tok_Time return time of the token

current_time N/A Sys_Time return current time of the
system

Table 4.2: GPenSIM functions used in the program

Table 4.2 shows the different functions from GPenSIM that was used

19

4.4 Functions

during the implementation of the program [3].

4.4.2 FindElement

As mentioned, the GPenSIM colors are stored inside a cell value where
the ordering is unknown. To solve this issue, the function FindElement
was created.

Algorithm 4.3: Snippet of FindElement function
1 for i = 1:length(col)
2 split = strsplit(col{i});
3 switch split{1}
4 case 'Dist'
5 dist = str2double(split(2));
6 case 'Speed'
7 speed = str2double(split(2));
8 case 'CurDist'
9 rem = str2double(split(2));

10 case 'Time'
11 time = str2double(split(2));
12 case 'VLen'
13 len = str2double(split(2));
14 case 'True'
15 continue;
16 otherwise
17 event = col{i};
18 end
19 end

Algorithm 4.3 shows the loop used to find all the values. First, it fetches
the value in position i. Then it proceeds to split the character array into two
string values using the space. The first element will be the variable type,
and the second is the value. Using the first string to check the value type
as seen in line 3. The value Dist, Speed, CurDist, Time and Vlen, will
transformed into integer or float. The variable True will just be ignored
and proceed to the next element. If the token has an event, it will just
return the event without doing anything. After looping through the colors,
it returns all the values, except for True.

20

4.4 Functions

4.4.3 ComputeDistance

The ComputeDistance is the primary function file for computing the
displacement of the vehicles. The operation of this function can be explained
in the list below:

1. Check for events

2. Compute the distance

3. Update the values

4. Repeat

In the first step of checking the events, the file uses a helper function called
FindEvent to check for events. It will first check if there is an event in
the variable Events. If there are any events, it will proceed to check if
these events are relevant for the vehicle. The condition for the event to be
relevant are:

• if the distance of the vehicle is equal or less than the event

• if the event speed is equal or less than the other events

• if the time is equal or less than the event

In the second step it computes the distance the vehicle travel. The compu-
tation occurs in a helper-function called traveling. This function compares
the vehicle speed and the speed limit of the tunnel and decides how to com-
pute the distance.

Algorithm 4.4: snippet of traveling
1 diff = maxSpeed - currentSpeed;
2 FinSpeed = currentSpeed;
3 if abs(diff) < 0.05

21

4.4 Functions

4 travelDistance = (FinSpeed / 3.6);
5 elseif diff < acc && diff > - acc
6 travelDistance = (FinSpeed / 3.6) + (1/2) * diff;
7 FinSpeed = FinSpeed + diff;
8 else
9 if diff > 0

10 travelDistance = (FinSpeed / 3.6) + (1/2) * acc;
11 FinSpeed = FinSpeed + acc;
12 else
13 travelDistance = (FinSpeed / 3.6) - (1/2) * acc;
14 FinSpeed = FinSpeed - acc;
15 end
16 end

In algorithm 4.4 line 1, it computes the difference between the speed limit
and the vehicle speed. If the outcome is positive, it means that it has a
higher speed than the speed limit. The vehicle will then proceed to decel-
erate using the global acceleration variable. If the outcome is negative,
the vehicle is lower than the speed limit and will accelerate. If the outcome
is zero, the speed is the same as the speed limit and will use equation 3.3
to compute the distance. The difference is not zero in the scenario, but the
absolute value of the speed is less than global acceleration. The new ac-
celeration will be equal to the remaining speed required to reach the speed
limit.

In step three of updating the values, four values need to be updated.

• Vehicle distance

• Remaining distance

• Speed

• Time

The vehicle distance will increase, while the remaining distance will de-
crease based on the output from the function traveling. If the speed is not
constant, the speed will also update based on the same function. The time
value will only be updated whenever the remaining distance is less or equal
to zero. The time value will compute the new distance in the next segment.
The time value will increment equal to the remaining loop.

22

4.4 Functions

As mentioned in the equation 3.2 and 3.3, it will compute the displacement.
In the implementation, instead of computing the displacement immediately,
it treats the time value as one and uses a for loop to compute the displace-
ment. Computing step by step will reduce the lost data in between the time
interval.

4.4.4 Element2Char

The function FindElement finds all the element and transform the values
into integers or float. After computing the values, they have to be trans-
formed back to a character array and place back into the color list. This
function’s purpose is to transform the value back to character arrays.

Algorithm 4.5: Element2Char function
1 function elem = Element2Char(text, val)
2 val2str = string(val);
3 cat = strcat(text,{' '}, val2str);
4 elem = convertStringsToChars(cat);
5 end

This function takes in two values, which are the variable code and value. It
first starts by transforming the value into a string as shown in algorithm 4.5
in line 2. In line 3, it concatenates the variable code and the string value
with a space between them. In the end, it transforms the concatenated
value into a character array.

4.4.5 VLengthGenerator

The function VLengthGenerator is a simple function to generate a vehi-
cle length randomly. Currently, this function only generates two different
vehicle lengths, which are 3m and 5m. This function uses Matlab’s built-in
number generator, which is uniformly distributed. The probability of gen-
erating a vehicle length of 3m is 80%, while a vehicle with a length of 5m
is 20%.

23

4.4 Functions

4.4.6 FindVLength and RemoveVLen

The function FindVLength is a simplified version of FindElement func-
tion. The FindVLength only find the vehicle’s current length, which is
currently used by the first segment in the enter transition.

The RemoveVLen does not remove the vehicle from the segment but in-
stead finds the position of the first vehicle length that matches its own.
Only the segment’s exit transition uses this to remove the vehicle from the
TotalVLenX.

4.4.7 EventHandler and RemoveEvent

After using the function FindElement, the token might have an event in
the color list. This event will be sent to the EventHandler. This function
will first check whether the event is the global variable Events. If the
event is registered, it will only update the distance store in the structure.
Otherwise, it will add the event to the list if the vehicle distance is greater
or equal to the event distance.

When the vehicle with an event exits the tunnel, the vehicles behind will
increase their speed. Since all the drivers in the simulation are blind, the
vehicle does not know when it leaves the tunnel. If the event is removed
from the list, the other vehicle would react immediately and adapt to the
tunnel speed.

4.4.8 ComputeSegment

This function was design to merge all the functions used in the computation
transition to simplify the implementation. It first finds all the elements us-
ing FindElement and then proceed to compute usingComputeDistance.
Afterward, transform all the variables into a character array and store them
inside a list as cell values.

24

4.5 Processors

4.5 Processors

In GPenSIM, there are particular processor files used to add additional
conditions for the transitions. There are two types of processor files which
are pre and post-processor files. The pre-processor runs before firing, while
the post-processor runs after firing. This program does not use any post-
processor files, only pre-processor files.

