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Abstract 

The objective of this thesis is to evaluate the axial capacity of cracked tubular elements 

analytically and numerically and compare these with laboratory tests. The laboratory tests 

have been performed by a different student and the experiments as such is not a part of this 

master thesis work.  

The analytical hand calculations have been performed according to NORSOK N-004 and the 

numerical finite element analysis have been performed according to DNVGL-RP-C208.  

In addition, two literature studies have been performed, one on non-linear finite element 

analysis and one on buckling of columns. 

The numerical model used considers the same geometry used in the experimental work, non-

linear stress-strain behaviour, and initial geometric imperfection. Four different models have 

been created, one undamaged column as a reference model and three damaged columns with 

different crack sizes. The crack sizes are 12%, 23,5% and 38,5% and the crack size is defined 

as the percentage of the circumference.  Material properties such as Young’s modulus and 

yield stress are obtained from the experimental work. Three types of boundary conditions are 

used, fixed-hinged, pinned-pinned, fixed-fixed, and the fixed-hinged boundary conditions 

related to the setup in the experimental test machine. Pinned-pinned and fixed-fixed are 

related to the buckling shape. The comparison between the experimental work and the fixed-

hinged analysis has a good match in the calculated axial capacity, and its 2% – 7% differences 

in the capacity  

The same four models that were used in the numerical model are used in the analytical hand 

calculations. The analytical hand calculations are performed by NORSOK N-004 and give an 

axial capacity of 13% lower than the experimental work for an undamaged column. This is 

more or less the same when the analytically calculations are compared with the non-linear 

finite element analysis. 

The results show that there is a good match between the experimental work and the non-linear 

analysis. Some bigger differences are found in the comparison between the analytical results 

and the experimental work. This project ends with suggestions for further works. 
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1 Introduction 

1.1 Background and motivation 

During a structural element’s life, different types of failures can occur such as cracking, 

corrosion and fatigue. A finite element analysis can be used to calculate the capacity of a 

cracked column. In addition to finite element programs, different guidance’s such as 

NORSOK N-004 can be used. NORSOK N-004 meets the expectations for safety for 

Norwegian petroleum activities. Physical behaviours in experimental work when failures 

occur are also of interest.  

Several finite element programs can be used for performing a buckling analysis, Abaqus and 

Ansys are two commonly known programs that can do this type of analysis. In this thesis, 

Abaqus has been chosen. These types of programs are based on a finite element method. 

Some requirements are necessary for performing a non-linear analysis, and a “requirement 

guide” for a finite element analysis can be found in DNVGL-RP-C208 which are introduced 

in chapter 4.  

Working in a finite element program has been interesting and have given me motivation. The 

process of modifying different parameters has resulted in progress, and that has been good. 

1.2 Problem description / thesis overview 

The objective of this thesis is to evaluate the axial capacity of cracked tubular elements 

analytically and numerically and compare these with laboratory tests. The laboratory tests will 

be performed simultaneously by a different student and the experiments as such is not a part 

of this master thesis work. 

The analytical hand calculations will be performed according to the NORSOK N-004 and the 

numerical finite element analysis will be performed according to DNVGL-RP-C208. The 

basis for the analytical methods will be investigated and possibly be elaborated as part of this 

thesis.   

In addition, two literature studies will be performed. The first literature study will be general 

about non-linear finite element analysis. The second literature study will be on buckling of 

columns. 

1.3 Limitations 

The crack development in an undamaged tubular element is not investigated in this project 

work, and the geometry is simple. Some simplification for the crack has also been considered 

such as no stresses in the crack. There have been done a small selection of crack sizes, three 

different cracks have been chosen. In addition, it has been added perfect circular holes to the 

ends of the cracks. Several things can be investigated on a column, but it’s limited to only 

check the axial compression capacity. 
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2 Theory 

2.1 Introduction 

Global buckling and local buckling are two well know phenomena when it’s come to the 

buckling of columns. Buckling leads to structural failures. Local and global buckling theory 

will be described in this chapter. A non-linear finite element analysis is based on a finite 

element method and it’s necessary to know if the problem having nonlinearity behaviours. 

The nonlinearity and different types of solver will also be described in this chapter. Different 

types of solver such as Newton-Raphson, modified Newton-Raphson and the Riks method 

will be described in this chapter. 

2.2 Theory for global buckling of columns 

Buckling of columns is a well-known phenomenon in structural engineering and can lead to 

structural failure. Historically, several structural accidents and disasters have occurred due to 

buckling and instability. Buckling of an ideal column is traditionally seen as a stability 

problem, where the column can experience a sudden lateral deflection at a certain 

compressive load. Leonard Euler (1707 – 1783) is a famous person when it comes to 

buckling. He was the first to solve an elastic instability problem and according to Timoshenko 

and Genre [1] following assumptions was made: an ideal column, perfectly straight, 

compression load applied in the centre. This resulted in an expression called Euler-formula: 

𝑃𝑐𝑟 =
𝜋2 ⋅ 𝐸𝐼

𝐿𝑒𝑓𝑓
2 =

𝜋2 ⋅ 𝐸𝐼

(𝑘 ⋅ 𝐿)2
, (2.1) 

where:  

𝑃𝑐𝑟  is the critical load / Euler’s critical load, 

𝐸  is the young’s modulus, 

𝐼  is the second moment of inertia, 

𝐿𝑒𝑓𝑓 is the effective length of the column, 

𝑘  is a coefficient which gives the effective length, 

𝐿  is the length of the column. 

The compression capacity before buckling of an ideal column can be found with Euler’s 

formula. When the compression load exceeds the critical load, the column starts to buckle. 

Either the lateral displacement can be large or small, this depends on how much more load is 

applied to the column and a stability problem occurs. 

According to Boresi and Schmidt [2], a perfect column will in most cases have deviations 

from the ideal conditions and is called imperfect columns. Applying an eccentric load is a 
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common deviation. Small and large eccentricity influence how early the column starts to 

buckle. The slenderness of the column also affects the behaviour. With help of the slenderness 

ratio L/r (L is the length of the column and r is the radius of gyration), the slenderness can be 

defined. If the column has a large slenderness ratio Euler’s formula gives an accurate estimate 

of the critical load [2].  

The Perry-Robertson formula is another formula for the buckling capacity of columns. This 

formula includes the effect of eccentric loading and the initial curvature [3]. The Perry- 

Robertson formula is shown under [4]: 

𝑁

𝑁𝑑
+

𝑁 ⋅ (𝑤0 + 𝑒) ⋅ 1

1 −
𝑁
𝑁𝑒

𝑀𝑑
≤ 1.0, (2.2) 

where:  

 𝑁  is axial compression loading, 

 𝑁𝑑  is column buckling capacity, 

 𝑤0 is the initial deformation, 

 𝑒 is the eccentricity of the axial compression load, 

𝑁𝐸  is the Euler buckling capacity, 

𝑀𝑑  moment capacity. 

Another formula for the buckling capacity of columns is the Johnson-Ostenfeld approach and 

is commonly used in the engineering industry. This empirical approach takes the effect of 

plasticity into account and results in “elastic-plastic” buckling [5]. An expression for the 

Johnson-Ostenfeld can be found in the COTech paper “Buckling capacity of simulated patch 

corroded tubular columns – laboratory tests” [4]. The expression is shown under: 

𝑓𝑐𝑟 = 𝜙 ⋅ 𝑓𝑦, (2.3) 

𝜙{
1 −

𝜆2

2
, 𝜆2 ≤ 2

1

𝜆2
, 𝜆2 ≥ 2

, (4) 

where: 

 𝜆2 =
𝑓𝑦

𝑓𝐸
  is the slenderness, 

𝑓𝐸 =
𝑁𝐸

𝐴
  is the Euler buckling stress, 

𝑓𝑦   is the yield stress. 
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2.3 Local buckling of columns 

Another phenomenon in structural engineering is the failure mode local buckling and how the 

capacity is affected. Local buckling occurs in structural elements such as thin-walled columns 

and leads to small deformations. Because of local buckling, the buckling capacity with these 

failures must be calculated and gives a lower capacity than for global buckling. Luckily, it’s 

several things to do for avoiding these failures. For example, change element type, another 

geometry or thicker “column walls”. The local buckling doesn’t need to mean it’s wrong to 

use the planned element because of the lower capacity. 

2.4 Non-linear finite element analysis 

In structural mechanics, nonlinearity can be divided into the following types: material 

nonlinearity, contact nonlinearity, and geometric nonlinearity. Most of the engineering 

problems can be described with complicated differential equations and numerical methods are 

a good tool [6]. Numerical methods are used for solving nonlinearity problems and it’s 

common to use software for the calculations. Some of the common software solves the 

problems with the finite element method. Different types of solver such as  

2.4.1 Nonlinearity 

There are three types of non-linearities in a non-linear finite element analysis, namely: 

- Material nonlinearity: When the material behaviour is described with both elasticity 

and plasticity the element has nonlinear material properties. The “stress-strain” 

relation can’t be described linearly. The plastic behaviour keeps the deformation after 

unloading it. The “stress-strain” relation is difficult to describe simply, therefore the 

“stress-strain” rate is used which is called elastoplasticity. Viscoelasticity which is a 

time-dependent behaviour is another material nonlinearity [6].  

- Contact nonlinearity: The contact nonlinearity occurs when two surfaces encounter 

each other. For example, when two objects push each other’s. 

- Geometric nonlinearity: If the structural element is exposed to a large load and the 

geometry changes because of large deformations, it’s a geometric nonlinearity. 

In Abaqus, all these types of non-linearity are possible to include. However, in this thesis 

contact non-linearities are not used.  

2.4.2 Solvers 

A numerical method based on iterations with converge criteria is normally used for solving 

non-linear problems. Two well know approaches are the Newton-Raphson method and the 

modified Newton-Raphson method. The Newton-Raphson method is load controlled method 

that uses iterations until the converge criteria are achieved for each load and gives an accurate 
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result. The displacement control method is a useful if a constant displacement is interesting to 

investigate. Another type of solvers is the Riks method also know as an arch-length method. 

The numerical method Newton-Raphson solves non-linear equations and finds the roots. A 

force is applied and for finding the corresponding displacement several iterations are done. 

When the converge criteria have been achieved the displacement for the applied load is found 

and this result is very precise. An allowed error is compared to the “exact” solution. The 

Newton-Raphson formula is as follow:  

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
, (2.5) 

For a complex non-linear equation, the true solution is hard to describe. If the true solution 

can be found equation 6 can be used for finding the error.  

