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Abstract

This thesis extends the Snarl file repair component for distributed storage systems, and
evaluates extensions. Snarl is an application using alpha entanglement codes to improve
recovery rates of content stored in distributed storage systems. This work extends Snarl by
adapting it such that it can be used for other systems than the Swarm network, which it
was limited to in the original implementation. The extensions include an abstraction layer
making it simple to extend Snarl to be used with other systems, and changes to Snarl’s
core algorithms to separate tasks into distinct processes. Additionally, an extension for
the InterPlanetary File System (IPFS) is added. Finally, the newly added IPFS extension
is evaluated. File recovery rates and network overheads are measured for several different
percentages of data loss and peer loss in the network, demonstrating that Snarl performs well
in these scenarios, and provides much better file recovery rates than simple data replication
with the same storage overhead.
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Chapter 1

Introduction

In this thesis we extend and evaluate the Snarl file repair component for distributed storage
systems (DSSes). Snarl is an application which provides redundancy and repair opportu-
nities for content stored in an underlying DSS, without requiring modification of the DSS
itself [19]. It achieves this by using alpha entanglement (AE) codes; a family of erasure
codes built on data entanglement, which can effectively repair damaged portions of data
with few operations [5]. The contributed work extends Snarl by adding an abstraction layer
to support different DSS backends, adds support for the InterPlanetary File System (IPFS)
as a backend option, updates the original Swarm backend implementation, modifies Snarl’s
core algorithms, and conducts experiments to evaluate the utility of Snarl for the IPFS
backend.

1.1 Motivation

In recent years there has been a surge of popularity in decentralized systems, such as
blockchain applications and the decentralized web. Many blockchain applications, due to
their replicative nature, depend on off-chain storage for cost reduction and efficiency (e.g.
Ethereum smart contracts). Additionally, systems such as IPFS use fully decentralized
models for storage and content distribution. Compared to centrally controlled platforms
such as Amazon Web Services (AWS) and Microsoft Azure, these platforms have additional
challenges when it comes to providing data availability and redundancy.

The decentralized storage systems generally have a mutual lack of trust between peers,
and require mechanisms for ensuring correct operation. Firstly, when content is received
from an untrusted peer, it must be possible to ensure that requested content has not been
tampered with. Typically these systems use hash functions to validate content, and by
extension use Merkle trees to efficiently prove that a block of data is part of the requested
content. Secondly, the reliability and availability of other peers cannot be depended upon.
Contrary to cloud services such as AWS which guarantee a certain number of nines for the
reliability of their services (e.g. five nines is 99.999 % reliable), decentralized networks have
fewer guarantees. Data stored by another peer could become corrupted due to hardware
failure. This may also be more likely to occur with consumer hardware used by arbitrary
peers than with the professional-grade hardware used by cloud providers. Additionally, the
data may disappear due to peers leaving or losing connection to the network. Thirdly, there
must be an incentive for peers to provide the content. There is a lot of active research on
incentives in decentralized networks with technologies such as proof-of-space blockchains,
e.g. Filecoin and Storj, but it is not discussed further here.

Due to the decentralized nature of DSSes, it is thus harder to achieve reliability. To
achieve acceptable probabilistic reliability properties, the DSS must ensure a high level of
replication of the content, such that it is most likely available when needed. Redundancy
through replication is less storage-efficient than alternatives such as erasure coding, which
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motivates research into implementing more efficient redundancy schemes in decentralized
environments to improve reliability.

Furthermore, the reliability provided by a particular DSS may not be easily controllable
by end users. The level of reliability depends on the feature set and implementation details
of the DSS. Additionally, an end user cannot be certain of the replication level of their
data at any given time, and cannot simply check whether all the data is available in the
network. Even the loss of a single data block could render some content useless. Ad-hoc
approaches are possible, such as uploading slightly modified content to increase the level of
replication. However, such an approach relies on replication, which is less efficient than e.g.
erasure codes.

Snarl is a possible solution to these problems. With the right amount of abstraction,
Snarl can be used as a general purpose tool to add additional redundancy to any Merkle
DAG (directed acyclic graph) [19]. By using data entanglement as an additional step, the
original content can be uploaded to the DSS alongside redundant entangled data. If some
blocks of the data are missing when the end user is retrieving content, the redundant data
can be used to recover the missing blocks, and the recovered blocks can be re-uploaded to the
DSS. AE codes, used by Snarl, are more storage efficient than replication, and competitive
with other forms of erasure codes in terms of data recovery and storage overhead, while
requiring fewer operations to repair common failures [5]. Using Snarl as a virtual layer
on top of a DSS gives end users additional control over the level of reliability for content
they upload to the DSS, regardless of the reliability and type of the redundancy scheme
implemented by the DSS itself. To enable Snarl to be easily implemented for a variety of
DSSes, a well-defined abstraction layer is desirable.

Another issue is that decentralized networks may be slow, particularly if data is not
widely replicated or due to network congestion in peers storing the desired data. Retrieval
and repair of data blocks should therefore be performed concurrently to reduce retrieval
time of the requested content. The repair algorithm and backend abstraction layers should
maximize the amount of concurrent work to minimize recovery times.

1.2 Challenges

Abstraction Layer for DSS Backends While large parts of Snarl relate to AE codes,
entanglement and repair algorithms, other parts of the codebase were tied to implementation
details of the Swarm backend. The original Snarl implementation only supported Swarm
as the backend DSS, and in many places the code depended on details of this backend.
This made it challenging to add new backends without refactoring, highlighting a need for
an abstraction layer. Different DSSes expose different application programming interfaces
(APIs), use different data structures or layouts of data structures, and may use different
formats to identify content they store. Additionally, an abstraction layer for Snarl DSS
backends should make it as simple as possible to add support for new backends. This
makes it challenging to design an abstraction layer that is simple to use while covering
many potential backends of different configurations.

Concurrent Repair A property of AE codes is that they permit repairing blocks in
parallel under certain conditions. Also, when downloading content split into several data
blocks, concurrent downloads and repairs reduce the time to recover the file. Despite this,
concurrency is difficult for any sufficiently advanced algorithm, and Snarl’s repair algorithm
is no exception. For example, under certain conditions, in order to repair a block, the
repair algorithm must first repair other blocks that the original block depends on, which is
a recursive process. Doing this serially causes unnecessary slowdown of the system. Instead,
the original process can pause until its dependencies are met, and proceed once it’s notified
of this. Dependencies (and recursive dependencies) can be processed concurrently. However,
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a concurrent implementation requires synchronization, control of state and to avoid common
problems such as data races and deadlocks.

1.3 Contributions

In this thesis, we make the following contributions:

• We implement a set of APIs, types and code adjustments which form an abstraction
layer. This enables the Snarl application to use other backends than the original
Swarm backend. Related to this work we contribute bugfixes and refactor much of
the Snarl codebase to make it more idiomatic and readable.

• Using the implemented abstraction layer, we implement IPFS as an alternative Snarl
backend DSS. The implementation is accompanied by a test library for running several
IPFS nodes in a test configuration, and a large number of unit tests.

• The original Swarm backend is adjusted to work with the abstraction layer. This
includes both adapting existing code to be used with the introduced abstractions, as
well as implementing new algorithms from scratch.

• We update portions of the Snarl repair algorithm to work with the aforementioned
abstraction layer. The updated code uses a concurrency model based on Hoare’s
communicating sequential processes (CSP) [6], which achieves concurrency without
locks or shared memory.

• We develop experiments to evaluate various performance metrics for the contributed
IPFS backend implementations. There are two types of experiments, evaluating file
availability after certain percentages of failure. The first relates to the loss of nodes
needed to retrieve a file, and is run as a local simulation. The second simulates failure
of IPFS peers, and is run as several connected Docker containers.

1.4 Outline

The remainder of the thesis is structured in the following way:

• Chapter 2 gives the reader the background information necessary to understand the
rest of the thesis. It describes preliminaries, DSSes, AE codes, and gives an overview
of the original Snarl implementation.

• Chapter 3 defines requirements for Snarl backends, describes the introduced abstrac-
tion layer, and the IPFS peer management layer used for experiments related to the
IPFS backend.

• Chapter 4 describes implementation details of the abstraction layer, updates to Snarl
algorithms, the implementation of the IPFS backend, and changes made to the Swarm
backend.

• Chapter 5 evaluates the file availability rate and network overheads when using Snarl
with the IPFS backend. First it evaluates file availability in the presence of the loss
of several nodes, then in the presence of the failure of several IPFS peers.

• Chapter 6 discusses the results presented in Chapter 5.

• Chapter 7 describes several approaches that could be interesting for future work on
Snarl.

• Chapter 8 concludes the thesis.
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Chapter 2

Background

This chapter describes the fundamentals of decentralized distributed storage systems
(DSSes), data entanglement and Snarl. First, we look at some data structures and methods
commonly used in DSSes. Secondly, an overview of the DSSes Swarm and IPFS is given.
Furthermore, alpha entanglement codes — the redundancy mechanism used by Snarl — is
presented. Finally, a high-level overview of the Snarl file repair component is given.

2.1 Preliminaries

In this section, we look at some selected concepts useful for understanding distributed
storage systems. This includes Hashing, Merkle trees, overlay networks, distributed hash
tables and erasure coding.

2.1.1 Hashing

Fingerprinting of large blocks of data can be performed using hashing [25]. Variable-length
content can be used as input to a hash function, producing a fixed-length hash value.
Hashing the same content multiple times should always produce the same hash, and using
a good hash function should ensure collisions, which occur when different content produces
the same hash, are close to non-existent in practice. This means a small hash can uniquely
identify large pieces of content.

2.1.2 Merkle Trees

Verification of large amounts of data can be performed using a Merkle tree, also known
as a hash tree. Introduced by Ralph Merkle in 1979 [17], this is a tree where each leaf
node contains the hash of a block of data, and each non-leaf node contains the hash of its
children’s combined hashes. To verify if a data block is present using a Merkle tree, we no
longer need all the data in order to recreate a hash. It can instead be recreated using a
subset of intermediary hashes. The structure of a Merkle tree is shown in Figure 2.1.

2.1.2.1 Proof of Membership

To prove a certain block of data is present in a file, we need to recreate the root hash of the
Merkle tree [18]. This can be performed by hashing the data block, and recreating hashes
upwards in the tree until reaching the root. Only the hashes opposite the generated ones
are needed in order to complete the proof.

Using the tree in Figure 2.1 as an example, let’s say we received a copy of block L2 and
want to verify that the data is correct. We would first hash L2 to get Hash 0-1. Hash 0-0
would have to be retrieved in order to be able to generate Hash 0, and Hash 1 in order to
generate Top Hash. This hash could then be compared to the stored root hash to verify that
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Figure 2.1: Merkle tree constructed from four data blocks. Illustration by David Göthberg.
Source https://upload.wikimedia.org/wikipedia/commons/9/95/Hash_Tree.svg.

the data is correct. Using a Merkle tree of n nodes, only log(n) items would be required to
construct the proof.

2.1.3 Overlay Networks

Computer networks can exist as a layer on top of an already existing network [28]. Such
a network is called an overlay network. The underlying network will provide the basic
networking functionality, while the overlay network provides some utility not featured in the
underlay network. In an overlay network, nodes can operate as if they are directly connected
to other nodes (logical links), while they are indirectly connected through multiple links in
the underlying network (physical links). Distributed systems are usually overlay networks,
as they will in most cases run on top of existing networks such as the Internet.

2.1.4 Distributed Hash Table

Similarly to a regular hash table, a distributed hash table (DHT) provides a key-value
lookup service. When trying to find some content in a distributed network, a DHT can
be used to map a key to the peer that is storing the content. DHTs can scale to large
numbers of nodes, as the responsibility of maintaining the table is distributed among the
nodes. They form the basic infrastructure of many distributed file systems, peer-to-peer file
sharing and content distribution systems.

2.1.4.1 Kademlia

One such distributed hash table is Kademlia, designed in 2002 by Petar Maymounkov and
David Mazières [16]. It contains an address space where each peer can be identified by a
unique node ID. To locate values, the algorithm uses this node ID.

To find some value, the associated key is needed. The network will be explored in
multiple steps to gradually find nodes closer to the key. This will continue until the expected
value is returned, or no closer node can be found. Kademlia allows for efficient lookup even
through massive networks.
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This works by treating each node as a leaf in a binary tree, with positions based on its
(binary) ID prefix. Each node divides the binary tree into several subtrees not containing
the node itself, each successively smaller closer to the node. Starting from the root, the
first subtree is the half not containing the node (roughly 50 % of the nodes). Moving one
step towards the node, the next subtree is the next half not containing the node (roughly
25 % of the nodes) and so on. The protocol ensures the node knows at least one other node
in each of these subtrees.

To locate a specific node, the relevant subtree is located, and the known node in that
subtree is queried. This node can help locate a node closer to the target, in a smaller
subtree. Repeating this process until the target is found, assuming n nodes in the network,
any node can be found after a maximum of log(n) queries.

2.1.5 Erasure Coding

In every system, there is the possibility of data loss. The simplest technique to help prevent
the loss of important data is replication. The issue with replication is the amount of
additional storage required to store every replica. One alternative to simple replication is
erasure coding [3].

With erasure coding, the original data is split into k data blocks, which are used to
generate n encoded blocks, where n > k. Any combination of m encoded blocks can then
be used to recreate the original data blocks, where m can be as low as k for certain codes.
This means that any encoded block can be lost without loss of data, as long as at least m
blocks remain. While introducing more complexity than simple replication, erasure coding
can yield higher recovery rates using the same amount of additional storage.

2.2 Decentralized Distributed Storage Systems

In this section, we focus on decentralized storage systems. The general idea is presented in
an overview, and two selected storage systems, Swarm and IPFS, are presented.

2.2.1 Overview

A distributed storage system (DSS) is a system where content is stored and made accessible
through a network of nodes. We make the distinction between a DSS, such as Swarm, and
a distributed file system (DFS), such as the Network File System (NFS). In a DFS, we use
the file system interface of the host operating system to access and use the DFS. There
are several transparency properties in place so that clients do not need to be aware that
the file system is accessed through the network. In contrast, in a DSS we instead use a
client application with a separate interface. Additionally, common DFSes such as NFS use
a centralized client-server architecture.

2.2.2 Swarm

The Swarm project was created to build a permission-less storage and communication in-
frastructure [33]. Swarm is a system of peer-to-peer nodes forming a decentralized storage
and communication service, using an incentive system enforced through Ethereum smart
contracts. According to the Book of Swarm, Swarm is considered to have four separate
layers, with the first two regarded as the core layers [33]:

• an overlay network with protocols powering a distributed immutable storage of chunks
(fixed size data blocks)

• a component providing high-level data access and defining APIs for base-layer features

• a peer-to-peer network protocol to serve as underlay transport
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• an application layer defining standards, and outlining best practices for more elaborate
use-cases

2.2.2.1 Data Storage

Swarm’s storage layer is built on the Kademlia overlay network. It uses an alternative
interpretation of the DHT-model called distributed immutable store for chunks (DISC) [33,
Chapter 2]. Instead of keeping a list of where files are found, DISC stores pieces of the file
itself.

The basic storage unit in Swarm is called a chunk. It is a content-addressed, fixed-size
chunk of data, identified by the 32 bytes Keccak256 hash of chunk content, referred to as
the chunk’s BMT hash. The content of the chunk may be part of a larger data blob, such
as a file. The size is limited to four KiB, and smaller chunks are padded with zeros up to
the maximum chunk size before hashes are calculated. In addition, chunks are prepended
with a 64-bit little endian encoded span, which contains metadata to be able to differentiate
between data chunks (leaf nodes) and intermediate chunks [33, Chapter 4]. Chunks may
also be encrypted, but this is not be discussed here.

Swarm stores content using Merkle trees. The branching factor for the trees, i.e. the
number of children nodes may have, is calculated as the chunk size divided by the reference
size [33, Chapter 4]. For unencrypted content, the chunk reference is the chunk’s BMT hash
described above, while for encrypted content, it is the chunk’s BMT hash catenated with
its decryption key. Both the BMT hash and the decryption key are 32 bytes long. In other
words, the branching factor is 4096/32 = 128 for unencrypted content, or 4096/64 = 64 for
encrypted content.

Internal chunks (any non-leaf nodes) can refer to a number of child nodes equal to the
branching factor. The content of internal chunks consists of the prefix span, followed by
the catenation of 32-byte references to child nodes. As such, we can recover a data blob
by recursively splitting internal nodes into a set of references, and downloading each child
node referenced to by the references.

2.2.2.2 Accessing the Swarm Network

A Swarm client is required to communicate with the Swarm network, e.g. to upload or
download data. There are two Swarm clients that we are aware of, the original Swarm
client [20], and the new Bee client [26], which is under active development. Both clients
are written in Go, and can be used as compiled binaries, or as a library. The two clients
are incompatible with each other due to using different underlying network protocols. The
original Swarm client, which Snarl supports as a backend, is no longer maintained as of
January 2021, as of the v0.5.8 release [20, 29]. The Swarm team’s nodes running on the
public Swarm network have migrated to the new Bee client, however there may still be
peers running on the old network as it is decentralized. It is however possible to self-host a
Swarm network using the original client, which Snarl does for some of its experiments.

2.2.3 InterPlanetary File System

This section contains a brief overview of IPFS. IPFS is another peer-to-peer DSS, which
Snarl is extended to support as a backend DSS in this thesis. The remainder of this section
describes IPFS data storage and related matters briefly.

2.2.3.1 Overview

The IPFS is another peer-to-peer DSS with an initial release in 2015 [1]. It seeks to connect
all computing devices with the same system of files. IPFS provides a content-addressed
block storage model allowing for high throughput, with content-addressed hyperlinks. This
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storage model forms a generalized Merkle DAG. The Merkle DAG is similar to a Merkle
tree, but each node can have multiple parent nodes, and no loops can exist.

2.2.3.2 Data storage

All stored content in IPFS has a unique content identifier (CID) containing a cryptographic
hash of the content [2]. The CID is used to locate content, as opposed to finding content
by its location, like you would with URLs on the Web, with paths in regular file systems,
etc. This means that the identifier always leads to the same content.

Content to be stored in IPFS is usually split into blocks. These blocks are used to
build a Merkle DAG, where each node contains a hash of its contents. The Merkle DAG is
constructed from the leaves, and parent nodes contain as their data their children’s content
hashes. Because all content in IPFS has a unique CID, content can be reconstructed by
locating the desired node in the DAG, and then locating its children recursively.

The cryptographic hashes can be used to ensure the received content is correct, and
every node in the DAG is immutable, as their CIDs depend on all of their children. Because
of the globally unique CIDs, different content with identical parts (blocks), can reuse the
same pieces of data. This means similar content can share much of the same data, reducing
duplicate data in the network. Adding data to existing content simply means linking the
new parts to the existing ones, removing the need for separate files.

An example is shown in Figure 2.2. In this example, a file is uploaded and split into
three blocks. The file itself is identified by the CID R1, and its children by CIDs L1, L2
and L3. In order to recreate the file, the CID R1 is used to locate the correct node in the
DAG, which contains references to its child nodes. These nodes contain the actual data,
and can then be retrieved in order to recreate the file.

After adding some data to the file, the new version is uploaded. This new version is now
identified by the CID R2, which references R1 containing the old content, and a new block
identified by CID L4 containing the added data. In order to retrieve the data, we first find
the node identified by R2, then we locate the children R1 and L4, and then recursively
locate R1 ’s children to obtain every data block.

R1

L1 L2 L3

R2

L4

Figure 2.2: Example Merkle DAG. The blue (dashed) nodes represent the original uploaded
file, and the yellow (solid) nodes represent an updated version uploaded later on.
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2.2.3.3 Pinning

In IPFS, peers make nodes available through pinning [12]. When uploading content to IPFS,
the related Merkle DAGs are by default pinned by the uploader. Pinning ensures that the
content stays available from this peer by preventing it from being garbage collected. Other
IPFS peers can retrieve pinned nodes by requesting them by CID.

To increase availability, other peers can pin the same content. Any peer can pin nodes
by CID, and can choose whether to pin a single node (direct pin), or to recursively pin
the node along with its subtree (recursive pin). Nodes pinned indirectly during recursive
pinning are called indirect pins. An IPFS node, identified by CID, is available to IPFS
peers from any peer that has pinned the node. Thus, popular content will be available from
many peers, increasing availability and improving download times.

2.2.3.4 Data sharing

A DHT is used to locate content. One lookup in the DHT will identify the peers hosting
the desired content (blocks). Another lookup will provide the location of those peers. This
information can be used to request the desired blocks by sending a wantlist, and having the
relevant peers send the requested blocks. Received blocks can be verified by hashing their
content and comparing the hash with their CIDs.

2.2.3.5 Unix File System

IPFS has a special protocol-buffers-based format called Unix File System (UnixFS) which
can be used when adding files to IPFS [9]. UnixFS adds metadata to each non-leaf node,
representing files, directories or symlinks. Files too big to fit in a single block will be
represented by a data object containing all their links and metadata, while single block files
will contain their data directly.

When chunking a file into smaller parts, the leaf format can be either raw or UnixFS.
UnixFS leaves add a wrapper used to determine whether objects are files or directories,
while raw leaves (the default format) contain only raw data. The chunking strategy can be
either fixed size or rabin. Fixed size chunking uses a specified size for every chunk, while
rabin uses Rabin fingerprinting to determine where to split the data, resulting in variable
chunk sizes. The constructed Merkle DAG can be either balanced with a specified max
width, useful for random access, or a trickle DAG, useful for accessing data in sequence.