The processor files can be categories into three different types. The first
one is the specific processor files, which only applies to one transition. The
second is the processor for a module, which only applies to transition inside
a module. The last one is the common processor files, which is global file
for transition. The common processor file serves the purpose of reducing
the specific processor files. This program only uses the specific processor
file for the generator, while each module has its processor file.

4.5.1 Generator processor

The processor file for the generator is to create tokens and fire them based
on the variables Arrival and EventArrival. The generator first proceeds
to create a vehicle length based on the function VLengthGenerator. Af-
terward, it transforms the speed and vehicle length into a character array
using the function Element2Char.

To determine whether to create a token, it will check the first value in the
list of both Arrival and EventArrival. If the values from one of them
match with the system time, it will fire a token. If the value in both lists
is the same, it will treat the token as a value. After checking, it will delete
the first value in the lists.

4.5.2 Segment processor

The module of a tunnel segment consists of an entry point, an exit point,
and the computation. The implementation of the tunnel segment defines
three types of segments. The first segment is the start of the tunnel segment,

25

4.6 Main simulation file

the second is the middle part, while the last is the exit segment. The start
and end only have one each, while the rest of the segment is considered the
middle part. The difference of these segments are how the tEnter transition
for the start segment and tExit for the last segment are different.

The transition for computation first collects their tokens for the place inside
the modules. The transition used the function tokenArrivedEarly to fetch
the token. It then proceed to compute the time using equation 3.1 and
run the function ComputeSegment. Afterward, it fires the token with
the new colors.

When entering a tunnel segment, it first has to check whether there is space
inside the tunnel. If there is enough space in the tunnel, it will add the
vehicle length to the variable TotalVLengthX. To check if there is enough
space, it sums the value inside the list and compares it to the tunnel length.
The start segment will set the remaining length of the tunnel equal to the
road tunnel length. The other tunnel segments would have to sum the
current remaining distance with the tunnel length.

When exiting a tunnel segment, it first has to check whether there is enough
space inside the next tunnel segment. The process is done the same way as
entering the tunnel segment. This segment uses the function tokenAny-
Color to fetch a token with the color True. It will then check if there
is available space in the next segment and remove a value from the list of
vehicle length. Before firing the token, the transition will run the function
ComputeDistance to compute using the time from the color list. In the
last segment, there is no need to check the road tunnels list or compute the
distance.

4.6 Main simulation file

The MSF is where GPenSIM runs the simulates. The MSF defined the
PDFs that will be used in the simulation together with the initial dynamics.
In this program, the initial dynamics that are defined are the transition
time and priorities. The time value can be defined in the init.m file. The
transitions with the highest priority are the exit point of each module.
There is a race condition between the computation and the exit point, but

26

4.6 Main simulation file

the exit point only takes tokens with the True tag. Allowing the exit
point to take the token first will prevent the recomputation of an already
completed token.

At the end of the MSF, the function plotp triggers after the simulation.
This function plot the number of tokens at the different places defined in
the functions over time. This function checks the number of tokens inside
each tunnel segment throughout the simulation.

27

Chapter 5

Simulation

In this chapter, there will be three different simulations using four tunnel
segments. This segment will focus on the simulations’ parameters while also
predicting the expected outcome of this simulation.

5.1 Initial parameter

For these simulations, the parameters can be found in table 5.1 .

Parameter value
Simulation time 10min
Arrival Frequency 4s

Arrival speed 60km/h
Acceleration 3km/h
Tunnel length 800m

Table 5.1: Parameters used in the simulations

28

5.2 Constant speed

5.2 Constant speed

In this simulation, all the tunnel segments will have a speed limit of 60km/h.
There will no change of speed during simulation. The time a vehicle would
use inside the tunnel segment would be 200m

60km/h = 12sec. If the vehicle
arrives at an interval of 4sec, then the number of vehicles inside a segment
should be four.

5.3 Different speed

In this simulation, the speed limit of both segments A and B will have a
speed limit of 60km/h, while segments C and D will have a speed limit of
80km/h. In this simulation, the expected outcome would be identical to
simulation from 5.2 for both segments A and B. For segments C and D, the
number of vehicles should be less due to the vehicles traveling faster. As the
vehicle starts accelerating in segment C, the number of vehicles should be
less in segment D as it should reach a speed close to or equal to the speed
limit.

5.4 Constant speed with event

This simulation uses the same parameters as 5.2 but will generate a vehicle
with an event. This event will cause the vehicle to reduce its speed to
30km/h, but it will only start reducing after traveling 100m. This event
will generate 5min in the simulation. The expected outcome should be
similar to 5.2 before the 5min mark, but also after the event vehicle leaves
the tunnel. The vehicle inside will start accelerating again, and it will start
to normalize itself.

29

Chapter 6

Result and discussion

This section will focus on discussing the simulation output while also dis-
cussing the further improvement of this program.

6.1 Simulation result

Figure 6.1: Simulation with constant speed

30

6.1 Simulation result

Figure 6.1 shows the output of the simulation. This graph displays the
number of tokens at that time in each tunnel segment. Based on the result,
the number of vehicles inside the tunnel segment is consistent due to no
specific change. One of the predictions was that the number of tokens in a
segment should be four, but it is sometimes five from the output. The reason
for this is the way the computation transition operates. The transition can
only compute one vehicle at a time, but as the number of vehicles increases
in a segment, it takes longer to recompute the exact vehicle. This causes a
higher number of vehicles inside due to not computing the vehicle that is
supposed to exit.

Figure 6.2: Simulation with different speed

Figure 6.2 shows the output of simulation with different speeds. As ob-
served, the graph is identical to 6.1 for both segments A and B. For segment
C, the number of vehicles is lower, and segment D is even lower. In compar-
ison, there are instances where the number fluctuates higher between 3-4
for both segments. The fluctuation is due to the method of computation
mentioned previously. There is less fluctuation at segment D by observing
these fluctuations, where the value is closer to three. These changes in fluc-
tuation are due to the constant speed of 80km/h in segment D, while at
segment C, it accelerates from 60km/h to 80km/h.

31

6.2 Discussion

Figure 6.3: Simulation with constant speed, including an event

In the last simulation, the parameters were the same as the first, but with
an event at five minutes. Figure 6.3 show the same output as figure 6.1
between 0-5 minute. Afterward, the number of tokens increases in segment
A, while the other segment has fewer vehicles in the segment. The changes
in the graph are due to vehicles in front of the event vehicle will drive based
on the speed limit, while the vehicle behind will start to decelerate. As the
event vehicle entering a new segment, the number of vehicles increases for
the previous segment. The increase of vehicles in the segment will continue
until the event vehicle exit the tunnel. After exiting, the tunnel traffic
starts to normalize itself. Segment A has a lower number of vehicles during
congestion due to vehicles entering with a speed of 60km/h. These vehicles
will start to reduce the speed upon entering the segment.

