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Abstract

Exploration and production wells in the oil and gas industry produce a vast
amount of logging data. All petroleum data from the Norwegian continental
shelf must be quality controlled and reported in a structured manner to the
Norwegian Petroleum Directorate. Structured data of high quality opens
up the possibility of exploring the use of machine learning in the field. Ma-
chine learning applications have already improved the efficiency of existing
systems, and in some cases replaced them entirely.

This project aims to assist human interpretation of well logs with the use
of deep learning methodologies. Quality control and identification of zone
boundaries are two time-consuming workflows that could benefit from deep
learning. We propose a deep learning based approach for predicting can-
didate points of interest across a well log. The proposed approach aims to
improve the efficiency of the petrophysical workflow by limiting data inter-
pretation to fewer sections. We develop a preprocessing pipeline for well
log data, and implement four deep learning algorithms. Additionally, we
develop two approaches for model evaluation.

The first evaluation approach achieve an F1 score and Matthews correla-
tion coefficient (MCC) of 0.35 and 0.32 respectively. The second approach
achieve a better performance with an F1 score and MCC of 0.54 and 0.49
respectively. The results suggests that our second approach is capable of
identifying erroneous data and lithology boundaries. This indicates that
our model can be a beneficial addition to the interpretation of well logs.
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Chapter 1

Introduction

1.1 Motivation

The recent explosion in technological advancements have resulted in huge
datasets of information from oil and gas exploration and production wells.
The existence of large, structured datasets of high quality has started a
trend of Big Data analysis in the petroleum industry [1]. This type of data
also opens up the possibility of exploring the use of machine learning in the
field. Exploring machine learning might prove to be massively beneficial
for the oil industry, considering it has already revolutionized many other
fields [2]. Researchers at IBM have already started exploring how artificial
intelligence can help reduce downtime related costs by monitoring and pre-
dicting equipment failure [3]. However, a huge problem for researchers is
getting access to the large amounts of data. The majority of well log data
is confidential and considered market sensitive information. Our collabora-
tion with Logtek AS put us in a unique position where we had access to a
large quantity of historical and recent well log data. The motivation behind
this project is to explore how we can utilize the data and deep learning to
improve the efficiency of systems or workflows within the company.
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Chapter 1. Introduction 2

1.2 Problem Definition

With current solutions, the huge amount of well log data is a massive issue.
Petroleum engineers and petrophysicists spend over half their time search-
ing for and preparing data before a proper analysis can be performed [4].
The aim of this project is to use deep learning methodologies to assist in
human interpretation of well logs. We envision a solution that can con-
tribute to the overall workflow efficiency and provide additional insights to
petrophysicists. Through observation and conversation with petrophysicists
at Logtek AS, we identified two possible workflows that could benefit from
deep learning: boundary zonation and quality control.

The first workflow involves identifying the boundaries of a lithology or
lithostratigraphic formation in well logs. Currently, petrophysicists typi-
cally look at a handful of logs to identify the correct zone boundaries. This
method is quite time-consuming as the interpreter has to manually scour
through the different logs and carefully select the boundaries. Our goal is to
develop a solution that identifies candidate points for zone boundaries. We
envision that the interpreter will still make the ultimate decision, but the
aim is to make the workflow more efficient by providing candidate points.

The second workflow is performing quality control to ensure high wellbore
data quality. The current procedure is very similar to the one in workflow
one, where petrophysicists manually analyze well logs and curve plots. This
process is repeated multiple times to ensure all corrections are correct and no
errors remain. Our aim is to assist the interpreter responsible for identifying
quality issues with the dataset. We would like to provide a solution that
identifies areas of the dataset that should be investigated first. We envision
this solution can narrow down the number of areas the interpreter need to
analyze in detail, effectively reducing the time required to quality control
the well log. The process might still need to be repeated multiple times to
ensure all errors are corrected.

Both workflows can be viewed as an anomaly detection problem. In work-
flow one, the definition of an anomaly could be a datapoint that do not
follow the current trend in the time series. When the wellbore moves from
one lithology to the next, the general trend of the dataset is assumed to
change. In workflow two, the definition of an anomaly could be the same
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as workflow one, but it could also simply be an abnormal datapoint. We
aim to utilize several deep learning algorithms to detect anomalies. Our
goal is to develop and compare the performance of both reconstruction and
prediction based algorithms.

1.3 Contributions

In this thesis we make the following contributions:

1. Developed a preprocessing pipeline that allows the use of well log data
as time series data.

2. We implement and adapt four relevant deep learning algorithms for
time series anomaly detection.

3. Adapted and expanded upon anomaly detection method proposed in
related work.

4. Worked together with petrophysicists in creating a ground truth con-
taining points of interest with their corresponding depth for the pub-
licly available test dataset.

5. Analyzing and comparing results for two evaluation approaches.

1.4 Thesis structure

Chapter one, Introduction provides an overview of the motivation, prob-
lem definition and our goals for this project. Additionally, we present the
contributions of this work and an outline of the thesis structure.

In chapter two, Background & Related Works we introduce some of
the necessary petrophysical background needed for this project. The final
part of the chapter is an overview of related work of deep learning in the
petroleum industry, time series prediction, and anomaly detection.
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In chapter three, Methodology we present the theoretical background for
the methodology used in this project. First, the chapter introduce the file
formats of composite well logs and the associated features. Second, impor-
tant preprocessing steps and some machine learning basics are presented.
Third, we present the theory behind the four deep learning algorithms used
in this project. The final part of this chapter introduce a few model evalu-
ation metrics.

Chapter four, Implementation &Materials presents our implementation
of the methodology. The first section of the chapter introduce the training
and test datasets, the data collection process, and our preprocessing ap-
proach. The second section provides an overview of the implementation of
the models. The final section of the chapter explains how we use the output
of the models to identify anomalies, and how we evaluate the performance.

In chapter five, Results, Discussion & Analysis we present the results
for the four deep learning models. We present and discuss the performance
of multiple configurations for each model. The final section of the chapter
compare the different models.

In chapter six, Future Work & Conclusion we present some of the chal-
lenges we faced and propose possible future work. Finally, we summarize
and conclude the work done in this project.



Chapter 2

Background & Related Works

In this chapter we discuss relevant background information for our project.
We introduce important details about the Diskos NDR, Blue Book rule-
book, the Norwegian Petroleum Directorate, and important petrophysical
and well logging terminology. We also present and discuss previous works
related to well log data, time series, anomaly detection and deep learning
in this field.

2.1 Petrophysical Background

2.1.1 Basic Petrophysical Properties

The term petrophysics is defined as the study of physical and chemical
rock properties and their interaction with fluids [5]. This study is mainly
applied in the oil and gas industry for studying the rock and fluid properties
of reservoirs. In petrophysics, the measurements are typically obtained
from a string of measurement tools that measures various signals along the
borehole path. These measurements are used to infer properties that include
lithology, porosity, water saturation, permeability, and density. Lithology
refers to the physical characteristics of a rock such as color, grain size,
composition, and texture. Porosity measures the void spaces in a rock

5
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formation. A porous rock may contain liquids and gas such as water or
hydrocarbons in these void spaces. Water saturation describes how much
of the pores in a formation is water. Permeability defines the ability of
fluids to flow through a rock as a function of time and pressure. A rock
with interconnected pores has a higher permeability than a rock with low
porosity. Density is defined as mass per unit volume.

2.1.2 Wellbore Logging

The generation of well log data is performed by recording multiple different
logs and splicing them together into composite logs. The main types of
logs are electrical logs, porosity logs, lithology logs and miscellaneous logs.
Electrical logs focuses on measuring resistivity and conductivity. Porosity
logs measures density, neuron porosity and sonic (acoustic) waves. Lithol-
ogy logs measures naturally occurring radiation and spontaneous potential.
Miscellaneous logs are logs that don’t fit into the three other categories and
typically include measurement of caliper, magnetic resonance, and noise
logging.

These measurements are usually recorded using the Electric Wireline Log-
ging (EWL) or the Logging While Drilling (LWD) method. EWL utilizes
a string of measurement tools that is lowered into the borehole to record
petrophysical properties. One disadvantage with this approach is that log-
ging does not occur while drilling. LWD does not have this issue because the
well logging tools are integrated with the Bottom Hole Assemply (BHA).
This is what allows for logging while drilling. Since the logging tools are at-
tached with the BHA, LWD can take measurements even in highly deviated
wells. This is not always possible when using EWL.

2.1.3 Importance of Quality Control

Modern well logging techniques generate an abundance of data in order to
accurately describe the geologic formations in a borehole. A rapid increase
in the quantity of data created problems with data storage. Traditional data
storage solutions proved to be too inefficient, resulting in petrophysicists
spending a lot of time searching for data. The raw drilling data was stored
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in different data formats, and would often be of poor quality.

These issues sparked the idea of a National Data Repository (NDR) for
exploration and production related data. In 1995 the Norwegian Petroleum
Directorate (NPD) initiated the Diskos NDR in an attempt to solve these
issues. With the introduction of the Diskos NDR, NPD also published a
set of guidelines for reporting petroleum data to the authorities. This set
of guidelines is known as the Blue Book and is available at NPD’s web-
sites [6]. The Blue Book specifies the content, quality, format and structure
requirements for various types of data. Raw well log seismic data, well
composite logs and petrophysical interpretations are a few types of data
collected by the NPD. All operators are obligated by law to report data
from the Norwegian continental shelf (NCS) to the NPD [7]. These reg-
ulations provided a storage solution where high quality data is organized
by a predefined standard. Companies like Logtek AS perform quality con-
trol and organize wellbore data before it is reported to the NPD. Logtek
mentions that operators can benefit from this internally as well:

However, oil companies have seen the added value and competi-
tive advantage of organized and quality checked data for internal
use, and for these reasons have implemented the same reporting
routines for old and international well data [8].

The improved organization and data quality allow for easier machine learn-
ing integration and big data analysis. Data acquisition for training and test
datasets is not as daunting because of a predefined format. High quality
petroleum data implies that fewer decisions must be made during prepro-
cessing of a dataset, resulting in fewer errors and bad choices.

2.2 Related Works

A possible use case for big data and deep learning in the petroleum indus-
try is estimation of missing data. In [9], Onalo et al. present a data driven
approach to well log predictions. Their approach is based on an artificial
neural network with a single hidden layer. The proposed model utilize ex-
isting data of gamma ray logs, bulk density logs and shale volume to predict
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or estimate the travel time of compressional and shear waves in a lithology.
The results indicate the proposed model is a reliable and robust solution to
estimating sonic transit time. The authors suggest their approach can be
used to estimate missing data from old well logs, but it can also be used as
a cheaper alternative to sonic well logging.

The existence of big data in the petroleum industry is not only contained
to well log data. In [10], Sagheer and Kotb introduce a deep learning ap-
proach to time series forecasting of petroleum production. The authors
propose a model based on a stacked long short-term memory (LSTM) ar-
chitecture. The input to the model is a time series of water injection and
production quantity from two different oil fields. The model is configured
in two different scenarios: static and dynamic. The static configuration
make predictions using only the actual observations in the training dataset,
while the dynamic configuration is updated to use the output of previous
predictions as well. Their results show that the deep LSTM architecture
outperforms other deep recurrent neural networks and deep gated recurrent
unit networks. The authors state the proposed approach was specifically
tested on time series of petroleum production, but it can be applied to the
majority of forecasting problems.

Borehole imaging is a special type of well log data where the features of
an observation is recorded in multiple dimensions. The purpose of this
process is to create an image of the wellbore walls at each depth interval,
effectively creating a time series of images. In [11], Valentín et al. utilize
borehole images to automatically identify the lithologies of the wellbore.
The proposed approach is a deep residual convolutional network which uses
blocks of 100 inputs from microresistivity and ultrasonic borehole image
logs. The authors take advantage of the concept of residual blocks proposed
by He et al. [12] to improve the accuracy and reliability of the model. The
result of this study shows the model is able to extract more information
from borehole image data compared to others methods.

It is evident that deep learning has the potential to improve current so-
lutions in the petroleum industry. The three approaches proposed above
focus on feature estimation, production prediction and lithology classifica-
tion. Another common use case for deep learning on time series is anomaly
detection. Being able to identify anomalous or erroneous observations has
an abundance of use cases in the petroleum and non-petroleum industry.



Chapter 2. Background & Related Works 9

In [13], Liu et al. propose a model which utilize the combination of a
Attention Mechanism-based Convolutional Neural Network (AMCNN) and
LSTM. The proposed model attempts to identify anomalies in edge de-
vices in the Industrial Internet of Things (IIoT). The first component of
the model, AMCNN, prevents gradient dispersion problems and memory
loss by identifying the most important features. The second components,
LSTM, is used due to its advantages on time series prediction. The pro-
posed model is able to accurately detect anomalies, while also reducing the
communication overhead. The study also provides an example of how the
deep learning model can be trained in real time, which could be applied to
real time wellbore drilling and analysis.

An interesting example of deep learning is the anomaly detection concept
delayed LSTM proposed by May et al. [14]. Their approach utilize multiple
LSTM-based models with delayed prediction to accurately identify anoma-
lies in a time series. The training input to their model is a uni-variate time
series of only non-anomalous data points. A separate observed dataset is
assumed to contain a single anomaly, with all consecutive points being ab-
normal. The authors utilize multiple LSTM-based model to help reduce
the impact of different types of noise on the time series. The input to the
model is a window of n observations which are used to predicted the next
n observations. The model is configured to generate output from 2 or 10
different LSTM networks. When the model obtains the actual values of the
predicted area, the actual values are compared to all the different predicted
values. The model selects the best predicted value for each observation in
the window. The prediction of each individual observation in the window
may come from different internal LSTM models. This concept effectively
delays the output prediction of a window until the actual values are ob-
tained. Their results show that this approach more accurately identifies
anomalies than other methods, like stacked autoencoders and variational
autoencoders, on both fictitious and real datasets.

In [15], Martí et al. introduce an anomaly detection approach for petroleum
industry applications. The proposed approach use a combination of yet
another segmentation algorithm (YNSA) and one-class support vector ma-
chine to detect anomalies in turbomachines. The segmentation algorithm
in responsible for detecting sections of similar data across the entire time
series. All the sections are fed to a one-class SVM which learns what is con-
sidered normal behavior. Any sections not conforming to this standard is
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flagged as an anomalous section. The authors state the proposed approach
was compared to real life applications in order to understand the validity,
viability and performance of the approach. The results of this study shows
the approach is able to outperform an existing automatic supervision sys-
tem in a Brazilian petroleum company. This study is a perfect example of
how deep learning technology can used to improve existing systems.



Chapter 3

Methodology

This chapter introduce the theoretical background for the methodology in
this project. First, we present the file types used for well log data, and
a detailed description of the features. Second, we present some important
steps in the preprocessing pipeline, after which we start introducing some
machine learning fundamentals. Next, we provide a detailed description
of the theory behind our deep learning models. Finally, we discuss what
evaluation metrics we use, and briefly mention some important libraries.

3.1 Dataset

The amount of well log related research is quite limited despite the existence
of an abundance of historical and recent well log data. This is partly due
to two issues associated with well log data: availability and old file formats.
Well log data is considered market sensitive information and is typically
not publicly available for researchers. The small amount of available well
log data will often suffer from problems related to quality and quantity.
Another big issue is the use of old file formats to store the data. These file
types will often require the use of complex or expensive tools to extract the
data.

11
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3.1.1 File types

The majority of the well log data is generated, exchanged and stored in
old and outdated file formats despite the recent explosion in technological
advancements. The file type of choice may change depending on the oil or
service company responsible for recording the well log. The following file
types are the three most common file formats used for composite logs.

LIS

Log Interchange Standard (LIS) is a well logging format based on the VAX
binary information standard. The format was developed by Schlumberger
in 1974 and is known to be very difficult to work with [16]. LIS files are
typically associated with an immense volume of historical data, but also see
some use in Mud and Composite logs today. A single LIS file can contain one
or more logical LIS files. Each logical file contains three key components:
meta-data, index curve and measurement curves. The meta-data is stored
as a set of records of different types. The index curve can be either depth
or time based, and defines a consistent interval of measurements. Each
measurement curve may be either single- or multi-dimensional, and contain
one or more samples per depth/time interval. This means each measurement
curve can record several values from multiple angles at each depth index.

