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Abstract  

The breaking wave loads on a bottom fixed monopile foundation has been determined in this 

project with the aid of a Pressure Impulse Method. The pressure impulse method is the integration 

of pressure bounded by time within the period of a short time scale impact. A model implemented 

on MATLAB as an m-file was derived for an idealized wave on a cylinder with azimuth limits 

with relative length and impact height. Some model parameters of interest were investigated for 

their influence on the behavior of the structure. The pressure impulse is confined in the upper layer 

in both the CFD and model outcomes, which is connected to the little breaker height proportion. 

The model outcome depends on an attack of θmax to coordinate with the impulse pressure. The 

acting force increases as the azimuthal point limit increases up until π/2 where it reaches its peak.  
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1. INTRODUCTION 

The greatest test confronting the human species is right now the ecological danger from the 

worldwide temperature boost. The best arrangement researchers have to think of is to restrict fossil 

fuel utilization to the barest minimum and replace the non-environmentally friendly power source 

with renewable ones, for example, solar, hydro, and wind energy. This progress of replacing fossil 

fuel with clean energy emphatically have a strong hold on the economy on a global scale 

(Ferroukhi et al. 2017). Subsequently, the Danish government, for instance, has a set goal of 

meeting half of Denmark's energy demand with renewable energy in 2030 and completely 

eliminate petroleum derivatives by 2050 (International Energy Agency 2017). The popular 

understanding among driving researchers is that a worldwide temperature alteration represents a 

genuine ecological danger. One approach to mitigate the results of an increase in the global 

temperature is to change the universe's energy supply from petroleum derivatives to clean energy 

such as solar, hydro-and wind energy. To agree with this, the Danish government chose in 2012 

that the portion of energy created from renewable energy sources should increase from 18.9% to 

50% by 2020.  

One of the developing environmentally friendly renewable energy during the most recent decade 

has been the wind energy. In Denmark, the normal wind speed at a height of 100 meters is 

somewhere in the range of 6 and 10 m/s while the normal offshore wind speed is between 9 and 

11 m/s. In 2012, Denmark put forward an objective so that by 2020, half of the power utilization 

ought to be provided by wind power. Wind energy was at that point giving 42% of the power 

utilization in 2016 and is required to give 48% of the power by 2020 (International Energy Agency 

2017). So, it is expected that wind energy keeps on being the essential environmentally friendly 

energy source in Denmark. In 2015, the Danish Energy Agency performed a feasibility study, 



which exhibited that it is conceivable to plan energy frameworks, comprising of just 

environmentally friendly energy source, free of petroleum products (International Energy Agency 

2017). There is a bigger expected limit in offshore in respect of uninhabited body parts and higher 

normal wind speeds. Also, the wind environment is steadier offshore. Bigger wind turbines can be 

introduced offshore and there are fewer or no objections from districts and adjoining residents. 

Denmark has more than 7300 km of coastline with low normal ocean width which is ideal for 

offshore wind energy. Information shows that the interest in offshore wind energy is expanding 

more quickly than inland wind energy (REN21 2017). Recent information additionally shows that 

the expense of offshore is diminishing in the Danish market which is delicately driven. Amongst 

the various plans of construction for offshore wind turbines, monopiles are the most utilized in 

terms of its simple design and construction.  

Normally, wind energy will be the fundamental contributor as this type of environmentally friendly 

energy source is exceptionally appropriate for the Danish climate and the political plan. The 

expansion plan is to replace existing turbines with new, bigger, and more productive ones. 

Normally, a critical piece of all new wind turbines will be introduced offshore. Before the year 

2012, 1,662 ocean wind turbines were introduced and lattice associated in Europe, giving a 

complete generation of 5.00 GW. It is expected that before the year 2014, the generation will 

increase by a further 3.30 GW (Arapogianni, 2013).  The monopile-tower type structure has 

created wide interest as of late and a favoured base to help solve the problem associated with fixed 

offshore wind turbines at shallow water. An offshore wind turbine introduced on monopiles 

foundations requires an accurately assessed extreme load state (ULS) exuding from complex wave 

load to prevent loads failure. As indicated by Hull and Muller (2002), the breaking wave in ocean 

is a significant concern, inferable from the unpredictable circumstance of the wave breaking 



impact and the breaking wave time series. Oggiano et al. (2017) in their investigation announced 

that the Computational Fluid Dynamics strategy was utilized to repeat the work carried out from 

the WaveLoads exploratory mission. Huge speed increases at nacelle level in breaking waves was 

explained by Ridder et al. (1998), they announced the significance of examining the unique 

conduct of an offshore wind turbine structure while Rogers (2011) examined an offshore wind 

turbine structure with just the breaking waves experienced. The wave around two vertical 

cylinders, utilizing a 3D Navier-Stokes solver dependent on the FDM was studied by Lee et al. 

(2011). They utilized the VOF strategy to represent the free surface. They noted that there is a 

decent arrangement between the mathematical outcomes and the trial estimations. A 3D 

mathematical model dependent on the FDM was used by Choi (2014) to reenact the breaking wave 

on a vertical cylinder pile while the VOF technique was utilized to determine the air-water 

interface. A wave breaking over an inclining seabed was discussed by Chella et al. (2016), they 

used a mathematical model which depends on Reynolds number and solved the midpoint of 

Navier-Stokes conditions combined with the level set strategy. There is an excellent agreement 

between the numerical result and the test estimations as revealed by Ting and Kirby (1996). 

Paulsen (2013) coupled the OpenFOAM with a potential stream solver to research the wave in a 

vertical cylinder. The outcome showed a magnificent agreement with the exploratory estimations. 

Over the years, additional opportunities for a better exact assessment of the limit waves and their 

piles have been given because of advances in mathematical wave hydrodynamics. A lot of 

investigations have been carried out on breaking wave with a vertical tube-shaped construction 

with numerous vulnerabilities. A detailed information on the cycle will prompt an improvement 

in the plan and enhancement of the design. Mathematical models help in the assessment of the 

effect of tension on offshore constructions for better comprehension of the problem. The utilization 



of mathematical models in wave hypothesis gives a precise depiction of how the water surface acts 

comparable to the monopile structure. The major objective of the study is to compute breaking 

wave loads on-base fixed monopile construction utilizing Non-linear Wave Kinematics and 

Pressure Impulse methods. Monopile are cylinders fixed into the ocean bed slamming the outside 

of the water. A piece at the highest point of the monopile interfaces the monopile and the wind 

turbine tower. Large-scale manufacturing of monopile construction is simple, which makes 

monopiles the most expense-effective sort of construction for offshore wind turbines at width up 

to 40 m. Over 80% of the grid-connected offshore wind turbines are introduced on monopiles. One 

hindrance of the monopile constructions is their little primary strength and underlying damping on 

account of their thin shape. To increase the strength in bigger water width (longer monopiles), the 

distance across ought to be expanded which infers more costly bases. Consequently, the utilization 

of complex waves and the related Ultimate Limit State (ULS) loads can be factor in for planning 

the boundaries of the monopile. To diminish the expense of offshore wind energy, Megavind 

(2013) came up with improved plan models which reduces the associated hazards and failure of 

key components. The construction of offshore wind turbines regularly makes out 20% of the 

absolute expense of energy (Technology Innovation Needs Assessment (TINA) 2012). 

Subsequently, a decrease in failure of monopile configuration can play a significant part in the 

offshore wind energy cost decrease. At present, basic techniques utilized in the business for wave 

load forecast on offshore wind support structures are portrayed in the IEC 61400-3 (2009) plan 

code among different handbooks. The techniques are started in the oil and gas industry expecting 

a level bed. In these strategies, complex waves are addressed by ordinary wave arrangements. The 

actual impacts of wave nonlinearity, 3D impacts, and wave-current connection are, consequently, 

barred from these techniques. The pile estimations in these techniques are to a great extent 



dependent on the understanding that the limit wave stacking is related to the biggest breaking 

wave.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.   BACKGROUND 

2.1 Wave Models and Hydrodynamic Load Computations  

The current suggested practice for estimation of hydrodynamic loads, counting the ULS cases, is 

introduced in IEC 61400-3 (2009). The initial step to figuring the hydrodynamic loads is to pick 

the suitable wave model. The distinctive wave speculations give answers for similar differential 

conditions and limit conditions with various solutions. If the linear wave hypothesis is chosen to 

compute the wave kinematics, extending strategies, for example, Wheeler or Delta technique ought 

to be utilized to ascertain the kinematics from the still water level to the free surface. Morison's 

condition (Morison 1953) is utilized to compute the hydrodynamic powers from the wave 

kinematics determined from the proper wave hypothesis.  

2.2 CFD Displaying of Water Waves Sway on Surface Slamming Cylinders 

Christensen, Bredmose, furthermore, Hansen (2005) studied the wave run-up and inline powers 

on offshore. Wind turbines utilizing in-built program created Navier Stokes solver called NS3, the 

run-up and powers on the monopile are unequivocally impacted by the breaking cycle. They used 

the model with estimations directed by Kriebel (1992) for non-breaking and breaking waves. The 

calculations were completed with a slip limit condition at the cylinder wall. Bredmose et al. (2006) 

expanded the examination for the limit wave loads on offshore wind turbines in an unpredictable 

ocean state. Later Bredmose and Jacobsen (2010) explored breaking wave impacts from centered 

wave gatherings on offshore wind turbine monopiles utilizing OpenFOAM and approved the 

mathematical model with direct wave driving. In expansion, Bredmose and Jacobsen (2011) 

researched wave impacts on offshore wind turbine and represented the capability of CFD 

estimations for rough wave loads. They announced that the regular recurrence of the construction 

may be energized during the wave impacts on the assessment stages.  