𝑋𝑒𝑟𝑟𝑜𝑟 = 𝑥𝑡𝑟𝑢𝑒 − 𝑥𝑛, (2.6) 

In non-linear finite element analysis, the formula is different. An initial tangent stiffness and a 

force error are introduced. Following equations are used [7]: 

𝑘𝑡𝑛−1Δ𝑢 = Δ𝑃𝑛 → Δ𝑢𝑛 = 𝑘𝑡𝑛−1
−1 Δ𝑃𝑛, (2.7) 

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑢𝑛, (2.8) 

where: 

 𝑘𝑡𝑛−1   is the initial tangent stiffness, 

 Δ𝑢𝑛  is the displacement increment, 

 Δ𝑃𝑛  is the initial load increment, 

 𝑢𝑛  is the current estimated displacement, 

 𝑢𝑛−1  is the “previous” estimated displacement. 

𝑒𝑃𝑛 = 𝑃𝑛 − 𝑘𝑢𝑛, (2.9) 

where: 

 𝑒𝑃𝑛  is the current force error / load imbalance, 

 𝑃𝑛   is the applied load, 

 𝑘 = 𝑘(𝑢) is evaluated using displacement 𝑢𝑛, 

 𝑢𝑛  is current displacement. 

Often a modification of the Newton-Raphson method is used for saving time during the 

analysis. Instead of calculating a new stiffness matrix for each increment, the modified 

Newton-Raphson method uses a new stiffness matrix when the load is changed. Despite this 
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method require more iterations, the calculation time is less than the normal Newton-Raphson 

method [7].  

Another non-linear method is the Riks method known as the “Arc Length” method. This load-

deflecting analysis includes the load magnitude as a variable. The problem can either be stable 

or unstable and the method works. Some assumptions are considered such as the load is 

proportional, and bifurcations do not occur.   
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3 Standards for capacity of columns 

3.1 Introduction 

There are several methods to calculate the capacity of a column. In a design situation, the 

most common method is to use a relevant standard. For example, NORSOK N-004 provides 

methods for calculations of columns that are intended to meet the expectations for safety in 

the regulations for the Norwegian petroleum activities. In this chapter, an overview of the 

NORSOK N-004 Standard is provided.  

3.2 NORSOK N-004 

The NORSOK N-004 standard can be used to calculate the capacity of a tubular element 

affected for different scenarios. Axial compression, bending and hydrostatic pressure are 

examples of investigations that can be done. In the 2004 versions of NORSOK N-004 [8] it’s 

included formulas for calculations of damaged members. For later versions, NORSOK N-004 

refer to N-006. 

It’s commonly using a reference element when buckling investigations are performed. This is 

for having something to compare the results from damaged columns with. The formulas for 

buckling capacity calculations of an undamaged column are presented first. Following 

formulas are used and they are found in NORSOK N-004 [8]: 

𝑁𝑠𝑑 ≤ 𝑁𝑐,𝑅𝑑 =
𝐴𝑓𝑐
𝛾𝑀

, (3.1) 

where: 

 𝑁𝑠𝑑  is the design axial force, 

 𝑁𝑐,𝑅𝑑  is the design axial compressive resistance, 

 𝐴  is the cross sectional area, 

 𝑓𝑐  is the characteristic axial compressive strength, 

 𝛾𝑀  is the material factor. 

The characteristic axial compressive strength is calculated as follow: 

𝑓𝑐 = {

[1.0 − 0.28𝜆2̅̅̅]𝑓𝑦, 𝑓𝑜𝑟  �̅� ≤ 1.34

0.9 ⋅ 𝑓𝑦

𝜆2̅̅̅
 , 𝑓𝑜𝑟 �̅� ≥ 1.34

, (3.2) 

 

where: 
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 �̅� is the column slenderness parameter 

 𝑓𝑦 is the characteristic yield strength. 

The column slenderness parameter is calculated as follow: 

�̅� = √
𝑓𝑐𝑙
𝑓𝐸
=
𝑘𝑙

𝜋𝑖
√
𝑓𝑐𝑙
𝐸
, (3.3) 

where:  

𝑓𝑐𝑙  is the characteristic local buckling strength, 

𝑓𝐸  is the smaller Euler buckling strength in y or z direction, 

𝑘 is the effective length factor,  

𝑙  is the longer unbraced length in y or z direction, 

𝑖  is the radius of gyration, 

𝐸 is the Young’s modulus of elasticity. 

The characteristic local buckling strength is calculated as follow: 

𝑓𝑐𝑙 =

{
  
 

  
 𝑓𝑦, 𝑓𝑜𝑟 

𝑓𝑦

𝑓𝑐𝑙𝑒
≤ 0.170 

(1.047 −
0.274 ⋅ 𝑓𝑦

𝑓𝑐𝑙𝑒
)𝑓𝑦 , 𝑓𝑜𝑟 0.170 ≤

𝑓𝑦

𝑓𝑐𝑙𝑒
≤ 1.911

𝑓𝑐𝑙𝑒 , 𝑓𝑜𝑟 
𝑓𝑦

𝑓𝑐𝑙𝑒
> 1.911

, (3.4) 

where: 

 𝑓𝑦 is the characteristic yield strength, 

 𝑓𝑐𝑙𝑒 is the characteristic elastic local buckling strength. 

The characteristic elastic local buckling strength (𝑓𝑐𝑙𝑒) is calculated as follow: 

𝑓𝑐𝑙𝑒 =
2𝐶𝑒𝐸𝑡

𝐷
, (3.5) 

where: 

 𝐶𝑒 is the critical elastic buckling coefficient = 0.3, 

 𝐸  is the Young’s modulus of elasticity, 

 𝑡 is the wall thickness, 
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 𝐷 is the outside diameter. 

 

Different failures such as cracks can occur to the element. The formula for an undamaged 

tubular element is no longer valid. Therefore, a formula that takes the crack into account must 

be used. In NORSOK N-004 [8] following equations should be used for buckling capacity 

calculations with axial compression of a cracked element: 

𝑁𝑠𝑑 ≤ 𝑁𝑑𝑒𝑛𝑡,𝑐,𝑅𝑑 =
𝑁𝑑𝑒𝑛𝑡,𝑐
𝛾𝑀

, (3.6) 

where: 

 𝑁𝑠𝑑  is the design axial force, 

 𝑁𝑑𝑒𝑛𝑡,𝑐,𝑅𝑑  is the design axial compressive capacity, 

 𝑁𝑑𝑒𝑛𝑡,𝑐  is the characteristic axial compressive capacity of dented member, 

 𝛾𝑀  is resistance factor. 

The characteristic axial compressive capacity of dented member can be calculate as follow: 

𝑁𝑑𝑒𝑛𝑡,𝑐 {

(1.0 − 0.28𝜆𝑑
2̅̅ ̅) ⋅ 𝜉𝐶 ⋅ 𝑓𝑦𝐴0, 𝑓𝑜𝑟 𝜆𝑑̅̅ ̅ ≤ 1.34 

0.9

𝜆𝑑
2̅̅ ̅
⋅ 𝜉𝐶 ⋅ 𝑓𝑦𝐴0, 𝑓𝑜𝑟 𝜆𝑑̅̅ ̅ > 1.34

, (3.7) 

where: 

 𝜆𝑑̅̅ ̅ is the reduced slenderness of dented member, 

𝜉𝐶  is the correction factor for axial resistance of the dented tubular section, 

𝑓𝑦  is the characteristic yield strength, 

 𝐴0 is the cross sectional area. 

The reduced slenderness of dented member is calculated as follows: 

𝜆𝑑̅̅ ̅ = √
𝑁𝑑𝑒𝑛𝑡,𝑐
𝑁𝐸,𝑑𝑒𝑛𝑡

= √
𝜉𝐶
𝜉𝑀
⋅ 𝜆0̅̅ ̅, (3.8) 

where: 

 𝑁𝑑𝑒𝑛𝑡,𝑐  is the characteristic axial compressive capacity of dented member, 

𝑁𝐸,𝑑𝑒𝑛𝑡 is the Euler buckling strength of a dented tubular member, for buckling 

in-line with the dent, 
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𝜉𝐶   is the correction factor for axial resistance of the dented tubular section, 

𝜉𝑀 is the correction factor for bending resistance of the dented tubular 

section, 

𝜆0̅̅ ̅   is the reduced slenderness of undamaged member. 

The correction factor for axial resistance is calculated as follow: 

𝜉𝐶 = exp (−0.08
𝛿

𝑡
)  𝑓𝑜𝑟 

𝛿

𝑡
< 10, (3.9) 

where: 

𝛿 is the dent depth, 

𝑡 is the wall thickness. 

The correction factor for bending resistance calculated as follow: 

𝜉𝑀 = exp (−0.06
𝛿

𝑡
)  𝑓𝑜𝑟 

𝛿

𝑡
< 10, (3.10) 

where: 

𝛿 is the dent depth, 

𝑡 is the wall thickness. 

The dent depth calculated as follow: 

𝛿̅ =
1

2
⋅ (1 − cos 𝜋

𝐴𝑐𝑟𝑎𝑐𝑘
𝐴

) ⋅ 𝐷, (3.11) 

where: 

𝛿̅  is the equivalent dent depth, 

𝐷   is the tube diameter, 

𝐴𝑐𝑟𝑎𝑐𝑘   is the crack area, 

𝐴   is the full cross section area. 

As mentioned in chapter 2, the column can have a deviation in the form of an eccentric load. 

An eccentric load applies to bend the column and the following formula in NORSOK N-004 

[8] calculates the bending effect: 

𝑀𝑠𝑑 ≤ 𝑀𝑑𝑒𝑛𝑡,𝑅𝑑 = {
𝜉𝑀 ⋅ 𝑀𝑅𝑑, 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑒𝑛𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑎𝑐𝑡𝑠 𝑖𝑛 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑀𝑅𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , (3.12) 

where: 
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 𝑀𝑆𝑑  is the design bending moment, 

 𝑀𝑑𝑒𝑛𝑡,𝑅𝑑 is the design bending capacity of dented section, 

 𝑀𝑅𝑑  is the design capacity of undamaged section, 

 𝜉𝑀  is the correction factor for bending resistance of the dented tubular

   section, see equation (3.10) in this thesis.  

The design bending capacity of undamaged sections is calculated as follow: 

𝑀𝑅𝑑 =
𝑓𝑚𝑊

𝛾𝑀
, (3.13) 

where: 

 𝑓𝑚 is the characteristic bending strength, 

 𝑊 is the elastic section modulus, 

 𝛾𝑀 is the material factor. 

The characteristic bending strength is calculated as follow: 

𝑓𝑚 =

{
 
 
 

 
 
 

𝑍

𝑊
𝑓𝑦, 𝑓𝑜𝑟 

𝑓𝑦𝐷

𝐸𝑡
≤ 0.0517

(1.13 − 2.58 (
𝑓𝑦𝐷

𝐸𝑡
) (

𝑍

𝑊
))𝑓𝑦, 𝑓𝑜𝑟 0.0517 <

𝑓𝑦𝐷

𝐸𝑡
≤ 0.1034, (3.14)

(0.94 − 0.76 (
𝑓𝑦𝐷

𝐸𝑡
) (

𝑍

𝑊
))𝑓𝑦, 𝑓𝑜𝑟 0.1034 <

𝑓𝑦𝐷

𝐸𝑡
≤ 120

𝑓𝑦

𝐸

 

 

where: 

 𝑍 is the plastic section modulus, 

 𝑊 is the elastic section modulus, 

 𝑓𝑦 is the characteristic yield strength, 

 𝐷 is the outside diameter, 

 𝐸 is the Young’s modulus, 

 t is the wall thickness. 

