
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation: Spring semester 2021

Master of Science in Computer Science / Confidential

Data Science

Author: Christoffer René Haaland Holmesland

Programme coordinator: Trygve Christian Eftestøl

External supervisor: Geir Vevle from RFID Solutions AS

Title of master’s thesis: Digital Waste Management - detection technology

Credits: 30

Keywords: Object detection, PyTorch, Number of pages: 54

IoT, time of flight, waste management

transfer learning, CNN Stavanger 15. june 2021

Contents

Contents i

Abstract iv

1 Introduction 1

1.1 Problem statement . 2

1.2 Company description . 2

1.3 Previous work . 3

2 Background 4

2.1 RFID . 4

2.2 ToF camera . 4

2.3 Neural network . 5

2.3.1 Convolutional neural network 7

3 Design and implementation 8

i

CONTENTS

3.1 Data capture . 8

3.2 Green bag detection . 12

3.2.1 Method 1: Faster R-CNN 13

3.2.2 Method 2: YOLO 16

3.3 Waste volume measurement 16

3.3.1 Method 1: Baseline 17

3.3.2 Method 2: Deep learning 21

4 Results 23

4.1 Green bag detection . 23

4.2 Waste volume measurement 24

5 Evaluation and discussion 27

5.1 Green bag detection . 27

5.2 Volume measurement . 28

5.3 Machine learning on Raspberry Pi 29

6 Conclusion 30

Figures 32

Bibliography 34

ii

CONTENTS

Appendix 34

A Neural network architecture 35

A.1 Faster R-CNN . 35

A.2 YOLOv5s . 41

iii

Abstract

In this thesis, the goal has been to improve the data flow from the garbage
trucks in Halden municipality. We begin by designing, building, and in-
stalling a data capture unit to collect images of the collected waste. Machine
learning models were trained to analyze the images and detect whether cus-
tomers use green bags to dispose of their organic waste. Models were also
trained on data from a time of flight camera to measure the volume of the
waste.

We discover that high accuracy object detection is possible on organic waste.
Limitations on the use of time of flight technology are found when it is used
in a garbage collection environment. The result is that volume measurement
is not possible unless the environment changes.

iv

Chapter 1

Introduction

Every waste container in Halden municipality are tagged with an RFID
label and a QR code as part of their digitalization process of the waste
management system. In total there are about 24 000 tagged containers
at the moment. RFID readers have been installed on the waste collection
trucks to enable detection of when and where the containers are emptied.
There are five trucks in operation five days every week.

For the waste management industry, and in particular Halden municipality,
there is a great benefit in knowing the amount of waste collected, as well as
the purity of it. The purity of the waste is a measure of how much is of the
expected type compared to the amount of other waste. There is currently
no method to easily measure this. The way it is done now is a manual time
consuming and costly process that is done twice every year at best.

The goal of the project is to automatically and in real-time measure the
amount of collected waste and detect any anomalies during the collection
process. The information about the anomalies can be used to figure out why
they are happening and how they can be prevented. Waste amount can be
used to optimize the truck routes to minimize the cost of waste collection
services and reduce the environmental impact.

1

1.1 Problem statement

1.1 Problem statement

Explore the possibilities of using AI and image recognition to measure the
amount of waste, and detect anomalies to enhance the data stream from
the garbage trucks. In particular:

1. Use sensor technology to detect whether people use the supplied green
bags for their food waste.

2. Use sensor technology to measure the volume of the waste.

1.2 Company description

RFID Solutions AS specialises in designing and implementing systems util-
ising RFID and IoT technology. The main contact for this project has been
CIO Geir Vevle.

Halden municipality is located close to the southern border between Norway
and Sweden. It has a population of 31 177 people [19]. The main contact
for this projet has been Kåre Edvardsen, who is the technical manager for
the waste management in Halden.

2

1.3 Previous work

1.3 Previous work

The author is not aware of any previous work where camera technology
has been installed on garbage trucks to measure the waste that is being
collected. No previous work where ToF cameras were used to measure the
waste was found either.

Modern waste processing plants use sensor technology to inspect incoming
waste. In Norway there are facilities where lasers are used to classify plastic
waste. The lasers can be used to know whether a piece of plastic is recyclable
or not. Robotic arms are used to automatically retrieve the plastic from the
rest of the waste. The main difference compared to this work is that the
data from this project can be directly connected to the customer as it is not
mixed with other waste before being inspected. In addition, this project
uses camera technology instead of lasers.

Waste type classification from images has been done many times previously.
This is commonly done by taking a picture of a single piece of waste and
then classifying it into one of four classes: paper, glass, plastic, metal.
Olugboja Adedeji and Zenghui Wang used a convolutional neural network
to do this and achieved an accuracy of 87% [1]. M, Aghilan et al. suggests
using cameras inside waste containers, and achieved an accuracy of 79%
using a CNN [15]. The main difference from this type of work to the work
presented in this thesis is the possibility of classifying multiple objects in
the same noisy image.

