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Chapter 1

Introduction

In this master’s thesis I will introduce a way to solve partial differential

equations and boundary value problems by transforming signals from a time

domain to a frequency domain, and back. This algorithm is called the Fourier

transform and is widely used in signal-processing and wave studies, quantum

mechanics and in spectropy, for example nuclear magnetic resonance. These

areas of applications will not be further discussed in this thesis, but as a future

teacher, I think that it is important to say something about the purpose and

practical use before introducing new and difficult mathematical content. I

have no doubt that this helps as a motivation in the learning process, as well

as preparing the reader for what to come.

The Fourier transform is, as we will see, defined as an improper Riemann-

integral. Even though it may seem as a detour to transform a problem back

and forth, my goal is to show that the Fourier transform helps to decompose

an ”insoluble” mathematical problem into smaller steps that are easier to

solve.
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CHAPTER 1. INTRODUCTION 6

In Chapter 2, we will derive the Fourier transform by generalizing the

Fourier series. Here both the originial Fourier transform and its inverse will

be defined, as well as alternative definitions and notations. Following comes

basic properties of the transform, differentiation and convolution.

In Chapter 5 the Gaussian function will be defined, and the proof of its

Fourier transform will be given. Later you will see a proof of the inverse

Fourier transform, the Fourier transform method and other solving strategies,

such as the Gauss’ kernel. In Chapter 9 we introduce the cosine and sine

Fourier transforms and their properties.

The last part of is dedicated to the Fourier transform of generalized func-

tions, or distributions. In Chapter 11 one will see how to solve the non-

homogeneous heat equation using the so-called incomplete Gamma-function,

which completes my thesis.

1.0.1 Sources and other comments

When it comes to my sources, I have mainly used chapter 7 in Nakhlé

Asmar’s book Partial Differential Equations and Boundary Value Problems

and the Wikipedia-site Fourier transform. I have also watched the video

But what is the Fourier transform, the webpage fouriertransform.com and

the website-post An interactive guide to the Fourier transform. For a more

detailed source-list, have a look at the reference-list in the end of this doc-

ument. Last but not least, I have recieved the most welcome help from my

supervisor, Alexander Rashkovskii, which have been available at all times

needed, both in person and online. Thank you so much for that!
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Throughout this thesis, many examples and some proofs will be given to

substantiate the definitions and properties that are being stated. The main

part of these examples are problems that I solved myself , but one can also

find examples that are more or less taken directly from its source. These

”given” examples are used as a supplement to approve my own work and

are often modified a bit to make it fit better to what I try to show. It is

also a way to show that my example is well thought out and not just placed

randomly. I guess it is also about taking control over other’s work and make

it my own by trying to give it a customized touch.

I hope that my readers achieves some more knowledge on Fourier trans-

forms after reading this thesis and receive some of the tools to solve even more

complicated boundary value problems in the future. Have a good reading!



Chapter 2

Deriving the Fourier Transform

2.1 Motivation

How can we take a microphone-signal and decompose it into pure, single

frequencies given by the curves of sines and cosines? You guessed it, the

answer is to use the Fourier transform.

Think of the operation in a practical way, like a ”unmixing”-machine for

paint colors that have already been stirred - or like finding the recipe of

a cake that has already been baked. Why? Because it is much easier to

analyse each ingredient separately and especially to find and modify the

recipe. Fascinating, right? As far as I know, such machines do not exist for

neither paint or cakes, but are widely used for filtering out noise in sound

modification.

Mathematically speaking, all waveforms are actually just the sum of simple

sinusoids of different frequencies. In simple terms, that means that any

pattern or function can be described by circles.

8
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2.2 The ”unwinding” principle

The Fourier transform takes a time-based pattern, measures every possible

cycle and returns the ”recipe” given by amplitude, offset and rotation speed

for each cycle. This machine is called a ”frequency unmixing machine”,

which unwinds the given curve around a circle. Then it gives a spike when

the winding frequency is the same as the signal frequency.

A pure frequency has a transform close to zero except for a spike around

the frequency itself. Even if there are several different frequencies, we still get

the different spikes distributed around the frequencies itself. So if a music-

producer wants to filter out a high-frequency noise from a soundtrack, this

method can be used to reveal its frequency and then get rid of it.

It is important that each ”filter” is independent, which means that it

measures only one ingredient or signal, and that it is complete (can extract

all possible signals). Last, but not least, the filters has to be combineable:

the sum of each ingredients must add up to the same results as before (a

smoothie, a melody etc.).

Put in short, the Fourier transform gives us another way to represent

a waveform. In general, waveforms are made up of a continuous range of

frequency, not only discrete ones. Therefore, as we will see, the sum (
∑

)

will be replaced by an integral (
∫

).

2.2.1 Circular paths

What if, indeed, any signal could be filtered into many circular paths? Then

each path we would need a given size, speed and starting angle - namely
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amplitude, frequency and phase. The Fourier transform can be described

as building a recipe frequency by frequency with a whole lot of time-spikes

(individual frequencies). We can write up the following equations:

Xk =
N−1∑
n=0

Xne
− i2πkn

N ,

which states that the frequency recipe (Xk) adds up to the sum of contribu-

tions from each individual time spike. The time-point is given by

Xn =
1

N

N−1∑
n=0

Xke
i2πkn
N ,

where each time spike contributes to the time-point Xn.

The idea behind the Fourier transform is well stated by the software engi-

neer Stuart Riffle:

To find the energy at a particular frequency, spin your signal

around a circle at that frequency, and average a bunch of points

along that path. (Unknown 2, 2021)

2.3 A generalization of the Fourier series

As we know, periodic functions like sines and cosines are written as a sum

of waves. These sums are called Fourier series. The Fourier transform is

therefore an extension, or a generalization, of these sums as the period of

these wave-functions is approaching infinity.

For simplicity, it is often appropriate to express the Fourier series by using

Euler’s formula:

e2πiθ = cos 2πθ + i sin 2πθ
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This way of writing also makes it easier to connect the formulas to the

expression of the Fourier transform, denoted f̂ . It is important to remark that

the Fourier coefficients now can be negative and complex valued. Therefore,

the frequency can no longer be given as number of cycles per unit of time,

since it makes no sense to talk about negative frequencies.

2.3.1 Fourier series representation theorem

Real problems are often given on unbounded regions. An example is the

distribution of the temperature in a long insulated wire that would give

us a boundary value problem over an infinite line. So when Fourier series

where useful on bounded regions, like intervals or disks, we have to use the

generalized version, namely the Fourier transform, on the unbounded ones.

Given a 2p-periodic function f(x), consider its Fourier series
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a0 +
∞∑
n=1

(an cos
nπ

p
x+ bn sin

nπ

p
x) (2.1)

where

a0 =
1

2p

∫ p

−p
f(t)dt,

an =
1

p

∫ p

−p
f(t) cos

nπ

p
tdt,

bn =
1

p

∫ p

−p
f(t) sin

n+ pi

p
tdt.

From the Fourier series representation theorem, we have that if f is contin-

uous at x, f(x) is given by

a0 +
∞∑
n=1

(an cosnx+ bn sinnx).

What if f(x) is not periodic, but is defined on the whole real line (R)?

Then we get a Fourier integral representation.

2.3.2 Fourier integral representation

Theorem 1

Suppose f(x) is a piecewise smooth function on every finite interval, satisfy-

ing ∫ ∞
−∞
|f(x)|dx <∞
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Then f(x) has the Fourier integral representation∫ ∞
0

[A(ω) cosωx+B(ω) sinωx]dω (−∞ < x <∞) ∀ω ≥ 0 (2.2)

at any continuity point x, where

A(ω) =
1

π

∫ ∞
−∞

f(t) cosωtdt,

B(ω) =
1

π

∫ ∞
−∞

f(t) sinωtdt.

The proof of this will be given later.

As for the Fourier series: when f(x) is even, A(ω) = 2
π

∫∞
0
f(t) cosωtdt

and B(ω) = 0, and when f(x) is odd, A(ω) = 0 and B(ω) = 2
π

∫∞
0

sinωtdt.

The integral in equation (2) converges to f(x) if it is continuous at x, and to

f(x+)+f(x−)
2

otherwise.

What have been changed from equation (2.1) to (2.2)?

• Sum has been changed to integral.

• The boundaries have gone from bounded (−p to p) to unbounded (−∞

to ∞).

• Discrete range of values of n has gone to continuous range of ω.

f(x) has to be integrable on the whole R, namely that∫ ∞
−∞
|f(x)|dx <∞
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2.3.3 Examples

Here we find the Fourier integral representation of some piecewise continuous

functions and use it for computing some interesting integrals.

Example 1

Let

f(x) =

1 if |x| ≤ 1

0 otherwise

If ω 6= 0,

A(ω) =
1

π

∫ ∞
−∞

f(t)cosωtdt =
1

π

∫ 1

−1
cosωtdt =

=
1

π

[
sinωt

ω

]1
−1

=
1

π

[
sinω

ω
− (−sinω

ω
)

]
=

2sinω

πω
.