6.2 Discussion

By observing the simulation output, it works as it is supposed to do. How-
ever, there is the problem of showing a higher number of vehicles inside
the segments. The problem is caused by having too many vehicles inside

32

6.3 Further work

the segment at a time. The solution is to reduce the number of vehicles in
a segment. One solution would be to increase the segment’s speed limit,
which would speed up the time a vehicle has to spend inside, but this is
not a viable solution. The program simulates a tunnel, and the speed limit
cannot be changed just for the simulation. Another solution is to reduce the
length of the tunnel segment. Instead of a tunnel segment of 200m, increase
the number of segments to four with a length of 50m. Thus, the simulation
becomes more accurate at the cost of memory and speed. As the segment
increases, the simulation speed decreases, but since this is a program where
information is essential, the speed is not an issue.

6.3 Further work

6.3.1 Extend to multiple lanes

This program can currently only simulate one lane, but most tunnels usually
have more than one lane in the same direction. One way of implementing
this is to have multiple single lanes and use a transition to connect between
the lanes. The transition can be connected via the buffers to determined
whether to change lanes. Another extension would be to include lanes in
opposite directions.

6.3.2 Multiple events

This program only has one event, which is to reduce the speed of the vehicle.
One improvement would be to include other types of events. For example,
one event would be to increases the speed of the vehicles. This event would
be easy to implement when there are multiple lanes in a tunnel. Another
event would be a complete stop, which would be possible when vehicles are
somehow aware of each other if there is more than one lane in the opposite
direction, maybe an event to change direction in the middle of the tunnel.

33

6.3 Further work

6.3.3 Non-blind drivers

One problem of this program is the blind driver assumption, which restricts
some implementation in the program. One proposed solution would be to
store the distance of each vehicle in a list and update the list whenever
computed. Using this list would allow us to determine some action. A
further improvement would be implementing a simple prediction function
to compare the distance between vehicles.

6.3.4 More user friendly

Even though there was an attempt to simplify the implementation for others
to use, a possible improvement would be to make it easier to deploy. Another
improvement would be to simplify the variables in init.m file. For example,
speed limit and tunnel length could be simplified using a structure.

34

Chapter 7

Conclusion

This thesis introduces a program that simulates the traffic inside a one-lane
tunnel. As of now, the program only presents an event that slows down
vehicles. There were also done three simulations with different scenarios,
where one of them used the event. Comparing the implementation with the
result from the simulation, it operates as expected with the exemption of
showing higher vehicle numbers in the segments due to slow computation
with an increased number of tokens. The high number of tokens causes a less
accurate simulation but could be solved by reducing the tunnel segment’s
length and increasing the number of tunnel segments. The program requires
further work and expansion before it is usable as a simulation tool.

35

Bibliography

[1] Andrea Bobbio, Marco Gribaudo, and Andras Horvath. Modelling a
car safety controller in road tunnels using hybrid petri nets. In 2006
IEEE Intelligent Transportation Systems Conference, pages 1436–1441.
IEEE, 2006.

[2] Ciro Caliendo, Maria Luisa De Guglielmo, and Maurizio Guida. A
crash-prediction model for road tunnels. Accident Analysis & Preven-
tion, 55:107–115, 2013.

[3] Reggie Davidrajuh. Gpensim: A new Petri net simulator. In Petri
Nets Applications. IntechOpen, 2010.

[4] Reggie Davidrajuh. Modeling Discrete-Event Systems with GPenSIM.
Springer International Publishing, Cham, 2018.

[5] Reggie Davidrajuh. A new modular Petri net for modeling large
discrete-event systems: A proposal based on the literature study. Com-
puters, 8(4):83, 2019.

[6] Reggie Davidrajuh. Extracting petri modules from large and legacy
petri net models. IEEE Access, 8:156539–156556, 2020.

[7] engin akyurt. https://unsplash.com/photos/iNlNrMjdI_Q, 2018.

[8] GPenSIM. General-purpose Petri net simulator. Technical report,
http://www.davidrajuh.net/gpensim, 2019. accessed on 20 July 2020.

[9] Youness Riouali, Laila Benhlima, and Slimane Bah. Petri net exten-
sion for traffic road modelling. In 2016 IEEE/ACS 13th International
Conference of Computer Systems and Applications (AICCSA), pages
1–6. IEEE, 2016.

36

https://unsplash.com/photos/iNlNrMjdI_Q

BIBLIOGRAPHY

[10] Nico Vandaele, Tom Van Woensel, and Aviel Verbruggen. A queueing
based traffic flow model. Transportation Research Part D: Transport
and Environment, 5(2):121–135, 2000.

37

Appendix A

User manual

When running this program, there are two files to take into consideration.
The first file is the MSF.m file, which is where to run the simulation. The
second file is the init.m file. This is where to change the parameters for
running the program.

The parameters in the init.m file have a comment which describes the use
for each parameter. Some parameters are specified with capital letters not
to change.

The MSF.m file is where to run the simulation. When running the pro-
gram, make sure the current location is the MSF.m file before running the
program.

38

Appendix B

Program code

Algorithm B.1: init.m
1 global global_info;
2

3

4 % --------------- Time information --------------- %
5

6 global_info.ComputationTime = 1; % The time for computation
7 global_info.TransitionTime = 1; % The time of ...

transition between segments
8

9

10 global_info.SimHour = 0; % Simulation time in hours
11 global_info.SimMin = 10; % Simulation time in minutes
12 global_info.SimSec = 0; % Simulation time in seconds
13

14 % --------------- Arrival and Event --------------- %
15

16 TokenFreq = 4; % Frequency of tokens arrival
17

18 tokenFinalArrival = (global_info.SimHour*3600) + ...
(global_info.SimMin*60) + global_info.SimSec; %End ...
time of Arrival

19

20 global_info.Events = []; % Event during simulation ...
DON'T CHANGE

21

39

Program code

22 global_info.Arrival = 0:TokenFreq:tokenFinalArrival; ...
% Arrival list

23 global_info.EventArrival = [300 320]; ...
% Event Arrval list

24 global_info.EventType = [{'Slow 100 30'} {'Slow 100 30'}]; ...
% Event type

25 % {'Slow 0 40'}
26

27 % --------------- Troubleshooting --------------- %
28

29 %Set as one to display the output of the computation
30 global_info.DisplayA = 0;
31 global_info.DisplayB = 0;
32 global_info.DisplayC = 0;
33 global_info.DisplayD = 0;
34

35 % --------------- Tunnel parameter --------------- %
36

37 % Tunnel length of each segment
38 global_info.RoadLengthA = 200;
39 global_info.RoadLengthB = 200;
40 global_info.RoadLengthC = 200;
41 global_info.RoadLengthD = 200;
42

43 % Speed limit of each segment
44 global_info.speedLimitA = 60;
45 global_info.speedLimitB = 60;
46 global_info.speedLimitC = 80;
47 global_info.speedLimitD = 80;
48

49 % Vehicle length for each segment DON'T CHANGE
50 global_info.TotalVLenA = [];
51 global_info.TotalVLenB = [];
52 global_info.TotalVLenC = [];
53 global_info.TotalVLenD = [];
54

55

56 % --------------- Vechile parameter --------------- %
57

58 global_info.Acceleration = 3; % Global acceleration
59 global_info.Speed = 60; % Initial speed

40

Program code

Algorithm B.2: MSF.m
1 clear; clc;
2

3

4 global global_info;
5 run("init"); % Running the init.m file
6

7

8 % Simulation time
9 global_info.START_AT = [0, 0, 0];

10 global_info.STOP_AT = [global_info.SimHour, ...
global_info.SimMin, global_info.SimSec];

11

12

13 % Initial dynamics
14 pns = ...

pnstruct({'SegmentA_pdf','SegmentB_pdf','SegmentC_pdf',...
15 'SegmentD_pdf','Connect_pdf'});
16 dyn.ft = ...