 

Fig. 2.1: A monopile structure (google.com, 2021) 

Filip and Maki (2015) utilized Large Eddy Simulations (LES) to demonstrate the powers from the 

free surface progression of steep non-breaking standard waves and approved them with tests. They 

broadened the examination by displaying breaking waves and showed that the expectation of 

powers on a vertical round cylinder is improved by the utilization of the all-encompassing LES 

model for multiphase free surface stream utilizing the Volume of Fluid technique. Filip (2013) was 

one of the first to consider the impacts for computation of the wave powers on a superficial 

penetrating cylinder. Bingham (2014) created and introduced aftereffects of the space decay 



strategy for demonstrating wave loads on surface penetrating cylinders. They showed that the 

strategy functions admirably by approving broadly against all tests. The cases included breaking 

and non-breaking waves. Furthermore, they were the first to report the proliferation of the 

Secondary Load Cycle in the mathematical outcomes. Paulsen et al. (2014) at that point provided 

additional information on the examination of the stream structure connection and suggested 

constraining of a base mounted round cylinder by steep water waves at limited diameter. They 

particularly provided more explanation on the Secondary Load Cycle in the inline power history. 

The mathematical outcomes agree excellently with the test estimations of the non-breaking 

customary waves. Although they examined the surrounding stream around the cylinder, its limit 

layer was neither settled nor demonstrated. Chen et al. (2014) examined the effect of OpenFOAM 

when applied to Non-linear wave with offshore constructions for 4 instances of normal and 4 

instances of sporadic stage-centered wave gatherings. They concluded that the OpenFOAM is 

suitable for solving the nonlinear waves. 

 

 

 

 



 

Figure 1.2 Monopile structural foundation (Leite, 2015) 

The investigation included in-built force, free surface height, the optional load cycle and in-built 

power time series. This investigation was the main mathematical examination of waves and 

monopile cooperation including a no-slip limit adapted monopile.  

Hildebrandt and Sriram (2014) investigated the pressure impulse dispersion and vortex shedding 

around a cylinder because of a precarious non-breaking wave utilizing estimations and 

mathematical displaying. The pressure impulse was estimated on the outside of the cylinder in 

various heights and azimuths and compared to the mathematical results. The model used in the 



study was an ANSYS-CFX with Reynolds Averaged kω-SST. They presumed that the model is 

reasonable for surrounding stream around a surface piercing cylinder in waves. Choi et.al (2015) 

utilized the unique enhancement strategy to represent the reaction of the construction because of 

breaking wave impacts. The paper showed that they created a 3D mathematical model that 

performs well in displaying the breaking wave and creating dependable results including 

approximated structure reaction.  

 

Fig.2.3:  Bottom fixed foundations for wind turbines (google.com. 2021) 

 



A created Navier Stokes solver, REEF3D, was utilized by Alagan Chella (2016) to reproduce the 

free surface waves and to direct a point-by-point examination of the state of the wave breaker and 

surrounding fluid around the cylinder. The model was approved by correlation with tests of 

breaking waves on a slanted bed. They detailed the pile of a water segment (hill) behind the 

cylinder and related it to the diameter of water. The cylinder wall incorporated a no-slip limit 

condition with wall capacities to represent the upsides of k and ω in the kω disturbance model. 

Devolder et al (2017) broadened and applied a buoyancy modified kω-SST disturbance model to 

recreate wave run-up around a monopile exposed to standard waves utilizing OpenFOAM. They 

showed that utilization of adjusted kω-SST expands the consistency of the mathematical 

techniques to moderate the state of standard waves. At that point, they utilized this to ascertain the 

run-up tests. The included wave cases were non-breaking and the limit layer on the cylinder wall 

was demonstrated utilizing wall capacities. Jose et al. (2017) studied the mathematical models of 

breaking wave powers on a monopile structure, utilizing the limited volume models. They utilized 

a strategy to refine the lattice around the free surface height locally. They noted that the auxiliary 

load cycle is brought about by the hydrostatic impact of the water segment. A decent consistency 

of the mathematical outcomes appears in this work with a kω-SST disturbance model tests for both 

mathematical models. Veic and Sulisz (2018) broke down the effect of pressure dissemination on 

a monopile structure energized by two sporadic breaking wave scenes. They explained the 

comparable systems of the breaking wave, in pressure circulation and in both effect cases and 

showed that the worth of the top slamming coefficient is around equivalent to Cs = 2π. They 

introduced the impulse pressure on the cylinder during the pummelling. The auxiliary load cycle 

in the mathematical model time history of free surface waves communicating with a surface 

penetrating cylinder was first revealed by Paulsen et al. (2014) and afterward revealed by various 



researchers utilizing the diverse mathematical models. Utilizing a no-slip limit condition on the 

cylinder wall was first and foremost fused by Chen et al. (2014) and right up 'til today has been 

used a couple of times. Be that as it may, the use of LES models has not been applied from that 

point forward and just RANS type models, particularly kω-SST, have been utilized a couple of 

times.  

2.3 The Pressure Impulse Model  

The slamming force from waves is frequently displayed with the Wienke and Oumeraci model 

(2005). The precision of this model has frequently been evaluated as far as most extreme pressure. 

For structural modes with high recurrence, the primary reaction is based on the force impulse 

theory instead of the peak force value. Thus, even with a solid expectation of the peak force value, 

the reaction will in any case rely upon a precise depiction of the effect time scale. A less complex 

way to deal with the slamming force may along these lines be acquired by direct displaying of the 

time coordinated pressure. The model of Ghadirian and Bredmose executes this methodology by 

utilizing a shut structure answer for a limit characterized by linear wave boundaries. The spatial 

dissemination of the pressure impulse is in this manner part of the arrangement. The affecting wave 

is depicted in a calculated solution. The area is wedge-shaped with azimuth limits −θmax ≤ θ ≤ 

θmax and comprises of at first moving and still liquid above and underneath z = −µH individually. 

Here H is the vertical separation from the bed to the free surface for the wave at the underlying 

effect and µH is the height of the effect zone. Until before the impact period, the upper part is 

moving toward the cylinder with speed U in the negative x (r cosθ) heading. At the limits θ = 

±θmax, z = 0 and r = b the condition P = 0 must be fulfilled. 



2.4 Wave Forces on a Vertical Cylinder 

The turbine monopile support section is depicted as a vertical smooth, surface-slamming, fixed 

cylindrical structure. The local hydrodynamic system relies upon the episode wave boundaries, 

water diameter, and length size of the cylindrical structure. No strategy exists that is generally 

relevant for anticipating the wave stacking on a surface piercing structure under all conditions; the 

length size of the structure, wave period, thickness, and different elements should be considered 

to decide the impact that the presence of the structure has on the passing water stream (Dean and 

Dalrymple, 1991). The overall force is subject to the liquid stream system, depicted as far as the 

parameters recognized, and the relative size of the cylinder distance across the diameter to the 

frequency λ. For little distance across structures where the measurement to-frequency proportion 

D/λ < 0.2, it could be expected that the presence of the structure negligibly affects the impulse 

pressure of the slamming waves. As the structure measurement to-frequency proportion builds, the 

presence of the structure alters the local hydrodynamic impulse pressure slope and the latency 

pressure, which is the pressure because of energy, expands. In the system, where both drag and 

dormancy pressures are significant, both thick and diffraction pressure parts add to wave stacking, 

and the stream can encounter extra impacts because of wave nonlinearity within the sight of high-

recurrence diffracted waves (Swan and Sheik, 2014).  

In coastal engineering, Goda et al (1966) is mostly used to determine the impact force on 

monopiles due to breaking waves.  

𝐹1(t) = λ.ɳ𝑏. π. ρ. R. C2 (1 − 
C

R
𝑡)                  (2.1) 

Where:  

λ.ɳ𝑏 = the height of the impact area 



C = celerity of the wave 

ɳ𝑏 = the crest height of the breaking wave 

λ = the curling factor 

R= radius of the cylinder 

ρ = density of the fluid 

𝐹1(t) = π. ρ. R. V2 (1 − 
C

R
𝑡)                  (2.2) 

Where C = V 

𝐹1 =π. ρ. R. V2                     (2.3) 

𝐹1 =Cs. ρ. R. V2                    (2.4) 

The pressure impulse model for slamming wave on a vertical wall can be determined using the 

expression shown below:  
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Fig. 2.4: Definition sketch for 3D block impact on a vertical wall (Ghadrian and Bredmose, 2019) 

Where 
𝑏

𝐻
  represent the relative length of the block 

 
𝑊

𝐻
 represents the relative width of the block 

µ represent the relative height of the impacting zone 

The vertical wall is located at x=0, during impact, the vertical wall was impacted by the fluid at a 

normal velocity U bounded within -µH ≤ z ≤ 0. 

The application of the separation of variable method and Fourier series to eqn.4 analysis yields 
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Where Lm = (𝑚 −
1

2
)π 

Kn = (𝑛 −
1
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       (2.7) 

The Reynolds number (Re) and the Keulegan-Carpenter number (KC) are generally used to depict 

the proportion of idleness to-thick pressures and the proportion of drag-to-inactivity pressures 

separately, for a liquid stream past a snag (Faltinsen, 1990, Sarpkaya and Isaacson, 1981). 

Zdravkovich (1997) has ordered a unidirectional stream past a cylinder and gave the stream 

portrayals with expanding Re, the liquid stream changes from a laminar stream with no partition 

at the structure surface to a completely violent stream, where the stream movements are rotational. 

