
Frontpage for master thesis

Faculty of Science and Technology

Faculty of Science and Technology

MASTER’S THESIS

Study program/Specialization:

Computer Science - Data Science

Spring semester, 2021

Open / Restricted access

Writer: Bernt Andreas Eide

…………………………………………

(Writer’s signature)

Faculty supervisor: Erlend Tøssebro

External supervisor(s): Karl Skretting

Thesis title:

Detecting and classifying vehicles entering and exiting a tunnel

Credits (ECTS): 30

Key words:

Deep Learning

Tensorflow

Machine Learning

Convolutional Neural Networks

Region Proposal Systems

Background Subtraction

Computer Vision

 Pages: 69

 + enclosure: 12

 Stavanger, 15.06.2021

 Date/year

University of Stavanger

Master thesis (MSc)

Detecting and Classifying
Vehicles entering and exiting a

tunnel

Authors:
Bernt Andreas Eide

Supervisor:
Prof. Erlend Tøssebro

External Supervisor:
Prof. Karl Skretting

Preface

This is a thesis in Data Science at the University of Stavanger. The main
topic is detection and classification of vehicles entering and exiting a tunnel.
Two main methods have been developed, both utilizing transfer learning. A
fully fledged region proposal system, and a simpler system utilizing a vanilla
Convolutional Neural Network (CNN) and background subtraction have been
created.

I would like to thank my two supervisors, Erlend Tøssebro and Karl Skretting
for their support and input throughout the thesis work, and of course my dear
friend Heloise Fonseca, who took the time to give feedback along the way.

1

Abstract

Tunnel safety is an increasing concern for the road administrative authorities.
In this thesis, a vision based surveillance system is developed as a safety
measure. The main purpose of this surveillance system is to detect and
classify incoming and outgoing vehicles, thus rescue workers will have an
idea about which vehicles reside inside the tunnel at any given time.

The thesis builds its foundation on two previous theses from previous stu-
dents at the University of Stavanger. In the previous work, the main bot-
tleneck has been detection and classification during challenging lighting/il-
lumination and/or weather conditions. To counter these challenges, transfer
learning has been used to create a more solid model, and with explicit data
that has been created for challenging lighting conditions. New techniques for
detection has also been tested, such as region proposal networks.

For the region proposal system, the Single Shot Detector (SSD) MobileNet
v2 pre-trained model has been used. This model has been trained on the
popular Common Objects in Context (COCO) dataset, which consist of at
least 200,000 annotated images, and span across 90 different classes.

As for the vanilla CNN, MobileNet v3 has been used. This model has been
trained on the ImageNet dataset, which consist of 14,197,122 annotated im-
ages.

Both models use transfer learning, thus, less data is required to train and
build a solid model. 5560 images have been collected and annotated for the
training of these models, the images contain roughly 21,325 objects spanning
across five classes (car, truck, person, bike, bus).

Classification rates converge fast with almost every configuration, however,
there are some challenges separating some of the minority classes. Practical
considerations have also been taken into account, a system like this would
most suitably be deployed on a low-cost micro-controller, such as an Internet
of Things (IoT) device.

2

CONTENTS CONTENTS

Contents

Preface 1

Abstract 2

1 Introduction 6

1.1 Background . 6

1.2 Object Recognition . 6

1.3 Previous Work . 7

1.4 Problem Statement . 8

2 Theory 9

2.1 Artificial Neural Networks . 9

2.2 Convolutional Neural Networks 16

2.3 Evaluating a Neural Network 20

2.4 Transfer Learning . 22

2.5 Regions with CNN Features (R-CNN) 23

2.6 Single Shot Detector . 25

2.7 Spatial Transformer Network 26

2.8 GPU Acceleration for training 26

2.9 Background Subtraction . 27

2.10 Morphological Operations . 27

3 Implementation 29

3

CONTENTS CONTENTS

3.1 Data Collection . 29

3.2 Imbalanced Dataset . 33

3.3 Tensorflow Library . 33

3.4 Tensorflow Object Detection API 34

3.5 CNNs with Tensorflow . 37

3.6 Background Subtraction . 39

4 Result 42

4.1 Data Collection . 42

4.2 Region Proposal & Object Detection 42

4.3 Convolutional Neural Networks 45

4.4 Profiling . 59

4.5 Background Subtraction . 59

5 Discussion 60

5.1 Data Collection . 61

5.2 Region Proposal & Object Detection 61

5.3 Convolutional Neural Networks 61

5.4 Profiling . 63

5.5 Background Subtraction . 64

6 Further Work 66

7 Conclusion 67

4

CONTENTS CONTENTS

References 70

List of Figures 72

List of Tables 73

List of Program Code 74

List of Abbreviations 76

List of Terms 77

Appendix 78

.1 Code Hierarchy . 78

.2 Training a regular CNN . 79

.3 Training a region proposal network 79

.4 Resources . 79

5

1 INTRODUCTION

1 Introduction

1.1 Background

In Norway, there are more than a thousand road tunnels, some in varying
conditions. The national road authorities have tunnel maintenance as a very
high priority. A major problem in long road tunnels is ventilation, to direct
the fumes out of the tunnel. In the case of a fire, it would be challenging
to ventilate the tunnel, which poses a significant danger to the people in-
side it [1]. To aid rescue workers, it would be necessary to have a tunnel
surveillance system that can keep track of how many vehicles reside in the
tunnel at any given time. Additional information like the vehicles estimated
speed, position, and if they carry dangerous material would also be useful for
the authorities. This registry will allow the authorities to plan ahead, and
efficiently rescue any people stuck inside the tunnel.

For the surveillance, a vision based system will be proposed in this thesis.
In this system, the main task is to detect and classify vehicles that enter
and exit an arbitrary tunnel. This system will naturally have to be quite
resilient, due to radical weather conditions and illumination changes. With
said system in mind, the road authorities will have an estimate of how many
vehicles reside in the tunnel at a given time, thus this information will allow
rescue workers to plan ahead, and potentially save lives. The longer the
tunnel, the more important it would be to be able to plan ahead.

1.2 Object Recognition

Big Data and advancements in the field of Artificial Intelligence (AI) has
made traditional image processing tasks like object detection and classifica-
tion more reliable [2]. With the use of Artificial Neural Networks (ANN)
and Convolution, it is possible to do very accurate image classification. Fur-
thermore, this can be combined with a region proposal network to extract
and classify regions of an image. Such network could make it unnecessary
to perform traditional background subtraction and do complex pre and post
processing to extract the objects of interest.

Traditionally, the detection part has been done by performing background
subtraction to extract the objects in motion (foreground) and then applying

6

1 INTRODUCTION 1.3 Previous Work

additional post-processing to remove shadows and noise. A bounding box is
then fitted around each foreground object and, finally, classification is done
for each object using a classifier of some sort. The classifier can be a CNN,
or even a Support Vector Machine (SVM), in either case, feature maps are
fed to the fully connected layer in the CNN and otherwise directly in the
SVM classifier. If sufficient data has been used to train the classifier, it will
be possible to predict the class of a given vehicle with high probability of
success (accuracy).

1.3 Previous Work

Two previous students at the University of Stavanger (UiS) have published
similar work in their theses. Their work have given the foundation for this
thesis, and the main goal is to improve and/or find more efficient ways to do
detection and classification under different weather and lighting conditions.

Eirik Atlekt Thomessen introduced the use of [3]

• CNN for image classification (using specific collected data, with 3 classes:
person, car and truck).

• Gaussian Mixture Model (GMM) together with background subtrac-
tion for object detection.

• Kalman filter for tracking a linear model.

• Predict traffic behaviour based on occlusion or detection rate.

• Created a surveillance system app in PyQt for real time simulation.

And Erik Sudland, who proposed the initial work, based itself solely on classic
image processing techniques like [4]

• Detect object by background subtraction, using a GMM.

• Uses the color space YCbCr and Hue, Saturation, Value (HSV) to
make the detection less sensitive to lighting variations, such as vehicle
headlights, floodlights, etc.

• Detect vehicle front based on the initial detection of the registration
plate.

7

1 INTRODUCTION 1.4 Problem Statement

• Run Histogram of Oriented Gradients (HoG) plus Trace Transform on
the detected vehicle front, used as a unique structure together with the
color to recognize the vehicle on exit.

• Unable to detect vehicle fronts of trucks, classifies vehicle as light or
heavy.

• Unable to detect vehicle at all in poor lighting conditions.

The main issue in both of these theses is detection and classification under
various lighting, weather, and vehicle occlusion conditions.

1.4 Problem Statement

Training a large convolutional neural network can be challenging because
of the large amounts of data it would require to generalize well to unseen
data. Transfer learning eliminates this challenge to a certain extent, as it
allows the user to use the weights and structure of a model which has been
trained on a large dataset. It is still necessary to do model training, but the
data amount needed to train an efficient model is significantly reduced. In
this thesis, there was no existing data available from the road administrative
authorities, so manually collecting and annotating data was necessary. The
amount collected would not have been enough to build a solid model, which
is why transfer learning is highly leveraged in this thesis.

8

2 THEORY

2 Theory

This chapter will focus on explaining the theory behind the techniques used
in the thesis.

2.1 Artificial Neural Networks

In 1943 Warren McCulloch and Walter Pitts modeled a simple neural network
using electrical circuits, this was done in order to describe how neurons in
the brain might act [5]. Hebbian learning was introduced in the late 1940s,
a theory which pointed out that neural pathways are strengthened each time
they are used, which essentially allows for learning [6].

In 1958 Frank Rosenblatt proposed the perceptron [7], which is essentially
the simplest form of a neural network. There are no hidden layers, a single
or multiple inputs, a neuron and an output. The neuron is activated with
a non-linear activation function. It was proven that for single-layer neural
nets you could learn any task that its parameters could embody, in a finite
amount of training cycles [8].

In 1969 Minsky-Papert published a book which revolves around Frank Rosen-
blatt’s work on the perceptron. The book focuses on providing proofs, linear
separation problems, and thoughts on simple and multilayer perceptrons [9].

x1

w1

x2 w2

x3

w3

y

Figure 1: Perceptron.

In 1994 the Multi Layer Perceptron was proposed by Simon Haykin [10],
which involves an input layer, a hidden layer and output layer. This type
of network is also known as a feedforward network because connections be-
tween the nodes do not form a cycle (either forward or backward). The
inputs are fed through the network and are activated at each neuron in every

9

2 THEORY 2.1 Artificial Neural Networks

hidden layer before being propagated to the next layer. And for training
the network, backpropagation is done to minimize the error of the network.
Backpropagation is only necessary if the predicted values are far off from the
target values, in such a case the weights in the network will be updated to
minimize the loss. These properties allow the network to distinguish data
that is not linearly separable [11].

x1

x2

y1

Input
layer

Hidden
layer

Ouput
layer

Figure 2: Multi-Layer Perceptron.

A neural network is designed to replicate the biology in our brain, a neuron
that is fully connected to other neurons. A fully connected layer in the case
of neural networks. What makes neural networks powerful is that they can
generalize anything with enough data, an input X is fed into the network,
and is propagated through the layers where each layer applies an activation
function to the input times its weights plus a bias.

Figure 3: Neuron [12].

10

2 THEORY 2.1 Artificial Neural Networks

The activation function is used to apply non-linearity throughout the net-
work. Linear activation functions can also be used, but are generally avoided
because back propagation will not be able to find any relation between the
previous input and the output of the activation function when the weights are
being updated (because the derivative is constant). Some common activation
functions are:

• tanh, ranges from -1 to 1. (ex−e−x)
(ex+e−x)

• sigmoid, ranges from 0 to 1. 1
1+e−x

• Rectified Linear Unit (ReLu), ranges from 0 and up. max(0, x)

• Softmax, σ(x)i = exi∑K
j=1 e

xj
where K is the number of classes. Generally

used for the output layer in a multiclass network. The range is between
0 and 1, for each class (returns a vector of probabilities, where each
probability represents the probability for the input X to belong to the
class Ki, this vector sums to 1).