3

Chapter 2

Background

2.1 RFID

Radio-frequency identification (RFID) is technology that uses radio waves
to communicate [6]. A RFID tag can be attached to any asset to give it
an ID number. When the tag is moved inside the range of a RFID reader
the ID number is transmitted to the reader so it can be used in external
systems. In this way any asset can be tracked on an individual basis through
its lifecycle. The RFID tags used on the containers in Halden are shown in
figure 2.1.

2.2 ToF camera

A time of flight (ToF) camera is a device that can be used to capture 3D
models of objects [12]. It works by emitting light and then measuring the
time it takes before the light is reflected back to the camera. The output
from the camera is a series of points that form a point cloud.

4

2.3 Neural network

Figure 2.1: RFID Tag used by Halden on the waste containers

2.3 Neural network

A neural network[9] is a machine learning model constructed using neurons
assembled in layers. As a minimum the network needs one input layer
and one output layer. It is common to have layers between them called
hidden layers. If a network has many hidden layers it is called a deep
neural network. The number of neurons in the input layer is equal to the
number of features each sample has. The size of the output layer depends
on what the network is predicting. If it is used for classification the number
of neurons should be equal to the number of classes. When the network
is used for regression it is sufficient to have one output neuron. There are
multiple types of layers. The most common are fully connected layers where
the output from a neuron is used as an input to each neuron in the next
layer.

A neuron is a unit with one or more input values and an output value.
For each input value the neuron has an associated weight value wij . In
addition to the input value xj that comes from the neurons in the previous
layer each neuron usually has a bias value bi. Before outputting the neuron
value, the calculated value is passed through an activation function α. There
are many different activation functions. A frequently used function is the

5

2.3 Neural network

rectified linear unit (ReLU) which is f(x) = max(0, x). A mathematical
expression for a neuron is

ni = α(wix+ bi)

where x is a vector containing the output from the previous layer. Using
this representation of a neuron it is possible to express the neural network
as a series of matrix multiplications.

A visual representation of a neural network is shown in figure 2.2. The two
green circles represent the input layer. The three gray circles are the hidden
layer. The red circle is the only neuron in the output layer indicating that
this network is used for single class classification or regression.

Figure 2.2: Neural network example

To train the network the neuron weights can be adjusted until the desired
output value is achieved. To figure out how much the weights should change
require a series of operations. The first step is to take the input features for
a sample and do a feed forward pass, i.e. calculate the output value, given
the current weights. The next step is to calculate a measure of how incorrect
the output is. This is called the loss and there are many ways to calculate
it. For networks used for regression the mean squared error (MSE) can be
used. When we have the loss and the known correct output value we can
perform backpropagation to find how much the weights in each layer need
to change to produce the correct output value. This is done by starting at

6

2.3 Neural network

the output layer and then looking at how much the previous layer needs
to change to get the correct output value. It is then possible to look back
another layer to find how much the layer before that again needs to change
to get the correct values in the layer behind the output layer. This process
repeats until the input layer. The result of the backpropagation process is
that we get the gradient (partial derivative) of the loss. The final step is
using the gradient with a learning algorithm to change the weights. There
are many learning algorithms to pick between. Each of them have different
properties and parameters that can be selected. The simplest example is
the iterative stochastic gradient descent algorithm that takes the gradient
from one training sample, multiples it by a learning rate and then changes
the weights by that.

2.3.1 Convolutional neural network

When the input data for a neural network are images it is common to
use a convolutional neural network. A convolutional neural network works
like the standard neural network, except the first fully connected layers are
replaced by convolutional layers and pooling layers.

A convolutional layer is represented by a matrix of weights that moves
over every data point in the sample to generate the output values of the
layer. The matrix is square and the size of it is called the kernel size.
Some convolutional layers have a stride value above 1. The stride value is
how many steps the matrix moves before calculating a new output value.
For example, a stride value of 2 means that the the layer only generates a
output value for every other input value. To generate the output value the
weight matrix is centered on a point. The value of that point and the points
around it depending on the kernel size are multiplied with the weights to get
the output value. Activation functions are usually used with convolutional
layers.

To decrease the size of a layer before passing the values to the next layer a
pooling layer can be put between them. The pooling layer takes multiple
values as its input and outputs a single value. A window is moved across
the input similarly to the convolutional layer, but instead of multiplying by
weights the values are aggregated. Common aggregations are the minimum,
maximum and the average.

7

Chapter 3

Design and implementation

3.1 Data capture

A data collection unit (DCU) was constructed to enable the data needs for
this project. Its main components are two cameras that are used to capture
images of the waste that is collected. The first camera is a Raspberry
Pi Camera Module V2[7]. It is a normal camera that can be attached to
a Raspberry Pi[?] using a ribbon cable. The maximum resolution of the
images is 8 megapixels (MP), but to reduce the size of the data and the
processing time it was configured to output images at 2.1 MP. The other
camera is a Pieye Nimbus 3D ToF camera[8] module for the Raspberry Pi
that outputs point clouds at a resolution of 352 by 288 pixels. The unit
also contains two Raspberry Pi 4 devices. One of them is used to get the
image and point cloud from the camera. The other is used to interact with
the RFID reader and an external server.