{'tComputeA',global_info.ComputationTime,'tComputeA',...
17 global_info.ComputationTime,'tComputeA',...
18 global_info.ComputationTime,'tComputeA',...
19 global_info.ComputationTime,'tAEnter',1,'allothers',...
20 global_info.TransitionTime};
21

22 dyn.ip = {'tAExit',1,'tBExit',1,'tCExit',1,'tDExit',1}; % ...
Priority

23

24 pni = initialdynamics(pns,dyn);
25

26 sim = gpensim(pni);
27 plotp(sim, {'pA', 'pB', 'pC', 'pD'}); % Plotting the places

41

Program code

Algorithm B.3: segmentA_pdf.m
1 function [png] = SegmentA_pdf()
2

3 png.PN_name = 'SegmentA';
4 png.set_of_Ps = {'pA'};
5 png.set_of_Ts = {'tAEnter','tAExit','tComputeA'};
6 png.set_of_As = ...

{'tAEnter','pA',1,'pA','tAExit',1,'pA','tComputeA',1,...
7 'tComputeA','pA',1};
8 png.set_of_Ports = {'tAEnter','tAExit'};

Algorithm B.4: segmentB_pdf.m
1 function [png] = SegmentB_pdf()
2

3 png.PN_name = 'SegmentB';
4 png.set_of_Ps = {'pB'};
5 png.set_of_Ts = {'tBEnter','tBExit','tComputeB'};
6 png.set_of_As = ...

{'tBEnter','pB',1,'pB','tBExit',1,'pB','tComputeB',1,...
7 'tComputeB','pB',1};
8 png.set_of_Ports = {'tBEnter','tBExit'};

Algorithm B.5: segmentC_pdf.m
1 function [png] = SegmentC_pdf()
2

3 png.PN_name = 'SegmentC';
4 png.set_of_Ps = {'pC'};
5 png.set_of_Ts = {'tCEnter','tCExit','tComputeC'};
6 png.set_of_As = ...

{'tCEnter','pC',1,'pC','tCExit',1,'pC','tComputeC',1,...
7 'tComputeC','pC',1};
8 png.set_of_Ports = {'tCEnter','tCExit'};

42

Program code

Algorithm B.6: segmentD_pdf.m
1 function [png] = SegmentD_pdf()
2

3 png.PN_name = 'SegmentD';
4 png.set_of_Ps = {'pD'};
5 png.set_of_Ts = {'tDEnter','tDExit','tComputeD'};
6 png.set_of_As = ...

{'tDEnter','pD',1,'pD','tDExit',1,'pD','tComputeD',1,...
7 'tComputeD','pD',1};
8 png.set_of_Ports = {'tDEnter','tDExit'};

Algorithm B.7: Connect_pdf.m
1 function [png] = Connect_pdf()
2

3 png.PN_name = 'Tunnel System';
4 png.set_of_Ps = ...

{'pOutside1','pOutside2','pBuffer1','pBuffer2','pBuffer3'};
5 png.set_of_Ts = {'tGenerator'};
6 png.set_of_As = ...

{'tGenerator','pOutside1',1,'pOutside1','tAEnter',1,...
7 'tAExit','pBuffer1',1,'pBuffer1','tBEnter',1,'tBExit',...
8 'pBuffer2',1, ...

'pBuffer2','tCEnter',1,'tCExit','pBuffer3',1,...
9 'pBuffer3','tDEnter',1,'tDExit','pOutside2',1};

43

Program code

Algorithm B.8: MOD_SegmentA_PRE.m
1 function [fire, trans] = MOD_SegmentA_PRE(trans)
2 global global_info;
3 switch trans.name
4 case 'tComputeA'
5 tok = tokenArrivedEarly('pA',1); % Fetch the ...

earliest token
6

7 % Get the token color and time
8 col = get_color('pA',tok);
9 tokTime = get_tokCT('pA',tok);

10

11 % System time
12 cTime = current_time();
13

14 % The waiting time of the token
15 t = cTime - tokTime;
16

17 % If waiting time is less than one, then make it one
18 if t < 1
19 t = 1;
20 end
21

22 % Compute the parameters and create a new color list
23 newcol = ComputeSegment(col, ...

global_info.speedLimitA, t, tokTime);
24

25 % Display the content of the new color list
26 if global_info.DisplayA == 1
27 disp("Segment A");
28 disp(newcol);
29 end
30

31 % Adding the color to token and fire it
32 trans.override = 1;
33 trans.new_color = newcol;
34 trans.selected_tokens = tok;
35 fire = tok;
36 case 'tAEnter'
37 tok = tokenArrivedEarly('pOutside1',1); % ...

Fetch the earliest token
38

39 % Get the color
40 col = get_color('pOutside1', tok);
41

42 % Fetch the vehicle length
43 vLen = FindVLength(col);
44

44

Program code

45 % The total number of vehicle currently in the segment
46 numOfV = length(global_info.TotalVLenA);
47

48 % The sum of all the vehicle length in the segment
49 S = sum(global_info.TotalVLenA) + numOfV;
50

51 % If the length of all the vehicle pluss itself is ...
less than tunnel

52 % segment, then proceed
53 if (S+vLen+1) ≤ global_info.RoadLengthA
54

55 %Add the vehicle to list
56 global_info.TotalVLenA(numOfV + 1) = vLen;
57

58 % Add the value current length
59 cur = Element2Char('CurDist', ...

global_info.RoadLengthA);
60

61 % Adding the color to token and fire it
62 trans.new_color = cur;
63 trans.selected_tokens = tok;
64 fire = tok;
65 else
66 % Don't fire if segment is full
67 fire = 0;
68 end
69 case 'tAExit'
70 % Fetch the token with the True flag
71 tok = tokenAnyColor('pA',1,{'True'});
72 if tok == 0
73 % Don't fire, if it pick a token with zero id
74 fire = 0;
75 else
76

77 % Get the colors and fetch all the values
78 col = get_color('pA',tok);
79 [dist, speed, rem, overTime, vLen, event] = ...