The elastic section modulus is calculated as follow: 
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𝜋

32

[𝐷4 − (𝐷 − 2𝑡)4]

𝐷
, (3.15) 

where: 

 𝐷 is the outside diameter, 

 t is the wall thickness. 

The plastic section modulus is calculated as follow: 

1

6
[𝐷3 − (𝐷2𝑡)

3], (3.16) 

where: 

 𝐷 is the outside diameter, 

 t is the wall thickness. 

The design bending capacity of damaged sections is calculated as follow: 

𝑀𝑆𝑑 ≤ 𝑀𝑑𝑒𝑛𝑡,𝑅𝑑 = {
𝜉𝑀 ⋅ 𝑀𝑅𝑑 , 𝑖𝑓 𝑑𝑒𝑛𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑎𝑐𝑡 𝑖𝑛 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑀𝑅𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

When bending affects the tubular element it’s because of an eccentric load, therefore a 

combination of both axial and bending should be calculated. Following equations in 

NORSOK N-004 [8] should be used: 

𝑁𝑆𝑑
𝑁𝑑𝑒𝑛𝑡,𝑐,𝑅𝑑

+√(
𝑁𝑆𝑑Δ𝑦2 + 𝐶𝑚1𝑀1,𝑆𝑑

(1 −
𝑁𝑆𝑑

𝑁𝐸,𝑑𝑒𝑛𝑡
)𝑀𝑑𝑒𝑛𝑡,𝑅𝑑

)

𝛼

+ (
𝑁𝑆𝑑Δ𝑦1 + 𝐶𝑚2𝑀2,𝑆𝑑

(1 −
𝑁𝑆𝑑
𝑁𝐸
)𝑀𝑅𝑑

)

2

≤ 1, (3.17) 

where: 

𝛼 is the exponent in stability equation for dented tubular members          

𝛼 = 2 − 3
𝛿

𝐷
, 

 𝑁𝑆𝑑  it the design axial force on the dented section, 

 𝑀1,𝑆𝑑  is the design bending moment about an axis parallel to the dent, 

𝑀2,𝑆𝑑  is the design bending moment about an axis perpendicular to the dent, 

 𝑁𝑑𝑒𝑛𝑡,𝑐,𝑅𝑑 is the 

𝑁𝐸,𝑑𝑒𝑛𝑡 is the Euler buckling strength of the dented section, for buckling in-line 

with the dent = 𝑁𝐸,𝑑𝑒𝑛𝑡 = 𝜋2
𝐸𝐼𝑑𝑒𝑛𝑡

(𝑘𝑙)2
 , 
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𝑘 is the effective length factor, 

𝐼𝑑𝑒𝑛𝑡  is the moment of inertia of the dented cross-section, which may be 

calculated as: 𝜉𝑀𝐼, 

𝐼 is the moment of inertia of undamaged section, 

 Δ𝑦1   is the member out-of-straightness perpendicular to the dent, 

 Δ𝑦2  is the member out-of-straightness in-line with the dent, 

 𝐶𝑚1, 𝐶𝑚2 is the miment reduction factor, 
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4 Numerical model 

4.1 Introduction 

There are several finite element programs for creating a numerical model and performing a 

non-linear buckling analysis. Abaqus is one of them and has been used in this thesis. 

DNVGL-RP-C208 [9] includes recommendations for performing a non-linear analysis and 

chapter 4 in DNVGL-RP-C208 describes the requirements. Based on the experimental work 

the following properties were taken into consideration and implemented in the numerical 

model: material geometry, elastic and plastic stress and strain, initial geometric imperfection, 

axial compression load. Three different types of analysis are created, one for fitting the 

boundary conditions in the test machine and two to match the “physical” buckling shape. The 

elements types of the columns is a 4-node general-purpose shell element (S4R) that uses 

reduced integration with hourglass control [10] which is used in the mesh configuration. A 

non-linear analysis procedure can be divided into the following processes: pre-processing, 

processing, and post-processing.  

Abaqus use consistent units which means that a unit system must be in place. This requires a 

bit of research before starting modelling.   

4.2 Methodology 

For a non-linear buckling analysis, some important things must be in place, and suitable 

software is necessary. The model needs properties such as geometry, mesh, material model, 

boundary conditions, and load. Then select an appropriate buckling analysis to find the critical 

buckling load with the belonging buckling shape and implement this in the non-linear analysis 

to find the axial capacity. 

An example of how to perform a buckling analysis is example 8.5 in DNVGL-RP-C208 [9]  

and contains six steps. These six steps will be gone through: 

1. Prepare model: The model needs some preparations such as material properties, 

geometry, boundary conditions, etc. In structures, it’s commonly using steel, and it’s a 

lot of different steel type which affect the material behaviour. The application of the 

material decides what steel type should be used and is sufficient for the usage. If 

experimental work is relevant for the case, then the boundary conditions should be the 

same. Constrains with a reference point in the middle can be used to apply the 

boundary conditions. A load must be applied. The element type influences the mesh 

type, and for a tubular element, a 4-noded shell element (S4R) can be used. 

2. Determine relevant buckling modes: An eigenvalue analysis can be used to find the 

different buckling modes and the appropriated critical load. In this step, the goal is to 

determine the relevant buckling mode. 

3. Select object for calibration and prepare model: Models with complicated geometry 

exist, and calibration can be necessary. The boundary condition, load, mesh, element 
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type, etc. remain the same. In example 8.5 in DNVGL-RP-C208 [9], a conical 

transition turns into a cylinder as the calibrated model.  

4. Determine the appropriate buckling mode for the calibrated object: The calibrated 

model has different buckling modes than the original model and is found with an 

eigenvalue analysis. A comparison between the buckling modes found for the original 

model and the calibrated is performed. The buckling mode with a similar pattern to the 

selected buckling mode for the original model is selected as the appropriate buckling 

mode. 

5. Determine magnitude of the equivalent imperfection: The selected buckling mode is 

implemented in the non-linear analysis, and the model properties used in the 

eigenvalue analysis remains the same in the non-linear analysis. A buckling capacity 

calculation performed with formulas in NORSOK N-004 [8] is used to determine the 

magnitude of imperfection. The magnitude of imperfection in the non-linear analysis 

is scaled, so the axial capacity matches the NORSOK N-004 [8] calculations.  

6. Perform non-linear analysis of the model with imperfections: The magnitude of 

imperfection found in step 5 is implemented in the non-linear analysis of the original 

model then the analysis is performed. The buckling capacity of the model is now 

found, and the result can be presented as a load-displacement plot. 

 

4.3 Analysis procedure – pre-processing 

The pre-processing part of the analysis procedure is where all properties related to the model 

is performed. In this section, the models used in the non-linear finite element analysis will be 

described. The model properties such as geometry, mesh, material modelling, boundary 

conditions and load applications will be described separately. 

4.3.1 Software  

Two well-known finite element programs are Abaqus and Ansys, and both programs use the 

finite element method for solving problems. The non-linear behaviour must be considered in 

the selection of suitable software.  

4.3.2 Geometry 

Four models have been created and the different geometric properties 

are described in Table 4-1, three with cracks and one reference model 

without any defects. The reference model is an undamaged column and 

the three others have different crack sizes. The crack size is presented in 

percent of the circumference. There are added holes to the ends of the 

cracks, Figure 4-2 illustrates this. The samples names contain of some 

of the geometric properties such as diameter, thickness, hole size and 
Figure 4-1: Samples  

cross-section [13]. 
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crack size. For example, 70-2.9-4-88 have a diameter of 70 mm, a thickness of 2.9 mm, holes 

sizes of 4 mm and a remaining circumference of 88%. 

Table 4-1: Geometry properties. 

Sample Diameter Length Thickness Crack size Hole size 

70-2.9-4-100 70 mm 1500 mm 2.9 mm - - 

70-2.9-4-88 70 mm 1500 mm 2.9 mm 12 % 4 mm 

70-2.9-4-76.5 70 mm 1500 mm 2.9 mm 23,5 % 4 mm 

70-2.9-4-61.5 70 mm 1500 mm 2.9 mm 38,5% 4 mm 

 

The test setup and how the crack is defined is presented in Figure 4-2. In addition to this, 

some measurements are added to the figure to show the placement of the crack. Figure 4-2: 

Samples test setup and crack definition. 

 

Figure 4-2: Samples test setup and crack definition. 

The four different models without any measurement are shown in Figure 4-3 to Figure 4-4. 

 

Figure 4-3: Reference model. 
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4.3.3 Mesh 

The completion time for the analysis would be very long if the whole model had the same 

mesh density, therefore local seeds are introduced to the model for creating a finer mesh 

around the crack and holes. This is for focusing on a specific area. The sizes of the global 

seeds are 3 mm and the local seeds are 0.25 mm around the holes and 0.75 on the crack (the 

“crack line” between the holes). Since the tubular elements are modelled as a shell, the 

element type used in the mesh configuration is a 4-node general-purpose shell element (S4R). 

The column can be exposed to large deformations and large strains, and this element type is 

capable to handle this. 

Figure 4-5 shows the reference model meshed with global seeds of 3 mm.  

 

Figure 4-5: Meshed tubular element. 

 

In Figure 4-6, there is created local seeds around 

the crack and the holes. The global seeds size of 

0.25 is the same as for the reference model, and 

the local seeds have the size of 0.25 mm around 

the holes and 0.75 mm at the crack line. 

Mesh refinement is necessary to see what the 

results converge to. The results from different 

mesh sizes are compared to see what the results 

converge to. When the differences are low, the 

mesh refinement is done. All the numerical 

models have been through mesh refinement. 

Figure 4-4: 12% crack (left), 23,5% crack (middle) and 38,5% crack (right). 

Figure 4-6: Local seeds introduced in the numerical 

model with 12% crack. 
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4.3.4 Material modelling 

The material properties are important to look at because different steel types have different 

behaviours. A stress-strain plot is used to describe the stress development and the elastic and 

plastic area can be defined here. From the elastic region, Young’s modulus can be found. The 

value of Young’s modulus and yield stress is obtained from the experimental work performed 

by Simen Riise [11]. In Table 4-2 the material properties such as Young’s modulus, Poisson’s 

Ratio and yield stress is summarized. 

Table 4-2: Material properties. 