If ω = 0, A(0) is just the value of
∫

1
π

cosωt when ω = 0.

=⇒ 1

π

∫ 1

−1
cos 0dt =

1

π

∫ 1

−1
dt =

2

π
.

Since f is even, we know that B(ω) = 0. It can be shown as following:

When ω 6= 0,

B(ω) =
1

π

∫ ∞
0

f(t) sinωtdt =
1

π

∫ 1

−1
sinωtdt =

=
1

π

[
−cosω

ω

]1
−1

=
1

π

[
−cosω

ω
− (−cosω

ω
)
]

=

=
1

π

[
−cosω

ω
+

cosω

ω

]
= 0.
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For |x| 6= 1, the function is continuous and Theorem 1 gives

f(x) =
2

π

∫ ∞
0

sinωx

ω
dω.

At the points of discontinuity, x = ±1, the same theorem gives

f(x+) + f(x−)

2
=

1 + 0

2
= 1/2

for x = −1 and
0 + 1

2
= 1/2

for x = 1.

Thus,

2

π

∫ ∞
0

sinωx

ω
dw =


1 if |x| < 1

1/2 if |x| = 1

0 if |x| > 1 �

Example 2

By setting x = 1 in the example above, we get the Dirichlet integral∫ ∞
0

sinω

ω
dω =

π

2

Example 3

a) Now we can show that ∫ ∞
0

sinω cosω

ω
dω =

π

4

From Example 1, we see that

2

π

∫ ∞
0

sinω cosωx

ω
dω =

1

2
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when |x| = 1. By multiplying by π
2

we get∫ ∞
0

sinω cosω

ω
dω =

1

2
· π

2
=
π

4

which is what we should show.

b) Use integration by parts and a) to obtain∫ ∞
0

sin2 ω

ω2
dω =

π

2

Set u = sin2ω, v′ = 1
ω2 , u′ = 2 sinω cosω and v = − 1

ω
. Then we get

− 1

ω
sin2ω +

∫
2 sinω cosω

ω
dω =

= − 1

ω
sin2 ω +

π

2

(same integral as in Example 3). Setting the limits, we then obtain[
− 1

ω
sin2 ω

]∞
0

+
π

2
= 0 +

π

2
=
π

2
.

Example 4

Given

f(x) = e−|x|,

we get that

A(ω) =
1

π

∫ ∞
−∞

e−|t| cosωtdt =
1

π

∫ 0

−∞
et cosωtdt+

1

π

∫ ∞
0

e−t cosωtdt =

=
2

π

∫ 0

−∞
et cosωtdt

since f(t) is even. We solve this by integrating by parts twice. The formula

is given by
∫
uv′ = uv −

∫
u′v.

∫ 0

−∞
et cosωtdt
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Setting u = cosωt, v′ = et, u′ = −ω sinωt and v = et, we get

∫
et cosωtdt = cosωtet −

∫
ω sinωtetdt

Now we integrate by parts again for this integral by setting u = −ω sinωt,

v′ = et, u′ = −ω2 cosωt and v′ = et. We get∫
et cosωtdt =

= cosωtet − (−ω sinωtet +

∫
ω2 cosωtet)dt =

= et cosωt+ ωet sinωt− ω2

∫
et cosωtdt

Now we have obtained the integral
∫
et cosωtdt on both sides of the equations.

Let us solve for it:

∫
cosωtdt = et cosωt+ ωet sinωt− ω2

∫
et cosωtdt

=⇒
∫
et cosωtdt+ ω2

∫
et cosωtdt = et cosωt+ ωet sinωt

=⇒ (ω2 + 1)

∫
et cosωtdt = et cosωt+ ωet sinωt

=⇒
∫
et cosωtdt =

et cosωt+ ωet sinωt

ω2 + 1
=
et(ω sinωt+ cosωt)

ω2 + 1
.

Remembering our limits, we write A(ω) as

A(ω) =
2

π

[
et(ω sinωt+ cosωt)

ω2 + 1

]0
−∞

=

=
2

π

[
1

ω2 + 1
− 0

]
=

2

π(ω2 + 1)
.

We know that B(ω) = 0. Then we get the following solution:

e−|x| =
2

π

∫ ∞
0

[
1

ω2 + 1

]
cosωx dω.



CHAPTER 2. DERIVING THE FOURIER TRANSFORM 18

2.4 The Fourier Transform

Writing the Fourier integral representation in complex form using the ex-

ponential function, we derive the Fourier transform and the inverse Fourier

transform. These are very helpful when solving boundary value problems, as

we will see later in this thesis.

Assume f(x) is a continuous piecewise smooth integrable function. From

the Fourier integral representation, we have that

f(x) =
1

π

∫ ∞
0

∫ ∞
−∞

f(t)(cosωt cosωx+ sinωt sinωx)dtdω

Using that cos(a− b) = cos a cos b+ sin a sin b, we get

1

π

∫ ∞
0

∫ ∞
−∞

f(t) cosω(x− t)dtdω

Then we have that cosu = 1/2(eiu + e−iu), which gives

1

2π

∫ ∞
0

∫ ∞
−∞

f(t)(eiω(x−t + e−iω(x−t))dtdω

By splitting it into two integrals, we get

1

2π

∫ ∞
0

∫ ∞
−∞

f(t)eiω(x−t)dtdω +
1

2π

∫ ∞
0

∫ ∞
−∞

f(t)e−iω(x−t)dtdω

If we know change the sign of omega (ω → −ω) and adjust the limits on ω

from −∞ to 0, we have

f(x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(t)eiω(x−t)dtdω

by adding the integrals, which equals

1√
2π

∫ ∞
−∞

eiωx
1√
2π

∫ ∞
−∞

f(t)e−iωtdtdω.

This is the complex form of the Fourier integral representation, where the

last integral is f̂(ω). Now we can write the following transform pair:
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2.4.1 The Fourier Transform (F)

F(f)(ω) = f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωxdx (−∞ < ω <∞) (2.3)

and

2.4.2 The Inverse Fourier Transform (F−1)

F−1(g)(x) =
1√
2π

∫ ∞
−∞

eiωxg(x)dω (−∞ < x <∞) (2.4)

The reason for calling this F−1 is that we get the original function

back when taking the inverse Fourier transform of the Fourier transform:

F−1(Ff) = f(x). In other words, we can say that these transform are ”op-

posite” operations.

As before, if f(x) is not continuous at x, the left side of equation (2.4)

should be replaced by f(x+)+f(x−)
2

. Setting ω = 0 in equation (2.3), we get

f̂(0) =
1√
2π

∫ ∞
−∞

f(x)dx

Which is just the signed area between the graph of f(x) and the x-axis,

multiplied by the constant 1√
2π

.

2.4.3 Example 5

a) Find the Fourier transform of the piecewise continuous function

f(x) =

1 if |x| < a

0 if |x| > a

Let us first look at the transform when ω 6= 0. We have

f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωxd =
1√
2π

∫ a

−a
e−iωxdω =
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=

[
−1√
2πiω

e−ωx
]a
−a

=

√
2

π

sin aω

ω
.

For ω = 0, we have

f̂(0) =
1√
2π

∫ a

−a
dx = a

√
2

π

From L’Hopital’s rule, we have that sin aω
ω
→ a as ω → 0. This is because

(sin aω)′

ω′
= a cos aω

1
= 0 as ω → 0. Therefore,

lim
ω→0

f̂(ω) = f̂(0)

so f̂(ω) is continuous at 0. Then we can write

f̂(ω) =

√
2

π

sin aω

ω
,∀ω

.

b) Express f(x) as an inverse Fourier transform.

f(x) =
1√
2π

∫ ∞
−∞

eiωx
√

2

π

sin aω

ω
=

1

π

∫ ∞
−∞

eiωx
sin aω

ω
dω =

=
1

π

∫ ∞
−∞

(cosωx+ i sinωx)
sinω

ω
dω =

=
1

π

∫ ∞
−∞

cosωx sin aω

ω
dω

since sinωx sin aω
ω

is an odd function of ω, and its integral is zero. �

2.4.4 Variations in the definition of the Fourier trans-

form

There are several other definitions for the Fourier transform as well. An

example is

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx, ∀ξ ∈ R
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which often is used if x is given in time and ξ represents the frequency. So

if the time is given in seconds, ξ is given in Hertz (cycles per second). The

inverse Fourier transform is then given by:

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ, ∀x ∈ R

If t is given in seconds and ξ in angular frequency, it is common to to use

the variable ω = 2πξ. Then we get what we call a forward Fourier transform.

This is given by the analysis equation

x̂1(ω) = x̂
( ω

2π

)
=

∫ ∞
−∞

x(t)e−iωtdt

and the syntesis equation

x(t) =
1

2π

∫ ∞
−∞

x̂1(ω)eitωdω

If the frequency is given in radians we have a so-called symmetric form.