To compute the output for a neural network in the case of figure 1,

ŷ = fx(Wx+ bias) (1)

where x =

x1x2
x3

, W =
[
w1 w2 w3

]
and fx is some activation function (bias

is 0 in this example).

This is known as forward propagation, the input X is fed into the network
and propagated through the layers until it reaches the output layer. In a su-
pervised setting, which normally is the case, there will be target labels. After
the forward propagation, a loss function will be used to tell the network how
it is doing. If the predicted values are deviating far off from the target labels,
backward propagation will have to be initiated. This procedure will compen-
sate for the deviation by updating the weights in a way which will minimize
the loss. The process of actually minimizing the loss is known as gradient
descent. This algorithm will try to minimize the target versus predicted loss,
and will do so by finding the local minima in every scenario. The gradients
are leveraged during this procedure, thus the activation function should be
differentiable.

11

2 THEORY 2.1 Artificial Neural Networks

If the network is large (many nodes to train and respective weights to adjust)
and the gradients have a very rough terrain, it will pose a challenge, which is
why learning rates are used to speed up or slow down the rate of the descent.
To prevent the gradient descent algorithm from getting stuck, adaptive al-
gorithms may be used. Adaptive learning rates are used with algorithms
such as Root Mean Square Propagation (RMSProp) and Adaptive Moment
Optimization (Adam), these usually provide good convergence in comparison
to fixed learning rates. Adaptive algorithms will adjust their learn rate de-
pending on various conditions. In addition, initializing the weights randomly
before training may also help prevent correlation.

RMSProp was discovered by Geoffrey Hinton [13], the algorithm keeps a
moving average of the squared gradient for each weight. Adam leverages
first order gradients, and tries to compute individual adaptive learning rates
for different parameters from estimates of first and second moments of the
gradients [14]. There are plenty of other adaptive algorithms to choose from,
their effectiveness may vary depending on the problem at hand. Neural
Networks can be tuned in many ways, and certain configurations can be very
problem specific.

Figure 4: Gradient Descent in action [15].

In figure 4 we see how the gradient descent traverses further down the terrain.
This scenario is not always the case, if the terrain is not as smooth it may
get stuck, in which case the algorithm may find many local minimas rather
than a global minima.

12

2 THEORY 2.1 Artificial Neural Networks

In the case of figure 2, without bias the computations would be:

y = f(W 2f(W 1x)) = f(
[
w2

11 w2
21 w2

31

]
f(

w1
11 w1

21

w1
12 w1

22

w1
13 w1

23

[x1
x2

]
)) (2)

for the forward propagation, then the loss is computed using the Mean
Squared Error (MSE):

J(θ) =
1

2

∑
(y − ŷ)2 (3)

If the error is greater than a threshold, do backwards propagation to update
the weights and in turn hopefully reduce the error (depends on gradient
descent efficiency). The derivative of the function f is used (f

′
) and the

sensitivity is computed for each layer as we go backwards.

δ2 = diag(f
′
(z2))(y − y2)T (4)

Because the network only has one output, the above computation will be a
scalar (diag will diagonalize the result, if not a scalar):

δ1 = diag(f
′
(z1))(W 2T δ2

T
) (5)

δ1 =

f ′(w1
11x1 + w1

21x2) 0 0
0 f

′
(w1

12x1 + w1
22x2) 0

0 0 f
′
(w1

13x1 + w1
23x2)

 w2
11

w2
21

w2
31

 δ2T
(6)

the deltas can be computed, µ is the learning rate:

∆W 2 = µδ2y1
T

= µδ2
[
f(w1

11x1 + w1
21x2) f(w1

12x1 + w1
22x2) f(w1

13x1 + w1
23x2)

]
(7)

13

2 THEORY 2.1 Artificial Neural Networks

∆W 1 = µδ1xT = µδ1
[
x1 x2

]
(8)

Finally, the weights can be updated by simply adding the deltas to the old
weight matrices, W 1 = W 1 + ∆W 1, and W 2 = W 2 + ∆W 2. This completes
one round of updating the weights, the network would continue this procedure
until the loss is at a satisfactory low value. In the real world, however,
it would be preferable to use different activation functions, dropout, and
possibly an adaptive learn rate.

It is also important to note that due to the nature of these computations,
it is possible to run into two problems known as the vanishing and explod-
ing gradient problem. A vanishing gradient converges to zero because it is
multiplied with too many small numbers, while an exploding gradient is con-
verging towards infinity for the opposite reason. These problems are normally
solved by choosing an appropriate activation function for the desired layers,
and randomly initializing the weights. These issues are usually detected by
noticing that the loss function is sky high or never changes at all.

As for over- and under-fitting a neural network, with too little data the model
will not be able to generalize. And if the model is trained to rely on certain
nodes it may overfit. Dropout is used to prevent the network from being too
dependent on a single node, dropout makes sure that an arbitrary node in an
arbitrary layer will be reset with a given probability. This will also naturally
help prevent certain correlation tendencies between certain nodes.

Underfitting can be addressed by resampling with replacement (bootstrap-
ping), augmenting existing data to add additional data. Augmenting can be
in the form of simple rotations, horizontal/vertical flip, shear, zoom, tilt, etc.
Each feature vector generated for these various modifications would be differ-
ent, thus the model would be given more diverse samples of the same objects.
This can be beneficial not only in the case of underfitting, it generally helps
increase the models ability to generalize.

Training will be done over several epochs, an epoch is the process of training
the neural network with all the training data. Training over several epochs
will continue to adjust the weights further. Each epoch may introduce a
batch of samples at a time, this is done to speed up the training process, this
will leverage the Graphical Processing Unit (GPU). This training procedure
naturally leads to a high accuracy on the train set (the network tries to fit the
data perfectly over time), in which case it is important to have an additional

14

2 THEORY 2.1 Artificial Neural Networks

set for testing. The test set should contain samples that are not present
in your training set, to simply verify whether or not your model is able to
generalize. At the end of each epoch the model will apply the test set, if the
test accuracy deteriorates over time, early stopping should be initiated. Early
stopping is a simple measure to prevent overfitting, when the test accuracy
worsens and the train accuracy converges towards 100%, stop at the earliest
stage (epoch) where the test accuracy is at a feasible point. This data is
usually used to construct a learning curve, for each epoch record the train
and test accuracy, plot and analyze the results when training is finished. To
further validate the model’s ability to generalize, a validation set can be used
in the end but this set is only used once.

Another approach which can be used to prevent overfitting is regularization,
in neural networks the regularization will be applied to the cost function
(equation (3)), this function would be expanded to:

J(θ) =
1

2

∑
(y − ŷ)2 +

λ

2m

m∑
j=1

||wj||1

for L1 regularization, and:

J(θ) =
1

2

∑
(y − ŷ)2 +

λ

2m

m∑
j=1

||wj||22

for L2 regularization. Where ||wj||1 and ||wj||22 is the L1 (max) and L2
(frobenius) norm. This is helpful because λ can be used to adjust the model
fit complexity (large weights will be penalized). Smaller λ values will provide
little change in the model fit, large values of λ will provide a very simple fit
(underfit), ideally the λ value should be discovered through hyperparameter
tuning. Try a selection of λ values and see which works best for the problem
at hand.

Label smoothing is another useful technique which can increase the networks
generalization by making it less confident in its predictions. Normally, the
network will be taught that it should predict the target labels such that the
class label in question was predicted with 100% accuracy. Label smoothing
changes this behavior, rather than assuming that the target is at a confidence
of 100% it will assign a value

K
to every class, and subtract K−1

K
∗value from the

15

2 THEORY 2.2 Convolutional Neural Networks

target. This implies that every class has a small probability to be predicted
as the target, rather than only one class, in other words, the ”stubbornness”
of the network is reduced.

2.2 Convolutional Neural Networks

Convolutional Neural Networks combine convolution, pooling and a fully
connected layer. A CNN is normally used for image classification tasks,
such as vehicle classification, facial recognition, detecting cancer in computed
tomography (CT) scan images, etc.

Figure 5: CNN Architecture [16].

Figure 5 shows an in-depth overview of a CNN, prior to supplying an im-
age to the CNN the image will be resized for consistency. The size varies,
smaller images may lose important structure and information, but in most
cases it is not a major problem. Numerous filters will be convolved with the
input image, these filters try to extract features from the image (features
such as edges, for example). Pooling can then be applied to the result in
order to only extract the higher, lower or mean values, thus the image will
be downsampled. This is convenient because there will not necessarily be
useful features extracted for every region in the input image. Additionally,
supplying a large feature vector to the fully connected layer can pose several
challenges. When pooling has been applied, the result is flattened into a
row vector, and will be supplied as an input to a neural network. Certain
activation functions may be used for applying non-linearity, these functions
can be applied to the results gained from sliding the filters over the input
image.

16

2 THEORY 2.2 Convolutional Neural Networks

Convolution is defined as

(f ∗ x)(x) =

∫
f(z)g(x− z)dz

overlap between f and g is measured when one of the functions have been
flipped and shifted by x. But in the case of CNNs, these operations are
discrete, thus a sum is adequate

(f ∗ x)(i) =
∑
a

f(a)g(i− a)

Figure 6: AlexNet Architecture [17].

Using figure 6 as an example, the input size of the image is 224 × 224 × 3,
channels Red, Green, Blue (RGB). Computing the size of the output from
applying the first filter (11× 11) with a stride of 4 and zero padding:

W −K + 2P

S
+ 1 =

224− 11 + 0

4
+ 1 = 54 = (54× 54)× 96 filters (9)

17

2 THEORY 2.2 Convolutional Neural Networks

Input

15 25 10 10
25 15 10 35
15 60 10 50
45 15 45 85

, filter

[
2 4
3 7

]
, stride 1 and 0 padding. This will

result in a 3× 3 matrix

(15 ∗ 2 + 25 ∗ 4 + 25 ∗ 3 + 15 ∗ 7) · · · (10 ∗ 2 + 10 ∗ 4 + 10 ∗ 3 + 35 ∗ 7)
...

. . .
...

(15 ∗ 2 + 60 ∗ 4 + 45 ∗ 3 + 15 ∗ 7) · · · (10 ∗ 2 + 50 ∗ 4 + 45 ∗ 3 + 85 ∗ 7)

=

310 205 335
575 320 540
510 520 950

The 2 × 2 filter is multiplied with each respective 2 × 2 region in the input
matrix. With a stride of 1, the filter will move with an increment of 1 along
the columns and rows until it reaches the end. Thus, a 3× 3 matrix will be
the output. If the stride was 2, the filter would slide along the columns by an
increment of 2 and equivalently by an increment of 2 along the rows, which
would create a 2× 2 output.

After a few convolutions have been applied, it is common to do pooling, alas
keep interesting values and discard the rest. This downsampling procedure
can be done by, for example, sliding a 2 × 2 filter on to the previous 3 × 3
output. Although this filter will not contain any values, it will capture the
wanted information from the segment it is slided across.

Max pooling with a 2× 2 filter [
575 540
575 950

]

Equivalently with min pooling

[
205 205
320 320

]
Additionally, using average pooling will compute the average value in the
2× 2 blocks

18

2 THEORY 2.2 Convolutional Neural Networks

Table 1: A 4× 4 matrix, applied 2× 2 max pooling with stride = 2.

2 3 1 9

4 7 3 5

8 2 2 2

1 3 4 5

2× 2 max pooling =
7 9

8 5

[
352 350
481 582

]
Table 1 visualizes the procedure of pooling a bit more clearly. Lastly, padding
can be used if the dimensions do not match (or if you want the output
dimension to match the input dimension), zeros will be padded along the
rows and columns.