2.2.3.6 Go-IPFS and IPFS Daemon

Go-IPFS is a reference implementation of IPFS [10]. It provides both a command-line
application, and exported APIs enabling its use as a Go library. Both approaches run an
IPFS daemon process, and communicates with the daemon using an HTTP API. In the case
of Snarl, the IPFS daemon is not embedded, but rather run expected to run as a separate
process. During its runtime, Snarl uses IPFS APIs to communicate with the IPFS daemon
to upload and download content. The end user is responsible for starting and configuring
the IPFS daemon prior to using Snarl. Additionally, some tests and experiments may
start or manipulate the IPFS daemon using the command-line interface through Go’s exec
package [23].

2.3 Alpha Entanglement Codes

In this section we look at alpha entanglement codes, which are the basis of the Snarl
redundancy model. “Alpha entanglement codes, AE(α, s, p), are a family of erasure codes
built on data entanglement” [4]. The entanglement algorithm creates a virtual storage layer
above the input data, producing redundant blocks which connect fractions of the input data
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and propagate redundancy properties. Storage overhead increases linearly with α, while the
data recovery paths increase exponentially. Modifying s and p does not affect the storage
overhead, but can further increase fault-tolerance at the cost of performance.

AE codes entangle data blocks with redundant parity blocks. Data blocks contain frac-
tions of the data of the original file, such that the original file can be recovered when all data
blocks are present. Whenever a new data block is added, it is entangled with α existing
parity blocks by exclusive-or (XOR), which produces α new parity blocks. Parity blocks
are used for recovery of other blocks. Since the entanglement uses a simple XOR operation,
the cost to repair a single failure is a single XOR operation, regardless of the values of the
α, s and p parameters.

Various properties and functionality of AE codes are described below. We look at
the parameters in depth, what a helical lattice is and how it is constructed based on the
parameters, and finally an overview of the entanglement and repair processes. In this thesis,
entanglements where α = 3 — triple-entanglements — will be the primary focus.

2.3.1 Parameters

In this section we look at the parameters to alpha entanglement codes. The parameters
determine parameters of a helical lattice, meaning its dimensionality and properties of its
strands. Let us first look at these two terms.

Strands are chains of alternating data blocks and parity blocks. There are two cate-
gories of strands: (1) horizontal strands, which in three-dimensional space can be seen as
moving horizontally; and (2) helical strands, which in three-dimensional space can be seen
as spiralling around the horizontal strand. For α ≥ 3, there are more than two or more
types of helical strands. Strands and are described in more detail in Section 2.3.2.

We define a helical lattice to be a series of nodes (data blocks) connected through edges
(parity blocks) in a predictable manner. Pairs of input and output edges to and from each
node belong to the same strand.

Furthermore, we look at the parameters. There are three parameters to alpha entangle-
ment codes:

• α: Number of redundant blocks created per data block. The entanglement process
computes α parities per data block, one for each type of strand, such that each data
block becomes part of α strands. The redundant parity blocks increase storage over-
head linearly while increasing data recovery paths exponentially. Thus, α determines
the local connectivity of blocks [5].

• s and p: s indicates the number of horizontal strands, while p indicates the number
of helical strands. This means that s and p define the dimensions of a helical lattice.
Seen in two-dimensional space, as in Figure 2.3, the lattice has s rows and p distinct
columns. In order to define a valid lattice, p must be greater than or equal to s.
These parameters are said to determine the global connectivity of data blocks, i.e.
which strands each data block becomes part of, and to which other data blocks it
connects. Both parameters can be increased without impacting storage overhead. In
a minimal erasure pattern (a pattern which causes irrecoverable loss of parity blocks
and data blocks) involving y blocks, x of which are data blocks, tuning s and p can
increase the ratio y

x , i.e. fewer of the lost blocks will be data blocks [5, 4]. In other
words, by tuning these parameters we can reduce the number of data blocks that are
entirely irrecoverable following a failure, meaning we can recover more of the original
data. As a trade-off, this may increase recovery time.

2.3.2 Strands

Strands are chains of blocks, alternating between data blocks and parity blocks. In the
entanglement function, a data block is XORed with the latest parity block on the strand,
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Figure 2.3: Helical lattice for the AE(3, 4, 4) configuration. Vertices numbered i represent
the corresponding data block di, while edges represent parity blocks. Dotted lines represent
“wrapped” edges, the upper ones being wrapped from RH-strands and the lower ones being
wrapped from LH-strands. While not displayed in the figure, the rightmost data blocks also
generate α parity blocks each.

and the resulting parity block is inserted after the data block on the same strand. This
process occurs for α strands for each inserted data block, such that each data block belongs
to α strands, while each parity block belongs to a single strand. The damage of irreducible
failure patterns on individual strands is limited, since data blocks can be reconstructed
through any of the α strands they participate in.

For triple entanglements, there are three types of strands:

• Horizontal (H) strands. The number of horizontal strands is determined by s.

• Right-handed (RH) strands. In the helical lattice, RH strands connect data nodes on
different H-strands from top to bottom, with a slope towards the right. The next data
node connected to an RH-strand following a data node also connected to the bottom
H-strand is a data node connected to the top H-strand. For example, in Figure 2.3,
an RH-strand connects data nodes 8 (bottom H-strand) and 9 (top H-strand).

• Left-handed (LH) strands. In the helical lattice, LH-strands connect H strands going
from bottom to top, in a similar manner to RH-strands. Following data nodes con-
nected to the top H-strand, they connect data nodes from the top H-strand to the
bottom H-strand.

More generally, the lattice contains s horizontal strands and α−1 helical strand classes.
Each helical strand class (LH-strands and RH-strands for triple-entanglements) contains p
helical strands, such that there are s+ (α− 1) · p strands in total. For example, for p = 3,
there are three RH-strand classes RH1, RH2 and RH3 which data blocks are connected to
in a round-robin fashion with regards to the data block index. As in the referenced work [5,
4], we consider lattices with helical strands that connect horizontal strands with a diagonal
of slope 1, and a balanced number of LH-strands and RH-strands. In this configuration,
the helical strands meet on the same horizontal level, i.e. lattice row, after a period of p
columns, at every s · p data blocks.
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Table 2.1: Entanglement rules to determine which parity blocks are used for input to triple
entanglement [4].

di is tangled with ph,i and h index is
node di location H strand RH strand LH strand

top i− s i− s · p+ (s2 − 1) i− (s− 1)
central i− s i− (s+ 1) i− (s− 1)

bottom i− s i− (s+ 1) i− s · p+ (s− 1)2

Table 2.2: Entanglement rules to determine which parity blocks are output by triple entan-
glement [4].

di entanglement creates pi,j and j index is
node di location H strand RH strand LH strand

top i+ s i+ s+ 1 i+ s · p− (s− 1)2

central i+ s i+ s+ 1 i+ s− 1
bottom i+ s i+ s · p− (s2 − 1) i+ s− 1

Strands are the way redundancy propagation is achieved by AE codes. Since data blocks
part of α strands, there are parallel paths to recover each data block. A data block can
either be retrieved directly or regenerated using any of the α strands it belongs to. The
data contained in the data block also becomes entangled into future parities on each strand,
which enables recursive recovery of data.

Figure 2.3 provides an illustration of an AE(3, 4, 4) lattice. There are s = 4 H-strands,
one on each row, and p = 4 RH-strands and LH-strands. For example, the first RH-strand
goes through the sequence 1 → 6 → 11 → 16 → 17 → 22 . . ., while another goes through
the sequence 3→ 8→ 9→ 14 . . .. Similarly, LH-strands go upwards from the bottom, e.g.
the sequence 4→ 7→ 10→ 13→ 20→ 23 . . .. When the helical strands reach the bottom
or the top, they wrap to the opposite extreme for the next node they entangle with.

2.3.3 Entanglement

During entanglement the encoder produces parity blocks using the equation

pi,j ← di ⊕ ph,i, (2.1)

where i > 0 is the data block’s position in the lattice. For each data block di, α parity
blocks are created following Equation 2.1. Table 2.1 is used to determine the indices h of α
different input parity blocks. The node category is

top ⇐⇒ i ≡ 1 mod s,

central ⇐⇒ i > 1 mod s,

bottom ⇐⇒ i ≡ 0 mod s.

When the encoder produces parity blocks, pairs of blocks become related through en-
tanglement tuples, of which there are two types:

• pp-tuples contain two consecutive parity blocks from the same strand. Each data
block is associated with a pp-tuple for each strand class (i.e. H-strand and helical
strands). The pp-tuples related to a central data block di is illustrated in Figure 2.4.

• dp-tuples contain a data block and an adjacent parity block, which are on the same
strand. Each parity block is associated with two dp-tuples on the strand it belongs to.
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More specifically, parity blocks are associated with dp-tuples consisting of the data
blocks they are directly connected to on the same strand and their adjacent parity
blocks, as illustrated in Figure 2.5.

dipi-s, i pi, i+s

pi-(s+1), i

pi, i+s+1pi-(s-1), i

pi, i+s-1

LH
strand

RH
strand

H
strand

Entanglement
inputs

Entanglement
outputs

Figure 2.4: Illustration of the pp-tuples for a data block di, where α = 3. di is considered
a central node, and the entanglement rules from Table 2.1 and Table 2.2 are used. The
full line illustrates the H-strand, the dotted line the RH-strand and the dashed line the
LH-strand.

ph,i di pi,j dj pj,k

= ph,i ⊕ di = pi,j ⊕ dj

dp-tuple for pi,j dp-tuple for pi,j

Figure 2.5: Illustration of the dp-tuples for a parity block pi,j on a strand. The XOR
construction of parity blocks enables repair of pi,j through either of its related dp-tuples.

2.3.4 Repair

When we retrieve the data, no decoding is necessary unless some data blocks are damaged
or missing. In the case of damaged or missing data blocks, the repair algorithm attempts
to recreate the missing blocks to recover the structure of the helical lattice. We may also
recover blocks using the repair algorithm for other reasons than damaged blocks, e.g. for
load balancing or to avoid using slow connections in a network.

Both data blocks and parity blocks are repairable. Because of the XOR construction
of parity blocks, both data blocks and parity blocks can be repaired with a single XOR
operation taking the respective related pp-tuples or dp-tuples as inputs. A damaged data
block di is repaired using the equation

di ← ph,i ⊕ pi,j , (2.2)

where the parity blocks ph,i and pi,j are from one of the α pp-tuples associated with di.
Similarly, parity blocks are repaired using Equation 2.1, where the parameter values are
from one of the two dp-tuples associated with pi,j . In any case, the entanglement tuples
required for repair are calculated following the rules in Table 2.1 and Table 2.2.
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Estrada describes three groups of recovery scenarios, with varying numbers of steps to
repair and varying rates of success [4]:

• Small local damage: Only affects a small region around a single data node which may
or may not be available. No more than α − 1 parity blocks may be missing, and at
least one dp-tuple associated with each missing parity block must be available. When
these conditions are met, repair completes in one round, using the method described
at the start of this section. Multiple single failures, i.e. all elements in the small local
damage, can be repaired in parallel during the single round of repair, without relying
on recursive repairs.

• Medium zonal damage: Various consecutive elements on the same strand are damaged,
where each damaged data node can be categorized as part of a small local damage.
The data is entirely recovered by recursively performing local repairs. If no further
faults occur during the repair of n missing parity blocks, the number of recursive calls
is limited to at most dn2 e+ 1.

• Large global damage: A wide area of close nodes are affected. Covers all erasure
patterns not part of the previous categories and which require more than one round
to repair. To repair such damage, an algorithm must combine local and zonal repairs.
Depending on the presence of irreducible failure patterns, the success rate is in the
range from 0 to 100 %.

2.4 Snarl

In this section we look at Snarl, a library and application for using alpha entanglement
(AE) codes on top of distributed storage system (DSS) backends. Snarl is the foundation
which this thesis builds and extends upon, so this section goes into some detail to provide
context for the remainder of the thesis. The text in this section is based on the paper by
Nygaard et al introducing Snarl [19], as well from the Snarl code itself, and discussions with
Nygaard.

2.4.1 Overview

Snarl is a library and a command-line application which provides redundancy and file repair
in distributed storage systems (DSSes) using AE codes. The motivation of Snarl is to enable
file archival in unreliable storage environments, such as decentralized networks. Since it
works on top of an underlying DSS, Snarl may be used by end users for additional protection
of data stored in the DSS, without requiring changes to the DSS itself. This is beneficial
since in a decentralized DSS the end user may not be able to determine the redundancy
level of a file (usually achieved through replication), nor confirm the replication and level
of availability of the file by querying the network.

The architecture of Snarl is illustrated in Figure 2.6. The user interacts with the Snarl
command-line interface (CLI). This will trigger calls to various parts of the Snarl algorithm,
depending on the given command. Snarl then interacts with the backend API to commu-
nicate with the backend, which may trigger network calls or calls to external applications
related to the backend.

Snarl acts as an intermediary between the user and the DSS backend. Before uploading
files to the DSS, Snarl entangles the file with AE codes in the AE(3, 5, 5) configuration.
When entangling files, it produces α = 3 additional files containing AE parity blocks.
When retrieving files, Snarl may use the parities to recover missing data blocks. These
redundant files may be stored in the DSS in addition to the original file.

At the cost of some storage overhead, the entanglement is beneficial for file recovery
when data blocks are unavailable. When retrieving the file from the DSS, some data blocks
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Backend peers

Figure 2.6: High-level overview of the architecture of Snarl.

may be missing. Snarl can then retrieve blocks from the parity files to recover the missing
data blocks. If the block cannot be repaired in a single step, Snarl can recursively recover
entangled blocks and perform repair, as described in Section 2.3.4. Recovered blocks can
be used to recover the file locally, and can be re-added to the DSS.

The set of data blocks of a file is not arbitrary. Most decentralized DSSes use a Merkle
tree or a similar data structure to represent the structure of a split file. The hashes of the
Merkle tree nodes are used as the addresses of the blocks in the DSS during requests to the
DSS. As such, Snarl must split the file in the same manner that the underlying DSS would
do in order to be able to retrieve the blocks later on.

The related implementation details vary depending on the particular backend. In gen-
eral, Snarl uses the same procedure as the backend for generating Merkle tree structures
out of files during upload. The Merkle tree is then flattened into a list of data blocks, which
are entangled in the same order, such that an item with index i in the flattened Merkle tree
corresponds to the data block with index i in the helical lattice. Figure 2.8 and Figure 2.9
illustrate the Merkle tree flattening, which is further described in Section 2.4.2.2.

As a consequence of Snarl’s approach to data block generation, it also protects the
Merkle tree related to the file, not just the data stored in the leaf nodes [19]. By protecting
all nodes in the Merkle tree, Snarl reduces the risk of cascading failures, which occur when
available child nodes cannot be retrieved because the parent node containing their references
is unavailable.

2.4.2 Entanglement Algorithm

In this section we look at Snarl’s entanglement algorithm in more detail. Before starting
the entanglement process, a file must be split and converted into a set of data blocks. Then,
entanglement processes each data blocks, generating parity blocks in accordance with the
procedure described in Section 2.3.3. In addition to the original file, the procedure generates
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α = 3 files consisting of parity blocks, which may be uploaded to the backend DSS. The
remainder of this section summarizes the entanglement process as a series of steps.

2.4.2.1 Merkle Tree Generation

b1 b2 b3 b4 b5 b6

Figure 2.7: Illustration of the file being split into fixed-size blocks during entanglement.

d9

d4

d1|b1 d2|b2 d3|b3

d8

d5|b4 d6|b5 d7|b6

Figure 2.8: Illustration of the Merkle tree representation of the split file with nodes num-
bered in canonical order. Leaf nodes contain the blocks of data from the original file, while
parent nodes contain links to child nodes and other metadata.

d1 d2 d3 d4 d5 d6 d7 d8 d9

Figure 2.9: Illustration of the flattened Merkle tree with indices matching nodes in the
Merkle tree from Figure 2.8.

In this step Snarl reads the file and generates a Merkle tree based on the file’s contents
in a backend-specific manner. All nodes of the Merkle tree are stored in an internal data
structure which mirrors the structure of the Merkle tree. Using the API of the backend
DSS, the Merkle tree is generated from the contents of the input file. Generally, the first
step splits the file into fixed-size blocks of data per a provided or constant block size, as
illustrated in Figure 2.7. The blocks are illustrated as bi, each of the same block size, except
the final block which may be incomplete depending on the size of the original file.

Furthermore, the Merkle tree is built from the blocks of data. The blocks from the
original file become the leaf nodes of the Merkle tree, and the hash of each block becomes
the CID of the related node. Additional nodes are added at higher levels of the tree whose
contents are lists of CIDs of child nodes, and possibly some related metadata such as the
size of the subtree. The branching factor determines the maximal number of child nodes
a parent node may refer to. The process repeats until a single node exists at the highest
level of the tree, which becomes the root node, and whose CID represents the file used to
construct the Merkle tree.

Figure 2.8 illustrates the Merkle tree produced from the blocks of data illustrated in
Figure 2.7. As explained above, the Merkle tree takes the blocks of data from the original
file as leaf nodes, and produces parent nodes until there is a single root node. In this
example the branching factor is three. Nodes d4, d8 and d9 contain lists of CIDs to their
respective child nodes, where each CID is called a link. The indices of the tree nodes are in
the canonical order, which is explained in Section 2.4.2.2. In the illustration, the leaf nodes
have two identifiers (aliases) di and bj , denoted as di|bj . The alias di identifies the data
block with canonical index i, and the alias bj identifies the block of data from the blocks in
Figure 2.7.
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The number of non-leaf nodes is inversely proportional to the branching factor. A low
branching factor necessitates more parent nodes for groups of leaf nodes, which increases
the overall size of the Merkle tree.

2.4.2.2 Flattening the Merkle Tree

In this step the Merkle tree is flattened in a canonical order. The canonical ordering of
nodes in a Merkle tree is illustrated in Figure 2.8. Starting from the root node, the tree is
traversed recursively in a children-first order, leftmost children being traversed first. While
traversing the tree, there is a counter for the index, starting at one. The index of a node
is set to the value of the counter when reaching a leaf node or a node whose children have
already been visited. Whenever an index is set, the counter is incremented. For example,
we can see that the leftmost leaf nodes d1–d3 are numbered first, then their parent node
d4, and so on, until the root node finally gets the index d9 after processing all of its child
nodes. The tree is flattened by appending to a list the content of each node in the tree
in the canonical order. Resultingly we have a list with the content of each node from the
Merkle tree in a predictable order, as illustrated in Figure 2.9.

Swapping Internal Nodes Additionally, after flattening the Merkle tree, Snarl swaps
certain internal nodes with leaf nodes. It does this to prevent certain critical failure patterns,
and may increase the recovery rate of data blocks. Pseudocode for the algorithm is given
in Algorithm 1. The algorithm iterates over each intermediate node (non-root parent node)
in ascending order. It then iterates other nodes of index, in increments of a window size
w = s·p. When it encounters a leaf node with index i that is outside of the window, it swaps
the intermediate node with the leaf node. The indices of swapped nodes are registered such
that a node is not swapped more than once.

Algorithm 1 Pseudocode for Snarl’s internal node shift algorithm.

flattree← flattened Merkle tree
swappedindices← {} . set of swapped indices
inodes← intermediate nodes
s, p← AE code parameters
w ← s · p . window size
for all inode← inodes do . iterate over each intermediate node in ascending order

lowestchild← inodefirstchild
highestchild← inodelastchild
for i← w; i < |data blocks|; i← i+ w + s do

inwindow ← i+ 1 > lowestchild− w ∧ j + 1 < highestchild+ w
if isleaf(i+ 1) ∧ ¬inwindow then

if inodeindex ∈ swappedindices ∨ i+ 1 ∈ swappedindices then
continue . either node is already swapped

flattreeinodeindex
, f lattreei+1 ← flattreei+1, f lattreeinodeindex

swappedindices← swappedindices ∪ {inodeindex, i+ 1}
break . go to next internal node

2.4.2.3 Entanglement

In this step the blocks of the flattened Merkle tree from Section 2.4.2.2 are entangled. The
data blocks in the flattened Merkle tree are entangled as described in Section 2.3.3, where
the list index i (with the first index being 1) matches the data block position i in the AE
helical lattice. For a flattened Merkle tree of length n, this results in α lists of n parity
blocks, one for each type of strand (i.e. left-handed, right-handed or horizontal strands for
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p1 p2 p3 p4 p5 p6 p7 p8 p9

Figure 2.10: Illustration of parity blocks produced from the flattened Merkle tree during
entanglement. There are α lists of parity blocks, one for each strand class (H-strand, LH-
strand, RH-strand).

n13

n4

n1|p1 n2|p2 n3|p3

n8

n5|p4 n6|p5 n7|p6

n12

n9|p7 n10|p8 n11|p9

Figure 2.11: Illustration of the Merkle tree representation of a parity file with nodes num-
bered in canonical order. Only leaf nodes contain the parity blocks illustrated in Figure 2.10,
where the ith leaf node (from left to right) corresponds to the ith parity block in the list of
parity blocks.

triple-entanglements). One such list is illustrated in Figure 2.10. In the figure, the parity
block pi corresponds to the parity block pi,j resulting from an entanglement with data block
di per the entanglement rules in Table 2.2. For each data block there is one parity block of
each type of strand.

There are parity blocks for each data block in the Merkle tree produced from the original
file. This includes non-leaf nodes which do not contain blocks of data from the original file
as their content. As such, the parity files are slightly larger than the original file, which
also causes the resulting Merkle trees for the parity files to be larger. Entangling every data
block from the Merkle tree leads to an important property: The entire Merkle tree of the
original file is protected, not just the data from the original file. Using the parity blocks
it is possible to repair every data block, including the parent nodes which contain links to
other data blocks.

Parity blocks are separated into α distinct subsets. Each subset consists of all parity
blocks from one type of strand, e.g. all parity blocks on the H-strand. When the size of the
content of a parity block is less than the block size, it is padded with zeros. This is necessary
to predict the layout of the Merkle trees generated from parity files when uploading the
files to the backend DSS. Finally, the padded parity blocks from each subset are written to
a parity file, resulting in α parity files in total.