Figure 3.1 shows how the DCU was installed on the garbage truck. The box
in the middle of the image is the DCU. The device attached to the left side
of the box is the camera. The ToF camera is attached to the right side of
the box. The RFID reader and RFID antennas were not installed as part
of this project. The antennas can be seen on the right and left edges of the
image as white panels. The reader is inside the box at the top of the truck.

8

3.1 Data capture

Figure 3.1: DCU installed on garbage truck

When a waste container is emptied by one of the trucks the RFID tag
inside it gets close enough to the RFID reader that the ID number is read.
The ID number and a GPS position is transmitted to an external server
to track where and when the container was emptied. At the same time
the ID number are transmitted to the first Raspberry Pi inside the DCU.
It retrieves the camera data from the other Raspberry Pi and transmits it
back to the external system. After training the models only the result of
them is returned to the server to reduce the network bandwidth usage.

The initial DCU had the cameras on the outside of the box to make it easier
to adjust camera orientation if that was needed. After two weeks water was
able to get through the water-proofing. Both cameras were damaged beyond
repair and had to be replaced, shown in figure 3.3. A new design was made
where the cameras were on the inside instead. The new design is shown in
figure 3.2, 3.4, and 3.5.

9

3.1 Data capture

Figure 3.2: New DCU installed on truck

10

3.1 Data capture

Figure 3.3: Damaged camera

Figure 3.4: The outside of the new DCU

Figure 3.5: The inside of the new DCU

11

3.2 Green bag detection

3.2 Green bag detection

In Halden the customers, i.e the people who live there, are supposed to
throw organic waste and other non-recyclable waste in the same container.
They are given specific green bags that should be used for the organic waste
such that the systems are able to automatically sort it at the processing
plants. The task is to detect how many green bags are in each container.
An example of what the images from the garbage trucks look like is shown
in figure 3.6. The same image with some of the green bags marked by red
rectangles is shown in figure 3.7.

Figure 3.6: Example image from the garbage truck camera

There are some factors that complicates this. The first is that two containers
are emptied at the same time into the same section on the truck. There is no
easy way to determine which container the waste came from. The position
the containers are lifted to are somewhat offset from the middle so in general
one can say that the waste on the left side came from one container and
the waste on the right side came from the other, but in practice we see that
this is often not necessarily true. Depending on the size, weight and type
of waste it can move towards the other side as it is emptied. The second
problem is that multiple containers can be emptied into the same section
before it is pulled inside the truck and compressed. This means that the
images and point clouds will include waste that was not part of any of the
two containers that were just emptied. There are techniques that can be

12

3.2 Green bag detection

Figure 3.7: Some of the green bags marked on the example image

used to figure out the difference, e.g. by subtracting the previous image
from the new one, but as waste is often moved around by new waste falling
on top of it, it can be challenging to get good results. The third challenge
is that a popular grocery store in Norway uses green grocery bags that are
similar in color to the bags issued by Halden.

3.2.1 Method 1: Faster R-CNN

Transfer learning is the process of taking a model that has been trained on
a data set and changing the weights by training it on new data. In this case
it is assumed that if the model that is being retrained is performing well on
the original data then it has learnt some important aspects of object detec-
tion. This often requires large data sets that can be very time consuming
to collect. Method 1 uses transfer learning to retrain a model that was orig-
inally trained on the COCO 2017 data[14]. The pre-trained model is the
fasterrcnn_resnet50_fpn model[5] from the torchvision library by the
PyTorch project. The COCO data contains 91 different objects. Because
the original model performs well on this data we can assume that it can
be retrained to perform well on a new object. The model uses the Faster
R-CNN[17] method for object detection.

13

3.2 Green bag detection

The network consists of three main parts. In the sections below only the
most important layers for that part are shown. The complete network
architecture is included in appendix A. When a layer is listed as Conv2d(X,
Y, ...) that means it takes X input channels and outputs Y channels.

Feature pyramid network (FPN)

The first step is to use a feature pyramid network[13] to generate feature
maps for the input image. As the name of the model suggests this is based
on the RestNet-50 architecture[10]. The FPN does two things. First it
takes the input image and generates multiple maps from it. The maps are
generated by applying a series of convolutional layers to it. The layer stride
starts at 2 and then doubles each time a new map is generated. When
these maps are put on top of each other it looks like a pyramid which is
were the name comes from. Four maps are created in the first part of the
network. The second part of the pyramid network is taking these maps and
combining them to create a pathway from the top of the pyramid to the
bottom, i.e. the input image. First, only the top map is considered. A
convolution is applied to it and that is the output pathway. Then the top
map is upsampled to match the map below it and they are added together
using element-wise addition. The convolution is again applied to it to get
another pathway. This process continues until the lowest feature map is
reached.