DLIS

Digital Log Interchange Standard (DLIS), formally know as API RP66,
is the successor of LIS and is currently the most common digital well log
format. The standard was first introduced by the American Petroleum
Institute in 1991 as a part of the Recommended Practice 66 for storage and
exchange of well log data [17]. The format exists in two different versions,
V1 and V2, due to the introduction of a revised version in 1996. V1 became
the standard format after V2 failed to gain any traction. Like LIS, a DLIS
file also contains one or more logical files. Each logical file contains their own
DLIS sets and frames. A DLIS set typically contains the metadata related to
the logging run. The DLIS set can be viewed as a table of information about
all available DLIS frames, and what tools and parameters were used during
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logging and processing of the data. The data recorded during logging is
stored in multiple DLIS channels. A DLIS channel stores data as a function
of depth or time, and is typically one-dimensional. The format also supports
multi-dimensional DLIS channels, where multiple samples or multiple angles
can be recorded for each step. A DLIS frame is simply a collection of
multiple DLIS channels with the same depth or time axis. Despite the
wide spread use of the standard, it is evident that this binary data format
is very old. The format was introduced during a time where saving disk
space played a key role to the success of a standard. An abundance of non-
standard data-types and complex data structures were implemented in order
to save disk-space. The lack of easily accessible programming tools, and
the existence of company-specific dialects has recently sparked an interest
in new formats such as JSON Well Logging Format [18].

LAS

Log ASCII Standard (LAS) is a file format published by the Canadian Well
Logging Society around 1990 [19]. Unlike LIS and DLIS, LAS files are not
binary and store all the information in human readable ASCII text. This
means that researchers and developers can avoid using complex or expensive
software to handle these files. The combination of a simple syntax and non-
binary data is the main reasons why the standard is still popular today. One
drawback of LAS files is that they require a lot more storage space than
DLIS and LIS files with the same data. Consequently, LAS is not suitable
for large volumes of well log data. Another drawback of the format is
that the simple and ambiguous format description has caused an emergence
of multiple dialects and semantic interpretations. The different dialects
combined with the existence of three differentLAS versions (1.2, 2.0, 3.0)
will often be an issue for researchers and developers.

3.1.2 Feature description

As stated in section 2.1.2, a composite log is generated by splicing together
different types of well logs. What features are included in the composite
log may vary depending on its purpose. However, the following features are
usually found in the majority of composite logs and are regularly used in
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petrophysical analysis:

• Measured Depth (DEPTH): This feature defines the index curve of a
well log. The feature is typically measured in inches/10, and measures
the length of the wellbore along the well path. It should not be con-
fused with true vertical depth which measures the vertical distance
from the surface.

• Acoustic Compression (AC) & Acoustic Shear (ACS): These feature
are associated with sonic logging, and measures how fast elastic seis-
mic compressional and shear waves travel through a formation. The
features are mainly used to calibrate and support seismic data, and
calculate formation porosity.

• Bit Size (BS): The bit size feature defines the diameter length of the
drill bit at the current depth. The bit size of a wellbore will stay
constant for sections at a time. The wellbore operator will first drill a
hole with a specific bit size before inserting a slightly smaller casing.
After inserting the casing, a smaller bit is attached to the drill in order
to continue drilling.

• Caliper (CALI): This feature measures the variation in the wellbore
diameter. The measurement is used as an indicator to detect cave-ins
and shale swelling along the wellbore path. It is important to detect
these types of situations as data from other well logs will be affected.

• Density (DEN): This feature measures the bulk density of a forma-
tion. Density, sonic and neutron porosity are the three logs that are
used to calculate a formations porosity.

• Density Correction (DENC): This feature is used to correct and give
more context to the density feature. This is necessary due to bulk
density not being an intrinsic property, meaning it can change based
on a variety of factors. The density is typically corrected based on
pressure and temperature.

• Gamma Ray (GR): This feature measures the gamma radiation that
naturally occurs in sedimentary rocks. The main use of this feature is
to identify and differentiate different types of rocks. This is possible
due to different sedimentary rocks emitting different levels of natural
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gamma radiation. Shales will typically have a higher gamma radia-
tion than other rocks due to the radioactive potassium found in its
clay minerals. This feature can spot a clear difference between shale
and non-shale rocks, but it struggles to differentiate sandstone and
other carbonates due to the similar radiation levels. To overcome this
problem, gamma ray logs and stratigraphic logs are analyzed together
to properly identify the sedimentary rocks.

• Neutron Porosity (NEU): This feature measures the hydrogen index of
a material. The feature is recorded using a neutron source to measure
the concentration of hydrogen atoms. The main use of this feature
is to estimate the amount of liquid-filled porosity, which is important
for quantifying oil and gas reserves.

• Photoelectric factor (PEF): This feature measures a formations ab-
sorption of low-energy gamma rays. This feature is far less sensitive
to differences in pore volume compared to NEU and DEN logs. PEF
is a more detailed indicator of mineralogy and works very well on thin
layers of sedimentary rock. This feature is also very useful in con-
junction with DEN and NEU logs to identify mixtures of minerals in
complex carbonates.

• Medium Resistivity (RMED) & Deep Resistivity (RDEP): These fea-
ture are used to measure the resistivity of a formation. Resistivity is
measured at different distances away from the borehole and is recorded
in ohm meters. The purpose of these features is to give information
about the water saturation, formation porosity and the existence of
hydrocarbons. The resistivity readings can also be used to differenti-
ate between shale and non-shale rocks.

3.1.3 Aliases

Each feature in a well log is called a log curve and typically has a long de-
scriptive name. These names are too long to print on well log headers and is
therefore replaced with an alias. Some aliases are simple abbreviations, like
GR for gamma ray, while others are mnemonics which are much harder to
understand. Mnemonics are designed to be short to save storage space, and
they are a mix of standard and vendor specific names. In the petrophysical
handbook by E.R. Crain [20], more than 1500 aliases are listed for only 13
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features. He also states that his list is far from complete due to new ones
being constantly generated by service and log digitizing companies. Table
3.1 shows some of the known aliases for the available features in our dataset.

Feature Aliases
DEPTH Depth, DEPT

AC DT24, DTC, HDT
ACS DTS, DT4S
BS HBS

CALI CAL, HCAL, HCAL_1, HCALI, RSO8
DEN HDEN, HRHO, RHO8
DENC HCOR, HDRH
GR HGR, EHGR, HDRHO, HNPHI, HRHOB
NEU HCN, HNPO, HPHI
PEF PE, HPEF
RDEP HDR, HRLD
RMED HRM, HRLS

Table 3.1: Subset of known feature alises.

3.2 Preprocessing

3.2.1 Missing Values

One of the first preprocessing steps is to decide what approach is most
suitable to deal with missing data in the dataset. Handling missing data is
a critical step as the majority of machine learning models will not function
otherwise. It is not possible to define a single optimal approach for handling
missing data as it is heavily reliant on the available dataset and the machine
learning algorithm of choice.

It is also important to understand why the data is missing in the first
place. Traditionally there are three categories of missing data mechanisms:
Missing at Random (MAR), Missing Completely at Random (MCAR), and
Not Missing at Random (NMAR) [21, 22]. MAR is a mechanism where
the missing values are randomly distributed across a subset of the data.
The missing values are related to the observations, and not related to the
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features. MCAR is the most strict mechanism and is only present if the
missing data is randomly distributed across the entire dataset. MCAR can
be viewed as a special case of MAR where the distribution of missing data
is independent of the observations and features [22]. The final mechanism
NMAR applies when the missing data has a structure to it. This mechanism
can be challenging to work with as the only solution is to create a model
that accounts for missing data, and use it to develop an unbiased estimate.
However, in some cases where the missingness cannot be accounted for, the
introduced bias can be negligible [23].

The removal of observations or features with missing values is the simplest
approach to handling missing data. The benefit of removing missing data is
a complete dataset without any outside influence on the data. However, the
removal of observations and features might lead to loss of valuable informa-
tion, and introduce a bias towards the remaining observations. If the MCAR
mechanism is satisfied, the removal of observations will not introduce a bias
[24]. However, a bias might be introduced if the MCAR mechanism cannot
be satisfied. It is heavily debated whether or not the proportion of miss-
ing values should be taken into consideration when removing missing data.
Some research suggests that if the proportion of missing data is above 40%,
the amount of missing data is so substantial that only the observed data
should be included [25]. Additionally, if the dataset contains less than 5%
missing values, the proportion of missing data is so negligible that it can
safely be removed from the dataset. However, some researchers disagree
with this statement and suggest the proportion of missing data should not
be used as an indicator for the removal of observations or features [26].

Another common method to deal with missing values is with the use of
imputation. The most simple version of imputation is single imputation,
where each missing value is replaced by an estimated value of the observed
data. There are a variety of different single imputation methods available to
estimate the missing values. The most common single imputation method
is to calculate and replace all missing values with the mean, median or mode
of the appropriate feature. This method can work well if the proportion of
missing data is small. However, as the proportion of missing data increases,
single imputation will underestimate the variance and introduce a bias in the
data. This problem is not dependent on the missing data mechanism and
should only be used with great caution [25, 27]. Other time series specific
simple imputation methods like Last Observation Carried Forward (LOCF),
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Next Observation Carried Backward (NOCB) and linear interpolation face
similar issues. These methods attempt to replace missing sections of data
with the last valid observation, next valid observation or a set of linear
values between the two.

One of the problems with single imputation is that the imputed values
are treated equal to the observed data, which often cause a misleading
analysis. Multiple imputation attempts to solve this problem by replacing
a missing value with a set of possible values. The values are generated and
chosen by a defined imputation model [25]. These sets of values are used
to create multiple candidate datasets which are analyzed individually using
standard analytical procedures. The final step involves using the result of
all the candidate datasets and combine them into a single multi-imputation
result. This approach has been proven to retain the natural variability of
the missing values, which provides a valid statistical inference [22, 25, 23].

3.2.2 Feature Scaling

Feature scaling is an essential step in data preprocessing and involves trans-
forming each feature in the dataset to be on the same scale. When the
features in the training dataset are on different scales, the machine learning
algorithms tends to favor features with larger range [28]. Neural networks
in particular will heavily adjust the weights of features with larger scales,
while the weights adjustment of features with smaller scales are minuscule
in comparison. This in turn will slow down the learning rate and conver-
gence of the network, and prevent the algorithm to effectively learn from
the dataset.

Standardization, also called Z-score normalization, is a method of scaling
features to ensure a mean x̄ of 0 and a standard deviation σ equal to 1.
The scaled value x′ is calculated by subtracting the mean from the original
value x before dividing the result on the standard deviation. Unlike other
methods, this feature scaling technique is not bound to a range. Standard-
ization is most useful if the dataset has a Gaussian distribution, but it can
be used on data with other statistical distributions. One of the perks with
standardization is that it is much less affected by outliers compared to other
normalization techniques.
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x′ =
x− x̄
σ

(3.1)

Min-max normalization, also called min-max scaling, is a method of scaling
features to the range [0, 1]. The scaled value x′ is calculated by subtracting
the minimum value xmin from the original value x before dividing the result
on the difference between the maximum xmax and minimum xmin values.
This formula ensures the minimum scaled value will be equal to 0 and the
maximum scaled value will be equal to 1. This feature scaling technique
preserves the relative distance between values and is useful in situations
where the distribution of the data is unknown. One of the issues with min-
max normalization is that it is very sensitive to outliers. The value of the
outliers at both ends of the spectrum are directly used in the formula, which
has a significant impact on the scaled values. A single large outlier can scale
the majority of the values in the feature between 0 and 0.1, while the outlier
would be scaled to 1. In this situation a machine learning algorithm would
struggle to learn from the data as there are no values in the range (0.1, 1),
and the difference between normal values are negligible.

x′ =
x− xmin

xmax − xmin
(3.2)

3.3 Fundamentals & Layers

3.3.1 Supervised and Unsupervised

Machine Learning (ML) is a form of artificial intelligence that employ statis-
tics to learn from an input dataset. An ML algorithm is usually trained
using supervised or unsupervised learning. During training, a supervised
ML algorithm is given the target labels. In classification tasks, the algo-
rithm attempts to classify a given input as one of two or more labels. The
algorithm is penalized for wrong classifications and is thus encouraged to
change parameters in order to improve future predictions. In regression
tasks, the algorithm instead predicts actual continuous values. The ML
model is penalized based on the similarity or closeness between the predic-
tion and corresponding target label. After sufficient training, supervised
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models can make predictions on new data of the same type as the training
data. Unsupervised ML algorithms are used when there are no available
target labels. This means that unsupervised cannot be trained to solve nei-
ther classification nor regression tasks. Instead, features and the relation
and similarity between input entries are learned. Unsupervised ML tech-
niques group input entries into various clusters. This is called clustering
and can be used to categorize input entries without having prior knowledge
of the dataset.

In this project, we are originally dealing with an unsupervised ML task as
there are no available labels. However, the algorithms that we use either
tries to compress and decompress to make the output look like the input, or
predict the next input. This means that the output is on the same format
as the original dataset. Thus, the target labels is the input itself. The
algorithms are therefore capable to supervise themselves. We can therefore
say that the algorithms are self-supervised. Furthermore, this is also a
regression task as the input consists of features of continuous values.

3.3.2 Activation Functions

An activation function is a function that applies a non-linear (usually) trans-
formation on the input. The transformation is applied element wise if the
input is not a scalar. In artificial neural networks, activation functions are
often applied to introduce non-linearity in an otherwise linear system.

Sigmoid

f(x) = σ(x) =
1

1 + e−x
(3.3)

The sigmoid function (3.3) transforms the input to a value between 0 and
1. This activation function is mainly used to ensure that the output of a
neural network is within well defined bounds.
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Hyperbolic Tangent

f(x) = tanh(x) =
ex − e−1

ex + e−1
(3.4)

The hyperbolic tangent function (3.4) is similar to the sigmoid function,
except the output range from -1 to 1.

Rectified Linear Unit

f(x) = max{0, x} (3.5)

The Rectified Linear Unit (ReLU) activation function (3.5) transforms all
negative values to zero. Positive terms remain unaffected.

3.3.3 Deep Learning Basics

A Feed-Forward Neural Network (FFNN) is the most basic form of an ar-
tificial neural network. The name of the network is derived from the direc-
tion of the information flow in the network. The information moves from
the input layer, through one or more fully connected intermediate layers
and to the output layer. Each intermediate layer contains a set of neu-
rons that feed a weighted input through a linear or non-linear activation
function to generate an output. The network use an error function and a
back-propagation technique to adjust the weights of the input connections.
Then the network computes the error between the output and target values.
The algorithm back-propagates the error through the network, adjusting all
the weighted connections to minimize the value of the error function. The
value of the error function is only reduced by a minor amount for each iter-
ation. This process is repeated multiple time until the network converge to
a state where each new update to the weights provide a negligible change
in the error value. A FFNN typically utilize gradient descent, a non-linear
optimization technique, to optimize the process of adjusting the weighted
connections.
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Figure 3.1: Basic feed-forward neural network architecture.

3.3.4 Recurrent Layer

One of the major problems with FFNN and time series data is that it has
no memory of previous data. This is due to FFNNs only using the current
input during training and prediction. This means the network has no notion
of time and struggles to predict whats coming next. An Recurrent Neural
Network (RNN) attempts to solve this problem by expanding on the FFNN
structure by introducing a loop in each neuron. Each neuron will now store
its output as a hidden state to be used in the next iteration. The hidden
state of the neurons acts as the networks short-term memory of previous
data. In an RNN, each neuron in the intermediate layer concatenate its
weighted inputs and hidden state and feed it to the activation function.