2.4.2.4 Uploading the Files

In the final step of entanglement, Snarl may also upload the files to the backend DSS. Using
a backend-dependent implementation, Snarl uploads the original file as well as the parity
files to the DSS. The original file will be stored in the backend equivalently to the Merkle
tree generated during entanglement as described in Section 2.4.2.1. The parity files will
have a different layout, since they contain more blocks of data.

An illustration of the Merkle tree used to stored each parity file in the backend DSS
is provided in Figure 2.11, based on the parity blocks illustrated in Figure 2.10. For each
type of strand, each parity block generated during entanglement becomes a leaf node in the
Merkle tree representing the corresponding parity file. The leaf nodes are illustrated with
two identifiers ni and pj , where ni identifies the parity node with the canonical index i, and
pj corresponds to the matching parity block in Figure 2.10. Each parity block has been
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padded such that its size is exactly the block size. Since the splitting process splits files into
blocks of the predefined block size, after splitting, each block will contain only the content
of a single parity block. When the Merkle tree is generated, each parity block will be stored
in its entirety in its own leaf node. A number of parent nodes are generated based on the
branching factor in the same manner as described in Section 2.4.2.1. The result is a Merkle
tree for each parity file that has more nodes than the Merkle tree for the original file.

Only the leaf nodes of the parity file Merkle trees contain parity blocks. As such, only
the leaf nodes can be used to repair data blocks, since only they contain portions of the
parity file data. The parent nodes in the Merkle trees of the parity files are only used to
acquire links to the relevant child nodes when traversing the trees.

2.4.3 File Recovery and Repair Algorithm

In this section we look at how Snarl recovers files from the backend DSS, and when and
how repair occurs. First the general file recovery process is described, without going into
detail on how repair works. Subsequently, the repair algorithm is described briefly.

2.4.3.1 File Recovery Process

File recovery is when Snarl attempts to recover the contents of a file that was previously
entangled and uploaded to the backend DSS. This involves retrieving the data blocks that
constitute the Merkle tree representing the file from the backend DSS, and rebuilding the
file with the blocks of data contained in the leaf nodes.

Setup Some setup steps are necessary before the recovery process begins. Internally, Snarl
uses a structure called Lattice to represent the AE helical lattice, which is used during
recovery. To set up this data structure, knowledge of the layout of the Merkle tree of data
blocks is necessary. Additionally, the size of each data block is needed, to be able to remove
padding during any repairs that may occur.

For these purposes, Snarl must be provided a list of so called chunk metadata. The
metadata is generated by creating a mirrored structure of the Merkle tree of data blocks.
Snarl creates a temporary file with the same size as the original file, with arbitrary contents.
Then, using the same procedure as described in Section 2.4.2.1, a Merkle tree is generated
with the same branching factor and block size, and as such the same exact layout and size
of nodes1. The nodes in the generated tree should only differ in the content of the leaf
nodes, and the hashes or CIDs. The generated tree is then traversed, producing for each
node an object which contains the following:

• Size: The cumulative size of the subtree of the node, including the size of the node
itself.

• Length: The size of the node itself, which may not exceed the block size mentioned in
Section 2.4.2.1. This value may be used when removing padding from parity blocks
during repair.

• Parent index : The AE helical lattice index of the node that is the parent of this node.

• Child node indices: A list of AE helical lattice indices of the children of this node.

Furthermore, the Lattice must know the CIDs of the root blocks of the data block
Merkle tree and of the Merkle trees of each parity file. Otherwise Snarl cannot find references
to data blocks and parity blocks during recovery.

1In order for this to work, the algorithm that splits the file and produces a Merkle tree must only be
based on the size of blocks of data, such that two files of the same size always produce the same Merkle tree
layout.
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Based on the provided metadata, Snarl generates empty blocks for each data block and
parity block in advance for the Lattice data structure. Whenever a data block or parity
block is downloaded or repaired, its content is stored in the corresponding block of the
lattice. Additionally these blocks are used to determine related pp-tuples for data blocks
and dp-tuples for parity blocks, which are necessary for repairs.

Recovery The recovery process is the following:

• The root data block is retrieved. If the data block is not available in the backend
DSS, it is repaired using a related pp-tuple.

• Starting from the root node, the data block Merkle tree is traversed. Parent nodes are
retrieved and contain links to their child nodes. Each child node is retrieved concur-
rently. Whenever a node (data block) is missing, an attempt is made to repair it using
related pp-tuples. Parity blocks may fail to download as well, and can be repaired
using dp-tuples. The repair process is described in more detail in Section 2.4.3.2. The
recovery process fails if any node is irretrievable both through download and repair.

• When all nodes are retrieved successfully, the reproduced data block Merkle tree is
traversed again, and the contents of each leaf node is catenated to reproduce the
content of the original file. The recovered data is written to an output file.

2.4.3.2 Repair Algorithm

In this section we look at a high-level overview of the Snarl repair algorithm. Snarl’s repair
algorithm is based on the AE repair concepts described in Section 2.3.4. The algorithm
is used to repair missing data blocks using related pp-tuples, and may also need to repair
parity blocks if they are also irretrievable, by using dp-tuples related to parity blocks. Using
the properties provided by alpha entanglement, missing data blocks and parity blocks can
be repaired recursively in several rounds, leading to high availability. In-depth descriptions
of different parts of the algorithm are provided by Nygaard et al [19].

The repair algorithm is triggered whenever a data block or parity block b is not directly
retrievable from the backend DSS. In simple terms it consists of the following steps:

1. Get pp-tuples (for data block) or dp-tuples (for parity block) related to b.

2. Repeat the following steps until the algorithm terminates:

• For each tuple, recover data blocks or parity blocks the tuple consists of.

– Data blocks are requested by CID.

– Parity blocks are requested by sending requests to a middleware for commu-
nicating with the backend. The requests contain the CID of the root node
of a parity file Merkle tree and the AE helical lattice index i of parity block
pi,j . The root CID is determined by the type of strand the parity block is
requested from. The requested parity block pi,j is that which was generated
from data block di, per rules in Table 2.2. The middleware retrieves and
stores necessary blocks of the parity file Merkle tree to recover requested
parity blocks.

If required blocks are not locally available and not retrievable from the backend
DSS, go to step 1 for the required block.

• When both blocks of the tuple are available, recover b using Equation 2.2 for
data blocks or Equation 2.1 for parity blocks. In this case the repair algorithm
completes successfully.
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• Snarl tries to repair tuples related to b until it detects a critical failure pat-
tern. Such a failure pattern occurs when there is no way to reproduce any tuple
necessary to repair b. In this case, the algorithm fails.
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Chapter 3

Design

In this chapter we look at the design of contributions to Snarl made in this thesis. While
Snarl was a functional application originally, it was in many places heavily tied to the
Swarm backend. Large parts of this thesis are concerned with introducing abstractions and
alternative algorithms to enable alternative backends for Snarl, and to make it simple to
add more backends in the future.

Firstly, we formalize requirements for a backend DSS to be a viable Snarl backend.
Secondly, we describe the abstraction layer, designed to enable alternative Snarl backend
implementations, and to simplify usage of Snarl. Finally, we look at the IPFS peer man-
agement layer, used to conduct experiments to evaluate the performance of Snarl with the
IPFS backend.

3.1 Backend Requirements

This section describes requirements for a DSS to be viable as a Snarl backend. The design
of Snarl imposes a few requirements on the backend DSS to operate correctly. This is
primarily due to the need to represent the data blocks and parity blocks being recovered
in Snarl’s internal data structures, including the number of blocks and size of each block.
First, we define block DAGs, and describe required properties for compatibility with Snarl.
Furthermore, we describe requirements of nodes in the block DAGs. Finally, we describe
information the end user must provide to Snarl for successful file recovery.

3.1.1 Block DAG Requirements

In this section, block DAGs are defined, and various requirements of block DAGs for Snarl
compatibility are described. The DSS is assumed to store files as blocks of data which are
connected in a DAG in a way that makes it possible to recover the original file. We define
this generic storage layout as a block DAG. We may refer to any entry in the DAG as a
node, while blocks generally refer to data blocks or parity blocks.

The rest of the thesis discusses Merkle trees or Merkle DAGs as the storage layout of
a backend DSS, but they are not necessary for Snarl to function, though they are perhaps
the most convenient ways to achieve this functionality. Snarl only needs to know about
the hierarchies of data blocks and parity blocks, and be able to recover necessary blocks
from these hierarchies. To achieve this the DSS should fulfill the criteria described in the
remainder of this section.

3.1.1.1 Predictable Block DAG Layout

The DSS produces block DAGs in a predictable manner. For two files of the same size,
the layout of the block DAGs produced from each file must be identical. The layout being
identical means that the same portions of each file (when looking at two byte offsets i, j|i 6=
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j) must end up in the same block of data in the canonical order, and be of the same size
max i, j −min i, j. Block DAGs are produced in a backend-specific manner which produces
the same block DAG layout as when uploading or storing the same file in the backend.

During recovery, this enables Snarl to discover the layouts of the block DAGs for both
data blocks and parity blocks related to the requested file, the mapping of parent indices
to child indices in the canonical order, as well as metadata such as the size of each data
block. These properties can be generated by only taking the size of the requested file, the
block size, and the branching factor as inputs. In some cases, the block size and branching
factor are constant in the backend DSS, and need not be provided by the end user.

This property implies that the layout of the block DAG of the file stored in the backend
DSS is equivalent to the layout of a block DAG generated by Snarl locally. To discover
the block layouts and related index mappings and metadata, Snarl generates a block DAG
locally. When the size of the requested file is n bytes, Snarl generates a block DAG locally
from a buffer of n bytes of arbitrary data. The local block DAG is traversed to generate
index mappings and metadata. It is also flattened, and a parity file is generated from it,
from which another local block DAG is generated, which is traversed to generate index
mappings for the parity files. These values are used by Snarl during recovery and block
repair.

3.1.1.2 Leaf Node Properties

There are two types of nodes in a block DAG. Firstly, internal nodes are nodes which have
references to child nodes or outgoing edges. In contrast, leaf nodes have no child nodes or
outgoing edges. We consider leaf nodes as blocks which contain a portion of the content of
the entangled file.

Recall the entanglement process from Section 2.4.2. When generating a block DAG from
an input file, the file is split into blocks of data, which become the leaf nodes in the block
DAG. Thus, to access portions of the file, we must access the leaf nodes. Due to Snarl’s
entanglement process each node in the block DAG — data blocks — of the entangled file
are protected by parity blocks. For the parity files, only leaf nodes in the resulting block
DAG are parity blocks. This means that only leaf nodes are used by the repair algorithm
to repair other parity blocks from the same block DAG, or to repair data blocks.

The placement of parity blocks in the block DAGs of the parity files calls for a way to
address leaf nodes in the block DAG. Specifically, when requiring a parity block pi,j , Snarl
requires access to the i-th leaf node in the block DAG of a parity file. The requirement is
not for random access, but rather the possibility to recover the i-th leaf node by recursively
traversing a branch of the block DAG, from the root node to the requested leaf node, by
repeatedly requesting links to the next child node from the current position in the branch.
Parity block retrieval is described in more detail in Section 3.2.3.2.

3.1.1.3 Number of Data Blocks

The entanglement process described in Section 2.4.2 requires a certain number of data
blocks to function correctly. Snarl uses a variation of AE codes, with a thoroidal lattice [19,
Section 3.4]. To better protect data at the end of strands, the lattice is closed, i.e. the first
and last data block of each strand is connected through a parity block. In order to prevent
closing a data block with itself, the lattice must contain at least two data blocks for each
strand. This means at least 2 ·max(s, p) data blocks are required.

3.1.2 Node Requirements

This section describes requirements of the nodes of block DAGs produced by the backend
DSS. Firstly, the requirements for node identifiers and retrievability are described. There-
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after follows a description of requirements related to the size of data blocks in the block
DAGs.

3.1.2.1 Node Retrievability

Nodes in the block DAG must be retrievable from the backend DSS by providing identifiers.
Initially, Snarl is only aware of the identifiers of root nodes of the data block DAG and
parity block DAGs. Requests for these nodes should not attempt to retrieve the entire files
represented by the block DAGs related to the root nodes, or at the very least not cause
the algorithm to fail when initially failing to retrieve more than the content of a root node
itself.

Though dependent on the backend implementation, Snarl algorithms and interfaces
generally assume that the block DAG of data blocks is recovered recursively. Data blocks
are recovered or repaired starting from the root data block, then recursively recovering or
repairing child data blocks, until all data blocks are available, at which point the requested
file is reproduced. Parity blocks are recovered from the parity block DAGs in the same
manner, though only leaf nodes from these block DAGs are of interest, as mentioned in
Section 3.1.1.2. Generally not all leaf nodes are necessary to perform repairs. As such,
recovered internal nodes should contain references (identifiers) to their child nodes, to enable
recursive recovery.

3.1.2.2 Block Size

In addition to block DAG layout requirements described in Section 3.1.1, Snarl imposes
certain requirements on the size of blocks. The Snarl configuration specifies a block size in
number of bytes; this size cannot be exceeded by any data block in the data block DAG.
During the entanglement process described in Section 2.4.2.3, every block in the data block
DAG is entangled, producing parity blocks. Furthermore, the parity blocks are padded such
that their size matches the block size, and the blocks of each type of strand (H-strands,
etc.) are catenated in the canonical order into α parity files. When storing the parity files
in the backend DSS, they are each split and turned into block DAGs. Since the size of each
parity block matches the block size, the splitting ensures the content of each block is stored
in its entirety in a separate leaf node in the produced block DAG.

If the size of any data block exceeds the block size, the parity blocks produced by
entangling the data block also exceed the block size. This ultimately leads to the content
of the parity block being split into several nodes in the block DAG of that parity file, which
makes the parity block irrecoverable by providing a single identifier. It also increase the
total number of nodes containing parity block content, preventing the recursive recovery of
parity blocks mentioned in Section 3.1.1.2.

While Snarl could pad parity blocks such that the size of each matches the longest block,
this would still not work due to the requirements of predictable block DAG layouts described
in Section 3.1.1.1. If arbitrary blocks in the block DAG exceed the block size, Snarl cannot
produce another block DAG with identical layout by only using the parameters file size,
block size and branching factor.

3.1.3 Requirements from the End User

This section describes requirements from the end user in order to be able to use Snarl to
recover a file which was entangled and uploaded to a backend DSS. During recovery, the
user must provide the configuration of Snarl used during the entanglement and storage of a
file, as well as identifiers for the related block DAGs. The remainder of this section describes
information the user must provide in order to successfully recover a requested file.
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3.1.3.1 Snarl Configuration

The user must provide the configuration of Snarl originally used when entangling and storing
the requested file. The backend configuration must be mirrored, which includes the type of
backend DSS used, block size, and branching factor. There may be additional configuration
required by certain backends, which must be provided as well. Finally, the size of the
requested file in bytes must be provided such that Snarl can predict the layout of the
related block DAGs, as described in Section 3.1.1.1.

3.1.3.2 Identifiers

The user must provide identifiers of root nodes in the block DAGs related to the requested
file. To recover the file without the possibility of repair, the identifier of the root data block
must be provided. To use Snarl’s repair algorithm, identifiers of root nodes in the block
DAGs related to parity files must be provided as well. Parity blocks from each type of strand
are only available by traversing the related block DAG from the root node, i.e. the identifier
of the root node of the block DAG of each type of strand is necessary to make use of parity
blocks from that type of strand in the repair algorithm. Technically, it would be possible to
only provide identifiers for a subset of the block DAGs of parity files, only making the same
subset of types of strands available during repairs, however this functionality is currently
not provided by Snarl.

3.2 Abstraction Layer

In this section we look at the design of the abstraction layer for Snarl. First we look at the
updated architecture of Snarl with regards to the abstraction layer. Then the design goals
behind the abstraction layer are described. Thereafter follows a brief overview of the differ-
ent domains of the abstraction layer, namely the node abstraction and related operations,
entanglement, uploading, recovery and repair. Each abstraction was created to enable using
several backends for Snarl, and to make it simple to implement new backends. In several
places, the original code depended on Swarm APIs or details of the Snarl implementation
for Swarm, neither of which translate directly to non-Swarm backends. As such, abstrac-
tions were needed, but the abstractions are designed such that the majority of the original
code can be reused.

3.2.1 Updated Architecture

The updated architecture of Snarl is illustrated in Figure 3.1. It differs from the architecture
previously illustrated in Figure 2.6 in that it includes the abstraction layer. The end user
interacts with Snarl either through the command-line interface (CLI) or using Snarl as a
library in another application. The Snarl algorithm uses the abstraction layer to support
multiple backends.

Backend abstractions are implemented primarily by Go interface types. The underlying
backend implementation implements the abstraction layer API, e.g. using the DSS backend’s
API to generate DAGs, store content and retrieve content. This may trigger network calls
or calls to external applications related to the backend in order to produce the intended
effect.

3.2.2 Design Goals

There are several design decisions that affect the design of the abstraction layer. The
paragraphs below describe the design goals for our contributions to Snarl.
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Figure 3.1: High-level overview of the architecture of Snarl, including the introduced ab-
straction layer.

Abstraction and simplicity The abstraction layer should provide a minimal and simple
API with high-level abstractions. These properties should make the system easier to use and
reason about, and simplify extensions. The abstractions should also be such that end users
and developers do not require in-depth knowledge of alpha entanglement functionality to
use Snarl. Two possible ways to implement abstractions in Go are interfaces and channels.

An interface type is a type which describes desired functionality of other implementing
Go types1. It does not have to describe all possible operations implementing types can
perform, just those we are interested in. An example is the io.Writer interface type whose
single method Write accepts a slice of bytes to be written, and returns the number of bytes
written and an error, if any [24]. This interface is widely used in the Go standard library
and other Go code, e.g. for writing to buffers, files, network streams, and encrypted streams.
Similarly, interfaces can represent operations in a backend-independent manner, while the
interface implementations may vary in both layout and complexity. Additionally, interface
types are composable, i.e. an interface can be the union of other interfaces, which makes it
possible to make minimal interfaces and extend for cases that require more functionality.

Go channels on the other hand, operate as thread-safe FIFO queues, enabling the pro-
grammer to send any data across thread boundaries [30]. Channels are useful for abstrac-
tions when the source of a piece of data, or how it was produced, is irrelevant to the
consumer. The consumer can simply receive the data from the channel and use it for its
intended purpose.

1Go interface types [31] work similarly to interfaces in most object-oriented programming languages. A
major difference in Go is that interfaces are implicitly implemented by any type which implements each
method belonging to the interface.
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Applicability and extensibility The abstractions should apply to many potential back-
end implementations and should be simple to extend. The applicability of the abstraction
layer should be high: the abstractions should make it possible to add implementations of
several new backends without friction. Particularly, the addition of a new backend should
not require further changes to Snarl internals or the abstraction layer itself, nor provide
limited functionality for the new backend.

Code reuse and refinement Whenever feasible, the abstraction layer should enable
reuse, refinement or simplification of the existing codebase. The Snarl codebase already
had thousands of lines of code before the start of this thesis. It is desirable to reuse as much
code as possible, and add extensions or make simplifications where possible. In cases where
the logic changes significantly, the existing code is adapted or used for inspiration.

3.2.3 The Node Abstraction

The node abstraction represents a node in the Merkle DAG of the backend2. The node
contains the raw data stored by that node in the DSS, as well as other data such as links to
child nodes or fields required by Snarl such as the lattice index. In effect, the node is a way
to convert raw data retrieved from the backend DSS into Go types that can be used by Snarl.
Different backend DSSes require different implementations, by implementing abstractions
for common operations on top of the APIs and types of the backend. The Merkle DAG itself
is represented as a sequence of nodes, in the canonical order as described in Section 2.4.2.

Previously, blocks were represented with the TreeChunk data structure, which is tied to
the Swarm backend. The node abstraction provides the minimal interface to present nodes
from any backend. TreeChunk remains as the node implementation for the Swarm backend.

For the purposes of Snarl, a node must provide the following operations:

• The node must be able to provide its unique identifier. This is an inherent property
of content-addressing DSSes. However, location-addressed DSSes may also be used
by storing the node’s location address when it is retrieved, assuming the content at
the location address is static.

• The node must be able to provide the raw data it contains. In most cases only leaf
nodes contain data, while other nodes simply contain links to child nodes, as well as
being used for Merkle proofs in the case of Merkle DAGs.

• The node must be able to indicate whether it is a leaf node or an internal node, based
on the definitions given in Section 3.1.1.2.

• The node must implement the walk operation. It returns the subtree of the node,
including itself, flattened in the canonical order. This operation is described in Sec-
tion 3.2.3.1.

• The node must implement the next path operation. It returns a link to and index of
the next node in the path to a requested leaf node. This operation is described in
Section 3.2.3.2.

3.2.3.1 The Walk Operation

The walk operation, when called on a node, returns a sequence of nodes. The sequence
consists of the subtree of the node walk was called on, including the node itself, flattened

2Note that for simplicity this section uses the term Merkle DAG interchangeably with the term block
DAG defined in Section 3.1.
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in the canonical order. The recursive definition of walk is

walk(x) = x, if |Cx| = 0, (3.1)

walk(x) = walk(c1)||walk(c2)|| . . . ||walk(cn)||x, if Cx = {c1, c2, . . . , cn}, (3.2)

where x is a node and Cx is the set of child nodes of x. In this way, starting at the root
node, the operation can be recursively called on child nodes to recover the flattened DAG in
canonical order. Leaf nodes return themselves, while a parent node returns the catenated
results of calling the operation on its child nodes, finally catenated with itself.

The walk operation is a generalization of the approach used by Snarl initially to build
and recover Merkle trees3. The initial approach would retrieve the root node, and then
recursively recover and traverse child nodes until the complete Merkle tree was recovered.
If a node was missing, the code would attempt to repair it. The walk operation essentially
does the same, except that it may be implemented by any backend, and it defers recovery
and repair of child nodes to a recoverer abstraction (described in Section 3.2.6), which
reduces code duplication.