The Fourier integral pair is then given by:

x̂2(ω) =
1√
2π

∫ ∞
−∞

x(t)e−iωtdt

and

x(t) =
1√
2π

∫ ∞
−∞

x̂2(ω)eitωdω

2.4.5 Units and duality

The Fourier transform goes from one space of functions to a different space

of functions, for which often have different domain of definition.

This means that we have to deal with two copies of the real line, one where

the original t ranges (for f) and one where the inverse units of t ranges (for

f̂). In most cases, the former is given in time and the latter as frequency.
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These must not be compared or mistakenly identified with each other. The

new real line we obtain in the transform is called the ”dual space” of the

original one.



Chapter 3

Basic properties of Fourier

transform

Assuming f(x), g(x) and h(x) integrable, satisfying the following condi-

tion: ∫ ∞
−∞
|f(x)|dx <∞

Now, let f̂(ω), ĝ(ω) and ĥ(ω) be the Fourier transforms of the given functions

respectively. Then we have the following properties for the Fourier transform.

3.1 Linearity

∀a, b ∈ C, if

h(x) = af(x) + bg(x)

then

ĥ(ω) =
1√
2π

∫ ∞
−∞

(af(x) + bg(x))e−iωxdx =

=
1√
2π

[
a

∫ ∞
−∞

f(x)e−iωxdx+ b

∫ ∞
−∞

g(x)e−iωxdx

]
=

= af̂(ω) + bĝ(ω).

23
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Thus, the Fourier transform is linear.

3.2 Translation (time-shifting)

∀x0 ∈ R, if

h(x) = f(x− x0),

then

ĥ(ω) =
1√
2π

∫ ∞
−∞

f(x− x0)e−iωxdx.

Let u = x− x0, x = u+ x0 and dx = du

=
1√
2π

∫ ∞
−∞

f(u)e−iω(u+x0)du =
1√
2π
e−iωx0

∫ ∞
−∞

f(u)e−iωudu =

= e−ix0ωf̂(ω),

so ĥ(ω) = e−ix0ωf̂(ω).

If a function is delayed in time, we get a phase shift of −ωx0 radians by

multiplying by a complex exponential.

3.3 Modulation (frequency-shifting)

If we run time-shifting backwards, we have that ∀ω0 ∈ R, if

h(x) = eixω0f(x)

then

ĥ(ω) = f̂(ω − ω0).
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3.4 Time-scaling

∀a ∈ R 6= 0, if

h(x) = f(ax)

then

ĥ(ω) =
1

| a |
f̂(
ω

a
).

Indeed, let t = ax. Then we have, if a > 0,

f̂(ω) =
1√
2π

∫ ∞
−∞

f(ax)e−iωxdx =

=
1√
2π

[
1

a

∫ ∞
−∞

f(t)e−i
ω
a
tdt

]
=

=
1

a
f̂(
ω

a
).

If a < 0, then we get ĥ(ω) = − 1
a
f̂(ω

a
).

The time-scaling can be put into words as follows:

The Fourier Transform is compressed in frequency by the same amount as

the original function is expanded in time.

When a=-1, we derive what is called the ”time-reversal property”:

If

h(x) = f(−x)

then

ĥ(ω) = f̂(−ω)
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3.5 Conjugation

If

h(x) = f(x)

then

ĥ(ω) = f̂(−ω).

This can be shown as following:

ĥ(ω) =
1√
2π

∫ ∞
−∞

e−iωxf(x)dx =
1√
2π

∫ ∞
−∞

eiωxf(x)dx.

Now, we write eiωx as e−i(−ω)x and get

1√
2π

∫ ∞
−∞

e−i(−ω)xf(x)dx = f̂(−ω).

When f is real (in R), we have the reality condition:

f̂(−ω) = f̂(ω)

Then f̂ is called a ”Hermitian function” (the conjugate of a complex function

equals the original function with the sign of the variable changed).

If f is imaginary, then

f̂(−ω) = −f̂(ω)

3.6 Real and imaginary part in time

Let <(z) and =(z) stand for the real and imaginary part of z, respectively.

If

h(x) = <(f(x))
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then

ĥ(ω) =
1

2
(f̂(ω) + f̂(−ω))

If

h(x) = =(f(x))

then

ĥ(ω) =
1

2i
(f̂(ω)− f̂(−ω))

3.7 Integration

Setting ω = 0 in the definition, we get:

f̂(0) =
1√
2π

∫ ∞
−∞

f(x)dx

That means that the Fourier transform at the origin is just the integral of f

over its domain.



Chapter 4

Differentiation and convolution

4.1 Derivatives of Fourier transform

Let f(x) and xf(x) be integrable functions, then f̂(ω) is differentiable and

the first derivative is given by

f̂ ′(ω) = −iF(xf(x)(ω).

Indeed,

f̂ ′(ω) =

(
1√
2π

∫ ∞
−∞

f(x)e−iωxdx

)′
=

=
1√
2π

∫ ∞
−∞

f(x)
(
e−iωx

)′
dx =

= − i√
2π

∫ ∞
−∞

xf(x)e−iωxdx =

= −iF(xf(x))(ω).

By reading this backwards, we get the formula

F(xf(x))(ω) = if̂ ′(ω). (4.1)

28
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If x2f(x) is integrable, we can apply this to xf(x) instead of f(x):

F(x2f(x)) = F(x× xf(x)) = i(F(xf(x))′ = −f̂(ω)′′.

For the general case, if f(x) and xnf(x) are integrable, the n-th derivative

is given by

F(xnf(x)) = inf̂ (n)(ω).

These formulas are used when solving ordinary differential equations by

transforming them into a a simpler problem involving algebraic equations.

From this we can extract a rule of thumb for the Fourier transform:

f(x) is smooth if and only if f̂(ω) quickly falls to zero for | ω |→

∞.

And conversely,

f(x) quickly falls to 0 for | x |→ ∞ if and only if ˆf(ω) is smooth.

4.2 Fourier transform of derivatives

i) If f(x) and f ′(x) integrable and f(x)→ 0 as |x| → ∞, then

F(f ′) = iωF(f) = iωf̂ .

We prove this by integrating by parts:

F(f ′) =
1√
2π

∫ ∞
−∞

f ′(x)e−iωxdx

We set u′ = f ′(x), v = e−iωx, u = f(x) and v′ = −iωe−iωx.

=⇒ 1√
2π

[
f(x)e−iωx|∞−∞ − (−iω)

∫ ∞
−∞

f(x)e−iωxdx

]
=
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=
1√
2π

[
0 + iω

∫ ∞
−∞

f(x)e−iωxdx

]
=

=
iω√
2π

∫ ∞
−∞

f(x)e−iωxdx =

= iωF(f) �

ii) If, in addition, f ′′(x) is integrable and f ′(x)→ 0 as |x| → ∞, then

F(f ′′) = iωF(f ′) = −ω2F(f).

iii) In general, if f (k) are integrable, f (k) → 0 as |x| → ∞ for k = 0, 1, ..., n−1,

then

F(f (n)) = (iω)nF(f)

The second and third part is derived by applying integration by parts re-

peatedly, as shown in part one.

4.2.1 Example 1

Given

F (x) =

x if |x| < 1

0 otherwise.

let us find its Fourier transform.

In example 2.4.3 a), we have the same problem, just that x is replaced by

1 and the limit is a constant a. Setting a = 1 in the example, we get that

f̂(ω) =

√
2

π

sinω

ω
.

Now, multiplying this by x and using the formula 4.1, we have that

F(F (x)) = F(xf(x))(ω) = if̂ ′(ω)
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=⇒ i

[√
2

π

sinω

ω

]′

=⇒ F̂ (ω) = i

√
2

π

(
cosω

ω
− sinω

ω2

)
.

4.3 Convolution

A convolution is an operation to merge functions and to make discontinuous

functions smooth. For example taking the convolution f(x), which can be

any function, and the Delta-function, we get the constant given at f(0). This

is because the Delta-function is only defined as a spike at x=0. On the

other hand, if we take the convolution of f(x) with a rounded, symmetric

graph around the Delta-function’s spike, we get a smooth function which is

an approximation of f(x). This function is now continuous for all values of

x and can be described as a Gaussian function.

The convolution of f ∗ g of integrable functions f(x) and g(x) is defined

as

h(x) = (f ∗ g)(x) =
1√
2π

∫ ∞
−∞

f(y)g(x− y)dy.

By substituting s = (x− y), we get

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g((x− y)dy =

∫ ∞
−∞

f(x− s)g(s)ds = (g ∗ f)(x).

So (f ∗ g) = (g ∗ f). The convolution theorem states that

ĥ(ω) = f̂(ω) · ĝ(ω).