FindElement(col);
80

81 % Total number of vehicle in the next segment
82 numOfV = length(global_info.TotalVLenB);
83

84 % The total vehicle length in the next segment
85 S = sum(global_info.TotalVLenB) + numOfV;
86

87 % If the length of all the vehicle pluss ...
itself is less than

88 % next tunnel segment, then proceed
89 if (S+vLen+1) ≤ global_info.RoadLengthB

45

Program code

90

91 % Remove the vehicle length from the ...
current segment

92 pos = RemoveVLen(global_info.TotalVLenA, ...
vLen);

93 global_info.TotalVLenA(pos) = [];
94

95 % Update and transform the parameters to ...
character

96 distChar = Element2Char('Dist',dist);
97 speedChar = Element2Char('Speed',speed);
98 remChar = Element2Char('CurDist',rem);
99 tChar = Element2Char('Time',(overTime + ...

global_info.TransitionTime*2));
100 vLenChar = Element2Char('VLen',vLen);
101

102 % The new color list
103 newcol = {distChar,speedChar,remChar, ...

tChar, vLenChar};
104

105 % If vehicle has an event, include it into ...
new color list

106 if event 6= 0
107 newcol{end + 1} = event;
108 end
109

110 % Adding the color to token and fire it
111 trans.override = 1;
112 trans.selected_tokens = tok;
113 trans.new_color = newcol;
114 fire = tok;
115 else
116 fire = 0;
117 end
118 end
119 otherwise
120 disp(trans.name);
121 fire= 1;
122 end

46

Program code

Algorithm B.9: MOD_SegmentB_PRE.m
1 function [fire, trans] = MOD_SegmentB_PRE(trans)
2 global global_info;
3 switch trans.name
4 case 'tComputeB'
5 tok = tokenArrivedEarly('pB',1); % Fetch the ...

earliest token
6

7 % Get the token color and time
8 col = get_color('pB',tok);
9 tokTime = get_tokCT('pB',tok);

10

11 % System time
12 cTime = current_time();
13

14 % The waiting time of the token
15 t = cTime - tokTime;
16

17 % If waiting time is less than one, then make it one
18 if t < 1
19 t = 1;
20 end
21

22 % Compute the parameters and create a new color list
23 newcol = ComputeSegment(col, ...

global_info.speedLimitB, t, tokTime);
24

25 % Display the content of the new color list
26 if global_info.DisplayB == 1
27 disp("Segment B");
28 disp(newcol);
29 end
30

31 % Adding the color to token and fire it
32 trans.override = 1;
33 trans.new_color = newcol;
34 trans.selected_tokens = tok;
35 fire = tok;
36 case 'tBEnter'
37 tok = tokenArrivedEarly('pBuffer1',1); % ...

Fetch the earliest token
38

39 % Get the color and time
40 col = get_color('pBuffer1', tok);
41 tokTime = get_tokCT('pBuffer1',tok);
42

43 % Find all the elements in the color list
44 [distVal, speedVal, curDist, t, vLen, event] = ...

47

Program code

FindElement(col);
45

46 % The total number of vehicle currently in the segment
47 numOfV = length(global_info.TotalVLenB);
48

49 % The sum of all the vehicle length in the segment
50 S = sum(global_info.TotalVLenB) + numOfV;
51

52 % If the length of all the vehicle pluss itself is ...
less than tunnel

53 % segment, then proceed
54 if (S+vLen+1) ≤ global_info.RoadLengthB
55

56 %Add the vehicle to list
57 global_info.TotalVLenB(numOfV + 1) = vLen;
58

59 % Update the current distance variable
60 newCur = curDist + global_info.RoadLengthB;
61

62 % Compute the variable and transform them to ...
character array

63 [FinDist, FinRem, FinSpeed, remT] = ...
ComputeDistance(distVal, newCur, speedVal, ...
global_info.speedLimitB, t,tokTime, event);

64 distChar = Element2Char('Dist',FinDist);
65 curDistChar = Element2Char('CurDist',FinRem);
66 speedChar = Element2Char('Speed',FinSpeed);
67 timeChar = Element2Char('Time',remT);
68 lenChar = Element2Char('VLen',vLen);
69

70 % New color list
71 newCol = {distChar, speedChar, curDistChar, ...

lenChar, timeChar};
72

73 % If vehicle has the event, add it to the new ...
color list

74 if event 6= 0
75 newCol{end + 1} = event;
76 end
77

78 % Adding the color to token and fire it
79 trans.override = 1;
80 trans.selected_tokens = tok;
81 trans.new_color = newCol;
82 fire = tok;
83 else
84 % Don't fire if segment is full
85 fire = 0;
86 end

48

Program code

87 case 'tBExit'
88 % Fetch the token with the True flag
89 tok = tokenAnyColor('pB',1,{'True'});
90 if tok == 0
91 % Don't fire, if it pick a token with zero id
92 fire = 0;
93 else
94

95 % Get the colors and fetch all the values
96 col = get_color('pB',tok);
97 [dist, speed, rem, overTime, vLen, event] = ...

FindElement(col);
98

99 % Total number of vehicle in the next segment
100 numOfV = length(global_info.TotalVLenC);
101

102 % The total vehicle length in the next segment
103 S = sum(global_info.TotalVLenC) + numOfV;
104

105 % If the length of all the vehicle pluss ...
itself is less than

106 % next tunnel segment, then proceed
107 if (S+vLen+1) ≤ global_info.RoadLengthC
108

109 % Remove the vehicle length from the ...
current segment

110 pos = RemoveVLen(global_info.TotalVLenB, ...
vLen);

111 global_info.TotalVLenB(pos) = [];
112

113 % Update and transform the parameters to ...
character

114 distChar = Element2Char('Dist',dist);
115 speedChar = Element2Char('Speed',speed);
116 remChar = Element2Char('CurDist',rem);
117 tChar = Element2Char('Time',(overTime + ...

global_info.TransitionTime*2));
118 vLenChar = Element2Char('VLen',vLen);
119

120 % The new color list
121 newcol = {distChar,speedChar,remChar, ...

tChar, vLenChar};
122

123 % If vehicle has an event, include it into ...
new color list

124 if event 6= 0
125 newcol{end + 1} = event;
126 end
127

49

Program code

128 % Adding the color to token and fire it
129 trans.override = 1;
130 trans.selected_tokens = tok;
131 trans.new_color = newcol;
132 fire = tok;
133 else
134 fire = 0;
135 end
136 end
137 otherwise
138 disp(trans.name);
139 fire= 1;
140 end

50

Program code

Algorithm B.10: MOD_SegmentC_PRE.m
1 function [fire, trans] = MOD_SegmentC_PRE(trans)
2 global global_info;
3 switch trans.name
4 case 'tComputeC'
5 tok = tokenArrivedEarly('pC',1); % Fetch the ...

earliest token
6

7 % Get the token color and time
8 col = get_color('pC',tok);
9 tokTime = get_tokCT('pC',tok);

10

11 % System time
12 cTime = current_time();
13

14 % The waiting time of the token
15 t = cTime - tokTime;
16

17 % If waiting time is less than one, then make it one
18 if t < 1
19 t = 1;
20 end
21

22 % Compute the parameters and create a new color list
23 newcol = ComputeSegment(col, ...

global_info.speedLimitC, t, tokTime);
24

25 % Display the content of the new color list
26 if global_info.DisplayC == 1
27 disp("Segment C");
28 disp(newcol);
29 end
30

31 % Adding the color to token and fire it
32 trans.override = 1;
33 trans.new_color = newcol;
34 trans.selected_tokens = tok;
35 fire = tok;
36 case 'tCEnter'
37 tok = tokenArrivedEarly('pBuffer2',1); % ...