The architecture of the network layers that are used to generate the path-
ways are:

1. Pathway 1: Conv2d(256, 256, kernel size = 1) followed by Conv2d(256,
256, kernel size = 3).

2. Pathway 2: Conv2d(512, 256, kernel size = 1) followed by Conv2d(256,
256, kernel size = 3).

3. Pathway 3: Conv2d(1024, 256, kernel size = 1) followed by Conv2d(256,
256, kernel size = 3).

4. Pathway 4: Conv2d(2048, 256, kernel size = 1) followed by Conv2d(256,
256, kernel size = 3).

14

3.2 Green bag detection

Region proposal network (RPN)

Next, the pathway values are passed to a region proposal network[17] to find
regions of interest. It does this by sliding another series of convolutions over
the pathway values to determine areas where it is likely to be an object.

The network layers look like this

1. Conv2d(256, 256, kernel size = 3)

2. Conv2d(256, 12, kernel size = 1)

This part of the network is also responsible for generating anchor boxes
which is the main reason for why the Faster R-CNN model is fast. The
anchor boxes are boxes that have matching aspect ratio to the objects that
should be detected. Because the aspect ratio is the same they can by scaled
up and down and still work correctly. This means that they work well with
the downsampled values from the feature pyramid network.

Faster R-CNN

The regions of interest are finally passed to a faster R-CNN predictor to
determine if there is an object there and which object type it is. The network
first passes the input image through a series of convolutional layers and then
uses the output from that in combination with the regions of interest from
the RPN to make a prediction on the bounding boxes of objects in the
image. The pre-trained model is capable of detecting all of the 91 objects
that are labelled in the COCO dataset. For this detection task the output
of the faster R-CNN predictor is replaced with only two classes: green bag
and background.

The first two layers of this part are fully connected layers, both of them have
1024 neurons. The output from the second layer is passed to two new layers.
One of them has two neurons and is responsible for classifying the object.
In this case there are only two classes so there are only two neurons. The
other layer that gets the same input values has 8 neurons which predicts
the position of the box.

15

3.3 Waste volume measurement

Training

In addition to the pre-trained model, the torchvision team provides recommendations[3]
on which learning algorithm to use to update the network weights. The sug-
gested algorithm is a stochastic gradient descent with an initial learning rate
of 0.005, momentum of 0.9, and a weight decay of 0.0005. It is also recom-
mended to gradually decrease the learning rate by multiplying the learning
rate by 10−1 every 3 epochs. This was done when retraining the model. The
model was trained for 10 epochs. The loss for the object bounding boxes is
calculated using the intersection over union[18] method which is the ratio
of how much of the area of the boxes overlap.

3.2.2 Method 2: YOLO

Method 2 uses transfer learning on a You Only Look Once (YOLO)[16]
model. The YOLOv5s[11] is used because it is the smallest which means
it has better performance, measured in execution time, when it is used
on a Raspberry Pi. The model is trained on the same data as Faster R-
CNN model, and it is also trained for 10 epochs. The complete network
architecture is listed in appendix A. The main difference when it is compared
to the faster R-CNN network is that instead of having three parts where
each of them is responsible for a specific task, the YOLO network as a whole
does everything.

3.3 Waste volume measurement

To measure the waste volume (in litres) the point clouds from the ToF
camera are used. Before installing the equipment on the garbage trucks
103 images were taken with the camera in a testing area. The objects in
the images are a combination of differently sized cardboard boxes. The
plan was to use these images to explore what kind of data it is possible to
get from the camera. In addition, a simple baseline model was created to
measure the volume of the boxes. The Pieye Nimbus ToF camera is one of
the simplest and cheapest ToF cameras on the market, so this also served
as a test of whether a more sophisticated camera is necessary for the task.

16

3.3 Waste volume measurement

When looking at the first group of images from the garbage truck it was
clear that there was a problem with the data collection process. Every point
cloud had a hole in the middle where no data was recorded. This can be seen
in figure 3.8. Factors like dirty lens, bad positioning and light conditions
were checked to see if they could explain the issue but the missing points
were still a problem. The more advanced Basler Blaze ToF camera[2] was
tested to see if the Pieye camera was the issue. When recreating the images
with the new camera it became apparent that the problem was because of
reflections from the metallic surfaces on the truck. This turned out to be
a inherit problem with the ToF technology that cannot be fixed by using a
better camera. For this reason the presented methods are used on the test
images of the cardboard boxes.

Figure 3.8: ToF point cloud with missing data

3.3.1 Method 1: Baseline

The baseline method uses the z-coordinate of the points in the point cloud
to calculate the volume. When the camera is in a fixed position with a static

17

3.3 Waste volume measurement

background the z-coordinates can be used as the distance from the camera
to the object. In this way it is possible to find the volume if the area inside
the camera view is measured. The test floor area was measured to be 325
by 275 centimeters. Using the camera resolution it was found that every
pixel in the x-direction is 1.0831 cm, and every pixel in the y-direction is
0.9549 cm.