In other words, the Fourier transform of the convolution of two functions

is simply the product of the Fourier transform of individual functions.
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Proof

F(g ∗ f)(ω) =
1√
2π

∫ ∞
−∞

1√
2π

∫ ∞
−∞

g(x− y)e−iωxdxf(y)dy =

Setting u = (x− y) and du = dx

=⇒ 1√
2π

∫ ∞
−∞

1√
2π

∫ ∞
−∞

g(u)e−iωudue−iωyf(t)dy =

=
1√
2π

∫ ∞
−∞

g(u)e−iωudu× 1√
2π

∫ ∞
−∞

f(y)e−iωydy =

= F(g)(ω) · F(f)(ω) �

4.4 Example 2

Let f(x) equal 1 if |x| < 1 and 0 otherwise. This is called a step function (or

box function). The Fourier transform of the convolution of f(x) with itself,

is given by

F(f ∗ f) = f̂(ω)2 =
2

π

sin2 ω

ω2

This can be shown both by using the definition of a convolution and by using

tables for the inverse Fourier transform.

4.4.1 Solving by using the definition of a convolution

We have that

(f ∗ f)(x) =
1√
2π

∫ ∞
−∞

f(y − x)f(y)dy.
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Since f is 1 for x ∈ [−1, 1] and 0 otherwise, we can set f(y) = 1 in the

integral. We also know that |y − x| < 1. Then we have

1√
2π

∫ 1

−1
f(x− y)dy =

∫ x+1

x−1

which can be divided into two separate integrals:∫ x+1

−1
dy = [y]x+1

−1 = x+ 1− (−1) = x+ 2.

and ∫ 1

x−1
dy = [y]1x−1 = 1− (x− 1) = 2− x.

Multiplying both by the factor 1√
2π

, we get the following functions:

fleft =
1√
2π

(x+ 2)

fright =
1√
2π

(2− x)

which results in the following graph:
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4.4.2 Solving using a table

The definition of a convolution states that:

(f ∗ f) =
1√
2π

∫ ∞
−∞

f(x− y)f(y)dy

Taking the Fourier transform of this, we obtain

F(f ∗ f) = F(f) · F(f) = f̂(ω)2

Now, let us calculate f̂(ω) and deal with the square later:

f̂(ω) =
1√
2π

∫ 1

−1
1 · e−iωxdx =

=
1√
2π

[
e−iωx

iω

]1
−1

=
1√
2π

[
e−iω − eiω

iω

]
Multiplying by a factor of −2, we see that we obtain the complex exponential

form of sine:

− 2√
2π

[
eiω − e−iω

2iω

]
= − 2√

2π

sinω

ω
.

Now we must remember to square the whole expression:(
− 2√

2π

sinω

ω

)2

=
4

2π

sinω2

ω2
=

=
2

π

sin2 ω

ω2
.

By using the inverse transform and given tables, we get

f ∗ f(x) = F−1
(

2

π

sin2 ω

ω2

)
=


√

2
π
(1− |x|

2
) if |x| < 2

0 if |x| ≥ 2

This gives us the following graph:
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which shows us that f ∗ f is continuous even though f is not.



Chapter 5

The Gaussian function

The function

f(x) = e−x
2

is called the Gaussian function and is used to solve the heat equation in one

dimension. Its integral over the whole real line given by

I =

∫ ∞
−∞

e−x
2

=
√
π

which is a very well-known improper integral.

5.1 Proof

To prove this fact, we use polar coordinates and square the integral. Now

r2 = x2 + y2 and dxdy = rdrdθ.

I2 =

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy =

=

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2)dxdy =

=

∫ 2π

0

∫ ∞
0

e−r
2

rdrdθ =

36
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=

∫ 2π

0

−1

2
e−r

2|∞0 dθ =

=
1

2

∫ 2π

0

dθ = π

Then we get that

I2 = π =⇒ I =
√
π

by taking the square root. We reject the negative squareroot since I > 0. �

5.2 Fourier transform of the Gaussian

For any real contant a > 0:

F(e−
ax2

2 )(ω) =
1√
a
e−

ω2

2a

5.2.1 Proof

Let f(x) = e−
ax2

2 . It can easily be shown that this function satisfies the

following first order linear differential equation:

f ′(x) + axf(x) = 0

By taking the Fourier transform of the different parts of the equation, we get

by using the formulas from chapter 3,

iωf̂(ω) + aif̂ ′(ω) = 0

Solving this equation for f̂ , we start by getting the derivative alone on

the left hand side:

iωf̂ ′(ω) = −iωf̂(ω)

=⇒ f̂ ′(ω) = −ω
a
f̂(ω)
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=⇒
∫

1

f̂(ω)
dω =

∫
−ω
a
dω

=⇒ ln|f̂(ω)| = −ω
2

2a

=⇒ f̂(ω) = ±e−
ω2

2a = Ae−
ω2

2a .

for A being a constant. Now we must derive that A = 1√
a
:

A = f̂(0) =
1√
2π

∫ ∞
−∞

e−
ax2

2 dx

Setting u =
√

a
2
x and dx =

√
2
a
du:

=⇒ 1√
aπ

∫ ∞
−∞

e−u
2

du =
1√
aπ

√
π =

1√
a

�

by the famous improper integral (I) stated in the beginning of this chapter.

By replacing a with 2a, we get

F(e−ax
2

)(ω) =
1√
2a
e−

ω2

4a

which implies that e−
x2

2 is its own Fourier transform.

5.3 Examples

Here we use the operational properties and a known Fourier transform to

compute the Fourier transform of the given functions.

5.3.1 Example 1

Given

f(x) = xe−x
2

,
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we know from section 4.1 that

F(xe−x
2

) = i[f̂ ]′(e−x
2

)(ω).

Then we have to calculate the following:

i
(
f̂(e−x

2

)
)′

In section 5.2 we have already calculated this transform, so we have to find

the following derivative:

i

[
1√
a
e−

ω2

2a

]′
We see that a = 2 in this case, which gives us

i

[
1√
2
e−

ω2

4

]′
= i

(
1√
2

(−2

4
ω)e−

ω2

4

)
=

= −iωe
−ω

2

4

2
√

2
.

5.3.2 Example 2

Let f(x) = xe−
x2

2 and g(x) = e−x
2
.

a) What are the Fourier transforms of f and g?

Fourier transform of f(x)

For f(x), we have the same as in Example 1, but now with a=1. That gives

us that

F(f(x))(ω) = i

[
1√
a
e−

ω2

2a

]′
=

= i
[
e−

ω2

2

]′
= i

(
−1

2
2ω

)
e−

ω2

2 =

= −iωe−
ω2

2
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Fourier transform of g(x)

In Example 1 we have already found that

F(g(x))(ω) =
1√
2
e−

ω2

4 .

b) What is the Fourier transform of f ∗ g?

From section 4.3 we have that the Fourier transform of a convolution f ∗ g

is given as the product of the Fourier transform of each function. Then we

have that

F(f ∗ g)(ω) = f̂ · ĝ =
(
−iωe−

ω2

2

)
·
(

1√
2
e−

ω2

4

)
=

= − iω√
2

(
e−

ω2

2
−ω

2

4

)
= − iω√

2
e−

3ω2

4 .

c) What is f ∗ g? From section 5.2, we have that, ∀a > 0,

F(e−
ax2

2 )(ω) =
1√
2
e−

ω2

2a .

In our case, a = 2, therefore f ∗ g is given by

1√
2
e−

ω2

4

multiplied by a constant iω. Then we get that

f ∗ g = iω
1√
2
e−

ω2

4 .



Chapter 6

Invertibility and periodicity

Let F be the Fourier transform operator, such that F(f(x)) = f̂(x). Then,

under suitable conditions, we can obtain the function f itself from the trans-

form f̂ . The reason why this is so helpful in solving boundary value problems

and differential equations, is that the solving process often is much more easy

for the transformed problem than for the original one. Then we get a trans-

formed solution, which we can transform back to the original solution by

using the inverse Fourier transform. This idea can be shown as following

table:

As we know, we obtain the transform f̂ by applying the Fourier transform

method once:

F(f(x)) = f̂(x)
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If we do the Fourier transform twice, the function is ”flipped”:

F2(f(x)) = f(−x)

This can be seen as reversing time, which is a two-periodic operation. That

means if we do this twice, we will recover the function itself.

F4(f(x)) = f(x)

Hence, the Fourier transform is said to be four-periodic. In practise this can

be explained as rotating the plane by 90◦ for each iteration.

The inverse Fourier transform can also be derived by applying the transform

three times.

F3(f̂(x)) = f(x)

6.0.1 Example 1

Now, let us compute F( sinx
x

) using one of the above properties.

From example 2.4.3 a), we have that

F(f)(x) =

√
2

π

sinx

x

Then

F(

√
2

π

sinx

x
) = F2(f) = f(−x)

So, by applying the Fourier transform twice, we get the box-function back

(since it is symmetric).