Fetch the earliest token
38

39 % Get the color and time
40 col = get_color('pBuffer2', tok);
41 tokTime = get_tokCT('pBuffer2',tok);
42

43 % Find all the elements in the color list
44 [distVal, speedVal, curDist, t, vLen, event] = ...

51

Program code

FindElement(col);
45

46 % The total number of vehicle currently in the segment
47 numOfV = length(global_info.TotalVLenC);
48

49 % The sum of all the vehicle length in the segment
50 S = sum(global_info.TotalVLenC) + numOfV;
51

52 % If the length of all the vehicle pluss itself is ...
less than tunnel

53 % segment, then proceed
54 if (S+vLen+1) ≤ global_info.RoadLengthC
55

56 %Add the vehicle to list
57 global_info.TotalVLenC(numOfV + 1) = vLen;
58

59 % Update the current distance variable
60 newCur = curDist + global_info.RoadLengthB;
61

62 % Compute the variable and transform them to ...
character array

63 [FinDist, FinRem, FinSpeed, remT] = ...
ComputeDistance(distVal, newCur, speedVal, ...
global_info.speedLimitC, t,tokTime, event);

64 distChar = Element2Char('Dist',FinDist);
65 curDistChar = Element2Char('CurDist',FinRem);
66 speedChar = Element2Char('Speed',FinSpeed);
67 timeChar = Element2Char('Time',remT);
68 lenChar = Element2Char('VLen',vLen);
69

70 % New color list
71 newCol = {distChar, speedChar, curDistChar, ...

lenChar, timeChar};
72

73 % If vehicle has the event, add it to the new ...
color list

74 if event 6= 0
75 newCol{end + 1} = event;
76 end
77

78 % Adding the color to token and fire it
79 trans.override = 1;
80 trans.selected_tokens = tok;
81 trans.new_color = newCol;
82 fire = tok;
83 else
84 % Don't fire if segment is full
85 fire = 0;
86 end

52

Program code

87 case 'tCExit'
88 % Fetch the token with the True flag
89 tok = tokenAnyColor('pC',1,{'True'});
90 if tok == 0
91 % Don't fire, if it pick a token with zero id
92 fire = 0;
93 else
94

95 % Get the colors and fetch all the values
96 col = get_color('pC',tok);
97 [dist, speed, rem, overTime, vLen, event] = ...

FindElement(col);
98

99 % Total number of vehicle in the next segment
100 numOfV = length(global_info.TotalVLenD);
101

102 % The total vehicle length in the next segment
103 S = sum(global_info.TotalVLenD) + numOfV;
104

105 % If the length of all the vehicle pluss ...
itself is less than

106 % next tunnel segment, then proceed
107 if (S+vLen+1) ≤ global_info.RoadLengthD
108

109 % Remove the vehicle length from the ...
current segment

110 pos = RemoveVLen(global_info.TotalVLenC, ...
vLen);

111 global_info.TotalVLenC(pos) = [];
112

113 % Update and transform the parameters to ...
character

114 distChar = Element2Char('Dist',dist);
115 speedChar = Element2Char('Speed',speed);
116 remChar = Element2Char('CurDist',rem);
117 tChar = Element2Char('Time',(overTime + ...

global_info.TransitionTime*2));
118 vLenChar = Element2Char('VLen',vLen);
119

120 % The new color list
121 newcol = {distChar,speedChar,remChar, ...

tChar, vLenChar};
122

123 % If vehicle has an event, include it into ...
new color list

124 if event 6= 0
125 newcol{end + 1} = event;
126 end
127

53

Program code

128 % Adding the color to token and fire it
129 trans.override = 1;
130 trans.selected_tokens = tok;
131 trans.new_color = newcol;
132 fire = tok;
133 else
134 fire = 0;
135 end
136 end
137 otherwise
138 disp(trans.name);
139 fire= 1;
140 end

54

Program code

Algorithm B.11: MOD_SegmentD_PRE.m
1 function [fire, trans] = MOD_SegmentD_PRE(trans)
2 global global_info;
3 switch trans.name
4 case 'tComputeD'
5 tok = tokenArrivedEarly('pD',1); % Fetch ...

the earliest token
6

7 % Get the token color and time
8 col = get_color('pD',tok);
9 tokTime = get_tokCT('pD',tok);

10

11 % System time
12 cTime = current_time();
13

14 % The waiting time of the token
15 t = cTime - tokTime;
16

17 % If waiting time is less than one, then make it one
18 if t < 1
19 t = 1;
20 end
21

22 % Compute the parameters and create a new color list
23 newcol = ComputeSegment(col, ...

global_info.speedLimitD, t, tokTime);
24

25 % Display the content of the new color list
26 if global_info.DisplayD == 1
27 disp("Segment D");
28 disp(newcol);
29 end
30

31 % Adding the color to token and fire it
32 trans.override = 1;
33 trans.new_color = newcol;
34 trans.selected_tokens = tok;
35 fire = tok;
36 case 'tDEnter'
37 tok = tokenArrivedEarly('pBuffer3',1); % ...

Fetch the earliest token
38

39 % Get the color and time
40 col = get_color('pBuffer3', tok);
41 tokTime = get_tokCT('pBuffer3',tok);
42

43 % Find all the elements in the color list
44 [distVal, speedVal, curDist, t, vLen, event] = ...