Young’s Modulus (E): 150 000 MPa 

Poisson’s Ratio (ν): 0.3 

Yield stress (σY): 370 MPa 

 

In a non-linear analysis the plasticity is also used, and the yield stress-strain relation must be 

defined. The stresses found from experimental work have a so-called engineering stress-strain 

relation, and the true stress-strain relation is required in the non-linear analysis. There are 

formulas in DNVGL-RP-C208 [9] that can be used to convert from engineering stress-strain 

to true stress-strain. In Table 4-3 the converting formulas presented in DNVGL-RP-C208 are 

presented. 

Table 4-3: Formula for converting from "engineering" stress-strain to "true" stress-strain. Bottom left = formula (6), bottom 

right = formula (7). Reference [9]. 

Engineering stress → true stress Engineering strain → true strain 

σtrue = σeng(1 + ϵeng) ϵtrue = ln(1 + ϵeng) 

 

The true-strains values are summarized in Table 4-4, and they are implemented in the non-

linear analysis. 

Table 4-4: "True" stress and true "strain" after using eq. 6 and eq7 in DNV-RP-C208 [9].  

Yield stress (MPa) Plastic strain 

370 0 

371,48 0,004 

377,40 0,0198 

444,00 0,1823 

 

Three components can be used for describing the material model’s plasticity:  

- Yield surface: Von Mises yield criteria is used for making a yield surface plot. This 

shows when the plastic strains are generated. 
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- Isotropic hardening: A new yield surface can be created when the materials plastic 

strains grow, and the isotropic hardening presents these changes.  

- Flow rule: The strain increment and the stress increment having a relation between 

each other. 

Isotropic hardening has been used in the numerical model. The yield surface for the numerical 

model with steel S235 and the isotropic hardening are presented in Figure 4-7. 

 

Figure 4-7: Yields surface and isotropic hardening. 

 

4.3.5 Boundary conditions 

There have been used three different types of boundary conditions 

for the numerical models and they are divided into three cases: 

- Case 1: bottom is fixed, and the top is hinged.  

- Case 2: bottom is fixed, and the top is fixed.  

- Case 3: bottom is pinned, and the top is pinned.  

Following degrees of freedom are restrained for case 1: all at the 

bottom, U1 and U2 at top. Following degrees of freedom are 

restrained for case 2: all at the bottom and top.  

Following degrees of freedom are restrained for case 3: U1, U2, 

U3, UR3 at the bottom, and U1, U2, UR3 at the top. 

 

 

Figure 4-8: Boundary conditions 

case 1 (fixed-hinged). 
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4.3.6 Load application 

Two types of loads are used in the numerical models. There 

has been used a concentrated force as the load in the linear 

buckling analysis and the magnitude of this has been set to 

1. This load is applied to the centre at the top of the 

columns. An eigenvalue is found which refer to the critical 

buckling load. There have not been applied a real load in 

the non-linear analysis, but a displacement has been applied 

at the top centre. This displacement acts like a compression 

load. 

4.4 Analysis procedure – processing 

In the pre-processing, the model was created and now it’s time for performing a buckling 

analysis as the processing part. All the necessary inputs in the buckling analysis will be 

described in this section. In addition, the non-linear analysis will be described shortly. 

4.4.1 Analysis method  

The linear buckling analysis is used to determine the possible buckling modes of a perfect 

column. In Abaqus, the buckling analysis can be an eigenvalue-based analysis which means 

that the buckling mode and the appropriated eigenvalue are found, and this type of analysis is 

used for the numerical models. 

There are two types of eigensolvers to choose, either the subspace or the Lanczos and both 

extract the different eigenmodes. How many eigenmodes which is desirable and how many of 

them are of interest must be defined. There are also possible to specify how many vectors 

used per iteration but Abaqus gives a suggestion here, and the last thing to specify is the 

maximum number of iterations, this can be a random number, but a high number is 

recommended.  

The linear buckling analysis gives different eigenmodes with different buckling shapes. It was 

desirable to have a similar buckling shape as in the experimental work, therefore were the 

chosen buckling modes either mode one or mode two and both modes have the same buckling 

shapes, but they are buckling about either x- or y-axis. Since the holes and crack were facing 

in the x-direction, the mode which buckling about the x-axis was chosen.    

The non-linear finite element analysis using the Newton-Raphson method to solve the non-

linear problem. The static general analysis in Abaqus can meet on problems in the analysis 

because of unstable problems. The converge criteria will fail for unstable structures.  

Figure 4-9: Load applied at the top of the 

models. 
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4.5 Analysis procedure – post-processing 

The post-processing process contains of selecting the relevant buckling mode and implements 

this into the non-linear analysis, and a scale factor must be defined. The magnitude of the 

scale factor can either be set to a desired value or it can be set to match a calculated value.  

By implementing the buckling shape, the non-linear analysis is told that there is an 

imperfection in the model. 

4.5.1 Imperfections (imperfections shape – magnitude)  

The relevant buckling mode from the eigenmode analysis must be determined. Then the non-

linear analysis is told that this imperfection shape will occur, and the capacity calculations are 

based on this shape. The relevant buckling mode in the numerical models was the shape that 

was most like the buckling shape in the experimental work. The magnitude of this is based on 

the eccentricity in the experimental work which was between 1.5 mm to 2 mm. Following 

three scaling factors have been used in the non-linear analysis: 1.5, 1.8 and 2.0. There have 

been used both negative and scaling factors, the difference is which way the column is 

buckling. The positive scale factor tells the imperfection shape to buckle the same way as the 

selected eigenmode and it is the opposite when the scale factor becomes negative. 

4.5.2 Postbuckling analysis 

There is possible to perform another type of non-linear analysis if it is suspected that there is 

an unstable response. The “Riks method” can be introduced with the same imperfections 

described in the previous paragraph. This has not been done for the numerical models, only a 

few tests to see how the load-displacement plots are changing. 
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4.6 Results 

4.6.1 Fixed-hinged boundary conditions 

 

Figure 4-10: Buckling shape of column with fixed-pinned boundary conditions. 

The results from the non-linear finite element analysis with fixed-pinned boundary conditions 

for three different scale factors are summarized in Table 4-5 to Table 4-7. 

Table 4-5: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.5. Boundary 

conditions: fixed-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 215.08 215.08 

70-2.9-4-88 12.0 212.31 215.09 

70-2.9-4-76.5 23.5 -(4) 214.00 

70-2.9-4-61.5 38.5 214.63 -(4) 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative scale factor, 3. FE,pos = 

positive scale factor, 4. Abaqus failed to calculate. 

 

Table 4-6: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.8. Boundary 

conditions: fixed-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 207.69 207.69 

70-2.9-4-88 12.0 207.43 207.93 

70-2.9-4-76.5 23.5 211.24 213.59 

70-2.9-4-61.5 38.5 213.32 207.88 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative scale factor, 3. FE,pos = 

positive scale factor. 
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Table 4-7: Results from non-linear finite element analysis with positive and negative scale factor equal to 2.0. Boundary 

conditions: fixed-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 204.13 204.13 

70-2.9-4-88 12.0 204.87 207.57 

70-2.9-4-76.5 23.5 -(4) -(4) 

70-2.9-4-61.5 38.5 -(4) -(4) 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection, 4. Abaqus failed to calculate. 

 

4.6.2 Pinned-pinned boundary conditions 

 

Figure 4-11. Buckling shape of column with pinned-pinned boundary conditions. 

The results from the non-linear finite element analysis with pinned-pinned boundary 

conditions for three different scale factors are summarized in Table 4-8 to Table 4-10. 

Table 4-8: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.5. Boundary 

conditions: pinned-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 184.36 184.36 

70-2.9-4-88 12.0 177.21 184.72 

70-2.9-4-76.5 23.5 177.50 184.68 

70-2.9-4-61.5 38.5 -(4) -(4) 
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1. Crack size is given in percent of the original circumference, 2. FE,neg = negative scale factor, 3. FE,pos = 

positive scale factor, 4. Abaqus failed to calculate 

 

Table 4-9: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.8. Boundary 

conditions: pinned-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 -(4) -(4) 

70-2.9-4-88 12.0 172.74 177.76 

70-2.9-4-76.5 23.5 -(4) -(4) 

70-2.9-4-61.5 38.5 178.07 171.18 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative scale factor, 3. FE,pos = 

positive scale factor, 4. Abaqus failed to calculate. 

 

Table 4-10: Results from non-linear finite element analysis with positive and negative scale factor equal to 2.0. Boundary 

conditions: pinned-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 176.49 176.49 

70-2.9-4-88 12.0 164.31 176.70 

70-2.9-4-76.5 23.5 170.29 176.46 

70-2.9-4-61.5 38.5 -(4) -(4) 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative scale factor, 3. FE,pos = 

positive imperfection, 4. Abaqus failed to calculate. 
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4.6.3 Fixed-fixed boundary conditions 

 

Figure 4-12: Buckling shape of column with pinned-pinned boundary conditions. 

The results from the non-linear finite element analysis with fixed-fixed boundary conditions 

for three different scale factors are summarized in Table 4-11 to Table 4-13. 

Table 4-11: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.5. Boundary 

conditions: fixed-fixed. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 227.00 227.00 

70-2.9-4-88 12.0 220.42 227.49 

70-2.9-4-76.5 23.5 221.15 227.17 

70-2.9-4-61.5 38.5 223.70 225.91 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection. 

 

Table 4-12: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.8. Boundary 

conditions: fixed-fixed. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 225.21 225.21 

70-2.9-4-88 12.0 219.51 225.65 

70-2.9-4-76.5 23.5 220,09 225.17 

70-2.9-4-61.5 38.5 221.54 224.13 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection. 
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Table 4-13: Results from non-linear finite element analysis with positive and negative scale factor equal to 2.0. Boundary 

conditions: fixed-fixed. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 223.95 223.95 

70-2.9-4-88 12.0 218.62 225.65 

70-2.9-4-76.5 23.5 219.01 224.21 

70-2.9-4-61.5 38.5 221.11 222.96 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection. 
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5 Comparison and discussion 

5.1 Introduction 

The numerical model is modelled and performed based on the description described in the 

previous chapter. Imperfection and non-linear stress-strain behaviour are included in the 

model. This chapter presents the result from the non-linear finite element analysis, 

experimental work, hand calculations according to NORSOK N-004 and comparison and 

discussion of the results. 

5.2 Non-linear finite element method 

The magnitude of imperfection influences the axial capacity of a column. There have been 

performed three non-linear analysis with different magnitude of imperfection, one with fixed-

hinged boundary conditions, one with pinned-pinned boundary conditions, and one with 

pinned-pinned boundary conditions. In all three analyses, the same magnitude of imperfection 

has been applied to the model. Three different scaling factors has been used. The scaling 

factors have had both positive and negative values.  

5.2.1 Fixed-hinged boundary conditions 

The results from the non-linear finite element analysis with fixed-hinged boundary conditions 

for three different scale factors are summarized in Table 5-1Table 4-5 to Table 5-3. 