This is an appropriate time to state the proof for the inverse Fourier trans-

form.
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6.1 Proof of the inverse Fourier transform

6.1.1 Step 1

We have that, for any g and f integrable,∫ ∞
−∞

f̂(ω)g(ω)dω =

∫ ∞
−∞

f(y)ĝ(y)dy

This can be shown using Fubini’s theorem, which states that the integra-

tion order does not matter:∫ ∫
e−iωyf(y)dy · g(ω)dω =

∫ ∫
e−iωyg(ω)dω · f(y)dy.

6.1.2 Step 2∫ ∞
−∞

eiωxf̂(ω)dω = lim
a→0

∫ ∞
−∞

e−
a
2
ω2+iωxf̂(ω)dω.

Let us write e−
a
2
ω2+iωx as ga,x(ω). From Step 1, we can write

lim
a→∞

∫ ∞
−∞
F [ga,x](y)f(y)dy.

6.1.3 Step 3

By the modulation-property, we can write

F [ga,x](y)

as

F [ga,0](y − x)

where ga,0(ω) = e−
a2

2
ω2

= e−
(aω)2

2 .
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By time-scaling,

F [ga,0](t) =
1

|a|
F [g1,0](

t

a
) =

1

|a|
g1,0(

t

a
)

since F [e−
ω2

2 ] = e−
t2

2 .

Therefore,

F [ga,x](y) =
1

|a|
e−

(y−x)2

2a2 .

6.1.4 Step 4

By step 2 and step 3,

1√
2π

∫ ∞
−∞

ga,x(ω)f̂(ω)dω =
1√
2π

∫ ∞
−∞

1

|a|
e−

(y−x)2

2a2 f(y)dy.

Now, let φa(y − x) = e−
(y−x)2

2a2 . Then we can write the integral above as the

convolution

(φa ∗ f)(x)

It is known that the functions φa(t)→a→0 δ0(t). This implies that∫
φa(t)f(t)dt→ f(0)

=⇒ (φa ∗ f)(x)→a→0 f(x).

Hence, we have shown that

1√
2π

∫ ∞
−∞

eiωxf̂(ω)dω = f(x).



Chapter 7

The Fourier transform method

The Fourier transform method is used on differential equations on infinite

(−∞,∞) and semi-infinite (x0,∞) regions. In the latter, x0 is often set to

the origin (0). This method is mostly used on the wave- and heat equation

in one dimension.

7.1 Partial derivatives

Let u(x, t) be a function of two variables. Assume −∞ < x <∞ and t > 0.

Now we have to take the Fourier transform with respect to one variable, for

example x. Then we get û(ω, t):

1) F(u(x, t))(ω) = û(ω, t) =
1√
2π

∫ ∞
−∞

u(x, t)e−iωxdx

For partial derivatives, we have the following transforms:

2) F(
∂

∂t
u(x, t))(ω) =

d

dt
û(ω, t)

3) F(
∂n

∂tn
u(x, t)(ω) =

dn

dtn
û(ω, t)
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where n ∈ N (n=1, 2, ..., k).

4) F(
∂

∂x
u(x, t))(ω) = iωû(ω, t)

5) F(
∂n

∂xn
u(x, t))(ω) = (iω)nû(ω, t)

where n ∈ N. The property used for the derivatives is found in chapter 4.2.

7.1.1 Example: Wave equation

Find the solution u(x, t) given the second order differential equation

∂2u

∂t2
= c2

d2u

dx2

with boundary conditions

u(x, 0) = f(x)

as the initial displacement and

u(0, t) = g(x)

as the initial velocity. Here f(x) and g(x) are integrable on (−∞,∞).

Solution

Start by taking the Fourier transform on both sides of the equation and its

boundary conditions. Using equation 3) and 5), we get

d2

dt2
û(ω, t) = −c2ω2û(ω, t)

û(ω, 0) = f̂(ω)

d

dt
û(ω, 0) = ĝ(ω)
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This implies the equation

d2

dt2
û(ω, t) + c2ω2û(ω, t) = 0

which has the general solution

û(ω, t) = A(ω) cos cωt+B(ω) sin cωt

where A(ω) and B(ω) are constant in time (t). For the boundary conditions,

we have

û(ω, 0) = A(ω) = f̂(ω)

d

dt
û(ω, 0) = cωB(ω) = ĝ(ω) =⇒ B(ω) =

1

cω
ĝ(ω)

Then the solution is given by

û(ω, t) = f̂(ω) cos cωt+
1

cω
ĝ(ω) sin cωt

Remember that this is the transformed solution. By applying the inverse

transform method, we derive the original solution:

u(x, t) =
1√
2π

∫ ∞
−∞

[f̂(ω) cos cωt+
1

cω
ĝ(ω) sin cωt]eiωxdω �

For some cases, the integral can be computed explicitly.

7.2 Recipe for the Fourier transform method

Given a boundary value problem, we go via the Fourier transform to make

the computations easier. This is done by the following steps:

1) Take the Fourier transform of the given BVP.

2) Solve the derived differential equation and find its solution, û(ω, t).
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3) Get the original solution, u(x, t), back by applying the inverse transform

method.

Let us try the same recipe on a heat-equation-problem.

7.2.1 Example: Heat equation

Given
∂u

∂t
= c2

∂2u

∂x2

with boundary condition

u(x, 0) = f(x)

find u(x, t).

Solution

By taking the Fourier transform, we get

d

dt
û(ω, t) = −c2ω2û(ω, t)

û(ω, 0) = f̂(ω)

=⇒ û(ω, t) = A(ω)e−c
2ω2t

û(ω, 0) = A(ω) = f̂(ω)

This gives the transformed solution

û(ω, t) = f̂(ω)e−c
2ω2t

By applying the inverse transform, we derive the solution

u(x, t) =
1√
2π

∫ ∞
−∞

f̂(ω)e−c
2ω2teiωxdω �
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7.3 Examples

Determine the solution of the given wave or heat problems.

7.3.1 Example 1

Given the following boundary value with wave-equation

∂2u

∂t2
=
∂2u

∂x2

u(x, 0) =
1

1 + x2
,

∂u

∂t
(x, 0) = 0

Fourier transforming the problem, we get

d2

dt2
û(ω, t) = −ω2û(ω, t)

û(ω, 0) = F(
1

1 + x2
) =

√
π

2
e−|w|

d

dt
û(ω, 0) = 0.

Now we write the ordinary differential equation in the standard form

d2

dt2
ω̂, t+ ωû(ω, t) = 0

The general solution is then given by

û(ω, t) = A(ω) cosωt+B(ω) sinωt

From the initial conditions, we determine A(ω) and B(ω):

û(ω, 0) = A(ω) =

√
π

2
e−|w|,

d

dt
û(ω, 0) = ωB(ω) = 0.

That gives us the following transformed solution

û(x, t) =

√
π

2
cosωt

Taking the inverse transform of this, we obtain our solution

u(x, t) =
1√
2π

∫ ∞
−∞

[√
π

2
e−|w| cosωt

]
eiωxdω.
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7.3.2 Example 2

Given the boundary value problem with heat equation

∂u

∂t
=

1

4

∂2u

∂x2

with initial temperature distribution

u(x, 0) = e−x
2

First, we take the Fourier transform of both equations:

=⇒ d

dt
û(ω, t) = −1

4
ω2û(ω, t)

û(ω, 0) =
√
π

since the initial condition is given by the Gaussian function. Then we have

the general transformed solution

û(ω, t) =
√
πe−

1
4
ω2t

Taking the inverse transform of this, we get our solution

u(x, t) =

√
π√
2π

∫ ∞
−∞

e−
1
4
ω2teiωxdω =

=
1√
2
F(e−

1
4
ω2t) =

1√
2

[√
2e−t√
t

]

=
2e−t√
t
.

7.3.3 Example 3

Given boundary value problem with wave-equation

∂2u

∂t2
= c2

∂2u

∂x2
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with initial displacement

u(x, 0) =

√
2

π

sinx

x

and initial velocity
du

dt
(x, 0) = 0.

Taking the Fourier transform of this, we get

d2

dt2
(û(ω, t) = −c2ω2û(ω, t)

û(ω, 0) = F(

√
2

π

sinx

x
) =

f(x) =

1 if |x| < 1

0 if |x| > 1

which is the box-function derived in example 6.0.1.

d

dt
û(ω, 0) = 0.

Now we reorder the first equation to obtain the standard form of an ordinary

differential equation with 0 on the right hand side:

d2

dt2
(û(ω, t) + c2ω2û(ω, t) = 0

with general solution

û(ω, t) = A(ω) cos cωt+B(ω) sin cωt

Now, we have that

û(ω, 0) = A(ω) = f(x)

and
d

dt
û(ω, 0) = 0
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Then the transformed solution is given by

û(ω, t) = f(x) cos cωt

Taking the inverse transform of this, we obtain the solution

u(x, t) =
1√
2π

∫ ∞
−∞

[f(x) cos cωt]eiωxdω.