55

Program code

FindElement(col);
45

46 % The total number of vehicle currently in the segment
47 numOfV = length(global_info.TotalVLenD);
48

49 % The sum of all the vehicle length in the segment
50 S = sum(global_info.TotalVLenD) + numOfV;
51

52 % If the length of all the vehicle pluss itself is ...
less than tunnel

53 % segment, then proceed
54 if (S+vLen+1) ≤ global_info.RoadLengthD
55

56 %Add the vehicle to list
57 global_info.TotalVLenD(numOfV + 1) = vLen;
58

59 % Update the current distance variable
60 newCur = curDist + global_info.RoadLengthB;
61

62 % Compute the variable and transform them to ...
character array

63 [FinDist, FinRem, FinSpeed, remT] = ...
ComputeDistance(distVal, newCur, speedVal, ...
global_info.speedLimitD, t,tokTime, event);

64 distChar = Element2Char('Dist',FinDist);
65 curDistChar = Element2Char('CurDist',FinRem);
66 speedChar = Element2Char('Speed',FinSpeed);
67 timeChar = Element2Char('Time',remT);
68 lenChar = Element2Char('VLen',vLen);
69

70 % New color list
71 newCol = {distChar, speedChar, curDistChar, ...

lenChar, timeChar};
72

73 % If vehicle has the event, add it to the new ...
color list

74 if event 6= 0
75 newCol{end + 1} = event;
76 end
77

78 % Adding the color to token and fire it
79 trans.override = 1;
80 trans.selected_tokens = tok;
81 trans.new_color = newCol;
82 fire = tok;
83 else
84 % Don't fire if segment is full
85 fire = 0;
86 end

56

Program code

87 case 'tDExit'
88 % Fetch the token with the True flag
89 tok = tokenAnyColor('pD',1,{'True'});
90 if tok == 0
91 % Don't fire, if it pick a token with zero id
92 fire = 0;
93 else
94

95 % Get the colors and fetch all the values
96 col = get_color('pD',tok);
97 [dist, speed, rem, overTime, vLen, event] = ...

FindElement(col);
98

99 % Remove the vehicle length from the current ...
segment

100 pos = RemoveVLen(global_info.TotalVLenD, vLen);
101 global_info.TotalVLenD(pos) = [];
102

103 % Update and transform the parameters to character
104 distChar = Element2Char('Dist',dist);
105 speedChar = Element2Char('Speed',speed);
106 remChar = Element2Char('CurDist',rem);
107 tChar = Element2Char('Time',(overTime + ...

global_info.TransitionTime*2));
108 vLenChar = Element2Char('VLen',vLen);
109

110 % The new color list
111 newcol = {distChar,speedChar,remChar, tChar, ...

vLenChar};
112

113 % If vehicle has an event, Add the time when ...
it left the tunnel

114 if event 6= 0
115 RemoveEvent(event);
116 end
117

118 % Adding the color to token and fire it
119 trans.override = 1;
120 trans.selected_tokens = tok;
121 trans.new_color = newcol;
122 fire = tok;
123 end
124 otherwise
125 disp(trans.name);
126 fire= 1;
127 end

57

Program code

Algorithm B.12: tGenerator_pre.m
1 function [fire, trans] = tGenerator_pre(trans)
2 global global_info;
3

4 % System time
5 cTime = current_time();
6

7 % Generate a vehicle length and transform to character ...
array

8 vLen = VLengthGenerator();
9 vLenChar = Element2Char('VLen', vLen);

10

11 % Transform the speed into charachter array
12 Speed = Element2Char('Speed', global_info.Speed);
13

14 % Store the vehicle length adn speed in color list
15 col = {'Dist 0', Speed, vLenChar};
16

17 % check if any vehicle and event greater than system time
18 if isempty(global_info.EventArrival) == 0 && cTime ≥ ...

global_info.EventArrival(1)
19

20 % fetch the event time and remove from list
21 b = global_info.EventArrival(1);
22 global_info.EventArrival(1) = [];
23

24 % if event is equal to non event time, remove ...
non-event time

25 if isempty(global_info.Arrival) == 0 && b == ...
global_info.Arrival(1)

26 global_info.Arrival(1) = [];
27 end
28

29 % Add the event to the list of color
30 col{end + 1} = global_info.EventType{1};
31

32 % Remove the event
33 global_info.EventType(1) = [];
34

35 % Append the color to the token and fire
36 trans.new_color = col;
37 fire = 1;
38

39 % If the arrival list is not empty and it's greater ...
than the time

40 elseif isempty(global_info.Arrival) == 0 && cTime ≥ ...
global_info.Arrival(1)

41

58

Program code

42 % Remove the time and fire the token
43 global_info.Arrival(1) = [];
44 trans.new_color = col;
45 fire = 1;
46 else
47 % If not time yet, don't fire
48 fire = 0;
49 end
50 end

59

Program code

Algorithm B.13: ComputeDistance.m
1 function [FinDist, FinRem, FinSpeed, remT] = ...

ComputeDistance(dist, curDist, speed, speedL, time, ...
VLife , event)

2 global global_info;
3

4 % Initial values
5 newDist = dist;
6 FinDist = dist;
7 FinSpeed = speed;
8 rem = curDist;
9 FinRem = curDist;

10 remT = 0;
11 vL = VLife;
12

13

14 for i = 1:time
15

16 % Check if event is valid
17 ok = FindEvent(FinDist, vL);
18

19 % If invalid, compute using speed limit, else ...
compute using event

20 if ok == 0
21 [travelDistance, FinSpeed] = traveling(speedL, ...

speed, global_info.Acceleration);
22 else
23 %disp(global_info.Events(1).Dist);
24 [travelDistance, FinSpeed] = ...

traveling(global_info.Events(ok).Speed, ...
speed, global_info.Acceleration);

25 end
26

27 % Update temporary distance travel and temporary ...
remaining distance

28 newDist = newDist + travelDistance;
29 rem = rem - travelDistance;
30

31 % if vehicle update lead to leaving the segment
32 if rem ≤ 0 && FinRem > 0
33

34 % Update the distance travel and remainng distance
35 FinDist = newDist;
36 FinRem = rem;
37

38 % If remaining is zero or less
39 elseif rem ≤ 0
40

60

Program code

41 % Increment the extra time value
42 remT = remT + 1;
43 else
44 % permanent distance and remaing is eual to temp
45 FinDist = newDist;
46 FinRem = rem;
47 end
48

49 % if event is found, send it to event handler
50 if event 6= 0
51 EventHandler(event, FinDist);
52 end
53

54 % Used for determinng event validity after event ...
vehicle leave the

55 % tunnel
56 vL = vL + 1;
57

58 end
59 end
60

61

62 function [travelDistance, FinSpeed] = ...
traveling(maxSpeed,currentSpeed, acc)

63

64 % Difference of allowed speed with vehicle speed
65 diff = maxSpeed - currentSpeed;
66 FinSpeed = currentSpeed;
67

68 % if there is no speed change, compute using ...
constant speed

69 if abs(diff) < 0.05
70 travelDistance = (FinSpeed / 3.6);
71 % if the speed change is between [-acc, acc], use ...

the diff as acc
72 elseif diff < acc && diff > - acc
73 travelDistance = (FinSpeed / 3.6) + (1/2) * diff;
74 FinSpeed = FinSpeed + diff;
75 else
76 % if positive is negative, accelerate
77 if diff > 0
78 travelDistance = (FinSpeed / 3.6) + (1/2) * ...

acc;
79 FinSpeed = FinSpeed + acc;
80 % if diff is negative, decelerate
81 else
82 travelDistance = (FinSpeed / 3.6) - (1/2) * ...

acc;
83 FinSpeed = FinSpeed - acc;

61

Program code

84 end
85 end
86 end
87

88

89 function ok = FindEvent(dist, VLife)
90 global global_info;
91

92 % Initial parameters
93 minDist = dist;
94 minSpeed = 999;
95 test = 0;
96 ok = 0;
97