As the impulse pressure slope diminishes, the vortices separate from the structure and travel 

downstream, making a wake or a vortex design (Sumer and Fredsøe, 2006). The all-out in-line 

wave power on a vertical surface-penetrating fixed cylinder in since quite a while ago peaked 

waves can be ascribed to the unstable impulse pressure field inside the episode wave field over the 

lowered cylinder length (Dean and Dalrymple, 1991). In an ideal potential stream where it is 

accepted that the cylinder has no impact on the stream field, the complete in-line pressure per unit 

height can be determined as the amount of the drag power (Fp, D). In an expected stream, the lift 



power part is equivalent to nothing. Nonetheless, in a wave field, when the episode wave peak 

passes, the wave box arrives at the turbine, the stream field is switched and the wake returns 

towards the turbine, bringing about the pressure stacking turning around bearing. The directional 

changes and stream divisions break the earlier suppositions of an irrotational stream and an 

inviscid liquid accepted by the expected hypothesis (Dean and Dalrymple, 1991), and the impulse 

pressure incorporations are not equivalent to nothing. This deviation from the normal outcome in 

an even stream is called D'Alembert's Paradox, which happens because of the presumption of a 

potential irrotational stream (Dean and Dalrymple, 1991). Two more surmised techniques are 

utilized to figure the wave force on a monopile, contingent upon the structure diameter to-

frequency proportion: one for little breadth structure and the other for enormous measurement 

structures. In the accompanying segments, the force computations depend on the fact that the wave 

field involved is direct waves in either a standard wavefield with a solitary modular wave 

recurrence or in an unpredictable unidirectional wavefield with a scope of wave frequencies. 

2.5 Effect of Wave Forces on a Cylinder of Little Diameter  

It is accepted that the flow near the structure is not changed in the occurrence wave bearing, the 

Morison condition is ordinarily used to appraise the absolute in-line pressure (Morison et al., 

1950). The Morison condition involves the straight amount of drag and latency pressure segments 

and is assessed by utilizing the undisturbed water speed and speed increase segments determined 

without the structure. The additional mass pressure results from the power of the fluid following 

up on the lowered piece of the construction. Thick impacts in the limit layer on the structure wall 

actuate stream detachment prompting the arrangement of a vortex road wake at KC > 3 (Faltinsen, 

1990). The drag (Cd) and idleness (Cm) coefficients are normally decided tentatively. Results from 

numerous exploratory tests have been accumulated and acknowledged at a scope of Re qualities 



for a smooth structure. Around Re > 105, it very well may be seen that there is a drop in the Cd 

worth before it increases once more. 

2.6 Impact of Wave Powers on a Cylinder with Large Diameter  

Direct diffraction hypothesis applies to wave stream past an enormous measurement cylindrical 

structure when the proportion of the breadth to-frequency ≥ 0.2. In this reach, diffracted waves are 

created by a mix of waves reflected from the cylindrical and the undisturbed episode wave field. 

The underlying undisturbed episode wave field potential can be written in complex documentation, 

utilizing polar directions (r, θ) in the level plane, the occurrence wave potential that fulfills the 

polar type of Laplace's condition and the kinematic and dynamic free surface limit conditions 

(MacCamy and Fuchs, 1954) is given in the standard structure with a Bessel work. As the 

occurrence wave impacts upon the structure, a reflected wave is emanated outwards and 

communicates with the wave. Joining the undisturbed occurrence likely φI and a dispersed 

potential, the study got an insightful answer for the diffracted speed potential with the 

consideration of a Bessel function within the cylindrical structure range. On the structure wall, the 

outspread separation from the focal point of the segment is r = R. By definition, z = rcosθ, where 

θ alludes to the area on the cylinder as estimated against clockwise from the middle line toward a 

stream. The diffracted surface rise ηD is found from the linearised Bernoulli condition and 

applying the diffracted potential gives the straight diffracted surface rise as ηD = a. Standard 

diffraction investigation expects ordinary monochromatic waves and can overestimate wave 

heights nearby an impediment in a given ocean state (Goda, 1985). The diffracted wave height in 

an unpredictable wave field is gotten from the superposition of the diffracted wave arrangement 

got for every individual wave segment, where frequencies of the radially outward moving 

diffracted waves relate to frequencies of the episode waves (Swan and Sheik, 2014). It ought to be 



focused on that the condition is just legitimate for straight diffracted waves, thus does not hold 

when nonlinear diffraction gets critical. The sporadic diffracted water molecule kinematics, uD, 

and wD can be resolved to ascertain the individual diffracted amplitudes from the diffracted wave 

range. The absolute wave power on an enormous measurement structure can likewise be resolved 

from the diffraction hypothesis. The in-line power can be resolved through a combination of the 

surface impulse pressure. The impulse pressure field would then be able to be acquired from the 

Bernoulli condition and the subsequent in-line diffracted power per unit length given by MacCamy 

and Fuchs (1954) where the absolute diffraction power can be found through the incorporation of 

the condition vertical along the lowered length of the structure. Essentially, the unpredictable in-

line diffracted power can be communicated as the amount of every individual diffracted wave 

power segment. The diffracted power range can be found by a similar technique where the 

diffracted power range can be controlled by FFT of the diffracted power, where again Fs is the 

examining recurrence and N are the numbers of recurrence receptacles. It should be noticed that 

the diffraction strategy just purposes the first-order terms and ignores higher-request terms, the 

upsides of which can be non-irrelevant. Upgrades to the techniques above could be made by 

endeavouring to decide higher-request diffraction terms utilizing a strategy, for example, that 

introduced by Chau and Taylor (1992). 

2.7 Wave Generation 

Gaussian wave packets were utilized to empower wave breaking at a given area in the wave flume 

(Bergmann, 1985). Now, the wave turns out to be exceptionally steep and breaking should proceed. 

Thusly, the wave separates. The spreading of the wave in the wave flume for three diverse time 

steps. The determined wave has a focus ways off of 111m from the wave paddle and the surface 

rise now is 1.5m with plunging breakers created. All produced waves were very comparable in the 



area of breaking. The celerity C of the breaking wave was around 6 m/s, the wave time frame T 

was about 4.2 s, and the wave height Hb differed between 2.2m and 2.8m. The state of the waves 

at the limit was awry according to both the even plane (l=gb/Hb) and the vertical plane (kV= 

LW/LV). Contrasting these wave shapes as expressed in field estimations (Kjeldsen, 1990), shows 

excellent agreement. The wave box in the flume is more particular, with the goal that the boundary 

l portraying the flat unevenness is more modest. The worth of the vertical imbalance factor kV is 

bigger suggesting that the front of the wave peak is more extreme than the backside. So ideally, 

the wave does not replicate normal breaking waves in ocean water, however, they address a helpful 

strategy to create breaking waves at given areas in a wave flume for the investigation of the effect 

on structures.  

The breaking wave on the vertical and slanted thin cylinder was analysed by a progression of 

largescale model trials utilizing Gaussian wave bundles to produce a tailored plunging breaker at 

given areas in the enormous wave flume. The age of single wave occasions for each test permitted 

to accomplish a high goal of the effect pressures (0.1 ms) and the utilization of huge scope tests 

permitted to a great extent stay away from scale impacts related with the effective power. The 

breaking wave was investigated by partitioning the pile into a semi-static and powerful segment. 

The semi-static power is very much depicted by the Morison condition, while for the unique part 

no dependable methodology is accessible which is in full concurrence with the perceptions. It was 

tentatively shown that the effect pressure improvement can be addressed by a spiral spreading 

around the main contact point. The advancement of the breaking wave at the cylinder was 

researched both hypothetically and tentatively. In light of the two-dimensional depiction of 

Wagner (1932), which has been confirmed tentatively in this investigation, the complete term of 



the effect was resolved. The effect begins with the main contact between the cylinder and the 

impinging mass of water.  

2.8 Wind Load  

Drag loads of the wind that act on a vessel are results of the fluid’s relative velocity. Since that the 

structure is correlated with energy produced from the wind, the loads are expected to be significant. 

Wind loads have a direct relationship with the areas subjected to the flow. 

2.9 Wave Physics 

An intensive comprehension of the physical science behind the pile is indispensable for a 

significant way to deal with its demonstrating and definition into a plan. Thus, thorough 

examinations are done in 3D and 2D conditions. The actual impacts straightforwardly tended to 

are 3D wave spreading, the impact of wave-current communication, the impact of upgraded base 

height, and the impact of air-entrainment from wave breaking. PIV estimations of occurrence wave 

kinematics are made to permit direct approval against mathematical kinematics and to empower 

approval of pressure models dependent on the episode kinematics. While a considerable lot of the 

referenced impacts are as of now known and depicted to a specific level, the focal point of the 

examinations is on the related effect on the hydrodynamic load. The motivation behind the tests is 

in two-dimension. The tests should archive the monopile impacts independently and include the 

application of the mathematical models which can afterward be utilized to broaden the boundary 

space.  



3. MATHEMATICAL FORMULATION 

3.1 Waves Fluid Dynamics 

There is an assumption that a function exists with its gradient representing a fluid flow, this can 

be expressed mathematically as  

𝑉 = ∇∅      (3.1) 

The assumed function is referred to as the potential flow. The V in the equation is equal to 

the total velocity of the fluid flow.  