Chapter 8

Other solving strategies

8.1 Gauss’s kernel

So far we have expressed the solution as an inverse transform after using

the Fourier transform method of some given initial data. This is a tedious

process, so in practise we want to find the inverse transform directly and give

the solution as the initial data itself.

8.1.1 Solving the heat equation as a convolution

∂u

∂t
= c2

∂2u
2

where −∞ < x <∞ and t > 0, with initial condition

u(x, 0) = f(x)

We know from the previous example that

û(ω, t) = f̂(ω)e−c
2ω2t
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By applying the inverse transform to this, we get the solution

u(x, t) =
1√
2π

∫ ∞
−∞

f̂(ω)e−c
2ω2teiωxdω

Now, remember our goal expressed in the beginning of this chapter, namely

to find the inverse Fourier transform in terms of f . We see that the inverse

solution û(ω, t) is given as the product of two Fourier transforms: f̂(ω) and

e−c
2ω2t. Therefore, we can say that u is the convolution of f with the function

that has e−c
2ω2t as its Fourier transform.

This function is known as the heat kernel, or Gauss’s kernel. It is given by

the following equation:

gt(x) =
1

c
√

2t
e−x

2/4c2t

Plotting this results in different Gaussian curves, where the area under each

curve is constant.
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Solution

The solution of the heat equation given as a convolution is given by

u(x, t) =
1

c
√

2t
e−x

2/4c2t ∗ f =

=
1

2c
√
πt

∫ ∞
−∞

f(s)e−(x−s)
2/4c2tds

8.1.2 Proof

One must show that e−c
2ω2t is the Fourier transform of gt(x). Using the

Fourier transform of the Gaussian from chapter 5, we immediately get

ĝ(ω) =
1

c
√

2t

√
2c2te−ω

2c2t = e−ω
2c2t �

by setting a
2

= 1
4c2t

.

8.2 Example 1

Use convolutions, the error function, and other operational properties of

the Fourier transform to solve the following boundary problem. The heat

equation is given by
∂u

∂t
=

1

4

∂2u

∂x2

with initial condition

u(x, 0) =

20, −1 < x < 1

0, otherwise

Applying the solution for the Gauss’s kernel, we have that

u(x, t) =
20√
πt

∫ 1

−1
e
−(x−s)2

t ds
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=⇒ 20√
t

∫ x−1√
t

x+1√
t

e−z
2

dz =
20√
t

(∫ x+1√
t

0

e−z
2

dz −
∫ x−1√

t

0

e−z
2

dz

)
=

= 20

[
erf(

x+ 1√
t

)− erf(
x− 1√

t
)

]
,

where

erf(ω) =
2√
π

∫ ω

0

e−z
2

dz, ∀ω.

8.2.1 Remark

The so-called ”error-function” is used to simplify the expressions in the so-

lutions of boundary value problems. The function is given as the integral of

a Gaussian function and its values is given in tables (N. Asmar (2000), p.

355).



Chapter 9

The cosine and sine transform

Consider a Dirichlet problem in the first quadrant. Then the boundary is

given by the x- and y-axis. Let us now introduce the Fourier cosine and sine

transforms. How can we use the Fourier transform when f(x) is only defined

for x > 0?

From the idea of half-range expansions in Fourier series, we have a clue

that the extension of f will be non-periodic (even and odd). An even function

is symmetric with respect to the y-axis, while an odd function is symmetric

with respect to the origin.

9.1 Cosine and sine integral representation

If f is even on the whole R, we get

f(x) =

∫ ∞
0

A(ω)cosωxdω

where x > 0, when applying the Fourier integral representation. A(ω) is

given by
2

π

∫ ∞
0

f(t) cosωtdt
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This is called a Fourier cosine integral representation.

For an odd funciton, we get the Fourier sine integral representation of f :

f(x) =

∫ ∞
0

B(ω) sinωxdω

where x > 0.

B(ω) =
2

π

∫ ∞
0

f(t) sinωtdt

9.2 Cosine and sine transforms

The Fourier cosine transform of f is given by

f̂c(ω) =

√
2

π

∫ ∞
0

f(t) cosωtdt

where ω ≥ 0. By taking the inverse transform, we get

f(x) =

√
2

π

∫ ∞
0

f̂c(ω) cosωxdω

for x > 0.

For the Fourier sine transform, we get

f̂s(ω) =

√
2

π

∫ ∞
0

f(t) sinωtdt

f(x) =

√
2

π

∫ ∞
0

f̂s(ω) sinωxdω

9.2.1 Remarks

f̂c and f̂s can sometimes be written as Fc(f) and Fs(f). As before, f(x) is

replaced by f(x+)+f(x−)
2

at points of discontinuity.
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If f(x) (x ≥ 0) is restriction of an even function, fe, then

f̂c(ω) = F(fe)(ω) ∀ω ≥ 0

If f(x) (x ≥ 0) is restriction of an odd function, fo, then

f̂s(ω) = iF(fo)(ω) ∀ω ≥ 0

9.2.2 Example 1

f(x) = e−ax, a > 0, x > 0

Let us find the Fourier cosine transform of f(x).

f̂c(ω) =

√
2

π

∫ ∞
0

e−at cosωtdt

=

√
2

π

a

a2 + ω2
[e−at(

ω

a
sinωt− cosωt)]∞0

=

√
2

π

a

a2 + ω2

The values in the square bracket are found in a table.

Now we calculate the inverse Fourier transform of f(x).

F(e−ax) =

√
2

π

∫ ∞
0

f̂c(ω) cosωxdω =
2

π

∫ ∞
0

a cosωx

a2 + ω2
dω.

9.2.3 Example 2

Given

f(x) =

1 if 0 < x < b

0 otherwise
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we want to find its Fourier sine transform. Using the given formula for f̂s(ω)

we get √
2

π

∫ b

0

sinωtdt =

√
2

π

[
−cosωt

ω

]b
0

=

=

√
2

π

[
1

ω
− cos bω

ω

]
.

Hence,

f̂s(ω) =

√
2

π

(
1− cos bω

ω

)
.

9.3 Operational properties

The properties for the Fourier cosine and sine transforms are closely related

to the ones for the original transform.

9.3.1 Linearity

Let f, g be functions and a, b numbers.

Fc(af + bg) = aFc(f) + bFc(g)

and

Fs(af + bg) = aFs(f) + bFs(g)

9.3.2 Transforms of derivatives

Suppose f(x)→ 0 as x→∞. Then

Fc(f ′) = ωFs(f)−
√

2

π
f(0)

Fs(f ′′) = −ωFc(f)
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If also f ′(x)→ 0 as x→∞, then

Fc(f ′′) = −ω2Fc(f)−
√

2

π
f ′(0)

Fs(f ′′) = −ω2Fs(f) +

√
2

π
ωf(0)

9.3.3 Derivatives of transforms

Fc(xf(x)) =
d

dω
Fs(f(x))

Fs(xf(x)) = − d

dω
Fc(f(x))

Fourier sine and cosine transforms are used for solving boundary value

problems on (0,∞, so-called ”semi-infinite intervals”. ’

9.3.4 Example 3

f(x) =

T0 if 0 < x < b

0 otherwise

Now we solve the heat equation

∂u

∂t
=
∂2u

∂x2

u(x, 0) = f(x)

u(0, t) = 0

Given that

Fs(
∂u

∂t
) =

d

dt
û

and

Fs(
∂2u

dx2
) = −ω2ûs(ω, t) +

√
2

π
ω, u(0, t) = −ω2ûs(ω, t)

we get the following transforms:
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d

dt
ûs(ω, t) = −ω2ûs(ω, t)

ûs(ω, 0) = f̂s(ω) = T0

√
2

π

(
1− cos bω

ω

)
from example 9.2.3, where T0 is a constant.

The general transformed solution is then given by

ûs(ω, t) = A(ω)e−ω
2t

with

ûs(ω, 0) = A(ω) = f̂s(ω) = T0

√
2

π

(
1− cos bω

ω

)
=⇒ ûs(ω, t) = T0

√
2

π

(
1− cos bω

ω

)
e−ω

2t.

By taking the inverse transform, we obtain our original solution

u(x, t) = T0

√
2

π

∫ b

0

(
1− cos bω

ω
)e−ω

2t sinωxdω.
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F on generalized functions

The real life often involve impulsive phenomenons, which can be described

as applying a strong force in a short time interval. An example would be to

kick a fotball or chopping wood. The strengt of this force can be written as∫ b

a

F (t)dt,

where F (t) is the impulse and [a, b] is the time interval in which the impulse

is active. k ∈ N.

Given

Fk(t) =

k, if − 1
2k
≤ t ≤ 1

2k

0, if |t| ≥ 1
2k
.

Then, if f(x) continuous on the interval [a, b],

lim
h→∞

∫ b

a

f(x)Fk(x)dx =

f(0), if a ≤ 0 ≤ b

0, if 0 is not in [a, b].
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10.1 The Dirac Delta function

The δ-function is a generalized function, or a distribution, defined as the

limit of the Fk’s such that ∀ continuous functions f ∈ [a, b],∫ b

a

f(x)δ0(x)dx = lim
x→∞

∫ b

a

f(x)Fk(x)dx.