After feeding the data through the network and calculating the output, the
network has to back-propagate the error through the network to adjust the
weighted connection. Like FFNN, all neurons that took part in the calcu-
lation of the output should have its weights updated. The key difference
is that the output ht is dependent on all the weights used to calculate the
hidden state for all previous timesteps. The network uses the weighted in-
puts xt and the previous hidden state ht−1 to calculate the output ht. This
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Figure 3.2: Recurrent neural network architecture.

means the network has to back-propagate the error from the last timestep all
the way back to the first timestep in order to adjust all the weights. This
technique is called Back-Propagation Through Time (BPTT), and when
combined with gradient-based learning methods is the root of the vanish-
ing gradients problem in RNN [29]. The hidden state, like with all other
connections in the network, is associated with a weight. These weights are
typically assigned with a random value close to zero at the beginning of the
network. The hidden state will be multiplied with the same weight multiple
times when the network moves from one timestep to the next. The repeated
multiplication of a number close to zero means that the gradient becomes
smaller and smaller for each timestep. When a network has a low gradient
the network stop learning due to insignificant weight adjustments in each
timestep. The opposite problem, exploding gradients, occurs if the network
has a very high gradient. The weights in this scenario would receive huge
adjustments in each timestep, causing the network to be unable to learn
from the training data.
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Figure 3.3: Unrolled representation of an RNN neuron.

3.3.5 Convolutional Layer

A convolutional layer uses a set of filters to extract the location of various
features from its input. In a Convolutional Neural Network (CNN), each
filter in a convolutional layer is optimized to learn a single feature. The out-
put of the layer is obtained by convolving the filter over the input. In 2D
convolutions, the output is called a feature map. In a CNN with multiple
convolutional layers, the deeper layers generally extract more complex fea-
tures compared to the previous layers [30]. Exactly what these features are
is learned by the network during training. In an image classification CNN,
feature maps of early layers may only contain features such as edges, while
subsequent layers may pick up on eyes, noses, ears etc. The dimensions of
the convolutional layer change depending on the input data and use case.
Some examples of CNN applications include time series (1D), images (2D),
video (3D), and VR (4D). In our use case the input is a multivariate time
series, which means the CNN use a multivariate 1D convolutional layer.
Furthermore, the mathematical representation shown in this section aim
to illustrate how a kernel convolves over a multivariate time series input.
Thus, this representation is not optimized like in an actual implementation.

The input space of a multivariate 1D convolutional layer is (n,Cin) where
n is the length of a sequence of records and C is the number of channels.
A channel is typically a feature in a dataset. The input space is denoted
by the variable X. A kernel has the shape (k,Cin) where k is the kernel
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size. A layer has Cout kernels where the j-th kernel is denoted by Kj . The
convolutional layer computes its output by convolving each kernel along the
input space’s temporal axis. To simplify the notation, a row in X and Kj is
denoted as xi and wp respectively. Both xi and wp are vectors of size Cin.
The subscript of w is centered around zero where p ∈ [−P, P ], P =

⌊
k
2

⌋
.

X =



x1
x2
...

xi−1
xi
xi+1
...

xn−1
xn


, Kj =



w−p
w−p+1

...
w−1
w0

w1
...

wp−1
wp


(3.6)

A convolution is computed by sliding the kernel over the input and comput-
ing the element-wise product sum of the input and the overlapping kernel.
Assuming an odd kernel size, the center row of the kernel is lined up with
xi. Lets say that k = 3, the convolved output of xi would be the sum of
the dot products between the overlapping rows of the input and the ker-
nel. The output for the i-th row convolved with the j-th kernel becomes:
xi−1 ·w−1 + xi ·w0 + xi+1 ·w1. Since the kernel is centered around xi, this
implies that the kernel extends beyond the input when i < P or i > n−P .
For these values of i the convolution cannot be computed, meaning that the
output shape for a single kernel convolved across the entire input space is
(n− 2P, 1). For multiple kernels, the output shape becomes (n− 2P,Cout)
where the j-th column is the output of the j-th kernel convolved across the
input. Equation (3.7) shows how a single value in the output space is com-
puted. This formula assumes that the stride length and dilation rate are
both set to 1. Strides and dilation rate are explained in later paragraphs.

Yi,j =

P∑
p=−P

xi+P−p · wp, wp ∈ Kj (3.7)
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If it is important that the output has n rows, the input can be padded by
P rows at the beginning and end. Enforcing that the output has n rows is
typically referred to as same padding. Choosing the values of the padded
rows usually requires knowledge of the context of the input, as it can have a
significant impact on the output. If the input channels are cyclical it might
be a good idea to set the leading padded row to equal the last P rows, and
the trailing padded rows to equal the first P rows. Other options are to use
the mean of the input channels or simply use zeros. Zero-padding won’t
affect the computations at the cost of not knowing the full context at the
ends of the input.

Causal padding only adds padding at the start of an input sequence. This
also modifies how the kernel overlaps with the input. The final kernel ele-
ment becomes the reference point instead of the center kernel element. For
k = 3, the output for the i-th row convolved with the j-th kernel now be-
comes: xi−2 · w−1 + xi−1 · w0 + xi · w1. This effectively prevent the kernel
from learning from the future, and may therefore be more suitable for time
series data. This is also referred to as causal convolutions [31].

Aside from padding, the stride length also affects the size of the output
space. The stride length s affects how much the kernel slides over the
input. Until now we have assumed an s = 1, meaning that the kernel
convolves over every input row. A stride of length 2 means that the kernel
only convolves over every other input row. The benefit of increasing the
stride length is that it decreases the amount of computations by a factor of
s. The input may become degraded when choosing an s too large.

Additionally, the dilation rate also affects the output space. Dilation rate
d defines the spacing between the kernel elements wp, increasing the kernel
size. This effectively adds d−1 new dummy elements between each original
kernel elements. Each new element contains only zeros, meaning that the
new elements don’t directly affect the output because the dot product of
itself and another vector is zero. It is therefore not strictly necessary to
expand the kernel as it is unnecessary to perform dot products that always
yields a value of zero. Instead it is better to manipulate the index. Thus
far we have assumed a dilation rate d = 1, meaning that the kernel element
has no additional spacing. When d = 2, w0 is still centered at xi but wp
now overlaps with xi+dp instead of xi+p. Without additional padding the
output will have a shape of (n − 2dp, Cout). Increasing the dilation rate is
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useful when it is desired to expand the context in the convolution without
increasing the actual kernel size. Increasing dilation rate too much may
provide too much temporal distance between the datapoints involved in the
convolution. One example, in finances, each row in the input contain the
daily changes in stock value for multiple companies (channels). Now let’s
say that d = 7. This means that the kernel only overlaps with rows that
corresponds with the same day of the week. As a result, the convolution
will not be able to discover any hidden context or patterns for day to day
changes in stock value, only patterns for Monday to Monday and Tuesday
to Tuesday etc.

nout =

⌊
n+ 2× padding − d× (k − 1)− 1

s
+ 1

⌋
(3.8)

As previously described, carefully choosing the stride length, dilation rate
and the padding mode can improve the filter in extracting hidden pat-
terns or features from the input. Additionally, increasing either the stride
length or the dilation rate can significantly reduce the number of compu-
tations necessary for obtaining the output. These parameters also affects
how many rows nout there are in the output. Thus the output shape of a
1D multivariate convolutional layer is (nout, Cout).

3.3.6 Pooling Layer

The pooling layer downsamples the input space. Like the convolutional
layer, the pooling layer performs the downsampling by sliding a kernel along
the input’s axes. Applying padding, strides and dilation in a pooling layer
is identical to applying those concepts in a convolutional layer. Unlike
the convolutional layer, the pooling layer’s kernel has no weights and only
operates on one channel at a time. Thus, the kernel does not overlap with
multiple channels. The kernel performs a function on the input elements it
overlaps with. This function typically finds the max or the average value
of the overlapping elements and are usually referred to as Max Pooling and
Average Pooling respectively.
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Figure 3.4: Max pooling example with kernel size & stride length of 2 and
dilation rate of 1.

Figure 3.4 shows the output of a 1D Max Pooling layer in relation to a
input of shape (n,C). The kernel has the shape (k, 1) and outputs only the
maximum value it overlaps with for every iteration and for every channel
independently. The output shape becomes (nout, C) where nout is conve-
niently the same as in a 1D convolutional layer (defined in equation 3.8).

3.3.7 Dropout Layer

Random dropout is a regularization technique to prevent overfitting. This
layer has one hyperparameter p which specifies the fraction of neurons that
are disabled for a training pass. The neurons that are disabled are chosen at
random. With dropout, neurons becomes better at detecting useful features
[32].

3.4 Algorithms

3.4.1 Autoencoder

An Autoencoder (AE) extracts the most important features of an input.
The AE then tries to reconstruct the input based on the extracted features.
This is therefore a self-supervised algorithm since the input is also used
as the target. The term autoencoder generally refers to the structure of
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the model illustrated in figure 3.5. The purpose of the hourglass shape is
to filter out irrelevant features. The autoencoder consists of two separate
neural networks: the encoder and the decoder. The encoder can be used
separately to perform dimensional reduction on the input. The autoencoder
is also the technology behind what is known as deepfakes which allows for
animating one’s facial expressions onto another person’s face. This can be
done by training one encoder that detects facial features and two decoders,
one for person A and one for person B. By encoding person A’s face and
decoding using person B’s decoder, it will seem like person A’s facial fea-
tures are projected onto person B’s face [33]. In this project we use AE
for anomaly detection. This is based on the assumption that erroneous and
trend deviating observations are reconstructed with higher error. A recon-
struction error greater than a specified threshold indicates an anomaly. For
this purpose, it is not necessary to use the encoder and decoder separately.

Figure 3.5: Autoencoder network architecture.

The encoder performs a dimensional reduction on the input features, sim-
ilarly to a principal component analysis (PCA). Thus the output of the
encoder must have fewer dimensions than the input. This output vector is
coordinates in what is called a latent space. While PCA is good at finding
the optimal linear subspace, it is limited with orthogonality constraints. An
encoder also tries to find an optimal subspace, but it does not have to be
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orthogonal with the input vector. Additionally, an optimized encoder can
learn deep and non-linear contexts and project them onto a latent space
with possible little information loss.

The decoder is trained to reverse any transformations done by the encoder.
In other words, the decoder takes coordinates from the latent space and
reconstructs data that looks like the original un-encoded vector. When
combined into an autoencoder, the encoder and decoder works in tandem
in finding the optimal latent space. An autoencoder may also be thought
of as a lossy compression and decompression algorithm. The deep learning
aspect helps minimize the loss.

3.4.2 Variational Autoencoder

An autoencoder attempts to encode and decode an input with as little re-
construction loss as possible, which often leads to overfitting. A Variational
Autoencoder (VAE) introduce regularization techniques in order to avoid
this problem. The regularization will also organize the latent space by in-
troducing two properties: continuity and completeness [34]. The continuity
propriety states that points close together in the latent space should give
similar results once decoded. The completeness property states that if you
sample and decode a point in the latent space, it should provide a mean-
ingful outcome.

A traditional autoencoder satisfies neither of these properties. Similar fea-
tures encoded with an autoencoder are not necessarily close to one another
in the latent space. Additionally, there may be a void or emptiness be-
tween features in the latent space. This means that the decoder is unable
to recognize what features a point in the empty space has. The decoded
result of such a point may bear no meaning at all. The variational autoen-
coder overcomes these issues such that the latent space can be used in a
useful and meaningful way. For instance, sampling and decoding a point
between two features in the latent space will produce data that looks real
and bear resemblance to both chosen features in the latent space. Figure
3.6 shows how a latent space looks like with and without regularization. As
you can see, with regularization we can sample a point that inherits from
all features. Without regularization, we would get something that doesn’t
resemble any of the features.
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Figure 3.6: Latent space visualization with and without regularization. Source:
[34].

The VAE introduce regularization by slightly modifying the architecture
of an autoencoder. A VAE encode an input as a distribution over the
latent space, rather than encoding an input as a single point. Typically
the encoded distributions tend to be Gaussian distributions in order to use
the mean and covariance matrix for training. The loss function used during
training is a combination of a reconstruction term and a regularization
term. The reconstruction term is typically Binary Cross-Entropy (BCE)
loss or Mean Square Error (MSE) loss. Kullback-Leibler divergence is used
as the regularization term to compare the difference between the returned
distribution and a Gaussian distribution.

3.4.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks were created to solve the van-
ishing gradient problem associated with RNN, and have shown to be well-
suited in tasks related to time series data. An LSTM neuron is typically
referenced to as a LSTM cell or unit, and is made up of a cell state and
three gates. Figure 3.7 shows the structure of an LSTM cell at timestep t.
LSTM cells enable RNNs to remember multiple inputs over a longer period
of time due to the cell state. The cell state works as the core memory of the
network, and transports information between timesteps. The cell is able
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Figure 3.7: LSTM cell architecture.

to read, write and delete which information is relevant with the use of an
input, forget and output gate.

The first step in the LSTM cell is the forget gate where the network identifies
which information should be forgotten. The previous hidden state ht−1 and
the current input xt is combined using vector concatenation. This combined
vector is then multiplied with the weight matrix Wf before adding the bias
offset. This input is sent through a sigmoid function to determine which
information should be forgotten. The sigmoid function will return a vector
ft with values between 0 and 1 which indicates the importance of each
input. A value close to 0 indicates the input should be forgotten, while a
value close to 1 should be kept.

ft = σ(Wf · [ht−1, xt] + bf ) (3.9)
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The next step in the LSTM cell is the input gate, where the network iden-
tifies which information should be used to update the cell state. This gate
takes two different inputs. The first input is a sigmoid layer that returns
a vector it with values between 0 and 1. The purpose of this layer is to
identify which input values should be updated in the cell state. The second
input layer feeds the same information through a tanh function to create
a vector C̃t of possible candidate values between -1 and 1 to be added to
the cell state. The tanh function helps regulate the network and combat
the vanishing gradient problem [35]. In this gate, C̃t defines the candidate
values for the cell state update, while it scales the values according to how
much we want to update the cell state.

it = σ(Wi · [ht−1, xt] + bi) (3.10)

C̃t = tanh(WC · [ht−1, xt] + bC) (3.11)

After calculating the output of these two gates, the LSTM cell is ready to
update cell state. First, the previous cell state Ct−1 is pointwise multiplied
with ft to forget the values we want to forget. Second, the candidate values
C̃t are pointwise multiplied with it to produce the scaled candidate values.
Finally, pointwise addition is performed on the two vectors to generate the
new cell state Ct.

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.12)

The final step of of the LSTM cell is to compute the hidden state ht output.
The new hidden state contains information about the previous inputs, and
is a filtered version of the cell state. The first step in this gate is to push the
input values through a sigmoid layer to define what part of the cell state
we want to use for the hidden state output. The calculation of the vector
ot is the same as the sigmoid layer in the forget/input gate but with the
associated weights and bias. The cell state vector is fed through a tanh
function and then pointwise multiplied with the output vector ot to create
the new hidden state. This multiplication will make sure the hidden state
only contains the information we want from the cell state. Both the current
hidden state and the cell state can now be sent over to the next timestep.
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The hidden state of the final timestep is used as the output for the LSTM
cell.

ot = σ(Wo · [ht−1, xt] + bo) (3.13)

ht = ot ∗ tanh(Ct) (3.14)

It is worth noting that the structure of an LSTM cell may differ from
project to project. The original LSTM paper by Sepp Hochreiter and Jür-
gen Schmidhuber only included the LSTM cells, input gate and output gate
[36]. The structure explained in this subsection is based on the architecture
first proposed by Gerr et al. [37]. This network structure introduced a
forget gate that enabled LSTM networks to reset its own state. Another
variation of LSTM includes the implementation of "peephole" connections.
Peephole connections were first introduced by Gers & Schmidhuber [38],
and involved adding the previous cell state as input to the three sigmoid
layers. The equation below shows how the forget gate equation would be
updated if peephole connections were implemented.

ft = σ(Wf · [Ct−1, ht−1, xt] + bf ) (3.15)

3.4.4 DeepAnT

In [39], Munir et al. propose a Deep learning approach for unsupervised
Anomaly detection in Time series data (DeepAnT). The DeepAnT model
utilize a deep convolutional neural network to predict the next instance in
the time series. The prediction is based on a window of the previous n
recorded instances. An anomaly score is calculated based on the Euclidean
distance between the observed and predicted values. An instance is defined
as anomalous if the anomaly score is greater than a specified threshold.
DeepAnT appears to perform well on large streams of multivariate time se-
ries data, where normal and anomalous data is collected from heterogeneous
sensors (much like sensors on a wellbore drill).