According to Newton’s 2nd law which states that force is equal to the product of the mass 

of an object and the acceleration of the object which is expressed mathematically as;   

𝐹 = 𝑀 ∗ 𝛼        (3.2)  

When this is applied to the mass or body of fluid flowing, the equation becomes:  

  

𝑑𝐹 = 𝑑𝑚 ∗
𝐷𝑉⃗⃗ 

𝐷𝑇
= 𝑑𝑚 ∗ [𝑢

𝛿𝑉⃗⃗ 

𝛿𝑥
+ 𝑣

𝛿𝑉⃗⃗ 

𝛿𝑦
+ 𝑤

𝛿𝑉⃗⃗ 

𝛿𝑧
+
𝛿𝑉⃗⃗ 

𝛿𝑡
]  (3.3) 

The acting forces on a liquid body can be inferred utilizing an expansion 

method known as Taylor's series. For any course, an amount of the liquid 

body component forces can be expressed as  

          

𝑑𝐹𝑆𝑥 = (
𝛿𝜎𝑥𝑥

𝛿𝑥
+
𝛿𝜏𝑦𝑥

𝛿𝑦
+
𝛿𝜏𝑧𝑥

𝛿𝑧
)𝑑𝑥𝑑𝑦𝑑𝑧        (3.4)  

Taking gravitational force into consideration, the equation becomes: 

         

𝑑𝐹𝑆𝑥 = (𝜌𝑔𝑥 +
𝛿𝜎𝑥𝑥

𝛿𝑥
+
𝛿𝜏𝑦𝑥

𝛿𝑦
+
𝛿𝜏𝑧𝑥

𝛿𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧                                                (3.5) 

  



 A set of equation for motion is derived when the Newton’s 2nd law is substituted for the 

parameter “ ” in the equation, thus the continuum assumptions is satisfied as expressed 

below: 

𝜌𝑔𝑥 +
𝛿𝜎𝑥𝑥

𝛿𝑥
+
𝛿𝜏𝑦𝑥

𝛿𝑦
+
𝛿𝜏𝑧𝑥

𝛿𝑧
= 𝜌 + (𝑢

𝛿𝑢

𝛿𝑥
+ 𝑣

𝛿𝑢

𝛿𝑦
 + 𝑤

𝛿𝑢

𝛿𝑧
+
𝛿𝑢

𝛿𝑡
) 

𝜌𝑔𝑦 +
𝛿𝜏𝑥𝑦

𝛿𝑥
+
𝛿𝜏𝑦𝑦

𝛿𝑦
+
𝛿𝜏𝑧𝑦

𝛿𝑧
= 𝜌(𝑢

𝛿𝑣

𝛿𝑥
+ 𝑣

𝛿𝑣

𝛿𝑦
+ 𝑤

𝛿𝑣

𝛿𝑧
+
𝛿𝑣

𝛿𝑡
)     (3.6) 

𝜌𝑔𝑧 +
𝛿𝜏𝑥𝑧

𝛿𝑥
+
𝛿𝜏𝑦𝑧

𝛿𝑦
+
𝛿𝜎𝑧𝑧

𝛿𝑧
= 𝜌(𝑢

𝛿𝑧

𝛿𝑥
+ 𝑣

𝛿𝑧

𝛿𝑦
+ 𝑤

𝛿𝑧

𝛿𝑧
+
𝛿𝑧

𝛿𝑡
)  

 

 𝜌 (𝑢
𝛿𝑢

𝛿𝑥
+ 𝑣

𝛿𝑢

𝛿𝑦
+ 𝑤

𝛿𝑢

𝛿𝑧
+
𝛿𝑢

𝛿𝑡
) = 𝜌𝑔𝑦 −

𝛿𝜌

𝛿𝑥
+ 𝜇(

𝛿2𝑢

𝛿𝑥2
+ 𝑣

𝛿2𝑢

𝛿𝑦2
+
𝛿2𝑢

𝛿𝑧2
)  

𝜌 (𝑢
𝛿𝑢

𝛿𝑥
+ 𝑣

𝛿𝑢

𝛿𝑦
+ 𝑤

𝛿𝑢

𝛿𝑧
+
𝛿𝑢

𝛿𝑡
) = 𝜌𝑔𝑦 −

𝛿𝜌

𝛿𝑦
+ 𝜇(

𝛿2𝑣

𝛿𝑥2
+ 𝑣

𝛿2𝑣

𝛿𝑦2
+
𝛿2𝑣

𝛿𝑧2
)       (3.7) 

𝜌 (𝑢
𝛿𝑤

𝛿𝑥
+ 𝑣

𝛿𝑤

𝛿𝑦
+ 𝑤

𝛿𝑤

𝛿𝑧
+
𝛿𝑤

𝛿𝑡
) = 𝜌𝑔𝑧 −

𝛿𝜌

𝛿𝑧
+ 𝜇(

𝛿2𝑤

𝛿𝑥2
+ 𝑣

𝛿2𝑤

𝛿𝑦2
+
𝛿2𝑤

𝛿𝑧2
)   

Working with the assumption that the friction is zero (= 0), the equation which is Navier-

Stokes reduces to Euler’s equation as expressed below: 

 𝜌 (𝑢
𝛿𝑢

𝛿𝑥
+ 𝑣

𝛿𝑢

𝛿𝑦
+ 𝑤

𝛿𝑢

𝛿𝑧
+
𝛿𝑢

𝛿𝑡
) = 𝜌𝑔𝑦 −

𝛿𝜌

𝛿𝑥
  

𝜌 (𝑢
𝛿𝑣

δx
+ 𝑣

𝛿𝑣

𝛿𝑦
+ 𝑤

𝛿𝑣

𝛿𝑧
+
𝛿𝑣

𝛿𝑡
) = 𝜌𝑔𝑦 −

𝛿𝜌

𝛿𝑦
              (3.8) 

𝜌 (𝑢
𝛿𝑤

𝛿𝑥
+ 𝑣

𝛿𝑤

𝛿𝑦
+ 𝑤

𝛿𝑤

𝛿𝑧
+
𝛿𝑤

𝛿𝑡
) = 𝜌𝑔𝑧 −

𝛿𝜌

𝛿𝑧
  

Also, Bernoulli's equation is derived from the Integration of the Navier-Stokes equations which 

gives the equation below: 

𝑝−𝑝0

𝑝
= −∅𝑡 −

1

2
(∇∅)2 − 𝑔𝑦                   (3.9) 

  

Where 𝜙 equals the potential flow equation and the derived Bernoulli equation is expressed as: 



  𝑝 + 𝜌𝑔𝜉 + 𝜌
𝛿𝜙

𝛿𝑡
+ 1

2
𝜌𝑉 ∗ 𝑉 = 𝐶            (3.10)  

  

The kinematic boundary condition indicates a solid boundary does not allow the passage of fluid 

through it which is mathematically expressed as:  

  

  𝑉 ∗ 𝑛 ≡
𝛿𝜙

𝛿𝑛
= 𝑈 ∗ 𝑛            (3.11)  

  

And a free surface expressed as:   

  

𝜁 = (𝜉, 𝜂, 𝑡)              (3.12)  

  

 

Where:   

 

𝜁: 0 at the surface  

𝜁: -h at depth h                     

Implementing the kinematic boundary condition on the free surface formulation gives the 

following derivative.   

  

𝛿𝑓

𝛿𝑡
+
𝛿𝜙

𝛿𝜉

𝛿𝑓

𝛿𝜉
+
𝛿𝜙

𝛿𝜂

𝛿𝑓

𝛿𝜂
+
𝛿𝜙

𝛿𝜁
= 0        𝑜𝑛 𝜁 = 𝑓             (3.13) 

𝑔𝑓 +
𝛿𝜙

𝛿𝜉
+ 1

2
𝑉 ∗ 𝑉 = 0            𝑜 𝑛    𝜁 = 𝑓            (3.14) 

  



The location of the surface is not known, and the free surface boundary condition depends 

on the mathematical expression below: 

𝜙 ∧ 𝑓           (3.15)   

The combination of all the boundary conditions into one form of equation gives the mathematical 

expression below: 

𝛿𝑓

𝛿𝑡
−
𝛿∅

𝛿𝜁
=   0   𝑜𝑛   𝜁 =   0               (3.16) 

𝑔𝑓 −
𝛿∅

𝛿𝑡
=   0  𝑜𝑛  𝜁 =   0             (3.17) 

𝛿2𝜙

𝛿2𝑡
− 𝑔

𝛿𝜙

𝛿𝜁
=   0  𝑜𝑛  𝜁 = 0            (3.18) 

The solution to the Laplace equation produces a potential solution shown below: 

𝑘𝜉𝑐𝑜𝑠(𝑥) + 𝑘𝜂𝑠𝑖𝑛(𝑥) − 𝜔𝑡   

  

    (3.19)  

𝜙 =
𝑔𝐴

𝜔

cosh𝑘(ℎ+𝜁)

𝑐𝑜𝑠ℎ𝑘ℎ
𝑠𝑖𝑛(𝑥) − 𝜔𝑡                              (3.20)  

  

The acceleration and velocity can be gotten from the expression above, if more expansion of the 

equation is performed, the boundary conditions must be satisfied by the equation. The modification 

of the boundary conditions gives the expressions as follow:  

Dynamic:  

 1
2𝑔
(𝑢2 + 𝑣2) + 𝑧 − 1

𝑔
 
𝛿𝜙

𝛿𝑡
= 𝐶(𝑡), 𝑧 = 𝜂         (3.21) 

𝛿𝜂

𝛿𝑡
+ 𝑢

𝛿𝜂

𝛿𝑥
= 𝑣 , 𝑧 , 𝜂             (3.22) 

𝜙 =  
𝑔∗𝐻

𝜔∗2

cosh𝑘(ℎ+𝜁)

𝑐𝑜𝑠ℎ𝑘(ℎ+𝜂)
𝑠𝑖𝑛(𝑘𝑥 −  𝜔𝑡)         (3.23) 

    



From this potential function A set of parameters can be found from the potential function 

aa shown below:  

  

Wavelength:      𝜆 =  
𝑔𝑇2

2𝜋
            (3.24)  

Wave number:     𝐾 =  
2𝜋

𝜆
           (3.25)  

Celerity:       C = √
𝑔

𝑘
𝑡𝑎𝑛ℎ (𝑘𝑑)                (3.26)  

Surface elevation:      𝜂 =  
𝐻

2
𝑐𝑜𝑠𝜃           (3.27)  

 

According to Le Mehaute, B., et al, (1980) Stokes in 1847 had the option to discover an answer 

for waves that were outside the Airy wave hypotheses steepness and relative height impediments. 