3.2.3.2 The Next Path Operation

The next path operation, when called on a node, returns a link to a node in the Merkle
DAG. The operation takes as input an integer n which indicates the caller is requesting the
n-th leaf node in the Merkle DAG. In response, the callee node returns the link to the next
node in the path to the requested leaf node from the position of the callee in the Merkle
DAG. For internal nodes, the return value must be the link to a child node of the callee,
while for leaf nodes, the identifier of the callee itself is returned.

The purpose of this operation is to traverse a branch of the Merkle DAG from the root
node to a requested leaf node. Contrary to the walk operation, which traverses the entire
Merkle DAG, the next path operation visits as few nodes as possible, and is only used for the
purpose of recovering leaf nodes. It is used to recover leaf nodes from the Merkle DAGs of
parity files, i.e. for parity block recovery, whenever parity blocks are required by the repair
algorithm (described in Section 3.2.7).

n15

n7

n3

n1|p1 n2|p2

n6

n4|p3 n5|p4

n14

n10

n8|p5 n9|p6

n13

n11|p7 n12|p8

Figure 3.2: Illustration of calls to next path requesting the sixth leaf node p6. Each node
in the branch from the root node n15 to the destination node p6 is highlighted.

An illustration of next path is provided in Figure 3.2. It contains a binary Merkle tree for
a parity file, consisting of 15 nodes, with eight leaf nodes, i.e. eight parity blocks. The caller
requires the sixth parity block p6 for a repair operation. To retrieve this parity block, the
caller recursively calls next path on nodes starting from the root node, each time with the

3Here we refer to Merkle trees, since originally Snarl only supported the Swarm backend, which uses
Merkle trees to store files.
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input n = 6, to traverse the branch to the leaf node. For each call, the caller retrieves the
related block of data from the backend DSS, and deserializes the data into a node. When
the caller retrieves a leaf node, in this case the node n9 with the alias p6, the algorithm
completes.

Table 3.1: Results of calls to next path on nodes from the Merkle DAG illustrated in
Figure 3.2. The call on the leaf node n9 is not performed in practice, but the result is
included for illustration.

Callee node Linked node

n15 n14
n14 n10
n10 n9
n9 (redundant) n9

The result of these calls to next path are provided in Table 3.1. Calls on internal nodes
n15, n14 and n10 returns links to their respective child nodes n14, n10 and n9 on the path
to the destination node p6 or n9. In practice, the final call will be that made to n10, which
returns the link to the leaf node that is requested. The result of a hypothetical call to the
leaf node n9 is provided for the sake of illustration, which would return a link to the leaf
node n9 itself.

3.2.4 Entanglement

The entanglement procedure takes a file and produces α parity files each containing parity
block content. Files in this context means sequences of bytes. The parity files are encoded
as described in Section 2.4.2, such that all parity blocks from each type of strand — H-
strands, LH-strands and RH-strands for triple-entanglements — are catenated into a single
file for their corresponding type of strand. The code which produces parity files from the
flattened DAG of the original file is a largely unmodified version of the original code.

Entanglement produces a flattened DAG and α parity files. The entanglement process
is described in Section 2.4.2. The file is transformed into a Merkle DAG layout in the same
way the backend DSS does for uploaded content. Furthermore, the Merkle DAG is flattened
in the canonical order. Then, each node in the flattened DAG is treated as a data block,
and entangled according to the rules in Section 2.3.3, producing α parity blocks for each
node. To produce a flattened DAG, internally a backend implementation may split the file
using the API of the backend, represent the blocks of data as nodes, then use the walk
function from Section 3.2.3.1 to produce the flattened DAG.

3.2.5 Uploading

There are two scenarios where Snarl uploads data to the backend DSS. Firstly, Snarl may
upload files containing entangled content. Both the original file and the α parity files are
uploaded.

Secondly, Snarl may upload blocks to the backend DSS. When the repair algorithm
fails to retrieve some block, and subsequently repairs it, it may optionally upload it. The
repaired block is uploaded to the backend DSS for future availability.

Initially, uploading was tied to the APIs and implementation of the Swarm backend.
The upload abstractions for files and blocks provide simple interfaces to implement this
functionality for any backend.
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3.2.6 Recovery

Recovery is defined as the retrieval of a requested node, either from the backend DSS or
from local storage. There are two participants in recovery: the requester requests recovery
of a node, and the recoverer performs recovery and returns the node to the requester.
Requesters send requests containing the CID for a requested node in the backend DSS, the
index of that node in the lattice, and a channel which the recoverer can use to respond to the
particular request. In the simplest case, the recoverer simply downloads from the backend
DSS the content pointed to by the CID sent by the requester, and ignores the index. This
can occur regardless of AE codes, repairs, etc. In a more advanced case, the recoverer might
need to repair blocks to recover the node, which is described in Section 3.2.7.

After retrieving the raw, serialized data related to the requested node, the recoverer
must convert it to a node object. For this purpose, the abstraction layer defines a node
deserializer, whose purpose is to convert raw, serialized data to nodes, in a backend-specific
manner. The recoverer executes the deserialization code on the retrieved data, and forwards
the result to the requester.

Requester

Make request for root
node. Make response

channel.

Request node(s)

Got node(s)? Fail

Walk node(s)

For each child node:
Make request for node.

Make response
channel for node.

Return flat DAG

Yes

No

Requests
(Recoverer)

Await and read
response

Got child
nodes?

NoYes

Figure 3.3: Flow chart of the requester in the recovery process.

The recovery process is illustrated with flow charts. The requester is illustrated in
Figure 3.3, and is based on the provided interface implementation to recover a flattened

32



Recoverer

Requests

Requests
open?Stop No

Get request

Respond
Node

available
locally?

Yes Retrieve data
from backend

No

Data
retrieved?

No

Deserialize data Yes

Yes

Figure 3.4: Flow chart of the recoverer in the recovery process.

DAG. The requester makes a request for the root node and requests it from the recoverer. If
the node is returned without errors, the requester uses the walk operation described above
to produce the flattened DAG rooted at the root node. The subsequent recursive requests
for child nodes are performed by the backend implementation by sending further requests
to the recoverer. Each recovery request provides a separate response channel.

The recoverer is illustrated in Figure 3.4. It simply receives requests, retrieves and
deserializes the data, and responds to the request on the response channel provided in the
recovery request. If an error occurs either during recovery or deserialization, the response
includes the error message instead of the requested node.

The recoverer abstraction provides two important properties:

1. Requesters know nothing of the implementation details or capabilities of the recoverer.
A requester simply has a reference to a channel where it can send recovery requests.
The recoverer is responsible for producing the data, and deserializing it into a node.
Whether the recoverer downloads the data, produces it by repairing, or already has
the data is irrelevant to the requester. The requester simply looks at the response
it receives, which either contains the requested node or an error message indicating
failure.

2. The recoverer is independent of backend implementations. As mentioned, the recov-
erer accepts recovery requests, and produces nodes by downloading (or repairing) and
deserializing data from the backend DSS. There are abstractions both for retrieving
blocks by CID from a backend DSS, and for deserializing the data which is down-
loaded. These abstractions are implemented for each backend, and simply provided
to the requester upon initialization, without specifying to the requester which backend
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it operates on. It is assumed that recovery requests are only routed to a recoverer
operating on the same backend, which is easily controlled by the implementation code.
Since abstractions are used at all layers of the API, the exposed API is independent
of any backend.

Comparatively, if the recovery and deserialization were performed without centralized
recoverers, it would lead to code duplication. This is because each backend implementation
would need to perform retrieval and deserialization themselves, and somehow communicate
the need for repair, or also perform this themselves using exposed APIs. As mentioned, this
was the case for the initial Snarl code. There, the Swarm backend implementation itself was
responsible for retrieving blocks and attempting to repair them if they were irretrievable.

3.2.7 Repair

Repair is defined as recovering a requested node that was unavailable in the backend DSS
by using the AE repair algorithm described in Section 2.3.4. The repair algorithm uses pp-
tuples of two parity blocks, retrieved from the parity files described earlier in this section, to
repair data blocks. Parity blocks might also need to be repaired, in which case the repairer
uses a dp-tuple. All intermediate results are stored locally by the repairer such that the
same block is not downloaded more than once during the recovery of a single file.

In the abstraction layer, a repairer is simply an extension to the recoverer. In addition to
responding to recovery requests received on its request channel, it will attempt to perform
repair whenever a data block (serialized node) is missing. Since lattice indices are necessary
to determine dp-tuples and pp-tuples during repair, each recovery request must include the
lattice index of the requested node.

The repairer is illustrated in Figure 3.5. Similarly to the recoverer in Figure 3.4, the
repairer receives requests, produces the serialized data blocks, and deserializes them into
nodes. The result of each request — the requested node or an error message — is sent as a
response to the requester. Repair occurs when the node is not available locally, and cannot
be retrieved from the backend. The repair process checks if any of the α possible pp-tuples
are available to repair the data block. If not, the repairer recursively retrieves and repairs
dependent blocks until any of the pp-tuples are available. If the pp-tuples are recovered
successfully, the repairer repairs the data block, and proceeds with deserialization as if the
block was retrieved regularly. Additionally, repaired blocks can optionally be uploaded to
the backend DSS by using the block uploader abstraction, illustrated with a dashed line in
the flow chart. If any intermediate step fails, the response contains an error message instead
of the requested node.

Meanwhile, the requester exactly the same as illustrated in Figure 3.3, and explained in
Section 3.2.6. As mentioned, the requester is ignorant of the implementation of the recoverer
it sends requests to; it only considers the responses it receives to its requests. Initialization
of the repairer is not related to the implementation of the requester.

3.2.7.1 New Approach to Parity Block Recovery

The abstraction layer specifies a new approach to retrieve parity blocks from the backend
DSS. As described in Section 2.4.3.2, originally Snarl retrieved parity blocks by sending
requests to a middleware for communicating with the Swarm backend. The repairer sent
requests containing the CID of the root node of a parity file Merkle tree, and the AE helical
lattice index i of parity block pi,j . The middleware was then responsible for retrieving
the parity block from the backend, and storing any nodes necessary from the parity file
Merkle tree to retrieve the parity block. With this approach, the backend implementation
does most of the work related to retrieving parity blocks, while the repairer simply sends
requests. This is fine when there is only a single backend implementation, but requires
each new backend implementation to duplicate the work related to retrieving parity blocks
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Figure 3.5: Flow chart of the recovery process of the repairer.

specifically, as well as thinking of a strategy to temporarily store internal nodes necessary
for the retrieval of other potential parity blocks.

The abstraction layer instead uses the next path operation for parity block retrieval.
Since parity blocks are leaf nodes of the Merkle DAGs generated from parity files, the
operation is used to retrieve parity blocks (leaf nodes) from those DAGs. The repairer,
when requiring a parity block for repair, recursively calls next path starting from the root
node of the corresponding parity file Merkle DAG, continuing until it encounters a leaf
node. Each retrieved parity node is stored by the repairer in a map data structure such
that they are not downloaded more than once. The algorithm is simple to implement for
new backends, and the majority of the logic is now performed by the repairer, rather than
by each backend implementation.

3.3 IPFS Peer Management Layer

In this section we look at the design of the IPFS peer management layer (PML). The PML
is used to control a set of network-connected peers. The purpose is to conduct experiments
to test the operation of the IPFS backend implementation for Snarl. There already exists
an experimental framework for the Swarm backend using Helm and Kubernetes [19]. We
found it more convenient to implement a separate one for the IPFS backend. The remainder
of this section looks at the motivation for the PML, an overview of how it operates, and
requirements for the desired functionality.
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3.3.1 Motivation

In this section we look at the motivation for creating a PML for conducting experiments for
the IPFS backend for Snarl. To evaluate Snarl for the newly implemented IPFS backend,
we need a way to run experiments involving several IPFS peers. The experiments should
be controlled from a single peer, which controls the operation of other peers in the network
to suit the experiment. For example, peers should be able to simulate crashing, losing data.
It should also allow for distributing blocks of data in various ways.

There are existing solutions for IPFS peer and block management. For example, one
solution is IPFS Cluster, a distributed application for controlling a cluster of IPFS peers
and allocating and pinning items among them [8]. It does not match our needs for a few
reasons. Firstly, the way the Snarl IPFS backend is implemented make them infeasible. The
IPFS backend uses a proxy for communicating with the backend, using low-level IPFS APIs
for uploading and downloading blocks. We would need to reimplement the IPFS proxy for
the IPFS Cluster as well. Secondly, to allow for a broad range of potential experiments, we
prefer direct control over peer operation.

There is also the experimental framework for the Swarm backend of Snarl. This was not
adapted for a few reasons. Firstly, it is implemented with specifics of the Swarm backend in
mind, and we would have to replicate most of the functionality for IPFS. Secondly, we do not
have previous experience with Helm and Kubernetes, and prefer to use other frameworks
we are more experienced with.

3.3.2 Overview

In this section we look at an overview of the communication flow between peers during
experiments. There are two types of peers. The controller controls the operation of other
peers, distributes nodes, and uses Snarl for entanglement and recovery. All other peers
simply execute commands received through the PML, and run the IPFS daemon during
experiments.

Controller

Snarl: Entangle file

PML: Distribute
nodes, start/stop
IPFS daemons

Peers

Controller

Snarl: Recover file

IPFS daemon:
Retrieve nodes

Peers

Phase 1 Phase 2

Figure 3.6: Overview of operation of controller, Snarl and PML during experiments.

The operation of the controller and PML during experiments is illustrated in Figure 3.6.
During experiments, there are two phases. In the first phase, the controller uses Snarl to
entangle an input file, and communicates with peers directly through the PML to set up
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the experiment. This involves starting or stopping IPFS daemons on other peers and
distributing nodes from the entangled file to various peers.

In the second phase, the controller uses Snarl to recover the file. The Snarl repairer,
using the abstraction layer, retrieves nodes from other peers through the IPFS daemon.
Based on the scenario, node and peer loss may have occurred, necessitating the retrieval of
parity nodes for the repair algorithm.

3.3.3 Requirements

In this section we examine the requirements for the PML. To enable the functionality
described in Section 3.3.2, and to enable various scenarios, certain requirements must be
met. The following paragraphs describe requirements related to the operation of peers,
node distribution, and operations needed to fulfill the requirements.

Controller The PML must enable a single peer, the controller, to control operation and
failure scenarios of other peers. This makes it simple to conduct experiments and obtain
results. The controller runs Snarl to entangle files and distribute nodes, and to recover
uploaded files.

Failure scenarios There are two types of failure scenarios to simulate. The first is node
loss. This occurs when one or more DAG nodes are unavailable from one or more peers
where they should have been available. Corrupt node content is not considered — we
assume IPFS confirms downloaded content based on CID. If node content is corrupt at the
sender, the node is considered unavailable altogether.

The second type of failure is peer loss. This occurs when a peer that stores a node is
unavailable, e.g. due to crashing, leaving the network, or other network issues.

In both cases, the node cannot be retrieved from the peer in question. It must be
retrieved in other ways, such as from another peer storing the same node, or through
repair.

The PML must grant the ability to seamlessly inject both node loss and peer loss. The
loss should be able to be injected in any peer participating in the network, and to any node
that can be identified by CID.

Operations The PML must support certain operations to meet the above requirements.
The following operations are considered essential:

• Pinning nodes: To distribute nodes through the network, the controller orders peers
to pin nodes identified by CID. Pinning may be recursive, i.e. including the subtree
of the identified node. Otherwise only the identified node is pinned.

• Deleting nodes: To simulate node loss, the controller orders peers to delete nodes
identified by CID. The peer removes the node from their local storage, making it
unavailable through requests to IPFS.

• Start and stop IPFS daemon: To simulate peer loss, we must be able to start and stop
the IPFS daemon of peers. While peers are accessible through the PML at any time,
the IPFS daemon is initially not running. The controller orders the peers involved in
an experiment to start their IPFS daemon. Peers in a peer loss scenario are ordered
to stop their IPFS daemon.

• Diagnostics: The PML should provide certain diagnostics, such as whether nodes are
pinned or available, peer’s network ID, etc.
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Chapter 4

Implementation

This chapter presents API for the abstraction layer and implementation challenges. The
first section gives a detailed overview of most APIs defined by the introduced abstraction
layer. The information in that section is quite detailed, and complete understanding of it
is not necessary to understand the remainder of the thesis. The other section describes
challenges encountered during updates to Snarl internals, the implementation of the IPFS
backend, and updates to the original Swarm backend.

4.1 Backend API

In this section we look at the Go API which provides the functionality described in Sec-
tion 3.2. The API description is divided into several domains of related functionality to
make relations more apparent. The domains that are described are the node represen-
tation, entanglement of data, uploading to the backend DSS, retrieving and deserializing
nodes from the backend DSS, and finally file recovery and repair.

4.1.1 Node and DAG Representations

Listing 4.1: API for node and flattened DAG representations.

type Node interface {

ID() []byte

ToRaw() []byte

Walk(ctx context.Context , recoverer chan <- RecoveryRequest)

(FlatDAG , error)

NextPath(index uint) (link []byte , linkIndex uint , err error)

IsLeaf () bool

}

type FlatDAG []Node

func (dag FlatDAG) ToRaw() [][]byte

func (dag FlatDAG) ToRawData () []byte

func (dag FlatDAG) Root() Node

The API for representing nodes and flattened DAGs is shown in Listing 4.1. The Node

interface is used to represent nodes as described in Section 3.2.3. Meanwhile the FlatDAG

type represents a flattened Merkle DAG as a sequence of nodes. The remainder of this
section describes these types in more detail.
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4.1.1.1 The Node Interface

In this section we look at the ToRaw, Walk and NextPath methods of the Node interface.
The ID and IsLeaf methods are self-explanatory.

ToRaw method The ToRaw method returns the serialized, raw data contained in the
node, i.e. the same data stored by the backend DSS. This data has two purposes. Firstly,
the data from the leaf data blocks is used to reconstruct the original file during recovery.
Secondly, raw data of any data block and of leaf nodes from the parity file Merkle DAGs
(parity blocks) is used for the repair algorithm as described in Section 2.3.4.

Walk method The Walk function returns the subtree of the node, including the node
itself, in flattened, canonical order, as described in Section 3.2.3.1. While not enforced by
the interface, it is intended to be called recursively on child nodes linked from the origin
node. In this way, Walk can be called on the root node to recover every node in the Merkle
DAG, flattened in canonical order. When encountering missing child nodes in the path,
recovery requests for the missing nodes are sent to the input recoverer channel. Retrieval
of child nodes and recursive calls to Walk can be concurrent, since nodes are arranged
hierarchically, i.e. child nodes do not depend on sibling nodes, uncle nodes, or similar, only
the branch from the root node.

NextPath method The NextPath method implements the next path operation described
in Section 3.2.3.2. The input argument specifies which leaf node is requested. As a result, the
node which NextPath is called on returns the CID (link) and canonical index (linkIndex).
Both of the aforementioned return values are necessary to retrieve and deserialize the next
node in the path. The caller recovers the linked-to node and calls the method again,
repeating the process until it recovers the requested leaf node.

4.1.1.2 The FlatDAG Type

In this section we look at the FlatDAG type. It is used to represent flattened Merkle DAGs in
the canonical order. Additionally, it is used for intermediate results, i.e. flattened subtrees
in canonical order from the result of a call to Walk on a non-root node.

There are three convenience methods for the type. ToRaw returns the result of calling the
ToRaw method on each node in the DAG, and Root returns the last node in the DAG. Most
useful is the ToRawData method, which catenates the results of calling the ToRaw method
on each leaf node in the DAG. This is used to recover the original file from the flattened
data block Merkle DAG.
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4.1.2 Entanglement

Listing 4.2: API for entanglement.

type FlatDAGConstructor interface {

Construct(ctx context.Context , r io.ReadSeeker) (FlatDAG , error)

}

type ShiftingConstructor interface {

FlatDAGConstructor

Shift(FlatDAG) (FlatDAG , error)

}

type EntangleHelper struct {

// unexported fields

}

func NewEntangleHelper(aeConf config.AEConfig ,

constructor backend.FlatDAGConstructor)

*EntangleHelper

func (e *EntangleHelper) WithOutputDirectory(outDir string)

*EntangleHelper

func (e *EntangleHelper) WithParityWriters(parityWriters []io.Writer)

*EntangleHelper

func (e *EntangleHelper) Entangle(ctx context.Context , r io.ReadSeeker)

error

func (e *EntangleHelper) FlatDAG () backend.FlatDAG

The API for entanglement is shown in Listing 4.2. It consists of an interface for con-
structing flattened Merkle DAGs, which is implemented for each backend, and helper type
used to perform entanglement. In the remainder of this section we look at them in more
detail.

4.1.2.1 The FlatDAGConstructor Interface

This is a high-level interface for constructing a flattened DAG from the contents of a file.
The configuration (block size, branching factor, etc.) of nodes in the flattened DAG matches
that which the backend would use when uploading the same file. The Construct function
constructs a flattened DAG from the contents of the r parameter. r is an io.ReadSeeker,
which means in addition to providing the Read method, it provides the Seek method which
can be used to determine the size of the contents of r1, which is necessary for some back-
ends, such as Swarm. The implementation of Construct may vary, but both Swarm and
IPFS implementations use the Walk method to produce the flat DAG, using a simple, inter-
nal recoverer, recovering nodes already locally available after splitting and processing the
contents of r.

An extended interface ShiftingConstructor provides a generic interface for the internal
node swapping described in Section 2.4.2.2. The interface extends the FlatDAGConstructor
interface by providing a method Shift to swap internal nodes in the flattened DAG accord-
ing to Algorithm 1. The interface is optional to implement, and internal node swapping
can be disabled in the configuration for backends that do not implement this interface.