In Table 5-1, there is a difference of 1.3 % between the highest and lowest axial capacity. For 

the positives scaling factors, there is a decrease in the axial capacity of 1 kN which is nothing. 

There are missing two results in the table, and the reason can be an unstable problem. 

Table 5-1: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.5. Boundary 

conditions: fixed-hinged. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 215.08 215.08 

70-2.9-4-88 12.0 212.31 215.09 

70-2.9-4-76.5 23.5 -(4) 214.00 

70-2.9-4-61.5 38.5 214.63 -(4) 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative scale factor, 3. FE,pos = 

positive scale factor, 4. Abaqus failed to calculate. 
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The results with scaling factor of ± 1.8 are summarized in Table 5-2, and there is a difference 

of 2.8 % between the highest and lowest axial capacity. The highest capacity with a positive 

scale factor is the damaged column with 23.5 % crack size and the weakest column is the 

reference column. The two largest crack sizes have higher capacity than the reference column 

when the scale factor change to minus, and again it’s no big differences in the capacity. 

Table 5-2: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.8. Boundary 

conditions: fixed-hinged. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 207.69 207.69 

70-2.9-4-88 12.0 207.43 207.93 

70-2.9-4-76.5 23.5 211.24 213.59 

70-2.9-4-61.5 38.5 213.32 207.88 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative scale factor, 3. FE,pos = 

positive scale factor. 

 

Table 5-3 missing some of the results with a scaling factor of ± 2.0, this can be because of an 

unstable problem again. The difference between the highest and lowest axial capacity for the 

available results is 1.7 % which are nothing. In common, the capacity are increasing when a 

crack occurs. 

Table 5-3: Results from non-linear finite element analysis with positive and negative scale factor equal to 2.0. Boundary 

conditions: fixed-hinged. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 204.13 204.13 

70-2.9-4-88 12.0 204.87 207.57 

70-2.9-4-76.5 23.5 -(4) -(4) 

70-2.9-4-61.5 38.5 -(4) -(4) 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection, 4. Abaqus failed to calculate. 

 

To summarize Table 5-1 to Table 5-3, there are small differences between the results for the 

respective scaling factors, they vary from 1.3 % to 2.8 %. The highest axial capacity is found 

for the column with the lowest magnitude of imperfection (lowest scale factor). Some results 

are missing, and unstable problems can be the reason.  
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5.2.2 Pinned-pinned boundary conditions 

The results obtained from the non-linear analysis with pinned-pinned boundary conditions are 

presented in Table 5-4 to Table 5-6. Three different scale factors (1.5, 1.8, 2.0) have been 

implemented in the non-linear analysis.  

In Table 5-4 the axial capacity obtained from the non-linear analysis with a scale factor of 1.5 

and pinned-pinned boundary conditions is presented. Some results missing for the last sample, 

and this can be because of an unstable problem. Another thing to notice is the small change in 

the axial capacity for the positive scale factor. The total difference between the highest and 

lowest axial capacity is 4.1 %.  

Table 5-4: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.5. Boundary 

conditions: pinned-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg3 PFE,pos4 

70-2.9-4-100 0 184.36 184.36 

70-2.9-4-88 12.0 177.21 184.72 

70-2.9-4-76.5 23.5 177.50 184.68 

70-2.9-4-61.5 38.5 -(2) -(2) 

1. Crack size is given in percent of the original circumference, 2. Abaqus failed to calculate. 3. FE,neg = 

negative imperfection, 4. FE,pos = positive imperfection.  

 

The axial capacity with scale factor 1.8 is presented in Table 5-5, and two samples are 

missing data. An interesting thing about the negative scale factor is when the crack size 

increases, the capacity also increases. It is the opposite for the positive scale factor, the 

capacity decreases. It is impossible to say the two patterns remain the same when data for the 

missing results are found. The difference between the highest axial capacity and lowest 

capacity is 4 %. 

Table 5-5: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.8. Boundary 

conditions: pinned-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg3 PFE,pos4 

70-2.9-4-100 0 -(2) -(2) 

70-2.9-4-88 12.0 172.74 177.76 

70-2.9-4-76.5 23.5 -(2) -(2) 

70-2.9-4-61.5 38.5 178.07 171.18 

1. Crack size is given in percent of the original circumference, 2. Abaqus failed to calculate. 3. FE,neg = 

negative imperfection, 4. FE,pos = positive imperfection. 
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In Table 5-6 the axial capacity with scale factor 2 is presented. There are missing data for the 

largest crack, and this can be because of an unstable analysis. The axial capacity differences 

are small when the positive scale factor is applied. When it comes to the negative scale factor, 

the reference model has a higher capacity than the two cracked ones, but the capacity is 

increasing when the crack becomes bigger. There is a difference of 7.5 % when the highest 

and lowest axial capacity is compared. 

Table 5-6: Results from non-linear finite element analysis with positive and negative scale factor equal to 2.0. Boundary 

conditions: pinned-pinned. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg3 PFE,pos4 

70-2.9-4-100 0 176.49 176.49 

70-2.9-4-88 12.0 164.31 176.70 

70-2.9-4-76.5 23.5 170.29 176.46 

70-2.9-4-61.5 38.5 -(2) -(2) 

1. Crack size is given in percent of the original circumference, 2. Abaqus failed to calculate. 3. FE,neg = 

negative imperfection, 4. FE,pos = positive imperfection. 

 

To summarize the results in Table 5-4 to Table 5-6, some results are missing from the non-

linear analysis performed in Abaqus. The difference in the axial capacity is in the range of 4% 

to 7.5 %. The axial capacity decreases when the imperfection magnitude increase. A reason 

for the missing results from the non-linear analysis can be because of unstable problems. 

5.2.3 Fixed-fixed boundary conditions 

The results obtained from the non-linear analysis with fixed-fixed boundary conditions are 

represented in Table 5-7 to Table 5-9. The same three scale factors that were used for the two 

previous cases are implemented in the non-linear analysis. Unlike the previous boundary 

conditions, all demanded values are found. This gives a good picture of how the axial capacity 

changes with different scale factors.  

In Table 5-7 the axial capacity obtained from the non-linear analysis with scale factor 1.5 is 

presented. All samples have results for both negative and positive scale factors. There is a 

difference of 3 % between the highest and lowest capacity. The reference model has a higher 

capacity than the cracked samples when the scale factor is positive, but the axial capacity is 

increasing when the crack gets bigger. There is a difference of 0.7 % with a positive scale 

factor. 
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Table 5-7: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.5. Boundary 

conditions: fixed-fixed. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 227.00 227.00 

70-2.9-4-88 12.0 220.42 227.49 

70-2.9-4-76.5 23.5 221.15 227.17 

70-2.9-4-61.5 38.5 223.70 225.91 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection. 

 

The axial capacity obtained from the non-linear analysis with scale factor 1.8 is presented in 

Table 5-8. The difference in axial capacity is 2.8 % when the highest axial capacity is 

compared with the lowest. There is a difference of 0.7 % when the axial capacity for the 

positive scale factor is compared.  

Table 5-8: Results from non-linear finite element analysis with positive and negative scale factor equal to 1.8. Boundary 

conditions: fixed-fixed. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 225.21 225.21 

70-2.9-4-88 12.0 219.51 225.65 

70-2.9-4-76.5 23.5 220,09 225.17 

70-2.9-4-61.5 38.5 221.54 224.13 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection. 

 

In Table 5-9 the axial capacity obtained from the non-linear analysis with scale factor 2.0 is 

presented. There are 3.2 % differences in the highest and lowest axial capacity. Two patterns 

can describe the development of the axial capacity. When the scale factor is set a to positive 

value, the axial capacity decreases when the crack gets bigger. It is the opposite for the 

negative scale factor, the crack is increasing, and the axial capacity is also increasing. 
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Table 5-9: Results from non-linear finite element analysis with positive and negative scale factor equal to 2.0. Boundary 

conditions: fixed-fixed. 

Sample Crack size1 
Axial capacity, kN 

PFE,neg2 PFE,pos3 

70-2.9-4-100 0 223.95 223.95 

70-2.9-4-88 12.0 218.62 225.65 

70-2.9-4-76.5 23.5 219.01 224.21 

70-2.9-4-61.5 38.5 221.11 222.96 

1. Crack size is given in percent of the original circumference, 2. FE,neg = negative imperfection, 3. FE,pos = 

positive imperfection. 

 

To summarize the results in Table 5-7 to Table 5-9, all samples are represented for the three 

different scale factors. The axial capacity is decreased when the magnitude of the scale factor 

increases. The difference of the axial capacity with the respective scale factor is in the range 

of 2.8 % to 3.2 % that shows a good match. 

5.3 Experimental results 

The axial capacity obtained from the experimental work and non-linear finite element analysis 

is presented in Table 5-10 to Table 5-12. The three different cases, fixed-hinged boundary 

conditions, pinned-pinned boundary conditions, fixed-fixed boundary conditions are 

compared with the experimental work. The highest axial capacity from the non-linear analysis 

is used in the comparison which is with a scale factor of minus 1.5. 

In Table 5-10 the results from the experimental work and the first non-linear case (fixed-

hinged boundary conditions) are compared. The results show that there is a good match 

between the calculated axial capacities. 

Table 5-10: Experimental [11] and non-liner finite element results (fixed-hinged) and the ratio between the results. 

Sample Crack size1 
Axial capacity, kN 

Ratio 
PExp PFE,ref4 

70-2.9-4-100-1 0 208.95 215.13 0.97 

70-2.9-4-88-1-UD2 12.0 203.75 212.31 0.96 

70-2.9-4-88-2 12.0 200.61 212.31 0.95 

70-2.9-4-88-3-OD3 12.0 206.49 212.31 0.97 

70-2.9-4-76.5-1 23.5 204.22 211.24(5) 0.97 

70-2.9-4-76.5-2-OD3 23.5 199.30 211.24(5) 0.94 

70-2.9-4-61.5-1 38.5 210.70 214.63 0.98 

70-2.9-4-61.5-2-OD3 38.5 200.67 214.63 0.93 

1. Crack size is given in percent of the original circumference, 2. UD = sample was putted wrong way in the 

test machine, 3. OD = the sample was rotated 180° around z- axis, 4. FE,ref = fixed-hinged finite element 

model, 5. Abaqus failed to calculated for scale factor -1,5, therefore the scale factor has been set to -1.7. 
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The fixed-fixed boundary conditions are compared with the experimental work in Table 5-11. 

The boundary conditions are stiffer than the boundary conditions which was represented in 

the experimental work, therefore the axial capacity should be higher than the experimental 

work. 

Table 5-11: Experimental [11] and non-liner finite element results (fixed-fixed) and the ratio between the results. 