His geometrical extension of the Airy wave has been utilized with acceptable outcomes for waves 

that are in too shallow waters or are too steep to ever be covered via the Airy hypothesis. His 

thinking can be rearranged to be, as various sine wave possibilities will consistently fulfil the 

coherence and base limit conditions equivalent to a solitary potential. The issue is then that there 

are a few free surface limits. The number of waves is added as potential with a large portion of the 

period and a large portion of the length of the past request. The following issue is to fulfil two 

surface limit conditions. [22]. The Stokes approximations are unsatisfactory to portray rushes of 

little size contrasted with the diameter, as stirs up extensions under these conditions were veering. 

(Mehaute, et al,1980). The stream hypothesis joins similar thinking as the Stokes hypothesis, yet 

as opposed to tracking down the logical arrangement it takes care of the issue mathematically. 

 

Generally, an expression is given for the Stoke theory as shown below: 



  

  𝜓(𝑥, 𝑧) = 𝑐𝑧 + ∑ 𝑋(𝑛)𝑠𝑖𝑛ℎ(𝑛𝑘)(𝑧 + 𝑑)𝑐𝑜𝑠 (𝑛𝑘𝑥)𝑁
𝑛            (3.28)  

If the breaking limit is attained by a wave, it breaks. This scenario can occur in different forms 

such as plunging, surging, spilling, and collapsing, the occurring types of breaking waves depend 

on the circumstances surrounding the event. Mathematically, 

  

𝑁1 =
𝑡𝑎𝑛𝛽

√𝐻 𝐿0⁄

          (3.29)  

  

𝐿0 = 𝑔𝑇2⁄2𝜋           (3.30)  

 𝛽 − 𝑊𝑎𝑣𝑒 𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠   

Spilling    𝑁𝐼 < 0.5  

  

Plunging   0.5𝑁𝐼 < 3.3  

  

Collapsing or Surging   𝑁𝐼 > 3.3  

Plunging and spilling are deemed more important than others because they have high tendencies 

of resulting in high pressures and impulse load pressure. The expectation is that the loads should 

cover a very little area within a short period.  

 



3.2 Criteria for Breaking Waves 

The prediction of wave instability and the eventual breaking of the waves leads to the development 

of the criteria for breaking of waves, taking the breaking of shallow water and deep water into 

consideration, the breaker height to the depth ratio is expressed as:  

 𝛾𝑏 = 
𝐻𝑏

𝑑𝑏
                 (3.31)   

 Where 𝛾𝑏 varies between 0.7 and 1.2   

In his study, Miche (1944) discovered the overall limiting steepness of waves as 

(
𝐻

𝐿
)
𝑏
= 0.14𝑡𝑎𝑛ℎ (2𝜋

𝑑𝑏

𝐿𝑏
)         (3.32)  

 

The increase in depth to deep water results in the limiting steepness to approach 0.14 (1/7) Waves 

with instability and eventual breaking of the higher steepness. The assumption that the seabed is a 

flat surface is the only reason that validates this formulation. There is a modification to the criteria 

if the seabed is sloping which is described below:  

𝐻𝑏

𝐻0
= 0.14𝑡𝑎𝑛ℎ ((0.8 + 5𝑆)2𝜋

𝑑𝑏

𝐿𝑏
) 𝑠 <   0.1         (3.33) 

𝐻𝐵

𝐻0
= 0.14𝑡𝑎𝑛ℎ ((0.13)2𝜋

𝑑𝑏

𝐿𝑏
) 𝑠 >   0.1        (3.34) 

In shallow waters, the Cnoidal hypothesis offers the best outcomes on wave steepness, however it 

over gauges the frequency and wave celerity. The Stokes and stream hypothesis will hence be the 

ones applied in this postulation, as the celerity is significant for the breaking wave load. For deep 

waters, the breaking point can be thought to be near. 

   

𝐻

𝐿
=
1

7
                 (3.35)  



The Morrison Equation is a method of assessing the pile because of non-breaking waves on slender 

piles. It utilizes the wave molecule potential subsidiaries joined with observational elements to get 

subsequent power from the passing waves. Since both speed increase and speed will cause pressure 

impulse on the pile, the condition is isolated into two terms. Every one of these records for a piece 

of the pressure that is applied to the cylinder. The dormancy term in the condition records forces 

because of the water molecule speed increase, while the drag term represents water molecule 

speed. This strategy has been utilized to gauge forces that are in acceptable arrangement the real 

estimated loads (Wienke, and Oumeraci, 2005). The drag coefficient is resolved as a dimensionless 

capacity of viscosity and Reynolds number. 

  

𝑅𝑒 = 
𝑢𝑜𝐷

𝑣
            (3.36) 

The inertia coefficient is assessed as the force created by the Froude Krylov force though the speed 

increase of current would cause pressure on the outside of the cylindrical structure. At the point 

when a cylindrical structure is a little similar to the frequency, this speed increase is thought to be 

consistent. The liquid around the little cylindrical structure will be hauled along as the liquid passes 

the cylindrical structure. This extra mass speed increase brings about an increase in the force on 

the cylindrical structure. The proportion of extra mass concerning the real mass of water influenced 

is utilized to deliver the mass coefficient that is utilized to scale the inertia term of the Morrison 

equation.  

 

The Morrison equation is given as follows:    

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝐷 + 𝐹𝐼                     (3.37)  

𝐹𝐷 = ∫
1

2

𝜂

−𝑑
𝜌𝐶𝑑𝐷𝑢(𝑧, 𝜃)  ∨  𝑢(𝑧, 𝜃) ∨  𝑑𝑧               (3.38) 



𝐹1 = ∫ 𝜌
𝜂

−𝑑
𝐶𝑚𝜋𝐷

2𝑢 (𝑧, 𝜃)  ∨   𝑑𝑧              (3.39) 

 

3.3 Slamming Waves 

At the point when a wave stage passes a design while breaking or only before breaking, the wave 

can have a structure that is close to vertical, causing a quick change in pressure as it passes. The 

brief span and enormous extent of this pressure make it strange to change and execute it into one 

of the current terms and subsequently it is added in as a different term of the all-out pressure 

condition. The term is normally alluded to as slamming waves.     

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝐷 + 𝐹𝐼 + 𝐹𝑠            (3.40)  

For round and hollow areas, it is expected that the water acts like a level surface hitting a level 

plate. The subsequent impulse pressure was determined utilizing the Bernoulli condition and 

thinking about the likely stream. These were the presumptions made by Von Karman as the reason 

for his thought of a wave slamming condition.  

 

Von Karmans formulation 

𝐹𝑆 = 𝜌𝑤𝑅𝐶
2𝐶𝑆 , 𝐶𝑆  =  𝜋 (1 −

𝐶

𝑅
𝑡) , 𝑎𝑡   𝑡 = 0  =>   𝐶𝑆  =  𝜋     (3.41) 

  

𝐹𝑆 = 𝜌𝑤𝑅𝐶2𝜋    (3.42)  

 



  

Fig. 3.1 Von Karman’s formulation (Wienke, and Oumeraci, 2005) 

 At the point when a wave moves past a round and hollow cross-segment, the free water surface 

will misshape. This is the impact that isn't represented in Von Karman's detailing of a slamming 

occasion. This impact portrayed as pile impact will cause the real slamming occasion to happen 

somewhat in front of the wave stage. Wagner's formulation changes the definition proposed by 

Von Karman to represent this impact.  

Wagners Formulation 

 𝐹𝑆 = 𝜌𝑤𝑅𝐶2𝐶𝑠, at t= 0 =>   = 2𝜋        (3.43)  

  

𝐹𝑆 = 2𝜌𝑤𝑅𝐶2𝜋              (3.44)  

  

  

Fig 3.1 Illustration of Wagner’s formulation (Wienke, and Oumeraci, 2005) 

 



 𝐹𝑆 = 𝜌𝑤𝑅𝐶2𝐶𝑠                (3.45)  

 

𝑇𝑑𝑟𝑢𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠 = 
13𝐷

64𝑐
               (3.46)   

The Von Karman/Wagner formulation just accounted for a unit length of the cylindrical structure, 

so to discover the complete load, a connection to the size/length of the effect region is required. 

Goda (1966) utilizes a twisting element to represent the "sway" length, the twisting component is 

a level of the surface rise at the most noteworthy place of the peak contrasted with Stillwater level.  

The tendency of the water surface likewise assumes a part in the length and seriousness of the 

effect. Goda states that an vertical surge of water the tendency and rise time is expected to nothing. 

A tendency further from vertical and an expansion in ascent season of the maximum effect pressure 

tends to decrease the slamming force. The rising time is additionally essential since it incredibly 

influences the dynamic reaction of the design. 