1Note that the original purpose of Seek is to change the offset of subsequent read or write operations.
It returns the new offset. By seeking to an offset 0 from the current position, then switching to an offset 0
from the final position, finally seeking back to the original position, we can discover the size by subtracting
the initial position from the final position.
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4.1.2.2 The EntangleHelper Type

The EntangleHelper type, with its Entangle method, is used for entanglement as described
in Section 3.2.4 It is adapted from the algorithm described in Section 2.4.2.3, additionally
having some configuration possibilities for where to write parity file outputs. In the following
paragraphs we look at implementation details of the entangler.

Constructor and additional settings An EntangleHelper instance is initial-
ized with the constructor function NewEntangleHelper, and one or both of the
WithOutputDirectory and WithParityWriters methods. We use a builder pattern, ini-
tializing an EntangleHelper instance with obligatory fields with the constructor function,
and then using the with-methods to modify internal fields of the instance. By modifying
unexported fields of the helper type, the with-methods modify the behavior of its Entangle
method. At least one of the with-methods must be called — it is pointless to generate parity
files from the constructed data Merkle DAG without storing them anywhere. E.g. we could
initialize it by calling NewEntangleHelper(. . .).WithOutputDirectory(. . .). Beneficially,
the with-methods enable three different configurations: with output directory, with parity
writers, or with both.

The Entangle method The Entangle method generates a flattened Merkle DAG from
an input reader, then generates α parity files from its contents. It uses the internal
FlatDAGConstructor to generate the flattened Merkle DAG of data blocks. It then uses
the entanglement algorithm to produce α parity files. The entanglement algorithm operates
as described in Section 2.4.2.3, but is adapted to not necessarily write results to files.

When the helper is configured using the WithOutputDirectory method, parity files are
written to the specified output directory. The output directory provided as the argument
to the method is created if it does not exist, and the α parity files are written to the
directory, named 0, 1, . . . , α. Using this configuration produces the same results as the
original implementation did.

When the helper is configured with the WithParityWriters method, parity files are
written to the provided writers. This has many potential use cases, such as writing the
results to existing files, in-memory buffers, network streams, or encrypting the content.

As mentioned above, both of the with-methods may be called to produce both effects
when Entangle is called.

The FlatDAG method The helper also provides the FlatDAG method. It can be
called after the Entangle method is done, returning the data blocks produced by the
FlatDAGConstructor as part of the entanglement process. This is mostly used for test-
ing purposes, but could potentially have other use cases.

4.1.2.3 Summary

FlatDagConstructor

- Construct
- [Shift (ShiftingConstructor)]

[Node]

- [Walk]

EntangleHelper

- NewEntangleHelper
- [WithOutputDirectory]
- [WithParityWriters]
- Entangle

[Recoverer]

- [Recoverer]

Figure 4.1: Overview of type relations in the entanglement process. Optional elements have
names surrounded by brackets ([]), and are pointed to by dotted lines.
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Figure 4.1 illustrates relationships between the abstraction layer types in the entangle-
ment process. The EntangleHelper type is the entrypoint to the entanglement process.
After initialization, the Entangle method is called to perform entanglement. To construct
a flattened DAG of data blocks from the input data, it calls the Construct method imple-
mented by the backend. While the implementation of the FlatDAGConstructor interface
is backend-dependent, a reasonable approach may use the Walk method of the Node inter-
face to communicate with a local recoverer implementing the Recoverer interface. After
constructing the flattened DAG, if the ShiftingConstructor interface is implemented by
the backend, the entangler calls the Shift method to shift internal nodes according to Al-
gorithm 1. Finally, it entangles the data blocks to produce α parity files, written to the
configured output directory, parity writers, or both.

4.1.3 Uploading

Listing 4.3: API for uploading blocks and files.

type BlockUploader interface {

UploadBlock(ctx context.Context , data []byte) (id []byte , err error)

}

type FileUploader interface {

UploadFile(r io.Reader) (rootID []byte , err error)

}

The API for uploading data to the backend DSS is shown in Listing 4.3. Upload in this
case means storing blocks of data or files in the background DSS, to be able to retrieve
the content later on. Uploading does not have to be a networked operation — a backend
could define uploading as anything, such as storing the content in the local file system.
The upload API consists of two interfaces, BlockUploader and FileUploader, which are
described in the remainder of this section.

4.1.3.1 The BlockUploader Interface

The UploadBlock method uploads a block of raw data to the backend. On success, the
CID of the uploaded block is returned. Otherwise, an error is returned describing the cause
of the error. Snarl uses this method to upload repaired blocks that were missing from the
backend, to make them available once again, as mentioned in Section 3.2.7. This interface
can optionally not be implemented. If an implementation of BlockUploader is not provided
to the Snarl repairer, it ignores the uploading step of the repair algorithm.

4.1.3.2 The FileUploader Interface

The UploadFile method uploads the content of a “file” (an io.Reader implementation)
to the backend. The implementation reads all content from the current position of the r

parameter until the end, and uses the mechanism of the backend DSS for uploading the
contents. Large files are probably split into blocks and turned into a DAG by the backend,
e.g. the Merkle DAG in IPFS. If successful, the method returns the CID of the root node
in the DAG representing the uploaded file. Otherwise, an error is returned describing the
cause of the error.

This method is used to upload the data file and the parity files produced by entanglement
as described in Section 4.1.2. The end-user must store or remember the CID, both for the
uploaded data file and related parity files. The CIDs must be provided to the repairer to
recover and repair the file.
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4.1.4 Node Retrieval and Deserialization

Listing 4.4: API for retrieving and deserializing nodes.

type BlockGetter interface {

GetBlock(ctx context.Context , id []byte) (data []byte , err error)

}

type NodeDeserializer interface {

Deserialize(rawNode , id []byte , index uint , isParity bool) (Node , error)

}

type NodeGetter interface {

BlockGetter

NodeDeserializer

}

The API for retrieving and deserializing nodes is shown in Listing 4.4. Node retrieval
means retrieving the raw, serialized node from the backend DSS, typically by downloading
it. Deserialization means converting the raw, serialized node into a Node instance for use
by Snarl algorithms. Some nodes, such as leaf nodes, may be stored as raw data depending
on the backend; still the backend Node implementation may add additional information
to deserialized leaf nodes. The API contains interfaces for these operations, which are
described in the remainder of this section.

4.1.4.1 The BlockGetter Interface

GetBlock is the most basic recovery method. It is used to retrieve a block from the backend,
which may be available locally or need to be downloaded from the backend DSS. In this
context, block means block of raw data, or a raw, serialized node. The CID of the block
is provided to identify the block. If successful, the method returns the serialized block.
Otherwise, an error is returned.

The implementation should only retrieve the requested block, not its subtree. The walk
and next path operations rely on using this method to retrieve single blocks while traversing
all or parts of a DAG. If the method tries to retrieve the subtree of the requested block
and fails if parts of the subtree is unavailable, the recovery and repair algorithms may not
perform as intended.

The contents of retrieved blocks depends on the backend and type of node. data may
be the raw data of the block (e.g. for leaf nodes), or may contain additional data such as
links to child nodes or other metadata. Since the serialized node is simply represented as a
sequence of bytes, the content can be arbitrarily complex (as long as the block size is not
exceeded). E.g. it would be possible to store nodes as JSON-serialized structures, and for
the deserializer to turn the JSON-structure into an instance of a Go type. In most cases
the data must be deserialized into a Node using the NodeDeserializer interface, in order
to be used by other algorithms.

4.1.4.2 The NodeDeserializer Interface

The Deserialize method takes a serialized node retrieved from the backend DSS, and
converts it into a Node instance. In addition to the serialized data, the CID, canonical
index, and a parity block predicate are provided. This information should be sufficient for
the deserializer to convert the serialized data into a node. The index is needed for calls to
Walk and NextPath on the node. It may be necessary to differentiate between data blocks
and parity blocks, e.g. because their DAG layout is different. As such, the isParity field
enables the use of a single deserializer instance to deserialize both data blocks and parity
blocks. The deserializer might track relationships between nodes and their indices, and
more depending on the backend.
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4.1.4.3 The NodeGetter Interface

This interface is simply a composition of the BlockGetter and NodeDeserializer inter-
faces. Accepting an implementation of this interface, a recoverer can retrieve and deserialize
nodes without any knowledge of the operation or storage layout of the backend DSS. It can
also be used for more than just file recovery. For example, in the FlatDAGConstructor

implementations for IPFS and Swarm, the interface is used by a local recoverer when pro-
ducing the flattened Merkle DAG.

4.1.5 Recovery and Repair

Listing 4.5: API for recovery and repair.

type Recoverer interface {

Recoverer () chan <- RecoveryRequest

}

type Repairer interface {

Recoverer

RepairBlock(ctx context.Context , index int) (rawBlock []byte , err error)

}

type RecoveryRequest struct {

Ctx context.Context

ID []byte

Index uint

IsParity bool

Result chan RecoveryResult

}

type RecoveryResult struct {

Node Node

Err error

}

func Recover(ctx context.Context , id []byte , index uint ,

isParity bool , recoverer chan <- RecoveryRequest)

(node Node , err error)

func (r *RecoveryRequest) Respond(node Node , err error)

func RecoverWrite(ctx context.Context , dataRootID []byte , rootIndex uint ,

recoverer Recoverer , w io.Writer) (FlatDAG , error)

func RecoverDAG(ctx context.Context , dataRootID []byte , rootIndex uint ,

recoverer Recoverer) (FlatDAG , error)

In this section we look at the API for recovering blocks. The API is displayed in
Listing 4.5. It consists of interfaces for the recoverer and repairer abstractions, primitives
for sending and responding to recovery requests, and functions built on these abstractions
that recover flattened Merkle DAGs.

4.1.5.1 The Recoverer Interface

This interface represents a type which is capable of recovering nodes. The Recoverer

method returns a write-only channel accepting RecoveryRequest instances. In this way
callers can request nodes identified by ID (CID) and Index (AE helical lattice index), and
have the result returned on the Result channel they provide.

The Recoverer interface is simple, and there are many ways to implement it. A simple
implementation of the recoverer already has nodes locally, and responds with them when
requested. Another possible implementation is the recoverer described in Section 3.2.6.
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Note that a recoverer does not necessarily implement a repair algorithm for missing nodes,
and can be implemented for more trivial use cases, such as for use during flattened DAG
construction.

The Index and IsParity fields of recovery requests can be used to give hints to the
recoverer about how it should handle the recovery request. Lattice indices are numbered
starting from 1. With this in mind, for data blocks, the requester can set the Index field
of a recovery request to 0 to indicate to the recoverer to not attempt repair of blocks, only
recovery. Other than that, for parity nodes (when the IsParity field is set to true), the
recoverer may handle recovery different, e.g. by using the next path operation. Note that
the requester in the recovery process as described in Section 3.2.6 is not intended to request
parity blocks; the repair algorithm may send recovery requests to its recoverer internally
when parity blocks are required. The interface does not guarantee that these hints are
respected.

The requester and recoverer communicate only by using channels, which provides several
benefits:

• The requester requires no knowledge about the implementation or capabilities of the
recoverer; either the recoverer provides the requested node or not, and the requester
acts accordingly.

• There is no need to duplicate recovery logic in the implementations of requesters.
Every requester implementation (in practice implementations of the Walk method of
the Node interface) recovers data blocks in the same way by sending recovery requests
to the recoverer.

• Mode of operation can be configured through channel initialization. Go channels
can be unbuffered, in which case the send-receive operations are synchronized (the
sender cannot proceed until a receiver takes the sent item, and vice versa). Otherwise
Go channels can be buffered, in which case send operations are only blocking while
the buffer is full [30]. In other words, depending on how we initialize the channels,
we can control whether the requester and recoverer communicate synchronously or
asynchronously, and limit the number of concurrent requests by using a buffered
channel.

• When using channels for requests it is simple to create mock types for testing the
implementation of requesters. The mock types can respond to recovery requests in
a predictable manner depending on the test scenario, e.g. refusing to provide certain
blocks to test how the requester handles errors.

4.1.5.2 The Repairer Interface

This interface extends the aforementioned Recoverer interface, additionally providing re-
pair capabilities for irretrievable nodes. A possible implementation is the repairer described
in Section 3.2.7. When retrieving a block with GetBlock fails, the RepairBlock function
is used to repair the block using the AE repair algorithm, which may involve recursive
repairs. The index parameter is available from the Index field of RecoveryRequest, and
represents the AE helical lattice index of a data block. Repairing parity blocks is considered
an implementation detail, and not exposed by the Repairer interface.

When successful repairing blocks, the result of RepairBlock is equivalent to that
which GetBlock would have produced. It will similarly need to be deserialized using a
NodeDeserializer implementation. Repaired blocks may be uploaded to the backend DSS
if an implementation of the BlockUploader interface is provided to the repairer, however
this is not exposed by the interface either, thus making it optional.

As previously mentioned, from the perspective of the recoverer, there is no difference
between a recoverer and a repairer. The communication interface between the requester
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and the recoverer consists of recovery requests, recovery responses and the corresponding
channels. The RepairBlock method is not used outside the implementation of the repairer
itself. As such, the Repairer interface should be considered a guideline for alternative
repair implementations.

4.1.5.3 The Recover and Respond Functions

These functions are provided to simplify use of the Recoverer interface. They functions act
as wrappers around the communication channels between the requester and the recoverer.
The requester may call Recover to correctly perform a recovery request. The function sets
up a recovery request, sends the request to the recoverer, and awaits the response using a
select statement, such that the context is respected. The recoverer may respond using the
Respond function, which sets up a recovery response and sends it to the requester.

Usage of both functions is optional. The inputs to the Recover and Respond functions
match the fields of the respective RecoveryRequest and RecoveryResult types. The func-
tionality can easily be replicated by manually setting up request and response instances, and
communicating using the channels. An example scenario where it is desirable to manually
set up requests is for asynchronous communication. Both of these functions use channels
synchronously; channels can be used asynchronously by replicating the behavior of the
functions, which is simple.

4.1.5.4 Exposed Recovery Functions

The functions RecoverDAG and RecoverWrite recover the flattened Merkle DAG by com-
municating with the recoverer. Essentially, these functions operate as the requester in the
recovery process described in Section 3.2.6. First they recover the root node of the data
block Merkle DAG, and then use the Walk method to recover the remainder of the flattened
Merkle DAG. The RecoverDAG function simply returns the flattened Merkle DAG. The
RecoverWrite function additionally writes the contents of the recovered file to the writer
provided by the w parameter, using the ToRawData method described in Section 4.1.1.2. If
repair should be enabled, the recoverer must be initialized as such. The functions described
in this section are unaware of the repair process.

4.1.5.5 Summary

[RecoverWrite] RecoverDAG

Node (d-blocks)

- Walk

Recoverer

- Recoverer

[Repairer]

- [RepairBlock]

[Node (p-blocks)]

- [NextPath]

Recover

Respond Recover

Respond

Figure 4.2: Overview of type relations in the repair process. Optional elements have names
surrounded by brackets ([]). The Recoverer implementation optionally also implements
the Repairer interface; this relationship is illustrated with a dotted line.
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Figure 4.2 illustrates relationships between the abstraction layer types in the repair
process. Either the RecoverDAG function, or the higher-level RecoverWrite function, is
the entrypoint to the repair process. The function recovers the root data block from the
recoverer by sending a request with the Recover function. The recoverer retrieves the data
block, and responds with the Respond function.

Furthermore, the recovery function calls the Walk method on the root data block to
recover the subtree, flattened in canonical order. The root data block, and any descendant
data block, send recovery requests for child nodes to the recoverer, which retrieves the nodes
and responds with the results. When all data blocks are recovered, the recovery function
returns the flattened DAG or writes it to the provided writer.

Behind the scenes, the recoverer might implement the Repairer interface and a repair
algorithm. In this case, when it fails to retrieve data blocks from the backend DSS, it uses
the RepairBlock method to repair the data blocks. To repair data blocks it must retrieve
parity blocks. It uses the NextPath method from the Node interface to determine the path
it has to traverse in the parity file DAG to retrieve the required parity blocks, which are
leaf nodes in the DAG.

4.2 Index Mappings

This section describes the index map data structure, and some of its use cases. First,
it describes the reasons index mapping are useful. Then, the data structure itself is de-
scribed. Finally, it describes two use cases which use the index mapping to simplify the
implementation.

4.2.1 Motivation

A recurring problem is finding relations between DAG nodes. For example, both the walk
and next path operations used during recovery and repair need to know the layout of the
DAG they are working on. Being at a node with a certain canonical index, we need to
know the indices of its child nodes to use these operations. There are many possible ways
to determine these indices, and the implementation varies depending on the particular
backend and the data structures it uses to store nodes. In backends with highly structured
data layout, such as Swarm which uses Merkle trees with a fixed branching factor, it possible
to determine indices of child nodes with an algorithm. Though in practice, it is difficult to
come up with such an algorithm, and to be certain that it does not mistreat undiscovered
edge cases. Other backends may have more varied DAG structures, which is the case for
IPFS, making it even harder to predict DAG layouts.

4.2.2 The Index Mapping Data Structure

To solve these problems, a simple data structure called an index mapping is added to Snarl,
intended for use in backend implementations. The index mapping is based on a mapping
from parent indices to lists of child indices. The mapping can be generated for any backend
by traversing a locally available DAG with the desired layout. During recovery, when the
DAG of the requested file is not locally available, the backend implementation can generate
a DAG with the same layout by running the backend’s DAG construction algorithm on a
buffer of the same size as the file that contains arbitrary data.

Figure 4.3 and Table 4.1 illustrate index mapping generation. If the backend generates
a DAG with the layout illustrated in Figure 4.3, it can generate the corresponding index
mapping easily. Starting from the root node, it traverses the DAG in the same order as the
walk operation, storing mappings from parent index to child indices in a hash table. The
resulting hash table values are displayed in Table 4.1.
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Figure 4.3: Binary tree with 15 nodes. Node subscripts contain the node’s canonical index.

Table 4.1: Index mappings generated from the tree illustrated in Figure 4.3.

Parent node Child node
index (key) indices (value)

15 [7, 14]
14 [10, 13]
13 [11, 12]
10 [8, 9]
7 [3, 6]
6 [4, 5]
3 [1, 2]

When recovering a file, the index mapping can be generated and used for various pur-
poses. For example, both the updated Swarm backend and the new IPFS backend generate
and share an index mapping between all instance of nodes implementing the Node interface.
This makes it easy to find indices of child nodes in the implementations of the Walk and
NextPath methods.

Listing 4.6: Exported types and functions from package indexmap.

type IndexMap struct {

Indices map[uint][]uint

// other unexported fields

}

func FromMap(indices map[uint][]uint) *IndexMap

func (m IndexMap) String () string

func (m IndexMap) Get(index uint) ([]uint , error)

func (m IndexMap) RootIndex () uint

func (m IndexMap) LeafIndex(n uint) uint

func (m IndexMap) LeafMapping () []uint

func (m IndexMap) ParentMapping () map[uint]uint

func (m IndexMap) Height(index uint) uint

func (m IndexMap) NumNodes () int

func ShiftNodes(im *IndexMap , dag backend.FlatDAG , aeConf config.AEConfig)

(backend.FlatDAG , error)

The exported API for IndexMap from the indexmap package is displayed in Listing 4.6.
At its core, the index map is simply a mapping from a parent index (unsigned integer)
to a list of child indices (slice of unsigned integers). A pointer to an IndexMap instance
can be generated and stored by the deserializer, used during deserialization, and be shared
among node instances. There are several exported methods which are convenience methods
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for properties that can be discovered from the index mapping. For example, a node which
knows its index i, and has an index mapping imap, can call imap.Get(i) to get the list
of indices of its child nodes2. The operation of most of the convenience methods is self-
explanatory, while some others are described in more detail below.

There is no constructor for the index map, since the layout depends on the particular
backend. A backend implementation which wants to use the index map internally must
generate an index map, and use the FromMap function to represent it as an IndexMap

instance. As mentioned in Section 2.4.3.1, Snarl requires metadata such as the size of each
block generated for the recovery process. The index map may be generated by the backend
implementation simultaneously.

4.2.3 Accessing Parity Blocks

One use case for the index mapping is to access parity blocks. Recall that only leaf nodes
in the parity file DAGs contain parity blocks. Thus, to access the n-th parity block in a
DAG, one must find the n-th leaf node in the DAG. This process is the basis of the next
path operation.

The index mapping can be used for this purpose. It provides two useful methods
LeafMapping and LeafIndex to discover indices of leaf nodes. The LeafMapping method
returns a sorted list l containing all leaf node indices. For example, the DAG illustrated in
Figure 4.3 produces the list of leaf node indices l = [1, 2, 4, 5, 8, 9, 11, 12]. In this way, with
0 ≤ i < |l|, the element li contains the helical lattice index of leaf node number i + 1 (due
to zero indexing). In the above example, the first leaf node has the index l0 = 1, and the
fourth leaf node has the index l3 = 5. Similarly, method LeafIndex(n), 1 ≤ n ≤ |l|, returns
the helical lattice index of the n-th leaf node. These convenience methods can be used to
implement the NextPath of the Node interface. The Swarm and IPFS backends rely on the
LeafIndex method.

4.2.4 Swapping Internal Nodes

Recall from Section 2.4.2.2 that Snarl uses an algorithm to swap the order of certain data
blocks to improve recovery rates. In the original implementation, this algorithm was imple-
mented in the Lattice type, and as a method FlattenTreeWindow for the Swarm backend.
The algorithm had to be implemented for other backends as well, and it was desirable to
abstract the process such that the backends could use the node swapping algorithm in a
generic manner.

For this purpose, the algorithm is implemented in the ShiftNodes function. The func-
tion accepts a flattened DAG and its corresponding index mapping, determines which nodes
need to be swapped according to Algorithm 1, swaps those nodes, and returns the modified
flattened DAG. It can be used by any backend implementation which creates an index map-
ping for the DAG constructed during the entanglement process. The Shift method of the
ShiftingConstructor interface described in Section 4.1.2.1 can thus be implemented eas-
ily by calling the ShiftNodes function. This approach is used both in the updated Swarm
backend implementation and in the IPFS backend implementation.