Sample Crack size1 
Axial capacity, kN 

Ratio 
PExp PFE,fixed4 

70-2.9-4-100-1 0 208.95 227.00 0.92 

70-2.9-4-88-1-UD2 12.0 203.75 220.42 0.92 

70-2.9-4-88-2 12.0 200.61 220.42 0.91 

70-2.9-4-88-3-OD3 12.0 206.49 227.49 0.91 

70-2.9-4-76.5-1 23.5 204.22 221.15 0.92 

70-2.9-4-76.5-2-OD3 23.5 199.30 227.17 0.88 

70-2.9-4-61.5-1 38.5 210.70 223.70 0.94 

70-2.9-4-61.5-2-OD3 38.5 200.67 225.91 0.89 

1. Crack size is given in percent of the original circumference, 2. UD = sample was putted wrong way in the 

test machine, 3. OD = the sample was rotated 180° around z- axis, 4. FE,ref = fixed-fixed finite element 

model. 

 

In Table 5-12, the results from the non-linear analysis with pinned-pinned are compared with 

the experimental work. The boundary conditions in the non-linear analysis are weaker than 

the boundary conditions in the experimental work, therefore the axial capacity should be 

lower than the experimental work.  

Table 5-12: Experimental [11] and non-liner finite element results (pinned-pinned) and the ratio between the results. 

Sample Crack size1 
Axial capacity, kN 

Ratio 
PExp PFE,pinned4 

70-2.9-4-100-1 0 208.95 184.36 1.13 

70-2.9-4-88-1-UD2 12.0 203.75 177.21 1.15 

70-2.9-4-88-2 12.0 200.61 177.21 1.13 

70-2.9-4-88-3-OD3 12.0 206.49 184.72 1.12 

70-2.9-4-76.5-1 23.5 204.22 177.50 1.15 

70-2.9-4-76.5-2-OD3 23.5 199.30 184.68 1.08 

70-2.9-4-61.5-1 38.5 210.70 178.07 1.18 

70-2.9-4-61.5-2-OD3 38.5 200.67 171.18 1.17 

1. Crack size is given in percent of the original circumference, 2. UD = sample was putted wrong way in the 

test machine, 3. OD = the sample was rotated 180° around z- axis, 4. FE,ref = pinned-pinned finite element 

model. 
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To summarize the results in Table 5-10 to Table 5-12, three different boundary conditions 

have been used in the comparison. The first case (fixed-hinged) show a good match in the 

results, and the differences are in the range of 2 % to 7 %. The other two cases (fixed-fixed 

and pinned-pinned) shows higher and lower axial capacity in the comparison. There is 

missing some data from the non-linear analysis in the comparison of the first case. The reason 

for this can be because of an unstable problem and the analysis fail. 

5.4 NORSOK N-004 

In Table 5-13 the hand calculations performed with NORSOK N-004 formulas are compared 

with the experimental work. In addition, the three different non-linear analysis has also been 

compared with the NORSOK N-004 results and are found in Table 5-14 to Table 5-16. There 

have been used three different effective length factors (k) in the hand calculations and they are 

0.5, 0.7 and 1.0. These factors are based on figure 7.112 in Handbook of Offshore 

Engineering [12].  Appendix A shows the hand calculations performed by NORSOK N-004. 

The comparison between the experimental results and NORSOK N-004 are summarized in 

Table 5-13. There is a difference of 13 % between the axial capacity for the undamaged 

column.  

Table 5-13: Results from NORSOK N-004 and the experimental work [11] and ratio between the results. 

Sample Crack size1 

Axial capacity, kN 

PNORSOK  
(k = 0.7) 

PExp Ratio 

70-2.9-4-100-1 0 181.27 208.95 0.87 

70-2.9-4-88-1-UD2 12.0 168.77 203.75 0.83 

70-2.9-4-88-2 12.0 168.77 200.61 0.84 

70-2.9-4-88-3-OD3 12.0 168.77 206.49 0.82 

70-2.9-4-76.5-1 23.5 138.55 204.22 0.68 

70-2.9-4-76.5-2-OD3 23.5 138.55 199.30 0.70 

70-2.9-4-61.5-1 38.5 88.61 210.70 0.42 

70-2.9-4-61.5-2-OD3 38.5 88.61 200.67 0.44 

1. Crack size is given in percent of the original circumference, 2. UD = sample was putted wrong way in the 

test machine, 3. OD = the sample was rotated 180° around z- axis. The effective length factor (k) is set to 0.7 

for fixed-hinged.  
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Three different boundary conditions cases performed by non-linear analysis and  

NORSOK N-004 calculations are summarized in Table 5-14 to Table 5-16. There are no huge 

differences in the ratio when the ratio from the different cases are compared with each other. 

Table 5-14: Results from NORSOK N-004 and non-liner finite element analysis (fixed-hinged) and ratio between the results. 

Sample Crack size1 

Axial capacity, kN 

PNORSOK  
(k = 0.7) 

PFE,ref4 Ratio 

70-2.9-4-100-1 0 181.27 215.13 0.84 

70-2.9-4-88-1-UD2 12.0 168.77 212.31 0.79 

70-2.9-4-88-2 12.0 168.77 212.31 0.79 

70-2.9-4-88-3-OD3 12.0 168.77 212.31 0.79 

70-2.9-4-76.5-1 23.5 138.55 211.24(5) 0.66 

70-2.9-4-76.5-2-OD3 23.5 138.55 211.24(5) 0.66 

70-2.9-4-61.5-1 38.5 88.61 214.63 0.41 

70-2.9-4-61.5-2-OD3 38.5 88.61 214.63 0.41 

1. Crack size is given in percent of the original circumference, 2. UD = sample was putted wrong way in the 

test machine, 3. OD = the sample was rotated 180° around z- axis, 4. FE,ref = fixed-hinged finite element 

model, 5. Abaqus failed to calculate for scale factor 1.5, value from 1.7 are used instead. The effective length 

factor (k) is set to 0.7 for fixed-hinged.  

 

Table 5-15: Results from NORSOK N-004 and non-liner finite element analysis (pinned-pinned) and ratio between the 

results. 

Sample Crack size1 

Axial capacity, kN 

PNORSOK 

(k = 1) 
PFE,pinned4 Ratio 

70-2.9-4-100-1 0 155.10 184.36 0.84 

70-2.9-4-88-1-UD2 12.0 145.14 177.21 0.82 

70-2.9-4-88-2 12.0 145.14 177.21 0.82 

70-2.9-4-88-3-OD3 12.0 145.14 184.72 0.79 

70-2.9-4-76.5-1 23.5 120.76 177.50 0.68 

70-2.9-4-76.5-2-OD3 23.5 120.76 184.68 0.65 

70-2.9-4-61.5-1 38.5 79.17 178.07 0.44 

70-2.9-4-61.5-2-OD3 38.5 79.17 171.18 0.46 

1. Crack size is given in percent of the original circumference, 2. UD = sample was putted wrong way in the 

test machine, 3. OD = the sample was rotated 180° around z- axis, 4. FE,pinned = pinned-pinned finite 

element model. The effective length factor (k) is set to 0.5 for fixed-fixed.  
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Table 5-16: Results from NORSOK N-004 and non-liner finite element analysis (fixed-fixed) and ratio between the results. 

Sample Crack size1 

Axial capacity, kN 

PNORSOK  
(k = 0.5) 

PFE,fixed4 
Ratio 

70-2.9-4-100-1 0 193.75 227.00 0.85 

70-2.9-4-88-1-UD2 12.0 180.02 220.42 0.82 

70-2.9-4-88-2 12.0 180.02 220.42 0.82 

70-2.9-4-88-3-OD3 12.0 180.02 227.49 0.80 

70-2.9-4-76.5-1 23.5 147.01 221.15 0.67 

70-2.9-4-76.5-2-OD3 23.5 147.01 227.17 0.65 

70-2.9-4-61.5-1 38.5 93.11 223.70 0.42 

70-2.9-4-61.5-2-OD3 38.5 93.11 225.91 0.41 

1. Crack size is given in percent of the original circumference, 2. UD = sample was putted wrong way in the 

test machine, 3. OD = the sample was rotated 180° around z- axis, 4. FE,fixed = fixed-hinged finite element 

model. The effective length factor (k) is set to 1 for pinned-pinned.  

 

To summarize the results in Table 5-13 to Table 5-16, both experimental results and non-

linear finite element analysis are compared with the hand calculations performed with 

NORSOK N-004. In common for the two first tables, the axial capacity comparison has a 

difference of 1 % to 5 %. This means that there is a good match between the results. Another 

good thing is that the axial capacity found in the hand calculations are lower than the 

experimental work. This shows that there is implemented safety factor in the formulas to be 

on the safe side when calculate structural elements. 

Another thing to mention is the differences in the calculations of the cracked samples. There 

are huge differences in the results when the crack size becomes big. In the non-linear analysis, 

there is implemented a non-linear behavior. This are not done in the hand calculations and 

that should be done, the problem had been to complex to solve by hand. 
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6 Conclusion and further work 

6.1 Conclusion 

The objective of the thesis was to evaluate the axial capacity of cracked tubular elements 

analytically and numerically and compare these with laboratory test. This can be divided into 

a numerical part and an analytical part. 

The numerical part was performed in Abaqus where the model had the same geometry as the 

columns in the experimental work, and three different crack sizes were introduced. To be able 

to compare the numerical model with the experimental work some conditions had to be in 

place such as similar boundary conditions and similar buckling shape. Three different linear 

and non-linear analysis was performed to fit the experimental work as good as possible, one 

for fitting the boundary conditions and two for matching the buckling shape. The numerical 

finite element analysis is performed according to DNVGL-RP-C208.  

The analytical part was performed according to NORSOK N-004. Three different cases were 

performed here. The boundary conditions for these three cases were the same as for the 

numerical models. There have been performed a comparison between the experimental work 

and the NORSOK N-004 calculations for the fixed-hinged boundary conditions. In addition to 

this, the non-linear finite element analysis has been compared with the analytical calculations 

as well.  

- Numerical part: The finite element analysis is compared with the experimental work. 

The comparison for case 1 (fixed-hinged) show a very good match in the axial 

capacity results, and the range of the differences are between 2 % to 7 %. The 

boundary conditions in this numerical model seems to be correct, but the buckling 

shape is different from the experimental shape. Case 2 and 3 have stiffer and weaker 

boundary conditions and the buckling shape fits the shapes from the experimental 

work. 

 

- Analytical part: There is bigger differences between the NORSOK N-004 calculations 

and the experimental works. The axial capacity calculations performed with NORSOK 

N-004 formulas for an undamaged column gives a capacity of 13% lower than the 

equivalent column in the experimental work. The differences in the comparison 

between the non-linear analysis and the analytical calculations are almost the same as 

the comparison for the experimental work and the analytical calculations. 