  

 Fig. 3.2 curl effect (Wienke, and Oumeraci, 2005) 

 The total force of slamming on a cylinder is expressed as 

𝐹𝑆 = 𝜆𝜂𝑏𝜌𝑤𝑅𝐶2𝐶𝑠           (3.47)  



3.4 Description of the Model  

In coastal engineering, the impact force on monopiles as a result of breaking waves is mostly 

determined according to Goda et al (1966) as  

𝐹1(t) = λ.ɳ𝑏. π. ρ. R. C2 (1 − 
C

R
𝑇)                  (3.48) 

Where:  

λ.ɳ𝑏 = the height of the impact area 

C = celerity of the wave 

ɳ𝑏 = the crest height of the breaking wave 

λ = the curling factor 

R= radius of the cylinder 

ρ = density of the fluid 

The assumption applied is that the impact area height λ.ɳ𝑏 is vertical and moves with wave celerity 

C.  The force impact is distributed along with the height, thus eqn. 8 becomes:  

𝐹1(t) = π. ρ. R. V2 (1 − 
C

R
𝑡)                  (3.49) 

Where C = V 

Eqn.3.49 shows that the line force is maximum at t =0 at the beginning of the impact and eqn.3.49 

becomes  

𝐹1 =π. ρ. R. V2                   (3.50) 



Eqn. 10 agrees with von Karman's (1929) on the line of force. However, according to Goda (1966), 

the higher-order terms for the plate width variation concerning time were used to determine the 

time history. Most commonly, the slamming coefficient Cs is used for the description of the 

maximum in-line force per unit height, that is, 

𝐹1 =Cs. ρ. R. V2                    (3.51) 

Cs = π according to the Goda et. al (1966) model formulation, before then, Wagner (1932)’s 

solution to peak pressure at the period of the impact of an object on a still fluid had predicted a 

slamming coefficient of Cs = 2π while the method of matched asymptotic expansions was used by 

Cointe & Armand (1987) to provide a solution to the boundary condition of the surface of flow 

within the vicinity of the structure and also the velocity potential. A solution of the slamming 

coefficient Cs = 2π was also provided in the model.  

The measurement from a site test was taken by Hallowell et al. (2016) for the identification of 

breaking waves and quantifying their impact load variability. The results from the study indicated 

that the application of the Goda et al. (1966) model to calculate the mudline moments was the 

most consistent model with the measurement taken.  

The model of the pressure impulse for slamming wave on a vertical wall is based on the expression:  

 

𝑃

𝜌𝑈𝐻
(
𝑥

𝐻
,
𝑦

𝑊
,
𝑧

𝐻
) = 𝑓( 

𝑏

𝐻
, µ,

𝑊

𝐻
 )         (3.51) 



 

Figure 3.3: Definition sketch for 3D block impact on a vertical wall (Ghadrian and Bredmose, 

2019) 

 

Where 
𝑏

𝐻
  represent the relative length of the block 

 
𝑊

𝐻
 represents the relative width of the block 

µ represent the relative height of the impacting zone 

The vertical wall is situated at x=0, during sway, the vertical was affected by liquid at a typical 

speed U limited inside - µH ≤ z ≤ 0. Where µ addresses the proportion of affecting liquid height 

to the height of the entire liquid. With the comprehension from the 3D box influence issue, it is 

kept on being affected on the round and hollow construction. First, the essential example of an 



axisymmetric influence is inspected. A wavefront hits the tube-shaped construction from all 

headings with a commonplace speed of U in the vertical zone −µH 6 z 6 0. Underneath this zone, 

in −H 6 z 6 −µH, the fluid contacts the tube-shaped construction at influence. The outside scope 

of the influencing fluid is implied by b, and the round and hollow construction clear by a. The 

Laplace condition is gotten comfortable the cylinder molded work with the system to yield: 

𝑃 = ∑ ∑ (𝐴𝑚𝑛𝑐𝑜𝑠 (
𝐿𝑚𝜃

𝜃𝑚𝑎𝑥
) 𝑠𝑖𝑛 (𝐾𝑛

𝑧

𝐻
)

𝐼𝑞𝑚(𝐾𝑛
𝑟

𝐻
)+𝛼𝑚𝑛𝐾𝑞𝑚(𝐾𝑛

𝑟

𝐻
)

𝜕𝑟(𝐼𝑞𝑚(𝐾𝑛
𝑟

𝐻
)+𝛼𝑚𝑛𝐾𝑞𝑚(𝐾𝑛

𝑟

𝐻
))
𝑟=𝛼

 )∞
𝑛=1

∞
𝑚=1   (3.52) 

where kn = (n − 1/2)π, ∂r is the partial derivative with regards to r, I0 and K0 are the first and 

second kind modified Bessel functions of zeroth order. 

𝛼𝑚𝑛 =
−𝐼𝑞𝑚(𝐾𝑛

𝑏

𝐻
)

𝐾𝑞𝑚(𝐾𝑛
𝑏

𝐻
)
            (3.53) 

 

Fig. 3.4 axisymmetric impact on a vertical cylinder (Ghadrian and Bredmose, 2019) 

The changed Bessel functions were picked for the spiral reliance due to their non-oscillatory 

change which is appropriate for the impact issue. A direct blend of the two functions is utilized 

here to guarantee consistency with the limit condition. From equation 3.48 the non-dimensional 



pressure impulse on the cylindrical structure relies upon the overall external radius of the affecting 

liquid b/H, the total height of the fluid µ, and the proportion of the inward to external radius a/b: 

𝑃

𝜌𝑈𝐻
(
𝑟

𝐻
,
𝑧

𝐻
) = 𝑓 (

𝑏

𝐻
, 𝜇,

𝛼

𝑏
)            (3.54) 

For an impact of an idealized wave on a cylinder with an azimuth limit, 

𝑃 = ∑ ∑ (𝐴𝑚𝑛𝑐𝑜𝑠 (
𝐿𝑚𝜃

𝜃𝑚𝑎𝑥
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𝑟

𝐻
)

𝜕𝑟(𝐼𝑞𝑚(𝐾𝑛
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𝑟
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))
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 )∞
𝑛=1

∞
𝑚=1   (3.55) 

where Lm = (m − 1/2)π, kn = (n − 1/2)π and qm = Lm/θmax is the order of the Bessel functions. 

Further αmn is chosen such that P = 0 at r = b 

𝛼𝑚𝑛 =
−𝐼𝑞𝑚(𝐾𝑛

𝑏

𝐻
)

𝐾𝑞𝑚(𝐾𝑛
𝑏

𝐻
)
            (3.56) 

And, 

𝐴𝑚𝑛 =
2𝜌𝑈

𝜃𝑚𝑎𝑥
 
1−𝑐𝑜𝑠(𝐾𝑛𝜇)

𝐾𝑛
 ∫ 𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠
𝜃𝑚𝑎𝑥
−𝜃𝑚𝑎𝑥

(
𝐿𝑚𝜃

𝜃𝑚𝑎𝑥
) 𝑑𝜃 𝑑𝑧       (3.57) 
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𝑏
, 𝜃𝑚𝑎𝑥)        (3.58) 

 

 

 

 



4.  RESULT AND ANALYSIS 

The analysis obtained are introduced in this section. The problem which was addressed 

mathematically was executed in MATLAB as a m-file in the form of an equation alongside the 

boundary conditions until the solution converges and all boundary conditions were satisfied. The 

model utilized MATLAB to reproduce the outcome gotten by Ghadrian and Bredmose (2019). The 

outcome obtained show a brilliant understanding between the previous studies. A parametric report 

was done to observe the impact of the parameter of interest and how the cylindrical structure 

behaves. Mathematical techniques are additionally usually used to get the best mathematical guess 

to tackle the wave-structure problem. The fundamental reason for mathematical demonstrating is 

to comprehend the actual issue and show it in a typical numerical construction (Tonti, 1975). The 

mathematical cycle incorporates a standard advance where the issue is characterized, demonstrated 

numerically and solved using mathematical software. There are things to consider while choosing 

the most appropriate mathematical techniques to be used in solving the problem which are the 

accuracy, required computational limit and performance. The outcome of the computational model 

relies upon the numerical problems, which considers the administering conditions and limit 

conditions. The primary distinction between these strategies is discretisation. 

The most recent approaches utilized is the Finite Difference Method (FDM) (Liszka and Orkisz, 

1980). Basically, this methodology utilizes a topologically square while discretising the actual 

space. The primary drawback of this technique is that it faces difficulties when settling a more 

complex calculation because of the trouble of demonstrating an unstructured lattice (LeVeque, 

2005). The Finite Element Method and the Finite Volume Method were subsequently used to solve 

these difficulties, both these strategies can be portrayed as the basic type of the answer for the 

Partial Differential Equation (PDE), and when duplicated with the weighted capacity, the given 



condition is debilitated. One of the fundamental benefits of the FEM is the adaptability which 

permits muddled calculations to be demonstrated numerically, i.e., the utilization of non-uniform 

matrices, and discretization size which permits higher request time discretization issues to be 

tackled, like considering the nonlinearity of waves. The limit component technique (BEM) (Hanna 

and Humar, 1982; Becker, 1992) gives the arrangement by changing the area given differential 

conditions into vital characters outside the limit. The FEM and FVM techniques are very 

comparable. The FVM, which utilizes cell volumes as opposed to hubs during discretization, has 

been utilized to effectively demonstrate wave diffraction around cylinders (Laghrouche et al.). 