It follows that∫ ∞
−∞

f(x)δ0(x)dx =

f(0), if a ≤ 0 ≤ b

0, if 0 is not in [a, b].

We can not define δ0(x) like a normal function, namely as its values at each

point x. Nevertheless, it may be helpful to think of the Delta-function as a

function of x. Then δ0(x) = 0 ∀x 6= 0 and δ0(0) =∞ (a spike or impulse at

x = 0), as shown in the figure below.

Such distributions are often defined as ”the values of the intervals against

other functions”. For a generalized function ϕ, it is sufficient to to define how

it acts on test functions, which symbolically can be written as

< ϕ, f >=

∫ ∞
−∞

f(x)ϕ(x)dx,

where f is a test function. Test functions have derivatives of all order and

goes to zero rapidly at ±∞ or equals zero outside a given bounded interval.
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Example 1

Consider the Heaviside function.

Remember the property if f is differentiable, then

F(f ′)(ω) = iωF(f)(ω).

Now, since ϕ′(x) = 0 ∀x 6= ±0 and F(0) = 0, we get that F(ϕ′)(ω) = 0∀ω.

Therefore, the above property does not hold for ϕ. If we consider it as a usual

function and not as distribution, a generalized function will help us to apply

the operational properties to step functions and piecewise linear functions.

Later we will compute the derivative of the Heaviside function considered as

a generalized function (Section 10.3, Example 2).

10.2 Translation

We say that ϕ and ψ, both generalized functions, are equal if

< ϕ, f >=< ψ, f >,

∀ test functions f.

Given α ∈ R, the translate of δ0 is given by

< δα, f >=

∫ ∞
−∞

f(x)δα(x)dx = f(α).

In other words, we only have to compute the value of f at α to find the

translation δ0(x− a).
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For the Heaviside function, H0, being a generalized function,

< H0, f >=

∫ ∞
−∞

f(x)H0(x)dx =

∫ ∞
−∞

f(x)dx,

f being a test function. The translate of H is given by

Hα(x) =

0, if x < α

1, ifx ≥ α.

=⇒ Hα(x) = H0(x− α).

10.3 Derivatives

We have that if ϕ is differentiable, then

< ϕ′, f >=

∫ ∞
−∞

f(x)ϕ′(x)dx =

= f(x)ϕ(x)|∞−∞ −
∫ ∞
−∞

f ′(x)ϕ(x)dx,

by integrating by parts. Since f(x) = 0 when x→ ±∞, we obtain

−
∫ ∞
−∞

f ′(x)ϕ(x)dx =< ϕ,−f ′ > .

This motivates the definition of the derivatives of generalized functions: ϕ′

is the distribution that acts on test functions f as ϕ acts on −f ′:

< ϕ′, f >= − < ϕ, f ′ > .

10.3.1 Example 2

Finding the derivative of the Heaviside function, we derive the Delta-function:

< H ′0, f >=< H0, f
′ >=

= −
∫ ∞
0

f ′(x)dx = −f(x)|∞0 = f(x)

=⇒ < H ′0, f >=< δ0, f > .
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10.4 Fourier transforms

We define the Fourier transform of a generalized function ϕ as the one that

acts on f as ϕ acts on the Fourier transform of f :

< ϕ̂, f >=< ϕ, f̂ >=

∫ ∞
−∞

f̂(x)ϕ(x)dx.

10.4.1 Example 3

Fouirer transforming the Delta-function, we get

< δ̂0, f >=< δ0, f̂ >=

∫ ∞
−∞

f̂(x)δ0dx =

= f̂(0) =
1√
2π

∫ ∞
−∞

f(x)dx =<
1√
2π
, f > .

Thus,

F(δ0(x))(ω) =
1√
2π
.

This can also be shown using the definition of the Fourier transform:

δ̂0(ω) =
1√
2π

∫ ∞
−∞

e−iωxδ0(x)dx =
1√
2π
e−iω·0 =

1√
2π
.

Further, we have the following Fourier transforms for the Delta- and

Heaviside-function:

F(δα)(ω) =
1√
2π
e−iαω

F(H0)(ω) = − i√
2πω

F(Hα)(ω) = − i√
2πω

e−iαω

One can show that, with this a definition of the derivative of generalized

functions, the formulas for the derivative of the Fourier transform (Section

4.1) and the Fourier transform (Section 4.2) remain true for generalized func-

tions. The proof of this will not be included in this thesis.
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10.5 Convolution

Let the convolution ϕ ∗ ψ be defined as

1√
2π

∫ ∞
−∞

ϕ(t)ψ(x− t)dt.

Taking the convolution of δ with ϕ, we get

δα ∗ ϕ(x) =
1√
2π

∫ ∞
−∞

δα(t)ϕ(x− t)dt =

=
1√
2π
ϕ(x− α) =

1√
2π
ϕα(x).

In other words, we multiply by 1√
2π

and translate by α. That implies that
√

2πδ0 is an identity with respect to the distribution, since

(
√

2πδ0) ∗ f(x) = f(x).

So, in general, we have that

(
√

2πδα) ∗ f(x) = f(x− α).

10.5.1 Convolution of the Delta-functions

If we take the convolution of two Delta-functions, we get

δa ∗ δb =
1√
2π
δa+b.

10.5.2 Differentiation of a convolution

Differentiating a convolution, we obtain

(ϕ ∗ ψ)′ = ϕ′ ∗ ψ = ϕ ∗ ψ′.

This can be shown by using the properties: F(ϕ ∗ ψ) = F(ϕ) · F(ψ) and

iωf̂ = F(f ′).
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Let

h(t) = (ϕ ∗ ψ)′

=⇒ ĥ(t) = F(h(t)) = F((ϕ ∗ ψ)′) = iωF(ϕ ∗ ψ) =

= iωϕ̂(ω)ψ̂(ω).

Since this commute, we either can write the expression as

ϕ̂′(ω)ψ̂(ω)

or

ϕ̂(ω)ψ̂′(ω).

by following the derivative-property above. Now, by taking the inverse trans-

form we obtain

(ϕ ∗ ψ)′ = ϕ′ ∗ ψ = ϕ ∗ ψ′ �

By taking the derivative again, we obtain

(ϕ ∗ ψ)′′ = ϕ′ ∗ ψ′.

As for the Fourier transform and its derivative, it can be shown that the

convolution theorem (Section 4.3) holds true for generalized functions as well.

This will not be a part of this thesis.

10.6 More examples

10.6.1 Example 4

Given

ϕ(x) = (H0(x)−H1(x))′,
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Let us find its Fourier transform. Given (cHα)′ = cδα, we have that

(H0(x)−H1(x))′ = (H0(x))′ − (H1(x))′ = δ0 − δ1.

Then

F(δ0 − δ1)(ω) = F(δ0)(ω)−F(δ1)(ω) =

=
1√
2π
e−i·0ω − 1√

2π
e−i·1ω =

1√
2π

(1− e−iω).

10.6.2 Example 5

Let

ϕ(x) = −δ−1(x) + δ1(x) +H0(x)−H1(x),

then its Fourier transform is given by

F(ϕ)(ω) = F(−δ−1) + F(δ1) + F(H0)−F(H1) =

= − 1√
2π
eiω +

1√
2π
e−iω − i√

2πω
+

i√
2πω

e−iω =

=
1√
2π

(e−iω − eiω) +
i√

2πω
(e−iω − 1)

=
1√
2π

[
e−iω − eiω +

i

ω
(e−iω − 1)

]
.

10.6.3 Example 6

Now, let us find the convolution of ϕ and ψ, where

ϕ(x) = 3δ−1(x)

and

ψ(x) = δ2(x)− δ1(x).
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Remember that

f ∗ (g + h) = f ∗ g + f ∗ h,

so (ϕ ∗ ψ) can be written as

3δ−1 ∗ (δ2 − δ1) = (3δ−1 ∗ δ2) + (3δ−1 ∗ (−δ1)) =

=
3√
2π
δ(−1+2) −

3√
2π
δ(−1+2) =

=⇒ (ϕ ∗ ψ) =
3√
2π

(δ1 − δ0).



Chapter 11

Solving the non-homogeneous

heat equation

Non-homogeneous heat equations arise in the heat spreading processes in-

volving heat and cooling sources. An example may be an instantaneous heat

impulse represented by the delta-function. Knowing the properties of this

function, we can now look at boundary value problems that have functions

that are concentrated at isolated points.

”Two generalized functions are equal if their integrals against test functions

are equal”. So, if the solution of a boundary value problem is given by ϕ(x)

and it verifies the initial condition as a generalized function, ϕ(x, t) is said

to be a weak solution. In other words, a weak solution solves a problem that

includes the Delta-function.