6.2 Suggested further work 

Two interesting things to investigate regarding the evaluation of the axial capacity of cracked 

tubular members in the future would be: 

- Introducing spring boundary conditions 

- Use the arch length (Riks method) as the non-linear analysis type. 
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Appendix A Hand calculations with NORSOK N-004 

Hand calculations of Capacity of cracked tubular 

Done with formulas in NORSOK N-004 [8] and some forumlas from Simen Riise [11]. 

Constants 

Ce = 0.3;                    %Critical elastic buckling coefficient 

t = 2.9;                     %"wall-thickness" in mm 

r = 35;                      %radius in mm 

D = 2*r;                     %diameter in mm 

l = 1500;                    %length in mm 

k1 = 0.5;                    %effective length factor for fixed-fixed BC 

k2 = 1;                      %effective length factor for pinned-pinned BC 

k3 = 0.7;                    %effective length factor for fixed-hinged BC 

E = 200*10^3;                %Young's Modulus in MPA 

fy = 370;                    % Yield stress in MPA 

gamma = 1;                   % Material factor 

format short 

Axial compression 6.3.3 in NORSOK N-004 

Capacity calculation on an undamaged tubular column. 

Characteristic elastic local buckling strength: 

 

fcle = (2*Ce*E*t)/(D) 

fcle = 4.9714e+03 

NORSOK N-004 [8] 6.3.3, equation (6.6 - 6-8), characteristic local buckling strength: 

 

fy/fcle 

ans = 0.0744 

fcl = fy  

fcl = 370 

NORSOK N-004 [8] 6.3.3, equation (6.5), column slenderness parameter: 
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A = 2*pi*(r-(t/2))*t        %Cross sectional area 

A = 611.3225 

I = (pi/4)*((r^4)-(r-t)^4)  %Moment of inertia 

I = 3.4470e+05 

i = sqrt(I/A)               %Radius of gyration 

i = 23.7456 

lambda1 = ((k1*l)/(pi*i))*sqrt((fcl)/E) 

lambda1 = 0.4324 

lambda2 = ((k2*l)/(pi*i))*sqrt((fcl)/E) 

lambda2 = 0.8649 

lambda3 = ((k3*l)/(pi*i))*sqrt((fcl)/E) 

lambda3 = 0.6054 

NORSOK N-004 [8] 6.3.3, equation (6.3 - 6.4) characteristic axial compressive strength: 

 

fc1 = (1-0.28*(lambda1^2))*fy 

fc1 = 350.6274 

fc2 = (1-0.28*(lambda2^2))*fy 

fc2 = 292.5094 

fc3 = (1-0.28*(lambda3^2))*fy 

fc3 = 332.0296 

NORSOK N-004 6.3.3 [8], equation (6.2), design axial compressive resistance: 
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%Design axial compressive resistance (effective length factor k1 = 0.5, 

fixed-fixed) 

NcRd1 = (A*fc1)/gamma    

NcRd1 = 2.1435e+05 

%Design axial compressive resistance (effective length factor k2 = 1, pinned-

pinned)                        

NcRd2 = (A*fc2)/gamma 

NcRd2 = 1.7882e+05 

%Design axial compressive resistance (effective length factor k3 = 0.7, 

fixed-hinged)                        

NcRd3 = (A*fc3)/gamma                          

NcRd3 = 2.0298e+05 

Dented tubular memebers, axial compression, NORSOK N-2004, (10.6.2.2) 

c1 = 0.88; 

c2 = 0.765; 

c3 = 0.615; 

c4 = 1; 

Ac1 = t*(r-(t/2))*(2*pi*(1-c1))     %Crack area, 12% crack 

Ac1 = 73.3587 

Ac2 = t*(r-(t/2))*(2*pi*(1-c2))     %Crack area, 23,5% crack 

Ac2 = 143.6608 

Ac3 = t*(r-(t/2))*(2*pi*(1-c3))     %Crack area, 38,5% crack 

Ac3 = 235.3592 

Ac4 = t*(r-(t/2))*(2*pi*(1-c4))     %Crack area, 0% crack 

Ac4 = 0 

NORSOK N-004 [8] (10.7.2), equation 10.10, dent depth: 

 

delta1 = (1/2)*(1-cos((pi*Ac1)/A))*D        %Dent depth for 12% crack 

delta1 = 2.4578 

delta2 = (1/2)*(1-cos((pi*Ac2)/A))*D        %Dent depth for 23,5% crack 

delta2 = 9.1129 
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delta3 = (1/2)*(1-cos((pi*Ac3)/A))*D        %Dent depth for 38,5% crack 

delta3 = 22.6284 

delta4 = (1/2)*(1-cos((pi*Ac4)/A))*D        %Dent depth for 0% crack 

delta4 = 0 

NORSOK N-004 [8], equation (10.4), correction factor for axial resistance: 

 

xic1 = exp(-0.08*delta1/t)                   

xic1 = 0.9344 

xic2 = exp(-0.08*delta2/t)                  

xic2 = 0.7777 

xic3 = exp(-0.08*delta3/t)                   

xic3 = 0.5357 

xic4 = exp(-0.08*delta4/t)                  

xic4 = 1 

NORSOK N-004 [8], equation (10.5), correction factor for bending resistance: 

 

xim1 = exp(-0.06*delta1/t) 

xim1 = 0.9504 

xim2 = exp(-0.06*delta2/t) 

xim2 = 0.8282 

xim3 = exp(-0.06*delta3/t) 

xim3 = 0.6261 

xim4 = exp(-0.06*delta4/t) 

xim4 = 1 

NORSOK N-004 [8], redused slenderness of dented member: 
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lambdad11 = (xic1/xim1)*lambda1 

lambdad11 = 0.4252 

lambdad12 = (xic2/xim2)*lambda1 

lambdad12 = 0.4061 

lambdad13 = (xic3/xim3)*lambda1 

lambdad13 = 0.3699 

lambdad14 = (xic4/xim4)*lambda1 

lambdad14 = 0.4324 

lambdad21 = (xic1/xim1)*lambda2 

lambdad21 = 0.8503 

lambdad22 = (xic2/xim2)*lambda2 

lambdad22 = 0.8122 

lambdad23 = (xic3/xim3)*lambda2 

lambdad23 = 0.7399 

lambdad24 = (xic4/xim4)*lambda2 

lambdad24 = 0.8649 

lambdad31 = (xic1/xim1)*lambda3 

lambdad31 = 0.5952 

lambdad32 = (xic2/xim2)*lambda3 

lambdad32 = 0.5685 

lambdad33 = (xic3/xim3)*lambda3 

lambdad33 = 0.5179 

lambdad34 = (xic4/xim4)*lambda3 

lambdad34 = 0.6054 

NORSOK N-004 [8], equation (10.3), characteristic axial compressive capacity of dented 

member: 
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%Capacity for 12% crack (effective length factor k1 = 0.5, fixed-fixed). 

Ndent11 = (1-(0.28*lambdad11^2))*xic1*fy*A    

Ndent11 = 2.0066e+05 

%Capacity for 23,5% crack (effective length factor k1 = 0.5, fixed-fixed).                                            

Ndent12 = (1-(0.28*lambdad12^2))*xic2*fy*A   

Ndent12 = 1.6779e+05 

%Capacity for 38,5% crack (effective length factor k1 = 0.5, fixed-fixed).                                        

Ndent13 = (1-(0.28*lambdad13^2))*xic3*fy*A 

Ndent13 = 1.1652e+05 

%Capacity for 0% crack (effective length factor k1 = 0.5, fixed-fixed).                                        

Ndent14 = (1-(0.28*lambdad14^2))*xic4*fy*A 

Ndent14 = 2.1435e+05 

%Capacity for 12% crack (effective length factor k2 = 1, pinned-pinned).                                        

Ndent21 = (1-(0.28*lambdad21^2))*xic1*fy*A    

Ndent21 = 1.6857e+05 

%Capacity for 23,5% crack (effective length factor k2 = 1, pinned-pinned).                                           

Ndent22 = (1-(0.28*lambdad22^2))*xic2*fy*A    

Ndent22 = 1.4342e+05 

%Capacity for 38,5% crack (effective length factor k2 = 1, pinned-pinned).                                            

Ndent23 = (1-(0.28*lambdad23^2))*xic3*fy*A    

Ndent23 = 1.0259e+05 

%Capacity for 0% crack (effective length factor k2 = 1, pinned-pinned).                                            

Ndent24 = (1-(0.28*lambdad24^2))*xic4*fy*A 

Ndent24 = 1.7882e+05 

%Capacity for 12% crack (effective length factor k3 = 0.7, fixed-hinged).                                        

Ndent31 = (1-(0.28*lambdad31^2))*xic1*fy*A    

Ndent31 = 1.9039e+05 

%Capacity for 23,5% crack (effective length factor k3 = 0.7, fixed-hinged).                                           
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Ndent32 = (1-(0.28*lambdad32^2))*xic2*fy*A    

Ndent32 = 1.5999e+05 

%Capacity for 38,5% crack (effective length factor k3 = 0.7, fixed-hinged).                                            

Ndent33 = (1-(0.28*lambdad33^2))*xic3*fy*A    

Ndent33 = 1.1206e+05 

%Capacity for 0% crack (effective length factor k3 = 0.7, fixed-hinged).                                            

Ndent34 = (1-(0.28*lambdad34^2))*xic4*fy*A  

Ndent34 = 2.0298e+05 

Dented tubular memebers, bending, NORSOK N-2004, (eq. 10.6.2.3) 

Design bending moment ( ) is given in 6.34. 

NORSOK N-004 [8], equation (6.10 - 6.12), characterisitc bending strength: 

 

condition = (fy*D)/(E*t) 

condition = 0.0447 

Z = (1/6)*((D^3)-(D-2*t)^3)         %Plastic section modulus 

Z = 1.3065e+04 

W = I/r                             %Modification of elastic section modulus 

[11]. 

W = 9.8484e+03 

fm = (Z/W)*fy 

fm = 490.8482 

NORSOK N-004 [8], equation (10.6), design bending  capacity of dented section: 

 

 

MdentRd1 = (fm*W*xim1)/(gamma)      %Design bending capacity for 12% crack. 
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MdentRd1 = 4.5944e+06 

MdentRd2 = (fm*W*xim2)/(gamma)      %Design bending capacity for 23,5% crack. 

MdentRd2 = 4.0034e+06 

MdentRd3 = (fm*W*xim3)/(gamma)      %Design bending capacity for 38,5% crack. 

MdentRd3 = 3.0268e+06 

MdentRd4 = (fm*W*xim4)/(gamma)      %Design bending capacity for 0% crack. 

MdentRd4 = 4.8341e+06 

Dented tubular memebers, combined loading, NORSOK N-2004, (eq. 10.6.2.4) 

NORSOK N-004 [8], Euler buckling strength: 

 

%Euler buckling strength for 12% crack (effective length factor k1 = 0.5, 

fixed-fixed). 