The points are processed in the following way:

1. Take a background image of the empty area. This is used to re-
move background elements like the floor or any walls from the image.
Because the camera has to be in a fixed position with a static back-
ground for this to work the same background image can be used for
measurement.

2. Take another image when the objects are in the area. The z-coordinates
in this image show how close the waste is to the camera.

3. Extract the objects from the area by calculating the element-wise
difference between each z-coordinate.

4. Remove some of the values that were consistently incorrect. The
points along the outer border of the images are almost always just
noise. To fix this the 15 pixels closest to the edge are discarded. In
addition, the camera is sometimes unable to calculate the distance to
a point. When that happens the z-coordinate is below zero. This is
fixed by setting any point with a negative distance to 0.

5. The points are very noisy. To make the shapes smoother so they are
more similar to the real world objects a filter is applied. For the boxes
the percentile filter[4] from SciPy was found to produce good results.
The selected percentile is 75, and the size is 30. The percentile filter
works by taking the closest 30 points for every point in the image.
The values at the 30 points are sorted in ascending order and then
the value of the point is set to the 75th percentile. The result is thus
something between an average and a maximum filter.

6. Calculate the sum of every point. This is the area under the curve
which should be a good representation of the volume of the object.

The points at each step of the process are illustrated in figures 3.9 - 3.13.

18

3.3 Waste volume measurement

Figure 3.9: Step 1: Background imageFigure 3.10: Step 2: Image with object
and background

Figure 3.11: Step 3: Object image
without the background Figure 3.12: Step 4: Edge removal

19

3.3 Waste volume measurement

Figure 3.13: Step 5: Object smoothing

If we assume that the area under the curve represents the volume then the
addition of another object to the image should always increase the sum by
the same amount, meaning that there is a linear function that maps the
area to the volume.

V (x) = β0 + β1 · x+ ε

The ε represents the irreducible error that occurs because of the noise from
the camera, and the error that occurs from objects being hidden behind
each other. To find the function a linear regression model is used, because
if the irreducible error is significant then the result benefits from the high
bias associated with the model. The ordinary least squares method is used
to find the coefficients. Lasso or ridge regression is not necessary as there

20

3.3 Waste volume measurement

is only two coefficients that need to be estimated.

The linear regression model outputs the following parameters β̂0 = 0.60518140
and β̂1 = 0.02247492 giving the estimator:

V̂ (x) = 0.60518140 + 0.02247492x

3.3.2 Method 2: Deep learning

The deep learning approach uses a series of convolutional layers and fully
connected layers to find the volume. The input to the network follows the
same process as in the baseline method, except the output from step 5 is
used as the input to the network. The output of the network is a single
number representing the volume in litres.

The network layers are:

1. Convolutional layer with one input channel, one output channel, and
kernel size 3.

2. Max-pooling layer with kernel size 2, and stride 2.

3. Convolutional layer with one input channel, one output channel, and
kernel size 5.

4. Max-pooling layer with kernel size 2, and stride 2.

5. Fully connected layer with 120 nodes.

6. Fully connected layer with 32 nodes.

7. Output layer with 1 node.

The convolutional and fully connected layers use the rectified linear unit
(ReLU) activation function. The output layer does not use an activation
function.

During the training process the mean squared error of the output is the
criterion that is attempted to minimize. This is achieved using an optimizer

21

3.3 Waste volume measurement

performing stochastic gradient descent with a learning rate of 0.001. The
model is trained for 100 epochs with a batch size of 25. As shown in figure
3.14 the model converges around epoch 18.

Figure 3.14: Average loss during training

22

Chapter 4

Results

The two models in each section are trained on the same data and tested
on the same data. For each of them the available dataset is split using the
standard 70/30 train/test split.

4.1 Green bag detection

The models were trained on 500 images, and test performance is reported
from 211 images. There are two evaluation metrics, the first is the mean
squared error (MSE). This is calculated based on the number of green bags
that are detected. The other metric is the intersection over union (IoU)
which is calculated from the predicted bounding boxes. The performance
of the models at the confidence threshold that minimises the MSE is shown
in table 4.1.

Model Threshold MSE (Test) Average IoU (Test)
Faster R-CNN 0.75 1.8626 0.6477

YOLO 0.37 1.2095 0.1552

Table 4.1: Green bag model performance

The MSE and average IoU at different confidence thresholds for the Faster
R-CNN model are shown in figure 4.1 and figure 4.2. The threshold that

23

4.2 Waste volume measurement

minimises the MSE is 0.75 and it is highlighted in the figures by a yellow
diamond shape. The values for the YOLO model are shown in figure 4.3
and figure 4.4. For this model the highlighted threshold is 0.37. The YOLO
model does not produce any boxes with a confidence above 0.79 which is
why the IoU is 0.