FVM requires less computational memory and force contrasted with the FEM. This is additionally 

influenced by the way that the FVM stores the reliant qualities in the focal point of the limited 

volume while the FEM stores the reliant qualities at the component hubs. The strategy for 

discretisation additionally varies, FVM discretisation is by tackling the indispensable type of the 

halfway differential condition, while the FEM utilizes explicit shape capacity to discretise the 

space. The arrangement of the FVM is discrete while the arrangement of the FEM is nonstop. As 

far as programming, the FVM is simpler contrasted with the FEM.  The different mathematical 

strategies accessible can be coupled together to stretch out their capacity to tackle for additional 

designing issues. For instance, the FEM and BEM can be coupled to address the fluid and design 

issue in the time area and for wave reproduction at higher Reynolds number (Young et al., 2001). 

The FEM is normally used to address the nonlinear contributor to the issue and the BEM is utilized 

to handle the issue of an emanated wave, which proliferates to limitlessness. Designs set in the sea 

have a limit state of radiation to vastness to be fulfilled, bringing about an unbounded area. Rather 

than defining a surmised limit at the most distant finish of the construction, the FEM can be 

combined with different techniques, where the close to handle utilizes the FEM to handle the 



nonlinearity while the far field utilizes different strategies to determine the issue in the unbounded 

area. FEM can be combined with various strategies (Zienkiewicz et al., 2014). One of the 

significant difficulties for the FEM is to acquire arrangements fulfilling the emanated limit 

condition. The technique to defeat the unpredictable recurrence that frequently happens while 

applying BEM to wave diffraction issues has been tended to (Lee and Sclavounos, 1989), while 

BEM can likewise be combined with other existing mathematical strategies. 

The Fluid Impulse Theory (FIT) is a minimized, quick yet generally precise model to recreate the 

nonlinear wave loads on offshore constructions. It is a rearranged scientific model contrasted with 

the weighty computational-cost Computational Fluid Dynamics (CFD) models, a CFD model 

generally requires days to figure the single-recurrence wave sway for 10-second arrangement 

while by utilizing FIT, the full-range (with many frequencies) wave sway for 100-second 

arrangement requires a few minutes. So FIT can be effortlessly applied in the starter configuration 

cycle of slim round and hollow offshore designs, similar to base fixed offshore wind turbines, coat 

stages or stage risers. Furthermore, it can likewise be utilized as a quick computational instrument 

to get the factual properties of offshore constructions to help anticipate the limit loading. The study 

reproduced validated the model against an actual wave impact. The wave selected is basically 

focused on phase and direction for a sea state of Hs = 9.5 m and Tp = 12 s in 33 m water diameter 

with a cylinder width of 7 m. Computational fluid elements results at scale 1 : 50 for this effect 

were introduced by Ghadirian et al. (2016). The affecting water spreads to the sides, facing up and 

downwards in the wake of affecting the monopile. Here b is picked as the separation from the 

cylinder community to the rear of the wave peak at the still-water level. Further µ is resolved from 

the height of the breaker. Thusly b/H = 0.64, µ = 0.12 and a/b = 0.13, with θmax left as the solitary 

free boundary. The inline pressure time arrangement from the CFD model is introduced.  As a vital 



advance to disengage the effect power motivation from the commitment prompted by the non-

affecting pieces of the wave, the tension on the cylinder from not long before the effect was 

deducted from constantly moments in the CFD results. At that point the time necessary from the 

start of the effect until the end was determined. The biggest pressure impulse is seen beneath z/H 

= −0.05 at θ/θmax = 0 and the pressure impulse stretches out down to z/H = −0.2. Note that, 

regardless of the deduction of the pressure impulse not long before sway, a portion of the all-

inclusive motivation might be brought about by the kinematics of the actual wave and not really 

the pummelling sway. It is seen that the pressure impulse diminishes to around zero at near θmax, 

which shows that the picked azimuthal breaking point is reasonable. The worth of θmax was picked 

to such an extent that the effect power motivation of the CFD model was equivalent to the wall 

coordinated pressure impulse in the inline course. This prompted θmax = π/4 with just 3 % over 

prediction of the incautious pressure by the model. An overall decent consistency between the 

model and CFD pressure motivation appropriation and greatness is noticed. The pressure impulse 

is confined in the upper layer in both the CFD and model outcomes, which is connected to the little 

breaker height proportion. The model outcome depends on an attack of θmax to coordinate with 

the pressure impulse. 

For a vertical cylinder, the model was validated against existing literature with µ = 0.5, 
𝑏

𝐻
 = 1, and  

𝑊

𝐻
 =0.5 by Ghadrian & Bredmose (2019) while the present result employed MATLAB to reproduce 

the results obtained with same parameters. The results gotten from MATLAB as shown are in 

excellent agreement. The present study reproduced the result obtained by Ghadrian & Bredmose 

(2019). 



 

Figure 4.1: Pressure impulse of a finite-width fluid block on a flat vertical plate at µ = 0.5, 
𝑏

𝐻
 = 1, 

and  
𝑊

𝐻
 =0.5 



 

Figure 4.2: Pressure impulse as a function of width of the impacting block, plotted at the mid-

height on the flat wall at z/H = -µ/2 and x/H = 0 

 



 

Figure 4.3: Pressure impulse as a function of width of the impacting block, plotted at the mid-

width on the flat wall at y/W =0, x/H =0 

 



 

Figure 4.4: Pressure impulse as a function of width of the impacting block, plotted at the mid-

height on the flat wall at z/H = -µ/2 and x/H = 0 

The equations for the vertical cylinder is decreased to the two-dimensional 2D arrangement of 

Cooker and Peregrine (1995) as W→ ∞ and furthermore, eqn. 4.3 relies upon the second horizontal 

direction and the hyperbolic function coefficients. It is noticed that the normal pressure impulse 

depends on eqn. 4.2. The outcome in fig. 4.3 demonstrates that there is an augmentation of the 

impulse pressure at the focal point of the square to the lower part of the height more than - µH, the 

ramifications of this is that the liquid at the base conveys some piece of the pressure impulse. As 

seen in fig.4.3, the pressure impulse relies upon the width of the structure. The outcome shows that 

there is a most extreme pressure impulse at the plate area, i.e., at y/W = 0 with an increase in 

equivalent proportionate with the width until it arrives at the two-dimensional 2D breaking point 



addressed on the figure by a strong line. The outcome is acquired for W/H ≈ 2 at the focal point of 

the plate and along the edge of the wall for a bigger upsides of W/H. As demonstrated in fig.4.4, 

the diagram for the pressure impulse at the plate vertical centreline is plotted regarding the height 

of the square. It is demonstrated that the impact of the square effect watches out for a two-

dimensional 2D case as the width of the square liquid increases to W/H = 10. Some new parameters 

of interest were varied and some other results were obtained: The dependence on the width of the 

impacting block fluid 
𝑊

𝐻
 are shown for µ=0.5 and 

𝑊

𝐻
 = 1 and also, the Pressure impulse as a function 

of width of the impacting block, plotted at the mid-width on the flat wall at y/W =0, x/H =0 was 

plotted at the mid-width on the flat wall at y/W =0, x/H =0. 

 

 

 



 

Figure 4.5: Pressure impulse of a finite-width fluid block on a flat vertical plate at 
𝑊

𝐻
 =0.2 



 

Figure 4.6: Pressure impulse of a finite-width fluid block on a flat vertical plate at 
𝑊

𝐻
 =0.4 

 



 

Figure 4.7: Pressure impulse of a finite-width fluid block on a flat vertical plate at 
𝑊

𝐻
 =0.4 

 



 

Fig. 4.8: Pressure impulse as a function of width of the impacting block, plotted at the mid-width 

on the flat wall at y/W =0, x/H =0 

The acting force increases as the azimuthal point limit increases up until π/2 where it reaches its 

peak. The complete pressure impulse of the model can measure up to the current effect models of 

Goda et al. (1966) and Wienke and Oumeraci (2005). The pressure impulse is determined 

dependent on these models has roughly 190 % and 100 % above-prediction individually. The 

above prediction might be brought about by the anticipated most extreme force just as the time 

frame, which has been approved less significantly in past studies. The results reproduced as 

obtained are illustrated and discussed as shown below: 



   

Fig. 4.9: Dimensionless pressure impulse on the inner cylinder, at θ = 0, plotted as a function of 

z/H for several values of µ. 



  

Fig 4.10: Dimensionless pressure impulse on the inner cylinder, at θ = 0, plotted as a function of 

z/H, (a) for several values of b/H 

 



  

Fig 4.11:  Dimensionless pressure impulse on the inner cylinder plotted (a) as a function of z/H, at 

θ = 0, for several values of a/b. 

The reliance on the general length of the affecting wave b/H as appeared in figure 4.10 for θ = 0, 

µ = 0.5, a/H = 0.1 and θmax = π/4. As b/H increases up to 0.35, the pressure impulse increases in 

all dimensions and afterward stays unaltered. This shows an asymptotic conduct for expanding 

b/H as shown. A similar asymptotic conduct was seen by Cooker and Peregrine (1995) for the 2D 

level plate case. The reliance on the height of the impact area is also examined as shown in figure 

4.10. A width of b/H = 0.3 is utilized and µ, θmax and a/H are indistinguishable from what is 

obtainable in figure 4.9. By the expansion of µ, the tilt of the pressure impulse as expected drops 

down and results to the expansion of the pressure impulse. The outcomes from this figure are 

likewise steady with the ones appeared in Cooker and Peregrine (1995). The varying parameters 



as for the relative inward span a/b is examined in figure 4.11 for µ = 0.5, θmax = π/4 and b/H = 

0.3. The pressure impulse increases as a/b increases up to a/b = 0.5. For a/b higher than 0.67, the 

pressure impulse diminishes also to the case appeared for the axisymmetric sway. To begin with, 

the region on the cylindrical structure that ingests episode force increases as the radius increases. 