NEdent11 = (pi^2)*(E*I*xim1)/(k1*l)^2       

NEdent11 = 1.1496e+06 

%Euler buckling strength for 23,5% crack (effective length factor k1 = 0.5, 

fixed-fixed).                                            

NEdent12 = (pi^2)*(E*I*xim2)/(k1*l)^2        

NEdent12 = 1.0018e+06 

%Euler buckling strength for 38,5% crack (effective length factor k1 = 0.5, 

fixed-fixed).                                            

NEdent13 = (pi^2)*(E*I*xim3)/(k1*l)^2  

NEdent13 = 7.5739e+05 

%Euler buckling strength for 0% crack (effective length factor k1 = 0.5, 

fixed-fixed).                                            

NEdent14 = (pi^2)*(E*I*xim4)/(k1*l)^2  

NEdent14 = 1.2096e+06 

%Euler buckling strength for 12% crack (effective length factor k1 = 1, 

pinned-pinned).                                            

NEdent21 = (pi^2)*(E*I*xim1)/(k2*l)^2        

NEdent21 = 2.8741e+05 

%Euler buckling strength for 23,5% crack (effective length factor k1 = 1, 

pinned-pinned).                                           
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NEdent22 = (pi^2)*(E*I*xim2)/(k2*l)^2         

NEdent22 = 2.5044e+05 

%Euler buckling strength for 38,5% crack (effective length factor k1 = 1, 

pinned-pinned).                                             

NEdent23 = (pi^2)*(E*I*xim3)/(k2*l)^2        

NEdent23 = 1.8935e+05 

%Euler buckling strength for 0% crack (effective length factor k1 = 1, 

pinned-pinned).                                             

NEdent24 = (pi^2)*(E*I*xim4)/(k2*l)^2 

NEdent24 = 3.0240e+05 

%Euler buckling strength for 12% crack (effective length factor k3 = 0.7, 

fixed-hinged).                                            

NEdent31 = (pi^2)*(E*I*xim1)/(k3*l)^2        

NEdent31 = 5.8655e+05 

%Euler buckling strength for 23,5% crack (effective length factor k3 = 0.7, 

fixed-hinged).                                           

NEdent32 = (pi^2)*(E*I*xim2)/(k3*l)^2         

NEdent32 = 5.1110e+05 

%Euler buckling strength for 38,5% crack (effective length factor k3 = 0.7, 

fixed-hinged).                                             

NEdent33 = (pi^2)*(E*I*xim3)/(k3*l)^2        

NEdent33 = 3.8642e+05 

%Euler buckling strength for 0% crack (effective length factor k3 = 0.7, 

fixed-hinged).                                             

NEdent34 = (pi^2)*(E*I*xim4)/(k3*l)^2 

NEdent34 = 6.1714e+05 

h = 4                                       %Hole size in mm 

h = 4 

thethah = h/r                               %Hole size converted to radians 

[11]. 

thethah = 0.1143 

Ah = t*(r-(t/2))*thethah                    %Area of hole 

Ah = 11.1194 
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%Centroied holes relative to original N.A (Crack 12%)[2]. 

yh1 = ((t-2*r)*(sin((pi*(1-c1))-thethah)-sin(pi*(1-c1))))/(2*thethah) 

yh1 = 31.8311 

%Distance between original N.A and sections with holes N.A (crack 12%) [11]. 

eh1 = (2*Ah*yh1)/(A-(2*Ah))                                      

eh1 = 1.2017 

% Centroied holes relative to original N.A (Crack 23,5%) [11]. 

yh2 = ((t-2*r)*(sin((pi*(1-c2))-thethah)-sin(pi*(1-c2))))/(2*thethah) 

yh2 = 26.0495 

%Distance between original N.A and sections with holes N.A (crack 23,5%) 

[11]. 

eh2 = (2*Ah*yh2)/(A-(2*Ah))                                      

eh2 = 0.9834 

% Centroied holes relative to original N.A (Crack 38,5%) [11]. 

yh3 = ((t-2*r)*(sin((pi*(1-c3))-thethah)-sin(pi*(1-c3))))/(2*thethah) 

yh3 = 13.6247 

%Distance between original N.A and sections with holes N.A (crack 38,5%) 

[11]. 

eh3 = (2*Ah*yh3)/(A-(2*Ah)) 

eh3 = 0.5144 

% Centroied holes relative to original N.A (Crack 0%) [11]. 

yh4 = ((t-2*r)*(sin((pi*(1-c4))-thethah)-sin(pi*(1-c4))))/(2*thethah) 

yh4 = 33.4770 

%Distance between original N.A and sections with holes N.A (crack 0%) [11]. 

eh4 = (2*Ah*yh4)/(A-(2*Ah)) 

eh4 = 1.2638 

%Eccentricity due to holes and initial out of straightness (crack 12%) [11].                           

deltay21 = eh1+(l/2000)          

deltay21 = 1.9517 

%Eccentricity due to holes and initial out of straightness (crack 23,5%) 

[11].                     

deltay22 = eh2+(l/2000)          

deltay22 = 1.7334 
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%Eccentricity due to holes and initial out of straightness (crack 38,5%) [11] 

deltay23 = eh3+(l/2000) 

deltay23 = 1.2644 

%Eccentricity due to holes and initial out of straightness (crack 38,5%) [11]               

deltay24 = eh4+(l/2000)                              

deltay24 = 2.0138 

NORSOK N-004 [8], equation (10.8): 

 

alpha1 = 2-(3*(delta1/D)) 

alpha1 = 1.8947 

alpha2 = 2-(3*(delta2/D)) 

alpha2 = 1.6094 

alpha3 = 2-(3*(delta3/D)) 

alpha3 = 1.0302 

alpha4 = 2-(3*(delta4/D)) 

alpha4 = 2 

NORSOK N-004 [8], equation (10.7), design axial force on the dented section: 

 

syms NSd 

%Design axial force for 12% crack, combined effect, 

%(effective length factor k1 = 0.5, fixed-fixed).                      

eqn1 = (NSd/Ndent11) + (sqrt((NSd*deltay21)/((1-

(NSd/(NEdent11)))*MdentRd1))^alpha1)-1;   

eqns1 = vpasolve(eqn1,NSd); 

eq1 = eqns1*10^-3 

eq1 = 180.01812611800476255341182806252 

%Design axial force for 23,5% crack, combined effect, 

%(effective length factor k1 = 0.5, fixed-fixed). 

eqn2 = (NSd/Ndent12) + (sqrt((NSd*deltay22)/((1-

(NSd/NEdent12))*MdentRd2))^alpha2) -1; 
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eqns2 = vpasolve(eqn2,NSd); 

eq2 = eqns2*10^-3             

eq2 = 147.0097240674611691694300302448 

%Design axial force for 38,5% crack, combined effect, 

%(effective length factor k1 = 0.5, fixed-fixed). 

eqn3 = (NSd/Ndent13) + (sqrt((NSd*deltay23)/((1-

(NSd/NEdent13))*MdentRd3))^alpha3) -1; 

eqns3 = vpasolve(eqn3,NSd); 

eq3 = eqns3*10^-3              

eq3 = 93.111236261615159700186058963745 

%Design axial force for 12% crack, combined effect, 

%(effective length factor k2 = 1, pinned-pinned). 

eqn4 = (NSd/Ndent21) + (sqrt((NSd*deltay21)/((1-

(NSd/NEdent21))*MdentRd1))^alpha1) -1; 

eqns4 = vpasolve(eqn4,NSd); 

eq4 = eqns4*10^-3               

eq4 = 145.14014603508375070168496178954 

%Design axial force for 23,5% crack, combined effect, 

%(effective length factor k2 = 1, pinned-pinned). 

eqn5 = (NSd/Ndent22) + (sqrt((NSd*deltay22)/((1-

(NSd/NEdent22))*MdentRd2))^alpha2) -1; 

eqns5 = vpasolve(eqn5,NSd); 

eq5 = eqns5*10^-3               

eq5 = 120.7597813125862411812676210119 

%Design axial force for 38,5% crack, combined effect,    

%(effective length factor k2 = 1, pinned-pinned).                             

eqn6 = (NSd/Ndent23) + (sqrt((NSd*deltay23)/((1-

(NSd/NEdent23))*MdentRd3))^alpha3) -1; 

eqns6 = vpasolve(eqn6,NSd); 

eq6 = eqns6*10^-3 

eq6 = 79.170299229040579161280472114423 

%Design axial force for 12% crack, combined effect, 

%(effective length factor k3 = 0.7, fixed-hinged). 

eqn7 = (NSd/Ndent31) + (sqrt((NSd*deltay21)/((1-

(NSd/NEdent31))*MdentRd1))^alpha1) -1; 

eqns7 = vpasolve(eqn7,NSd); 

eq7 = eqns7*10^-3               

eq7 = 168.76725497903413549850745937543 
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%Design axial force for 23,5% crack, combined effect, 

%(effective length factor k3 = 0.7, fixed-hinged). 

eqn8 = (NSd/Ndent32) + (sqrt((NSd*deltay22)/((1-

(NSd/NEdent32))*MdentRd2))^alpha2) -1; 

eqns8 = vpasolve(eqn8,NSd); 

eq8 = eqns8*10^-3               

eq8 = 138.54836040872147331979506458009 

%Design axial force for 38,5% crack, combined effect,    

%(effective length factor k3 = 0.7, fixed-hinged).                             

eqn9 = (NSd/Ndent33) + (sqrt((NSd*deltay23)/((1-

(NSd/NEdent33))*MdentRd3))^alpha3) -1; 

eqns9 = vpasolve(eqn9,NSd); 

eq9 = eqns9*10^-3  

eq9 = 88.606047938350632679404557231353 

%Design axial force for 0% crack, combined effect, 

%(effective length factor k1 = 0.5, fixed-fixed). 

eqn100 = (NSd/Ndent14) + (sqrt((NSd*deltay24)/((1-

(NSd/NEdent14))*MdentRd4))^alpha4) -1; 

eqns100 = vpasolve(eqn100,NSd); 

eq100 = eqns100*10^-3 

eq100 =  

%Design axial force for 0% crack, combined effect,    

%(effective length factor k2 = 1, pinned-pinned).                             

eqn101 = (NSd/Ndent24) + (sqrt((NSd*deltay24)/((1-

(NSd/NEdent24))*MdentRd4))^alpha4) -1; 

eqns101 = vpasolve(eqn101,NSd); 

eq101 = eqns101*10^-3 

eq101 =  

%Design axial force for 0% crack, combined effect,    

%(effective length factor k3 = 0.7, fixed-hinged).                             

eqn103 = (NSd/Ndent34) + (sqrt((NSd*deltay24)/((1-

(NSd/NEdent34))*MdentRd4))^alpha4) -1; 

eqns103 = vpasolve(eqn103,NSd); 

eq103 = eqns103*10^-3 

eq103 =  
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