DeepAnT consists of two modules: a time series predictor and an anomaly
detector. The time series predictor is a CNN consisting of two 1D convolu-
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tional layers, each connected by a max pooling layer. The second pooling
layer is followed by a fully connected layer. Both convolutional layers and
the fully connected layer applies the ReLU activation function on their out-
puts. The final layer is the output layer which predicts the next (not yet
observed) sequence of measurements.

Figure 3.8: DeepAnT’s network architecture. Source: [39].

DeepAnT uses Mean Absolute Error (MAE) as a loss function. MAE in-
dicates the discrepancy between two components. It is preferred for its
simplicity and when the two components expresses the same phenomenon
and are on the same scale [40]. Here, the two components are the j-th
observation yj and prediction ŷj .

MAE =
1

n

n∑
j=1

|yj − ŷj | (3.16)

The second module, the anomaly detector, computes an anomaly score by
calculating the Euclidean distance (ED) between y and ŷ. The significance
of an anomaly is based on the Euclidean distance. A high Euclidean distance
means that yt and ŷt are vastly different. Assuming that the DeepAnT
model generally makes good predictions, a high Euclidean distance implies
yt is anomalous because it is not similar enough to the expected value ŷt. A
threshold needs to be defined in order to only label data anomalous if the
Euclidean distance is larger than this threshold.
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ED(yt, y
′
t) =

√
(yt − y′t)2 (3.17)

"The proposed unsupervised approach incorporates context, seasonality, and
trend into account for detecting anomalies." [39]. Seasonality can be re-
garded as non-abnormal fluctuations or change in expected data, similarly
to when a drill enters a new lithology or lithostratigraphic unit. Deep-
AnT should be able to predict the next observed data based on the current
trend. This is vital for our datasets as measured data from different lithos-
tratigraphic units can be vastly different. Furthermore, DeepAnT expects
that fewer than 5% of streaming data is erroneous. While our datasets
are not directly streaming data, the composite logs are stitched together
from streamed data and corrected throughout the quality control process.
Consequently, our datasets should not contain a significant amount of erro-
neous or anomalous data. Based on these reasons, DeepAnT appears to be
a well-suited model for our use case.

3.5 Model Evaluation

To efficiently evaluate the performance of a classifier, a confusion matrix
is often used. The confusion matrix indicates to which degree a classifier
correctly labels predictions in a precise and convenient manner. The rows
constitutes the actual positive (P) and actual negative (N) instances in
the dataset respectively, while the columns represent the predicted positive
(PP) and predicted negative (PN) instances made by a classifier. Table
3.2 shows the representation of a confusion matrix. An instance correctly
labeled as positive is defined as true positive (TP). Likewise, true negative
(TN) is an instance correctly labeled as negative. An instance wrongly
labeled as positive is referred to as false positive (FP). Similarly, an instance
incorrectly labeled as negative is referred to as false negative (FN). FP and
FN are equivalent with type I & II errors respectively.
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Predicted
Positive
(PP)

Predicted
Negative
(PN)

Actual
Positive
(P)

TP FN

Actual
Negative
(N)

FP TN

Table 3.2: Confusion matrix structure.

Looking at the confusion matrix may not yield immediate insight to a clas-
sifier’s performance. To obtain additional insight, auxiliary performance
measurements (metrics) are derived from the confusion matrix. The met-
rics that we use in this study are listed and explained below.

3.5.1 Accuracy (ACC)

ACC =
TP + TN

TP + TN + FP + FN
(3.18)

The accuracy measurement indicates the ratio of correct predictions versus
all predictions. Accuracy is simple and intuitive to understand, however,
these are also the reasons accuracy can be very misleading. The issue arises
when there is an imbalanced ratio of P vs N, and TP or TN respectively
is much larger than the other values in the confusion matrix. Both cases
yields a high accuracy. The high accuracy tends to overshadow the presence
of type I & II errors when TP or TN are large respectively [41].

3.5.2 Precision (PPV)

PPV =
TP
PP

(3.19)
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Precision specifies the amount of TP among all PP, indicating how precise
a classifier’s positive predictions are. Thus, precision is also referred to as
Positive Predicted Value (PPV). A high PPV (close to 1) implies a low
presence of type I errors. Likewise, when PPV = 0, all positive predictions
are type I errors because TP = 0 and PP = FP.

3.5.3 Recall (TPR)

TPR =
TP
P

(3.20)

Recall indicates the ratio of how many instances where correctly labeled
positive among all actual positive instances. Recall is also referred to as
True Positive Rate (TPR), sensitivity and hit rate. TPR also shows the
presence of type II errors. A TPR of 1 implies a total absence of type II
errors.

3.5.4 F-score (F)

Fβ = (1 + β2) · PPV · TPR
(β2 · PPV) + TPR

(3.21)

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP

The F-score measures the performance of a classifier based on both precision
and recall, where recall is β times more important than precision. F1 is the
harmonic mean between precision and recall and is the most commonly
used F-score. A β value of 2 means that recall is twice as important than
precision, and a β value of 0.5 means that precision is twice as important
than recall.

3.5.5 Matthews Correlation Coefficient (MCC)

MCC =
TP · TN− FP · FN√

PP · P ·N · PN
(3.22)
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Precision, recall and F-score only focus on the positive case and neglects the
importance of TN. The Matthews Correlation Coefficient (MCC) provides
a balanced measure that indicate the classifiers efficacy of both positive and
negative predictions. For instance, MCC is able to indicate that a classifier
has poor performance even if the F-score indicates good performance. MCC
is the only measure presented in this section that has a range of [−1, 1] as
opposed to [0, 1]. When MCC = 1 the classifier is perfect, while MCC = −1
means that the classifier make no correct predictions. A MCC value of 0
is equivalent to making random guesses. From (3.22) it is clear that MCC
is undefined if one of the rows or columns in the confusion matrix is zero.
Under these circumstances, we define MCC as Chicco et al. did in [41].
When one of P, N, PP or PN is zero we get MCC = 0. In the case only
one of TP, FN, FP or TN is non-zero, MCC = 1 when TP 6= 0 or TN 6= 0.
Conversely, we get MCC = −1 when FP 6= 0 or FN 6= 0.

3.5.6 Prevalence

Prevalence =
P

P + N
(3.23)

Prevalence shows the ratio of positive instances versus all instances. A
prevalence of 0.5 means that there are equal amounts of positive and nega-
tive instances, i.e. a perfectly balanced dataset.

3.6 Libraries

For reading and processing raw well logs we use the well log access library
Log I/O [42]. We also utilize the unit of measure library UoM [43] to
ensure the unit of a feature is the same for all well logs. These libraries are
developed by Petroware AS, a daughter company of Logtek AS.

We used the Keras API [44] to implement our deep learning models. Keras is
a open source high-level API built on top of the machine learning platform
Tensorflow. We mainly use the Keras functional API to build all of our
models. This API provides a convenient way of creating linear and non-
linear models with different deep learning layers.
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Implementation & Materials

In this chapter we present our materials and implementation of the method-
ology in chapter 3. First we introduce the training and test datasets used in
this project. Then we present the preprocessing pipeline for well log data.
Next, we introduce the implementation of the four deep learning algorithms.
Finally, we present how we generate ground truth labels for the test dataset,
and our two approaches to model evaluation.

4.1 Preprocessing

4.1.1 Dataset

The data used for training purposes in this project is confidential and pro-
vided by Logtek AS. All data is collected from wells on the NCS. The full
training dataset includes 139 well logs from a multiple wells in different oil
fields. The only information we are able to share is the number of well logs
and the general statistics presented in table 4.1. It is worth noting that
observations with missing values are not considered during the calculation
of these values.

40
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Feature Min Max Mean Std
DEPTH 220.68 7093.00 2386.90 1086.12

AC 43.23 286.04 104.52 27.48
ACS 76.71 798.43 232.82 103.83
BS 6.00 17.5 10.52 2.45

CALI 2.00 27.93 10.69 2.65
DEN 1.15 3.65 2.37 0.21
DENC -1.58 6.73 0.02 0.05
GR 0.0 953.73 74.99 35.22
NEU -0.02 7.69 0.33 0.15
PEF -59.04 137.44 4.91 2.44

RMED 0.07 100000.0 17.34 450.87
RDEP 0.07 100000.0 13.76 246.68

Table 4.1: Statistics from training dataset.

For testing and visualization purposes we utilize the publicly available Volve
dataset provided by Equinor and their partners [45]. The Volve oil field is
located 200km west of Stavanger and was in production for eight years
between 2008 and 2016 [46]. The dataset is the most comprehensive pub-
lication of well log data from the NCS, and contains roughly 40000 files
from the Volve oil field. We define the well log 15/9-F-11 T2 as our test
dataset for this project. Data from this well log will be used for all numbers
and figures in the report, unless otherwise specified. One of the interesting
aspects of this well log is that the wellbore is drilled with an inclination,
and is almost horizontal at the end of the log. The same general statistics
about the test dataset is presented in table 4.2.
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Feature Min Max Mean Std
DEPTH 2582.90 4513.00 3528.68 554.74

AC 48.93 136.25 74.19 13.38
ACS 74.82 388.84 138.15 37.74
BS 8.50 8.50 8.50 0.00

CALI 8.50 8.99 8.68 0.06
DEN 2.09 3.00 2.50 0.13
DENC -0.00 0.20 0.06 0.01
GR 0.84 437.82 27.60 35.23
NEU -0.00 0.49 0.14 0.09
PEF 4.84 11.54 7.73 1.09

RMED 0.12 46.34 3.72 3.08
RDEP 0.07 62290.77 9.42 511.89

Table 4.2: Statistics from test dataset.

4.1.2 Data Collection

This section describes how the raw composite logs are handled. Log I/O is
used to read files in LIS, LAS and DLIS format. Since Log I/O is written
in Java, all following steps described in this section are also done in Java
as opposed to Python which is used for the remainder of the project. The
following steps applies to both the training and test set.

UoM is used to perform unit conversion on the features. This ensures that
the same feature from multiple well logs use the same unit of measure. Unit
conversion is a necessary step as a deep learning models does not distinguish
between the unit of measure. It would be problematic if one composite log
in the training set used meters as the unit for DEPTH while another log
used tenths of inches. The model would not understand that 2000 m and
787401.575 in/10 are the same.

As described in section 3.1.3, a log curve may have many aliases. The feature
names are therefore renamed to conform to table 3.1. It would be highly
inconvenient if the training set contained multiple features representing the
same type of data.
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The features we use are further detailed in section 4.1.3. Any additional
features are dropped. The remaining features are then reordered to a de-
sired order. This is to ensure that the n-th column in the dataset always
correspond with the n-th feature.

Finally, a composite log is converted to a CSV format so it can easily be han-
dled in Python. However, if at least one step above could not be performed,
then the composite log is not included in the training set. It is important
to mention that the composite logs have not been merged into a single file
or dataset. This is beneficial as each file can be loaded individually as a
separate time series or combined when needed.

4.1.3 Feature Selection & Transformation

All features described in section 3.1.2 (except DEPTH) are used in this
project. The selection of these features are based on input from the petro-
physicists at Logtek, and their frequent use in petrophysical analysis. Ad-
ditionally, these features are often present in composite logs, increasing the
amount of available data for the training set. Features such as Thorium and
Uranium measures the presence of these elements in parts per million and
could potentially be interesting to include. However, including these fea-
tures would significantly reduce the training set because they either appear
too infrequent in composite logs or contain too much missing data. Features
such as rate of penetration are excluded because it relates to how fast the
drill is drilling and not to the lithology itself. The measured depth is not
included as it is not necessarily indicative of which type of rock formation
will be found. Additionally, the wellbore’s trajectory occasionally ends up
going nearly horizontal. In those situations, the true vertical depth remains
nearly constant. Thus, the measured depth is only used as an index which
does not give information about the lithology at hand.

Figure 4.1 shows the distribution of RMED values in the training set. The
majority of observations have a value between 0 and 10 ohmmeters, but
can occasionally have a value of tens of thousands ohmmeters. RMED
and RDEP are therefore typically represented on a logarithmic scale during
petrophysical analysis. A logarithmic transformation is applied to these
features using the base 10 logarithm. The benefit of applying logarithmic
transformation is that the minimum and the maximum value of the feature



Chapter 4. Implementation & Materials 44

are much closer to one another, which is important when scaling the data
(see section 4.1.5). Additionally, the logarithmic transformation makes the
distribution appear to be normal rather than exponential-like. The logarith-
mic transformation change the range of values in RMED from [0.07, 100000]
to (−1.155, 5].
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Figure 4.1: Distribution of values in RMED.

BS is used in conjunction with CALI to detect shale swellings and cave-ins
along the wellbore path. By itself, BS only tells the diameter of the drill
bit and does not provide information about lithology. BS should therefore
not be considered by any of our models. CALI measures the diameter of
the wellbore, i.e. the bit size plus the distance between the drill bit and
the walls. The issue of including CALI is that its value is always influenced
by BS. If BS is decreased by 9 inches, then CALI is reduced by the same
amount. To prevent the models to learn this characteristic, we introduce a
new feature CALI-BS which is the difference between CALI and BS. Both
BS and CALI are then dropped. The models should now be able to use
the information CALI provides regardless of the actual bit size. Figure 4.2
shows a visualization of the issue using fabricated data. The caliper feature
is always slightly higher than the bit size. When the bit size is reduced the
amplitude of the caliper feature is reduced by the same amount. The green
line shows how the new feature CALI-BS is unaffected by the change in bit
size.
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Figure 4.2: Visualization of the difference between BS, CALI and CALI-BS.

All other features in the dataset (AC, ACS, DEN, DENC, GR, NEU &
PEF) are not transformed or altered in any way. Together with RMED,
RDEP & CALI-BS, these features constitutes the selected feature set.

4.1.4 Missing Values

The missing values in the dataset are assumed to be NMAR, as the most
likely reason why data is missing (in composite logs) is due to sensors being
purposely turned off. Disabling sensors in uninteresting areas is a common
method of saving costs for the service company. However, we also assumed
the existence of some missing data due to wellbore problems, sensors mal-
functioning or removal of invalid/erroneous data. All these scenarios could
be either MAR or MCAR depending on the situation.

The first step in the the process of handling missing values was to analyze
where they occur. This analysis was necessary for deciding which missing
value approach was suitable for the dataset. The first analysis showed that
65% of observations contains at least one missing value, which means the
common problem of large amounts of missing data in well log data is also
reflected in our dataset. Figure 4.3 presents the proportion of missing values
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per feature, and shows that the issues is persistent across multiple features.
Only a hand-full of features have less than 5% missing values, while half
the features have more than 40%.
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Figure 4.3: Proportion of missing values per feature.

Figure 4.4 shows that incomplete observations typically contain missing
data in five to seven features. This supports the assumption that data is
NMAR as the majority of incomplete observations contains missing data in
multiple features.

During development, several strategies were employed with varying levels
of success. Single imputation with mean or median, as well as the time
series specific LOCF and NOCB methods, proved to be unsatisfactory on
our dataset. The main reason for this is due to the nature of the problem
we are trying to solve. All these methods impute fabricated data into the
dataset and is not interpreted any different than complete observations.
Considering the substantial amount of missing data, imputation heavily
impacts the "ground truth" of what is considered normal behavior. This
will in turn work against the purpose of the anomaly detection models.

Due to the excessive amounts of missing values, the selected approach for
handling missing values is to remove the associated observations. An impor-
tant consequence of this approach is that the well log is no longer a single
continuous time series. When an observation or section of observations are
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Figure 4.4: Proportion of missing values per observation.

removed in a time series, the gap effectively splits the well log into two time
series.

Our solution to this problem is to split each well log file into several contin-
uous subfiles. The result of this process is multiple disjoint datasets, where
each subfile is considered and handled as a unique time series. The purpose
of this step is to avoid introduction of fabricated data and retain the con-
text between complete observations. Figure 4.5 shows a clear visualization
of the process of removing missing values and the resulting split subfiles
for a single well log. After removing all the missing values we are left with
1212 subfiles with an average length of 750 observations. This leaves us with
over 900 000 complete observations that are used for training the machine
learning models. The test dataset is split into three subfiles with a total of
18703 observations.