(a) E6, Nøstvet (b) Sobel result

Figure 7: Convolving an image with sobel filter in x and y direction, and computing
the magnitude of the gradient.

In figure 7 the image has been convolved with the filter

1 0 −1
2 0 −2
1 0 −1

 in x di-

rection, and

 1 2 1
0 0 0
−1 −2 −1

 in y direction. This will capture the gradients

of the image, areas with a large difference in pixel values will have a high
intensity value. Thus, the edges will be detected and the gradient magnitude

can be computed as follows, |∇I| =
√
I2x(m,n) + I2y (m,n). This is an exam-

ple of extracting features from an image, in this case the edges are extracted.
In a CNN there will be multiple filters applied in various regions of the im-
age, these filters will capture higher and lower level features. Pooling is done

19

2 THEORY 2.3 Evaluating a Neural Network

Table 2: Confusion Matrix Example.

True Label
Positive Negative

Predicted Label
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

to keep the interesting segments, and simultaneously downsample the result,
this will yield a more compact feature vector after flattening.

2.3 Evaluating a Neural Network

Measuring the performance of the network may depend on whether or not
the classification setting is binary or multi-class, in either case, the formulas
are based on the confusion matrix. A confusion matrix contains correct
classifications along the diagonal, and false positives/negatives in the other
columns (see table 2 for a binary classification example).

Accuracy =
TP + TN

TP + TN + FP + FN
=

∑N−1
i=0 A(i, i)∑N−1

i=0

∑N−1
j=0 A(i, j)

(10)

Precision =
TP

TP + FP
=

A(0, 0)∑N−1
i=0 A(0, i)

(11)

Recall =
TP

TP + FN
=

A(0, 0)∑N−1
i=0 A(i, 0)

(12)

A is the confusion matrix (table 2), indexed from zero, and N is the number
of classes. These metrics can be used to evaluate the performance of the
model, but in some cases these metrics can be misleading, especially if the
data is imbalanced. The model may do very well on the majority classes,
but still fail on the minority classes. This situation can still report fairly
high accuracy, depending on how imbalanced the data is. A metric which
incorporates better weighting of minority classes is the metric known as the
F1 score, which is a harmonic mean of precision and recall. This metric will

20

2 THEORY 2.3 Evaluating a Neural Network

take the false negatives and positives into greater account.

F1Score = 2 ∗ Precision ∗Recall
Precision+Recall

(13)

This measure will give a more reasonable accuracy in the case of imbalanced
data if the confusion matrix reports a high number of false positives and false
negatives.

Additionally, there is the Receiver Operating Characteristic (ROC) curve.
This curve is plotted using various thresholds of true positive rates versus
false positive rates. The area under the curve (AUC) is calculated to give
an indication of how well the model is predicting. A value of 50% indicates
that the model is guessing, and a lower value indicates that the model can
not generalize at all, while a high value indicates that the model is good at
generalizing to unseen data.

For a multi-class setting, the ROC curve is not ideal, but the other metrics
can be applied by performing a one VS rest classification technique. This
reduces a multi-class setting down to a binary-class setting, thus the metrics
can be computed as is. This is done for each class, and micro-averaging or
macro-averaging can be performed to indicate how well the model is doing.

In the case of three classes:

Micro− AvgPrecision =
TP1 + TP2 + TP3

TP1 + TP2 + TP3 + FP1 + FP2 + FP3
(14)

Micro− AvgRecall =
TP1 + TP2 + TP3

TP1 + TP2 + TP3 + FN1 + FN2 + FN3
(15)

Macro− AvgPrecision =
P1 + P2 + P3

3
(16)

Macro− AvgRecall =
R1 +R2 +R3

3
(17)

Micro-averaging is preferred because it is more sensitive to false positives and
negatives than macro-averaging.

21

2 THEORY 2.4 Transfer Learning

Table 3: Various pre-trained models, trained on ImageNet [2].

Model Top 10 Acc Weights

EfficientNet-B7 97.1% 66 M
EfficientNet-B5 96.7% 30 M
NoisyStudent 96.3% 9.2 M
MobileNetV3 75.2% 5.4 M

2.4 Transfer Learning

Training a deep neural network from scratch can be a tedious task, especially
if there is not sufficient data. Neural networks are generally data demanding,
but with a concept known as transfer learning it is possible to use an already
trained, or parts of an already trained model to your advantage. As the
network is trained, the weights are continuously adjusted. These weights can
be reused and frozen, which means that they will not update during training.
In the case of a CNN, the convolutional layers are frozen, thus, it will act as a
feature extractor for an arbitrary image of a given size. The resulting feature
vector is then supplied to a fully connected layer, and the fully connected
layer will not have its weights frozen, these will be trained.

Various pre-trained models available have been used as part of object recog-
nition challenges, and these models are usually trained on extremely large
datasets, with many classes. However, the data used for the pre-trained
model should match your field of interest. Using a pre-trained model which
has been trained on a large database of flowers will not be very useful when
training a vehicle classifier, for example.

Nevertheless, leveraging transfer learning can provide various benefits, such
as having a matured feature extractor, in the case of CNN, and lower training
time. Choosing the right pre-trained model should be based on the data it
was trained with, the amount of parameters (total amount of weights) in
the network, image size constraints (due to memory usage), and prediction
speed. If the model is exported and used for inference on some IoT device,
it would be preferable to use a model which can predict with low latency.

Table 3 shows a few models that have been trained on ImageNet. ImageNet
is a dataset containing 14, 197, 122 annotated images, and is regularly used
in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [18].
Other datasets like Microsoft’s COCO, Pascal Visual Object Classes, CiFar,
among others are also suitable.

22

2 THEORY 2.5 Regions with CNN Features (R-CNN)

2.5 Regions with CNN Features (R-CNN)

R-CNN is a powerful object detection and semantic segmentation method
developed by researchers at UC Berkeley [19]. This algorithm combines a
CNN for feature extraction with region proposals in an image, the algorithm
runs selective search which tries to separate and segment the image into
various regions. Many regions are extracted and fed into a CNN, in this
approach a CNN and region extractor is trained (anchor points).

This method can be superior to traditional techniques that only involve back-
ground subtraction and a vanilla CNN. This approach does not rely on a
foreground mask, and does not suffer from potential noisy masks that lead
to false detections. However, training such a network is considerably more
demanding.

Figure 8: R-CNN Overview [19].

Overview: figure 8 depicts the overview of the method, the first step is to
extract regions from an input image. R-CNN uses selective search to extract
the regions, and will extract ≈ 2000 regions from an input image. A feature
map will be calculated for each region and will be classified accordingly.

Selective Search combines an exhaustive search and segmentation algo-
rithm. Efficient Graph-Based Image Segmentation is used to create initial
regions, the regions are then grouped together iteratively using a greedy al-
gorithm. A similarity measure between all the regions are computed and the
two most similar regions are grouped together. New similarity measures are
calculated between the resulting region and its neighbors, this being repeated
until the whole image becomes a single region.

A hierarchical algorithm (bottom-up grouping) is used to allow all object
scales to be taken into account. Segmentation may be done based on sep-
arating objects based on texture (pattern), color, or lighting (shading and
lighting color). Diversification of the sampling is done by using a variety of
color spaces with different invariance properties, by using different similar-

23

2 THEORY 2.5 Regions with CNN Features (R-CNN)

ity measures sij, and by varying the starting regions. Four complementary
similarity measures are used, and they all range from [0, 1].

Color similarities are measured by scolor(ri, rj), for each region a one-dimensional
color histogram is obtained for all color channels using 25 bins respectively.
These histograms are normalized using their L1 norm.

scolor(ri, rj) =
n∑

k=1

min(cki , c
k
j) (18)

Ct =
size(ri)xCi + size(rj)xCj

size(ri) + size(rj)
(19)

Similarity is measured using the histogram intersection.

Texture similarities are measured by stexture(ri, rj). Scale Invariant Feature
Transform (SIFT) measurements are used to represent textures. Gaussian
derivatives are taken in eight orientations using σ = 1 for each color channel.
For each orientation for each color channel, a histogram of bin size 10 is
extracted. This leads to a histogram Ti for each region ri with dimensionality
n = 8 ∗ 10 ∗ 3 = 240 when three color channels are used. L1 norm is used
here as well.

stexture(ri, rj) =
n∑

k=1

min(tki , t
k
j) (20)

ssize(ri, rj) encourages small regions to merge early, thus keeping unmerged
regions rather similar in size throughout the algorithm.

sfill(ri, rj) measures how well region ri and rj fit into each other, which is
used to fill gaps.

Finally, using the various similarity measures, regions are grouped together,
forming the respective bounding boxes. Mean Average Best Overlap (MABO)
is used for evaluating the results.

Extracting Features: for each region, a 4096-dimensional feature vector
is extracted using UC Berkeley’s in-house Caffe [20] CNN deep learning
framework. Additional image preprocessing steps are required prior to the

24

2 THEORY 2.6 Single Shot Detector

feature extraction, for the architecture used the region must be resized to
227× 227 pixels.

Training: the CNN used for this algorithm has been explicitly pre-trained
on a larger dataset (ImageNet [18]), but for classification purposes only. Ad-
ditional tuning is required to adapt the CNN to do detection and deal with
warped proposal windows, Stochastic Gradient Descent (SGD) is continued
to further update the weights of the CNN, but only using the warped region
proposals.

Testing involves extracting the≈ 2000 regions for each test image, warp each
region proposal and propagate it through the CNN for feature extraction.
For each extracted feature vector (per class), score it with an SVM classifier
trained for the class in question. Lastly, for each scored region, apply a greedy
non-maximum suppression which rejects a region based on Intersection over
Union (IoU) score larger than a learned threshold.

Fast R-CNN: due to the impractical performance of R-CNN, a new faster
variant has been developed by the same researchers. Fast R-CNN [21] em-
phasizes on reducing proposal generation bottlenecks by introducing sparse
object proposals.

Faster R-CNN: further changes to Fast R-CNN were made to make it
even more robust. Faster R-CNN [22] improves detection speed by sharing
convolutional features with the down-stream detection network.

2.6 Single Shot Detector

A Single Shot Detector, or SSD for short, is an object detection technique
that tries to detect objects in images by utilizing a single neural network [23].
A fixed size collection of bounding boxes are produced through a feed-forward
convolutional network, object class instances in the boxes are scored, and
then non maximum suppression is applied to produce the final detection.
These detections include key features such as:

• Multi-Scale Feature Maps
Convolutional feature layers are added to the end of the truncated base
network, allowing for prediction of detections at variable scales.

• Convolutional predictors for detection

25

2 THEORY 2.7 Spatial Transformer Network

Each feature layer can produce a fixed set of detection predictions using
a set of convolutional filters.

• Default boxes and aspect ratios
Associate a set of default bounding boxes with each feature map cell.

2.7 Spatial Transformer Network

Rather than using simplistic data augmentation that only rotates, shifts,
flips, etc. A Spatial Transformer Network (STN) [24] can be deployed, this
network will work towards making the data fully invariant of transformations,
scaling, and rotation. Before a sample is fed into the fully connected layer, it
will be fed through the STN. This will alter the feature map extracted from
the convolutional steps, thus more diverse data can be generated and fed to
the fully connected layer. A STN has not been used for this thesis, but it is
worth mentioning as a potential further work technique.

2.8 GPU Acceleration for training

A deep neural network can become quite difficult for a Central Processing
Unit (CPU) to handle on its own, due to low cache memory, speed and
low parallelism, it is often preferred to use a GPU for training the network.
The forward and backwards propagation involves a lot of elementary linear
algebra operations, such as matrix multiplications. For a large network it
will be expensive and slow to run these types of operations on a CPU. A
GPU is designed to handle such operations explicitly, hence why games rely
more on a GPU than a CPU due to the nature of its computations to render
and handle a 3D world.