98 % if no event, return
99 if isempty(global_info.Events) == 1

100 return;
101 end
102

103

104 for i = 1:length(global_info.Events)
105

106 % If the vehicle time is less or equal to event end time
107 if global_info.Events(i).End == 0 || ...

global_info.Events(i).End > VLife
108

109 % If the vehicle distance is less than event distance
110 if minDist ≤ global_info.Events(i).Dist
111

112 % If the event speed is less than current ...
eveny speed

113 if minSpeed ≥ global_info.Events(i).Speed
114 minDist = global_info.Events(i).Dist;
115 minSpeed = global_info.Events(i).Speed;
116 test = i;
117 end
118 end
119 end
120 end
121 ok = test;
122 end

62

Program code

Algorithm B.14: ComputeSegment.m
1 function newcol = ComputeSegment(col, speedLimit, t, tokTime)
2

3 % Find the elements in the color list
4 [dist, speed, currDist, overTime, vLen, event] = ...

FindElement(col);
5

6 % Compute the parameters distance, remaing distance, speed ...
and extra time

7 [newDist, rem, newSpeed, remT] = ComputeDistance(dist, ...
currDist, speed, speedLimit, t,tokTime, event);

8

9 % Transform the values into character array
10 distChar = Element2Char('Dist', newDist);
11 curDistChar = Element2Char('CurDist', rem);
12 speedChar = Element2Char('Speed', newSpeed);
13 vLenChar = Element2Char('VLen',vLen);
14 timeChar = Element2Char('Time',overTime +remT);
15

16 % New color list
17 newcol = {distChar, speedChar,curDistChar, vLenChar,timeChar};
18

19 % Include the True value if remainig distance is zero or less
20 if rem ≤ 0
21 newcol{end + 1} = 'True';
22 end
23

24 % Include the event, if the vehicle already had an event
25 if event 6= 0
26 newcol{end + 1} = event;
27 end
28

29 end

Algorithm B.15: Element2Char.m
1 function elem = Element2Char(text, val)
2 % transform the value to string
3 val2str = string(val);
4

5 % Concate the value and text
6 cat = strcat(text,{' '}, val2str);
7

8 % Transform the concated value to character array
9 elem = convertStringsToChars(cat);

10 end

63

Program code

Algorithm B.16: FindElement.m
1 function [dist, speed, rem, time, len, event] = ...

FindElement(col)
2 event = 0;
3 time = 0;
4

5 % Loop through the color list
6 for i = 1:length(col)
7 split = strsplit(col{i});
8 switch split{1}
9 case 'Dist'

10 dist = str2double(split(2)); % ...
Transform to number

11 case 'Speed'
12 speed = str2double(split(2)); % ...

Transform to number
13 case 'CurDist'
14 rem = str2double(split(2)); % ...

Transform to number
15 case 'Time'
16 time = str2double(split(2)); % ...

Transform to number
17 case 'VLen'
18 len = str2double(split(2)); % ...

Transform to number
19 case 'True'
20 continue; % Continue
21 otherwise
22 event = col{i}; % Also return the value
23 end
24 end
25 end

Algorithm B.17: FindVLength.m
1 function len = FindVLength(col)
2

3 % Loop throught the color
4 for i = 1:length(col)
5 split = strsplit(col{i}); % Split the color by space
6 if strncmp('VLen',split(1),4)
7 len = str2double(split(2)); % transform to number
8 break;
9 end

10 end
11 end

64

Program code

Algorithm B.18: RemoveVLen.m
1 function pos = RemoveVLen(seg, vLen)
2 % Loop through the vehicle list
3 for i = 1:length(seg)
4

5 % if vehicle match current vehicle length, return ...
the position

6 if seg(i) == vLen
7 pos = i;
8 break;
9 end

10 end
11 end

Algorithm B.19: VLengthGenerator.m
1 function len = VLengthGenerator()
2

3 % Generate a uniformly distributed random value from 0-1 using
4 p = rand;
5

6 % if less than 0.8, len is 3, else length is 5
7 if p < 0.8
8 len = 3;
9 else

10 len = 5;
11 end
12 end

65

Program code

Algorithm B.20: EventHandler.m
1 function EventHandler(event, dist)
2 global global_info;
3

4 % split the event by space
5 data = strsplit(event);
6

7 % The event distance
8 edist = str2double(data(2));
9

10 % The event speed
11 speed = str2double(data(3));
12

13 ok = 0;
14

15 % loop throgut the list of events in use
16 for i = 1:length(global_info.Events)
17

18 % check if current event is equal to any active event ...
in the list

19 if strcmp(event, global_info.Events(i).Code) && ...
global_info.Events(i).End == 0

20 ok = i;
21 break;
22 end
23 end
24

25 % If event is already in the list, update the event distance
26 if ok 6= 0
27 global_info.Events(ok).Dist = dist;
28

29 % otherwise add the event if vehicle distance is less than ...
event distance

30 else
31 if dist ≥ edist
32 AddEvent(event, dist, speed);
33 end
34 end
35

36

37 end
38

39 function AddEvent(event, dist, speed)
40 global global_info;
41

42 % Add the event to event list
43 global_info.Events(end + 1).Code = event;
44 global_info.Events(end).Dist = dist;

66

Program code

45 global_info.Events(end).Speed = speed;
46 global_info.Events(end).End = 0;
47 end

Algorithm B.21: RemoveEvent.m
1 function RemoveEvent(event)
2 global global_info;
3

4 % System time
5 cTime = current_time();
6

7 % find the current event in the event list
8 for i = 1:length(global_info.Events)
9

10 % set the event end time as system time
11 if strcmp(event, global_info.Events(i).Code)
12 global_info.Events(i).End = cTime;
13 break;
14 end
15 end
16

17 end

67

	Content
	Abstract
	Introduction
	Motivation
	Related work
	Outline

	Background
	Petri net
	Timed petri net
	Colored petri net
	Prioritized petri net

	Program Design
	Assumptions
	Blind vehicle
	Constant Speed
	Constant Acceleration
	Trigger upon discovery
	global event

	Model Design
	Computation
	Token design

	Implementation
	Program description
	Petri net Definition File
	Tunnel segment module
	Tunnel PDF

	Variables
	Token Variables
	Event structure

	Functions
	GPenSIM functions
	FindElement
	ComputeDistance
	Element2Char
	VLengthGenerator
	FindVLength and RemoveVLen
	EventHandler and RemoveEvent
	ComputeSegment

	Processors
	Generator processor
	Segment processor

	Main simulation file

	Simulation
	Initial parameter
	Constant speed
	Different speed
	Constant speed with event

	Result and discussion
	Simulation result
	Discussion
	Further work
	Extend to multiple lanes
	Multiple events
	Non-blind drivers
	More user friendly

	Conclusion
	Reference
	Appendix
	User manual
	Program code