4.1.5 Normalization

The dataset is normalized using the min-max normalization approach de-
scribed in section 3.2.2. The feature scaling is performed after the removal
of missing values and feature transformation. We extract the global mini-
mum and maximum value of each feature in order to calculate the scaled
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Figure 4.5: The process of removing missing values and splitting composite logs
into multiple subfiles.

values. A scaler object was created and saved to transform the subfiles of
both the training and test datasets when needed. The impact of removing
missing data, feature transformation and feature scaling on the training and
test datasets are presented in table 4.3 and 4.4.

Feature Min Max Mean Std
AC 0.00 1.00 0.25 0.11
ACS 0.00 1.00 0.22 0.14
DEN 0.00 1.00 0.49 0.08
DENC 0.00 1.00 0.19 0.01
GR 0.00 1.00 0.08 0.04
NEU 0.00 1.00 0.05 0.02
PEF 0.00 1.00 0.33 0.01

RMED 0.00 1.00 0.24 0.08
RDEP 0.00 1.00 0.25 0.08

CALI-BS 0.00 1.00 0.27 0.03

Table 4.3: Statistics from the scaled training dataset.



Chapter 4. Implementation & Materials 49

Feature Min Max Mean Std
AC 0.02 0.38 0.13 0.06
ACS -0.00 0.43 0.09 0.05
DEN 0.37 0.74 0.54 0.05
DENC 0.19 0.21 0.20 0.00
GR 0.00 0.46 0.03 0.04
NEU 0.00 0.07 0.02 0.01
PEF 0.33 0.36 0.34 0.01

RMED 0.03 0.46 0.25 0.06
RDEP 0.00 0.97 0.26 0.07

CALI-BS 0.26 0.28 0.27 0.00

Table 4.4: Statistics from the scaled test dataset.

4.1.6 Reshaping

The final step is to scale and the reshape the datasets to fit the input of
the models. The datasets must be shaped differently based on the different
input shapes of the models. The reshaping process is therefore explained in
more detail for each model in section 4.2.

4.2 Models

The models presented in this section can be separated into reconstruction
and prediction based models. AE and VAE are reconstruction models as the
input and output correspond to the same observation. The reconstruction
is in a sense a prediction that AE or VAE makes. Thus, the prediction
from AE and VAE models is analogous with reconstruction. LSTM and
DeepAnT are predictive models that predicts the next observation based
on the timesteps previous observations. What all four model types have in
common is that they are self-supervised and the output’s format & shape.
The output of a single prediction is always an observation. This implies
that DeepAnT’s anomaly detector module can also be applied to the other
model types. All models can therefore be evaluated using the same method.
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4.2.1 Autoencoder

Model Implementation

The AE model comprise only of fully connected layers. The minimum num-
ber of layers is three, where only the input, latent space and output layers
are defined. The number of neurons in the input and output layers are equal
to the number of features in the dataset. The size of the latent space layer
can be configured. The number of intermediate layers in the encoder part
can also be configured along with their respective number of neurons. The
order of these layers is reversed in the decoder. For example, if there are 10
features, the dimension of the latent space is 2 and intermediate layers given
as [6, 4], then the autoencoder has the following shape [10, 6, 4, 2, 4, 6, 10].
The latent space layer and all intermediate layers use the ReLU activation
function. The output layer uses the sigmoid activation function, while no
activation function is used on the input layer.

Reshape Input Data

Since the autoencoder only evaluates one observation at a time, it has no
notion of time. The dataset therefore does not have to be a time series. This
simplifies the learning process as the input dataset can be constructed by
concatenating all preprocessed composite logs. Obtaining a validation split
is the only slight implication. The validation split is obtained by taking
10% of data from each subfile to ensure that validation occurs for all wells
and not just the last portion of the complete concatenated dataset. Using
the last portion of the complete dataset would mean that validation only
has data from the final logs in the dataset. The AE model’s input shape
is (n, org_dim), which the dataset fortunately has. Thus, no reshaping is
required.
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4.2.2 Variational Autoencoder

Model Implementation

The variational autoencoder shares the overall structure with a regular au-
toencoder described in 4.2.1. What separates VAE from AE is the inclu-
sion of sampling layers and the incorporation of Kullback Leibler divergence
when computing the loss. Additionally, the encoder and decoder are created
separately such that it would be possible to obtain the latent representa-
tion of the input to study the latent space. Studying the latent space is out
of scope for this project and is primarily interesting for future work. The
decoder is concatenated to the encoder during the learning phase and are
thus trained in tandem.

As described in section 3.4.2, the encoder in a variational autoencoder en-
codes the input as a distribution over the latent space z. The latent repre-
sentation of the inputs is obtained by sampling from this distribution using
its mean µ and standard deviation σ. µ and σ are implemented as two fully
connected layers that are connected to the last intermediate layer. These
two layers are not connected to each other and the number of neurons are
equal to the number of dimensions in the latent space. The latent space
layer z is connected to both µ and σ. The output of z is obtained by sam-
pling from a normal distribution with µ as the mean and σ as the standard
deviation. The complete VAE model is then constructed by connecting
the decoder to z. The decoder is not different from a decoder in a regular
autoencoder.

Reshape Input Data

Since the general shape of a VAE is identical to an AE, everything men-
tioned in section 4.2.1 also holds for VAE. Thus, the only reshaping required
is to extract a validation set and concatenate all the subfiles into a single
dataset.
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4.2.3 LSTM

Model Implementation

The implementation of the LSTM model is based on the Keras functional
API. The model is comprised by one or more LSTM layers and a Dense layer.
Each LSTM layer in the model can be viewed as a separate RNN with the
LSTM architecture described in section 3.4.3. The input of every LSTM
layer is a tensor with the shape (batch_size, timesteps, original_dim).
If there are multiple LSTM layers in the model, the additional parameter
return_sequences is set to True. If this parameter is set to False, the
LSTM layer will return the final hidden state of each neuron. Thus, the
output of this layer has the shape (n_neurons, original_dim). However,
the subsequent LSTM layer requires the input to follow the previously men-
tioned tensor shape. The return_sequences parameter solves this problem
by returning the hidden state at every timestep for each neuron, effec-
tively returning the desired input shape. It is important to note that the
hidden state of a single neuron is an array in this implementation. The
return_sequences parameter is not required to be set for the final LSTM
layer as we’re only interested in the final hidden state.

Each LSTM layer is assigned to use the same recurrent dropout probabil-
ity. For the majority of deep learning models, a separate dropout layer is
used to reduce overfitting by randomly dropping output from random neu-
rons. However, the recurrent dropout parameter defines the probability of
dropping the internal connection in the LSTM cell’s input gate when com-
puting the cell state. This method has shown to outperform the traditional
dropout layer approach in LSTM networks [47, 48]. The final layer in the
model is the Dense layer, which is always defined to be the size of the output
dimension. This layer is used to reduce the number of features down to the
size of the output. The output of this layer is used as the prediction for
the following observation. The loss function MAE and Adam optimization
with default learning rate (0.001) is used to compile the model.
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Reshape Input Data

Since our LSTM model is a self-supervised deep learning algorithm, the
labels used during training needs to be constructed from the original dataset
D. The dataset D contains n records r of length original_dim and is
denoted as in (4.1a). LSTM require timesteps subsequent records to predict
the next timestep. For example, with timesteps = 3, then {r1, r2, r3} is used
to predict r4 and {r2, r3, r4} is used to predict r5. Using the notation in
(4.1d) and (4.1f), Xi is used to predict yi respectively. The input for the
LSTM model is denoted by the set X (4.1c) which contains nout matrices
with the shape (timesteps, original_dim). Accordingly, Y (4.1e) is a set
of labels which are used to compute the loss of a training pass. Both X and
Y contain nout (4.1b) elements. Consequently, predictions cannot be made
for ri where i ≤ timesteps.

D = {r1, r2, . . . , rn} (4.1a)
nout = n− timesteps (4.1b)
X = {X1, X2, . . . , Xi, . . . , Xnout} (4.1c)
Xi = {ri, ri+1, . . . , ri+timesteps−1} (4.1d)
Y = {y1, y2, . . . , yi, . . . , ynout} (4.1e)
yi = ri+timesteps (4.1f)

As described in section 4.1.4, each composite log may be split into multiple
datasets. A dataset by itself is equivalent with the notation of D in (4.1a).
Each dataset in the collection is considered disjoint time series and needs
to be handled accordingly during training. The Keras library allows for
a model to be fit consecutive times without resetting the weights. Thus,
the model is fit once for each X and Y pair derived from the collection of
datasets. This constitutes one epoch. Code segment 4.1 shows a simplified
training loop where the variable datasets is a collection of (X,Y ) tuples.
The hidden state of the LSTM cell is reset after fitting each dataset. The
purpose of this step is to avoid using the hidden state from the previous
dataset as an input to the next. This ensures the datasets are considered
as separate disjoint time series in the LSTM network.
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1 for epoch in range ( n_epochs ) :
2 for X, Y in data s e t s :
3 model . f i t ( x=X, y=Y, batch_size=len (X) )
4 model . r e s e t_s t a t e s ( ) # for LSTM only

Code segment 4.1: "Python code showing the training process with disjoint
datasets."

4.2.4 DeepAnT

Model Implementation

Our implementation of DeepAnT mimics the general architecture detailed
in section 3.4.4. The DeepAnT model comprise of Keras layers in the fol-
lowing order: Conv1D, MaxPooling1D, Conv1D, MaxPooling1D, Flatten,
Dense, Dropout and Dense. All convolutional and dense layers use the
ReLU activation function. The input shape of the first convolutional layer
is a tensor with the shape (batch_size, timesteps, original_dim). Both
convolutional layers have a kernel size of k and Cout output filters. Both
max pooling layers has a pool size of two. After the second pooling layer,
the shape is flattened to fit in a dense layer. The first dense layer has a
size of dense_dim. The dropout layer has a dropout rate of 25%. The
final dense layer has original_dim neurons as we are trying to predict the
observed data in the next timestep.

Reshape Input Data

Like LSTM, DeepAnT is also a self-supervised deep learning algorithm and
has the same input shape. Thus, reshaping the input of DeepAnT is iden-
tical to the reshaping for LSTM described in section 4.2.3. The only dif-
ference between LSTM and DeepAnT is the training loop. DeepAnT has
no internal hidden state that need to be reset after fitting the model with
a dataset.
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4.3 Model Evaluation

In this section we present how the results are produced and used. Further-
more, we describe how the output of our results would be used in a real
scenario. Then we describe how we generate labels such that we can com-
pute evaluation metrics used to evaluate the performance of the models in
the Results chapter.

4.3.1 Obtaining Points of Interest

The test set is processed using the same procedure and feature scaler as the
training set described in section 4.1. Thereafter, the test set is reshaped to
fit the selected model. For the DeepAnT and LSTM models the test set
is reshaped to a set of (X,Y ) pairs as described in 4.2.3. Since AE and
VAE is a one to one reconstruction algorithm there is no need to reshape
the test set. Additionally, we have Y = X for autoencoders. It is worth
noting that Y is a matrix for any model where the number of columns is
equal to the number of input features. The number of rows may however
change due to the timesteps parameter for DeepAnT and LSTM. The next
step is to feed the test set to the models and obtain the output Y ′, then
we compare it with Y using the Euclidean distance. In section 3.4.4 the
Euclidean distance is defined between two scalars and not between two
vectors. That definition is thus not applicable to our multivariate dataset.
How we calculate the Euclidean distance for a multivariate use case has
therefore been defined in (4.2). Here yi is an actual observation and y′i is
the corresponding prediction.

ED(yi, y
′
i) =

√√√√ n∑
j=1

(yi,j − y′i,j)2, yi ∈ Y, y′i ∈ Y ′ (4.2)

Figure 4.6 shows the Euclidean distance for each observation in the test
dataset. Appendix D include ED plots for the best performing configuration
of each model. The different colors indicate the sections of the test set where
all features were present. This representation visually shows where a model
can make predictions. Using a different subset of features may expand or
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even merge these sections.
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Figure 4.6: Example of Euclidean distance between original and predicted data
for all observations in the test dataset.

As described in section 3.4.4, DeepAnT marks observations as anomalous if
the ED is greater than a certain threshold. We employ the same principle
for determining anomalous observations for all models because their output
format is all the same. However, we look at the change in ED instead.
Throughout experimentation, we consistently observed that certain areas
have a higher Euclidean distance on average compared to other areas. Upon
deeper inspection it seems that these areas correspond to lithologies that
the models have difficulties in predicting. Thus, when ED is large but
seemingly constant, it appears that such an area is not anomalous. If the
threshold was set directly on the Euclidean distance as proposed by Munir
et al. [39], there is a chance that the whole of such an area will be marked
as anomalous. By looking at the change in ED instead, the edges of these
areas (or plateaus) will have a higher value than in the center. Thus, the
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change in ED appears to reveal transitions between lithologies. Figure 4.7
shows the change in ED for each observation in the test dataset. Similar
plots for the best performing configuration of each model are included in
appendix E.

2500 2750 3000 3250 3500 3750 4000 4250 4500
DEPTH

0.0

0.1

0.2

0.3

0.4

Ch
an

ge
 in

 E
uc

lid
ea

n 
Di

st
an

ce
 (a

bs
ol

ut
e 

va
lu

e)

Figure 4.7: Example of change in Euclidean distance between original and pre-
dicted data for all observations in the test dataset.

The threshold is chosen to be a percentile of the change in Euclidean dis-
tance. Somewhere between the 80th and the 99th percentile should be a
suitable threshold. An observation with a change in ED larger than the
threshold is marked as a Point(s) of Interest (POI). Lowering the threshold
below the 80th percentile will increase the number of true & false positives
positive predictions. Conversely, increasing the threshold yields a higher
number of true & false negative predictions. Thus, adjusting the thresh-
old directly influence the number of type I & II errors by increasing one of
them and decreasing the other. The importance of precision versus recall is
therefore imperative in deciding a suitable threshold.
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In addition to POIs, it is useful to map the change in Euclidean distance to
their corresponding percentile as a new output feature. The percentile then
conveys the importance of a observation in terms of a score. Looking at this
score in conjunction with points of interest may provide additional insight
to a petrophysicist compared to looking at the points of interest alone.

Figure 4.8 shows how we envision the output (3 rightmost columns) of the
models can be used to enhance the normal workflow of a petrophysicist. The
POI uses the 96th percentile as the threshold. Additionally, the correspond-
ing percentile is shown for all observations higher than the 80th percentile.
With this column a petrophysicist can see which non-POI observations are
noteworthy. The final column shows the Euclidean distance in red and its
change in green. This column may be omitted as interpreting it requires
knowledge of how the Euclidean distance is computed. It is unreasonable
to assume that a petrophysicist has prior knowledge about the underlying
deep learning algorithm.

Figure 4.8: Visualization of how we envision the output of our models may be
used in a petrophysical analysis. This image is from the application Log Studio.
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To evaluate if a model works, we compare a plot of the scaled actual data Y
and a plot of the predicted data Y ′. In figure 4.9 the predictions are similar
enough to the original data. This indicates that the model makes an actual
prediction, and thus appears to be working.
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(a) Original scaled data.

2600 2700 2800 2900 3000 3100 3200 3300
DEPTH

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ed

ict
ed

 V
al

ue
 (s

ca
le

d)

AC
ACS
DEN
DENC
GR
NEU
PEF
RDEP
RMED
CALI-BS

(b) Predicted scaled data.

Figure 4.9: Comparison between the scaled original and predicted data for the
first subfile in the test dataset.
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4.3.2 Obtaining Final Results

Euclidean distance is a metric that indicates the discrepancies between the
observed and predicted data. Thus, the Euclidean distance can be used
in evaluating a model. However, this method only evaluates the quality of
predictions and cannot be applied in evaluating points of interest. Unfortu-
nately, there exists no publicly available ground truth of points of interest
for the well 15/9-F-11 T2. For this reason, we sought help from petrophysi-
cists at Logtek in creating a ground truth. They were tasked with marking
single points or areas that might be interesting. The different types of areas
marked by the petrophysicists are presented in the list below. Keep in mind
that the term “point of interest” is vague and ambiguous, and other petro-
physicists might not agree with describing the areas found as interesting.
Additionally, we make no guarantee that the constructed ground truth is
complete. It is not unlikely that some interesting areas were overlooked or
wrongly included. The ground truth is included in appendix A and lists the
measured depth and reason for every point of interest.