At UiS the Tesla P100 and V100 GPUs have been used for GPU acceleration,
however, consumer grade GPUs are also very effective. Some brief steps
regarding how to setup GPU acceleration with Tensorflow will be presented
in the implementation section.

26

2 THEORY 2.9 Background Subtraction

2.9 Background Subtraction

Background Subtraction, also known as foreground detection, is an algorithm
which tries to separate the moving parts in an image from its background.

Frame differencing is the simplest method, compare consecutive frames with
a background frame and only keep the pixels which changed by a certain
amount defined by a threshold λ. If no explicit background frame is available,
pick the first frame as the background and compare consecutive frames with
it.

If a background is present, I ′(x, y) = |I(x, y) − B(x, y)| > λ. I ′(x, y) =
|I(x, y)(t + 1) − I(x, y)(1)| > λ otherwise. This will extract the foreground
mask.

Averaging N consecutive frames is also an option, as N grows, the foreground
will disappear, leaving a background mask which can be used to extract the
foreground from future frames. At frame t the background is computed,
B(x, y, t) = 1

N

∑N
i=1 I(x, y, t − i). Frame differencing is used to extract the

foreground mask.

Background Mixture Models is a technique that tries to model the background
as a series of probability density functions. The gaussian distribution is
commonly used to model the background, and pixels that do not follow the
various distributions are assumed to be part of the foreground.

2.10 Morphological Operations

Mathematical Morphology was developed by Georges Matheron and Jean
Serra. Initially, this method was used for quantification of mineral charac-
teristics from thin cross sections. This was part of Serra’s PhD thesis, the
work also contributed to theoretical advancements in integral geometry and
topology. Mathematical Morphology is useful for pre- and post- processing
of binary images, as it provides as set of tools for expanding and shrinking
regions in an image [25].

Morphological operations are non-linear operations that can be applied to
binary images or grayscale images. These operations are mainly used to al-
ter the shape, form or structure of the concentrated pixels in an image. For
example when applying background subtraction, a binary foreground mask

27

2 THEORY 2.10 Morphological Operations

is extracted and this mask may have some noise which should be removed.
Morphological operations in this context are mainly used for removing noise,
and potentially separating occluded segments. A structuring element (ma-
trix) is used, similarly to convolution, and is applied over all regions in the
binary image.

Dilation, denoted by ⊕ is the dilation of an object A with the structuring
element B. Defined as A⊕ B = {x : Bx ∩ A 6= ∅}. This implies that a pixel
under the anchor point of B is set to 1 if at least one pixel in B is inside A.

Erosion, denoted by 	 is the erosion of an object A with the structuring
element B. Defined as A	B = {x : Bx ⊆ A}. This will set any pixel in the
anchor point B to 1 if B intersects entirely with A.

Dilation and Erosion can be thought of as expansion and shrinking, mixing
these two operators can fill, expand (separate) holes, etc.

Opening, denoted by ◦ is the erosion, and subsequent dilation of the object
A with the structuring element B. Defined as A◦B = (A	B)⊕B, this will
shrink and expand the result, further separating it.

Closing, denoted by •, is the dilation and subsequent erosion of the object A
with the structuring element B. Defined as A • B = (A⊕ B)	 B, this will
expand and shrink fill the expanded segments (fill holes).

28

3 IMPLEMENTATION

3 Implementation

This chapter will emphasize on the methodology used throughout the thesis
work.

3.1 Data Collection

Data has been collected from different sources, some data has been collected
for consecutive days using publicly available on-demand data. Specifically,
the webcams administered by the road authority have been used, since those
cover Norwegian terrain and traffic. Certain busses, trucks and vans can differ
from country to country, in both shape and/or color. In Norway most of the
public busses are Volvo’s, but they may differ in design from region to region.
Capturing these differences is important to ensure correct classifications if the
system is deployed in a different region. Additional data has been collected
from online datasets to add diversity.

Figure 9: Norway’s Road Administrative Authority’s publicly available webcams
in the Stavanger region.

Other data collection sources include the exclusive dark dataset [26] and
KITTI Vision Benchmark [27]. The exclusive dark dataset has been created

29

3 IMPLEMENTATION 3.1 Data Collection

for the sole purpose of training classifiers to identify objects in varying illu-
mination. The project also includes some matlab code which can be used on
images to artificially change the illumination (data augmentation). In addi-
tion, the dataset contains around 7,363 annotated images, spanning across
12 classes (bicycle, bottle, boat, bus, car, cat, chair, cup, dog, motorbike,
people, table), although for this project only four of these classes are rele-
vant.

Lastly, the KITTI dataset is a large dataset used primarily for autonomous
driving tasks/challenges, and contains roughly 15,000 annotated images span-
ning across 8 classes (car, van, truck, pedestrian, person-sitting, cyclist, tram,
misc). Only four classes were relevant here as well, and due to the images
in this dataset being considerably larger, only a subset of this dataset was
extracted. A fair sample of each relevant class was extracted by parsing all
the images and their respective annotation data, images accumulating up a
certain amount of objects (annotations) for each class would be kept.

For the data collected from publicly available webcams, annotation had to
be done manually. LabelImg [28] was used for this purpose, bounding boxes
would be placed over objects of interest and labeled accordingly. Each image
file would have a respective Extensible Markup Language (XML) file which
contained various properties for each annotated object, properties such as
bounding box coordinates, truncation, label, etc. Bounding boxes would be
marked as truncated if the bounding box intersected with the boundaries of
the source image. A bounding box could also be marked as difficult, which
can be helpful to identify highly occluded segments. As for the other data
sources, these had different annotation formats. A conversion was needed for
these, everything was converted to match LabelImg’s annotation format.

Finally, the annotated data would be compiled into a train and test file of
filetype TF record (Tensorflow’s own binary format). Data augmentations
would be done in memory, as specified in the pipeline configuration file. This
file format is not necessary for training and testing a classifier, but for the
purpose of training and testing a streamlined object detection system it was
beneficial. Due to the fact that there are more files to keep track of, it will
lead to unnecessary disk I/O.

A 90-10 train-test split was used for both methods, for the region proposal
based system there would be

• 5089 images for training

30

3 IMPLEMENTATION 3.1 Data Collection

– RAW: 694

– KITTI: 2348

– ExDark: 2047

• 570 images for testing

– RAW: 78

– KITTI: 263

– ExDark: 229

Similarly for the regular CNN based approach there would be

• 18288 images for training

– RAW: 4719

– KITTI: 6240

– ExDark: 7329

• 2014 images for testing

– RAW: 496

– KITTI: 728

– ExDark: 790

Both methods are technically trained on the same data, the classifier is
trained on each actual object in every image in the data used to train the
region proposal system. In the region proposal system, larger images are
used, and these images contain multiple objects that have been annotated
accordingly.

Listing 1: TF Record Format for Object Detection - One annotated object.
1 'image/height ' : dataset_util . int64_feature (height)
2 'image/width ' : dataset_util . int64_feature (width)
3 'image/filename ' : dataset_util . bytes_feature (filename)
4 'image/source_id ' : dataset_util . bytes_feature (filename)
5 'image/key/sha256 ' : dataset_util . bytes_feature (key)
6 'image/encoded ' : dataset_util . bytes_feature (encoded_jpg)
7 'image/format ' : dataset_util . bytes_feature (image_format)
8 'image/object/bbox/xmin' : dataset_util . float_list_feature (xmins)
9 'image/object/bbox/xmax' : dataset_util . float_list_feature (xmaxs)

10 'image/object/bbox/ymin' : dataset_util . float_list_feature (ymins)

31

3 IMPLEMENTATION 3.1 Data Collection

11 'image/object/bbox/ymax' : dataset_util . float_list_feature (ymaxs)
12 'image/object/class/text' : dataset_util . bytes_list_feature (classes_name)
13 'image/object/class/label ' : dataset_util . int64_list_feature (classes_id)
14 'image/object/difficult ' : dataset_util . int64_list_feature (difficult)
15 'image/object/truncated ' : dataset_util . int64_list_feature (truncated)
16 'image/object/view' : dataset_util . bytes_list_feature (poses)

Listing 1 is an example of one annotated object in an image, the fields are
extracted by Tensorflow’s object detection API during training to fetch the
annotated objects.

Figure 10: Augmentations applied to a random image.

Figure 10 showcases various image augmentations applied to an image of a
car. In tensorflow, ImageDataGenerator is used to generate these augmen-
tations, as it supports a vast set of options, such as width-shift, height-shift,
rotation, vertical and horizontal flip, shear, zoom, brightness adjustments,
etc. One thing to keep in mind is that this generator will replace the original
data. Intuitively, it should add to the original data, but it does not. This
can, however, be altered by using a custom data generator.

Table 4: Vehicle Distribution.

Source Bike Bus Car Person Truck

Webcam 1 77 4815 0 322
ExDark 1000 685 2360 4074 0
KITTI 0 0 5623 1956 412

SUM 1001 762 12798 6030 734

32

3 IMPLEMENTATION 3.2 Imbalanced Dataset

3.2 Imbalanced Dataset

Table 4 showcases the vehicle distribution of the data, the data collected is
heavily biased towards general vehicles. And this bias is easily identified in
the confusion matrices (as shown in the results chapter), thus it is consider-
ably easy for the model to correctly identify cars. But other vehicle types
may be generalized to cars as well, because there is simply too few of these
other types in comparison. To overcome this, more data can be added for the
classes that lack enough samples, re-sampling techniques which emphasize on
augmentation, augmenting only the scarce classes, etc.

A technique which has been used to combat the imbalanced data is a custom
data generator. The default data generator shuffles the data and extracts the
first X images for a batch. Due to the imbalance, there is a high probability
that most of the images in each batch will be cars or pedestrians, which
could lead to a network that will have high loss whenever different classes
are introduced in a batch. A custom data generator can be tailored to take
this issue into account. Rather than using one data generator which samples
from all the classes, one generator is used for each class to sample from a
shuffled set of the respective images belonging to that class. The sampling
is probabilistic, thus we can control to a certain extent the probability of a
minority class being present in a batch. A Bernoulli distribution is used to
determine whether or not to extract an image from data generator X with
probability p. For a batch, each class is considered with a probability p,
this probability is higher for the minority classes, and lower for the majority
classes. The algorithm sorts the probabilities from low to high, and evaluates
each class with its probability. Defined as P (x = 1) = p and P (x = 0) = 1−p.
This way the network is guaranteed to be trained on a sufficient amount of
samples from the minority classes. If no class has been decided for an image
in the batch, it will revert to a random selection. Results related to the effect
of this generator can be observed in the results section.

3.3 Tensorflow Library

Tensorflow is a popular machine learning library, it is originally written in
C++ but offers Python bindings that allow the user to make use of the li-
brary through Python. This makes the library very fast, because it directly
interfaces with the lower level bindings. The framework also encourages GPU
acceleration, and is fairly easy to configure if you have compatible hardware.

33

3 IMPLEMENTATION 3.4 Tensorflow Object Detection API

A Compute Unified Device Architecture (CUDA) compatible NVIDIA GPU
is required, and a CPU with Advanced Vector Extensions (AVX) instruction
support is recommended. CPUs launched around 2011 and later should have
AVX support. AVX support is not strictly required to run GPU acceleration,
the default binaries shipped with Tensorflow (via pip) have been compiled
with AVX. If your hardware does not have AVX support, you either recom-
pile the source code or you can download pre-compiled binaries from the
tensorflow-windows-wheel GitHub repository (for Windows OS) [29].