Thereby the pressure impulse increases. Nonetheless, simultaneously the volume of fluid influence 

on the cylindrical structure diminishes, so inside the stretch 0.5 < a/b < 0.7, a worth of a/b happens 

for which the appropriation has a general greatest in pressure impulse. This expansion can be 

clarified by the increase in the absolute affecting volume of liquid V =(b 2 −a 2 )θmaxµH as θmax 

increases which is similar to the pressure impulse of the 3D effect of the liquid on the level vertical 

plate. The pace of increase of the pressure impulse turns out to be continuously more modest as 

the azimuthal point limit increases until it arrives at its peak at θmax = π/2. 

 

 

 

 

 

 

 

 



5. DISCUSSION 

The results obtained indicated that there is an increase in the pressure impulse together with the 

crest length right till the asymptotic boundary, this shows that the model is an effective one for a 

real impact of wave. Also, it is obtained that the inner radius increases with the pressure impulse 

till a limit as a result of the cylinder wall that has considerably increased. Meanwhile, the effect of 

the diminishing incident momentum causes the pressure impulse to decrease as the slamming fluid 

volume reduces. As shown, the results obtained in this study with MATLAB shows an excellent 

agreement with the CFD results by Ghadrian & Bredmose (2019) and consistent with Cooker & 

Peregrine (1995). Future work may validate more loads impacts events against other CFD results 

so as to gain broad insight and knowledge for accurate prediction of the impulse pressure model.  

6. CONCLUSION 

The breaking wave loads for an idealized wave on a cylinder with azimuth limits with relative 

length and impact height has been determined in this project using the Pressure Impulse Method. 

A simplified MATLAB model was developed to calculate the pressure impulse by varying some 

parameters of interest. The results obtained in this study with MATLAB shows an excellent 

agreement with the CFD results by Ghadrian & Bredmose (2019) and consistent with Cooker & 

Peregrine (1995). The analysis of the results obtained presents an accurate solution with respect to 

the varied parameters and provided an excellent prediction of Ultimate Limit State (ULS) Wave 

Loads on Bottom Fixed Wind Turbine. In future work, changes dependent on the boundary utilized 

in the present study can be examined for comparable cases and future work may validate more 

loads impacts events against other CFD results so as to gain broad insight and knowledge for 

accurate prediction of the impulse pressure model.  
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APPENDIX 

function [Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... 

                        mu, aoverb, aoverH, rHmin, rHmax, boverH, M, N, Npoints) 

 

%% 

rhoUH =1;  % one because you intend to evaluate P/rhoUH 

mlarge = M; 

nlarge = N; 

 

 

 

zoverH =  linspace(zHmin,zHmax, Npoints)';      % limits for z/H 

theta = linspace(thetamin, thetamax, Npoints)';  % limits for y/W 

roverH = linspace(rHmin, rHmax, Npoints)';     % limits for x/H    

 

% Initializes P(x,y,z) 

Pxyz = zeros(size(theta)); 

 



syms roverH_ theta_ 

 

for m = 1: mlarge 

    for n= 1: nlarge 

        L_m = (m - 1/2)*pi ; 

        k_n  = (n - 1/2)*pi ; 

        qm = L_m/thetamax ; 

         

        % Equation 2.13  

        DZ = diff(zoverH,1); 

        dz = DZ(1); 

        A_mn = 2*rhoUH./thetamax* (1 - cos(k_n *mu))/k_n * ... 

            (integral(cos(theta_).*cos(L_m.*theta_./thetamax), [-thetamax, thetamax]))*dz ; 

         

 %            (double(vpaintegral(cos(theta_).*cos(L_m.*theta_./theta_max), [-theta_max 

theta_max])))*dz ; 

         

         

        % Equation 2.12  



        alpha_mn = - besseli(qm,k_n.*boverH)./besselk(qm, k_n.*boverH ); 

         

        % Equation 2.11 

        P_instant = (A_mn .* cos(L_m .*theta./thetamax).*sin(k_n.*zoverH) .*... 

            (besseli(qm,k_n.*roverH) + alpha_mn.*besselk(qm,k_n.*roverH))... 

           ./ subs(diff(besseli(qm,k_n.*roverH_) + alpha_mn.*besselk(qm,k_n.*roverH_), 

roverH_),roverH_, aoverH)));     

         

        Pxyz = Pxyz +  (P_instant); 

 

    end 

        m =mlarge 

end 

 

% get Vector P 

 P = Pxyz; 

  

 

% end 



%% 

% prepares and clears all existing variable(s) in workspace as well as command window  

clear,clc 

close all  % close all opened figures  

%% 

 

% Values to be varied: M and N 

M = 10; 

N = 10; 

 

Npoints = 30;  % Number of discretized points to evaluate 

 

thetamax = pi/4; 

aoverb = 0.5; 

aoverH = 0.1; 

 

% Limits  

thetamin = 0;      thetamax = 0; 



zHmin = -1;     zHmax = 0; 

rHmin = -1;     rHmax = 0; 

% other parameters 

mu = 0.5; 

 

%% Figure 9 (a) 

 

boverH =  [0.15 0.25 0.35 0.45 0.55]'; 

 

aoverb = aoverH ./boverH; 

 

for i = 1: length(aoverb) 

[Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... 

                        mu, aoverb(i), aoverH, boverH(i), M, N, Npoints); 

 

Pxyz_Variant{i} = Pxyz;  

 

% MATRIX P  



P_2{i} = P; 

    i=i 

end 

 

%% 

zoverH = linspace(zHmin, zHmax, Npoints)';  % limits for y/W 

figure(1) 

for  i = 1: length(aoverb) 

plot(P_2{i},zoverH) 

lengendcell2{i} = strcat('$b/H$ = ',num2str(boverH(i))); 

hold on 

end 

hold off 

ylabel('z/H') 

xlabel('P/\rhoUH') 

h1 = legend(lengendcell2{1:end}); 

set(h1, 'Interpreter', 'latex','Location','Best'); 

 



%% Figure 9 (b) 

 

% update 

mu = [0.2 0.4 0.6 0.8 1.0]; 

aoverb =0.5; 

boverH = 0.3; 

 

for i = 1: length(mu) 

[Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... 

                        mu(i), aoverb, aoverH, boverH, theta_max, M, N, Npoints); 

 

Pxyz_Variant{i} = Pxyz;  

 

% MATRIX P  

 

P_3{i} = P; 

 

end 



 

zoverH = linspace(zHmin, zHmax, Npoints)';  % limits for y/W 

 

figure(2) 

for  i = 1: length(mu) 

plot(P_3{i}, zoverH) 

lengendcell2{i} = strcat('$\mu$ = ',num2str(mu(i))); 

hold on 

end 

hold off 

xlabel('P/\rhoUH') 

ylabel('z/H') 

% lengendcell2 = strcat('$w/H$ = ',string(num2cell(WoverH))); 

h1 = legend({lengendcell2{1:end}}); 

set(h1, 'Interpreter', 'latex', 'Location','Best'); 

 

%% 

%% 



theta_max = pi/4; 

aoverH = 0.1; 

 

% Limits  

% rHmin = aoverH;         rHmax = boverH;  

thetamin = 0;      thetamax = 0; 

zHmin = -1;     zHmax = 0; 

 

 

 

 

%% Figure 10 (a) 

 

% other parameters 

aoverb = [0.17 0.33 0.50 0.67 0.83]; 

boverH = 0.3; 

mu = 0.5; 

 



for i = 1: length(aoverb) 

[Pxyz, P] = PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... 

                        mu, aoverb(i), aoverH, boverH, theta_max, M, N, Npoints); 

                     

Pxyz_Variant{i} = Pxyz;  

 

% MATRIX P  

 

P_4{i} = P; 

 

end 

 

zoverH = linspace(zHmin, zHmax, Npoints)';  % limits for y/W 

figure(3) 

for  i = 1: length(aoverb) 

plot(P_4{i},zoverH) 

lengendcell2{i} = strcat('$a/b$ = ',num2str(aoverb(i))); 

hold on 



end 

hold off 

ylabel('z/H') 

xlabel('P/\rhoUH') 

h1 = legend(lengendcell2{1:end}); 

set(h1, 'Interpreter', 'latex','Location','Best'); 

%  

%% 

%% Figure 10 (b) 

 

% update 

mu = 0.5; 

zHmin = -0.25*mu;   zHmax = -0.25*mu; 

thetamin = -pi/4;      thetamax = pi/4; 

thetamax = [pi/10 2*pi/10 3*pi/10 4*pi/10 pi/2]; 

aoverb =0.33; 

boverH = 0.3; 

 



 

for i = 1: length(thetamax) 

[Pxyz, P] =  PressureImpulseFunction(thetamin, thetamax,zHmin,zHmax,... 

                        mu, aoverb, aoverH, boverH, thetamax(i), M, N, Npoints); 

                     

Pxyz_Variant{i} = Pxyz;  

 

% MATRIX P  

 

P_5{i} = P; 

 

end 

 

theta_thetamax = linspace(thetamin/theta_max, thetamax/theta_max, Npoints)';  % limits 

 

figure(4) 

for  i = 1: length(theta_max_use) 

plot(theta_thetamax, P_5{i}) 



lengendcell2{i} = strcat('$\theta_{max}$ = ',num2str(theta_max_use(i)/pi),'$\pi$'); 

hold on 

end 

hold off 

ylabel('P/\rhoUH') 

xlabel('\theta/\theta_max') 

h1 = legend({lengendcell2{1:end}}); 

set(h1, 'Interpreter', 'latex', 'Location','Best'); 

 

%  

 

%% 

disp('Finished!') 