• Slate to sand

• Sand to slate

• Dense strings

• Coal

• Slate to calcite

• Calcite to slate

• Hydrocarbons

• Mudcake

• Washout

• Well deviation
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The predictions are transformed into a vector of ones and zeros which corre-
sponds to positive and negative predictions respectively. Points of interest
are positive predictions. The ground truth is transformed into a vector of
the same format and length except ones and zeros corresponds to actual pos-
itive and negative instances respectively. The predictions and the ground
truth are then compared element-wise to construct a confusion matrix. This
is only done for sections in the test set where all features are present to show
the performance a model’s predictions. The prevalence of the test dataset
is very low, implying that the ground truth contains a minuscule amount
of actual points of interest. This method is exceedingly strict as the depth
of a predicted point of interest must equal the depth of an actual point of
interest in order to become a true positive. Predicting a point of interest a
mere 10 cm before or after the actual point of interest yields a false positive.
Additionally, there is room for human error in the ground truth, meaning
that a point of interest may be defined at a slightly wrong depth. For these
reasons, we devise two methods for comparing predictions and the ground
truth.

The first method is more lenient and expands the points in the ground truth
by setting all records within a window to true instances. For example, if the
record at depth 2400.3 was a positive instance, then all records within the
range [2399.8, 2400.8) (excluding 2400.8) will also be considered positive
instances with a window of length 1. The predictions remain unaltered.
Computing the confusion matrix is identical to the strict method.

The second method downsamples both the predictions and the ground truth
to reduce the number of instances. This is equivalent to max pooling with
a window size and stride length of one meter (10 records). Before the
downsampling, the predictions and the ground truth are zero-padded at
both ends. The first value corresponds to a depth of xx.0 and the last value
corresponds to a depth of xx.9. Thus, values within the range [xx.0, xx.9]
are reduced to a single element with a value equal to the maximum within
that range. The notation xx refers to the integer value of a depth. For
instance, if a prediction at depth 2400.3 is positive, then the entire range
[2400.0, 2400.9] is reduced to a single point of interest at depth 2400.0. As a
result, the number of entries in the confusion matrix decreased significantly.
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Figure 4.10: Demonstration of the lenient and downsampling methods.

Figure 4.10 illustrates the strict, lenient and downsampling methods for
comparing predictions and the ground truth. Additionally, the confusion
matrix and performance metrics are shown for each method to demonstrate
their impact. The predictions and ground truth presented in the figure are
fictitious and was chosen only for illustration purposes.

The lenient method has a significant uplift in prevalence as 6 negative in-
stances in the ground truth were converted to positive cases. The figure
also shows that the predictions remain unaltered for the lenient method.
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The reason for not altering the predictions is that by expanding the points
of interest in the ground truth, some false positives are converted to true
positives. If the predictions were also expanded upon, then some true nega-
tives would be converted to false positives. The downside of this method is
that it may introduce more false negatives. However, the expanded points
in the ground truth increases the chances that at least one actual positive
instance in the area corresponds to a true positive. Thus, the probability
for alerting a petrophysicist of a potential interesting area has increased.
The additional type II errors surrounding the area are of little importance
as the petrophysicist only needs to be alerted of the area. It is important
to emphasize the lenient method is only lenient for the evaluation. The
predictions themselves are not more lenient compared to the strict method.

The increase in prevalence for the downsampling method is due to a single
actual positive instance converting multiple actual negative instances. A
downsampled instance in the ground truth only remain negative if all in-
stances in that downsampling window were also negative. The number of
true negatives is therefore greatly reduced. One advantage the downsam-
pling method has over the lenient method, is that a predicted positive area
does not need to overlap with an actual positive instance. This is made ap-
parent in the interval [2404.0, 2404.9] where the prediction at depth 2404.9
is negative yet the downsampled prediction is positive for this area, result-
ing in a true positive for this area. The lenient method instead has two true
positives, one false positive and one false negative for this area. Neverthe-
less, both the lenient and downsampling methods are superior compared to
the strict model, which is therefore excluded in any models’ result section.
The lenient method is set as the default method and is used unless otherwise
specified.
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Results, Discussion & Analysis

In this chapter we present the result from the two evaluation approaches
for all our models. We run twelve different configurations of each models
and discuss their performance. Additionally, we discuss and compare the
difference between the approaches, and rank the overall performance of our
models. Finally, we identify and discuss strengths and weaknesses with our
approach.

5.1 Autoencoder

5.1.1 Results

All AE evaluation configurations are presented in figure 5.1. The tuned
hyperparameters for the AE models are the dimensions of the latent space,
the dimensions of the intermediate layer, and the number of intermediate
layers. The latent space dimensions selected in this analysis was set to
[2, 3, 4] to cover the most important dimensions. A dimension of 2 or 3
allows the use of 2D or 3D visualization tools to present the outcome of
the latent space. The ability to visualize and analyze the latent space is a
major advantage of autoencoder based models. We also decided to include
a dimension size of 4 to explore if it would provide better results despite

64
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the inability to visualize the latent space. The number of neurons in the
intermediate layer was set to a variety of values between the dimensions
of the input and the latent space. Additionally, we decided to include
configurations with multiple intermediate layers. The number of neurons in
each intermediate layer varies between configurations, but they will always
be defined in descending order.

During initial testing of the model, a set of hyperparameters were found
to produce the best result. From the results of this test, we decided to
define these hyperparameters to be constant for each of the configurations
in figure 5.1. All of the configurations use MAE as the loss function and
Adam optimization with default learning rate (0.001). The tests also sug-
gested the models should be trained for 20 epochs, as any additional training
provided no additional improvements to the performance. The number of
observations per batch is set to 64.

Model Latent Dim Intermediate Dim
A1 2 [4]
A2 2 [6]
A3 2 [6, 4]
A4 2 [6, 4, 4]

A5 3 [5]
A6 3 [7]
A7 3 [7, 5]
A8 3 [7, 5, 5]

A9 4 [6]
A10 4 [8]
A11 4 [8, 6]
A12 4 [8, 6, 6]

Table 5.1: Autoencoder configurations.

The result of the lenient and downsampling approach for each configuration
is presented in figure 5.2 and 5.3. The table presents the best performing
threshold for each configuration with multiple metrics, as well as the average
performance. The definition of the best performing threshold is based on
the MCC metric with five decimals.



Chapter 5. Results, Discussion & Analysis 66

Model t ACC precision recall F1 MCC prevalence
A1 91.00 0.90 0.27 0.43 0.33 0.29 0.06
A2 84.00 0.85 0.20 0.58 0.30 0.28 0.06
A3 90.00 0.89 0.24 0.43 0.31 0.27 0.06
A4 90.00 0.89 0.24 0.43 0.31 0.27 0.06
A5 90.00 0.89 0.23 0.41 0.30 0.26 0.06
A6 89.00 0.88 0.21 0.42 0.28 0.24 0.06
A7 89.00 0.89 0.24 0.47 0.32 0.28 0.06
A8 91.00 0.90 0.27 0.43 0.33 0.29 0.06
A9 87.00 0.87 0.22 0.51 0.31 0.28 0.06
A10 89.00 0.89 0.24 0.47 0.32 0.28 0.06
A11 88.00 0.88 0.24 0.50 0.32 0.29 0.06
A12 89.00 0.88 0.22 0.43 0.29 0.25 0.06
Aavg 88.92 0.88 0.24 0.46 0.31 0.27 0.06

Table 5.2: Autoencoder results with lenient approach.

Model t ACC precision recall F1 MCC prevalence
A1 94.00 0.83 0.30 0.65 0.41 0.37 0.09
A2 93.00 0.82 0.30 0.73 0.43 0.39 0.09
A3 93.00 0.83 0.30 0.71 0.43 0.38 0.09
A4 93.00 0.82 0.30 0.71 0.42 0.38 0.09
A5 94.00 0.84 0.32 0.68 0.44 0.39 0.09
A6 94.00 0.84 0.32 0.68 0.44 0.39 0.09
A7 94.00 0.84 0.32 0.70 0.44 0.40 0.09
A8 96.00 0.89 0.44 0.62 0.51 0.46 0.09
A9 94.00 0.84 0.32 0.69 0.43 0.39 0.09
A10 97.00 0.89 0.40 0.46 0.43 0.37 0.09
A11 96.00 0.87 0.36 0.55 0.43 0.38 0.09
A12 96.00 0.87 0.36 0.55 0.44 0.38 0.09
Aavg 94.50 0.85 0.34 0.64 0.44 0.39 0.09

Table 5.3: Autoencoder results with downsampled approach.
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5.1.2 Discussion

The results of the AE model shows that every configuration except one has
an MCC value of 0.37-0.40 (downsampled). One of the configuration, A8,
appears to have a significantly better performance than the rest of the con-
figurations. The output of each configuration was analyzed by comparing
the original and predicted values. This analysis showed that the outlier A8

have not produced any valid predictions. Figure 5.1 presents a comparison
of the scaled original data, and predicted data from the two models A7 and
A8. This figure clearly shows that A8 does not perform any valid predic-
tions. The model predicts a constant value for each feature throughout the
entire test file. It appears the values are roughly equal to the mean value of
each feature in the training dataset (table 4.3). This suggests the model is
unable to learn from the dataset and predicts the average value to reduce
the outcome of the loss function. The model A8 is considered invalid as
the model is unable to produce any valid predictions. Discussion regarding
invalid models and their performance is further discussed in section 5.5.2.
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(a) Original data
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(b) Predicted data (A8)
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(c) Predicted data (A7)

Figure 5.1: Comparison between scaled original and predicted data from A7 and
A8.
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The downsampling method appears to perform noticeably better than the
lenient method for all model configurations. The results from the four best
model are presented in descending order in table 5.4. All four models have
very similar performance in all metrics. It is evident from the results that
the autoencoder models performs best with a threshold at 94. The top
three models are all configured with a late space dimension of 3, while the
fourth best model has a dimension of 4. One could argue that the optimal
latent space dimension is 3, but the results in figure 5.3 suggests there are
only minor differences between the configurations. The number and size of
intermediate layers does not appear to play a large role in the performance
of the model. One could also argue the main difference in performance could
be from the random weights assigned to the neuron connections.

Model t ACC precision recall F1 MCC prevalence
A7 94.00 0.84 0.32 0.70 0.44 0.40 0.09
A5 94.00 0.84 0.32 0.68 0.44 0.39 0.09
A6 94.00 0.84 0.32 0.68 0.44 0.39 0.09
A9 94.00 0.84 0.32 0.69 0.43 0.39 0.09

Table 5.4: The four best performing AE models (downsampled).

The MCC and F1-score of all thresholds between 80 and 99 for the four
best AE models are presented in figure 5.2. The lenient approach appears
to outperform the downsampling approach up until a threshold of 82-84.
From this point on the downsampling approach will massively outperform
the lenient approach. The lenient approach reaches its peak around 89 and
gradually decreases until 97-98, where it drops dramatically. The down-
sampling approach reaches its peak at 94 and starts dropping rapidly with
a threshold above 96.
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(a) Model A7
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(b) Model A6
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Figure 5.2: F1 and MCC for the best performing AE models.
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5.2 Variational Autoencoder

5.2.1 Results

The model configurations for the VAE model is presented in table 5.5. All
the configurations are equal to the AE configurations presented in table 5.1.
The number of dimensions of the latent space varies from 2 to 4, and the
number of intermediate layers varies from 1 to 3. The number of neurons in
the intermediate layers will be defined to be between the input and latent
space dimensions, and is always in descending order in the encoder. The
other constant hyperparameters are MAE as the loss function and Adam
optimization with default learning rate (0.001). Like the AE models, all
configurations are trained for 20 epochs with 64 observations per batch.

Model Latent Dim Intermediate Dim
V1 2 [4]
V2 2 [6]
V3 2 [6, 4]
V4 2 [6, 4, 4]

V5 3 [5]
V6 3 [7]
V7 3 [7, 5]
V8 3 [7, 5, 5]

V9 4 [6]
V10 4 [8]
V11 4 [8, 6]
V12 4 [8, 6, 6]

Table 5.5: Variational autoencoder configurations.

The VAE results for the lenient and downsampling approach is presented
in table 5.6 and 5.7 respectively. Each entry in the table correspond to the
configurations in table 5.5 at their best performing threshold. Threshold are
selected primarily based on the value of the MCC metric with five decimals.
The F1-score and precision values will be used to break ties if there are two
thresholds with identical MCC value. An additional entry is added for the
average performance of the VAE configurations.
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Model t ACC precision recall F1 MCC prevalence
V1 93.00 0.92 0.31 0.38 0.34 0.30 0.06
V2 92.00 0.91 0.26 0.37 0.31 0.26 0.06
V3 94.00 0.92 0.33 0.35 0.34 0.30 0.06
V4 94.00 0.92 0.33 0.35 0.34 0.30 0.06
V5 93.00 0.91 0.29 0.36 0.32 0.27 0.06
V6 93.00 0.91 0.27 0.33 0.30 0.25 0.06
V7 94.00 0.92 0.33 0.35 0.34 0.30 0.06
V8 94.00 0.92 0.33 0.35 0.34 0.30 0.06
V9 94.00 0.92 0.31 0.33 0.32 0.28 0.06
V10 92.00 0.91 0.29 0.41 0.34 0.30 0.06
V11 94.00 0.92 0.33 0.35 0.34 0.30 0.06
V12 94.00 0.92 0.33 0.35 0.34 0.30 0.06
Vavg 93.42 0.92 0.31 0.36 0.33 0.29 0.06

Table 5.6: Variational autoencoder results with lenient approach.

Model t ACC precision recall F1 MCC prevalence
V1 95.00 0.87 0.39 0.68 0.50 0.45 0.09
V2 98.00 0.89 0.42 0.45 0.44 0.38 0.09
V3 95.00 0.88 0.41 0.68 0.52 0.47 0.09
V4 95.00 0.88 0.41 0.68 0.52 0.47 0.09
V5 96.00 0.86 0.34 0.62 0.44 0.38 0.09
V6 97.00 0.86 0.34 0.56 0.43 0.37 0.09
V7 95.00 0.88 0.41 0.68 0.51 0.47 0.09
V8 95.00 0.88 0.41 0.68 0.52 0.47 0.09
V9 96.00 0.86 0.36 0.65 0.47 0.42 0.09
V10 96.00 0.89 0.43 0.64 0.51 0.47 0.09
V11 95.00 0.88 0.41 0.68 0.52 0.47 0.09
V12 95.00 0.88 0.42 0.68 0.52 0.47 0.09
Vavg 95.67 0.88 0.40 0.64 0.49 0.44 0.09

Table 5.7: Variational autoencoder results with downsampled approach.
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5.2.2 Discussion

The seemingly promising performance shown in table 5.7 is misleading as
all of the VAE models produce predictions of poor quality. The predictions
produced by V1 is compared against the original scaled data in figure 5.3.
The predictions are constant and close to the mean of the corresponding
features (table 4.3). This is the case for most VAE configurations. Some
configurations have slight variations in their predictions, but are still con-
sidered of poor quality. The cause of predicting constant values is likely
due to the model being unable to reconstruct drilling data and resorts to
predicting constant values that minimize the loss. For this reason, none of
the VAE models are valid. Discussion regarding invalid models and their
performance is further discussed in section 5.5.2.
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(a) Original data
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(b) Predicted data (V1)

Figure 5.3: Comparison between scaled original and predicted data from V1.
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5.3 LSTM

5.3.1 Results

All LSTM evaluation configurations are presented in figure 5.8. The hy-
perparameters we want to tune for the LSTM models are the number of
timesteps, hidden neurons and depth of the model. The timesteps of choice
are [12, 32, 60] which corresponds to 1.2m, 3.2m and 6.0m distance in real
life. These values for the timesteps parameter were chosen to explore the
effect of having short, medium and long scope on the data. The number
of hidden neurons varies based on the number of timesteps. Initial testing
suggested that a hidden neuron size smaller than the number of timesteps
provided the best results. The final hyperparameter we were interested in
exploring was the depth of the model. Stacking two or more LSTM layers
on top of each other increase the complexity of the model, but has the pos-
sibility of improving the results. The main strategy for hidden neuron size
in the extra LSTM layers was to chain the previous hidden layer sizes in a
descending order.