3.4 Tensorflow Object Detection API

An explicit Object Detection Application Programming Interface (API) [30]
has been widely used for the R-CNN approach in this thesis, as it offers a
wide selection of pre-trained models. Some of the pre-trained model choices
are ResNet, EfficientDet, SSD MobileNet, InceptionNet, among others [31].
The various choices have their pros and cons, such as increased performance
vs decreased accuracy, and vice versa. Since this would be deployed on
rather limiting hardware where latency is important, better performance is
preferred.

Listing 2: Installing Tensorflow Object Detection API
1 git clone https : // github . com/tensorflow/models . git
2 cd models/research
3 protoc object_detection/protos /∗ . proto −−python_out=. # Compile protos .
4 cp object_detection/packages/tf2/setup . py . # I n s t a l l TF Obj Det API .
5 python −m pip install −−use−feature=2020−resolver .

Listing 2 showcases how to download and install the API, the steps involved
in using the API are:

• Configure a pipeline configuration file, define how deep the network will
be, preprocessing steps including data augmentation, optimizer, define
pre-trained checkpoint path, train and test data source, etc.

• Convert train and test data into single binary files (TF record) for
streamlined use (assuming data is already annotated and ready).

• Train and evaluate the model using specified evaluation metrics in the
pipeline configuration.

34

3 IMPLEMENTATION 3.4 Tensorflow Object Detection API

• Export the model for inference usage.

These steps are generally followed if a new model structure from scratch is
not necessary. If a new model needs to be defined, more configurations have
to be made rather than relying on the pre-trained model’s configuration.

Configuring: when a pre-trained model has been downloaded, the pipeline
configuration file used for the model in question is copied and edited to fit
the needs of the data you have available. The amount of classes used, path
to train set, test set and pre-trained checkpoint should be updated prior
to training and, additionally, some evaluation metric should be set for the
test set. Tensorflow tensorboard files are generated throughout training and
evaluation, these files can be used to get an in-depth overview of the train
and evaluation process. It is possible to detect overfitting, figure out where
to do early stopping, see if the gradient descent is getting stuck, etc (the files
generated during training are very large though). Metrics available include
the default COCO detection evaluation metrics, and COCO mask evaluation
metrics. Mean Average Precision (MAP) is used as the evaluation measure
for these models.

A wide range of data augmentation options are also available. These options
help improve the model by adding additional data, steps like rotating seg-
ments, flipping, brightness adjustments, crop random regions, etc. will give
the model extra insight. One challenge in this thesis is varying illumination,
especially poor illumination. To account for this, the model is trained with
augmentation configurations that focus on altering the brightness, hue, con-
trast, color and saturation of the training images (to ”sharpen” the model’s
”vision”). But, naturally, this additional data is also helpful in other means,
such as improving the overall accuracy due to more diverse data.

Train & Test data: as mentioned in section 3.1, data is merged into a
binary format so that it can be fed directly to the API.

Training & Evaluation: a file research/object detection/packages/tf2/setup.py
was copied from the API into the workspace to initiate the training. The path
to the pipeline configuration and model directory has to be supplied to this
script. The same script is used for evaluation by supplying –checkpoint dir
and the path to the generated checkpoints from the training procedure.
This eval procedure will generate an eval folder with event files (within
workspace/models/my model here), and these files can then be analyzed in
Tensorboard itself. Additionally, the train procedure can generate event files

35

3 IMPLEMENTATION 3.4 Tensorflow Object Detection API

if –record summaries is set to true.

Run with parameters, where –checkpoint dir is only needed for evaluation.

• –model dir
• –pipeline config path
• –checkpoint dir

Listing 3: Exporting the necessary environment variables for GPU accelera-
tion support.

1 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH : / usr/lib/cudnn/lib64
2 export CUDA_VISIBLE_DEVICES=<ID>

To use GPU acceleration on a Unix based system, the LD LIBRARY PATH
environment variable has to be extended so it can reach the CUDA binaries
and the cuDNN bindings. See listing 3 for an example. The CUDA VISIBLE DEVICES
environment variable is used to let Tensorflow know which GPU to use, the
ID of the GPU, ranging from 0 and up is used. Multiple IDs can be inserted
as well (cuDNN is the Python binding which allows interaction with CUDA
when using Python).

Listing 4: Enable Dynamic Memory Allocation for GPU.
1 cfg = tf . compat . v1 . ConfigProto ()
2 cfg . gpu_options . allow_growth = True

3 sess = tf . compat . v1 . Session (config=cfg)

Lastly, if GPU acceleration is used, configuring the train script to not con-
sume the entire capacity of the GPU will allow for more flexibility, such as
training multiple models on the same GPU, if necessary (see listing 4).

Exporting the model: this is done by copying
research/object detection/packages/exporter main v2.py into the workspace
folder and running it with the parameters

• –input type image tensor
• –pipeline config path
• –trained checkpoint dir
• –output directory

This will generate a subfolder with assets and variables in the exported-
models folder in the workspace, and this model can then be loaded for infer-

36

3 IMPLEMENTATION 3.5 CNNs with Tensorflow

ence.

Inference uses standard Tensorflow object detection API functions, however
there is also a threshold value which can be adjusted. This threshold value
determines the minimum required probability for a detection to be valid.

Figure 11: Region Proposal - Detections within the red stapled box, threshold of
30%.

Figure 11 shows a real time object detection system, detections are registered
inside the Region of Interest (RoI). The real time object detection Graphical
User Interface (GUI) application was written in Python and it uses PyQt5
for the GUI framework [32].

3.5 CNNs with Tensorflow

In addition to the R-CNN approach with the object detection API from
Tensorflow, a technique using a vanilla CNN and background subtraction
has been developed. A CNN is trained on the annotated data, each image
may have multiple annotations since the data is collected and optimized for
region proposal, meaning that these annotated segments have to be extracted
and exported as new individual images.

Tensorflow recommends a file structure like this for CNN models:

• workspace/images
– train

37

3 IMPLEMENTATION 3.5 CNNs with Tensorflow

∗ car
∗ truck
∗ ...

– test
∗ car
∗ truck
∗ ...

The images for the respective classes are then loaded through Tensorflow’s
ImageDataGenerator class by calling flow from directory. ImageDataGener-
ator also supports data augmentation parameters, such as random horizon-
tal flip, vertical flip, shear, zoom, cropping, brightness adjustments, shifting,
rescaling, etc, this way the framework augments your data further, leading
to further train and test samples. This is good for overcoming overfitting,
especially if there is a lack of data overall, and it may naturally help your
model generalize better.

Hyperparameter tuning is initiated to determine the most suitable parame-
ters for the train procedure, the model with the highest accuracy on the test
set is selected, and its parameters are noted. There are endless possibilities
in this tuning procedure, which makes it very important to choose reason-
able parameters. Simply because it will take too long time to check too
many combinations, working with image data is considerably more costly.
Parameters that have been prioritized in this thesis are:

• Optimizers
• Drop Out
• Learning Rates
• Label Smoothing
• Regularization

Optimizers include: RMSProp, Adam and SGD. Drop out is useful to add
because it helps the network to not rely entirely on single nodes. A drop
out of 1% implies that the network has 1% chance to reset the weights on
a random node. As for label smoothing, a value of 0.1 will change how
the model determines if a class belongs to one of the five classes used. For
example, if you have an image with the label car, it would normally imply
that this is 100% a car, but with a label smoothing of 0.1 we say that every
class has a 0.1

5
= 2% chance. This will reduce our model’s confidence in a way

which could boost its way to generalize for unseen data, and the association
would now be 1− 0.02 ∗ 4 = 0.92 = 92% car and 2% for any other class.

38

3 IMPLEMENTATION 3.6 Background Subtraction

For the CNN itself, transfer learning is used, specifically the MobileNet v3
model [33]. This model has been trained on the ImageNet dataset, as men-
tioned in the theory section. Training has been done with both freezing the
weights and unfreezing them (on the convolutional layers). Dropout has been
added to the last convolutional layer (input layer in this case), furthermore,
the fully connected layer consists of a dense layer with 1024 nodes, dropout,
and an output layer with 5 nodes (5 classes). Softmax is used for the output
layer, and relu is used for the hidden layers. Categorical Crossentropy is
used for the loss function, as this is a multi-class setting. L1 regularization is
used on the output layer to penalize large weights (provide slightly simpler
fit), a λ = 0.001 was found to be satisfactory. A fully connected layer with
two hidden layers has also been trained and tested, but this did not provide
any significant change in accuracy. More details about the results of various
parameters will be presented in the next chapter.

3.6 Background Subtraction

Background subtraction is an alternative method to the R-CNN detection
approach, and is used together with a vanilla CNN. The background sub-
traction approach is used to extract objects in motion from a series of images
extracted from a stationary camera. This procedure is prone to generate var-
ious random noise and requires denoising before separating and extracting
the objects of interest. When a frame has been denoised, a set of morpholog-
ical operations (non-linear filters for binary images) will be applied to further
separate objects from one another. Objects are extracted using OpenCV’s
contour line function, which separates objects that are surrounded by differ-
ent pixels (pixel values of 0 and 1 in this case). Finally, the extracted objects
are classified using a CNN.

(a) Mean
Blur

(b) Box
Mean Blur
No norm.

(c) Median
Blur

(d) Gaussian
Blur

(e) Bilateral
Filter

Figure 12: Various filters applied before using any morphological operations.

39

3 IMPLEMENTATION 3.6 Background Subtraction

Figure 12 visualizes how the different filters applied to the very first frame
have turned out. The median filter seems to be the strongest filter overall,
followed by the bilateral filter.

Figure 13: Capturing an image, detecting the objects in motion, and extracting
them.

In figure 13, a frame from a webcam has been captured and the foreground
objects have been extracted, and are now separable. The separated objects
can be fed to a classifier, in this case, a CNN.

OpenCV’s K Nearest Neighbour (KNN) background subtractor is used and
it holds a history of 50 images at a time, which it uses to adapt to the fore-
ground changes. When a foreground object is extracted, various smoothing
thresholds are applied from low to high. The increased smoothing removes
more noise and the detection function tries to minimize this noise by finding
the most suitable smoothing value. A median filter is used immediately on
the extracted foreground image, and is followed by OpenCV’s find contours
function. This will extract the objects in the binary mask then, finally, the
position and size of these objects will be used to extract the RGB counterpart
from the source image. At this point, the objects are ready for classification.

A threshold is given to determine the minimum amount of % reasonable
objects required for a smoothing value to be deemed useful, all smooth-
ing values are evaluated, and the highest score (% of reasonable objects)
is selected. Reasonable objects are objects that are at least greater than a
given minimum size, so, if there is a lot of tiny noise segments, these will
be excluded, thus if there is too much noise the reasonable objects fraction
will be small, thereby trying a higher smoothing value for ”better luck”:
RFrac = RCount

Num Objects
where RFrac is a value between 0 to 1 and RCount is the

amount of reasonable objects. Num objects is the total number of objects
extracted from the find contours function. Smoothing values {1, 3, 5, 7, 9}
were used for this algorithm, more values can be used (odd values), higher
values blur more, thus potentially removing important details in the image.

After applying smoothing, various morphological operations conforming to

40

3 IMPLEMENTATION 3.6 Background Subtraction

a research paper from Javadzadeh, Banihashemi and Hamidzadeh is ap-
plied [34].

• Dilation with a 5× 5 structuring element.

• Closing with a 3× 3 structuring element.

• Erosion with a 6× 6 structuring element.

• Opening with a 7× 7 structuring element.

The size of the structuring elements can determine if smaller patches get
filled, larger regions get merged, etc.

41

4 RESULT

4 Result

This chapter will emphasize on presenting the findings of various experiments
conducted throughout the thesis work.