The weak solution is given as a constant multiple of the heat kernel, namely

ϕ(x) = 1√
2π
gt(x), where gt(x) = 1

c
√
2t
e−x

2/4c2t. Thus, this solution is funda-

mental, which means that it can be used to express the general solution to

72
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the heat equation.

When solving the non-homogenuous heat equation, we first find the weak

solution and then us it to find the general solution.

11.0.1 Fundamental solution

Now, we have to extend the the heat kernel for t ≤ 0: ∀ −∞ < x <∞,

ϕ(x, t) =


1

2c
√
πt
e−x

2/(4c2t) if x > 0

0 if x ≤ 0.

In words, that means that ϕ(x) = 1√
2π
gt(x) if t > 0 and 0 otherwise. Given

this, ϕ(x, t) is a weak solution of the non-homogenuous heat equation ut =

x2uxx+δ0(x)δ0(t). If the initial condition is given by u(x, o) = 0, the solution

is given by

u(x, t) =

∫ t

0

∫ ∞
−∞

ϕ(x− y, t− s)f(y, s)dyds,

where ϕ(x, t) = 1√
2π
gt(x) = 1

2c
√
πt
e−x

2/(4c2t).

11.0.2 The incomplete gamma-function

For simplicity, we use the so-called incomplete gamma-function, Γ, to express

our solution. This function is defined as

Γ(a, x) =

∫ ∞
x

e−tta−tdt.

If x = 0, Γ(a, o) = Γ(a).

If a 6= 0, we integrate by parts and get∫ ∞
x

e−tta−1dt =
1

a
e−tta|∞x +

1

a

∫ ∞
x

e−ttadt =



CHAPTER 11. SOLVING THE NON-HOMOGENEOUS HEAT EQUATION74

= −e
−xxa

a
+

1

a

∫ ∞
x

e−tdt = −e
−xxa

a
+

1

a
[Γ(a+ 1, x)].

If −1 < a < 0 and x > 0,∫ ∞
x

e−tta−1dt =
1

a
[−e−xxa + Γ(a+ 1, x)].

11.0.3 General solution

Given u(x, 0) = h(x), we have that the general solution is given by

u(x, t) =

∫ t

0

∫ ∞
−∞

ϕ(x− y, t− s)f(y, s)dyds+

∫ ∞
−∞

ϕ(x− y, t)h(y)dy.

Superposition principle

If u1(x, t) solves ut = c2uxx + f1(x, t) with initial condition u(x, 0) = 0,

and u2(x, t) solves ut = c2uxxf2(x, t) with initial condition u(x, 0) = 0. Then

u = u1+u2 is a solution to ut = c2uxx+f1(x, t)+f2(x, t) with initial condition

u(x, 0) = 0.

Translation principle

If ϕ(x, t) solves u1 = c2uxx + f(x, t) with initial condition u(x, 0 = 0), then

u(x, t) = ϕ(x − a, t) solves ut = c2uxx + f(x − a) with initial condition

u(x, 0) = 0.

11.1 Examples

11.1.1 Example 1

Let us solve the heat problem

ut =
1

4
uxx + δa(x), u(x, 0) = 0,

where a is arbitrary. Let us first solve for a = 0.
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We have that f(x, t) = δ0(x) and c = 1
2
. This gives us the fundamental

solution

u(x, t) =
1√
π

∫ t

0

∫ ∞
∞

1√
t− s

e−(x−y)
2/(t−s)δ0(y)dyds

=⇒ u(x, t) =
1√
π

∫ t

0

1√
t− s

e−x
2/(t−s)ds

when integrating against δ0(y).

Now, we make a change of variables to simplify the exponential function:

z = x2

t−s , ds = x2

x2
dz and 1√

t−s =
√
z
|x| . Then we have that

u(x, t) =
|x|√
π

∫ ∞
x2

t

e−zz−
3
2dz

If we now apply the incomplete Gamma-function

1

a
[−e−xxa + Γ(a+ 1, x)]

with a = −1
2

and x replaced with x2

t
, we obtain

|x|√
π

[
1

−1
2

(−e−x2/t(x
2

t
)−

1
2 + Γ(−1

2
+ 1,

x2

t
)

]
=

=
|x|√
π

[
2e−

x2

t

√
t

|x|
− 2Γ(

1

2
,
x2

t
)

]
=⇒ u(x, t) = 2

√
t√
π
e−x

2/t − 2
|x|√
π

Γ(
1

2
,
x2

t
).

Now, having that f(x, t) = δa, we use the translation principle, we have

that our problem is translated a units to the right (a > 0) or to the left

(a < 0) in the x-variable. That means that x is replaced by (x−a)2
t

. Then we

have our solution

ϕ(x, t) = u(x− a, t) =

= 2

√
t√
π
e−(x−a)2/t − 2

|x− a|√
π

Γ(
1

2
,
(x− a)2

t
).
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11.1.2 Example 2

If

ut =
1

4
uxx + δ0(x) + δ1(x), u(x, 0) = 0

From the superposition principle, we have that our solution ϕ(x, t) is the

sum of the solutions u(x, t) and u(x− 1, t). That implies

2

√
t√
π
e−x

2/t − 2
|x|√
π

Γ(
1

2
,
x2

t
) + 2

√
t√
π
e−(x−1)

2/t − 2
|x− 1|√

π
Γ(

1

2
,
(x− 1)2

t
).

11.1.3 Example 3

Let

Ut =
1

4
uxx + δ0(x)(U0(t)− U1(t))

be a heat source at (0, 0) that is ON for 0 < t ≤ 1 and OFF for t > 1.

When t is between 0 and 1, we have the same problem as in Example 1,

since the conditions are the same. So, if our solution is given by v(x, t) in

this problem, for 0 < t < 1

v(x, t) = u(x, t).

When t > 1 and s varies in the interval (0, t), U0(s) − U1(s) = 1 if s is in

(0, 1) and 0 if s is in (1, t). So, if t > 1

v(x, t) =
1√
π

∫ 1

0

1√
t− s

e−x
2/(t−s)ds =

|x|√
π

∫ x2

t−1

x2

t

e−zz−3/2dz.

This can be written as

v(x, t) =
|x|√
π

∫ ∞
x2

t

e−zz−3/2dz − |x|√
π

∫ ∞
x2

t−1

e−zz−3/2dz =

= u(x, t)− u(x, t− 1).
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=⇒ v(x, t) =

u(x, t), if 0 < t < 1

u(x, t)− u(x, t− 1), if t > 1

11.1.4 Example 4

Now, let us take this one step further:

ut =
1

4
uxx + (δ0(x) + δ1(x))(U0(t)− U1(t)), u(x, 0) = 0.

Now, we have a heat source at the origin that is turned ON for 0 < t < 1 and

OFF for t > 1 (as in Example 3) and a heat source at x = 1 that is turned

ON for 0 < t < 1 and OFF for t > 1. Therefore, we can write

(δ0(x) + δ1(x))(U0(t)− U1(t))

as

δ0(x)[U0(t)− U1(t)] + δ1(x)[U0(t)− U1(t)].

When t ∈ (0, 1), we have that the solution w(x, t) is composed of v(x, t) =

u(x, t) and the same solution just shiftet by one unit: u(x− 1, t). Thus,

w(x, t) = u(x, t) + u(x− 1, t),

for 0 < t < 1.

For t > 1, we use the same idea as above: we have the same solution as

before, in addition to a translated version of the same solution, like this:

w(x, t) = u(x, t)− u(x, t− 1) + u(x− t, t)− u(x− 1, t− 1),
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for t > 1. This implies that our solution is given by

=⇒ w(x, t) =

u(x, t) + u(x− 1, t), if 0 < t < 1

u(x, t)− u(x, t− 1) + u(x− 1, t)− u(x− 1, t− 1), if t > 1



Chapter 12

Conclusion

Now we have seen some of the most important properties and applications

of the Fourier transform to partial differential equations and boundary value

problems. My idea at the beginning of this thesis was to start with the

”birth” of the Fourier transform, namely from Fourier series. From there, we

have built stone by stone by adding definitions, proof and examples to the

main properties and different solving methods.

I was kind of nervous about the last part of my assignment about gener-

alized functions and the non-homogeneous heat equation, so I am glad that

my supervisor did not give me all the details of the thesis in the beginning,

but part by part along the way. Then I could focus on the present material

without concerning about what comes next. I also think that helps me to

understand more of the material than if I knew what was to come.

My Achilles heel is with no doubt the writing in English, but I think it

have worked out quite well throughout the spring. Also, the writing in Latex

gets easier each time I open my document, so in the end I did not have to

look up all the commands every time. Therefore, my writing has become not

79
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so time-consuming as it was in February.

As an end to my thesis, I once again want to thank my supervisor, Alexan-

der Rashkovskii, for guidence along the way. Even though a master’s thesis

include more independent work than the bachelor’s thesis, I feel that I have

received sufficient help along the way. I really appreciate that, so thank you

very much!
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