4.3 Changes to the Lattice Type

In Snarl, the Lattice type in the entangler package is the primary component used for re-
covery and repair. In the original implementation, many methods of this type depended on

2The Get function is just a convenience function around Go’s map get operation, but it also checks for
the existence of the parent index in the map. The same could be achieved by something like if index, ok

:= imap.Indices[i]; ok {...}, which sets the boolean ok to true if the key i exists in the map.
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the Swarm backend or were otherwise programmed in a way which depended on implemen-
tation details of the Swarm backend. Most dependencies were removed by the introduction
of the abstraction layer described in Section 3.2 and Section 4.1. Additionally, certain
logical changes were necessary to work with parts of the abstraction layer.

The remainder of this section describes notable changes to the Lattice type and its re-
lated methods. The updated implementation adapts the original implementation by adding
new, relatively isolated processes, while making minimal changes to methods of the Lattice
type. The new processes use a CSP-approach to handle requests for data blocks and parity
blocks. Several distinct processes communicate using channels, and primarily share memory
by communication, reducing lock contention and shared state.

4.3.1 Implementing the Repairer Interface

In this section we look at changes made to the exposed API of the Lattice type to make it a
valid recoverer within the new framework. In order to be a valid recoverer to the abstraction
layer, either the Recoverer or the Repairer interface, described in Section 4.1.5, must be
implemented. In the case of Lattice, it must be able to repair blocks, so the Repairer

interface is implemented.
In the original implementation, the Swarm backend implementation directly called the

GetChunk and RepairChunk methods of the Lattice type. These methods then retrieved
or repaired the requested data block and update the internal state of the Lattice. A goal
when adapting the Lattice to using the new repairer abstraction is to require the least
amount of changes to internal logic, as it is rather complex. The adaptation involves two
steps.

The first step is implementing the RepairBlock method, which only differs from the
original RepairChunk method in that RepairBlock additionally accepts a context.Context

parameter. As such, the implementation of RepairBlock simply wraps around the original
RepairChunk method without changing it. In addition to executing the original function,
it respects the context.Context parameter, which the requester might use for cancellation
or timeouts.

The second step is to accept recovery requests and use Lattice methods to retrieve and
repair blocks. For this, a recovery request handler process (recoverer) was added to the
Lattice. The pseudocode for the recoverer is displayed in Algorithm 2. When initialized,
the Lattice now sets up a channel for recovery requests, and starts in a separate goroutine
a process which handles incoming requests. The algorithm repeatedly receives recovery
requests from the channel c, as long as it remains open. Each request is handled in a separate
goroutine. There are two scenarios for block retrieval: direct retrieval, and retrieval using
the repair algorithm, described in the paragraphs below. An additional change is that raw
blocks of data also need to be deserialized according to the abstraction layer, which occurs
in the final step of the algorithm.

Direct retrieval This occurs (1) when rIndex = 0, i.e. when the caller explicitly indicates
the repair algorithm should not be used, or (2) when rIsParity is true, i.e. for nodes in a
parity file DAG. The block identified by rID is retrieved directly from the backend with the
GetBlock function provided by the backend DSS implementation. Scenario (2) is not related
to data block requests from the external requester, but rather to parity block requests from
another process started by the Lattice, which is described in Section 4.3.2.2.

Retrieval using the repair algorithm This occurs for data blocks which might need
to be repaired. We attempt to retrieve the block from the backend using the GetChunk

function, which wraps around the backend’s GetBlock function, additionally updating the
Lattice state. If the block retrieval fails, we need to repair the block, which is performed
using the RepairBlock function. While data blocks are always repaired with a pp-tuple,
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Algorithm 2 Pseudocode for the recovery request handler of the Lattice type.

while open(c) do
r ← receive(c)
if rIsParity ∨ rIndex = 0 then . direct retrieval

block, err ← GetBlock(rID)
else . retrieval using the repair algorithm

block, err ← GetChunk(rID , rIndex )
if err 6= nil then

block, err ← RepairBlock(rIndex )
missing ← missing blocks . missing data blocks for repair of b, if any
if err 6= nil ∧ |missing| > 0 then

for all b← pop(missing) do . iterate over each missing block
if DownloadFailed(b) ∧ RepairFailed(b) then

continue . skip blocks failing to download and repair

await update . await status change on data block b
if HasData(dblock) then . check if b has data following update

block, err ← RepairBlock(rIndex )
if err = nil then

break
if err 6= nil then

Respond(nil , err)
else

Respond(Deserialize(block , rID , rIndex , rIsParity))

the pp-tuple might contain parity blocks that need to be repaired as well, which requires
other data blocks to be present. As such, in order to repair a data block, we might need to
wait for the presence of another data block. When this occurs, an error from RepairBlock

contains indices of other data blocks that are necessary to repair the current data block.
Unless the prerequisite data blocks are known to have failed both download and repair, we
await updates on these data blocks, and reattempt the repair.

4.3.2 Updated Parity Block Retrieval Approach

This section describes the new approach to parity block retrieval. The new implementation
moves most of the logic out of each backend and into the Lattice type. It also uses a
CSP-approach to concurrency based on a single coordinator process that manages parity
node state, starts other concurrent processes for slow work, and coordinates communication
between the processes. The remainder of this section describes the motivation to implement
a new approach, and interesting details regarding the new approach.

4.3.2.1 Motivation

There are certain changes to parity block retrieval and repair, to adapt to the abstrac-
tion layer API. The differences between the original approach and the new approach are
described in Section 3.2.7.1. Originally, the Lattice method GetParity requested parity
blocks by sending retrieval requests to the Swarm backend’s getter, providing the identifier
of the corresponding parity file DAG root node, and using the context.Context field of the
getter function to specify the index of the requested parity block. The Context.WithValue

method [22] was used to provide the parity block index as a value along with the context.
The Swarm backend checked whether such a key-value pair was present, and determined
the request was for a data block if the key-value pair was absent, or for a parity block
otherwise. The original approach has a few drawbacks:
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• The use of context.Context to carry a key-value pair containing the parity index
is not idiomatic Go code. The documentation for the context package states the
following: “Use context Values only for request-scoped data that transits processes and
APIs, not for passing optional parameters to functions” [22]. Our interpretation of
this is that the context should not be the primary way to provide the parity block
index parameter, nor to determine if a request is for a data block or a parity block.
The purpose of the context in this case is to enable the requester to cancel the work
being executed by the recoverer.

• As mentioned in Section 3.2.7.1, the backend implementation must do most of the
work with the original approach. When provided the index i, it must determine how
to access the i-th parity block. It also has to come up with an approach to temporarily
storing parity nodes that might be needed for subsequent requests. This logic must
be duplicated for each backend implementation.

4.3.2.2 Updated Parity Block Getter

The updated approach is based on the next path operation described in Section 3.2.3.2.
Recall that the algorithm works by traversing a branch of the parity file DAG until reaching
a leaf node, which is the requested parity block. Nodes from each backend implement the
NextPath method described in Section 4.1.1, which simply produces links and indices to the
next node in the path to a requested leaf node. To use that algorithm, the repairer must
implement another algorithm which repeatedly retrieves parity nodes, and calls NextPath

to get the reference to the subsequent node, until it retrieves the desired parity block.

Challenges Implementing an algorithm for recovering parity blocks requires solving a few
challenges:

• The original Lattice implementation had no knowledge of internal nodes in the parity
file DAGs; it was only concerned with the leaf-nodes, which are the parity blocks.
The updated solution needs a way to retrieve, store and address all parity nodes, not
just the leaf nodes. Additionally, it must ensure that the same parity node is not
downloaded twice from a backend DSS.

• The existing Lattice methods achieve synchronization by complicated use of locks,
making it hard to safely introduce new logic. Ideally, the new solution should integrate
with the existing methods with the least amount of changes, e.g. by creating an
independent process.

• The new solution must maximize concurrency. We consider downloading data from
the backend DSS to be the slowest part of Snarl. Thus, to minimize retrieval times,
the solution should maximize the number of parity nodes it downloads concurrently.

Overview of updated solution A high-level overview of the updated repair process is
given in Figure 4.4. In the figure, the communication between the Requester, NodeGetter
implementation, Recoverer, and Lattice type are those described in Section 4.3.1. The
algorithm for recovery of parity blocks is implemented in the ParityRecoverer process in
the illustration, which we call r. The process is responsible for identifying, retrieving and
storing all parity nodes necessary for the repair algorithm. The Lattice type sends requests
for parity blocks to r, identifying the parity blocks by type of strand and n for the n-th leaf
parity node.

If the parity block is already stored by r it immediately responds with the block. Other-
wise, the parity block must be recovered by r, and the response to the parity block request
is sent once r has the result. To recover the n-th parity block, r starts another process pn,
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Figure 4.4: High-level overview of processes in updated repairer. Bidirectional edges denote
function calls, while unidirectional edges denote channel messages.

which concurrently runs the getParityBlock function, to traverse a branch of the parity
file DAG until it finds the requested parity block. Several such processes pi may be running
at any time, each responsible for finding a distinct parity block. The i-th parity block will
only ever be retrieved by a single process pi.

While traversing the branch of the DAG, pn needs all parity nodes in the branch in
order to call NextPath to determine which node is next. Since parity nodes are only stored
in r, pn sends requests for each parity node it requires to r. If the parity node is already
in r’s storage, it immediately responds with it. Otherwise r concurrently requests it to be
recovered by the recoverer process from Section 4.3.1, and responds to pn when it receives
a response from the recoverer.

Preventing duplicate recovery processes When r communicates with several con-
current processes, there may be several requests for the same parity node. r must prevent
starting duplicate recovery processes for the same node, or for nodes it has already failed to
retrieve. It handles this with recovery statuses and subscriber lists. By combining recovery
statuses and subscriber lists, r is ensured to not start a duplicate recovery process, and not
to request the same node twice.

Whenever r receives a request or response related to a node, it sets the recovery status
for the node. Requests for nodes r has not seen requests for previously cause the recovery
status of the nodes to be set to pending. When r gets a retrieval result, it updates the
recovery status of the node. On successful node retrieval, the pending recovery status is
unset. Upon retrieval failure, r marks the node as failed. In this way, if r receives another
request for the same node before the result is known, it does not start a duplicate process
to recover the same node. If r receives a request for a failed node, it immediately responds
that the node is irretrievable.

The concept of subscriber lists is also used to prevent duplicate work. Whenever r
receives a request for a node without a known result, it adds the request as a subscriber.
Later, when r knows the result of the node retrieval, it sends the result to all relevant
subscribers at the same time, and removes them from the subscriber list. This indirect
approach of responding to requests lets r coordinate other work simultaneously, without
blocking while waiting for retrieval.

Handling requests and recovery responses As illustrated in Figure 4.4, the Par-
ityRecoverer process r must handle several requests and responses. r is responsible for
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coordinating recovery requests, storing parity nodes, and announcing results to any rel-
evant subscribers. There are two types of requests sent to r: (1) external requests are
sent from the Lattice type to request a parity block; (2) internal requests, requesting a
parity node in the branch to a leaf parity node, are sent from a process pn running the
getParityBlock function. Additionally, two types of recovery responses sent to r: (1)
external responses from the recoverer in response to requests for retrieval of parity nodes;
(2) internal responses from a process pn, when it finds the n-th parity block, or if an error
occurs in the algorithm. To handle all of these cases, r uses a select-case3 on three channels:

1. External requests: The channel for external requests receives parity block requests
from the Lattice type. During initialization of r, this channel is provided. When
r receives requests on this channel, it immediately responds with the parity block if
it already stores it, or an error if the same request has failed previously. Otherwise,
it sets the recovery status of the parity block to pending, registers the request as a
subscriber, and concurrently starts a process pn to recover the parity block.

2. Internal requests: The channel for internal requests receives requests for internal and
leaf parity nodes from processes running the getParityNode function. Requests for
nodes with known results are immediately responded to. Otherwise, r sets the recovery
status of the node to pending, registers the request as a subscriber, and concurrently
starts a process to request the node from the external recoverer.

3. Recovery responses: Responses to recovery requests from both the external recoverer
and processes running getParityBlock arrive on the same channel. r determines
which the type of sender by looking at a flag in the recovery response. The process
updates the recovery status of the node, either marking it as failed if the recovery
response contains an error, or unsetting the pending recovery status if it is success-
ful. Furthermore it finds subscribers waiting for the result, removes them from the
subscriber lists, and sends the result to each relevant subscriber.

By using a single coordinator process r, concurrency is simplified. No locks are nec-
essary, since all parity nodes are only stored in r, and r only handles a single request or
response at any given time. r coordinates other concurrent processes, but the processes only
share memory by communicating, such that there cannot be any data races. It is simple to
implement the other processes that communicate with r, since they only need to communi-
cate with r over a request-response channel pair. r should not be a significant bottleneck,
since r coordinates slow work such as node retrieval to other concurrent processes, meaning
it can respond to requests quickly.

The getParityNode function Pseudocode for the getParityNode function is displayed
in Algorithm 2. The function takes three parameters: a parity block request req, a channel
to send parity node requests crequest, and a channel to send its result to cresult. As mentioned,
the algorithm retrieves and calls NextPath on every parity node in the branch leading
to the requested parity block. First the root node for the type of strand is requested.
Subsequently, nodes referenced by the result of calls to NextPath are requested. All nodes
node requests are sent to the parity recoverer process r through the crequest channel, which
either already stores, or retrieves the nodes. Upon the first error or leaf parity node, the
function terminates, sending the result to r through the cresult channel. The function is
simple, leaving parity node retrieval and result announcements to the parent process r.

3The select statement executes the “statement list” of the first selected case statement, similarly to
a switch-case, but for communication operations [32]. For example, we may attempt to receive from two
channels and send to another channel; the first case that succeeds will execute the related statement list.
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Algorithm 3 Pseudocode for the getParityBlock function used by the parity block getter.

function getParityBlock(req, crequest, cresult)
strand← reqstrand . type of strand of requested p-block
node, err ← request(nil, 0, strand) . request root parity node
if err 6= nil then

respond(nil, err)
return

prev ← nodeID
loop

link, index, err ← node.NextPath(reqn) . next path to n-th leaf node
if err 6= nil then

respond(nil, err)
return

node, err ← request(link, index, strand)
if err 6= nil then

respond(nil, err)
return

if nodeIsLeaf then . parity block found
respond(node, nil)
return

if link = prev then . cycle in NextPath implementation
respond(nil, error)
return

prev = link

4.3.3 Updated Constructor Function

Listing 4.7: Header for the Lattice constructor.

func NewLattice(ctx context.Context , conf config.Config ,

getter backend.NodeGetter , dataRootID []byte ,

parityRootIDs [][]byte , meta [] backend.BlockMetadata)

(*Lattice , error)

The constructor function for Lattice is updated. The original constructor function
did not suffice for a backend-independent implementation based on the abstraction layer.
Instead, it depended on specifics of the Swarm backend implementation. The header for
the updated constructor function is provided in Listing 4.7. Some notable parameters:

• conf provides the configuration the Lattice uses, This includes the AE parameters
α, s and p. Additionally it includes the backend configuration, where the backend
type and block size are of interest, due to some edge cases where Lattice handles the
Swarm backend differently when decoding blocks.

• getter provides a backend implementation of the NodeGetter interface from the
abstraction layer, as described in Section 4.1.4. This enables Snarl to retrieve and
deserialize blocks regardless of the backend being used. The NodeGetter process in
Figure 4.4 represents the instance provided here.

• dataRootID and parityRootIDs provide the identifiers of the root data block and
root nodes of the parity file DAGs, used for data block retrieval and parity block
retrieval. End users must be able to provide these identifiers to perform recovery and
repair.

• meta provides the block metadata. It contains the DAG layout and size of each
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block, necessary for initialization of the Lattice data structure. Previously, this
was not provided as a parameter to the constructor, but performed in the Lattice

initialization based on the file size. Providing the metadata as an argument lets
backend implementers produce the metadata correspondingly.

Based on the provided parameters, the Lattice is initialized. As was the case in the
original implementation, the constructor sets up placeholder instances of Snarl’s Block type
for each data block and parity block. As block retrieval and repair occurs, Snarl updates
the state of these blocks.

Furthermore, two updated constructor starts two processes in separate goroutines. The
first is the recoverer described in Section 4.3.1, to handle external recovery requests for
data blocks, and internal recovery requests for parity nodes. The second is the parity block
getter described in Section 4.3.2, to recover parity blocks for the repair algorithm.

4.4 IPFS Backend

In this section we look at implementation details of the IPFS backend. This backend im-
plements the abstraction layer described in Section 4.1 using code built on top of exported
APIs and types of IPFS. Only the parts considered most important or interesting are de-
scribed. This includes the Node and NodeGetter interface implementations, generation of
flattened Merkle DAGs, and an IPFS proxy type used to communicate with the DSS.

4.4.1 Node Implementation

In this section we look at the implementation of the Node interface from Section 4.1.1 for
the IPFS backend.

4.4.1.1 The Node Type

Listing 4.8: Node interface implementation for IPFS.

type Node struct {

ipld.Node

mDag ipld.DAGService

cid []byte

index uint

indices *indexmap.IndexMap

isLeaf bool

}

The Node type from the snarl/ipfs package is displayed in Listing 4.8. It is a thin
wrapper around a type used by IPFS internally, the ipld.Node interface. Additionally it
contains a few extra fields used for the implementation of the Snarl interface.

• The Node and mDag fields are IPFS data structures. As mentioned, the ipld.Node

interface, which the Node field is an instance of, is used internally by IPFS. Among
other things it provides the methods RawData for the raw data stored by a Merkle
DAG node, Cid for the content identifier of the node, Links for links to child nodes of
internal nodes and Stat for metadata such as block size and cumulative size [14, 7].
These methods are used for the implementation of the Snarl Node interface. The mDag
field implements the ipld.DAGService interface. Among other things, it provides a
method Get retrieves IPFS nodes identified by CID [15]. This is used internally by
the FlatDAGConstructor implementation.

• The cid field stores the CID of the node, which is used by the ID implementation.
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• The index field contains the canonical index of the node. It is used by both Walk and
NextPath implementations for determining a node’s index as well as the indices of its
children.

• The indices field contains an index mapping as described in Section 4.2. It is used
to determine indices of child nodes and to find paths to leaf nodes.

• The isLeaf field is true for leaf nodes, and false for internal nodes. A call to the
IsLeaf method returns this value. This is necessary for the Lattice to terminate
the next path operation (see Section 4.3.2). Additionally, when a complete flattened
DAG has been recovered, the recovery algorithm uses only data from leaf nodes to
reconstruct the original file.

4.4.1.2 Walk Implementation

As part of the Node interface, there is an IPFS implementation of the Walk method specified
in Section 3.2.3.1. The implementation consists of two parts. The first is the exposed Walk

method, which can be seen as the entry point to the algorithm. The second part is an
inner, unexported walk method, which takes an additional parameter for cancellation. The
unexported walk method recursively retrieves child nodes as specified by the walk operation.

Listing 4.9: Walk implementation and header for unexported walk method for the IPFS
backend Node type.

func (n *Node) Walk(ctx context.Context ,

recoverer chan <- backend.RecoveryRequest)

(flatDAG backend.FlatDAG , err error) {

if recoverer == nil {

return nil, backend.ErrNilRecoverer

}

cancelCtx , cancel := context.WithCancel(ctx)

defer cancel ()

return n.walk(cancelCtx , cancel , recoverer)

}

func (n *Node) walk(ctx context.Context , cancel context.CancelFunc ,

recoverer chan <- backend.RecoveryRequest)

(flatDAG backend.FlatDAG , finalErr error)

Listing 4.9 displays the implementation of the exported Walk method and the header
of the unexported walk method. The following paragraphs describe the reasoning for the
split implementation and the concurrent algorithm implemented by the unexported walk

method.

Exported Walk method The implementation of the exported Walk method, displayed
in Listing 4.9, is a minimal wrapper around the internal walk method. It is the entry
point to the algorithm, which is called externally, e.g. by the constructor and recoverer.
The wrapper wraps the input context variable ctx with the context.WithCancel function,
which provides an associated context.Context instance and a cancellation function [21].
The cancelCtx context and cancel function are given as inputs to each concurrent call to
the internal walk method. If an error occurs in any concurrent call to the walk method, the
cancellation function can be called to signal to the other goroutines, through the cancelCtx
context, that an error has occurred and that they should abort their work as well. Addi-
tionally, a deferred call to cancel is executed by the Walk method after the call to walk

terminates, which releases resources used by the context, as suggested by the Go documen-
tation.

57



Internal walk method The internal walk method contains the logic for implementing
the walk operation. It does the following:

• Set up a channel done to signal completion. Use Go’s select statement to execute
the first of two available branches:

1. Receive a value on the aforementioned done channel. In this case the operations
performed elsewhere in this call to walk is terminated and signals completion.
We return the final results produced elsewhere in the method.

2. Receive a value from the channel returned by ctx.Done(). In this case, the
execution of the walk operation is canceled by any concurrent call to walk,
possibly this call. It indicates that some node is irretrievable, or that some error
occurred, such that the flattened DAG cannot be recovered in its entirety, so we
abort any further computation and retrieval.

• Concurrently, we recover child nodes and produce the flattened DAG in canonical
order. Any error in the following steps aborts the execution of all goroutines descended
from the overlying call to Walk.

– The internal function getChildren concurrently sends recovery requests for each
child node of a node. Using a select statement, the function either returns the
results of the recovery requests if it receives a value on its internal done channel,
or aborts execution if cancel has been called by another goroutine, signalled
by receiving a value on the channel returned by ctx.Done(). If the recoverer
responds to any recovery request with an error, this function aborts further
execution by sending to its done channel, returning the related error.