4.1 Data Collection

As mentioned in the implementation section, some data was collected both
manually and online. The images collected via the online webcams hosted
by the road administrative authority have rather varying quality. Qualities
such as resolution, frames per second (FPS), positioning, and surrounding
illumination from headlights varies a lot from region to region. Most of the
images collected were 800× 600 pixels (RGB).

Figure 14 displays some samples from the various locations used for collecting
data from publicly available webcams. Busier roads have a better coverage,
such as positioning, illumination along the road, etc. New image frames
could be acquired from their respective sources every 4 to 8 minutes. There
are also live webcams (streams) available, but these are only stationed in
busier roads near the major cities. The frames per second on these live
streams were between 1 to 2, with various hiccups every 10 seconds, short
video streams were retrieved from their server and would only consist of a
few frames recorded within a short interval.

These video streams were used to test the real time region proposal system,
but those were more challenging to rely on for the background subtraction
based method, due to the low frequency of images it became infeasible to
properly separate the foreground from the background (too much difference
between successive frames produces too much noise).

4.2 Region Proposal & Object Detection

As seen in figure 11, detections and classifications are made in real time solely
based on the input frame. Evaluation is done through tensorboard event files
which are generated during train and evaluation, as stated earlier. These
files need to have a distinct prefix events.out.tfevents.* to be recognized by
tensorboard.

42

4 RESULT 4.2 Region Proposal & Object Detection

(a) Auglend North (b) Auglend South

(c) Nøstvet (d) Ullev̊al

(e) Vatland

Figure 14: Some samples collected from the public webcams.

43

4 RESULT 4.2 Region Proposal & Object Detection

Figure 15: Evaluating the EfficientNet detection model in tensorboard.

In figure 15 we can decipher how well the predictions are, the left image will
show the predicted detection anchor points and the classification, and the
right image is the ground truth.

Figure 16: Evaluating the EfficientNet detection model in tensorboard.

44

4 RESULT 4.3 Convolutional Neural Networks

Table 5: Top 5 Accuracy, round 1 (3 epochs).

Loss Acc Batch
Size

Optimizer Learn
Rate

Drop
Out

Lbl
Smooth

Reg
Type

Reg
Value

1.03656 0.68918 16 SGD 0.001 0 0 L1 0.001
1.09448 0.66683 16 SGD 0.001 0.2 0 L1 0.001
0.86586 0.65392 16 SGD 0.001 0.2 0 L2 0.0001
1.06023 0.64945 16 SGD 0.001 0.1 0 L1 0.001
0.86956 0.64499 16 SGD 0.001 0 0 L2 0.001

Table 6: Hyperparameter tuning parameters overview (1296 combinations).

Batch
Size

Optimizer Learn
Rate

Drop
Out

Lbl
Smooth

Reg
Type

Reg
Value

Tuning

8 RMSprop 0.001 0 0 L1 0.0001 No
16 Adam 0.01 0.1 0.1 L2 0.001 Yes

SGD 0.1 0.2 0.2

Furthermore, in figure 16, the performance metrics can be analyzed. These
metrics reflect how well the model is able to predict correct anchor points for
bounding box proposals, and whether or not the model is able to correctly
predict the class label.

4.3 Convolutional Neural Networks

In most of the experiments the MobileNet v3 model has been used. This
model requires images of size 224×224, and normalized pixel values between
0− 1. This model is optimized for IoT devices, and has a significantly lower
amount of parameters that have to be trained (roughly 5.4 M). Training is
fast (≈ 5 min per epoch) and convergence can be reached within roughly 15
epochs.

45

4 RESULT 4.3 Convolutional Neural Networks

...

...
...

x1

x2

x3

xn

h1

hn

y1

yn

Input
layer

Hidden
layer

Ouput
layer

Figure 17: Fully Connected Layer.

Figure 17 showcases the fully connected layer used.

• xn = 1280

• hn = 1024

• yn = 5

x is the resulting flattened feature vector from the convolutional filters and
pooling. The input for the convolutional network is 224×224×3 = 50176×3,
and from this a size 1280× 1 feature vector is extracted.

Naive approach: a naive model was initiated at first for testing purposes,
with parameters chosen based on intuition.

• 16 Batch Size.

• 0.0001 learning rate, RMSProp.

• 0.2 dropout on the input layer.

• 0.1 label smoothing.

46

4 RESULT 4.3 Convolutional Neural Networks

• 0.0001 L2 regularization on the output layer.

• No hidden layer.

Figure 18: Naive model confusion matrix.

Training was only done for 4 epochs. In figure 18, we can see that the car
& person classes have almost entirely converged, while the other minority
classes are not performing particularly well, especially the truck class seems
to generalize most trucks to cars.

Hyperparameter tuning was initiated with the various parameters listed
in table 6. These combinations of parameters were used for 3 epochs each. As
seen in table 5, the top five results have been listed. This process was very
time consuming, each epoch took roughly 5 minutes each. Firstly, tuning

47

4 RESULT 4.3 Convolutional Neural Networks

was set to false so that it would take less than a week to generate the results
(tuning decides whether or not to unfreeze the weights on the pre-trained
model). The major drawback, however, is that 3 epochs is a far too low
number. Initially the network should mature for several epochs, and learning
curves would be analyzed to see if early stopping would be useful (in case of
overfitting). Due to the greediness of the grid search, a lower epoch count
was selected.

Figure 19: Tuned model confusion matrix, after 3 epochs.

As seen in figure 19, the tuned model performs worse on some classes com-
pared to the naive approach, but when training with these parameters further
for 80 epochs we get a slightly better result.

As seen in figure 20, the accuracy has improved, but not significantly. No
hidden layers were used for the architecture here either.

48

4 RESULT 4.3 Convolutional Neural Networks

(a) Learning Curve

(b) Confusion Matrix

Figure 20: Training with the optimal parameters for 80 epochs.

49

4 RESULT 4.3 Convolutional Neural Networks

Class imbalance challenges: to deal with data imbalance, two methods
were tested. The first involves getting rid of data from the ExDark and
KITTI set. The car class is removed from both, and the person class is
removed from ExDark. Data was removed because some of the data collected
online did not have entirely consistent annotation.

• 16 Batch Size.

• 0.001 learning rate, SGD.

• 0.1 dropout on the input layer.

• 0.1 label smoothing.

• 0.001 L1 regularization on the output layer.

• No hidden layer.

50

4 RESULT 4.3 Convolutional Neural Networks

Figure 21: Smaller Dataset Confusion Matrix (100 epochs).

The smaller dataset, as shown in figure 21, seems to only separate bikes and
buses better than the previous model. The second method to get around
the imbalanced data is to use a custom data generator which weighs the
smaller classes higher than the majority classes, implying that classes with
low occurrence will have a higher probability to be present in a batch (as
explained in the previous chapter).

The following approach, and approaches, used the network in figure 17.

• 32 Batch Size.

• 0.001 learning rate, RMSProp.

• 0.2 dropout on the input layer.

51

4 RESULT 4.3 Convolutional Neural Networks

• 0.2 dropout on the hidden layer.

• 0.15 label smoothing.

• 0.001 L1 regularization on the output layer.

• 1 hidden layer.

Figure 22: Training with a custom data generator, confusion matrix (65 epochs).

These results are slightly more acceptable, as in figure 22 all of the classes
are separated by at least 80%. The model generally struggles to separate
bikes and people, because the images with bikes normally have a person on
it.

Evaluating Custom Data Generator: to verify whether or not the cus-
tom data generator actually makes a positive contribution, it has been tested

52

4 RESULT 4.3 Convolutional Neural Networks

with various probability distributions for the different classes. The distribu-
tions in table 7 have been tested.

• 64 Batch Size, 20 epochs for each distribution.

• 0.001 learning rate, RMSProp.

• 0.25 dropout on the input layer.

• 0.25 dropout on the hidden layer(s).

• 0.15 label smoothing.

• 0.001 L1 regularization on the output layer.

• 1 hidden layer in the first attempt, 2 in the other.

Table 7: Distributions.

bike bus car person truck

0 0 0 0 0
0.50 0.80 0.25 0.35 0.75
0.60 0.70 0.25 0.35 0.65
0.70 0.60 0.25 0.35 0.55
0.80 0.50 0.25 0.35 0.45
0.40 0.90 0.25 0.35 0.85
0.40 0.80 0.25 0.35 0.90
0.40 0.90 0.25 0.35 0.90
0.50 0.80 0.55 0.45 0.75
0.60 0.80 0.65 0.55 0.75
0.60 0.70 0.75 0.65 0.60

53

4 RESULT 4.3 Convolutional Neural Networks

(a) One Hidden Layer

(b) Two Hidden Layers

Figure 23: High to Low Accuracy of various custom data generator distributions.

Figure 23 confirms that certain distributions matter, and that it generally is
most sufficient when the probability for cars and persons are lower than the
minority classes.

Unfreezing the weights: using the most suitable data generator distribu-

54

4 RESULT 4.3 Convolutional Neural Networks

tion from the previous result, a new model was trained with this distribution[
0.60 0.70 0.25 0.35 0.65

]
while unfreezing the weights. This will update

the weights on the convolutional layers, such as the filters, during training,
thus changing how features are extracted as well. This will help the model
further adapt to the type of data used.

• 64 Batch Size.

• 0.001 learning rate, RMSProp.

• 0.1 dropout on the input layer.

• 0.1 dropout on the hidden layer.

• 0.15 label smoothing.

• 0.001 L1 regularization on the output layer.

• 1 hidden layer.

55

4 RESULT 4.3 Convolutional Neural Networks

(a) Learning Curve

(b) Confusion Matrix

Figure 24: Training the model with tuning set to true and an optimal distribution
(30 epochs).

Training using a larger model: EfficientNet b7 [35] has also been tested.

56

4 RESULT 4.3 Convolutional Neural Networks

This model contains roughly 66 M params (number of weights in the net-
work), consequently increasing the overall training time. Additionally, this
model expects images of size 600× 600, which is much higher than the Mo-
bileNet v3 counterpart, making this model consume considerably more mem-
ory not only because the inputs are larger, but because the network is larger
as well.

• xn = 2560, more features are extracted here.

• 32 Batch Size.

• 0.001 learning rate, RMSProp.

• 0.25 dropout on the input layer.

• 0.25 dropout on the hidden layer.

• 0.15 label smoothing.

• 0.001 L1 regularization on the output layer.

• 1 hidden layer.

57

4 RESULT 4.3 Convolutional Neural Networks

(a) Learning Curve

(b) Confusion Matrix

Figure 25: Training a model using EfficientNet b7 for 50 epochs with the optimal
distribution.

The EfficientNet model did not increase performance considerably, barely 1%

58

4 RESULT 4.4 Profiling

difference can be noticed when computing the accuracy and comparing it to
the previous model(s).

AccEfficientNet =
98 + 65 + 1119 + 526 + 63

2014
= 0.929 ≈ 0.93

AccMobileNet Tuned =
87 + 69 + 1120 + 516 + 69

2014
= 0.924

4.4 Profiling

Multiple parameters have been measured to determine practical aspects of
the methods developed throughout this thesis. Profiling has been done with
and without a GPU. Predictions were made on 2014 successive images, with
a batch size of 32 (≈ 63 predictions per batch).

Parameters considered for the models, including both region proposal system
and regular convolutional neural network, were:

• Loading Time

• Prediction Time

• Average Prediction Time

• Process Memory Consumption

• GPU Memory Consumption

All profiling was done with an Intel i5 750 CPU, Tesla P100 GPU (for general
CNN) and Tesla V100 GPU (for region proposal system).

4.5 Background Subtraction

Under ideal conditions, such as having a sufficient FPS on the video stream,
and a stabilized perspective, the algorithm is able to extract the objects of
interest, as seen in figure 13.

59

5 DISCUSSION

Table 8: Profiling CNN, time in seconds, AVG predictions measure the time
it took to predict each sample in a batch.