Figure 4.1: The MSE at different confidence thresholds for the Faster R-CNN
model

4.2 Waste volume measurement

The models were trained on 72 images, and tested on 32 images. The model
performance is listed in table 4.2.

Model MSE (Train) MSE (Test) R2

Baseline 73.7899 78.5538 0.8650
Deep learning 34.7859 584.4843 -

Table 4.2: Volume model performance

The error made by each model on every sample in the test set is shown in
figure 4.5

24

4.2 Waste volume measurement

Figure 4.2: The average IoU at different confidence thresholds for the Faster
R-CNN model

Figure 4.3: The MSE at different confidence thresholds for the YOLO model

25

4.2 Waste volume measurement

Figure 4.4: The average IoU at different confidence thresholds for the YOLO
model

Figure 4.5: Error on each test sample

26

Chapter 5

Evaluation and discussion

5.1 Green bag detection

Both of the models have good enough performance to give useful information
to Halden municipality. The ideal situation would be if the number of green
bags could be associated with each customer. This could be achieved if it
was possible to know which container is on what side of the truck. The bags
could be counted based on the position of their bounding box. In that case
the Faster R-CNN model should be used because it is significantly better
at accurately predicting the position of the bags. In the current RFID
system design this information is not available as it is possible for one of
the antennas to pick up the RFID tag of both containers. The next best
option is to count all of the bags from the two containers that are empited
and then split the number between them. Even though the average IoU
of the YOLO model isn’t as good as the Faster R-CNN model, the YOLO
model is a better choice for this use case since the MSE is lower.

In both situations the data cannot be used on a day by day basis to make
judgements. It is possible that the customer did not have any food waste for
that particular period and so even though no bags are detected it cannot be
said that the customer does not use the green bags for food waste. Instead,
it is necessary to collect the count over a longer period and then analyze it
to find trends. This enables information gain on multiple levels. Data from

27

5.2 Volume measurement

multiple customers in the same area can be compared to see if there are any
particular neighbourhoods that does not use the bags. The municipality
has access to additional information about the customers like their age.
This can be used to see if there are any specific age groups that do not use
the bags. In this way marketing campaigns can be targeted towards the
customers who are not sorting their waste properly.

5.2 Volume measurement

If the ToF camera is placed in a position of the waste collection process
that does not have reflective surfaces in the measurement area then the
presented methods can be used to measure the volume. Another solution is
to paint the garbage trucks in a non-reflective paint, however that is not a
good long-term solution as the paint wears off.

If the volume is measured over time then the information can be used for
two things. The first is charging customers based on how much waste they
throw away instead of a flat rate that is the same for everyone. Like the
green bag detection this would require a change in the RFID system. The
other use case is optimising the truck routes. When a trend is observed the
amount of waste from a container can be predicted and the routes can be
adjusted such that the time spent emptying waste is reduced when there is
still more room left in the truck.

The R2 = 0.8650 value of the baseline model suggests that the model fits
the data well which is expected as the volume is linear in nature. It is hard
to determine whether or not the MSE of 78.6 is high as no data of actual
waste was collected. Compared to the volumes of the cardboard boxes the
error does make it hard to extract useful information from the images. It is
possible that this would have been lower if a better ToF camera was used.
The trained deep learning model only predicts the average of the samples
in the training data which is why the training error is so low compared to
the test error. It cannot be used for anything useful. It is likely that the
network is too complex compared to the amount of training data that was
available.

28

5.3 Machine learning on Raspberry Pi

5.3 Machine learning on Raspberry Pi

Running the models on a Raspberry Pi was chosen for a couple of reasons.
One Raspberry Pi was required in any case because the ToF camera requires
one to work. The garbage trucks use a lot of power for collecting waste and
the RFID system so the edge device options are somewhat limited, and
using a device with a GPU could use too much power. Adding another
Raspberry Pi does not increase the power usage of the system by much. In
addition, a device capable of general purpose computation was required to
interact with the external server.

The images are only of interest for training purposes. After the models are
trained the only data that is interesting is the model output. This is a good
reason for running the models on an edge device. The combined size of
the image from the camera and the ToF camera is 4MB for each container.
There are five trucks and on average each of them empty 750 containers
every day. That equals 15GB of data that would have to be transferred
over a mobile connection every day. Even when not considering the mobile
data cost the time it takes to transfer the images on a unreliable mobile
connection would make it hard to ensure all of the data is transferred.

There are two main challenges with running the models. The first is that
PyTorch is not officially supported on the Raspberry Pi. The solution to
this is building the project from source and excluding the parts that do not
work. As only the base functionality and the torchvision package is required
for this project it turned out to not be a problem. The other challenge is
the limited computation power. This meant that it was only able to run
the smallest version of the YOLO model. With more computational power
it would be possible to base the model on one of the better YOLO models
to increase the performance.

29

Chapter 6

Conclusion

The main goal of this project has been to improve the data flow coming
from the garbage trucks in Halden municipality. This was achieved in the
following ways:

1. A data capturing unit was designed and installed on one of the garbage
trucks. It is capable of taking images of the waste and capture 3D
point clouds of the waste when a container is emptied. The data is
collected using a standard camera and a time of flight camera.