– If the child nodes were retrieved without error, we perform a recursive, concurrent
call to walk on each child node. Each child node recovers and returns its subtree
flattened in the canonical order. The result of each call to walk, called a subresult,
is sent to a channel subResults.

– Another goroutine handles subresults received on the subResults channel. It
catenates the subresults in the correct order, finally returning the flattened DAG
in the canonical order, and signalling the completion of the algorithm.

The implementation described above performs most work concurrently. Using a CSP
approach which performs work concurrently using goroutines, and communicating by chan-
nels, enables highly concurrent code. Concurrent calls to walk are made on each child node,
which in turn does the same to its child nodes as soon as possible. As a result, the recoverer
is often handling multiple recovery requests simultaneously, which decreases the total re-
covery time. Additionally, the shared context and cancellation function enables us to abort
and prevent unnecessary work when the algorithm is known to fail. Since the context is also
attached to recovery requests, the recoverer also aborts its work when the cancel function
is called elsewhere.

4.4.1.3 NextPath Implementation

The NextPath method is also implemented as part of the Node interface. It implements the
next path operation described in Section 3.2.3.2, which is used to find links to leaf nodes,
used by the repair algorithm to recover parity blocks.
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Listing 4.10: NextPath implementation for the IPFS backend Node type.

func (n *Node) NextPath(index uint) ([]byte , uint , error) {

index = n.indices.LeafIndex(index)

if index == n.index {

return n.ID(), index , nil

}

if n.index < index {

return nil, 0, errNoPathToLeaf

}

childIndices , err := n.indices.Get(n.index)

if err != nil {

return nil, 0, err

}

for i, childIndex := range childIndices {

if childIndex >= index {

links := n.node.Links()

if len(links) > i {

return links[i].Cid.Bytes(), childIndex , nil

}

break

}

}

return nil, 0, errNoPathToLeaf

}

The implementation of NextPath is provided in Listing 4.10. First, the index of the
requested leaf node is translated using the index map, such that if the input index = i,
the translated index j is the index of the i-th leaf node in the Merkle DAG. In canonical
ordering, child indices are always lesser than their parent’s index, which is checked by the
second if-clause. Furthermore we get indices of each child node of the present node n as a
sorted list, and iterate over them. The first child node whose index is greater than or equal
to the index of the leaf node we are looking for is either a parent to the leaf node (if index
is greater), or the leaf node itself (if index is equal). We return the link to this child node,
which is the next child node in the path to the requested leaf node.

In the Merkle DAG there are many nodes whose index exceeds the index of the requested
leaf node. Therefore, the algorithm may not perform correctly if NextPath is called on a
node that is not in the path to the leaf node. However, as long as requester calls NextPath
on the root node first, and then on each linked node, the algorithm will perform correctly.

The most important property of this implementation is its simplicity. There are few steps
involved in discovering the path to the leaf node, and it is straightforward to understand
how the algorithm works and in which cases it might fail. As discussed in Section 3.2.7.1,
the majority of the logic resides in the recoverer.

4.4.2 Node Getter

The NodeGetter type in the snarl/ipfs package implements the NodeGetter interface4.
It is used to retrieve raw, serialized blocks of data from IPFS, and to deserialize that data
into Node instances. The following paragraphs describe the NodeGetter type and its two
constructor functions.

4In this section, we let “the NodeGetter interface” denote the interface belonging to the abstraction layer,
as specified in Section 4.1.4, and “the NodeGetter type” denote the type in the snarl/ipfs package which
implements the aforementioned NodeGetter interface.
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Listing 4.11: The IPFS backend NodeGetter type, related constructors, and the
Deserialize method header.

type NodeGetter struct {

mDag ipld.DAGService

dataIndices , parityIndices *indexmap.IndexMap

backend.BlockGetter

}

func NewNodeGetter(mDag ipld.DAGService , fileSize , pFileSize uint ,

getter backend.BlockGetter , conf config.BackendConfig)

(*NodeGetter , error)

func NewConstructingNodeGetter(mDag ipld.DAGService ,

getter backend.BlockGetter)

*NodeGetter

func (g *NodeGetter) Deserialize(rawNode []byte , id []byte ,

index uint , isParity bool)

(backend.Node , error)

The NodeGetter type The type, the headers for related constructor functions, and the
header for the Deserialize method are displayed in Listing 4.11. The fields in the struct
have the following purpose:

• The mDag field is provided through the constructor functions and used to set the mDag

field of Node instances during deserialization.

• The dataIndices and parityIndices fields contain index maps for the data block
Merkle DAG and parity file Merkle DAGs. During deserialization, the deserialized
Node instance is initialized with one of the index maps, depending of the deserialized
node is a data node or parity node. This is necessary due to the different layouts of
Merkle DAGs containing data blocks and parity blocks. Recall that nodes use the
index map in the Walk and NextPath methods.

• The field backend.BlockGetter uses Go’s type composition to embed any type im-
plementing the BlockGetter interface, causing the NodeGetter type to implement
this interface as well. The advantage of embedding the BlockGetter interface here is
that any implementation of it can be used, e.g. we could use an implementation that
downloads blocks from IPFS proper, or one that retrieves blocks from local storage,
or even one that is programmed to fail in certain situations for testing purposes.

Constructor functions Furthermore, we have two constructors for the NodeGetter type.
The NewNodeGetter function sets up a node getter to be used in the recovery process.
It generates arbitrary bytes of data for the data file based on the fileSize parameter,
and the same for the parity files based on the pFileSize parameter. Based on the layout
configuration in the conf parameter and the aforementioned bytes of data, it then generates
index maps for the data file and the parity files by generating two IPFS Merkle DAGs.
Knowing the DAG layouts is necessary for node deserialization. The pFileSize field may
be set to zero, in which case no index map is generated for the parity file Merkle DAGs,
such that parity nodes cannot be deserialized. This may be desirable if recovery is to be
used with the repair algorithm disabled.

The other constructor function, NewConstructingNodeGetter, is used by the flattened
DAG constructor described in Section 4.4.3. It either uses the provided ipld.DAGService,
or generates an in-memory version if the argument is nil. The index mappings are empty
for this version, since they are not necessary for the flattened DAG constructor.
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4.4.3 Flattened Merkle DAG Constructor

The FlatDAGConstructor in the snarl/ipfs package implements the
FlatDAGConstructor interface. It is used to produce a flattened Merkle DAG in
the canonical order from the contents of an input reader. The following paragraphs
describe the FlatDAGConstructor type implementing the interface of the same name, and
the implementation of the Construct method.

Listing 4.12: Type, constructor and method headers for the FlatDAGConstructor imple-
mentation the IPFS backend.

type FlatDAGConstructor struct {

BS blockstore.Blockstore

Conf config.BackendConfig

}

func NewConstructor(bs blockstore.Blockstore , conf config.BackendConfig)

FlatDAGConstructor

func (c FlatDAGConstructor) Construct(ctx context.Context , r io.ReadSeeker)

(flatDAG backend.FlatDAG , err error)

The FlatDAGConstructor type The FlatDAGConstructor type, its constructor, and
the header for the Construct method are displayed in Listing 4.12. The type contains a
blockstore which it uses to store any IPFS blocks from the Merkle DAG generated from
the input reader. The blockstore may optionally be provided in the constructor for the
type, e.g. to store the blocks permanently, or for testing purposes. If the blockstore is not
provided, an in-memory blockstore is used instead. The Conf field is used to determine the
Merkle DAG layout.

The Construct method The implementation of the Construct method is based on a
combination of IPFS exported APIs and the Snarl abstraction layer. It generates a Merkle
DAG from the input reader using exported APIs from IPFS. The Merkle DAG uses the
UnixFS format with raw leaf nodes, as described in Section 2.2.3.5. From the generated
Merkle DAG it generates an index map and sets up a MerkleDAGBlockGetter g, which
implements the BlockGetter interface, and can retrieve IPFS blocks from the Merkle DAG
by CID. Using g as the block getter, it sets up a NodeGetter ng which can additionally
deserialize blocks into Node instances. Furthermore it runs a simple recoverer r in a separate
goroutine, which accepts recovery requests and calls GetBlock and Deserialize on ng to
produce nodes. Finally, Walk is called on the root node, providing the recovery request
channel to r. It produces the flattened Merkle DAG in canonical order.

4.4.4 The Proxy Type

The Proxy type is a proxy for communicating with the IPFS backend. The type is used
for the portions that require communication with other IPFS peers, namely uploading
blocks or files, and retrieving nodes. During initialization, the proxy sets up a connection
to the IPFS daemon using an instance of the Shell type from the go-ipfs-api/shell

package [13]. This type establishes a connection to a locally running IPFS daemon which
it communicates with through the IPFS HTTP API [11].

Using the shell, the proxy communicates with the IPFS daemon to upload and download
blocks. The FileUploader and BlockUploader interfaces are implemented as the uploader
type, and the BlockGetter interface is implemented as the BlockGetter type. Each method
uses the Shell instance provided by the Proxy type to upload or download blocks from
IPFS, thus indirectly using the IPFS HTTP API. The Proxy type embeds both types such
that it implements the interfaces as well.
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Furthermore, the Proxy can produce an instance of the NodeGetter interface. This
instance uses the Proxy to retrieve serialized data from IPFS, and uses the Deserializer

method implementation described in Section 4.4.2 for node deserialization. This can be
used by the Lattice type during file recovery and repair.

4.5 Updates to the Swarm Backend

In this section we look at changes made to the Swarm backend for Snarl, which resides
in the snarl/swarmconnector package. We make certain changes to adapt the Swarm
backend to the abstraction layer. Large parts of the abstraction layer are inspired by the
operation of the original Swarm backend, aiming to fix perceived shortcomings and make
it applicable to other backends as well. As such, most of the Swarm backend only required
minor adaptations, and only a few cases demanded entirely new logic. In the remainder of
this section we go through some notable changes made to the Swarm backend for Snarl as
part of this thesis.

4.5.1 Node Implementation

In this section we look at the implementation of the Node interface from Section 4.1.1 for
the Swarm backend.

4.5.1.1 The TreeChunk Type

Listing 4.13: TreeChunk type from the Swarm backend.

type TreeChunk struct {

Depth int

BranchCount int64

Length int

SubtreeSize uint64

Data []byte

Key []byte

Index int

Children []* TreeChunk

Parent *TreeChunk

// new fields

opt *BuildTreeOptions

indices *indexmap.IndexMap

}

The original Swarm backend implementation used the type TreeChunk to represent
Merkle tree nodes. The updated definition for the type is displayed in Listing 4.13. Observe
that the updated version is slightly extended, adding the options field opt, which controls
how the Walk implementation behaves, and the index map field indices, which is used by
the NextPath implementation.

4.5.1.2 Walk Implementation

The Walk implementation for the TreeChunk type is adapted from a similar method which
existed in the original Swarm backend. Originally, the Swarm backend used a function
BuildCompleteTree. This function recovered the root node, and then traversed the tree
using an internal method walkTreeChunk, which recursively and concurrently recovered
child nodes until the entire Merkle tree was recovered. These functions accepted as param-
eters, among other things, a getter to retrieve blocks of data from Swarm, and a repairer
to repair irretrievable blocks.
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Listing 4.14: Walk implementation and header for unexported walk method for the Swarm
backend TreeChunk type.

func (n *TreeChunk) Walk(ctx context.Context ,

recoverer chan <- backend.RecoveryRequest)

(flatDAG backend.FlatDAG , err error) {

if recoverer == nil {

return nil, backend.ErrNilRecoverer

}

cancelCtx , cancel := context.WithCancel(ctx)

defer cancel ()

return n.walk(cancelCtx , cancel , 0, recoverer)

}

func (n *TreeChunk) walk(ctx context.Context , cancel context.CancelFunc ,

parentOffset int,

recoverer chan <- backend.RecoveryRequest)

(flatDAG backend.FlatDAG , err error)

The updated implementation is split into two parts. The part which retrieves the
root node and starts traversal of child nodes is moved to the implementation of the
FlatDAGConstructor interface. This is described in further detail in Section 4.5.2.

The Walk method is adapted from walkTreeChunk. Similarly to the Walk implementa-
tion for the IPFS backend described in Section 4.4.1.2, the Swarm backend splits Walk into
an exported method and an internal method accepting more arguments. The method imple-
mentation and the header for the internal walk method are displayed in Listing 4.14. The
cancel argument to walk is used to abort execution if any error occurs in any concurrent
call to walk descended from the call to Walk.

Following the abstraction layer API, an external recoverer is used, provided by the
recoverer argument. This means that the backend implementation no longer needs to
explicitly retrieve and repair blocks. It simply sends recovery requests and handles the
responses it receives.

Furthermore, the code is adapted to use a CSP-style concurrency model. Each child
node is recursively walked in a separate goroutine, each sending its result to a channel
handled in the primary goroutine. select statements are used to select the first occurrence
of a subresult from a child node or a canceled context. Subjectively, the CSP approach
makes the concurrent code easier to understand.

4.5.1.3 NextPath Implementation

The NextPath method is implemented almost exactly like the IPFS implementation de-
scribed in Section 4.4.1.3. The only difference is that the Swarm backend uses a different
approach to obtain links to child nodes. Internal nodes in Swarm store as their data a
sequence of CIDs linking to their child nodes, which are catenated into a single sequence
of bytes. To obtain the CIDs we check the size of the node’s data, then extract the CIDs
from the data by extracting |CID| bytes until reaching the end of the data sequence.

4.5.2 Entanglement and Recovery

The implementations of the interfaces used for entanglement and recovery are similar to
the IPFS implementations described in Section 4.4.2 and Section 4.4.3.

Block getter The BlockGetter interface, used to recover blocks from the backend DSS,
is implemented as a wrapper around existing getter methods. The original Swarm backend
implements the storage.Getter interface, which includes the Get method [27]. It takes
the same arguments and returns the same results as the GetBlock method from Snarl’s
BlockGetter interface. We simply wrap the function call to implement the new interface.
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Node getter The NodeGetter type in the snarl/swarmconnector package implements
the NodeGetter interface. As with the IPFS implementation described in Section 4.4.2, it
embeds a type which can retrieve data from the backend DSS. Requests to get serialized
blocks from the backend are handled through this embedded type. Other than that, the
node getter contains index mappings for nodes of the data Merkle tree and parity Merkle
trees, used for deserialization. The type is used both for flattened Merkle tree construction,
described in the following paragraph, and for recovery.

Flattened Merkle tree constructor The FlatDAGConstructor type in the
snarl/swarmconnector package implements the FlatDAGConstructor interface. The
Construct method is implemented similarly to the IPFS implementation described in Sec-
tion 4.4.3. It uses Swarm exported APIs to generate a Merkle tree from the contents of the
input reader and generates an index mapping from the layout. Then it sets up a recovery
request handler in a separate goroutine, recovers the root node, and finally calls the Walk

method on the root node to generate the flattened Merkle tree.
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Chapter 5

Evaluation

This chapter evaluates the performance of Snarl using the IPFS backend introduced in this
thesis. It presents the results of several experiments with the IPFS backend in different
configurations. In particular, the experiments vary in failure type, failure rate, and replica-
tion rate. The experiments are primarily focused on the file availability when using Snarl,
compared to simply replicating the file. Additionally, network overhead is measured.

5.1 Experimentation Setup

This section describes the test setups used when running the experiments. The different
simulation strategies are presented, as well as the procedure used to simulate different types
of failure. Finally, the metrics gathered while running the simulations are presented.

5.1.1 Simulation strategies

This section describes the different simulation strategies used to conduct the experiments.
The experiments are simulated in different ways depending on the scenario being tested.
Node failures are simulated by running Snarl locally, while peer failures are tested using
Docker containers.

Local testing When testing for file availability, we only need to check whether or not
Snarl is able to recover a file given a certain shortage of nodes. This can be simulated simply
by running Snarl locally, and artificially preventing it from accessing specific nodes. Com-
pared to running multiple physical machines, or virtual machines in a simulated network,
this saves a lot of time. Because of time constraints, this allows us to run significantly more
tests than time would have allowed otherwise. The tests are described in greater detail in
Section 5.2.1.

Docker containers In order to complement the local testing with some more realistic
simulations, peer failure experiments are conducted in emulated networks using Docker con-
tainers. Both strategies simulate randomly distributed nodes, with similar node replication
strategies. Given peer failure rates equal to the node failure rates used in local testing, both
scenarios should give similar results. This is because they both amount to losing a random
selection of nodes.

The peer failure tests were chosen for the Docker simulations, as they are simpler to
simulate. Given the amount of time it takes to generate large amounts of results this way,
only a small set of tests are performed. The Docker 20.10 series is used for the experiments.
Two host machines are used, in the following configurations:

• The first machine runs Gentoo Linux with the Linux 5.10.37-gentoo kernel. It has an
AMD Ryzen 9 3900X CPU with 12 cores and 24 threads, and 32 GB of memory.
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• The second machine runs Arch Linux with the Linux 5.12.9-arch1-1 kernel. It has an
Intel Core i7-8565U CPU, and 32 GB of memory.

5.1.2 Simulation procedure

This section describes the general procedure behind the simulations. It includes how nodes
are generated and distributed, and how loss is simulated. The actual simulations use certain
shortcuts to reduce runtimes, described in Section 5.2.

1. Node generation: A file with random content is generated, given a specific file size
for the experiment. The file is entangled to produce three parity files. During the
entanglement process, a flattened Merkle DAG containing all data blocks is generated.
It also generates the flattened Merkle DAG for each parity file. Having access to all
these nodes, the CID and size of each node is recorded.

2. Distribution: The test file and the three parity files are uploaded to the local IPFS
daemon. Uploading the files will split them into IPFS nodes, the same nodes that
were generated in the first step. Which nodes to duplicate, and how many replicas to
create, is determined according to the replication strategy used. The nodes are then
distributed to other IPFS peers by instructing certain peers to pin certain nodes.
Since the nodes are available from the local IPFS daemon, the other IPFS peers can
pin any node without issue. After distributing the nodes, the contents are deleted
locally by unpinning the IPFS nodes and initiating the IPFS garbage collector.

3. Simulating node loss: Once the nodes are distributed, node loss is arranged according
to the specification of the experiment. It is simulated by selecting a number of nodes
that should be made unavailable, and instructing the relevant peers to delete those
nodes. Deleting nodes involves unpinning the relevant CID, and running the garbage
collector.

4. Simulating peer failure: Peer failure is simulated by choosing a random selection of
servers, and telling them to stop their IPFS daemons. This ensures they are unavail-
able through the IPFS network.

5.1.3 Runtime Metrics

This section presents the metrics collected during the runtime of the experiments. To evalu-
ate the performance of Snarl in various scenarios, the system must collect runtime metrics.
To do this without modifying the Snarl codebase, we extend the implementation of the
BlockGetter interface used by the IPFS backend’s Proxy type described in Section 4.4.4.
The block getter used in the experiments wrap around the original implementation, addi-
tionally storing a few metrics whenever a node is requested:

• Node CID: The CID of the requested node. This way, it is possible to determine
exactly which nodes were requested while attempting to recover the file.

• Retrieval result: The number of bytes retrieved and the error message, if any. This
way, it is possible to determine how many retrieval requests failed, and distinguish be-
tween retrieval times of successful downloads and failed downloads (which are canceled
after a predefined timeout). It is also possible to determine the download overhead,
i.e. the number of bytes that had to be downloaded to restore a file of n bytes.

The CID is used to determine the type of each node (data or parity), and their repli-
cation rate. By combining this data with the metrics collected by the block getter, we can
determine how many downloaded blocks were data blocks or parity blocks, and the overhead
of internal parity nodes.
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At the end of each experiment, all collected metrics are written to a single JSON file.
A script written in R processes the data after the experiments are finished.

5.2 File Availability

This section evaluates Snarl’s performance with regards to file availability. To measure
this, we inject failures into the “network” as described in Section 5.1.2, before attempting
file recovery. If the file is recovered despite the failures it counts as a success, otherwise it
counts as a failure. This is repeated for several trials. The file availability rate defined as

#Successes

#Trials
, (5.1)

where the number of successes and trials are recorded during a failure scenario with a
distinct loss percentage. The file availability is measured for several node loss and peer
failure scenarios with several trials for each.

5.2.1 Experiment: Node Loss

The node loss experiment measures the file availability of various configurations for different
percentages of node loss. The experiments are conducted by running Snarl locally with a
block getter implemented for the experiment, which only responds to requests for CIDs
without registered node loss. The file size in each experiment is 100 MiB, and the results
of 100 trials are considered for each node failure scenario. There are four configurations for
node distribution:

1. snarl5: This configuration distributes an alpha-entangled file. The file is entangled
by Snarl, and data and parity nodes are replicated until the total number of bytes
reaches five times the size of the original data.

2. snarl10: Same as snarl5, but data and parity nodes are replicated up to ten times the
storage.

3. repl5: This configuration produces the IPFS Merkle DAG representation of the input
file, and replicates each node (data block) five times.

4. repl10: Same as repl5, but the nodes are replicated ten times.

Replication For the replication for snarl5 and snarl10, the following algorithm is used.
We keep a “pool” of CIDs, C, which is a sequence of CIDs where there may be duplicates.
Initially, CIDs of all data and parity nodes are added. We alternately add CIDs of internal
nodes and leaf nodes until the pool size reaches the desired replication rate. For each round,
to add CIDs to the pool, we add all CIDs of the current type (internal or leaf node) to a list,
shuffle the list, and iterate over it, adding CIDs one by one until the pool size is exceeded
or until the list is empty. CIDs of internal nodes are added to the list twice before shuffling,
i.e. they are duplicated twice as many times as CIDs of leaf nodes. This reduces the impact
of cascading failures.

For repl5 and repl10, the pool is simply filled with the CIDs of each data node, replicated
five or ten times respectively.