Type Model Load
Time

Pred
Time

AVG
Pred
Time

Process
Mem

GPU
Mem

CPU
MobileNet 19.314 94.046 1.517 281 MiB 0
MobileNet
Tuned

23.311 92.262 1.488 304 MiB 0

EfficientNet 288.29 660+ ??? ??? 0

GPU
MobileNet 4.45 24.866 0.401 1559 MiB 6422 MiB
MobileNet
Tuned

5.472 6.094 0.098 210 MiB 6422 MiB

EfficientNet 54.347 79.309 1.279 2486 MiB 10518 MiB

Table 9: Profiling Region Proposal System, time in seconds, AVG predictions
measure prediction time per image.

Type Model Load
Time

Pred
Time

AVG
Pred
Time

Process
Mem

GPU
Mem

CPU
MobileNet 55.683 73.867 0.130 797 MiB 0
EfficientNet 132.883 300.550 0.527 1605 MiB 0

GPU
MobileNet 13.940 32.522 0.057 2124 MiB 2236 MiB
EfficientNet 32.454 32.936 0.058 1212 MiB 2236 MiB

5 Discussion

Various models have been built and tested, all of them leverage transfer
learning. One disadvantage can be that the feature maps generated are not
entirely sufficient for the target data, but this can be dealt with by tuning the
model further (unfreeze weights). Although if the transfer learning models
have been trained on irrelevant data, it may not be sufficient regardless. In
this case, all transfer learning models leverage relevant data, but there is
also considerable amounts of irrelevant data due to the size of the data used
(ImageNet / COCO).

60

5 DISCUSSION 5.1 Data Collection

5.1 Data Collection

Finding reliable sources for the data can be a challenge, especially when you
have limited time for collecting and annotating data manually. The data
collected online have some samples that can be misleading, such as anno-
tations that cover multiple objects of the same class, or multiple objects of
different classes. A dedicated camera for recording brief segments of traffic
would also be useful, relying on the webcam stream did not provide a suf-
ficient data rate, which in some cases resulted in poor performance of the
background subtraction algorithm. The region proposal system was, how-
ever, not affected by this issue, mainly because this algorithm does not rely
on successive frames to detect objects in motion.

5.2 Region Proposal & Object Detection

Training the region proposal network was considerably more challenging due
to memory restrictions, seen as even the most lightweight models would ex-
ceed the capacity of a 32 gigabyte (GB) Video Random Access Memory
(VRAM) Tesla V100 GPU. Using multiple GPUs would have been more fea-
sible, but not very practical on a system where most of the resources are
constrained.

More options could have been tested here, such as editing the pipeline con-
figuration to use different optimizers, learn rates, etc. However, due to the
constraints mentioned, the simpler method utilizing a CNN and background
subtraction was favored.

5.3 Convolutional Neural Networks

Various models have been built and tested, relatively high accuracy has been
achieved in the final models. There is, however, some challenges in increasing
the accuracy further, due to data constraints. Some classes simply have too
little data, and some data samples are not entirely consistent. There’s a few
samples in the data collected manually which are far too small, and some
samples in the data collected online which have inconsistent annotation, such
as larger portions of the image annotated as a single class rather than being
split up (large occluded segments). These issues can potentially confuse the

61

5 DISCUSSION 5.3 Convolutional Neural Networks

neural network. As seen in the confusion matrices in the previous chapter,
there is a tendency for most classes to be generalized to cars (imbalance
challenge).

Naive approach: in figure 18, the majority classes have been fairly well
separated. However, the minority classes have a large portion generalized to
the majority classes rather than their own respective classes.

Hyperparameter tuning: this tuning procedure is not particularly helpful
because the models have not been trained for a sufficient amount of epochs.
Working with image data and deep neural networks make it challenging to
train models within a sufficient time span.

Class imbalance challenges: lowering the amount of data worsens the
performance, even when being trained for 100 epochs there is still severe
misclassification amongst some of the classes (as seen in figure 21). Utilizing
a custom data generator to directly influence the sampling procedure in a
way which guarantees more minority classes to be present in a batch, did,
however, improve the accuracy slightly. The increase is not considerably
large, but it is not negligible.

Evaluating Custom Data Generator: a suitable distribution, one which
maximizes the accuracy over at least 20 epochs, had to be found. This
distribution was actively used in the newer models, and it did provide further
improvements to the separation of the various classes. This is true because
the generator increases the probability of minority classes being present in a
batch, thus the network will converge early by taking all classes into account
(as seen in figure 24).

Unfreezing the weights: this provided further accuracy increase, since
unfreezing the weights of the transfer learning model allows the convolutional
filters’s weights to adapt further to the data being used. This will allow the
network to capture further details, which could help separate the classes from
one another.

Training using a larger model: in this case, the larger model does not pro-
vide considerable increase in accuracy. This could be related to the fact that
there was too little data available (see figure 25). Nor does a larger model
imply better accuracy, though a deeper network could capture details that
are more significant, thus separating the classes with a higher accuracy. This
model does, however, increase the accuracy of correctly classifying pedestri-
ans, which is crucial.

62

5 DISCUSSION 5.4 Profiling

(a) True:
Bike
Pred:
Person

(b) True:
Person
Pred: Bike

(c) True:
Person
Pred: Bike

(d) True:
Truck
Pred: Car

(e) True:
Car
Pred:
Truck

(f) True:
Car
Pred:
Truck

(g) True:
Bus
Pred: Car

(h) True:
Bus
Pred:
Person

(i) True:
Bus
Pred:
Truck

Figure 26: Some random samples with misclassifications, from the test set (using
the tuned MobileNet model).

Class Separation Challenges: In figure 26, various misclassifications are
listed, and many of these images are either small, cropped to some extent, or
have heavy illuminated headlights. Separation between bike and person can
be tough, samples like these will confuse the network. Either bike and person
should be merged to one class (person), or bike and person must be fully sep-
arate images (objects). Naturally, larger cars may accidentally be classified
as trucks, or even busses, this is however not necessarily a big problem. More
problematic is classifying vehicles as persons, or persons as vehicles, we see
that in figure 24, there is only 1 bus classified as a person, however there are
6 persons classified as busses, 12 as cars and 10 as trucks. False positives and
false negatives of this magnitude can lead to safety concerns. To improve on
this, the data should be overhauled. Sufficient data collection for every class,
with proper annotation, and possibly removing the bike class would be the
next few steps to deal with this challenge.

5.4 Profiling

Table 8 and 9 showcases roughly how costly the two methods are. These re-
sults may vary depending on the hardware used, but it establishes a fair base-
line regardless. The results indicate that the regular CNN method is faster,

63

5 DISCUSSION 5.5 Background Subtraction

something which is expected (no greedy segmentation and region extraction
needed, solely relying on convolutional filters and pooling to extract features).
However, the region proposal approach is not particularly bad, as this ap-
proach predicts multiple objects per image at a decent rate. Even when using
CPU only, it performs fairly well with 130 milliseconds per prediction. CNN
is naturally faster in every regard because it only works with a single smaller
image, the prediction time per image is AV G Pred T ime

2014
32

= 1.488
63

= 0.0236 sec

for the tuned model.

As for the loading times, loading a region proposal model is taking longer
due to more weights and general variables in these models. The EfficientNet
CNN model used also suffers from this, so the loading time is significantly
larger than the MobileNet counterparts. Again, this is due to the difference
in model architecture, seen as EfficientNet has a huge amount of weights in
comparison. The implications of high loading times could be problematic in
a real time setting, as if for whatever reason the system crashes, it will take
at least ≈ 20 seconds for the system to restart, and in this time multiple
vehicles could enter the tunnel without being registered.

Lastly, the implications of minimal hardware is quite relevant in simple IoT
devices. The results presented would require at least 300 megabyte (MB)
Random Access Memory (RAM) and a decent single core CPU. However,
using a GPU will provide much faster predictions, but will require at least
3 GB VRAM (region proposal system) or 7 GB (general CNN). These VRAM
values may vary depending on how much VRAM Tensorflow decides to cache.

Using a tuned (unfrozen weights) MobileNet model seems to perform very
well when used with a GPU. The process uses significantly less memory,
most likely because the GPU is used more effectively on the tuned model
than the regular model. A significant difference in prediction times can also
be observed between the tuned and regular model, when using a GPU. It
is, however, important to note that the GPUs used in these experiments are
incredibly powerful in comparison to consumer grade GPUs.

5.5 Background Subtraction

Figure 13 showcases the detection algorithm used, however, due to limiting
factors regarding the online video streams, it has been challenging to fine
tune this algorithm. Most of the effort has been put into tuning the CNN,

64

5 DISCUSSION 5.5 Background Subtraction

although the background subtraction algorithm developed is still capable,
it is quite prone to noise, which typically is excessively generated when the
video stream has a low throughput.

65

6 FURTHER WORK

6 Further Work

Diving deeper into object detection frameworks like Detectron [36] from Face-
book, and You only look once (YoLo) [37] would be an appropriate step to-
wards building a more solid foundation. Relying on traditional methods like
background subtraction is not recommended, as it is not particularly reli-
able due to weather, occlusion and lighting anomalies. Additionally, the bike
and pedestrian class could possibly be merged into a single class, pedestrian.
Also, naturally, collecting more data for the various classes and preferably
having a separate test set with entirely unique data for better validation of
the different models.

If, however, a classical approach is still preferred, having a dedicated camera
available for real time testing would be beneficial. This would make it easier
to fine tune the background subtraction algorithm used.

Additionally, collecting an explicit dataset with challenging samples, such as
vehicles in poor illumination, floodlight blending, etc, would be useful to test
the resilience of the system. Such data should preferably be collected during
the autumn, because otherwise it will be challenging to find samples with
poor illumination, due to how the sun is projected over Norway.

66

7 CONCLUSION

7 Conclusion

With the data collected, a system has been built and tested for detecting and
classifying vehicles. Transfer learning has been heavily used in this work,
and it did provide reasonable results. There are however some challenges
related to further improving the performance of the system, mostly due to
the collected data not being fully sufficient. The system has been trained
on five classes, although the amount of classes can potentially be further
generalized down to four. Due to the nature of bikes and pedestrians, there
are challenges separating the two, especially when some samples have persons
riding on bikes.

Other potential methods for further improving on the system as a whole has
been presented as further work.

67

REFERENCES REFERENCES

References

[1] F. J. Helland, “Nye r̊ad etter tunnelbrann: Må bli lettare for folk å
komme seg ut,” NrK.

[2] paperswithcode, “Image classification on imagenet.” https:

//paperswithcode.com/sota/image-classification-on-imagenet.
Accessed: June 15, 2021.

[3] E. A. Thomessen, “Advanced vision based vehicle classification for traffic
surveillance system using neural networks,” pp. 1–118, 2017.

[4] E. Sudland, “Gjenkjenning av kjøretøy ved inn- og ut- kjøring av tun-
neler,” pp. 1–122, 2016.

[5] S. C. Kleene, “Representations of events in nerve nets and finite au-
tomata,” pp. 1–101, 1951.

[6] D. Hebb, The Organization of Behavior. Psychology Press, 1949.

[7] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” pp. 386–408, 1958.

[8] M. Olazaran, “A sociological study of the official history of the percep-
trons controversy,” p. 611–659, 1996.

[9] M. Minsky and S. Papert, “Perceptrons: An introduction to computa-
tional geometry,” pp. 1–308, 1988.

[10] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

[11] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, pp. 303–314, 1989.

[12] P. L. Vu-Quoc, “Artificial neural network.” https://en.wikipedia.

org/wiki/Artificial_neural_network. Accessed: June 15, 2021.