Some initial testing was performed to define a set of constant hyperparame-
ters for each model. These tests found that the models performed best with
the use Adam optimization with default learning rate (0.001) and MAE for
the loss function. The initial tests also showed a tendency for the models
to slightly overfit the training dataset. A decision was made to include a
recurrent dropout in the LSTM layer to decrease the overfitting. The re-
sults of exploring different dropout probabilities showed a slight increase in
performance with dropout set to 20%. Each model configuration is trained
on four epochs as the initial tests showed little to no increase in performance
past this point. Additionally, the batch size during training is set to the
length of each individual subfile.
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Model Timesteps Neurons
L1 12 [2]
L2 12 [4]
L3 12 [4, 2]
L4 12 [8, 4, 2]

L5 32 [6]
L6 32 [12]
L7 32 [12, 6]
L8 32 [24, 12, 6]

L9 60 [12]
L10 60 [24]
L11 60 [24, 12]
L12 60 [48, 24, 12]

Table 5.8: LSTM configurations.

The result of each configuration for both evaluation approaches are pre-
sented in table 5.9 and 5.10. The table shows the performance of each
configuration on different metrics at its best performing evaluation thresh-
old. The table also shows the average performance of the configurations
for both evaluation approaches. The best performing threshold is selected
based on the MCC metric with five decimals.

Model t ACC precision recall F1 MCC prevalence
L1 89.00 0.89 0.26 0.51 0.35 0.32 0.06
L2 89.00 0.88 0.23 0.45 0.31 0.27 0.06
L3 90.00 0.90 0.26 0.46 0.33 0.30 0.06
L4 90.00 0.89 0.25 0.45 0.32 0.28 0.06
L5 89.00 0.89 0.25 0.48 0.33 0.29 0.06
L6 86.00 0.86 0.21 0.52 0.30 0.27 0.06
L7 91.00 0.90 0.26 0.42 0.32 0.28 0.06
L8 88.00 0.88 0.24 0.51 0.33 0.29 0.06
L9 91.00 0.90 0.25 0.41 0.31 0.27 0.06
L10 85.00 0.86 0.20 0.55 0.30 0.27 0.06
L11 88.00 0.88 0.22 0.48 0.30 0.27 0.06
L12 88.00 0.88 0.22 0.48 0.31 0.27 0.06
Lavg 88.67 0.88 0.24 0.48 0.32 0.28 0.06

Table 5.9: LSTM results with lenient approach.
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Model t ACC precision recall F1 MCC prevalence
L1 93.00 0.84 0.33 0.75 0.46 0.42 0.09
L2 93.00 0.82 0.31 0.76 0.44 0.40 0.09
L3 95.00 0.88 0.40 0.65 0.50 0.45 0.09
L4 94.00 0.86 0.37 0.72 0.49 0.45 0.09
L5 95.00 0.86 0.36 0.65 0.46 0.41 0.09
L6 92.00 0.80 0.29 0.79 0.42 0.40 0.09
L7 95.00 0.87 0.37 0.65 0.47 0.42 0.09
L8 95.00 0.88 0.40 0.65 0.49 0.45 0.09
L9 94.00 0.85 0.34 0.71 0.46 0.42 0.09
L10 93.00 0.84 0.32 0.76 0.45 0.42 0.09
L11 93.00 0.83 0.31 0.78 0.45 0.42 0.09
L12 95.00 0.86 0.34 0.62 0.44 0.39 0.09
Lavg 93.92 0.85 0.34 0.71 0.46 0.42 0.09

Table 5.10: LSTM results with downsampled approach.

5.3.2 Discussion

Unlike AE and VAE, the LSTM configurations have not produced any pre-
dictions of very poor quality. Figure 5.4 shows the difference between the
scaled original and predicted data for configuration L3. Some of the pre-
dicted features appear to be more accurate than others, but the configura-
tions generally predict the data quite well. The few features with seemingly
constant values in the prediction match well with the ground truth for PEF,
DENC and CALI-BS. The other features follows the trend of the original
data, with an acceptable amount of deviation in a few areas.
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(a) Original data.
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(b) Predicted scaled data (L3).

Figure 5.4: Comparison between scaled original and predicted data from L3.
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It is evident from these results that the downsampled approach performs
a lot better than the lenient approach for the LSTM model. The four
best performing LSTM configurations are presented in table 5.11, and are
all from the downsampled model evaluation approach. The LSTM models
appears to perform better as a stacked LSTM with multiple layers. The
deeper LSTM layers use the output of previous LSTM layers as inputs,
creating a more complex feature representation of the input. The results
suggest the added complexity is beneficial for the models as they are able
to capture and learn the complex relationship between features.

Model t ACC precision recall F1 MCC prevalence
L4 94.00 0.86 0.37 0.72 0.49 0.45 0.09
L3 95.00 0.88 0.40 0.65 0.50 0.45 0.09
L8 95.00 0.88 0.40 0.65 0.49 0.45 0.09
L10 93.00 0.84 0.32 0.76 0.45 0.42 0.09

Table 5.11: The four best performing LSTM models (downsampled).

Figure 5.5 present the MCC and F1-score for the four best LSTM con-
figurations. The metrics are recorded at different thresholds ranging from
80 to 99 with an increment of one. The lenient approach appears to gen-
erally perform worse than the downsampling approach at all thresholds.
The metrics gradually increase until it reaches a peak around 89, where it
starts to gradually decrease. The performance continues to decrease, and
starts dropping rapidly at 97. The downsampling approach starts off with
fairly poor performance, but increases quite quickly until it reaches a peak
around 94. The performance of the downsampling approach starts dropping
dramatically past this point.
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Figure 5.5: F1 and MCC for the best performing LSTM models.
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5.4 DeepAnT

5.4.1 Results

The DeepAnT configurations are listed in table 5.12. The number of timesteps
varies from 12 to 120 which corresponds to 1.2 and 12 meters respectively
in the test dataset. Additionally, the timesteps are divisible by four such
that the max pooling layers won’t drop the last record or require padding.
All configurations have a pool size of 2. The size of the dense layer is
between the last pooling layer and the output layer. The kernel size is
roughly between 25% and 50% of the number of timesteps. The number
of filters is decided as a conceivable number of hidden features the kernels
may find for the given number of timesteps. Finally, the padding method,
dropout probability, optimizer, loss function, number of epochs and batch
size are constant for all DeepAnT models. Causal padding is chosen such
that the kernel is unable to obtain information from future timesteps. The
dropout probability is set to 25%. The Adam optimizer is used with a de-
fault learning rate (0.001) and MAE is used as the loss function. During
testing, DeepAnT performed best with 2 epochs and a batch size equal to
the length of the current subfile.

Model Timesteps Kernel Filters Dense
D1 12 3 7 6
D2 12 5 7 6
D3 12 5 11 6
D4 32 9 21 10
D5 32 15 21 10
D6 32 15 27 10
D7 60 21 27 12
D8 60 27 27 12
D9 60 31 27 12
D10 120 31 31 20
D11 120 41 31 20
D12 120 49 31 20

Table 5.12: DeepAnT configurations.
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Table 5.13 and 5.14 shows the results using the lenient and the downsam-
pling method respectively. Each model configuration is shown with their
best performing threshold. The downsampling method yields considerably
better overall performance for all metrics except for accuracy.

Model t ACC precision recall F1 MCC prevalence
D1 90.00 0.90 0.26 0.46 0.33 0.30 0.06
D2 93.00 0.91 0.28 0.35 0.31 0.27 0.06
D3 91.00 0.90 0.27 0.44 0.34 0.30 0.06
D4 89.00 0.89 0.26 0.51 0.34 0.31 0.06
D5 92.00 0.91 0.30 0.42 0.35 0.31 0.06
D6 89.00 0.88 0.22 0.42 0.29 0.25 0.06
D7 88.00 0.88 0.24 0.52 0.33 0.30 0.06
D8 91.00 0.90 0.27 0.45 0.34 0.30 0.06
D9 91.00 0.90 0.26 0.42 0.32 0.28 0.06
D10 92.00 0.91 0.27 0.40 0.32 0.28 0.05
D11 94.00 0.92 0.32 0.36 0.34 0.30 0.05
D12 91.00 0.91 0.27 0.45 0.34 0.30 0.05
Davg 90.92 0.90 0.27 0.43 0.33 0.29 0.06

Table 5.13: DeepAnT results with lenient approach.

Model t ACC precision recall F1 MCC prevalence
D1 95.00 0.88 0.41 0.72 0.52 0.48 0.09
D2 97.00 0.90 0.45 0.47 0.46 0.40 0.09
D3 96.00 0.89 0.44 0.65 0.53 0.48 0.09
D4 95.00 0.88 0.41 0.69 0.52 0.48 0.09
D5 96.00 0.90 0.46 0.65 0.54 0.49 0.09
D6 92.00 0.81 0.29 0.76 0.42 0.39 0.09
D7 96.00 0.90 0.44 0.63 0.52 0.47 0.09
D8 95.00 0.88 0.41 0.67 0.51 0.46 0.09
D9 94.00 0.87 0.37 0.72 0.49 0.45 0.09
D10 95.00 0.88 0.40 0.71 0.51 0.47 0.09
D11 96.00 0.90 0.43 0.63 0.51 0.47 0.09
D12 96.00 0.90 0.44 0.65 0.52 0.48 0.09
Davg 95.25 0.88 0.41 0.66 0.50 0.46 0.09

Table 5.14: DeepAnT results with downsampled approach.
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5.4.2 Discussion

Like LSTM, the DeepAnT models generally do not suffer from poor predic-
tions. Figure 5.6 shows a comparison of scaled actual data and predictions
for configuration D5 and D10. The predictions from D5 follow the trend
in the original data with some discrepancies. The predictions from D10 is
included in figure 5.6 to demonstrate that not all DeepAnT models make
good predictions. This may stem from poor weight initialization rather than
a specific hyperparameter combination.
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(a) Original data.
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(b) Predicted data (D5).
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(c) Predicted data (D10).

Figure 5.6: Comparison between scaled original and predicted data from D5 and
D10
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For all DeepAnT configurations, the downsampling method was superior
compared to the lenient approach. The results from the four best models
are presented in table 5.15 in descending order (based on MCC). It is evident
that DeepAnT performs the best when the threshold is set to the 96th or
95th percentile. Unfortunately, it appears that no specific values of the
other configurable hyperparameters are predominant based on performance.
One could argue that the optimal number of timesteps is 12 because both
D1 and D3 are among the best performing models, but D2 is among the
worst. 120 timesteps may also seem to have on average better performance,
however, D10 suffers from making poor predictions as shown in figure 5.6c.
Thus, choosing 12 or 120 timesteps cannot consistently guarantee good
performance.

Model t ACC precision recall F1 MCC prevalence
D5 96.00 0.90 0.46 0.65 0.54 0.49 0.09
D1 95.00 0.88 0.41 0.72 0.52 0.48 0.09
D3 96.00 0.89 0.44 0.65 0.53 0.48 0.09
D12 96.00 0.90 0.44 0.65 0.52 0.48 0.09

Table 5.15: The four best performing DeepAnT models (downsampled).

Figure 5.7 shows the F1 score and MCC for the four best DeepAnT mod-
els at different thresholds. The downsampling approach becomes advan-
tageous for thresholds higher than the 85 percentile. The effectiveness of
the lenient approach declines around the 93 threshold and rapidly declines
around threshold 96. The performance of the downsampling approach plum-
mets after the 96 threshold. This behavior likely stems from the number
of false negatives increasing with the threshold, which negatively impacts
MCC and recall (and therefore the F1 score).
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(c) Model D3
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(d) Model D12

Figure 5.7: F1 and MCC for the best DeepAnT models.
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5.5 Analysis

5.5.1 Approach Comparison

Table 5.16 shows a comparison between the top performing configuration
of each model in the lenient approach. The LSTM model L1 is our best
performing model based on the MCC metric. The L1 model also outper-
forms the other models in F1-score and the recall metric. Second place
goes to the DeepAnT model D5 with a slightly lower MCC score than L1.
However, D5 outperforms the other models in prediction accuracy and the
precision metric. One could argue about the correct ranking order of these
two models, but our decision is based on the MCC metric which measures
the overall quality of the classification. Third place goes to the autoencoder
model A11 with the lowest MCC score of 0.31. Interestingly the A11 model
performs very similarly to L1 in both precision and recall metrics, but fall
short in accuracy due to the lower threshold.

Model t ACC precision recall F1 MCC prevalence
A11 88.00 0.88 0.24 0.50 0.32 0.29 0.06
L1 89.00 0.89 0.26 0.51 0.35 0.32 0.06
D5 92.00 0.91 0.30 0.42 0.35 0.31 0.06

Table 5.16: The best performing configuration for each model (lenient).

Table 5.17 shows a comparison between the top performing configuration
of each model in the downsampling approach. The best performing model
in this approach is the DeepAnT model D5, with an MCC score of 0.49.
Similarly to the results of the lenient approach, it has the highest perfor-
mance in accuracy, precision, F1-score and MCC, but falls sightly short in
the recall metric. Second place in this approach goes to the LSTM model
L4. This model outperforms the other models in recall, but is unable to
reach the same performance as D5 in the other metrics. The final spot goes
to the autoencoder model A7. This model has a relatively high performance
in recall compared to the other models, but suffers in overall performance
due to the low precision metric. The results of the downsampling approach
clearly show an increase in performance. The models in this approach has
a tendency to favor a lower amount of positive predictions, as seen by the
increase in average threshold to roughly 95.
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Model t ACC precision recall F1 MCC prevalence
A7 94.00 0.84 0.32 0.70 0.44 0.40 0.09
L4 94.00 0.86 0.37 0.72 0.49 0.45 0.09
D5 96.00 0.90 0.46 0.65 0.54 0.49 0.09

Table 5.17: The best performing configuration for each model (downsampled).

Both the DeepAnT and LSTM model "wins" their respective model evalu-
ation approach. However, DeepAnT is a clear winner in the downsampling
approach and only slightly behind the in the lenient approach. The au-
toencoder is ranked third in both approaches. The VAE approach did not
produce any valid models. For these reason we define our overall ranking
of the models as follows:

1. DeepAnT

2. LSTM

3. AE

4. VAE

Looking at the confusion matrices in table 5.18 and the proportions of their
elements in table 5.19 provides insight to the lenient and downsampling
performance difference. The confusion matrices are from the lenient and
downsampling approach for D5 with a threshold of 92 and 96 respectively.
In the downsampling approach, the proportion of true positives is more than
double compared to the lenient method. The proportion of false positives
is only slightly higher for the downsampling method. Thus, the precision
is significantly higher since the proportion of true positives outweighs the
proportional increase in false positives. The proportion of false negative is
slightly lower for the downsampling approach. Thus, the recall sees an even
greater increase. Moreover, the F1 score is increased as it is the harmonic
mean of precision and recall. The increase in MCC is mainly due to the
proportional change in true positives is so substantial.
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Lenient Downsampling
PP PN PP PN

P 447 605 110 60
N 1043 16509 130 1564

Table 5.18: Confusion matrices for D5. The threshold is 92 and 96 for the lenient
and downsampling approach respectively.

TP FN FP TN
Lenient 2.40% 3.25% 5.61% 88.74%

Downsampling 5.90% 3.22% 6.97% 83.91%

Table 5.19: The proportion of TP, FN, FP and TN for the lenient and down-
sampling approaches with threshold of 92 and 96 respectively.