2. A model was created that is capable of counting how many green
food waste bags there are in each container. This data can be used by
Halden municipality to figure out how people are sorting their waste,
and it lets them implement measures to improve the sorting behavior
of their customers.

3. Another model was created that can use the 3D point cloud data to
measure the waste volume. There are some challenges in the current
environment which means the point clouds from the garbage trucks
cannot be used. If the point clouds came from another point in the
waste collection process they could be used.

30

List of Figures

2.1 RFID Tag used by Halden on the waste containers 5

2.2 Neural network example . 6

3.1 DCU installed on garbage truck 9

3.2 New DCU installed on truck 10

3.3 Damaged camera . 11

3.4 The outside of the new DCU 11

3.5 The inside of the new DCU 11

3.6 Example image from the garbage truck camera 12

3.7 Some of the green bags marked on the example image . . . 13

3.8 ToF point cloud with missing data 17

3.9 Step 1: Background image 19

3.10 Step 2: Image with object and background 19

3.11 Step 3: Object image without the background 19

31

LIST OF FIGURES

3.12 Step 4: Edge removal . 19

3.13 Step 5: Object smoothing 20

3.14 Average loss during training 22

4.1 The MSE at different confidence thresholds for the Faster
R-CNN model . 24

4.2 The average IoU at different confidence thresholds for the
Faster R-CNN model . 25

4.3 The MSE at different confidence thresholds for the YOLO
model . 25

4.4 The average IoU at different confidence thresholds for the
YOLO model . 26

4.5 Error on each test sample 26

32

Bibliography

[1] Olugboja Adedeji and Zenghui Wang. Intelligent waste classification
system using deep learning convolutional neural network. 2019.

[2] Basler AG. Basler blaze - time-of-flight (tof) camera, May 2021.

[3] Sasank Chilamkurthy and Torch Contributors. Transfer learning for
computer vision tutorial, April 2021.

[4] The SciPy community. scipy ndimage percentile_filter, April 2021.

[5] Torch Contributors. Torchvision models, May 2021.

[6] FDA. Radio frequency identification (rfid), September 2018.

[7] The Raspberry Pi Foundation. Camera module v2, May 2021.

[8] Pieye GmbH. Nimbus 3d camera, May 2021.

[9] Bhiksha Raj Haohan Wang. On the origin of deep learning. 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. 2015.

[11] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012, Ayush
Chaurasia, TaoXie, Liu Changyu, Abhiram V, Laughing, tkianai,
yxNONG, Adam Hogan, lorenzomammana, AlexWang1900, Jan Ha-
jek, Laurentiu Diaconu, Marc, Yonghye Kwon, oleg, wanghaoyang0106,
Yann Defretin, Aditya Lohia, ml5ah, Ben Milanko, Benjamin Fineran,
Daniel Khromov, Ding Yiwei, Doug, Durgesh, and Francisco Ingham.
ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly
and YouTube integrations, April 2021.

33

BIBLIOGRAPHY

[12] Texas Instruments Larry Li. Time-of-flight camera - an introduction,
April 2021.

[13] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Har-
iharan, and Serge Belongie. Feature pyramid networks for object de-
tection. 2017.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence
Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context.
2015.

[15] Aghilan M, Arun Kumar M, Mohammed Aafrid TS, Nirmal Kumar A,
and Muthulakshmi S. Garbage waste classification using supervised
deep learning techniques. 2020.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. 2016.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
2016.

[18] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian,
Ian Reid, and Silvio Savarese. Generalized intersection over union: A
metric and a loss for bounding box regression. 2019.

[19] Geir Thorsnæs. Halden - store norske leksikon, March 2021.

34

Appendix A

Neural network architecture

A.1 Faster R-CNN

The complete network architecture of the Faster R-CNN network after ap-
plying transfer learning.

FasterRCNN(
(transform): GeneralizedRCNNTransform(

Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
Resize(min_size=(800,), max_size=1333, mode=’bilinear’)

)
(backbone): BackboneWithFPN(
(body): IntermediateLayerGetter(

(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)
(bn1): FrozenBatchNorm2d(64)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,
ceil_mode=False)
(layer1): Sequential(

(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64)

35

A.1 Faster R-CNN

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
, bias=False)
(bn2): FrozenBatchNorm2d(64)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(256)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): FrozenBatchNorm2d(256)

)
)
(1): Bottleneck(

(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
, bias=False)
(bn2): FrozenBatchNorm2d(64)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(256)
(relu): ReLU(inplace=True)

)
(2): Bottleneck(

(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
, bias=False)
(bn2): FrozenBatchNorm2d(64)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(256)
(relu): ReLU(inplace=True)

)
)
(layer2): Sequential(

(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)

36

A.1 Faster R-CNN

(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d(512)

)
)
(1): Bottleneck(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)