[13] G. Hinton, “Overview of mini-batch gradient descent.” http://www.cs.

toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
Accessed: June 15, 2021.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

68

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

REFERENCES REFERENCES

[15] R. Jain, “3 types of gradient descent algorithms for small large
data sets.” https://www.hackerearth.com/blog/developers/

3-types-gradient-descent-algorithms-small-large-data-sets/.
Accessed: June 15, 2021.

[16] S. Saha, “A comprehensive guide to convolutional neural net-
works — the eli5 way.” https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.
Accessed: June 15, 2021.

[17] data hacker, “Cnn alexnet.” http://datahacker.rs/

deep-learning-alexnet-architecture/. Accessed: June 15,
2021.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” Inter-
national Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–
252, 2015.

[19] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
CoRR, vol. abs/1311.2524, 2013.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[21] R. Girshick, “Fast r-cnn,” 2015.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” 2016.

[23] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” Lecture Notes in Computer
Science, p. 21–37, 2016.

[24] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spa-
tial transformer networks,” 2016.

[25] I. Young, “Image analysis and mathematical morphology, by j. serra.
academic press, london, 1982, xviii + 610 p.,” Cytometry, vol. 4, pp. 184–
185, 09 1983.

69

https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/
https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://datahacker.rs/deep-learning-alexnet-architecture/
http://datahacker.rs/deep-learning-alexnet-architecture/

REFERENCES REFERENCES

[26] Y. P. Loh and C. S. Chan, “Getting to know low-light images with the
exclusively dark dataset,” Computer Vision and Image Understanding,
vol. 178, pp. 30–42, 2019.

[27] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[28] Tzutalin, “Labelimg.” https://github.com/tzutalin/labelImg,
2015.

[29] fo40225, “Tensorflow prebuilt binary for windows.” https://github.

com/fo40225/tensorflow-windows-wheel, 2021.

[30] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fis-
cher, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/ac-
curacy trade-offs for modern convolutional object detectors,” CoRR,
vol. abs/1611.10012, 2016.

[31] Google, “Tensorflow object detection model zoo.” https:

//github.com/tensorflow/models/blob/master/research/object_

detection/g3doc/tf2_detection_zoo.md. Accessed: June 15, 2021.

[32] PyQt5. https://www.qt.io/. Accessed: June 15, 2021.

[33] Google, “Tensorflow hub, mobilenet v3, feature vector.”
https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_

224/feature_vector/5. Accessed: June 15, 2021.

[34] R. Javadzadeh, E. Banihashemi, and J. Hamidzadeh, “T fast vehicle de-
tection and counting using background subtraction technique and pre-
witt edge detection,” 2015.

[35] Google, “Tensorflow hub, efficientnet b7, feature vector.” https://

tfhub.dev/google/efficientnet/b7/feature-vector/1. Accessed:
June 15, 2021.

[36] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He, “Detec-
tron.” https://github.com/facebookresearch/detectron, 2018.

[37] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

70

https://github.com/tzutalin/labelImg
https://github.com/fo40225/tensorflow-windows-wheel
https://github.com/fo40225/tensorflow-windows-wheel
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/feature_vector/5
https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/feature_vector/5
https://tfhub.dev/google/efficientnet/b7/feature-vector/1
https://tfhub.dev/google/efficientnet/b7/feature-vector/1
https://github.com/facebookresearch/detectron

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Perceptron. 9

2 Multi-Layer Perceptron. 10

3 Neuron [12]. 10

4 Gradient Descent in action [15]. 12

5 CNN Architecture [16]. 16

6 AlexNet Architecture [17]. 17

7 Convolving an image with sobel filter in x and y direction, and
computing the magnitude of the gradient. 19

8 R-CNN Overview [19]. 23

9 Norway’s Road Administrative Authority’s publicly available
webcams in the Stavanger region. 29

10 Augmentations applied to a random image. 32

11 Region Proposal - Detections within the red stapled box, thresh-
old of 30%. 37

12 Various filters applied before using any morphological opera-
tions. 39

13 Capturing an image, detecting the objects in motion, and ex-
tracting them. 40

14 Some samples collected from the public webcams. 43

15 Evaluating the EfficientNet detection model in tensorboard. . 44

16 Evaluating the EfficientNet detection model in tensorboard. . 44

17 Fully Connected Layer. 46

18 Naive model confusion matrix. 47

71

LIST OF FIGURES LIST OF FIGURES

19 Tuned model confusion matrix, after 3 epochs. 48

20 Training with the optimal parameters for 80 epochs. 49

21 Smaller Dataset Confusion Matrix (100 epochs). 51

22 Training with a custom data generator, confusion matrix (65
epochs). 52

23 High to Low Accuracy of various custom data generator dis-
tributions. 54

24 Training the model with tuning set to true and an optimal
distribution (30 epochs). 56

25 Training a model using EfficientNet b7 for 50 epochs with the
optimal distribution. 58

26 Some random samples with misclassifications, from the test
set (using the tuned MobileNet model). 63

72

LIST OF TABLES LIST OF TABLES

List of Tables

1 A 4× 4 matrix, applied 2× 2 max pooling with stride = 2. . . 19

2 Confusion Matrix Example. 20

3 Various pre-trained models, trained on ImageNet [2]. 22

4 Vehicle Distribution. 32

5 Top 5 Accuracy, round 1 (3 epochs). 45

6 Hyperparameter tuning parameters overview (1296 combina-
tions). 45

7 Distributions. 53

8 Profiling CNN, time in seconds, AVG predictions measure the
time it took to predict each sample in a batch. 60

9 Profiling Region Proposal System, time in seconds, AVG pre-
dictions measure prediction time per image. 60

73

LIST OF PROGRAM CODE LIST OF PROGRAM CODE

List of Program Code

1 TF Record Format for Object Detection - One annotated object. 31
2 Installing Tensorflow Object Detection API 34
3 Exporting the necessary environment variables for GPU accel-

eration support. 36
4 Enable Dynamic Memory Allocation for GPU. 36

74

LIST OF PROGRAM CODE LIST OF PROGRAM CODE

Abbreviations

Adam Adaptive Moment Optimization

AI Artificial Intelligence

ANN Artificial Neural Networks

API Application Programming Interface

AUC area under the curve

AVG average

AVX Advanced Vector Extensions

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processing Unit

CT computed tomography

CUDA Compute Unified Device Architecture

FPS frames per second

GB gigabyte

GD Gradient Descent

GiB gibibyte

GMM Gaussian Mixture Model

GPU Graphical Processing Unit

GUI Graphical User Interface

HoG Histogram of Oriented Gradients

HSV Hue, Saturation, Value

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoT Internet of Things

75

LIST OF PROGRAM CODE LIST OF PROGRAM CODE

IoU Intersection over Union

KNN K Nearest Neighbour

MABO Mean Average Best Overlap

MAP Mean Average Precision

MB megabyte

MiB mebibyte

MSE Mean Squared Error

NN Neural Network

RAM Random Access Memory

R-CNN Regions with CNN Features

ReLu Rectified Linear Unit

RGB Red, Green, Blue

RMSProp Root Mean Square Propagation

ROC Receiver Operating Characteristic

RoI Region of Interest

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SSD Single Shot Detector

STN Spatial Transformer Network

SVM Support Vector Machine

VRAM Video Random Access Memory

XML Extensible Markup Language

YoLo You only look once

76

LIST OF PROGRAM CODE LIST OF PROGRAM CODE

Terms

convolved A filter (square matrix) is convolved with a target image, the
filter slides across the image and transforms intersecting pixels

disk I/O Writing and reading to/from a disk (operations)

Max Norm (L1) ||w||1 = max(
∑m

c=1 |ac|), sum each column and pick the
max

ReLu Rectified Linear Unit, max(0, x)

sigmoid 1
1+e−x

softmax exi∑K
j=1 e

xj

tanh Hyperbolic Tangent, (ex−e−x)
(ex+e−x)

greedy An algorithm is considered greedy if it performs CPU and memory
intensive operations in a brute-force manner (naive or inefficient, but
necessary)

gridsearch Try lots of parameter combinations, measure accuracy to see
which combinations were best (hyperparameter tuning)

params Defines the complexity of a neural network, the number of params
is the total amount of weights in the network

Frobenius Norm (L2) ||w||22 =
√∑m

i=1

∑n
j=1 |aij|2

vanilla Classical technique / regular technique

77

LIST OF PROGRAM CODE .1 Code Hierarchy

Appendix

.1 Code Hierarchy

• preprocessing.ipynb - Used for splitting the data into train and test,
creates a file which holds the filenames rather than copying over the
same files. Additionally it includes some histogram plots of the various
vehicle distributions, and an algorithm for extracting the objects in the
annotated images, such that they can be used in a regular CNN.

• gen-tf-record.ipynb - Generates the TF Record files from the train
and test image folders. These folders contain the mapping files which
hold images and their respective annotation file paths.

• convert-data-labels.ipynb - Is used to convert other annotation for-
mats, and image formats to the correct formats. Various parsers and
translation stuff logic is found here.

• webcam-scraper [.ipynb, .py] - Is used for fetching images from
certain webcams.

• utils.py - Utility functions for plotting and parsing XML.

• stream.py - Realtime R-CNN / SSD based object detection system,
utilizes PyQt5 for the GUI.

• object-detection.ipynb - Used for testing the R-CNN / SSD ap-
proach on single images.

• object-detection-bgsub.ipynb - Used for testing vanilla CNN with
BG subtraction logic.

• detection.py - Contains object detection utility functions for the R-
CNN / SSD approach.

• eval-stat.py - Used for creating plots for the evaluation of the custom
data generator.

• transfer-learning.py - Used for training vanilla CNN, doing hyper-
param tuning, testing distributions, etc.

• testing.ipynb - Misc testing, and various plotting.

• profiling.py - Used for profiling the CNN and region proposal method.

78

LIST OF PROGRAM CODE .2 Training a regular CNN

.2 Training a regular CNN

Navigate to transfer-learning.py, in the function createModel, alter the
default parameters to fit your needs, then run the file in the usual way. To run
tuning logic, supply an additional command line argument when running the
file. Update the call to gridSearchOptimize with a different tuning method
if necessary.

.3 Training a region proposal network

This procedure has been covered in the implementation section, download
pre-trained models at the Tensorflow Object Detection Model Zoo, alter the
pipeline configuration file, run the scripts mentioned in the implementation
section.

.4 Resources

• Source Code + Data on GitHub

• Tensorflow Hub

• Tensorflow Object Detection API

• Tensorflow Object Detection Model Zoo

• Tensorflow Object Detection API Documentation

• Real Time Obj. Det. Demo

79

https://github.com/BerntA/CVEET
https://tfhub.dev/s?module-type=image-classification,image-classification-logits,image-classifier,image-feature-vector,image-object-detection,image-segmentation&tf-version=tf2
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=zNQiT8J-XMI

	Preface
	Abstract
	Introduction
	Background
	Object Recognition
	Previous Work
	Problem Statement

	Theory
	Artificial Neural Networks
	Convolutional Neural Networks
	Evaluating a Neural Network
	Transfer Learning
	Regions with CNN Features (R-CNN)
	Single Shot Detector
	Spatial Transformer Network
	GPU Acceleration for training
	Background Subtraction
	Morphological Operations

	Implementation
	Data Collection
	Imbalanced Dataset
	Tensorflow Library
	Tensorflow Object Detection API
	CNNs with Tensorflow
	Background Subtraction

	Result
	Data Collection
	Region Proposal & Object Detection
	Convolutional Neural Networks
	Profiling
	Background Subtraction

	Discussion
	Data Collection
	Region Proposal & Object Detection
	Convolutional Neural Networks
	Profiling
	Background Subtraction

	Further Work
	Conclusion
	References
	List of Figures
	List of Tables
	List of Program Code
	List of Abbreviations
	List of Terms
	Appendix
	Code Hierarchy
	Training a regular CNN
	Training a region proposal network
	Resources