Node loss After replication, we simulate the node loss. When the pool is filled, the
order of all CIDs within it is randomized, to simulate randomized distribution of nodes.
Let 0 < f < 1 be the node loss ratio. We remove the first f · |C| entries from the pool,
simulating the node loss. Finally, we remove duplicate entries, as they are unnecessary. The
block getter only responds with nodes to requests with CID c ∈ C.
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Figure 5.1: File recovery rate of 100 MiB files for node loss experiments, averaged over 100
trials.

Results and observations The results of the simulations are displayed in Figure 5.1.
We can see that the recovery performance of snarl5 is roughly equivalent to that of repl10,
with only half the storage overhead. For repl5, the first failure was registered in the 11 %
node loss scenario. In comparison, for snarl5 the first failure was registered at 26 % node
loss. For snarl10, the first failure was registered at 47 % node loss, while it is registered at
27 % node loss for repl10. The file availability of snarl10 drops below 90 % between 60 and
70 % node loss rate, and has a non-zero file availability above 80 % node loss rate.

5.2.2 Experiment: Peer Failure

The peer failure experiment measures the file availability of Snarl for different percentages
of peer failure, using the Docker setup described in Section 5.1.1. The node distribution
and peer management is conducted using the PML. Peer failure is simulated by instructing
a number of randomly selected peers to shut down their IPFS daemon, making the peer
inaccessible to node requests. The experiments are conducted for the snarl5 and snarl10
replication scenarios, with 20 IPFS peers. The file size in each experiment is 50 MiB, and
the results of 30 trials are considered for each peer failure scenario.

Replication Replication works similarly to Section 5.2.1, with minor differences. For the
peer failure scenario, parity node CIDs are replicated r·2h times, with r being the replication
rate, and h being the height of the node in the Merkle DAG, with the height of leaf nodes
being zero. Additionally, data nodes are replicated evenly, with no extra duplication for
internal nodes. The additional replication of higher parity nodes will further reduce the
chance of cascading errors, as higher nodes will potentially make more nodes unavailable.
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Node distribution After replicating the nodes, they are randomly distributed among
each participating peer, ensuring every peer holds approximately the same amount of nodes.
To achieve this, the list of replicated nodes is shuffled, and then treated as a queue. The
nodes in the queue are always distributed to the peer with the lowest number of current
nodes, using the first one found in the case of ties. The PML controller makes sure not to
distribute the same node to a particular peer more than once by keeping an exclude-list. If
a peer is found to already hold the CID currently being distributed, it will be added to the
list and not be considered when re-choosing the peer.

Peer failure Peer failure is simulated by shutting down the IPFS daemons of random
peers. For these experiments, peer failure is simulated in intervals of 10 %. For example,
to simulate 60 % peer failure, the controller commands 60 % of peers to shut down their
IPFS daemon. The tests are run using 20 peers, meaning 20 · 0.6 = 12 peers are instructed
to shut down IPFS. In order to not waste time distributing nodes to peers before failing
them, the peers are actually determined before node distribution. Whenever a node would
normally be distributed to one of these peers, its distribution is skipped.

To find the most distinct data points with a minimal number of tests run, we chose to
simulate loss percentages surrounding the slopes observed in Figure 5.1. For snarl5, the
tests were run for 30 to 70 % loss, and for snarl10 40 to 80 % loss. However, the 80 % loss
simulations encountered issues preventing usable results, possibly related to the deadlocking
issue described in Section 6.4.

Table 5.1: Results from 30 trials of the peer failure experiments for 50 MiB files.

Peer failure % 30 40 50 60 70

Success (snarl5) 30 27 17 6 0
Fail (snarl5) 0 3 13 24 30
Rate (snarl5) 1.0 0.9 0.57 0.2 0.0
Success (snarl10) N/A 30 30 28 17
Fail (snarl10) N/A 0 0 2 13
Rate (snarl10) N/A 1.0 1.0 0.93 0.57

Results and observations The results of the simulations are displayed in Table 5.1. We
can see that the recovery performance is roughly the same as for the node loss scenario
presented in Section 5.2.1. With 500 % replication (snarl5 ), the recovery rate doesn’t fall
below 90 % for up to 40 % peer failure, but decreases rapidly after this point. Using 1000 %
replication (snarl10 ), the rate stays above 90 % for up to 60 % peer failure.

5.3 Network Overhead

This section evaluates network overheads of Snarl when using the repair algorithm to recover
files from IPFS. When retrieving a file from the backend, Snarl invokes the repair algorithm
whenever it fails to download a data block. At this point, it needs to use a pp-tuple (pair
of parity blocks) to repair the data block. As such, it downloads parity blocks (leaf nodes)
and internal parity nodes (needed to traverse the Merkle DAG) from IPFS. Furthermore,
if any of these downloads fail, Snarl tries to recover them by recursively downloading and
repairing other related, entangled blocks. The goal is to download the least number of
parity blocks while being able to recover the contents of the requested file.

Definition and measurement approach To measure the network overhead, we measure
the number of bytes downloaded by Snarl to recover the original file. The network overhead
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is defined as

Network Overhead =
Bytes Downloaded

Size of F ile
, (5.2)

such that we measure the percentage of excess bytes we needed to download to recover a
file of n bytes. The size of the original file, e.g. 100 MiB, is considered, such that even if
only data blocks are downloaded, there is a negligible overhead calculated by Equation 5.2.
We measure the network overhead in the node loss experiments described in Section 5.2.1.
The block getter stores the size of each node it successfully returns, where failed node
requests are registered as zero bytes returned. In post-processing of the measurements, we
calculate the network overhead for each successful trial in every failure scenario, and store
the averages, variations, etc.

In addition to the network overhead, the type of each successfully downloaded block
is recorded. Using this, the percentage of successfully downloaded blocks that are parity
blocks is measured as

pnode % =
Parity Nodes Downloaded

Nodes Downloaded
, (5.3)

disregarding nodes of each type that fail to download.

Table 5.2: Network overhead measurements for node loss experiments in the snarl5 config-
uration.

Node loss % 5 10 15 20 25 30 35 40 45 50

Mean overhead 1.039 1.085 1.137 1.19 1.249 1.307 1.36 1.411 1.436 1.442
σ 0.01 0.014 0.02 0.022 0.022 0.032 0.031 0.044 0.054 0.07
pnode % 8.5 16.5 24 30.7 37.4 43.4 48.6 54 58.9 63

Results and observations The network overhead measurements for the snarl5 config-
uration in the node loss experiments are displayed in Table 5.2. We see that the network
overhead increases linearly with the node loss percentage, and then flattens out around
45 % node loss. We also see that the percentage of downloaded blocks that are parity
blocks increases along with the node loss percentage.
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Chapter 6

Discussion and Insights

This chapter discusses the results of the evaluation presented in Chapter 5. It discusses
the outcomes of the experiments and insights which the results provide. It also discusses
some limitations of the experiments, and some problems that occurred while running some
experiments.

6.1 File Availability Experiments

Node Loss Experiment Results In Section 5.2.1, we saw that with the same storage
overhead, Snarl performs much better than simple replication. This is due to the fact that
Snarl entangles data with AE codes, such that missing blocks of data can be repaired. Data
entangled by Snarl, and replicated to 500 % of the size of the original file grants roughly
the same file recovery rate as when the original data is replicated 1000 % without entan-
glement. In other words, by using AE codes to encode the data, we can either drastically
reduce storage overheads while maintaining high reliability, or drastically increase reliability
without increasing the storage overhead.

The observations for node loss are similar to the results presented by Nygaard et al in
their paper introducing Snarl [19]. In that paper, the authors evaluate Snarl’s performance
using the Swarm backend. The chunk loss rate metric presented by the authors corresponds
to the node loss metric evaluated in this thesis. With regards to file recovery rate, the IPFS
backend performs similarly to the the results presented for the Swarm backend by Nygaard
et al, as expected. The file recovery rate drops below 100 % in the interval between 35 %
and 40 % node loss rate, which matches the results for the Swarm backend. However, it
seems that the file recovery rate for the IPFS backend with a 100 MiB input file, in the
snarl5 scenario, goes towards zero slower than the Swarm backend does.

We believe this is due to the difference in block size and branching factor between the
two backends. The Swarm backend uses a block size of 4 KiB, while the IPFS backend by
default uses a block size of 256 KiB. Additionally, the Swarm backend uses a branching
factor of 128, while the IPFS backend uses a branching factor of 174. As a result, there are
fewer nodes in total in the IPFS backend, and additionally, the Merkle DAGs have fewer
internal nodes, which means that cascading failures are less likely to occur.

Peer Failure Experiment Results Section 5.2.2 presented the results for the peer
failure experiments. The number of trials per scenario was only 30, so the results are not
very accurate. Nevertheless they seem to match with the results of the node loss experiments
presented in Section 5.2.1. This is expected, since nodes are distributed evenly across the
network, and as such, failing a percentage of peers should be equivalent to losing the same
percentage of nodes. This result contrasts the result presented for the Swarm backend by
Nygaard et al, where the file availability was significantly better in the peer failure scenario
compared to the chunk loss (presented as node loss in this thesis) scenario [19]. We believe

71



this is because the nodes are not replicated evenly in the Swarm network, as displayed in
Figure 6 of the referenced work.

Number of trials Ideally, more trials should be run for each experiment, in order to get
more accurate results. Unfortunately, this was not possible due to time constraints. We
do however believe that the results are relatively accurate, since they seem to match the
results presented by Nygaard et al in the Snarl introductory paper [19].

Parameter Changes All the results presented are evaluated with the default configu-
ration for the Snarl IPFS backend. In the default configuration, the block size is 256 KiB
and the branching factor is 174. While the Snarl IPFS backend does not currently support
alternative branching factors, it does support other block sizes. It would be interesting to
determine how a different block size would affect file availability. Attempts were made to
conduct the peer failure experiments with other block size configurations, however prob-
lems occurred when trying to pin the nodes at other peers. Unfortunately, due to time
constraints, we could not track down the causes for these issues, and as such no results are
presented here. We believe the problems were due to incorrect configuration of the IPFS
daemon, and should be possible to fix. We have tested that the Snarl IPFS backend can
entangle and recover content when using an alternative block size configuration, but only
in local tests.

6.2 Distribution Strategies

It should be mentioned that the distribution strategy used in the node loss and peer failure
experiments in Section 5.2 are not representative of the distribution strategy commonly used
in IPFS. As mentioned in Section 2.2.3.3, data is distributed in IPFS through peers pinning
the data. Each peer that has pinned a piece of data can provide it to other peers upon
request. While we do not know for sure, we assume most pins in IPFS recursively pin the
root node of files, thereby indirectly pinning its subtree. Meanwhile the node distribution
employed in the experiments in this thesis distributes nodes evenly across the network. In
the peer failure experiments, each peer directly pins a subset of nodes. The node failure
experiments operate on the assumption that every node is distributed evenly across the
entire network. In practice, it would be unlikely for large number of peers to pin individual
nodes from the DAG of a file, such that the nodes in the DAG are spread evenly.

There are a few scenarios where we imagine this distribution could occur. Firstly,
with proper incentive mechanisms, peers could be coordinated to pin nodes in a way that
distributes data as much as possible. Furthermore, this could occur in private networks
which control each IPFS peer, or in networked applications which use IPFS as their storage
layer.

There are other possible distribution strategies that could be tested as well. The reason
for considering other distribution strategies is that the utility of AE codes for file availability
depends on how nodes are distributed in the network, and it would be interesting to see
how well Snarl performs in those situations. Experiments for two other approaches were
planned, but could not be completed due to time constraints. The following paragraphs
describe the two alternative approaches that were considered.

File distribution We refer to the first alternative distribution strategy as file distribution.
In this distribution, participating peers pin all nodes in a file, which we assume is how most
users of IPFS behave. For experiments with this distribution, experiments could evaluate
availability with different numbers of replicas, and by distributing parity files to separate
peers. However, it is difficult to conduct meaningful experiments for this distribution. For
example, if the experiment only injects peer failures, and no node losses, then the file can
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be recovered as long as at least one remaining peer stores either the entire data block DAG
or any of the parity block DAGs.

Subtree distribution The second alternative distribution considered is referred to as
subtree distribution. In this distribution, participating peers pin subtrees of a file. Exper-
iments with this distribution could evaluate availability by distributing subtrees to IPFS
peers rather than individual nodes. Additionally, the height at which subtrees are chosen
for distribution could vary. For example, a scenario distributing subtrees at height one
(level above the leaf nodes) should perform differently from another scenario distributing
subtrees at the height just below the root node, since the data distribution is higher in the
former case. We expect subtree distribution to be more probable of seeing usage in the
real-world than distributing nodes evenly, since it would be easier to incentivize it and to
orchestrate the subtree distribution scheme. An example use case would be large data sets
where peers only need portions of the data, and only pin subtrees containing portions of
the desired data.

6.3 Network Overhead Results

This section discusses the network overhead results presented in Section 5.3. The results
show that the number of bytes needed to recover a file through download and repair is
reasonable. The overhead seems to increase linearly with the node loss percentage. As such,
for small node losses, which we expect are more likely to occur in practice, the overhead is
almost negligible.

Looking at the percentage of downloaded nodes being parity nodes (the pnode % met-
ric) gives additional insights. Firstly, when looking at the different node loss percentage
scenarios, the percentage of downloaded parity blocks is consistently higher than the net-
work overhead. In other words, despite having to download several parity blocks to recover
the original file, the impact on network overhead is minor. Furthermore, considering there
are much more parity nodes in total compared to data nodes, this metric tells us that in
the successful trials, we do not need to download the majority of parity blocks in order to
repair the file. These observations imply that Snarl’s recursive repair algorithm prevents us
from having to download several nodes.

In the work introducing Snarl written by Nygaard et al [19], the Network Overhead
section presents similar findings. There, the download overhead of the Swarm backend is
measured as the number of additional chunks (referred to as nodes in this thesis) downloaded
during repair compared to in Swarm with no failures. The experiment shows the results for
a 1 MiB file with varying levels of chunk loss (referred to as node loss in this thesis). In
their findings the overhead also increases linearly, before evening out at around 40 % node
loss, confirming our findings.

6.4 Deadlocks

In a few experiments, Snarl got stuck in a deadlock. This occurred rarely, and only for
experiments with very high node loss percentages or peer failure percentages, where the
expected file availability rate was close to zero. We are not sure why the deadlocks occur,
but they only happen in scenarios where it would be impossible to repair the file. If that
suspicion is true, this means that the updated Snarl repair algorithm fails to give up in rare
instances.

In the node loss experiments from Section 5.2.1, a timeout was added to work around
this issue. These experiments time out trials after an amount of time that safely exceeds
the expected recovery time including repairs, and disregards the result of the trial when
it occurs. It is possible that this might have led to slightly inflated file availability rates
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for the highest node loss percentages in the presented results, however we believe that the
results are fairly accurate over all.
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Chapter 7

Future Work

In this chapter we discuss several approaches that would be interesting to investigate for
future work on Snarl. Many of the ideas proposed here were intended to be implemented
during this thesis, but could not due to lack of time.

7.1 Swarm using the Bee Client

As mentioned in Section 2.2.2.2, the new Bee client is the currently supported Swarm client.
Snarl uses the original Swarm client for its Swarm backend implementation. The Swarm
backend should be migrated to the Bee client to be enable Snarl to operate on the public
Swarm network. This could either be achieved by implementing an additional Snarl backend
using the Bee client, inspired by the existing Swarm backend, or by reworking the existing
Swarm backend to use the Bee client instead of the original Swarm client. We believe the
former option is best, as it will enable the use of both backends.

7.2 Retrieval Optimization

In addition to using the repair algorithm for repairing unavailable data blocks, it should
be possible to use it to reduce retrieval times. Due to the nature of DSSes, some nodes
may take very long to retrieve, even if they are available, e.g. nodes that are not widely
replicated, or stored by a congested or physically distant peer. Instead of downloading a
data block, it is possible to use its related parity blocks to repair it, producing the same
content. This method can be used to obtain data blocks that are technically available, but
take a long time to retrieve.

To enable this, Snarl could determine during its runtime that downloading a certain
block is slower than expected, and try to obtain the block in an alternative way. For
instance, it should be possible to represent the different ways of obtaining a data block
(that is, direct retrieval or repair through one of the related pp-tuples) as a graph. The
graph may extend past the data block and related pp-tuples by incorporating other blocks
that can be used to obtain the prerequisite blocks through recursive repair. A pathfinding
algorithm could be used to determine the shortest path (involving the least amount of
downloaded blocks) to recover the data. The algorithm could also incorporate polling to
try other paths if none of the existing paths are succeeding at an acceptable rate.

Such an approach should also try to minimize the bandwidth consumption of the backend
DSS. A näıve approach could simultaneously request all the redundant data related to a
data block while requesting the data block itself, and use whichever source was available
first to recover the data block. This puts unnecessary strain on the backend DSS as most of
the downloaded content is not ultimately necessary to recover all data blocks. Therefore, a
repair-to-retrieve approach should only be used when Snarl suspects that directly retrieving
a data block is slow, or if some prerequisite blocks are already available locally.
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7.3 Optimizing Memory Consumption

Currently, Snarl algorithms need a lot of memory. E.g. while Snarl is recovering a file,
all data blocks and parity blocks that it retrieves are kept in memory until the algorithm
completes. When entangling or recovering large files keeping everything in memory could
be problematic. A future work may consider ways of reducing the memory consumption of
Snarl algorithms, e.g. by writing intermediate content to temporary files at known offsets,
and only storing the data in memory during the operations that need it.

7.4 Updated Repairer Implementation using CSP

It would be interesting to modify or replace the Snarl repairer implementation with a
version using CSP for all concurrent operations. The new data block and parity block
recovery mechanisms described in Section 4.3 use a CSP-based approach for concurrency,
by setting up several concurrent processes that do various distinct tasks, and share memory
by communicating. Compared to using locks, this approach is less susceptible to common
problems such as data races or deadlocks. The repairer is also split into several domains
that involve simple operations, making each domain simpler to reason about. A future work
could either extend the newly introduced processes, or implement new ones, to convert the
repairer to a pure CSP-based approach. A new implementation could also be more formally
defined and evaluated using process calculus.

7.5 Updates to Parity File Layout

In Section 2.4, we saw that Snarl stores parity blocks in α distinct files, which are uploaded to
the backend DSS along with the original file. Each parity file contains all parity blocks from
one type of strand. This approach makes it easy to generate parity files during entanglement,
and to address parity blocks during recovery. However, there are a few drawbacks to this
approach:

• Storage overhead: Each parity file is constructed from the catenated content of all
parity blocks. However, the backend DSS usually generates a Merkle DAG or similar
structure when storing the content, for addressability and for confirming that the
content is correct. Depending on the branching factor and the number of parity
blocks, a lot of internal nodes might have to be generated for this Merkle DAG other
than the parity blocks themselves, resulting in storage overhead.

• End user requirements: As described in Section 3.1.3, the end user of Snarl must be
able to provide the CID of the root node of each parity file DAG to use the Snarl repair
algorithm. By storing parity blocks in α files, the end user must remember α root
node CIDs for each parity file, in addition to other essential information. Ideally, the
end user should have to remember fewer details to be able to use Snarl as intended.

• Cascading failures: In the DAGs produced from parity files, only the leaf nodes contain
the parity blocks. In other words, only the leaf nodes of the parity file DAGs are
protected by the Snarl repair algorithm, since only parity blocks can be repaired. On
the other hand, internal nodes in the parity file DAGs cannot be repaired by Snarl. If
they are missing we have a cascading failure, where we cannot get references to child
nodes of missing internal nodes, rendering parity blocks in their subtree unavailable
as well. By storing α parity files as α DAGs, there are a large number of internal
nodes, leading to an increased risk for cascading failures.

Because of the above reasons, we believe that storing all parity blocks in a single parity
file could be beneficial for Snarl’s performance. By storing all parity blocks in a single file,

76



the total number of internal nodes is decreased, which should mean that cascading failures
are less likely to occur. Since parity blocks remain leaf nodes in the parity file DAG, the
existing Snarl algorithms are almost unaffected by this change. Knowing the number of
parity blocks n of each type of strand, we could simply provide an offset n · i|i ≥ 0 to access
parity blocks from the i-th type of strand. The end user would only have to provide a single
parity file root CID instead of α CIDs.

There is however a trade-off with this approach, relating to cascading failures. If a
cascading failure occurs, a larger number of underlying parity blocks might be affected.
For this reason, we believe it could be possible to provide additional protection for internal
parity nodes, such that we use the same total storage overhead as in the original solution,
but reduce the probability of cascading failures.
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Chapter 8

Conclusion

This thesis updated the Snarl file repair component. The original Snarl implementation
could only use the Swarm DSS as a backend. We introduced an abstraction layer and
adapted Snarl code such that other backends could be used as well. An additional benefit is
that it is now simpler to add additional backends. Using the introduced abstraction layer,
we added support for IPFS as a backend for Snarl. The original Swarm backend is also
adapted to the new logic, and subjectively speaking the logic of this backend is now simpler.

Furthermore, there are significant additions to the core Snarl repair algorithm. In the
new solution, using an approach based on CSP, several processes with separate concerns
interoperate to make the recovery and repair algorithms work. This leads to a flatter
structure, and should serve as an inspiration to future modifications to Snarl.

Finally, we evaluated the performance of Snarl using the implemented IPFS backend.
The first experiment considered node loss, i.e. how file availability is affected when arbitrary
nodes are removed from the network. The second experiment considered peer failure, i.e.
how file availability is affected when arbitrary peers are removed from the network. Snarl
performed well in both experiments, and was found to perform roughly as well as simple
replication that used twice the storage overhead. The network overhead during repair was
also evaluated, and demonstrated that network overheads are reasonable despite high node
loss percentages.

78



List of Figures

2.1 Merkle tree constructed from four data blocks. Illustration by David
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