Although the downsampling method yields higher performance metrics, it
does not necessarily reflect superiority. Both approaches still make predic-
tions in the same areas, which means the petrophysicists will be notified of
the POI regardless of the evaluation approach. Thus, the additional type I
and II errors close to this indication are insignificant. The downside to the
lenient approach is that positive predictions tends to group around points of
interest in the ground truth. This may steal the attention away from other
POI that are not grouped together. A petrophysicist may potentially think
that grouped POI are always better that a single one. The downsampling
approach can only suggest a point of interest once every meter, which makes
it less likely for many positive predictions to be grouped. Additionally, a
single POI may seem more important when a whole meter is marked as
potentially interesting. The downsampling may be the better approach for
this reason, and not solely because of superior performance measurements.
As explained in section 4.3.1, the percentiles can also be used as a score.
This may prove useful for the petrophysicist as it indicates the confidence
of a suggested point of interest.
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5.5.2 Invalid Models & Potential Improvements

The definition of an invalid model in this project refers to models that are
unable to learn from the dataset. These models typically learn to predict the
average value of each feature to minimize the outcome of the loss function.
This problem was present in one AE model (A8) and in all VAE models.
These models are considered invalid as they do not contribute with any
useful predictions. Despite the poor quality predictions, the models tend to
have a decent level of "performance" according to the evaluation metrics.
The main cause of this issue is the combination of using the change in ED
and percentiles to identify anomalies.

Using a threshold based on a certain percentile of the test file will always
result in the same proportion of positive and negative predictions. This
implies an assumption that every test file includes a certain amount of in-
teresting points/areas. This is partly true as the large majority of well logs
will contain areas that are interesting for petrophysicists. However, the pro-
portion of interesting to non-interesting areas will not always be the same.
Replacing the percentile threshold with a static threshold could potentially
solve this problem, but is likely to run into two issues. If the threshold
is too low, a large proportion of the test file will be marked as interesting
areas and provide no benefits to the petrophysicists. If the threshold is too
high, the proportion of interesting areas will be slim to none. In this sce-
nario the petrophysicists will not be able to trust the predictions and have
to manually identify the missing areas. The static threshold will probably
work well on some test files, but is likely to perform very poorly on average.

The second issue is caused by the use of change in euclidean distance as
the basis for interesting versus non-interesting areas. The main reason we
decided to use this approach was due to different lithologies having different
levels of ED. During testing we found that some lithologies have what looks
like an ED "signature", where all points have almost equal ED value. This
phenomenon is mainly based on the fact that the model is unable to predict
all lithologies equally. When some lithologies "naturally" have a higher
average ED, the model would identify the entire lithology as an anomaly
with the use of a static or percentile based threshold. Consequently, areas
with lower average ED would never have any of its predictions marked as
an anomaly. This issue is solved by moving from ED to change in ED, as
the amplitude of the euclidean distance will no longer have an impact. The
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problem arises when the predictions used to create the ED curve is of poor
quality. The ED values (amplitude) will generally be a lot higher for poor
predictions compared to good predictions. However, since we no longer
take the amplitude into account, we are unable to identify the predictions
as poor. Ideally the anomaly detector module should consider both the
quality of the predictions and avoid the problem associated with the ED
curve at the same time.



Chapter 6

Future Work & Conclusion

6.1 Challenges

The first challenge we faced was working with a field of study we know little
about. There are many aspects to learn to get a cohesive understanding
of petrophysics and the work petrophysicists do. Knowing more about the
drilling process helped us to understand why certain measurements were
recorded. It also helped us to understand why large portions in composite
logs contain missing values. Learning about basic petrophysical properties
provided additional insight about the features in the dataset and why they
are included. Without knowing these aspects, it would be difficult to imag-
ine how deep learning can assist or enhance interpretation of petroleum
data.

Working with the dataset itself proved to be of some challenge. Which
subset of features we used heavily influenced the amount of available data.
Moreover, it was important that this subset contained important features
and that there were little bias towards some of the features. Furthermore,
treating the data as a time series introduced some implications. Splitting
a composite log into multiple separate time series meant that the model
could not be trained using a standard procedure. Thankfully, the Keras
API allows a model to resume training by calling the fit method consecutive
times with different time series as input.

92
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The most challenging part of this project was deciding, or rather, finding
a suitable way to evaluate performance. Initially, we explored if different
features, lithologies or lithostratigraphic units formed clusters in the latent
space of a VAE. This showed some promise but had to be manually eval-
uated. Even if an automatic evaluation process were established, it would
only be applicable for autoencoders. This study was therefore abandoned.
We then came across DeepAnT whose evaluation method could also be ap-
plied to the autoencoders we had been experimenting with. Although the
same evaluation method could be used for multiple model types, we could
not evaluate the performance based on a confusion matrix. This sparked
the idea to construct a ground truth for a single test dataset.

6.2 Future Work

There are some modifications to the four models we would like to experiment
with. It would be interesting to increase the amount of input observations
for AE and VAE. Instead of a single observation, the autoencoders would
now accept a time series as input. The output will then be the reconstruc-
tion of the time series. With the increased input size, VAE may be able
to make predictions that resemble the input and not the mean values for
each corresponding feature in the training dataset. LSTM and DeepAnT
can also be modified to predict multiple observations. This may be useful
for real time drilling data to predict future observation several seconds or
even minutes ahead of time.

Although not strictly an improvement to our implementation, studying the
latent space from AE and VAE could prove valuable. We want to explore
if observations of the same lithostratigraphic unit or lithology appear in
clusters in the latent space. If this is true, then the clusters can be used to
classify the observations’ formation. Classifying the lithostratigraphic unit
or lithology of an observation is exceedingly valuable as it could greatly
assist boundary zonation and quality control workflows of a petrophysicist.
This is perhaps more practical for VAE as its latent space is regularized.

Another improvement is to identify why a POI is interesting. It would be
more helpful for a petrophysicist if a POI was labeled as “sand-to-slate”,
“slate-to-sand”, “coal” or “hydrocarbons” to name a few examples. This
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improvement somewhat coincides with classification based on clusters in a
latent space but is not limited to autoencoders.

In the future, we would like to conduct a case study where we integrate
POI with a petrophysicist’s workflow. The feedback of such a study would
indicate to which degree POI is useful. This may also shed some light on
which aspects of our implementation require improvement.

6.3 Conclusion

This project aimed to use deep learning methodologies to assist in human
interpretation of well logs. Incorporating deep learning into existing work-
flows have proved to be very beneficial in multiple other fields. Our collab-
oration with Logtek AS put us in a unique position where we had access to
a large amount of high quality, structured well log data. We applied sev-
eral deep learning methodologies to assist in boundary zonation and quality
control workflows. With the vast amount of data we had available, we had
the opportunity to implement deep learning algorithms that generalize the
Norwegian continental shelf. This differs from the majority of related works,
where researchers usually only have data available from one well or oil field.

We implemented four self-supervised deep learning algorithms used in re-
lated works for time series anomaly detection. The first two models, autoen-
coder and variational autoencoder, utilize reconstruction of data to identify
anomalous datapoints. The last two models, LSTM and DeepAnT [39], use
previously observed data to predict the next observation. Anomalies are
identified by comparing the prediction to the actual observation.

We implement and expand on DeepAnT’s anomaly detection module to
identify points of interest in the well logs. The lack of labeled data made
evaluating the performance and accuracy of the points of interest a difficult
task. With the assistance of petrophysicists at Logtek, we created a "ground
truth" of interesting points and areas in the test dataset. We developed
two approaches for model evaluation. The first approach is lenient in that
a predicted point of interest only has to be close to the ground truth. The
second approach applies max pooling to downsample the predictions and
ground truth.
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The best performing model, based on MCC, for the lenient approach was
the LSTM model. However, the DeepAnT models had on average better
performance than LSTM. The best performing model for the downsampling
approach was the DeepAnT model. The DeepAnT model also had the
highest average MCC for this approach. In all cases, the downsampling
approach outperformed the lenient approach. Overall the DeepAnT models
is our best performing model. The LSTM model is not too far behind in
performance, but is not able to keep up in the downsampling approach.
The autoencoder model is the third best performing model and noticeable
step down in performance. The final model, variational autoencoder, was
not able to learn from the dataset and ended up only predicting constant
values. The results of this model is therefore considered invalid.

The relatively good results suggests incorporating a deep learning algo-
rithm can be beneficial for assisting human interpretation of well logs. The
suggested points of interest may narrow down the number of areas the in-
terpreter need to analyze in detail, effectively reducing the time required
to quality control the well log. Further analysis is required in order to
differentiate between different types of anomalies. The current implemen-
tation satisfies our goal of developing a hybrid human machine solution
for well log interpretation. The deep learning models suggest the points
of interest, while the petrophysicists interpret the data. Incorporating our
approach into their workflow could provide us with valuable information of
its strengths and weaknesses.
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Appendix A

Ground Truth

This appendix present points and areas from the wellbore 15/9-F-11 T2.
These points/areas were selected by the petrophysicists at Logtek and is
treated as ground truth labels for our model evaluation approach in chap-
ter 4.3.2.

From To Reason From To Reason
2574.0 2575.7 Mudcake 4282.8 4283.6 Dense strings
2575.7 2577.5 Washout 4288.3 4289.4 Dense strings
4158.3 4159.5 Dense strings 4355.0 4357.0 Dense strings
4200.0 4201.0 Dense strings 4360.1 4361.6 Dense strings
4201.8 4202.5 Dense strings 4367.4 4369.1 Dense strings
4215.6 4216.5 Dense strings 4370.3 4371.6 Dense strings
4220.3 4221.2 Dense strings 4394.0 4395.7 Hydrocarbons
4228.9 4229.5 Dense strings 4397.6 4398.3 Hydrocarbons
4231.4 4231.9 Dense strings 4415.9 4417.9 Hydrocarbons
4232.3 4233.7 Dense strings 4446.0 4449.3 Dense strings
4235.5 4236.4 Dense strings 4453.2 4460.1 Dense strings
4257.5 4258.5 Dense strings 4461.2 4463.6 Dense strings
4265.1 4266.0 Dense strings 4497.8 4499.0 Coal
4269.6 4270.7 Dense strings 4506.4 4507.3 Coal

Table A.1: Ground truth areas.
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Depth Reason Depth Reason
2587.3 Slate to sand 2749.6 Slate to sand
2589.7 Sand to slate 2760.0 Sand to slate
2591.5 Slate to sand 2768.0 Slate to sand
2592.8 Sand to slate 2770.7 Sand to slate
2600.3 Slate to sand 2774.3 Slate to sand
2600.8 Sand to slate 2778.9 Sand to slate
2602.5 Slate to sand 2780.0 Slate to sand
2603.5 Sand to slate 2787.6 Sand to slate
2604.4 Slate to sand 2788.7 Slate to sand
2608.1 Sand to slate 2821.3 Sand to slate
2617.7 Slate to sand 2822.9 Slate to calcite
2618.2 Sand to slate 2853.8 Slate to sand
2624.7 Slate to sand 3986.6 Calcite to slate
2641.2 Sand to slate 4102.8 Slate to sand
2645.0 Slate to sand 4393.8 Slate to sand
2645.6 Sand to slate 4411.6 Sand to slate
2659.3 Slate to sand 4412.4 Slate to sand
2685.9 Sand to slate 4413.2 Sand to slate
2688.5 Slate to sand 4415.4 Slate to sand
2728.1 Sand to slate 4419.8 Sand to slate
2728.7 Slate to sand 4420.2 Slate to sand
2732.6 Sand to slate 4422.0 Sand to slate
2733.3 Slate to sand 4423.3 Slate to sand
2742.1 Sand to slate 4431.5 Sand to slate
2744.0 Slate to sand 4433.3 Slate to sand
2744.2 Sand to slate 4507.4 Sand to slate

Table A.2: Ground truth points.



Appendix B

Plots of original values

This appendix presents plots of the original scaled values for all subfiles.
The colors represent the different features in the test dataset.
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Figure B.1: Original scaled values for subfile 0.
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Figure B.2: Original scaled values for subfile 1.
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Figure B.3: Original scaled values for subfile 2.



Appendix C

Predictions

This appendix presents plots of the predicted scaled values for the best
performing configuration of each model. The models presented below are
A7, V1, L4 and D5. The prediction plots of all other configurations can be
found on GitHub.
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Figure C.1: AE: Predicted scaled values for all subfiles.
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Figure C.2: VAE: Predicted scaled values for all subfiles.
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Figure C.3: LSTM: Predicted scaled values for all subfiles.
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Figure C.4: DeepAnT: Predicted scaled values for all subfiles.



Appendix D

Euclidean Distance Plots

This appendix presents plots of the Euclidean distance for the best per-
forming configuration of each model. The models presented below are A7,
V1, L4 and D5. The Euclidean distance plots of all other configurations can
be found on GitHub.
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Figure D.1: Euclidean distance for A7.
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Figure D.2: Euclidean distance for V1.
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Figure D.3: Euclidean distance for L4.
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Figure D.4: Euclidean distance for D5.



Appendix E

Change in Euclidean Distance
Plots

This appendix presents plots of change in Euclidean distance for the best
performing configuration of each model. The models presented below are
A7, V1, L4 and D5. The change in Euclidean distance plots of all other
configurations can be found on GitHub.
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Figure E.1: Change in Euclidean distance for A7.
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Figure E.2: Change in Euclidean distance for V1.
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Figure E.3: Change in Euclidean distance for L4.
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Figure E.4: Change in Euclidean distance for D5.



Appendix F

Confusion Matrices

This appendix present the confusion matrix for the best performing config-
uration of each model. The models presented below are A7, V1, L4 and D5.
The confusion matrix of all configurations at every threshold can be found
in the associated results.csv file on GitHub.

Predicted
Positive
(PP)

Predicted
Negative
(PN)

Actual
Positive
(P)

119 51

Actual
Negative
(N)

250 1453

Table F.1: Confusion matrix for A7 (Downsampled).
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Predicted
Positive
(PP)

Predicted
Negative
(PN)

Actual
Positive
(P)

116 54

Actual
Negative
(N)

181 1522

Table F.2: Confusion matrix for V1 (Downsampled).

Predicted
Positive
(PP)

Predicted
Negative
(PN)

Actual
Positive
(P)

122 48

Actual
Negative
(N)

205 1495

Table F.3: Confusion matrix for L4 (Downsampled).

Predicted
Positive
(PP)

Predicted
Negative
(PN)

Actual
Positive
(P)

110 60

Actual
Negative
(N)

130 1564

Table F.4: Confusion matrix for D5 (Downsampled).


	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Motivation
	Problem Definition
	Contributions
	Thesis structure

	Background & Related Works
	Petrophysical Background
	Basic Petrophysical Properties
	Wellbore Logging
	Importance of Quality Control

	Related Works

	Methodology
	Dataset
	File types
	Feature description
	Aliases

	Preprocessing
	Missing Values
	Feature Scaling

	Fundamentals & Layers
	Supervised and Unsupervised
	Activation Functions
	Deep Learning Basics
	Recurrent Layer
	Convolutional Layer
	Pooling Layer
	Dropout Layer

	Algorithms
	Autoencoder
	Variational Autoencoder
	Long Short-Term Memory
	DeepAnT

	Model Evaluation
	Accuracy (ACC)
	Precision (PPV)
	Recall (TPR)
	F-score (F)
	Matthews Correlation Coefficient (TPR)
	Prevalence

	Libraries

	Implementation & Materials
	Preprocessing
	Dataset
	Data Collection
	Feature Selection & Transformation
	Missing Values
	Normalization
	Reshaping

	Models
	Autoencoder
	Variational Autoencoder
	LSTM
	DeepAnT

	Model Evaluation
	Obtaining Points of Interest
	Obtaining Final Results


	Results, Discussion & Analysis
	Autoencoder
	Results
	Discussion

	Variational Autoencoder
	Results
	Discussion

	LSTM
	Results
	Discussion

	DeepAnT
	Results
	Discussion

	Analysis
	Approach Comparison
	Invalid Models & Potential Improvements


	Future Work & Conclusion
	Challenges
	Future Work
	Conclusion

	Bibliography
	List of Figures
	List of Tables
	List of Code segments
	Ground Truth
	Plots of original values
	Predictions
	Euclidean Distance Plots
	Change in Euclidean Distance Plots
	Confusion Matrices