)
(2): Bottleneck(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)

)
(3): Bottleneck(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)

)
)

37

A.1 Faster R-CNN

(layer3): Sequential(
(0): Bottleneck(

(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d(1024)

)
)
(1): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)

)
(2): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)

)
(3): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)

38

A.1 Faster R-CNN

, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)

)
(4): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)

)
(5): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)

)
)
(layer4): Sequential(

(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(512)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(2048)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)

39

A.1 Faster R-CNN

(1): FrozenBatchNorm2d(2048)
)

)
(1): Bottleneck(

(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(512)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(2048)
(relu): ReLU(inplace=True)

)
(2): Bottleneck(

(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1)
, padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(512)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(2048)
(relu): ReLU(inplace=True)

)
)

)
(fpn): FeaturePyramidNetwork(

(inner_blocks): ModuleList(
(0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))

)
(layer_blocks): ModuleList(

(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

)
(extra_blocks): LastLevelMaxPool()

40

A.2 YOLOv5s

)
)
(rpn): RegionProposalNetwork(
(anchor_generator): AnchorGenerator()
(head): RPNHead(

(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(cls_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
(bbox_pred): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))

)
)
(roi_heads): RoIHeads(
(box_roi_pool): MultiScaleRoIAlign()
(box_head): TwoMLPHead(

(fc6): Linear(in_features=12544, out_features=1024, bias=True)
(fc7): Linear(in_features=1024, out_features=1024, bias=True)

)
(box_predictor): FastRCNNPredictor(

(cls_score): Linear(in_features=1024, out_features=2, bias=True)
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True)

)
)
)

A.2 YOLOv5s

The complete network architecture of the YOLOv5s network after applying
transfer learning.

Model(
(model): Sequential(
(0): Focus(

(conv): Conv(
(conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)
(1): Conv(

41

A.2 YOLOv5s

(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(act): SiLU(inplace=True)

)
(2): C3(

(cv1): Conv(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv3): Conv(

(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(
(cv1): Conv(

(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

)
)
(3): Conv(

(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(act): SiLU(inplace=True)

)
(4): C3(

(cv1): Conv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

42

A.2 YOLOv5s

(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv3): Conv(

(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(
(cv1): Conv(

(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)
(1): Bottleneck(

(cv1): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)
(2): Bottleneck(

(cv1): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

)

43

A.2 YOLOv5s

)
(5): Conv(

(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(act): SiLU(inplace=True)

)
(6): C3(

(cv1): Conv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv3): Conv(

(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(
(cv1): Conv(

(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)
(1): Bottleneck(

(cv1): Conv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

44

A.2 YOLOv5s

(2): Bottleneck(
(cv1): Conv(

(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

)
)
(7): Conv(

(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(act): SiLU(inplace=True)

)
(8): SPP(

(cv1): Conv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): ModuleList(

(0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
(1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
(2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)

)
)
(9): C3(

(cv1): Conv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

45

A.2 YOLOv5s

)
(cv3): Conv(

(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(
(cv1): Conv(

(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

)
)
(10): Conv(

(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(11): Upsample(scale_factor=2.0, mode=nearest)
(12): Concat()
(13): C3(

(cv1): Conv(
(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv3): Conv(

(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(

46

A.2 YOLOv5s

(cv1): Conv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

)
)
(14): Conv(

(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(15): Upsample(scale_factor=2.0, mode=nearest)
(16): Concat()
(17): C3(

(cv1): Conv(
(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv3): Conv(

(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(
(cv1): Conv(

(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

47

A.2 YOLOv5s

)
)

)
)
(18): Conv(

(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(act): SiLU(inplace=True)

)
(19): Concat()
(20): C3(

(cv1): Conv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv3): Conv(

(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(
(cv1): Conv(

(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

)
)
(21): Conv(

(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(act): SiLU(inplace=True)

)

48

A.2 YOLOv5s

(22): Concat()
(23): C3(

(cv1): Conv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv3): Conv(

(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(m): Sequential(

(0): Bottleneck(
(cv1): Conv(

(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)

)
(cv2): Conv(

(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)

)
)

)
)
(24): Detect(

(m): ModuleList(
(0): Conv2d(128, 18, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(256, 18, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(512, 18, kernel_size=(1, 1), stride=(1, 1))

)
)
)
)

49

	Contents
	Abstract
	Introduction
	Problem statement
	Company description
	Previous work

	Background
	RFID
	ToF camera
	Neural network
	Convolutional neural network

	Design and implementation
	Data capture
	Green bag detection
	Method 1: Faster R-CNN
	Method 2: YOLO

	Waste volume measurement
	Method 1: Baseline
	Method 2: Deep learning

	Results
	Green bag detection
	Waste volume measurement

	Evaluation and discussion
	Green bag detection
	Volume measurement
	Machine learning on Raspberry Pi

	Conclusion
	Figures
	Bibliography
	Appendix
	Neural network architecture
	Faster R-CNN
	YOLOv5s

